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Abstract. Falcon is one of the three postquantum signature schemes already selected by NIST
for standardization. It is the most compact among them, and offers excellent efficiency and
security. However, it is based on a complex algorithm for lattice discrete Gaussian sampling which
presents a number of implementation challenges. In particular, it relies on (possibly emulated)
floating-point arithmetic, which is often regarded as a cause for concern, and has been leveraged
in, e.g., side-channel analysis. The extent to which Falcon’s use of floating point arithmetic can
cause security issues has yet to be thoroughly explored in the literature.
In this paper, we contribute to filling this gap by identifying a way in which Falcon’s lattice
discrete Gaussian sampler, due to specific design choices, is singularly sensitive to floating-point
errors. In the presence of small floating-point discrepancies (which can occur in various ways,
including the use of the two almost but not quite equivalent signing procedures “dynamic” and
“tree” exposed by the Falcon API), we find that, when called twice on the same input, the
Falcon sampler has a small but significant chance (on the order of once in a few thousand calls)
of outputting two different lattice points with a very structured difference, that immediately
reveals the secret key. This is in contrast to other lattice Gaussian sampling algorithms like
Peikert’s sampler and Prest’s hybrid sampler, that are stable with respect to small floating-point
errors.
Correctly generated Falcon signatures include a salt that should in principle prevent the sam-
pler to ever be called on the same input twice. In that sense, our observation has little impact on
the security of Falcon signatures per se (beyond echoing warnings about the dangers of repeated
randomness). On the other hand, it is critical for derandomized variants of Falcon, which have
been proposed for use in numerous settings. One can mention in particular identity-based en-
cryption, SNARK-friendly signatures, and sublinear signature aggregation. For all these settings,
small floating point discrepancies have a chance of resulting in full private key exposure, even
when using the slower, integer-based emulated floating-point arithmetic of Falcon’s reference
implementation.

Keywords: Falcon · Lattice-Based Cryptography · Floating-Point Arithmetic · Hash-and-
Sign Signatures · NTRU

1 Introduction

Falcon [PFH+22] is a postquantum signature scheme based on structured lattices, which was one
of the three signatures selected by NIST for standardization in 2022. It is a particularly efficient
instantiation of the GPV lattice trapdoor framework [GPV08] over NTRU lattices. It was the most
compact signature scheme in the third round of the NIST standardization process (some candidates



had shorter keys but much larger signatures, and vice versa), and has both fast signing and verification
on architectures for which an optimized implementation is available.

In addition, since it is one of the most efficient available instantiations of a lattice trapdoor, Falcon
is also an attractive building block for more advanced primitives and protocols, including identity-based
encryption [DLP14, ZMS+24], trapdoor commitments [DOTT21] and ring signatures [LAZ19].

Falcon’s main drawback, however, is its overall complexity. The signing algorithm samples lattice
points according to a discrete Gaussian distribution, and a small deviation from the correct distribution
may result in leakage of the entire private key. Moreover, the sampling algorithm relies fairly crucially
on floating-point arithmetic. This makes Falcon challenging to implement correctly, and issues like
side-channel resilience are difficult to address efficiently [FKT+20, KA21, GMRR22, ZLYW23].

Falcon’s reliance on floating-point arithmetic, specifically, is often raised as a point of potential
concern, but a thorough discussion of its security implications seems to be lacking aside from the
context of side-channels.

1.1 Our contributions

This paper aims at filling this gap in the literature, with a discussion of Falcon’s sensitivity to
floating-point errors, and a discussion of its consequences. Our contributions are threefold:

– we first show that the discrete Gaussian sampler within Falcon behaves in such a way that small
discrepancies introduced by floating-point arithmetic can result in very structured differences in
its output;

– we then describe how this can yield to a complete key recovery when the sampler if called twice
on the same input, but with different intermediate floating-point errors;

– we finally mention how such distinct intermediate floating-point errors can occur in certain contexts
due to the API exposed by Falcon, demonstrate the key recovery attack in those contexts, and
discuss the security impact on non-standard and advanced uses of Falcon.

1.2 Applicability

We stress that the sensitivity to floating-point errors that we identify only results in a vulnerability
in contexts where the sampler can be called twice on the same input, but with different intermediate
floating-point errors. For normal Falcon signatures, this should never happen, owing to the use of a
salt that never repeats. It should be noted, however, that repeated randomness does occur in the real
world, sometimes with catastrophic cryptographic consequences [HDWH12, BHH+14, HFH16].

More to the point, our observations are critical to the security of derandomized variants of Fal-
con, which are often necessary in advanced applications. For example, in an identity-based encryption
scheme based on Falcon, key extraction (which corresponds to Falcon signing) should always output
the same key on a given identity. Short of making the scheme stateful, this requires relying on a deran-
domized variant of Falcon signing, as noted in the Falcon specification document itself [PFH+22,
§2.2.1]. Such a design is adopted, for instance, by the Latte (H)IBE construction [ZMS+24], under
consideration for NCSC and ETSI standardization.

Derandomization is also useful for other purposes. For example, Lazar and Peikert [LP21a] describe
and fully implement a deterministic variant of Falcon in order to obtain SNARK-friendly signatures.
The idea is that, when proving knowledge of a normal, salted Falcon signature on a given message, the
digest (i.e., the center of the lattice discrete Gaussian distribution that signature generation samples
from, and that is recomputed in signature verification) depends on the salt, which is part of the
signature. As a result, the SNARK circuit has to include the entire digest computation (using the
SHAKE expandable output function) which is very costly. In contrast, for deterministic signatures
with no salt, or equivalently a fixed salt, the digest computation depends only on the message, and
can thus be carried out “outside” the SNARK, resulting in much more efficient proofs.
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Along those lines, the SNARK-based signature aggregation technique for Falcon signatures re-
cently proposed by Aardal et al. [AAB+24] achieves substantially smaller (and asymptotically sublin-
ear) aggregated signature size for deterministic Falcon compared to standard Falcon (for which, in
particular, linear scaling is unavoidable since all salts need to be included in the aggregated signatures).

For these reasons, there is significant interest in derandomized versions of Falcon, and it is there-
fore important to understand their security, and how it is impacted by the floating-point error sensi-
tivity of Falcon’s sampler.

The impact is particularly dramatic in the IBE setting: in the presence of floating-point discrep-
ancies, our attack shows that it suffices for a legitimate user to ask the master key authority for its
own key twice to have a chance (on the order of once in a few thousands) to trigger the issue, and
instantly recover the authority’s master secret key! For deterministic and unsalted Falcon signatures,
the situation is similar: each time a signer signs the same message twice in the presence of floating-point
discrepancies, they have a chance of exposing their entire private key.

1.3 Technical overview

Floating-point error sensitivity. As mentioned above, we identify a particular property of the Fal-
con discrete Gaussian sampler that make it uniquely sensitive to small discrepancies introduced by
floating-point computations, in a way that that other similar samplers, such as those of Mitaka [?] and
Antrag [ENS+23] are not.

At a high level, this comes from the fact that Falcon’s one-dimensional discrete Gaussian sampler
SamplerZ, which samples from the discrete Gaussian distribution DZ,σ,c over Z with given center c and
standard deviation σ, presents a discontinuity around integer values of the center c. For an integer c
and a small error ε, the distributions DZ,σ,c+ε and DZ,σ,c−ε are of course close, and SamplerZ samples
correctly from them. However, for a fixed set of random coins, SamplerZ will output completely different
results for the centers c+ ε and c− ε, due to those values rounding to different integers.

The second part of the observation is that, within the Falcon lattice Gaussian sampler, SamplerZ
can in fact be called with an integer center up to floating point errors.4 In fact, this happens with small
but significant probability at one of exactly 4 positions during the traversal of the so-called Falcon
tree, corresponding to the first two and the last two calls of SamplerZ (for reasons related to arithmetic
properties of the Falcon keys).

Key recovery from two outputs of the sampler. By the preceding discussion, when the lattice Gaussian
sampler of Falcon is called twice on the same input, but with different floating-point errors, it can
happen that the SamplerZ outputs differ in one of the first two or the last two calls.

A difference in one of the first two calls affects the entire remainder of the sampling procedure, and
hence one obtains two entirely different lattice points close to the chosen center of the lattice Gaussian.
Their difference is therefore a fairly short vector in the NTRU lattice, which is somewhat concerning,
but even obtaining many such vectors is not believed to enable a key recovery attack (they aren’t small
enough).

A difference in one of the last two calls to SamplerZ, however, is a totally different matter: it
introduces a difference in just two components of (the Fourier domain representations of) the coefficient
vectors of the outputs over the secret trapdoor basis. The difference between the two outputs is therefore
highly structured, and recovering the entire private key from it is fairly straightforward (it involves at
most a simple exhaustive search over a few thousand pairs of integers).

This means in particular that two signatures on the same message in a derandomized variant of
Falcon have a chance of leaking the entire private key if a floating-point discrepancy occurs between
them.
4 This is precisely what does not happen for Mitaka and Antrag, except with negligible probability. Indeed,

the implementations of those schemes also use Falcon’s SamplerZ, but they call it with centers that are
themselves distributed according to a continuous normal distribution (up to floating-point precision), and
in particular, integer values only occur with negligible probability.
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Floating-point discrepancies in Falcon. We then discuss some examples of the ways in which such
floating-point discrepancies can appear.

A first way, which we do not explore further, is the weak determinism of floating-point arith-
metic [DGPY20]. The exact same source code compiled with the same compiler with the same options
and run on the same inputs can yield different floating-point results on architectures compatible with
the IEEE-754 floating-point arithmetic standard [iee85] (e.g., because of the use of extended precision
for intermediate results in registers, as is done on x87 FPU [Mon08]).

A second way is through running different floating-point implementations of the same algorithm.
When compiling Falcon with native floating-point arithmetic, the resulting compiled code can in
principle depend on the target architecture, the compiler and the choice of compiler optimizations,
and all those factors can result in different signatures for the same message with the same salt. In
addition, the Falcon also includes optimized versions for the Intel AVX2 vector unit, with or without
fused multiply-add (FMA) instructions, which can lead to discrepancies as well. This is a fairly well-
understood problem: for example, due to these differences, the deterministic Falcon implementation
of Lazar and Peikert [LP21b] actually strongly recommends the use of the much slower emulated im-
plementation with 64-bit integers, “unless performance considerations absolutely require otherwise”
(and moreover, it stresses that, when other implementations are used, “caution should be exercised to
ensure functional (near-)equivalence”). Nevertheless, we do experimentally test for this issue. Interest-
ingly, on our target platform, we find no signature discrepancies arising from the various floating-point
variants exposed by the code base except for the FMA-optimized code. Signature pairs generated by
the FMA code on the one hand and one of the other floating-point flavors on the other hand do present
occasional discrepancies that allow for full key recovery (once every few thousand pairs).

A third and somewhat more surprising way is through the API exposed by the Falcon implementa-
tion (and its deterministic variants). Namely, Falcon includes two slightly different implementations
of its signing procedure: the “dynamic” variant, which generates the Falcon tree on the fly, and the
“tree” variant, which takes a precomputed Falcon tree as input. Those two variants carry out almost
the same floating point computations on the same values in the same order, except at the bottom few
levels of the tree traversal, where the “tree” variant uses some small shortcuts. It turns out that those
minor differences are sufficient to induce exploitable discrepancies as well. The differences have in fact
been pointed out in the literature before [PKKK24], albeit with no analysis of the reason why they
occur or of their impact. In any case, we experimentally confirm that these discrepancies occur, includ-
ing in the slow, emulated floating point version recommended by the deterministic Falcon authors5.
The discrepancies also give rise to a full key recovery at a similar rate as the ones from completely
different floating-point instructions through the entire signing procedure.

1.4 Organization of the paper

Following some preliminary material in Section 2, Section 3 recalls the Falcon scheme along with its
deterministic variant and different implementations. Section 4 demonstrates the floating-point error
sensitivity of the integer Gaussian sampler of Falcon that could trigger discrepant signing executions
for distinct implementations of Falcon. Section 5 then describes a key recovery attack exploiting
close discrepant Falcon signatures for the same digest syndrome and discusses its feasibility. Sec-
tion 6 presents our experiments validating that different signing modes of Falcon and the use of
the FMA floating-point instructions can indeed cause discrepant signatures in practice. Finally, some
countermeasures are proposed in Section 7.

5 While the deterministic Falcon specification does not include a specific warning against using those two
variants concurrently, it does stress that the “same private key should not be used to sign the same message
digest using functionally inequivalent sampling procedures,” and the two variants count as functionally
inequivalent since they accept different signing key formats.
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2 Preliminaries

We use bold lowercase letters to represent (row) vectors, i.e., b = (b0, · · · , bn−1), where bi is coefficient i
of vector b (note that we use zero-based indexing throughout the paper). For a, b ∈ Rn, the coefficient-
wise inner product is 〈a, b〉 =

∑n−1
i=0 aibi. Given b ∈ Rn, its ℓ2-norm is denoted ‖b‖ =

√
〈b, b〉.

We also use bold uppercase letters to denote matrices, i.e., B = (b0, · · · , bn−1), where bi is the
row vector of index i of B. The inverse and conjugate transpose of B are denoted by B−1 and B∗

respectively.
For x ∈ R, bxe denotes rounding x to the nearest integer and bxc is the floor operation of x.
We abbreviate “floating-point representation” to fpr and define the fpr operations ∗̊ ∈ { +̊ , −̊ , ×̊ }.

2.1 Linear algebra and lattices

Let B = (b0, . . . , bn−1) ∈ Rn×m be a full-rank matrix. The Gram–Schmidt orthogonalization (GSO)
of B is the unique matrix B̃ = (b̃0, · · · , b̃n−1) with pairwise orthogonal rows such that there exists a
lower triangular matrix L with only 1’s on its diagonal satisfying B = LB̃.

Any symmetric positive definite matrix G admits a unique decomposition of the form LDL∗ where
L is a lower triangular matrix with only 1’s on its diagonal and D is a diagonal matrix. In particular,
when G is the Gram matrix BB∗ of the matrix B above, then the matrix L associated with its GSO
coincides with the matrix L appearing in the LDL∗ decomposition of G, and D = B̃B̃∗.

A lattice L is a discrete additive subgroup of some finite dimensional vector space Rm. It can
always be written as the set of all integer linear combinations of some linearly independent vectors
b0, . . . , bn−1, i.e., L =

{∑n−1
i=0 xibi | (x0, . . . , xn−1) ∈ Zn

}
. We call the matrix B = (b0, . . . , bn−1) a

basis of the lattice L, and n the rank of L (it is independent of the choice of a basis). The lattice
corresponding to B is denoted by L(B). When m = n, we say that it is full-rank.

2.2 Gaussian distributions

For a distribution D, we write a← D to mean that a is a sample from the distribution D, and y ∼ D
to say that the random variable y is distributed according to D. We denote by D(z) the probability
that a random variable y ∼ D satisfies that y = z.

Given a standard deviation σ > 0 and a center c ∈ Rn, we define the Gaussian function as
ρσ,c(x) = exp

(
−∥x−c∥2

2σ2

)
. For some fixed σ, c and a lattice L, we denote by DL,σ,c the discrete Gaussian

distribution over the lattice L given by:

DL,σ,c(u) =
ρσ,c(u)∑

v∈L ρσ,c(v)
.

In the particular case when L = Z, we call DZ,σ,c the integer Gaussian distribution of parameters
σ, c and following the Falcon specification, denote by D+

Z+,σ the integer “half-Gaussian” distribution
defined by D+

Z+,σ(u) =
ρσ,0(u)∑

v∈Z+ ρσ,c(v)
.

2.3 NTRU

Let R = Z[x]/ϕ where ϕ = xn + 1 with n a power of 2 and K = Q[x]/ϕ. In the NTRU scheme, the
secret key consists of two short polynomials f, g ∈ R such that f invertible modulo some prime number
q, and the public key is h = g/f mod q. The NTRU lattice defined by h ∈ R is LNTRU = {(s0, s1) ∈
R2 | s0 + s1h = 0 mod q}. The NTRU trapdoor basis is

Bf,g =

(
g −f
G −F

)
where (F,G) ∈ R2 is such that fG− gF = q.
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Algorithm 1: Sign

Input: A message msg and an NTRU lattice trapdoor basis Bf,g

Output: A valid signature (r, s)

1 r
$← {0, 1}320, c← H(r∥msg)

2 t← (FFT(c),FFT(0)) · FFT(Bf,g)
−1 ▷ pre-image computation

3 do
4 do
5 z← ffSampling(t,T) ▷ trapdoor sampling
6 s = (t− z) · FFT(Bf,g) ▷ s ∼ D(c,0)+L(B),σsig,0

7 while ∥s∥ > ⌊β2⌋
8 (s0, s1)← invFFT(s)
9 while s =⊥

10 return (r, s)

2.4 Fast Fourier transform
Let Ωϕ a set of representatives of the complex roots of ϕ up to conjugation. We usually take:

Ωϕ =

{
exp

(
i(2j + 1)π

2n

)∣∣∣∣0 ≤ j < n/2

}
.

The (fast, negacyclic) Fourier transform (FFT) maps an element f of K (or more generally of K⊗Q R)
to the vector of its evaluations at the roots ζ ∈ Ωϕ, namely:

FFT(f) =
(
f(ζ)

)
ζ∈Ωϕ

.

It induces an isomorphism of R-algebras FFT : K ⊗Q R → CΩϕ = Cn/2. The inverse isomorphism is
denoted by invFFT. Both FFT and invFFT can be computed in O(n logn) operations.

To make the computation of these maps cache-friendly, it is customary to represent the coefficients
of the polynomials in K ⊗Q R in bit reversed order, where the coefficient of index i corresponds to
the monomial of degree αi, where αi is obtained from i by reversing its representation as a number of
log2(n) bits. For example, the first four coefficients in bit reversed order correspond to the monomials
of degree 0, n/2, n/4 and 3n/4 in this order.

3 The Falcon Signature Scheme

This section covers some background about the Falcon signature scheme, including a description
of its signing algorithm, an overview of one of its deterministic variants, and some details about its
various implementations.

3.1 The Falcon signing procedure
Falcon is an instantiation over NTRU lattices of the GPV framework for hash-and-sign lattice based
signatures [GPV08]. Using the notation of Section 2.3, it uses an NTRU trapdoor basis Bf,g as its
secret key and h = g/f mod q as the public key, where the coefficients of (f, g) are sampled from
DR,σ{f,g},0 with σ{f,g} = 1.17

√
q/2n, ensuring nearly optimal parameters [DLP14].

Parameters. Falcon is defined over the power-of-two cyclotomic ring R = Z[x]/(xn+1), and uses the
prime modulus q = 12289. It has two parameter sets, corresponding to n = 512 for NIST security level
I (128-bit security), and to n = 1024 for NIST security level V (256-bit security). These parameter
sets are usually called Falcon–512 and Falcon–1024 respectively. Note that the dimension over Z of
the NTRU module lattice is 2n in both cases, so 1024 for Falcon–512 and 2048 for Falcon–1024.
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Algorithm 2: ffSamplingn

Input: A Target vector t = (t0, t1) ∈ FFT(K)2, a Falcon tree T
Output: z = (z0, z1) ∈ FFT(R)2

1 if n = 1 then
2 σ ← T.value ▷ σ ∈ [σmin, σmax]
3 z0 ← SamplerZ(t0, σ), z1 ← SamplerZ(t1, σ)
4 return z = (z0, z1)

5 end if
6 (l,T0,T1)← (T.value,T.leftchild,T.rightchild)
7 t1 ← split fft(t1)
8 z1 ← ffSamplingn/2(t1,T1) ▷ First recursive call
9 z1 ← merge fft(z1)

10 t′0 ← t0 + (t1 − z1)⊙ l
11 t0 ← split fft(t′0)
12 z0 ← ffSamplingn/2(t0,T0) ▷ Second recursive call
13 z0 ← merge fft(z0)
14 return z = (z0, z1)

Signing. Algorithm 1 describes the signing procedure of Falcon, which essentially amounts to sam-
pling a short signature vector s = (s0, s1) ∼ D(c,0)+L(B),σsig,0 in a certain coset of the NTRU lattice,
or equivalently, a lattice point (c, 0) − s ∼ DL(B),σsig,(c,0) close to (c, 0). The center (c, 0), also called
the syndrome, is computed by the hash function c = H(r‖msg) where r is a 320-bit random salt and
msg is the message. The validly generated signature (s0, s1) is short, and its acceptance bound is
β = 1.1 · σsig

√
2n.

Trapdoor sampling. Falcon uses the fast Fourier sampler [DP16] (ffSampling, Algorithm 2) as its
trapdoor sampler. It takes as input the coordinates t over the trapdoor basis Bf,g of the syndrome, as
well as the Falcon tree T, which is in essence a compact representation of the GSO of the trapdoor
basis Bf,g (or more properly, of the LDL∗ decomposition of its Gram matrix). All ring elements are
represented in the FFT domain, and the sampling algorithm runs in quasilinear time overall.

In ffSampling, the lattice Gaussian sampling is reduced to a series of calls to an integer Gaussian
sampler SamplerZ, which samples from the integer discrete Gaussian distribution DZ,σ,c with varying
centers and standard deviations.

3.2 Reference and optimized implementations

Falcon provides one reference implementation and several optimized implementations in the NIST
round 3 submission package [PFH+22].

The reference implementation only contains one pure portable C version in which all floating-point
operations are emulated with integer arithmetic and bit fiddling. We refer to this implementation as
fpemu throughout this paper. It stores IEEE-754 [iee85] double precision values as fixed-width unsigned
integer elements of type uint64_t, and does not require the support of a hardware floating-point unit
(fpu). It is also fully constant time for all intermediate values in the context of Falcon. However, the
overhead of floating point emulation makes it considerably slower than the optimized variants.

The following optimized implementations (summarized in Table 1) are also included in the Falcon
code based:

– fpnative: makes use of the native hardware fpu (SSE2 unit on x86_64) using floating point values
of type double;

– avx2: also uses the native hardware fpu with values of type double, and packs them into AVX2
registers for four-way vectorization;
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Table 1. Different implementations of Falcon.

Version Reference Optimized n = 512&1024 sign dyn&sign tree fpr
fpemu     uint64 t

fpnative     double
avx2     double

avx2 fma     double
cxm4     uint64 t

– avx2 fma: further optimized by enabling “fused multiply-add” (FMA) intrinsics;
– cxm4: inline assembly code for ARM Cortex-M4 microcontrollers, particularly embedded in the fpr

operations.

3.3 Deterministic Falcon

The signing procedure of the normal Falcon signature is probabilistic, since it samples the random
salt r as well as many random samples as part of the calls to the SamplerZ algorithm. As discussed in
the introduction, however, there are numerous settings where derandomized variants may be desirable.

In [LP21a], Lazar and Peikert propose, specify and implement such a deterministic variant for
SNARK-friendly applications, called “deterministic Falcon”. In that scheme, signing the same message
multiple times is supposed to result in the same signature every time. To this end, the signing algorithm
uses a fixed salt value r, and the random tape used in all the random sampling procedures is obtained
by expanding a seed randbytes derived from the secret key sk and the message msg as follows:

r = 0‖ℓ‖FALCON_DET‖00 · · · 00 and randbytes = ℓ‖sk‖msg

where the first zero byte is salt version with default value 0, ℓ = log2(n), the string FALCON_DET is
in ASCII representation and the remaining part is padded by all zero bytes.

The specification of deterministic Falcon is accompanied by an implementation [LP21b] based on
the most recent version of the standard Falcon implementation at the time of this writing, namely the
implementation included in the NIST round 3 submission package [PFH+22]. The code base includes
the both the reference implementations as well as the various optimized ones, although only the
reference implementation is enabled by default, and the included README files warns against the use of
the other ones due to risks from floating point discrepancies. We refer to those various implementations
with the same names as the standard Falcon ones with a det suffix to emphasize that they are
deterministic Falcon implementations. The fpemu det is thus the supported variant, whereas avx2 det,
avx2 fma det, etc., are unsupported.

4 Floating-Point Error Sensitivity of the Falcon Integer Gaussian Sampler

At the heart of the Falcon signing algorithm is the fast Fourier sampler ffSampling (Algorithm 2)
which is an efficient variant of the Klein–GPV sampler [GPV08] over cyclotomic rings with smooth
conductors. It can be seen as the Gaussian sampling version of the Ducas–Prest fast Fourier nearest
plane algorithm [DP16]. As in the Klein–GPV sampler, the sampling procedure of ffSampling is decom-
posed into a sequence of integer Gaussian samplings. While a Falcon signature is fully determined
by these integer samples, the sampling procedure involves extensive floating-point arithmetic.

In this section, we present our main observation: the integer Gaussian sampling algorithm SamplerZ
of Falcon presents a marked sensitivity to floating point errors at very specific input points, namely,
when sampling integer discrete Gaussians with integer centers. In addition, we show that such input
points do have a (relatively small but nonetheless) significant at some well-defined locations within
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Algorithm 3: SamplerZ

Input: A center c and standard deviation σ ∈ [σmin, σmax]
Output: An integer z derived from a distribution close to DZ,σ,c

1 r ← c− ⌊c⌋
2 y+ ← BaseSampler()
3 b

$← {0, 1}
4 y ← b+ (2b− 1)y+

5 x← (y−r)2

2σ2 − y2
+

2σ2
max

6 return z ← y + ⌊c⌋ with probability σmin
σ
· exp (−x), otherwise restart.

the execution of the ffSampling procedure (namely, at the positions corresponding to the first two and
last two calls to SamplerZ), and are very rare otherwise.

This sensitivity to floating point errors gives rise to concrete attacks against various Falcon-based
constructions, that will be discussed in later sections.

4.1 The Falcon integer Gaussian sampler

The integer Gaussian sampling algorithm of Falcon can be described as follows. To sample from
DZ,σ,c, the algorithm SamplerZ first shifts the center c to its fractional part r = c− bcc ∈ [0, 1). Next
it produces a base sample y+ ∼ D+

Z+,σmax
and converts y+ into a bimodal Gaussian y = b+(2b− 1)y+,

where b is uniformly random in {0, 1}. Then rejection sampling is performed to ensure that y follows the
correct discrete Gaussian distribution of y with center r (and to guarantee isochronicity [HPRR20]),
and the final output is z = y + bcc. A formal description of SamplerZ is given in Algorithm 3.

In the context of ffSampling, the execution of one call to SamplerZ has a direct impact on the
outputs of the subsequent calls in two different ways. On the one hand, the output of SamplerZ affects
the computation of the centers of later integer discrete Gaussians. On the other hand, since all integer
samplings share the same random tape, the randomness consumption of each integer sampling also
affects all subsequent results. Therefore, one can think of the algorithm SamplerZ as sending a triple
(σ, c, randbytes) to a pair (z, randbytes), where randbytes is the state of the pseudorandom number
generator. That pseudorandom number generator is used to generate the following random values:

– the generation of y+ uses the first 9 bytes;
– the generation of b uses the next byte;
– the rejection sampling uses a varying number of random bytes (a little over 1 byte on average) and

if rejection happens, the previous samplings are of course repeated.

4.2 Sensitivity analysis

Significant efforts have been made in analyzing the numerical precision required on the inputs and in
the computation of the integer Gaussian sampler [DN12, MW17, Pre17]. It is generally accepted that
IEEE-754 double precision floating-point arithmetic is sufficient for most practical schemes including
Falcon. It is worth noting that all these works focus on the distribution output by the sampler from
a statistical standpoint.

In this work, we investigate how float-point errors on the center and the standard deviation affect
the execution of SamplerZ rather than its distribution. To this end, we treat SamplerZ as a func-
tion with Gaussian parameters and randomness as input. We call the executions of two calls to
SamplerZ(σ, c, randbytes) consistent if their all intermediate discrete samples (y+, b, y, z) are the same,
and inconsistent otherwise.
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Lemma 1 shows that for a nearly-integer center, SamplerZ can be sensitive to floating-point errors.
Intuitively, a minor floating-point error is sufficient to trigger inconsistent outputs of the floor function
around integers.

Lemma 1 (Sensitivity of the centers). Let c and c′ be two floating-point numbers such that
|c− c′| ≤ ϵ < 1. For σ ∈ [σmin, σmax] and a PRNG state randbytes,

1. if bcc = bc′c, then SamplerZ(σ, c, randbytes) and SamplerZ(σ, c′, randbytes) have the same execution
with probability ≥ 1− 11ϵ

σ2 over the randomness of randbytes;
2. if bcc 6= bc′c, then SamplerZ(σ, c, randbytes) and SamplerZ(σ, c′, randbytes) have an inconsistent

execution.

Proof. Let (r, y+, b, y, x, z) and (r′, y′+, b
′, y′, x′, z′) denote the intermediate values in one repetition

of SamplerZ(σ, c, randbytes) and SamplerZ(σ, c′, randbytes) respectively. At each repetition, the compu-
tation before the rejection sampling consumes a fixed number of random bytes, which implies that
(y+, b, y) = (y′+, b

′, y′) once the repetition in two executions begins with the same random tape.
When bcc = bc′c, the execution discrepancy must stem from rejection sampling that is implemented

by lazy Bernoulli sampler. For uniformly random randbytes, the probability of inconsistent executions
SamplerZ(σ, c, randbytes) 6= SamplerZ(σ, c′, randbytes) is thus the probability of an inconsistency in
rejection sampling, which is:

σmin
σ

E[| exp(−x)− exp(−x′)|].

Now we can compute:

E[| exp(−x)− exp(−x′)|]

=
∑
y∈Z

∣∣∣∣ exp
(
− (y − r)2

2σ2
+

y2+
2σ2

max

)
− exp

(
− (y − r′)2

2σ2
+

y2+
2σ2

max

)∣∣∣∣ · exp
(
− y2

+

2σ2
max

)
2ρσmax

(Z+)

=
1

2ρσmax(Z+)
·
∑
y∈Z

∣∣∣∣ exp
(
− (y − r)2

2σ2

)
− exp

(
− (y − r′)2

2σ2

)∣∣∣∣
=

1

2ρσmax(Z+)
·
∑
y∈Z

exp
(
− (y − r)2

2σ2

)∣∣∣∣1− exp
( (r′ − r)y

σ2
+

(r2 − r′2)

2σ2

)∣∣∣∣
≤ 1

2ρσmax(Z+)
·
∑
y∈Z

exp
(
− (y − r)2

2σ2

)(
1− exp

(
− 19ϵ

σ2

))
≤ ρσ(Z)

2ρσmax(Z+)
· 19ϵ
σ2
≈ σ

√
2π

2ρσmax(Z+)
· 19ϵ
σ2
≤ 8.5ϵ

σ
.

The first inequality is due to the fact that |r − r′| = |c − c′| ≤ ϵ and |y| ≤ 18. The second inequality
follows from ρσ,r(Z) ≤ ρσ(Z). This concludes the proof of the first assertion.

Conversely, suppose that we have consistent executions SamplerZ(σ, c, randbytes) and SamplerZ(σ, c′, randbytes).
Then in particular, the intermediate values y, z and y′, z′ coincide, which implies that z − y = bcc co-
incides with z′ − y′ = bc′c. Hence, if bcc 6= bc′c, the executions are necessarily inconsistent. ut

Contrary to the integer Gaussian center, the standard deviation has a strong error tolerance.

Lemma 2 (Non-sensitivity of the standard deviations). Let σ, σ′ ∈ [σmin, σmax] such that
|σ − σ′| ≤ ϵ < 2−10. Then SamplerZ(σ, c, randbytes) and SamplerZ(σ′, c, randbytes) have consistent
executions with probability ≥ 1− 160ϵ over the randomness of randbytes for any c.

Proof. We follow the notations in the proof of Lemma 1. By a similar argument, it suffices to investigate
the difference within rejection sampling. The probability of inconsistent executions SamplerZ(σ, c, randbytes) 6=
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SamplerZ(σ′, c, randbytes) over the randomness of randbytes is again σmin
σ E[| exp(−x)− exp(−x′)|] and

we have:

E[| exp(−x)− exp(−x′)|]

=
∑
y∈Z

∣∣∣∣ exp
(
− (y − r)2

2σ2
+

y2+
2σ2

max

)
− exp

(
− (y − r)2

2σ′2 +
y2+

2σ2
max

)∣∣∣∣ · exp
(
− y2

+

2σ2
max

)
2ρσmax

(Z+)

=
1

2ρσmax(Z+)
·
∑
y∈Z

∣∣∣∣ exp
(
− (y − r)2

2σ2

)
− exp

(
− (y − r)2

2σ′2

)∣∣∣∣
=

1

2ρσmax(Z+)
·
∑
y∈Z

exp
(
− (y − r)2

2σ2

)∣∣∣∣1− exp
(
(y − r)2 · σ

2 − σ′2

2σ2σ′2

)∣∣∣∣
≤ 1

2ρσmax(Z+)
·
∑
y∈Z

exp
(
− (y − r)2

2σ2

)∣∣∣∣1− exp
(
361 · σ

2 − σ′2

2σ2σ′2

)∣∣∣∣
≤ 1

2ρσmax(Z+)
·
∑
y∈Z

exp
(
− (y − r)2

2σ2

)(
exp

(
361 · ϵ(σ + σ′)

2σ2σ′2

)
− 1

)
≤ ρσ(Z)

2ρσmax(Z+)
· 400ϵ · σmax

σ2σ′2 ≤ σmax
√
2π

σ3
minρσmax(Z+)

· 200ϵ ≤ 160ϵ.

This completes the proof. ut

4.3 Integer centers in Gaussian sampling

As indicated by Lemma 1, the integer Gaussian sampler of Falcon is sensitive to floating-point errors
when the center is (within a small interval around) an integer value.

Now, while the centers in the successive calls to SamplerZ throughout the computation of a Falcon
signature are all represented as floating point values, their exact theoretical values (if all computations
were to be carried out with unlimited precision) are rational numbers, and some of the denominators
involved are relatively small. As a result, certain centers have a non-negligible chance of having an
integer their exact theoretical value, which gives rise to an almost integer floating point value in the
actual computation, with high sensitivity to floating point errors.

We now argue that, in Falcon, this is the case for the first two and the last two centers sampled
in the ffSampling procedure, whereas other coefficients are very unlikely to have an exact theoretical
value equal to an integer.

Indeed, denote by ci, 0 ≤ i ≤ 2n− 1 the exact theoretical value of the center output by the call of
index i to SamplerZ within the ffSampling algorithm. Then, by standard properties of the fast Fourier
Gaussian sampling algorithm, ci has the following form:

ci =
〈ci, b∗

2n−1−i〉
‖b∗

2n−1−i‖2
,

where b∗
2n−1−i is one of the vectors of the Gram–Schmidt orthogonalization B̃ = (b∗

0, . . . , b∗
2n−1) of the

NTRU trapdoor basis of Falcon in bit reversed order.
Several properties of this Gram–Schmidt basis B̃ are established in Theorem 1. In particular, let

mk =
∏k−1

i=0 ‖b∗
2i‖2 for 0 ≤ k ≤ n. Then, by assertions (c) and (e) of that theorem, mk is an integer of

the same order of magnitude as qk. Moreover, by assertions (g) and (h), the (2k)-th and (2k + 1)-st
centers:

c2k =
〈c2k, b∗

2n−1−2k〉
‖b∗

2n−1−2k‖2
and c2k+1 =

〈c2k+1, b∗
2n−1−(2k+1)〉

‖b∗
2n−1−(2k+1)‖2
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are rational numbers with denominator dividing both qmk and mn−k. By assertion (i) of the same
theorem, qmk actually divides mn−k for k < n/2, and vice versa for k ≥ n/2.

Denoting by gk the smaller of those two values, gk · b∗
j/‖b∗

j‖2 for j = 2n − 1 − 2k and j =
2n − 1 − (2k + 1) is itself an integer vector, with coefficients that are not expected to satisfy any
particular arithmetic relation, and therefore those coefficients are expected to be setwise coprime
with overwhelming probability ≈ 1/ζ(2n). As a result, since c2k and c2k+1 are somewhat random, we
heuristically expect the probability of c2k being an integer to be 1/gk, and similarly for c2k+1. This is
summarized as Heuristic 1.

Heuristic 1. For 0 ≤ k ≤ n− 1, let:

mk =

k−1∏
i=0

‖b∗
2i‖2 and gk =

{
q ·mk if k < n/2;
mn−k otherwise.

Then, the (exact theoretical values of the) centers c2k and c2k+1 each have a probability 1/gk of being
integers.

Under Heuristic 1, c0 and c1 each have a probability equal to 1/g0 = 1/q to be integers, and for
c2n−2 and c2n−1, the probability is 1/gn−1 = 1/m1 = 1/‖b∗

0‖2 = 1/‖(g,−f)‖2. Both probabilities are
between 1/10000 and 1/20000, so we should expect to observe integer centers at those positions once
every few thousand signatures.

On the other hand, gk ≈ qk+1 for k < n/2 and qn−k for k ≥ n/2. One therefore concludes that
all centers except the first and last two have a denominator ≳ q2. This already yields a very low
probability of getting an integer center in theory (occurring at best once every few tens of millions of
signatures). Moreover, except for the centers corresponding to k ≤ 2 or k ≥ n−3 (i.e., the first six and
the last six), the values gk even have a bit size exceeding the floating point precision, and thus even
if integer centers happen to occur in theory, this won’t be detectable in the double precision floating
point computations.

Remark 1. The reason why Heuristic 1 is a heuristic and not a theorem is twofold.
On the one hand, there is a small chance that the coefficients of uj = gk ·b∗

j/‖b∗
j‖2 for j = 2n−1−2k

and j = 2n−1−(2k+1) might not be setwise coprime, so that b∗
j/‖b∗

j‖2 actually has a slightly smaller
denominator than gk. This should only happen with negligible probability around 1 − ζ(2n) ≈ 2−2n,
but making this estimate rigorous is tedious.

On the other hand, even if we can make the distributions of c2k and c2k+1 more explicit than saying
that they are “somewhat random” (they should in fact be uniform modulo q), it is not possible to get
a probability of exactly 1/gk of getting an integer due to counting reasons (gk does not usually divide
q2n). A rigorous way of establishing that the probability is close to 1/gk involves applying the leftover
hash lemma to the 2-universal hash c 7→ 〈c, uj〉 mod gk, but we omit the details of that argument.

5 Exploiting Floating Point Discrepancies

As shown in Section 4, the integer Gaussian sampler of Falcon can have a different execution when
some floating-point error is introduced on an integer center. Due to this sensitivity and the weak deter-
minism of floating-point arithmetic, various Falcon implementations can generate distinct signatures
for the same digest syndrome, as confirmed in Section 6 below.

This section demonstrates the insecurity of Falcon signatures for the same digest syndrome in the
presence of floating point discrepancies. A key recovery attack can be mounted once close discrepant
signatures are released. To clarify the impact of this attack, Section 5.2 showcases some Falcon-based
schemes allowing the adversary to make two signing queries associated with the same syndrome.
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5.1 Key recovery from signature discrepancies

In a GPV lattice signature scheme, the signing procedure proceeds in two steps. First, the signer hashes
the message to a point u = Hash(msg), the syndrome, in the ambient space of the underlying lattice
L. Then, the signer performs trapdoor sampling to compute a vector v ∈ L close to the syndrome u
and outputs s = v− u as the signature.

For a syndrome u, the signing procedure of Falcon samples an integer vector z = (z0, z1) ∈ R2

using ffSampling and outputs (a compressed form of):

s = u− z · Bf,g = u− z ·
(
g −f
G −F

)
as a signature where s = (s0, s1) ∼ DL(Bf,g)+u,σsig is short. Let s, s′ be two distinct signatures for the
same u. Their difference is

∆s = (s0 − s′0, s1 − s′1) = (z− z′) ·
(
g −f
G −F

)
= (z0 − z′0, z1 − z′1)

(
g −f
G −F

)
and then we have

∆s0 = s0 − s′0 = (z0 − z′0) · g + (z1 − z′1) ·G,

∆s1 = s1 − s′1 = (z0 − z′0) · (−f) + (z1 − z′1) · (−F ).

The ffSampling (Algorithm 2) samples the vector z coefficient by coefficient in a tree-wise fashion,
essentially from right to left in bit reversed order, each coefficient being the output of the SamplerZ
algorithm discussed in the previous section.

If we denote by z(i), 0 ≤ i ≤ 2n − 1, the coefficient of z output by the (i + 1)-st call to SamplerZ
as part of the traversal of the Falcon tree, then the position of z(i) is depicted in Fig. 1 where the
vector z has its components in bit reversed order for each of the two ring elements, and in Fig. 2 in
the standard monomial order.

Now, floating point discrepancies arising for the instability of SamplerZ only have a good chance to
occur in the first or the last two calls to SamplerZ, i.e., at coefficient z(0), z(1), z(2n−2) or z(2n−1).

When the discrepancy occurs at coefficient z(0) or z(1), the entire remainder of the ffSampling
computation is affected, which yields a large, somewhat unstructured difference ∆s between the two
signatures output by the algorithm. This vector ∆s is a short lattice vector, but it is not expected to
be short enough to make key recovery feasible.

In contrast, when the discrepancy occurs at coefficient z(2n−2) or z(2n−1), only those two indices
are affected, making the difference vector ∆s highly structured. Indeed, as seen on Fig. 2, z(2n−2)

corresponds to the element of degree 0 of the ring element z0, and z(2n−1) to the element of degree
n/2 of z0. Therefore:

∆s0 = (z0 − z′0) · g = ∆z0 · g and ∆s1 = (z0 − z′0) · (−f) = ∆z0 · (−f),

...

z(1022) z(1023)

...

z(1020) z(1021)

...

· · · · · ·

...

· · · · · ·

...

· · · · · ·

...

· · · · · ·

...

z(2) z(3)

...

z(0) z(1)

Fig. 1. Positions of the bit reversed order coefficients of z in the order of their generation as outputs of SamplerZ
in ffSampling (case of Falcon–512, where 2n = 1024).

13



where ∆z0 = a+b·xn/2 and (a, b) =
(
z(2n−2)−z′(2n−2), z(2n−1)−z′(2n−1)

)
. Since z(i) and z′(i) are sampled

by SamplerZ around almost the same centers, we know that a, b ∈ {−18,−17, . . . , 0, . . . , 18, 19}. A
simple exhaustive search on the space of pairs (a, b) of cardinality 382 < 211 is thus sufficient for
complete key recovery.

5.2 Cryptanalytic impact on Falcon and its variants

The attack described in this section is only possible to the extent that the adversary can make two
signing queries giving rise to the same syndrome.

This normally does not happen in plain Falcon signatures, since the random salt in signatures
should ensure that even multiple signatures on the same message are sampled with distinct syndromes.
Care may still be warranted in that setting, however, as improperly repeated randomness does occasion-
ally happen in the real world with catastrophic cryptographic consequences, as evidenced for example
by the observation of pairs of RSA keys in the wild with nontrivial GCDs [HDWH12].

The attack is, however, much more directly relevant for derandomized variants of Falcon. This
includes in particular the “deterministic Falcon” signature scheme specified and implemented by
Lazar and Peikert [LP21a], with the goal of achieving SNARK-friendliness. Unsalted Falcon signa-
tures are also considered for similar reasons by Aardal et al. [AAB+24] to achieve more efficient (and
asymptotically sublinear) aggregation for Falcon signatures.

Derandomized variants of Falcon are also used in primitives other than signatures to provide
efficient lattice trapdoors. As mentioned in the Falcon specification [PFH+22, §2.2.1], one can directly
derive an identity-based encryption scheme from derandomized Falcon, similarly to [DLP14]: Falcon
key generation becomes setup and signature generation becomes key extraction on a given identity. This
exact design is used in the Latte (H)IBE [ZMS+24] considered for NCSC and ETSI standardization.

In those various settings, we argue that the attack is possible and invalidates the standard security
definitions of the corresponding primitives.

Deterministic Falcon. The case of deterministic Falcon is straightforward: a chosen-message attack
adversary can query the signer for two signatures on the same fixed, arbitrary message. In the presence
of floating-point discrepancies (which can occur for all the reasons discussed in Section 6 below and
more), the attack we have described shows that the two signatures will have a non-negligible proba-
bility (of one in a few thousands) of differing in a way that leads to full key recovery. This violates
unbreakability under chosen-message attacks, and a fortiori existential unforgeability.

In all fairness, one should note that Lazar and Peikert’s implementation of deterministic Falcon
strongly recommends the use of fpemu unless performance considerations require otherwise, and also
warns that functionally inequivalent signing procedures should not be used to sign the same message
with the same key, which should rule out the concurrent use of the “dynamic” and “tree” variants of
the signing algorithm. Identifying the risks associated with deviating from those recommendations is
nevertheless important, especially as other comparable constructions, such as the unsalted Falcon
signatures considered in [AAB+24], come with no particular security caveat.

Incidentally, we note that one can easily imagine real-world scenarios in which this vulnerability
would have a substantial impact. Deterministic Falcon is particularly considered for blockchain-
related applications; in such a context, an adversary can passively scan the blockchain, waiting for

z0︷ ︸︸ ︷
z(1022)

↑
degree 0

z(766) · · · z(1023)
↑

degree 256

· · · z(769) z(513)

z1︷ ︸︸ ︷
z(510) z(254) · · · z(129) z(257) z(1)

Fig. 2. Positions of the standard monomial order coefficients of z in the order of their generation as outputs
of SamplerZ (case of Falcon–512).
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a discrepancy to appear, and skim off the corresponding private key when it happens (in a similar
fashion as for Bitcoin signatures with repeated nonces [BHH+14, §4.4]).

Falcon-based IBE. Even in the weakest security definition for identity-based encryption, the adversary
is allowed to query the master key authority for the secret key associated with a fixed identity, and
do so twice. When doing so, in the presence of floating-point discrepancies, there is again a non-
negligible probability that the two extracted keys (a.k.a. Falcon signatures) will differ in a way that
fully exposes the authority’s master secret key! This means that, when floating-point discrepancies can
occur, a Falcon-based IBE will fail to even satisfy IND-sIDCPA (or even UBK-sIDCPA) security.

Moreover, the vulnerability is particularly severe in that it can manifest itself in the absence of
any malicious party: indeed, a legitimate user can certainly query for the secret key on their own
identity twice, and the authority’s reply will have a chance of leaking the master secret key if they do.
Deployments of Falcon-based IBE should therefore be especially careful to avoid all possible sources
of floating-point discrepancies (and should also consider adopting some of the countermeasures we
suggest at the end of this paper).

6 Sources of Floating-Point Discrepancies in Falcon

We have seen that, in the presence of floating-point discrepancies, two calls to the Falcon sampler
on the same input can result in outputs that completely leak the private signing key. We now turn to
the question of how such floating-point discrepancies can arise. We identify in particular two possible
sources for such discrepancies, although there are undoubtedly more.

Firstly, the Falcon API exposes two variants of the signing procedure, called “dynamic” and “tree”:
in the dynamic mode, the Falcon tree is regenerated on the fly as part of the sampling algorithm,
whereas the tree mode uses a precomputed Falcon tree. Interestingly, both modes carry out the same
floating point operations on the same values in the same order, except on the last couple of levels of the
tree, where the computations are done in a subtly different order. This introduces small discrepancies
that we show are exploitable, and exist even when using the integer-based floating-point emulation of
the Falcon reference implementation. We describe this issue in Section 6.1 below. We note that an
observational mention of the existence of such discrepancies can be found in the literature [PKKK24],
although that paper fails to give any explanation of how they arise.

Secondly, although it is less surprising, we verify in Section 6.2 that the use of fused multiply-add
(FMA) floating-point instructions, which can be enabled in the Falcon code, can also cause signature
discrepancies compared to the reference implementation.

In both two cases, discrepancies giving rise to a full key recovery appear between pairs of signatures
at a frequency of once in a few thousands. In other words, collecting a few thousand pairs is sufficient
to completely recover the key with high probability.

6.1 Discrepancies between two signing modes

The Falcon code offers two different signing modes: the “dynamic” mode sign dyn and the “tree” mode
sign tree. In sign dyn, the ffSampling algorithm dynamically computes the LDL∗ decomposition, i.e., the
construction of the Falcon tree, as part of the lattice Gaussian sampling procedure. In sign tree, the
signing procedure uses takes the Falcon tree as input, and thus assumes that it has been precomputed
and stored in memory. In summary, sign tree supports faster signing while sign dyn requires less RAM
usage. As a result, both signing modes have their strong suits, and one may want to switch from one
to the other and back depending on how frequently a given key is used, how much memory is available
at a given point in time and whether spare cycles are available for precomputations.
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Discrepancies. Let us have a close look at how the ffSampling algorithm (Algorithm 2) is concretely
implemented in the two signing modes. The algorithm itself is recursive, and the implementations
follow this recursive structure.

Consistently with the pseudo-code (Lines 1–5 of Algorithm 2), in sign dyn, the deepest recursive
layer, corresponding to n = 1, only contains the normalization of the leaf of the Falcon tree T and
two calls to SamplerZ.

In contrast, in sign tree, the deepest layer actually corresponds to n = 4, and effectively contains
the last two recursion layers in inlined form. It includes 8 calls to SamplerZ, and inlined code equivalent
to 2 split and 2 merge operations. Instead of recursively calling split fft and merge fft, it reimplements
them directly. This could be done in a way that follows the same floating-point evaluation order, but
the actual code introduces subtle differences in the order of the computations, which turn out to lead
to floating-point discrepancies on the centers on the one-dimensional Gaussians. Note that only the
centers are affected: the standard deviations, i.e., the Falcon tree leaves, have identical values in the
two signing modes.

We exhibit the split (resp. merge) operation in sign dyn and sign tree via the code snippets in
Listing 1 and Listing 3 (resp. Listing 2 and Listing 4). The discrepancies are marked with the color
block (resp. ). The symbols of those code snippets are described in Fig. 3.

Discussion. To make entirely explicit how those source code differences yield floating-point discrepan-
cies, let us write down the corresponding computations as formulas.

We first discuss the split operation split fft. Given t ∈ FFT(Q[x]/ϕ), it can be uniquely split as
t = t0(ζ

2) + ζt1(ζ
2) in FFT domain, where t0, t1 ∈ FFT(Q[x]/ϕ′) and ϕ′ = xn/2 + 1. In both sign dyn

and sign tree, the split processes in ffSampling (Listings 1 and 3) at the recursive layer n = 4 are
identical for the calculation of t0, which is evaluated as:

t0[0] =
1

2
×̊
(
t[0] +̊ t[1]

)
t0[1] =

1

2
×̊
(
t[2] +̊ t[3]

)
.

However, the calculations of t1 proceed in different orders in sign dyn and sign tree. More concretely,
the process in sign dyn can be seen as the following expressions for t1:

t1[0] =
1

2
×̊
(

1√
2
×̊
(
t[0] −̊ t[1]

)
−̊
(
− 1√

2

)
×̊
(
t[2] −̊ t[3]

))
,

t1[1] =
1

2
×̊
((
− 1√

2

)
×̊
(
t[0] −̊ t[1]

)
+̊

1√
2
×̊
(
t[2] −̊ t[3]

))
,

whereas in sign tree, the following, slightly different equality holds:

t1[0] =
1

2
√
2
×̊
((

t[0] −̊ t[1]
)
+̊
(
t[2] −̊ t[3]

))
,

t1[1] =
1

2
√
2
×̊
((

t[2] −̊ t[3]
)
−̊
(
t[0] −̊ t[1]

))
.

Due to the fact that floating-point arithmetic does not satisfy the distributivity of multiplication over
addition, t1 ends up evaluating to a slightly different value in sign dyn vs. sign tree, and that value t1
is one of the Gaussian centers passed to SamplerZ.

We next consider the merge operation merge fft. Given t0, t1 ∈ FFT(Q[x]/ϕ′), they can be merged
into t = t0(ζ

2)+ ζt1(ζ
2) ∈ FFT(Q[x]/ϕ). For the recursive layer n = 4, the merge operation in sign dyn

(Listing 2) is interpreted as following expression for t:

t[0] = t0[0] +̊
( 1√

2
×̊ t1[0] −̊

1√
2
×̊ t1[1]

)
, t[2] = t0[1] +̊

( 1√
2
×̊ t1[0] +̊

1√
2
×̊ t1[1]

)
,

t[1] = t0[0] −̊
( 1√

2
×̊ t1[0] −̊

1√
2
×̊ t1[1]

)
, t[3] = t0[1] −̊

( 1√
2
×̊ t1[0] +̊

1√
2
×̊ t1[1]

)
.
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Fig. 3. Symbols in Listing 1, 3, 2 and 4. All involved operations are in fpr.
Symbol Description
a_re, a_im the real and imaginary part of a complex number
FPC_ADD, FPC_SUB the addition and subtraction of two complex numbers
FPC_MUL the multiplication of two complex numbers
fpr_add, fpr_sub the addition and subtraction of two numbers
fpr_mul the multiplication of two numbers
fpr_half, fpr_neg halve and negate the numbers
fpr_invsqrt2, fpr_invsqrt8 the number of 1/

√
2 and 1/

√
8

1 for (u = 0; u < 1; u ++) {
2 fpr a_re, a_im, b_re, b_im;
3 fpr t_re, t_im;
4

5 a_re = f[(u << 1) + 0];
6 a_im = f[(u << 1) + 0 + 2];
7 b_re = f[(u << 1) + 1];
8 b_im = f[(u << 1) + 1 + 2];
9

10 FPC_ADD(t_re, t_im, a_re, a_im, b_re, b_im);
11 f0[u] = fpr_half(t_re);
12 f0[u + 1] = fpr_half(t_im);
13

14 FPC_SUB(t_re, t_im, a_re, a_im, b_re, b_im);
15 FPC_MUL(t_re, t_im, t_re, t_im, fpr_invsqrt2,
16 fpr_neg(fpr_invsqrt2));
17 f1[u] = fpr_half(t_re);
18 f1[u + 1] = fpr_half(t_im);
19 }

Listing 1. The for-loop of split fft in the recursive layer n = 4 for the subroutine
ffSampling of sign dyn.

1 f[0] = f0[0];
2 f[2] = f1[0];
3 for (u = 0; u < 1; u ++) {
4 fpr a_re, a_im, b_re, b_im;
5 fpr t_re, t_im;
6

7 a_re = f0[u];
8 a_im = f0[u + 1];
9

10 FPC_MUL(b_re, b_im, f1[u], f1[u + 1], fpr_invsqrt2,
11 fpr_invsqrt2);
12

13

14 FPC_ADD(t_re, t_im, a_re, a_im, b_re, b_im);
15 f[(u << 1) + 0] = t_re;
16 f[(u << 1) + 0 + 2] = t_im;
17 FPC_SUB(t_re, t_im, a_re, a_im, b_re, b_im);
18 f[(u << 1) + 1] = t_re;
19 f[(u << 1) + 1 + 2] = t_im;
20 }

Listing 2. The for-loop of merge fft in the recursive layer n = 4 for the subroutine
ffSampling of sign dyn.

1 a_re = t1[0];
2 a_im = t1[2];
3 b_re = t1[1];
4 b_im = t1[3];
5

6 c_re = fpr_add(a_re, b_re);
7 c_im = fpr_add(a_im, b_im);
8 w0 = fpr_half(c_re);
9 w1 = fpr_half(c_im);

10

11 c_re = fpr_sub(a_re, b_re);
12 c_im = fpr_sub(a_im, b_im);
13 w2 = fpr_mul(fpr_add(c_re, c_im), fpr_invsqrt8);
14 w3 = fpr_mul(fpr_sub(c_im, c_re), fpr_invsqrt8);

Listing 3. The first call reordered split operations in the recursive layer n = 4 for
the subroutine ffSampling of sign tree.

1 a_re = w0;
2 a_im = w1;
3 b_re = w2;
4 b_im = w3;
5

6

7 c_re = fpr_mul(fpr_sub(b_re, b_im), fpr_invsqrt2);
8 c_im = fpr_mul(fpr_add(b_re, b_im), fpr_invsqrt2);
9

10

11 z1[0] = w0 = fpr_add(a_re, c_re);
12 z1[2] = w2 = fpr_add(a_im, c_im);
13 z1[1] = w1 = fpr_sub(a_re, c_re);
14 z1[3] = w3 = fpr_sub(a_im, c_im);

Listing 4. The first call reordered merge operation in the recursive layer n = 4 for
the subroutine ffSampling of sign tree.
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In sign tree, the merge operation (Listing 4) can be written as the following expression instead:

t[0] = t0[0] +̊
1√
2
×̊
(
t1[0] −̊ t1[1]

)
, t[2] = t0[1] +̊

1√
2
×̊
(
t1[0] +̊ t1[1]

)
,

t[1] = t0[0] −̊
1√
2
×̊
(
t1[0] −̊ t1[1]

)
, t[3] = t0[1] −̊

1√
2
×̊
(
t1[0] +̊ t1[1]

)
.

Again, since floating-point arithmetic is not distributive, t1 may evaluate to different values in the two
signing modes, which affects the centers of subsequent integer samplings.

Experimental validation. We experimentally verify the impact of reordered operations in the two
signing modes of deterministic Falcon [LP21b]. We tested different implementations including the
default fpemu det and fpnative det, avx2 det, avx2 fma det for n = 512 and 1024. For each instance,
10 million signatures are generated using each of the two signing modes. All experiments are carried
out on an Intel Xeon Gold 6338-based workstation, and all examples are compiled with GCC 9.4.0.
Optimizations -O3 are enabled, consistent with the Makefile of the provided implementation.

We observed that with 10 million signature queries, the two signing modes sign dyn and sign tree
will generate a few hundred pairs of different signatures per instance. Detailed experimental results
are provided in Table 2. Each table entry is of the form “A/B”, where “A” represents the number of
signatures with differences in just the last two integer samples, and “B” is the total number of different
signature pairs.

Interestingly, for most instances, more than 70% of the discrepancies occur only in the last two
calls to SamplerZ, which is the setting that allows for direct full key recovery as discussed earlier. This
is somewhat unexpected. Indeed, by the results of Section 4.3, integer centers, which are sensitive to
floating-point errors, occur slightly more frequently in the first two calls to SamplerZ than they do in
the last two. However, for reasons that we do not fully understand, the probability of discrepancy on
the last two calls conditional on having an integer center appears to be larger for the last two calls
than the first two. This phenomenon is specific to the “dynamic” vs. “tree” discrepancy, and does not
occur with, e.g., the FMA discrepancies discussed in the next section.

Exploiting those signature discrepancies, we mounted the key recovery attack shown in Section 5.1.
Table 3 records the number of successful key recoveries for varying number of signatures. Around one
in every 10,000 or so pairs of signatures appear to lead to full key recovery.

6.2 Discrepancies caused by FMA floating-point instructions

For better efficiency, some optimized implementations of Falcon use the fused multiply-add (FMA)
instructions that support the evaluation of ab + c in a single instruction and with one floating-point
rounding only. Compared to the regular “multiply then add” two-step computations, FMA instructions
reduce the floating-point errors. On the flip side, they are also a source of floating-point discrepancies
in Falcon signature generation.

Experimental validation. We ran experiments to compare the implementation using FMA of determin-
istic Falcon, avx2 fma det with other implementations. Our experiments are performed in dynamic
and tree signing modes respectively. For the same signing mode, we did not observe any discrepan-
cies among fpemu det, fpnative det and avx2 det. Therefore, we only present the comparison between
avx2 fma det and the default implementation fpemu det.

Table 4 shows the detailed experimental results measured over 10 million signatures per instance.
Each table entry is again of the form “A/B”, where “A” represents the number of signatures with
differences in just the last two integer samples, and “B” is the total number of different signature
pairs. We also present the experimental success rate of key recovery for this discrepancy in Table 5.

Compared to different signing modes (Table 2), the use of FMA instructions tends to cause a
larger number of differing signature pairs This is because the FMA instructions are applied to a large
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Table 2. Experimental results on deterministic Falcon.

Instance fpemu det 512 fpnative det 512 avx2 det 512 avx2 fma det 512
0 140 / 173 133 / 176 168 / 214 170 / 292
1 299 / 381 216 / 402 264 / 321 76 / 213
2 253 / 320 207 / 278 243 / 320 249 / 315
3 211 / 324 236 / 339 232 / 340 259 / 313
4 236 / 328 226 / 319 305 / 337 223 / 259
5 294 / 346 253 / 313 303 / 386 230 / 302
6 204 / 281 235 / 300 270 / 367 309 / 362
7 256 / 313 225 / 289 183 / 286 331 / 378
8 230 / 287 176 / 243 170 / 227 256 / 342
9 74 / 164 211 / 334 190 / 304 168 / 269

Instance fpemu det 1024 fpnative det 1024 avx2 det 1024 avx2 fma det 1024
0 234 / 297 244 / 313 255 / 303 214 / 277
1 259 / 339 281 / 361 223 / 260 191 / 281
2 224 / 290 244 / 346 206 / 299 282 / 348
3 232 / 303 226 / 283 251 / 300 224 / 282
4 242 / 317 264 / 341 260 / 326 276 / 355
5 267 / 328 219 / 266 161 / 265 279 / 316
6 221 / 282 214 / 321 204 / 268 217 / 306
7 244 / 304 185 / 277 232 / 299 209 / 283
8 253 / 332 216 / 276 315 / 409 241 / 323
9 276 / 306 203 / 297 253 / 324 37 / 110

Table 3. The number of successful key recovery with N signature queries on deterministic Falcon.

N × 10−3 10 20 30 40 50 60 70 80 90 100

fpemu det 512 1 4 6 6 6 7 8 8 8 8
fpnative det 512 2 5 7 7 8 8 10 10 10 10

avx2 det 512 1 6 8 8 8 8 8 9 9 9
avx2 fma det 512 2 4 6 7 8 8 8 9 9 9

fpemu det 1024 5 6 6 6 7 7 7 8 8 9
fpnative det 1024 2 2 3 3 4 6 7 8 8 8

avx2 det 1024 3 4 5 5 6 6 7 7 7 7
avx2 fma det 1024 1 3 4 7 8 9 9 9 10 10
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amount of computations in both signing and key generation, which affects almost all floating-point
intermediate values associated with ffSampling and has a more significant impact. In this setting, the
discrepancies between avx2 fma det and fpemu det tend to occur in the first two calls of SamplerZ at
a higher rate than in the last two calls, consistently with the results of Section 4.3, but unlike what
happens for “dynamic” vs. “tree” discrepancies.

Table 4. Experimental results on avx2 fma det and fpemu det of deterministic Falcon.

Instance sign dyn 512 sign tree 512 sign dyn 1024 sign tree 1024
0 274 / 748 344 / 852 483 / 991 432 / 987
1 316 / 819 340 / 720 380 / 828 446 / 1134
2 422 / 883 336 / 806 327 / 926 370 / 819
3 322 / 738 544 / 1205 328 / 763 396 / 1148
4 361 / 781 260 / 564 460 / 1138 409 / 803
5 448 / 1054 383 / 1011 292 / 630 452 / 1048
6 308 / 741 416 / 841 317 / 800 427 / 924
7 352 / 839 450 / 1066 438 / 782 358 / 726
8 292 / 767 341 / 858 377 / 784 534 / 1014
9 392 / 982 332 / 886 313 / 877 402 / 806

Table 5. The number of successful key recovery with N signature queries on avx2 fma det and fpemu det of
deterministic Falcon.

N × 10−3 10 20 30 40 50 60 70 80 90 100

sign dyn 512 2 4 5 7 7 8 9 9 10 10
sign tree 512 4 6 6 8 8 8 8 9 9 9

sign dyn 1024 2 4 6 8 9 9 9 9 9 9
sign tree 1024 4 8 8 8 9 9 9 9 9 10

7 Countermeasures

7.1 Remedying the floating-point error sensitivity

As identified in Section 4, the one-dimensional discrete Gaussian sampler of Falcon is only sensitive to
floating-point errors for a nearly-integer center. Unfortunately, (nearly) integer centers do occasionally
occur in Falcon signature generation. A natural solution to this issue could therefore be to shift
the points at which the one-dimensional is numerically unstable to locations that cannot occur with
significant probability within Falcon signing. This can be done as follows.
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Algorithm 4: NewSamplerZ

Input: A center c and standard deviation σ ∈ [σmin, σmax]
Output: An integer z derived from a distribution close to DZ,σ,c

1 r ← c− ⌊c⌉
2 y+ ← NewBaseSampler()
3 b

$← {0, 1}
4 y ← (2b− 1)y+

5 x← (y−r)2

2σ2 − y2
+−y+

2σ2
max

6 return z ← y + ⌊c⌉ with probability σmin
σ
· exp (−x), otherwise restart.

The reason why Falcon’s discrete Gaussian sampler has sensitivity for integer centers is that the
center received as input is first split into its integer and fractional parts, and computations are carried
out on those two. It is not difficult, however, to modify the sampler to use rounding to the nearest
integer instead of the floor operation. This results in Algorithm 4, where NewBaseSampler samples
from the one-sided non-negative discrete Gaussian distribution centered at 1/2 of standard deviation
σmax—or rather a truncation of it, such as the distribution D given by:

D(i) ∝

{
ρσmax,

1
2
(i) for 1 ≤ i ≤ 18;

1
2ρσmax,

1
2
(i) for i = 0.

What this changes is that the algorithm now presents instability at half-integers (i.e., elements of
Z+ 1/2) instead of integers, and preventing half-integer centers from appearing at all is feasible.

Indeed, let mk as in the statement of Theorem 1. As discussed in Section 4.3, under Heuristic 1, the
centers c2k, c2k+1 are rational numbers of the form nk/gk with gk = qmk if k < n/2 and gk = mn−k

otherwise. Moreover, mk ≈ qk, so for 3 ≤ k < n− 3, gk exceeds the floating point precision, and hence
even if the corresponding c2k or c2k+1 happens to be half-integer for those k, this will not be detectable
in the double precision floating point computations.

As a result, we can effectively avoid all half-integer centers if we ensure that the six denominators
g0 = qm0, g1 = qm1, g2 = qm2, gn−3 = m3, gn−2 = m2 and gn−1 = m1 are all odd. Since q is itself an
odd prime and m0 = 1, this reduces to ensuring that m1, m2 and m3. Now let:

t = 〈b0, b0〉, u = 〈b0, b2〉, v = 〈b0, b4〉, w = 〈b0, b5〉.

A tedious but straightforward computation shows that:

m1 = t, m2 = t2 − 2u2, m3 = t3 − 2t · (u2 + v2 + w2) + 2u(v − w)2.

In particular, as long as t = ‖(g,−f)‖2 is odd, then so are m1, m2 and m3.
Therefore, we conclude that the following steps constitute an effective countermeasure against the

sensitivity of Falcon’s sampler to floating-point errors:

1. replace the integer sampler by Algorithm 4, which is stable away from half-integer centers; and
2. restrict ‖(g,−f)‖2 to be an odd integer in key generation.

One issue with this countermeasure is that the reference C implementation of Falcon only gener-
ates keys with ‖(g,−f)‖2 even! Note that this is an idiosyncrasy of the C implementation itself, that
is easily fixable, and does not reflect either the Falcon specification or alternate implementations like
Prest’s Python version, which can generate keys with odd ‖(g,−f)‖2.

This happens because the parity of ‖(g,−f)‖2 is simply the parity of the sum of all coefficients of
f and g, and the C implementation forces the sum of the coefficients of both f and g to be odd (so that
their sum is even). This is unnecessary to solve the NTRU equation: one should ensure that either of
the parity is odd (otherwise f and g are both divisible by the prime above 2 in the ring, and the NTRU
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equation is not solvable), but there is no reason to require both to be odd.6 Modifying the Falcon code
to lift this restriction (or rather, to impose instead that exactly one of f and g has an even coefficient
sum) is simple and has no efficiency penalty—in fact, it is likely to lead to a slight speed-up, since it
rejects half of the choices of (g,−f) on parity grounds, whereas Falcon’s C implementation rejects
three quarters.

7.2 Eliminating discrepancies between dynamic and tree modes

As analyzed in Section 6, the basic reason why there exist floating point discrepancies between the
sign dyn and sign tree modes (even when using IEEE-754 compliant floating point arithmetic) is the
fact that the order of floating point operations differ between the two modes at the second-to-last level
of recursion in the traversal of the Falcon tree by ffSampling. Therefore, the discrepancies should
disappear provided that sign tree is modified to follow the simpler ordering used by sign dyn. We
suggest two alternate approaches to achieve that goal.

Re-ordering computations in sign tree. A first possible solution is to manually re-order the floating point
computations in the bottom recursion layer of sign tree (corresponding to n = 4) so that the inlined
reimplementations of the split fft and merge fft that it contains match the floating point computations
of the actual subroutines when called from sign dyn. This boils down to modifying lines 13–14 of
Listing 3 (corresponding to the split operation) and lines 6–7 of Listing 4 (corresponding to the merge
operation) as shown below.

13 w2 = fpr_half(fpr_sub(fpr_mul(c_re, fpr_invsqrt2), fpr_mul(c_im, fpr_neg(fpr_invsqrt2))));
14 w3 = fpr_half(fpr_add(fpr_mul(c_re, fpr_neg(fpr_invsqrt2)), fpr_mul(c_im, fpr_invsqrt2)));

Listing 5. Countermeasure for Line 13 and 14 of Listing 3.

6 c_re = fpr_sub(fpr_mul(b_re, fpr_invsqrt2), fpr_mul(b_im, fpr_invsqrt2));
7 c_im = fpr_add(fpr_mul(b_re, fpr_invsqrt2), fpr_mul(b_im, fpr_invsqrt2));

Listing 6. Countermeasure for Line 6 and 7 of Listing 4.

Avoiding the re-ordered code path. While the bottom recursion layer of sign tree normally corresponds
to n = 4, the code base actually contains, for testing purposes, another possible bottom layer for n = 2
that only gets called when Falcon is compiled for a base ring with extension degree 2 (instead of 512
or 1024 in proposed parameters).

This alternate recursion layer does not include any re-ordering like the n = 4 layer does, and
instead follows the same floating point operations as sign dyn. Therefore, a very simple countermeasure
for sign tree is to simply skip the code path corresponding to the bottom layer for n = 2 (e.g., by
commenting out the if (logn == 2) conditional clause at the beginning of ffSampling_fft), and
instead let the program flow fall over to the n = 2 bottom layer.
6 It appears that the Falcon C implementation does so in order to take some shortcuts in the computation

of the extended GCD algorithm on the algebraic norms of f and g. The underlying algorithm [Por20] does
support the case of one operand being even, but by assuming that both operands are odd, the Falcon
implementation possibly saves a parity test and a swap?
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In fact, there is an even simpler n = 1 bottom recursion layer that exists in the code base in
commented out form, and that can be used instead for the same purpose.

Experimental validation. We tested the effectiveness of those countermeasures by generating 10 million
pairs of “dynamic” and “tree” signatures for deterministic Falcon, and as expected, did not observe
any floating point discrepancies when either of the two countermeasures above are implemented. They
did not appear to have measurable effect on performance either (although the second approach may
be slightly slower when using AVX optimizations).

7.3 Avoiding native or optimized floating-point implementations

As illustrated by our findings regarding FMA instructions, a deterministic Falcon implementation
should certainly avoid such floating point arithmetic optimizations known to break strict compliance
with the IEEE-754 standard [iee85].

The use of native or vectorized floating-point arithmetic with FMA disabled was not found to
produce discrepancies in our limited testing, but this may not be a robust observations across CPU
architectures, compilers and choices of compiler options. It should be safe to rely on native floating-
points if strict compliance with IEEE-754 is ensured, but this may be difficult to do in a portable
way.

Failing that, deterministic Falcon implementations may prefer to heed the warning of Lazar and
Peikert [LP21b] and avoid all floating-point implementations other than the integer-based emulated
one. This is unfortunately a costly choice in terms of performance (and does not dispense from applying
at least the countermeasure from the previous section if both dynamic and tree modes are exposed by
the API).
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A Properties of the Falcon Gram–Schmidt basis

Let B be the NTRU trapdoor basis of Falcon in bit reversed order, and B̃ the associated Gram–
Schmidt orthogonalized basis. The (row) vectors of B (resp. B̃) are denoted by bi (resp. b∗

i ), 0 ≤ i ≤
2n− 1.

The following theorem collects a number of properties of the Gram–Schmidt basis, most of which
are well-known, but others may be of independent interest.

Theorem 1. The following properties hold.

(a) Let ω : Z2n → Z2n be the isometry given by:

ω(u0, u1, . . . , u2k, u2k+1, . . . , u2n−2, u2n−1)

= (−u1, u0, . . . ,−u2k+1, u2k, . . . ,−u2n−1, u2n−2)

(i.e., ω negates the second element in each pair of consecutive coefficients and swaps the pair).
In the bit reversed order representation of the module lattice, ω corresponds to multiplication by
xn/2 =

√
−1 on both ring elements, so that, e.g., b0 = (g,−f) is sent to ω(b0) = (xn/2g,−xn/2f) =

b1.
Then, for 0 ≤ i ≤ n− 1, we have:

ω(b2i) = b2i+1 and ω(b2i+1) = −b2i.

Moreover, the same relation holds for the Gram–Schmidt vectors:

ω(b∗
2i) = b∗

2i+1 and ω(b∗
2i+1) = −b∗

2i.

In particular, ‖b∗
2i‖ = ‖b∗

2i+1‖.
(b) For all i, ‖b∗

i ‖ · ‖b∗
2n−1−i‖ = q. Moreover, we have:

b∗
2n−1−i =

q

‖b∗
i ‖2

b∗
i J

where J is the standard symplectic involution.
(c) For all i, 1

1.17

√
q ≤ ‖b∗

i ‖ ≤ 1.17
√
q.

(d) For all i, b∗
i has rational coefficients, and in particular ‖b∗

i ‖2 is a rational number.
(e) For 0 ≤ k ≤ n, let mk :=

∏2k−1
i=0 ‖b∗

i ‖ (in particular, m0 = 1 by definition). Then mk is an integer
for all k, and:

mk =

k−1∏
i=0

‖b∗
2i‖2 =

k−1∏
i=0

‖b∗
2i+1‖2.

(f) For 0 ≤ k ≤ n, mk · b∗
j has integer coefficients for j = 2k and j = 2k + 1.
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(g) For j = 2k and j = 2k + 1, mk+1 · b∗
j/‖b∗

j‖2 is an integer vector. In particular, for any integer
vector c, the value

c =
〈c, b∗

j 〉
‖b∗

j‖2
.

satisfies that mk+1 · c is an integer.
(h) For j = 2n− 1− 2k and j = 2n− 1− (2k + 1), qmk · b∗

j/‖b∗
j‖2 is an integer vector. In particular,

for any integer vector c, the value

c =
〈c, b∗

j 〉
‖b∗

j‖2
.

satisfies that qmk · c is an integer.
(i) For 0 ≤ k ≤ n, we have:

mn−k = qn−2kmk.

Proof. (a) For 0 ≤ i ≤ n − 1, let αi denote the bit reversed representation of i. The vectors of B can
be written as follows:

bi = (xαig,−xαif) and bn+i = (xαiG,−xαiF ).

As a result, for 0 ≤ i < n/2, we have:

b2i+1 = (xα2i+1g,−xα2i+1f) = (xα2i+n/2g,−xα2i+n/2f)

= ω(xα2ig,−xα2if) = ω(b2i)

and similarly bn+2i+1 = ω(bn+2i). Moreover, we clearly have ω2 = −1. This all shows that for
0 ≤ i ≤ n− 1:

ω(b2i) = b2i+1 and ω(b2i+1) = −b2i

as required.
Turning now to the Gram–Schmidt vectors, denote by V (j) the linear subspace spanned by bk (or
equivalently b∗

k for k ≤ j. By definition, b∗
2i is the unique vector in V (2i+1) orthogonal to V (2i). It

follows that ω(b∗
2i) is in ω

(
V (2i+1)) and orthogonal to ω

(
V (2i)). Now by the previous relations, we

have:
ω
(
V (2i)) = V (2i)

and
ω
(
V (2i+1)) = ω

(
V (2i) + Rb2i

)
= V (2i) + Rb2i+1 ⊂ V (2i+2).

Moreover, ω(b∗
2i) is also orthogonal to b∗

2i since ω sends any vector to an orthogonal one. Hence,
ω(b∗

2i) is in V (2i+2) and orthogonal to V (2i) + Rb∗
2i = V (2i+1), so we have ω(b∗

2i) = b∗
2i+1 as

required. This concludes the proof of assertion (a).
(b) This is results from q-symplecticity of the NTRU basis [GHN06, Cor. 1].
(c) Falcon key generation imposes ‖b∗

i ‖ ≤ 1.17
√
q for all i. Then, by relation (b), we also have

‖b∗
i ‖ = q/‖b2n−1−i‖ ≥

√
q/1.17.

(d) This is a general fact about the rationality of the Gram–Schmidt orthogonalization process.
(e) First, the fact that:

mk =

k−1∏
i=0

‖b∗
2i‖2 =

k−1∏
i=0

‖b∗
2i+1‖2

follows directly from (a). By (d), this shows moreoever that mk is rational for all k. Then, note
that m2

k =
∏2k−1

i=0 ‖b∗
i ‖2 is the 2k-th leading principal minor of the Gram matrix G = BB∗, which

is an integer matrix. Therefore, m2
k is an integer and also the square of a rational number. It must

therefore be a perfect square, and hence mk is itself an integer.
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(f) It is a general fact that the i-th Gram–Schmidt vector of any family of integer vectors becomes
integral after multiplication by the (i− 1)-st principal minor of the Gram matrix. A proof of that
theorem is given, e.g., in [Gal12, Lemma 17.3.2]. In our case, this says that m2

kb∗
j has integer

coefficients for j = 2k and j = 2k + 1.
To obtain our stronger claim that mkb∗

j is already integral for those j, one can observe that
assertion (a) says that B and B̃ are in fact the Weil restrictions of n× n matrices over the ring of
Gaussian integers Z[

√
−1] (resp. the quadratic field Q(

√
−1)), and apply the general fact, mutatis

mutandis, to those matrices.
Concretely speaking, for 0 ≤ i ≤ n− 1, let wi be the vector over Z[

√
−1] whose j-th coefficient is

b2i,2j + b2i,2j+1

√
−1, and w∗

i the vector over Q(
√
−1) whose j-th coefficient is b∗2i,2j + b∗2i,2j+1

√
−1.

The corresponding matrices are denoted by W and W̃. Then, for the standard Hermitian inner
product on Q(

√
−1)n (antilinear on the right since we use row vectors), we claim that W̃ is the

Gram–Schmidt orthogonalization of W. Indeed, for any k, ℓ we have:

〈w∗
k,w∗

ℓ 〉 =
n−1∑
j=0

(
b∗2k,2j + b∗2k,2j+1

√
−1

)
·
(
b∗2ℓ,2j − b∗2ℓ,2j+1

√
−1

)
=

n−1∑
j=0

(
b∗2k,2jb

∗
2ℓ,2j + b∗2k,2j+1b

∗
2ℓ,2j+1

)
+

n−1∑
j=0

(
− b∗2k,2jb

∗
2ℓ,2j+1 + b∗2k,2j+1b

∗
2ℓ,2j

)√
−1

= 〈b∗
2k, b∗

2ℓ〉+ 〈b∗
2k, ω(b∗

2ℓ)〉 = 〈b∗
2k, b∗

2ℓ〉+ 〈b∗
2k, b∗

2ℓ+1〉,

which shows in particular that 〈w∗
k,w∗

ℓ 〉 = 0 for ℓ < k and 〈w∗
k,w∗

k〉 = ‖b∗
2k‖2 = mk+1/mk.

Moreover, w∗
k is in the span of the vectors wℓ for ℓ ≤ k. Indeed, write b∗

2k over the basis B as
follows:

b∗
2k = b2k −

k−1∑
i=0

a2k,2ib2i + a2k,2i+1b2i+1

From there and the fact that b2i+1 = ω(b2i), it follows that we have:

w∗
k = wk −

k−1∑
i=0

vk,iwi where vk,i = a2k,2i + a2k,2i+1

√
−1.

This shows that W̃ is indeed the Gram–Schmidt orthogonalization of W.
To then obtain the desired integrality result, we take the inner product of the previous equation
with all the wℓ with ℓ < k. Since w∗

k is orthogonal to all of these vectors, we get:

〈wk,wℓ〉 =
k−1∑
i=0

vk,i〈wi,wℓ〉

for all ℓ < k. In matrix form, if we let W(k) be the matrix consisting of the first k rows of W (i.e.,
those of index ℓ < k), this says:

wk

(
W(k)

)∗
= vkW(k)

(
W(k)

)∗ where vk = (vk,0, . . . , vk,k−1)

and the asterisk denotes the conjugate transpose as usual. Multiplying on both sides by the adjugate
of U(k) = W(k)

(
W(k)

)∗ shows that det(U(k)) ·vk has coefficients in Z[
√
−1]. Moreover, det(U(k)) =∏

ℓ<k ‖w∗
ℓ‖2 = mk. Therefore, the mkvk,i are elements of Z[

√
−1] and hence mka2k,i is an integer

for all i < 2k. This shows that mkb∗
2k is an integer linear combination of the integer vectors bi,

i < 2k, and the same is true for mkb∗
2k+1 = ω(mkb∗

2k). This concludes the proof of assertion (f).
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(g) To obtain the assertion for j = 2k, it suffices to write:

mk+1 ·
b∗
2k

‖b∗
2k‖2

= mkb∗
2k

which is an integer vector by assertion (f). The result on c follows immediately, and the case
j = 2k + 1 is treated similarly.

(h) Suppose j = 2n− 1− 2k. Applying assertion (b), we have

b∗
j =

q

‖b∗
2k‖
· b∗

2kJ and ‖b∗
j‖2 =

q2

‖b∗
2k‖2

.

Therefore:
qmk ·

b∗
j

‖b∗
j‖2

= qmk ·
q/‖b∗

2k‖2 · b∗
2kJ

q2/‖b∗
2k‖2

= qmk ·
1

q
b∗
2kJ = mkb∗

2kJ

which is again an integer vector (as J obviously sends integer vectors to integer vectors). The result
on c again follows immediately, and the case j = 2n− 1− (2k + 1) is treated in the same way.

(i) Applying assertions (b) and (e), we have:

mn−k = mn ·
k−1∏
j=0

1

‖b∗
2n−1−(2j+1)‖2

= det(B) ·
k−1∏
j=0

‖b∗
2j+1‖2

q2
= qn · mk

q2k
= qn−2kmk

as required.
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