
Computational Analysis of Plausibly
Post-Quantum-Secure Recursive Arguments of

Knowledge

Dustin Ray1[0009−0002−1782−5773] and Paulo L. Barreto1[0000−0001−8832−3071]

University of Washington | Tacoma

Abstract. With the recent standardization of post-quantum crypto-
graphic algorithms, research efforts have largely remained centered on
public key exchange and encryption schemes. Argument systems, which
allow a party to efficiently argue the correctness of a computation, have
received comparatively little attention regarding their quantum-resilient
design. These computational integrity frameworks often rely on crypto-
graphic assumptions, such as pairings or group operations, which are vul-
nerable to quantum attacks. In this work, we present a fully implemented
post-quantum secure argument system that compresses unbounded com-
putation into a constant-sized space. We present a fully implemented
prover which can argue the truth of any size computation, and verifier
which can verify correctness in constant time. This work shows an exten-
sion of utility for computational integrity statements into the quantum
domain. We provide real-world performance metrics demonstrating that
post-quantum secure argument systems not only exist but can outper-
form classical systems in both efficiency and scalability, making such
systems an attractive choice for practical deployment.

Keywords: Post-Quantum Cryptography, Recursive Arguments of Knowl-
edge, Zero-Knowledge Proofs, Reed-Solomon Error-Correcting Codes

1 Introduction

In 1995, Peter Shor introduced what is now known as Shor’s algorithm [1],
demonstrating that under certain conditions, powerful adversaries can efficiently
factor large primes and solve discrete logarithms. The wide-reaching implication
of this discovery led to a period of rapid development of stronger primitives
which could resist such adversaries.

Since Shor’s pivotal discovery, a wide range of post-quantum cryptographic
constructions, such as lattice, code, or isogeny-based constructions have been
proposed [2], implemented, broken [3], fixed [4], standardized [5], and deployed.
Most of these efforts have focused on replacing traditional cryptographic tools
like public-key encryption, key exchange schemes, and digital signatures with
quantum-resilient alternatives.

Argument systems, including zero-knowledge proofs and computational in-
tegrity frameworks, have seen relatively little attention in the post-quantum

2 Ray&Barreto, 2024

space. Many existing argument systems [6, 7, 10] rely on pairings and group op-
erations, which are based on hard problems [11] vulnerable to quantum attacks
under Shor’s algorithm.

Quantum-resilient argument systems are known and have been deployed in
practice [12, 13], showing promising performance and security asymptotics.

1.1 Relevant concepts and nomenclature

This work draws from an active field of cryptography focused on the study and
application of argument systems, particularly those that are probabilistically-
checkable and non-interactive. The celebrated results of Goldwasser et al. [14]
introduced an argument system in which a prover (P) convinces a verifier (V)
that a computation was performed correctly, with high probability. Rather than
re-running the entire computation, the verifier only needs to check a logarithmic-
sized, non-deterministic sample of the prover’s argument. With overwhelming
probability, this sampling is sufficient to ensure the correctness of the result.

In the literature on zero-knowledge (ZK) proofs, a computational integrity
statement is often referred to as a “proof,” and the party generating it is the
“prover.” However, when perfect soundness is not required, these statements are
more accurately referred to as arguments, as they do not prove the truth of a
statement with certainty, but instead argue its correctness with high probabil-
ity. The term “prover” refers to the party generating the computational integrity
statement. While the prover possesses a complete proof of the computation’s
correctness, the system optimizes asymptotic complexity by transforming this
proof into a more efficient argument. The term “prover” thus reflects the role of
the party producing these arguments, which are more practical for large-scale
computations. Throughout this work, we use the terms “zero-knowledge proof,”
(ZKP) “computational integrity statement,” (CI statement) and “argument” in-
terchangeably.

SNARKs (Succinct Non-Interactive Arguments of Knowledge) are a class of
argument systems widely used for their efficiency, particularly in applications re-
quiring succinctness and non-interactivity. SNARKs often rely on cryptographic
primitives such as pairing-based group operations, elliptic curve assumptions, or
trusted setups that may be vulnerable to quantum attacks [10]. For instance,
the reliance on discrete logarithm or pairing-based cryptographic assumptions,
both of which are broken by Shor’s algorithm, suggests that these SNARKs may
be insecure against a quantum adversary. When we refer to SNARKs in this
paper, we are generally referring to argument systems that lack quantum resis-
tance, rely on group operations, require a trusted setup phase, or exhibit any
combination of these features.

STARKs (Succinct Transparent Arguments of Knowledge) [13] form the
backbone of this research effort. In general, these systems do not rely on as-
sumptions that are currently known to be susceptible in the presence of quantum
adversaries. We elaborate in detail the specific inner workings of STARKs in fur-
ther sections. Similar to the terminology surrounding SNARKs, when we refer

CAPyPQSrARK 3

to a STARK, we are referring to an argument system which is quantum-resilient
and has no requirement for trusted setups.

Throughout this work, when we refer to a cryptographic scheme or system as
“quantum secure” or “post-quantum secure,” we are specifically referring to what
is more accurately termed “plausibly post-quantum secure.” This terminology ac-
knowledges that while the cryptographic assumptions underlying these systems
are believed to resist quantum attacks, there is currently no concrete proof of
absolute security against a quantum adversary. As with most cryptographic sys-
tems, security is based on the hardness of specific mathematical problems, which
remain assumptions until rigorously proven or disproven.

1.2 Organization

The remainder of this paper is organized as follows:

– Section 2 provides the broader context and challenges in quantum-resilient
cryptography, introducing key concepts like zero-knowledge proofs and com-
putational integrity, and explaining the gap this work addresses.

– Section 3 reviews relevant work in cryptographic argument systems, analyz-
ing existing methods and identifying research gaps that this paper seeks to
fill.

– Section 4 defines the asymptotic qualities of the protocol we wish to imple-
ment. This section forms the main foundation of this research effort in that
it explicitly constructs the theoretical backbone of the construction. Finally,
this section formally prescribes our construction with the features commonly
employed in argument systems, such as completeness, soundness. etc.

– Section 5 presents the mathematical foundations of the protocol, including
polynomial commitment schemes, Fast Reed-Solomon IOP (FRI), Merkle
trees, Reed-Solomon error-correcting codes, and their relevance to quantum
security.

– Section 6 details the design and implementation of the proposed argument
system, covering the framework, tools, and technical decisions made to build
a secure and efficient protocol. It also discusses the system architecture and
the choice of an ASIC-based design over other frameworks.

– Section 7 evaluates the performance of the implemented system, including
benchmarking results, resource consumption, and scalability tests. Key per-
formance metrics such as constant-sized proof generation and runtime effi-
ciency are presented.

– Section 8 compares the proposed system with other state-of-the-art crypto-
graphic argument systems, drawing both quantitative and qualitative com-
parisons to demonstrate the advantages of the proposed scheme, particularly
in terms of post-quantum security and asymptotic performance.

– Section 9 summarizes the main contributions of this work and discusses
potential future directions. This section outlines how the proposed argument
system can be extended or adapted in future research.

4 Ray&Barreto, 2024

2 Motivation

Argument systems, including zero-knowledge proofs and computational integrity
statements, allow one party to convince another with high probability that a
computation was carried out correctly and faithfully, without needing to rerun
the entire computation. These systems have become crucial in scenarios where
computation is delegated to untrusted parties, ensuring trust without direct
oversight or interaction.

These cryptographic constructions have seen widespread adoption in recent
years [7], particularly in cloud computing, blockchain applications, and dis-
tributed systems. In these settings, computations are often outsourced to poten-
tially untrusted parties, and ensuring the integrity of the results is paramount.
For example, in cloud computing, users must be able to trust that outsourced
computations were performed correctly without needing to replicate the work
themselves. Similarly, in blockchain applications, computational integrity under-
pins the trustless nature of decentralized systems, where participants must verify
state transitions without direct access to the underlying data.

Further examples relevant to our design include computations with a po-
tentially unbounded number of steps or invocations. For instance, consider a
machine-learning model that must update itself every time new data is added to
the training set. The cost of retraining the model from scratch only to include
the effect of the new data element in the model weights would be prohibitively
expensive. Our argument system implementation is particularly well-suited for
recursive and updatable computations, where starting the algorithm from the
first step would represent a prohibitive amount of work to be done.

Most argument systems require a commitment phase, during which the prov-
ing party performs an operation in addition to the computation to be verified.
This commitment operation acts as a “seal” that cannot be altered without caus-
ing the argument to fail verification with high probability. For large computations
that need to update in response to new input, we leverage recursion to simulate
an updatable commitment. This allows the proving party to efficiently update
the existing argument from the previous state in response to a changing input
space, rather than recompute the entire argument from the beginning. Address-
ing the unbounded nature of certain computations places our approach among
the most versatile class of such functions in terms of scalability, and assessing
the quantum resilience of such systems is identified as a gap in existing research.

The implementation we present is ideally suited for computations that are
continually updated. Formally, our system targets general recursive, Turing-
computable functions in P. We implement a quantum-resilient argument sys-
tem that effectively secures computations in this class, while achieving opti-
mal asymptotic performance. The system produces constant-sized arguments,
constant-time verification, and updatable argument states, making it both effi-
cient and scalable for real-world applications.

CAPyPQSrARK 5

2.1 Contributions

In this work, we present an implementation of a post-quantum secure argument
system that achieves constant-sized arguments, constant-time verification, and
updatable argument states, all while offering state-of-the-art performance for
both the prover and verifier. Through this evaluation, we demonstrate the proto-
col’s readiness for real-world deployment and provide optimizations for practical
use in environments requiring efficient, secure verification.

We emphasize that our aim is to provide a practical implementation that
can be constructed using existing, well-established cryptographic primitives and
frameworks. Specifically, we do not propose a quantum argument system based
on quantum algorithms or quantum primitives. Instead, our work focuses on
security against a theoretical quantum-equipped adversary, whose existence and
capability to break current systems is plausible but not guaranteed. While there
is a growing body of research into quantum argument systems that leverage
quantum algorithms and technologies, these systems are beyond the scope of
our work. Our focus remains on argument systems that operate in probabilistic
polynomial time (PPT), designed to run on modern, classical hardware, while
providing post-quantum security properties.

An itemized summary of our efforts is as follows:

– Empirical analysis of post-quantum security : We provide a detailed empirical
analysis of the post-quantum security of various components of our argument
system, and conduct a survey of commonly deployed argument systems and
their potential quantum resilience.

– A proof circuit that supports unbounded recursive computations: Our cir-
cuit is capable of verifying itself any number of times, and thus produces a
constant-sized proof, regardless of the computation’s depth.

– Efficient performance benchmarking : We provide a detailed evaluation of the
system’s runtime for each layer of the circuit, demonstrating its scalability
and efficiency.

– Flexible Design: Our circuitry is designed to be computation agnostic. It has
input and output gates that can be connected to a circuit representation
of any computation. We find that this greatly simplifies the construction of
recursive computation.

– Constant-sized circuit : We analyze the number of gates in the circuit, show-
ing that the circuit size remains constant as the number of computation
invocations grows.

– Asymptotic performance: We highlight how this scheme exhibits some of
the best-performing asymptotic characteristics in the current landscape of
post-quantum argument systems.

2.2 Existing Limitations

While several cryptographic argument systems have been proposed and theoret-
ically analyzed, significant limitations exist in both their practical implementa-
tions and their readiness for deployment in post-quantum secure environments.
These limitations can be broadly categorized as follows:

6 Ray&Barreto, 2024

– Quantum Vulnerability : Many of the widely used and deployed argument
systems rely on cryptographic assumptions that are vulnerable to quantum
attacks, such as pairings or group operations [15]. With quantum computing
advancing, these systems are at risk of being compromised, highlighting a
need for protocols that offer post-quantum security. Our implementation
considers quantum resilience at every step of the argument, relying only
on assumptions conjectured to be quantum-resilient. We discuss the precise
threats that these constructions face from a quantum adversary in further
sections.

– Lack of Practical Implementations: Although post-quantum secure argument
systems have been proposed theoretically, few have been implemented and
rigorously tested in real-world environments. This gap creates uncertainty
about their performance, scalability, and practicality. Existing recursive sys-
tems like zk-SNARKs have received significant attention, but post-quantum
alternatives remain underexplored in practical contexts. Our work addresses
this by implementing and empirically evaluating a fully functional post-
quantum secure argument system, providing insights into its performance
and scalability in realistic scenarios.

– High Computational Burden: Some protocols [6] place a heavy computational
load on the prover or verifier, requiring substantial resources to generate or
verify proofs, respectively. This limits their usability in resource-constrained
environments such as embedded systems or devices with limited processing
power. Our implementation reduces the computational burden on the prover
and verifier by optimizing the proof generation and verification process, mak-
ing it feasible for use in resource-constrained environments. We also reduce
the burden on circuit design by abstracting away the recursive circuitry.

– Proof Size and Verification Complexity : Some argument systems produce
large proofs [6], which are costly to store and transmit, especially in band-
width-constrained environments. Additionally, verification complexity can
scale with the size of the computation [17], limiting the feasibility of us-
ing these systems in real-time applications or large-scale deployments. Even
widely-used systems such as Groth16[8] [10], known for its succinct proofs,
still require public parameters and auxiliary data of substantial size, often
measured in gigabytes (GB). Our implementation requires no such parame-
ters, and generates short proofs relative to computation size.

These limitations emphasize the need for cryptographic argument systems
that are both post-quantum secure and efficient in practice. In particular, the
lack of empirical performance evaluations for post-quantum secure protocols
leaves a gap in the understanding of their real-world applicability and scalability.

3 Literature Review

3.1 Key Previous Works

[12] Ligero The Ligero protocol introduces lightweight sublinear arguments that
do not require a trusted setup. It is designed to balance between efficiency and

CAPyPQSrARK 7

scalability, addressing the need for transparent cryptographic proofs. This ap-
proach allows for efficient verification while maintaining security, making it ap-
plicable in various zero-knowledge proof systems. The design leverages the ad-
vantages of both succinctness and transparency, catering to the growing demand
for post-quantum secure cryptographic protocols.

Ligero is one of the first argument systems to use error correcting codes in its
commitment scheme. This advancement leads directly to argument systems and
multi-party computation protocols which operate without opaque setup phases
and weaker cryptographic assumptions.

Our work leverages a commitment scheme known as FRI, which was directly
inspired from the advancements in Ligero. FRI is formally defined in further
sections.
[17, 18] Halo2 Halo2 is among the first and widest used recursive arguments,
originally deployed as a privacy and scaling solution targeting blockchains. It
is one of the first examples of recursive proof composition leveraging cycles of
elliptic curves, in which the scalar group of one curve is the finite field of another,
and visa versa. This recursive relationship facilitates short proofs and eliminates
the need for a trusted setup phase.
[19] PLONK “Permutations over Lagrange-bases for Oecumenical Noninterac-
tive arguments of Knowledge” is a SNARK invented to mitigate a limitation of
traditional trusted setups or structured reference strings (SRS). Traditionally,
the SRS is limited to a single computation description. Should a distinct or
differing computation need to be argued, the setup phase must be repeated each
time a change is made. PLONK resolves this redundancy by introducing the
notion of a “Universal Setup,” which can be easily updated for new computations
as needed, and with little overhead.

A further key development from PLONK is a new format in which circuits
are described. Known as “plonk-ish” arithmetization, this wiring syntax closely
resembles that of physical hardware, which significantly improves over previous
methods the experience of describing the computation to be proven. Our research
makes use of plonkish arithmetization in the design and construction of our
circuit.
[20] Plonky2 Plonky2 is an argument construction framework which supports
plonkish-arithmetization paired to the FRI commitment scheme. This argument
is a STARK which exhibits several quantum-resilient properties of specific inter-
est to our work. Plonky2 further supports recursive argument and circuit design
which makes it an effective platform for the design of our circuit.
[21] Non-recursive SHA-256 Hashing with Plonky2: This work shows
an example of describing a hash function (SHA256) as gates and wires in the
Plonky2 framework. It implements non-recursive SHA-256 hashing with Plonky2.
It provides a basis for the hash-chain benchmarking computation that we encode
into our circuit. We leverage implementations of the Poseidon hash function due
to its compact description in circuitry.
[23] Plonky2 Test Code: This implementation in Plonky2 showcases a two-
step, non-recursive hash chain. It is part of the recursion module, which demon-

8 Ray&Barreto, 2024

strates basic hashing functionality without recursion. This approach highlights
a simpler use case within the Plonky2 framework for testing purposes, contrast-
ing with more complex recursive proof structures like those using Poseidon or
SHA-256. The code provides a foundation for testing and benchmarking hash
functions in cryptographic proof systems.

Our approach formalizes this example in recursive circuitry. We provide a
modular design with respect to the construction of various components of the
hash-chain circuit. We achieve a lower proof size in 2 step recursion compared to
2-steps without recursion due to a reduction in circuit size, and achieve constant
size proofs for subsequent invocations of the circuit.
[16] The Tip5 Hash Function for Recursive STARKs: That work intro-
duces Tip5, a new arithmetization-oriented hash function designed for recursive
STARK verification. It combines low-degree power maps and lookup tables opti-
mized for field elements. The function is tailored specifically for applications in-
volving the recursive verification of STARKs, which impose stringent constraints
on the hash function’s design. The authors provide an in-depth analysis of the
arithmetization properties of Tip5 to meet these constraints.

The construction of recursive and STARK-friendly hash functions has been
a key step in optimization of program logic specifically suited for the format
required for recursive argument systems. Tip5 has been key in this respect in
that it has informed the design of provable hash functions, such as the Poseidon
hash, which is used throughout this work.

3.2 Gaps in Current Research

While significant advances have been made in the development of zero-knowledge
proof systems and argument systems, several key areas remain underexplored.
This work aims to highlight some of these gaps and address them where possible.

1. Concrete Implementations with a Focus on Quantum Security:
Many argument systems today are designed based on classical security as-
sumptions, leaving a gap in practical, concrete implementations that focus
specifically on quantum resilience. While academic progress has been made,
there is a lack of concrete, working systems that are conjectured to be resis-
tant to quantum attacks, particularly with respect to key components such
as hash functions, commitment schemes, and polynomial evaluations. This
paper contributes to bridging this gap by exploring the necessary adaptations
for quantum security.

2. Formal Definitions of Quantum-Resilience: Although various com-
ponents of argument systems—such as commitment schemes, polynomial
evaluations, and zero-knowledge protocols—are widely used, their quantum-
resilient counterparts have not been formally defined in a comprehensive
manner. A more rigorous and formal definition of these components, along
with an explanation of why they are secure against quantum adversaries, is
essential for constructing robust post-quantum cryptographic systems. This
research works to establish formal definitions behind cryptographic assump-
tions involved in a quantum-resilient argument.

CAPyPQSrARK 9

3. ZKVMs and ASICs: A comprehensive study comparing the performance
and efficiency of Zero-Knowledge Virtual Machines (ZKVMs) and circuit-
level, ASIC-style argument systems is currently lacking. While ZKVMs offer
flexibility and broader applicability, ASIC-style implementations tend to be
highly optimized for specific tasks. A survey of the components involved in
the construction of ZKVMs and their quantum-resilience is lacking. This
paper chooses a quantum-safe ASIC-style design and considers the charac-
teristics of a quantum-safe ZKVM approach.

4. Disparity in Quantum-Secure Recursive Schemes: Recursive proof
systems, which allow a proof to attest to the correctness of previous proofs,
are an emerging area of interest due to their ability to efficiently handle
complex, iterative computations. However, there is a notable disparity in
the availability of recursive schemes that are quantum-secure. While several
classical recursive schemes exist, their adaptation to withstand quantum
adversaries remains an underexplored area. This work seeks to highlight this
disparity and suggest potential paths forward by focusing on the quantum
resilience of recursive components in argument systems.

4 Protocol Definition

4.1 Recursive Hash Chains

The central benchmarking computation used in this work is a recursive hash
chain with n steps. At each step i ∈ {1, 2, . . . , n}, we compute a hash function
H such that:

hi = H(hi−1),

where h0 is the initial input. At each step, the previous proof πi−1 is verified by
computing:

V (πi−1) =⇒ Evaluation of hi−1,

and a new proof πi is generated for hi. This result, hi, along with its correspond-
ing proof πi, is then passed to the next recursive layer, continuing until hn and
πn are produced, completing the recursion.

4.2 Recursive STARK-Friendly Hash Description:

This subsection describes the 4-tuple of functions used in our recursive hash
chain design.

TProof ← B(f, c, d)

R(EAccept?)← V(Pproof, Ccyclic)

R(P, EAccept?)← λcyclic(Bcond, ιinner,Pproof,Vdata, Ccyclic)

RProofCircuit ← ERec(Bcond, ιinner,Dcommon, Ccyclic,Vdata, s)

The parameters are defined as follows:

10 Ray&Barreto, 2024

– Pproof: Proof input.
– Ccyclic: Cyclic circuit data.
– EAccept?: Decision to accept or reject the proof.
– ιinner: Inner cyclic proof with public inputs, the aggregate proof so far.
– Vdata: Verifier data target.
– Bcond: Check for the recursive case.
– Dcommon: Common data for configuration of layers.
– s: Number of steps in recursion.
– RProofCircuit: Proof and circuit result.
– R(P, EAccept?): A pair containing the proof of the current layer and the

decision to accept or reject the proof.

The functions are defined as follows:

– TProof ← B(f, c, d): Returns a target wiring for the proof result after building
a hash chain circuit over a specified number of steps.

– R(EAccept?) ← V(Pproof, Ccyclic): Outputs whether the proof is accepted,
based on a constant-time, constant-sized verification algorithm for a single
proof aggregate representing the argument for the entire hash chain.

– R(P, EAccept?) ← λcyclic(Bcond, ιinner,Pproof,Vdata, Ccyclic): Updates the ag-
gregate proof after verifying the aggregated cyclic proof from previous steps
and proving the current layer.

– RProofCircuit ← ERec(Bcond, ιinner,Dcommon, Ccyclic,Vdata, s): Produces proof
and circuit results after evaluating the gates in a recursive layer.

The notion of a hash chain extends beyond academic curiosity. Modern
blockchain networks are themselves a form of hash chain, with each new block
leveraging the hash of the previous block to create a chain of valid hashes. Ver-
ifying the correctness of such chains typically involves reconstructing the chain
from scratch. Recursive hash chain arguments can be verified at the cost of a
verifying the current state of the chain, which is constant relative to chain size.

Lastly, we choose this computation as a benchmark of our circuit because
hashes invoke a complex set of machine instructions and are commonly used in
many areas of computing to gain insight into performance metrics.

With a computation defined as a tuple of recursive algorithms, we can be-
gin parameterizing an argument system with desired characteristics, and then
proceed to survey existing frameworks and protocols to find a practical design
that suits our requirements. Naturally, we begin by considering the asymptotic
qualities (and their dependents) of a desired argument system. In probabilistic
polynomial time, we strive for the following properties for a robust and efficient
argument system under random oracle assumptions [24]:

Completeness: True statements can always be proven by a prover and will
always be accepted by a verifier. Formally: For every instance-witness pair (x,w)
in a relation R, Pr [V p (x, P p(x,w)) = 1] = 1 for probability p taken over P and
any randomness from P or V. For any PPT adversary A and a tuple of recursive
algorithms:

CAPyPQSrARK 11

Pr

 (x,w) ∈ R,
V p (x, P p(x,w)) = 1

∣∣∣∣∣∣
TProof ← A(B(f, c, d)),
λcyclic(B,P,Pproof,Vdata, Ccyclic),
ERec(B,P,Dcommon, Ccyclic,Vdata, s)

 = 1

Soundness: A prover should not be able to deceive a verifier into accepting a
false statement as true, except with negligible probability. Formally: For every
instance x not in the language of R and every malicious prover P̃ submitting
at most a polynomial number of queries to a random oracle, Pr

[
V p(x, P̃ p) = 1

]
is negligible in the security parameter. Ben-Sasson et al. [24] show how a quan-
tifiable lower-bound of security can be derived from the soundness parameter,
which confers a configurable level of n-bit security directly from the security of
the choice of underlying hash function. For a tuple of recursive algorithms, any
constant n ∈ N, and for any PPT adversaries P∗, there exists a PPT extractor
E such that, for all randomness ρ:

Pr

 zn ̸= z,
V(Pproof, Ccyclic) = 1

∣∣∣∣∣∣
TProof ← E(B(f, c, d)),
λcyclic(B, ι,P∗

proof,Vdata, Ccyclic),

ERec(B, ι,Dcommon, Ccyclic,Vdata, s)

 ≤ negl(λ)

Succinctness: This work implements a plausibly post-quantum secure argu-
ment system that meets or exceeds the asymptotic properties of current compu-
tational integrity frameworks. We extend the concept of succinctness to ensure
that the size of the argument remains logarithmic in relation to the size of a sin-
gle computation invocation. By constructing a recursive system that can verify
its own argument, we achieve an argument size and verification time that are
logarithmic for a single invocation, but remain constant across an unbounded
number of iterations.

Updatability : Building on the previous requirement, a key property of the
argument system in use is its ability to prove the n + 1 iteration at the cost of
a single invocation. This ensures that the system does not recompute the entire
chain of computations when a new step is introduced. Instead, it can start from
the verification of the first n steps, and then efficiently update the argument
to reflect the next step. Updatable arguments are essential for applications that
handle an unbounded number of sequential computations. In such cases, polyno-
mial commitment schemes that are additively homomorphic allow commitments
to be updated incrementally without recomputing proofs. We can define this
notion formally:

Definition 1 (Recursive Commitment Scheme with Incremental Proof
Verification).

A recursive commitment scheme is a cryptographic protocol between two par-
ties, the sender S and the receiver R, that allows the verification of earlier steps
in a computation or proof to be included in future steps, without the need to
recompute the entire process.

12 Ray&Barreto, 2024

The scheme consists of the following components:

1. Commit Phase: The sender S chooses a value v ∈ ZN and computes a com-
mitment c to v using a probabilistic polynomial-time algorithm Com(v, r),
where r ∈ ZN is randomness. The commitment c = Com(v, r) is sent to the
receiver R.

2. Proof Generation: For each step i, the sender S can generate a proof πi
for the committed value vi. The proof includes the verification of any prior
proofs πi−1, . . . , π1, without the need to recompute all previous proofs from
scratch.

3. Recursive Proof Verification: The verification process at step i not only
verifies the current proof πi, but also ensures that the commitment ci is
consistent with the commitments ci−1, . . . , c1 from earlier steps. This is done
by incorporating a recursive verification function Ver(vi, πi), which checks
the validity of πi given ci and the proofs from previous steps.

The scheme satisfies the following properties:

– Recursive Proof Composition: The scheme allows the proof at step i
to efficiently incorporate all prior proofs πi−1, . . . , π1 into a single proof πi,
without needing to recompute each step individually. Formally, for any step
i, the recursive proof generation is defined as:

πi = Prove(vi, πi−1, . . . , π1, ri)

where Prove is the recursive proof generation function, and ri represents the
randomness used at step i.

– Recursive Verification: Verification at step i ensures that the proof πi
and all prior steps πi−1, . . . , π1 are valid. The verification function can be
formalized as:

Ver(vi, πi) = 1 ⇐⇒ ∀j ≤ i, Ver(vj , πj) = 1

indicating that the current proof πi is valid only if all prior proofs πi−1, . . . , π1
are also valid.

– Simulating Updatability: Although the scheme does not update commit-
ments, it allows the sender S to start proof generation from any valid previ-
ous proof πi−1, rather than having to recompute the entire proof chain from
the beginning for all n steps. This recursive structure resembles updatability
in that the sender can incorporate previously verified steps incrementally,
allowing for efficient proof updates. However, the commitments themselves
do not change across steps.

– Binding: Once S commits to a value vi and generates a valid proof πi, it is
computationally infeasible to change vi to another value v′i without altering
the corresponding commitment ci and proof πi.

Transparency : Let CRS denote a common reference string, which is a trusted
setup phase featured in many commonly deployed protocols. The purpose of a

CAPyPQSrARK 13

CRS is to generate shared public parameters, typically instantiated as elements
from a cryptographic group G, such that these parameters are used to ensure
the succinctness of argument systems, i.e., producing arguments of size O(1),
often as short as two group elements.

However, such a setup often relies on pairing-based cryptographic primitives,
which are vulnerable to quantum adversaries. Specifically, let e : G1 × G2 →
GT be a bilinear pairing operation over the groups G1, G2, and GT , and let
CRS = (αG1, αG2) be the parameters derived from a secret value α. If a quantum
adversary can efficiently solve the discrete logarithm problem (DLP) over G1, G2,
then the soundness of the system is compromised, and the adversary is able to
produce false proofs.

To mitigate this vulnerability, STARKs in general do not require any form
of trusted setup or (CRS). By removing the reliance on a CRS, our protocol
no longer requires the distribution of pairing-based group elements, which inher-
ently enhances the transparency of the system. As a result, the absence of a CRS
ensures that our system is more resistant to quantum adversaries, as there are
no classical group elements, such as G1 and G2, upon which quantum attacks,
like Shor’s algorithm, can be executed. Additionally, this approach eliminates
the need to store the CRS, which can often require gigabytes of space even for
relatively small computations [7]. In traditional schemes that rely on a CRS, if
the computation changes or is updated, the public parameters must be recom-
puted, which is computationally expensive and inflexible. Our implementation
avoids this costly step at the expense of slightly larger argument sizes, offering
a more flexible and practical solution.

Perfect Zero-Knowledge: In traditional SNARK setups, the notion of perfect
zero-knowledge ensures that the proof reveals nothing about the input except
the correctness of the result. This property, known as hiding or blinding, is added
trivially in an argument system by perturbing the computation record with ran-
dom data prior to commitment. If this perturbation is carried out by means of
a secure and correctly instantiated pseudorandom function, then blinded com-
mitment data is considered to remain secure against a quantum adversary. We
can formally define zero-knowledge as the following:

Definition 2. Let (P, V) be an interactive proof system for an NP-language L,
and let RL be the associated NP-relation. We say that (P, V) is black-box com-
putational zero knowledge if there exists a probabilistic-polynomial time oracle
machine S such that for every non-uniform probabilistic-polynomial time algo-
rithm V ∗ it holds that:

{outputV ∗(P (x,w), V ∗(x, z))}(x,w)∈RL,z∈{0,1}∗ ≡ {S∗(x, z, r′)(x)}x∈L,z,r′∈{0,1}∗

where ≡ denotes computational indistinguishability.

Our research does not incorporate perfect zero-knowledge, as our focus re-
lies on analyzing the cryptographic assumptions in use of the argument. The
blinding property of perfect zero-knowledge does not constitute an assumption
and is trivially information-theoretic secure when truly random values are used

14 Ray&Barreto, 2024

to hide the computation record. When true randomness is used, the proof itself
becomes a one-time-pad and no adversary has any advantage in recovering the
private input. In general, perfect zero-knowledge is added with little overhead
and minimal impact on performance.

Non-Interactivity : We achieve non-interactivity in this construction by ap-
plying the Fiat-Shamir heuristic. The prover (P) and verifier (V) exchange a
single message to instantiate the protocol, and the resulting argument can be
verified by any party offline.

Definition 3 (Non-Interactive Protocols via Fiat-Shamir Heuristic).
The Fiat-Shamir heuristic transforms an interactive proof system (P, V) for a
language L under some NP-relation RL into a non-interactive protocol using a
random oracle H.

– Proof Generation: The prover P computes a commitment c based on the
input x and private witness w, then queries the random oracle H with c
to simulate the verifier’s challenge. The oracle output H(c) serves as the
challenge, and P computes the response r to generate the proof π = (c, r).

– Verification: The verifier V , upon receiving the proof π, verifies it using
the commitment c, challenge H(c), and response r.

– Quantum Security Considerations: In practice, a secure pseudorandom
function (PRF) is used in place of the random oracle. To ensure post-
quantum security, this PRF must be resistant to quantum adversaries, mean-
ing that its outputs should remain computationally indistinguishable from
random to any quantum attacker with oracle access.

5 Mathematical Foundations and Core Concepts

This section delves into the mathematical foundation of our chosen approach. We
proceed to define and analyze each mathematical component of our implemented
argument system, in order to provide a comprehensive review of the quantum
resilience of our design.

5.1 Polynomial Commitment Schemes

A polynomial commitment scheme is a cryptographic protocol between a prover
P and a verifier V , where the prover commits to a polynomial P (x) ∈ F[x] of
degree d. The scheme allows the prover to later prove that the polynomial evalu-
ates correctly at specific points, without requiring the verifier to fully evaluate or
verify the polynomial at every point in the domain. This preserves computational
efficiency for the verifier while still ensuring integrity.

However, while the verifier only checks a subset of evaluation points, the full
polynomial (or significant parts of it) often needs to be transmitted from the
prover to the verifier, leading to potentially larger proof sizes.

Definition 4. Let P (x) ∈ F[x] be a polynomial of degree d, where F is a finite
field. A polynomial commitment scheme consists of the following algorithms:

CAPyPQSrARK 15

1. Commit: The prover P commits to the polynomial P (x) by choosing ran-
domness r ∈ F, and generating a commitment c ∈ F, using a commitment
function Com(P, r), such that:

c = Com(P, r)

The commitment c is sent to the verifier V .
2. Prove: Given a committed polynomial P (x) and an evaluation point x0, the

prover P generates a proof π that demonstrates the polynomial evaluates to
v = P (x0) at point x0, using a proof generation function:

π = Prove(P, x0, v, r)

In this step, the prover may still transmit significant parts of the polynomial
P (x) or even the entire polynomial to allow the verifier to check the proof
at selected evaluation points.

3. Verify: The verifier V checks the correctness of the proof π by running the
verification algorithm Ver(c, x0, v, π), ensuring that the polynomial evaluates
to the correct value at the selected points. The verifier does not need to
evaluate P (x) at every point but gains confidence by verifying the polynomial
at a small sample of evaluation points:

Ver(c, x0, v, π) = 1

Use in the Argument System: In our argument system, polynomial commit-
ments are crucial for proving the correctness of polynomial evaluations efficiently.
The verifier only needs to check the polynomial at specific evaluation points
x0, x1, . . . , xk ∈ F, which are chosen non-deterministically. The prover generates
a proof for each evaluation, producing π0, π1, . . . , πk, which allows the verifier to
check the integrity of the computation without revealing the entire polynomial
at once.

However, despite the verifier checking the polynomial at a few points, the
prover still typically transmits the entire polynomial or its significant parts,
which leads to higher proof sizes. This is one of the trade-offs of polynomial
commitment schemes: while they offer succinctness in terms of verification, the
transmission of large polynomials can lead to increased proof sizes. In further
sections, we describe how Merkle trees with auxiliary data are used to compress
the polynomial, making transmission and verification more lightweight while
achieving the asymptotic goals we laid out in section 4.

Quantum Security Considerations: The security of the polynomial commit-
ment scheme against quantum adversaries relies on the cryptographic hardness
of the underlying primitives. In many classical schemes, the commitment func-
tion Com could be based on assumptions like the discrete logarithm problem,
which is vulnerable to quantum attacks via Shor’s algorithm. Our design, how-
ever, avoids these vulnerabilities by relying on error-correcting codes and hash
functions; two primitives that are conjectured to be secure under a quantum
attack.

16 Ray&Barreto, 2024

– Hash Function Security: In place of pairing-based or number-theoretic
assumptions, our design utilizes hash functions to generate commitments.
While Grover’s algorithm can reduce the bit-security of hash functions by a
square root factor, using hash functions with sufficiently large output sizes
mitigates this. For example, a 256-bit hash output offers 128-bit quantum
security against Grover’s algorithm.

– Quantum-Secure Binding: The binding property in our commitment
scheme depends on the difficulty of finding two distinct polynomials P (x)
and P ′(x) that, when perturbed by a verifier challenge, generate the same
commitment c. This binding is maintained as long as the hash function
remains quantum-resistant, ensuring that a quantum adversary cannot effi-
ciently forge a new polynomial P ′(x) matching the committed value.

– No Pairing-Based Assumptions: By using hash-based commitments, our
design avoids reliance on cryptographic assumptions vulnerable to quantum
attacks, such as pairings or discrete logarithms. This design choice helps
preserve post-quantum security.

Thus, the polynomial commitment scheme maintains security against quan-
tum adversaries, provided that the hash functions used are quantum-resistant
and offer sufficient bit-security.

5.2 Reed-Solomon Codes

Reed-Solomon linear error-correcting codes play a crucial role in constructing a
quantum-resilient commitment scheme. They serve two primary purposes:

First, they function as error amplification mechanisms. With high probability,
an invalid codeword containing errors will fail to pass verification by a verifying
party. This error amplification property ensures the soundness of the argument
system, as it becomes computationally infeasible for an adversary to alter a
codeword without detection.

Second, Reed-Solomon codes remain robust against quantum adversaries.
Unlike certain cryptographic primitives vulnerable to quantum attacks, error-
correcting codes like Reed-Solomon preserve their security properties in quantum
settings. We expand on these notions with formal definitions below:

Definition 5 (Reed-Solomon Error-Correcting Codes).
Let q be a prime power, and let Fq denote the finite field with q elements. A

Reed-Solomon code is a linear error-correcting code defined by evaluating poly-
nomials over Fq. Given parameters n, k, with k ≤ n ≤ q, the Reed-Solomon code
encodes a message as follows:

1. Message as Polynomial: A message is represented as a vector m =
(m0,m1, . . . ,mk−1) of k elements in Fq. This vector corresponds to a poly-
nomial m(x) ∈ Fq[x] of degree less than k:

m(x) = m0 +m1x+m2x
2 + · · ·+mk−1x

k−1.

CAPyPQSrARK 17

2. Encoding: The message is encoded by evaluating the polynomial m(x) at
n distinct points α1, α2, . . . , αn ∈ Fq. The codeword corresponding to the
message is:

c = (m(α1),m(α2), . . . ,m(αn)) ∈ Fn
q .

This vector c is the Reed-Solomon codeword of length n, and since it is
generated by evaluating a polynomial of degree less than k, the code is a
linear code with dimension k.

3. Error-Correction Capability: A Reed-Solomon code can correct up to⌊
n−k
2

⌋
errors. Given a received word r = (r1, r2, . . . , rn), the decoding al-

gorithm reconstructs the original message polynomial m(x) as long as the
number of errors in r is less than or equal to

⌊
n−k
2

⌋
.

Thus, the Reed-Solomon code is denoted as RS[n, k]Fq
, where n is the length

of the codeword, k is the dimension (or number of message symbols), and the
code operates over the finite field Fq.

Definition 6 (List Decoding of Reed-Solomon Codes).
Let Fq be a finite field of size q, and let n ≤ q be the length of a Reed-Solomon

code RS[n, k]Fq
. Given a received word r = (r1, r2, . . . , rn) ∈ Fn

q , the task of list
decoding is to find all polynomials m(x) ∈ Fq[x] of degree less than k, such that
the corresponding codeword c = (m(α1),m(α2), . . . ,m(αn)) satisfies:

dH(r, c) ≤ t′

where dH(·, ·) denotes the Hamming distance, and t′ >
⌊
n−k
2

⌋
is the error radius

allowed for list decoding.

Key Properties: The Reed-Solomon code RS[n, k](Fq) is a linear error-cor-
recting code defined by the evaluation of polynomials over Fq. In traditional
(bounded distance) decoding, the decoder corrects up to t =

⌊
n−k
2

⌋
errors, pro-

ducing a unique valid codeword or reporting failure. List decoding extends this
by allowing up to t′ > t errors, where the number of possible valid codewords
may increase significantly, and the decoder returns a list of all such codewords.

Why List Decoding is Hard:
Combinatorial Explosion: As t′ increases beyond n−k

2 , the number of valid
polynomials within Hamming distance t′ from the received word can grow ex-
ponentially. The search space becomes intractably large.

Information-Theoretic Limits: With a large enough error radius t′, distin-
guishing the correct codeword from spurious codewords becomes increasingly
difficult. Recovering the original message requires significant computational ef-
fort, even when aided by quantum algorithms.

Quantum Hardness: While quantum algorithms such as Shor’s algorithm
provide efficient solutions for certain problems (e.g., factoring and discrete log-
arithms), no known quantum algorithm can efficiently solve the list decoding
problem for Reed-Solomon codes. The structure of Reed-Solomon codes and the
need to explore a combinatorially large space of polynomials makes the problem
difficult for quantum adversaries.

18 Ray&Barreto, 2024

Cryptographic Relevance: Reed-Solomon list decoding forms the basis for var-
ious cryptographic protocols, such as commitments and zero-knowledge proofs,
where proving the correctness of data is essential. In such protocols, an adversary
trying to convince a verifier that an erroneous codeword is valid would need to
solve this hard list decoding problem.

Given the difficulty of list decoding, even for quantum adversaries, crypto-
graphic systems based on Reed-Solomon codes remain secure in a post-quantum
context. Specifically, for cryptographic applications: The adversary cannot effi-
ciently find a valid codeword among potentially many spurious codewords after
introducing enough errors. This problem ensures the security of protocols that
use Reed-Solomon codes for data integrity and proof systems.

Thus, the list decoding problem is a cornerstone of post-quantum security for
Reed-Solomon-based cryptographic protocols, as no efficient classical or quantum
algorithm is known to solve it when the number of errors is beyond the unique
decoding threshold n−k

2 .

5.3 Merkle Trees and Hash Functions

Merkle trees are a cryptographic structure that provide a succinct and efficient
method for commitment and verification of large data sets. They allow one to
verify that specific data belongs to a larger committed dataset with minimal
computational overhead, by using a series of hash operations that form a tree-
like structure. Each leaf node of the tree represents the hash of a piece of data,
while non-leaf nodes represent the hash of the concatenation of their respective
children.

By treating a polynomial’s evaluations (or the elements of a Reed-Solomon
codeword) as the leaves of a Merkle tree, we can generate a tree rooted at a
single hash value. The prover can commit to the root of the Merkle tree, and
only provide the authentication paths for specific leaves (evaluation points) when
queried by the verifier. This allows the verifier to verify the correctness of the
evaluation while only needing access to the root of the tree and the corresponding
authentication paths.

The key advantage is that, by using a Merkle tree in combination with a
technique known as folding, the size of the data sent to the verifier is reduced
from the full size of the polynomial or codeword O(n) to a size that scales
logarithmically in n, i.e., O(log n). This compression is achieved because the
verifier only needs to check the integrity of the polynomial at selected points
through the Merkle root and a few nodes in the tree, significantly improving the
proof’s efficiency. We define folding in further sections.

Quantum Security: The security of a Merkle tree depends on the collision and
preimage resistance of the underlying hash function. In this work, the Poseidon
hash function is used to construct the Merkle tree. Poseidon is particularly well-
suited for zero-knowledge proof systems due to its efficient performance within
algebraic circuits. Zellic [8] and Bariant et al. [9] give a reduced round attack on
Poseidon, but this is not understood to break security against indistinguishability

CAPyPQSrARK 19

nor preimage or collision resistance. See Appendix A for a quantum attack on
Merkle trees.

The Merkle tree commitment phase is the definitive bottleneck in the proof
pipeline. Its complexity [13] is:

CC = qtotal · log |F |+APtotal · λ (1)

Where:

– λ denotes the number of output bits of the cryptographic hash function used
to construct a Merkle tree in our system.

– APtotal denotes the total number of authentication path nodes in all subtrees
of Merkle trees whose leaves are query answers.

– qtotal denotes the total number of queries made to all proof oracles.

For the hash chain used in the recursive computation (distinct from the
Merkle tree), we employ a different hash function. The function used in the hash
chain does not impact the security of the commitment scheme (as it only serves
as an example computation to be proven) but we take care to select a hash
function with adequate bit security to resist quantum attacks. The underlying
circuitry framework in use allows for arbitrary, Turing-complete programs to be
proven, and so the choice of computation here is arbitrary.

5.4 FRI (Fast Reed-Solomon IOP)

FRI (Fast Reed-Solomon IOP of Proximity) is a protocol aimed at verifying
that a committed polynomial has a bounded degree. In FRI, the prover trans-
mits codewords, which correspond to Reed-Solomon codewords. These codewords
represent evaluations of a low-degree polynomial over a domain D, where the
size of D exceeds the number of non-zero coefficients in the polynomial. This size
is determined by an expansion factor or blowup factor, which is the reciprocal
of the code rate ρ.

The protocol functions through oracle queries, where the verifier does not
access all codewords but instead queries specific points. These codewords are
concealed within a Merkle tree in practical implementations. Structurally, FRI
can be seen as a polynomial commitment scheme with three components: code-
words, an IOP, and the Merkle tree. While these components can be considered
separately for scientific rigor, they are often viewed as parts of a unified system
for simplicity and accessibility.

In a standard polynomial commitment scheme, the prover commits to a poly-
nomial f(X) and opens it at a specific point z, ensuring that the committed poly-
nomial evaluates to the correct value f(z). The FRI protocol is analogous, but
its focus is on verifying that a codeword corresponds to a low-degree polynomial.
The prover has access to the entire codeword, while the verifier only requires the
Merkle root and a few leaves, which are validated using authentication paths.

One of the key innovations in proof systems is the split-and-fold technique,
which reduces a proof claim to two smaller claims, each half the size of the orig-
inal. These claims are then merged into a single claim using random challenges

20 Ray&Barreto, 2024

provided by the verifier. After several iterations (logarithmic in the size of the
original claim), the claim is reduced to a trivially small size, whose validity can
be verified quickly and cheaply. If this smaller claim is true, the original claim
is also true.

For the FRI protocol, this technique is applied to verify that a codeword
corresponds to a polynomial of low degree. Let the length of the codeword be N ,
and let d be the maximum degree of the polynomial. Consider the polynomial
as:

f(X) =

d∑
i=0

ciX
i

The split-and-fold approach, inspired by the divide-and-conquer strategy of the
Fast Fourier Transform (FFT), divides the polynomial into even and odd terms:

f(X) = fE(X
2) +X · fO(X2)

where

fE(X
2) =

f(X) + f(−X)

2
=

d+1
2 −1∑
i=0

c2iX
2i

and

fO(X
2) =

f(X)− f(−X)

2X
=

d+1
2 −1∑
i=0

c2i+1X
2i

This decomposition allows the protocol to derive a new codeword for:

f∗(X) = fE(X) + α · fO(X)

where α is a random scalar provided by the verifier.
Let D be a subgroup of even order N of the multiplicative group of the field,

and let ω generate this subgroup, i.e., ⟨ω⟩ = D ⊆ Fp \ {0}. The codeword for
f(X) is constructed by evaluating the polynomial on D.

Let D∗ = ⟨ω2⟩ be another domain, half the length of D. The codewords for
fE(X), fO(X), and f∗(X) are evaluated on D∗.

Expanding the definition of f∗(X) further, we compute:{
f∗(ω2i)

}N/2−1

i=0
=

{
fE(ω

2i) + α · fO(ω2i)
}N/2−1

i=0
.

Expanding again using the definitions of fE(X2) and fO(X2), we have:

{
f∗(ω2i)

}N/2−1

i=0
=

{
f(ωi) + f(−ωi)

2
+ α · f(ω

i)− f(−ωi)

2ωi

}N/2−1

i=0

.

This expands to:{
2−1 ·

((
1 + α · ω−i

)
· f(ωi) +

(
1− α · ω−i

)
· f(−ωi)

)}N/2−1

i=0
.

CAPyPQSrARK 21

Since ωN = 1, we know that ωN/2 = −1, and therefore f(−ωi) = f(ωN/2+i).
This substitution reveals that, although the index iterates only over half the
range, from 0 to N/2 − 1, all points of f(ωi) are used in the derivation of{
f∗(ω2i)

}N/2−1

i=0
. It doesn’t matter that this codeword has half the length; its

polynomial has half the degree.
At this point, we can describe the mechanics for a single round of the FRI

protocol. The prover commits to the polynomial f(X) by sending the Merkle
root of its codeword to the verifier. The verifier responds with a random challenge
α. The prover computes f∗(X) and commits to it by sending the Merkle root of{
f∗(ω2i)

}N/2−1

i=0
to the verifier.

The verifier now has two commitments, to f(X) and f∗(X), and must verify
their relationship. Specifically, the verifier rejects the proof if:

f∗(X2) ̸= 2−1 ·
((
1 + αX−1

)
· f(X) +

(
1− αX−1

)
· f(−X)

)
.

(We ignore the case where X = 0.)
To do this, the verifier randomly samples an index i ∈ {0, . . . , N/2 − 1},

defining three points:

– A : (ωi, f(ωi))
– B : (ωN/2+i, f(ωN/2+i))
– C : (α, f∗(ω2i))

The next step in the FRI protocol involves the colinearity check. Observe
that the x-coordinates of points A and B are the square roots of ω2i. After
receiving the index i from the verifier, the prover provides the corresponding
y-coordinates, along with their Merkle authentication paths. The verifier uses
these to verify membership in the tree and then performs a colinearity check by
testing whether points A, B, and C lie on a straight line.

This can be understood by computing the line passing through A and B.
Using Lagrange interpolation, we find that:

y =
∑
j

yj
∏
j ̸=i

x− xj
xi − xj

,

which can be simplified in the FRI context to:

y = 2−1 ·
(
(1 + x · ω−i) · f(ωi) + (1− x · ω−i) · f(ωN/2+i)

)
.

By setting x = α, the verifier obtains exactly the y-coordinate of C.
This covers one full round of the FRI protocol. After one round, the prover

and verifier return to the same state but with halved codeword lengths and fewer
polynomial coefficients. After running log2(d+1)−1 rounds, where d is the degree
of the original polynomial, the prover and verifier reduce the polynomial to a
constant. The prover then sends this constant value, completing the process by
proving that the codeword corresponds to a polynomial of degree 0.

22 Ray&Barreto, 2024

In the context of quantum security, the security of the FRI protocol relies
on its ability to detect fraudulent codewords that do not correspond to low-
degree polynomials. This is achieved through a colinearity check, which prevents
a dishonest prover from presenting a codeword that passes verification while not
corresponding to a valid low-degree polynomial.

A dishonest prover might attempt to present a fraudulent codeword, say
{f(ωi)}N−1

i=0 , which corresponds to a polynomial f(X) of degree greater than d.
The colinearity check ensures that the linear combination

f∗(X) = fE(X) + α · fO(X)

remains consistent with the expected polynomial degree constraints, where fE(X)
and fO(X) represent the even and odd parts of f(X), and α is a random chal-
lenge supplied by the verifier.

A complete treatment of the quantum resilience of FRI is currently identified
as a gap in the literature. We conjecture that the FRI protocol remains secure
against quantum attacks, as the colinearity checks ensure that a fraudulent code-
word is unlikely to pass unless it agrees with the valid low-degree polynomial
across many points. FRI produces codewords which are represented as Merkle
trees composed of leaves.

The problem of producing a fraudulent proof in FRI is reduced to producing
valid leaves for invalid codeword evaluations. The prover’s challenge then is to
find collisions or preimages of the hash used for the Merkle tree. Currently, the
best known quantum attacks on hash functions reduce collision resistance by 1/2
and preimage resistance by 1/3rd. We posit that increasing the bit security of the
hash in use is sufficient to withstand quantum attacks on FRI. A full treatment
of this notion, and an evaluation of the relationship between error-correcting
codes and fraudulent Merkle leaves, are gaps in the literature and are targeted
for future work.

6 Implementation Details

6.1 Frameworks and Tools

We leverage the circuit-building tools from Polygon’s Plonky2 project [20].
Plonky2 combines a FRI-based argument with a PLONK-ish arithmetization

framework. Encoding a computation into any given argument framework typ-
ically requires meticulous effort into ensuring the proper constraining of state
transitions. PLONK-based arithmetization frameworks ease this process with a
circuit-builder paradigm, abstracting away many of the lower-level details and
facilitating a richer expression of computation. Plonky2 additionally supports
recursive circuit construction and is well-suited to arguing the integrity of hash
chains.

CAPyPQSrARK 23

PLONK as an Interface for Circuit Construction

PLONK [19] (Permutations over Lagrange-bases for Oecumenical Noninterac-
tive arguments of Knowledge) serves primarily as a framework for expressing
computational circuits. Its key characteristics are:

– Circuit Abstraction: PLONK abstracts computations into polynomial
equations and constraints without embedding cryptographic assumptions
into the circuit design.

– Cryptographic Independence: The construction and constraint of the
circuit require no cryptographic assumptions.

Quantum Security with FRI

When paired with FRI:

– Quantum Resistance: FRI relies on hash functions and Reed-Solomon
codes, which are considered quantum-resistant since quantum algorithms
like Grover’s algorithm offer only a quadratic speedup.

– Elimination of Vulnerable Assumptions: This combination removes re-
liance on cryptographic assumptions susceptible to quantum attacks (e.g.,
discrete logarithm problems).

Comparison with KZG Commitments

KZG [25] commitments, while delivering short proofs, have notable drawbacks:

– Trusted Setup Requirement: KZG requires a trusted setup, introducing
potential vulnerabilities if the setup is compromised.

– Weak Group Operations: Relies on cryptographic group operations (e.g.,
elliptic curve pairings) that are vulnerable to quantum attacks via Shor’s
algorithm.

– Cryptographic Assumptions: Depends on hard problems like the discrete
logarithm problem, which are solvable by quantum computers.

Summary

In essence, PLONK acts as an interface for circuit construction without embed-
ding cryptographic assumptions. When integrated with FRI:

PLONK + FRI =⇒ Quantum Secure Zero-Knowledge Proofs

Conversely, using KZG commitments:

PLONK + KZG =⇒ Short Proofs but Vulnerable to Quantum Attacks

24 Ray&Barreto, 2024

7 Performance Evaluation

7.1 Benchmarking and Metrics

The following charts and tables present our observed performance characteristics
for our circuit implementation. Metrics we are interested include prover runtime,
verifier runtime, the system RAM in use during proving, and the size of the proof.

Our earlier specification in Section 4 described the prover as linear, meaning
runtime should have a linear growth rate with respect the depth of the recursion.
The verier should exhibit a logarithmic size growth rate with respect to the size
of a single layer of recursion, or single invocation of the hash chain. If the verifier
is always logarithmic to a single recursive layer, then it runs in constant-time
with respect to all layers.

The system RAM in use is measured in order to quantify the footprint of
the program as the depth of recursion increases. STARK systems can consume
considerable RAM during the proving process. Measuring the RAM in use at
each step helps us understand the cost in memory of each new layer of recursion.

The last metric measured is the proof size in bytes. STARK systems and
FRI in general produce large proofs relative to CRS/SRS based arguments. The
proof size for our scheme however, should remain constant throughout the entire
evaluation of the recursive circuit for any depth. As described in earlier sections,
this is due to the all previous proofs being composed into a single proof through
recursion.

Table 1: Preliminary Performance Metrics
d (Depth) P Runtime (s) V Runtime (ms) RAM Used

(MB)
Proof Size

(bytes)
2 3.3680 3.1013 375.692 133,440
4 4.2126 3.1220 381.536 133,440
8 5.7366 3.0812 392.716 133,440
16 8.8146 3.1098 405.516 133,440
32 14.957 3.0865 417.704 133,440
64 27.294 3.1625 436.424 133,440

7.2 Key Performance Findings

Our preliminary performance analysis reveals several important trends in the
observed metrics as circuit depth increases:

Firstly, the prover runtime exhibits a clear linear growth rate. As the circuit
depth increases, the time required for the prover increases proportionally. While
this indicates an increase in computational overhead on the prover’s side, it
suggests that the system remains scalable since the growth remains predictable
and manageable.

CAPyPQSrARK 25

0 20 40 60
0

10

20

30

Circuit Depth (steps)

R
un

ti
m

e
(s

)

Prover Runtime

Fig. 1: Prover Runtime vs Circuit
Depth

0 20 40 60
2

2.5

3

3.5

4

Circuit Depth (steps)

R
un

ti
m

e
(m

s)

Verifier Runtime

Fig. 2: Verifier Runtime vs Circuit
Depth

0 10 20 30 40 50 60 70

380

400

420

440

Circuit Depth (steps)

R
A

M
U

se
d

(M
B

)

System RAM Used

Fig. 3: System RAM Used vs Circuit Depth

26 Ray&Barreto, 2024

In contrast, we observe a constant growth rate in verifier runtime. We observe
that a single hash invocation can be verified at the same cost as a hash-chain
of depth 64. After a rigorous evaluation of our circuit design, this finding con-
firms that our implementation has successfully produced a recursive argument
of integrity for all previous arguments.

Despite a moderate initial size, the final proof size remains constant, showing
no growth as circuit depth increases. This property ensures that the amount of
data being communicated between the prover and verifier does not increase,
maintaining efficiency in terms of communication overhead, regardless of the
computation complexity.

Finally, the prover RAM usage exhibits a poly-logarithmic growth rate. This
indicates that while memory consumption does increase with circuit depth, it
grows at a much slower rate than the computational requirements, making the
system resource-efficient in terms of memory usage. This usage growth rate oc-
curs because each recursive layer contains a verification step which is carried out
by the prover.

Since the verification step is log of the previous circuit size, we can expect
the prover memory footprint to grow at a poly-logarithmic rate. This effect is
not immediately visible in the proving runtime because the running time of the
circuit is independent of memory usage. Overall, these findings suggest a system
that is computationally scalable with manageable resource demands, making it
suitable for practical implementations, particularly where verifier efficiency and
memory usage are critical.

8 Comparison with Other Works

In recent years, a significant trend has emerged in the development of argument
systems: the generalization of these systems over Instruction Set Architectures
(ISAs) [27, 26, 28]. Rather than encoding a single computation into the argument
system, this approach encodes the ISA itself as a provable circuit, essentially cre-
ating a “provable central processing unit (CPU)” – a concept more commonly
referred to as a Zero-Knowledge Virtual Machine (ZKVM). This allows the argu-
ment system to prove the correctness of an arbitrary set of instructions executed
by the ISA. Instead of proving the integrity of a hard-coded computation, the
argument system verifies that the registers within the ISA transition between
states correctly, based on the instructions being executed.

The Nexus ZKVM [26] implements a form of incrementally verifiable compu-
tation (IVC), a design which closely aligns with our study of recursive argument
systems. IVC is the exact mechanism that allows an argument to update contin-
ually from the current state, rather than starting fresh, and does not necessarily
require the computation to be recursive in nature. The Nexus argument, how-
ever, is based on hard problems involving group operations, and is thus unsound
in a quantum attack setting. We also find its performance of a single invocation
of a hash to be extremely slow compared to our circuit, and thus an apples-to-
apples comparison is not possible. Because it offers no quantum resistance, and

CAPyPQSrARK 27

because of the wide gap in performance, we omit a programmatic analysis of the
Nexus ZKVM from this study.

RISC-Zero [27] is an implementation of the RISC-V ISA in a STARK argu-
ment. With a recursive hash chain function, we observe a cost of approximately
7.28 seconds for a single hash invocation on the CPU, and a cost of 120.72
seconds for 64 recursive invocations. Our measurements indicate that our ASIC-
style design is about 4.3 times faster than the same function in the ZKVM.

RISC-Zero can leverage a GPU to execute the argument at substantially
faster speeds, at the cost of GPU-RAM. We observe a GPU runtime of approx-
imately 1.43 seconds for a recursive depth of 4 at the cost of all available 8 GB
of GPU memory. By contrast, our ASIC prover circuit at 4 recursions is about
4 times slower, but uses 21 times less RAM. In both tests, our circuit produced
constant sized proofs, while the ZKVM proof was logarithmic in size. Certain
configurations of RISC-Zero wrap the resulting CI statement with a Groth16 ar-
gument. This produces constant-sized proofs at the cost of quantum resilience,
and incurs extra runtime overhead. Our measurements and asymptotic analyses
do not consider the argument with a Groth16 wrapper.

Table 2: Execution time comparison
with recursion depth = 4

System Proof Time (s)
RISC-Zero GPU 1.43

ASIC 4.21
RISC-Zero CPU 21.84

Table 3: Memory usage comparison
for recursion depth = 4

System Memory Used (GB)
ASIC 0.38

RISC-Zero 8

Table 4: Comparison of Zero-Knowledge Proof Systems. RISC-Zero and SP1 are
considered here without a Groth16 wrapper. G indicates assumptions on group-
based problems, while H indicates a reliance on hash function security. ℓ can be
viewed as the verifier runtime in Groth16. It is usually smaller than the circuit
size.
System Prover Verifier Proof Size Hard Problem ASIC/ZKVM Recursive
Plonky2 O(n) O(C) O(C) H ASIC Yes

RISC Zero O(n) O(log(n)) O(log(n)) H ZKVM Yes
SP1 [28] O(n) O(log(n)) O(log(n)) H ZKVM Yes
Nexus quasi(n) polylog(n) polylog(n) G ZKVM No

Groth16 n ℓ < n O(C) G ASIC No

28 Ray&Barreto, 2024

9 Conclusion

Recursive argument systems capture a particularly elegant aspect of computa-
tional integrity frameworks. Such statements verify themselves, and can com-
press a claim about an unbounded computation into a static size. We provide
an implementation which encodes a computation as a provable circuit and char-
acterize its algorithmic asymptotics. We additionally address multiple gaps in
the literature surrounding quantum-safe argument systems by providing a con-
crete analysis of various cryptographic assumptions and their hardness in the
proximity of a quantum adversary.

This work shows that not only can a quantum-resilient argument encode
arbitrary and unbounded computation, but that these systems are among the
best-performing frameworks with respect to computational integrity statements,
zero-knowledge proofs, and general-purpose argument systems. For future work,
we target a formal proof of knowledge soundness when hash function security is
compromised due to quantum attacks. In the meantime, in this work we show
that commitment schemes based only on hash functions can easily be configured
to mitigate any potential known quantum threats. This research suggests overall
that a transition to quantum-safe argument systems may lead to performance
and usability improvements over systems in wide deployment today.⊓⊔

Disclosure of Interests. The authors have no competing interests to declare that
are relevant to the content of this article.

References

1. Shor, P.W.: “Polynomial-Time Algorithms for Prime Factorization and Discrete Log-
arithms on a Quantum Computer.” SIAM J. Sci. Statist. Comput. 26, 1484 (1997).
https://doi.org/10.48550/arXiv.quant-ph/9508027

2. “Post-Quantum Cryptography (PQC). Selected Algorithms 2022” https://csrc.
nist.gov/Projects/post-quantum-cryptography/selected-algorithms-2022
(Accessed: 2024-10-19)

3. Castryck, W., Decru, T.: “An Efficient Key Recovery Attack on SIDH.” Cryptology
ePrint Archive 2022, 975 (2022). https://eprint.iacr.org/2022/975.pdf

4. Dartois, P., Leroux, A., Robert, D., Wesolowski, B.: “SQISignHD: New Dimensions
in Cryptography.” Cryptology ePrint Archive, Paper 2023/436 (2023). https://
eprint.iacr.org/2023/436 (To appear in EUROCRYPT 2024, DOI: https://doi.
org/10.1007/978-3-031-58716-0_1)

5. National Institute of Standards and Technology: “FIPS 203 (IPD): Module-Lattice-
Based Key-Encapsulation Mechanism Standard (2023).” https://csrc.nist.gov/
pubs/fips/203/ipd (Accessed: 2023-10-19)

6. Scroll: “A zkEVM-based zkRollup for Ethereum.” https://scroll.io/ (Accessed:
2023-10-11)

7. Zcash: “Zcash - Internet Money.” https://z.cash/ (Accessed: 2023-10-11)
8. Zellic, "Algebraic Attacks on ZK Hash Functions," Zellic Blog, https:

//www.zellic.io/blog/algebraic-attacks-on-zk-hash-functions/\#
algebraic-attacks, accessed October 12, 2024.

CAPyPQSrARK 29

9. A. Bariant, C. Bouvier, G. Leurent, and L. Perrin, “Algebraic Attacks against Some
Arithmetization-Oriented Primitives,” Transactions on Symmetric Cryptology, vol.
2022, no. 3, pp. 73-101, Sept. 2022. DOI: https://doi.org/10.46586/tosc.v2022.
i3.73-101

10. Groth, J.: “On the size of pairing-based non-interactive arguments.” In: EURO-
CRYPT 2016, pp. 305–326 (2016). https://eprint.iacr.org/2016/260

11. Boneh, D., Lynn, B., Shacham, H.: “Short signatures from the Weil pairing.” J.
Cryptol. 17, 297–319 (2004). https://doi.org/10.1007/s00145-004-0314-9

12. Ames, S., Hazay, C., Ishai, Y., Venkitasubramaniam, M.: “Ligero: Lightweight
sublinear arguments without a trusted setup.” Cryptology ePrint Archive, Paper
2022/1608, 2022. https://eprint.iacr.org/2022/1608

13. Ben-Sasson, E., Bentov, I., Horesh, Y., Riabzev, M.: “Scalable, transparent, and
post-quantum secure computational integrity.” Cryptology ePrint Archive, Paper
2018/046, 2018. https://eprint.iacr.org/2018/046

14. Goldwasser, S., Rothblum, G., Shafer, J., Yehudayoff, A.: “Interactive Proofs for
Verifying Machine Learning,” ECCC - TR20-058. Available online: https://eccc.
weizmann.ac.il/report/2020/058/ [Accessed 20-09-2023]

15. De Feo, L., Jao, D., Plût, J.: “Towards quantum-resistant cryptosystems from su-
persingular elliptic curve isogenies.” Cryptology ePrint Archive, Paper 2011/506,
2011. https://eprint.iacr.org/2011/506.pdf

16. Szepieniec, A., Lemmens, A., Sauer, J. F., Threadbare, B., Al-Kindi.: “The Tip5
hash function for recursive STARKs.” Cryptology ePrint Archive, Paper 2023/107,
2023. https://eprint.iacr.org/2023/107

17. Bowe, S., Grigg, J., Hopwood, D.: “Recursive proof composition without a trusted
setup.” Cryptology ePrint Archive, Paper 2019/1021, 2019. https://eprint.iacr.
org/2019/1021

18. Sean Bowe, “Explaining Halo 2,” Electric Coin Company, Sep. 1, 2020. [Online].
Available: https://electriccoin.co/blog/explaining-halo-2/. [Accessed: Oct.
16, 2024].

19. Ariel Gabizon, Zachary J. Williamson, Oana Ciobotaru, “PlonK: Permutations over
Lagrange-bases for Oecumenical Noninteractive arguments of Knowledge,” Feb. 23,
2024.

20. Polygon Labs, “Introducing Plonky2,” Polygon Technology, Jan. 10, 2022. [On-
line]. Available: https://polygon.technology/blog/introducing-Plonky2. [Ac-
cessed: Oct. 16, 2024].

21. Kuznetsov, O., Yezhov, A., Yusiuk, V., Kuznetsova, K.: "Scalable Zero-Knowledge
Proofs for Verifying Cryptographic Hashing in Blockchain Applications" arXiv
preprint arXiv:2407.03511, 2024. https://arxiv.org/pdf/2407.03511

22. Anonymous.: “Plonky2 recursive Poseidon.” GitHub repository, 2024. https://
github.com/morgana-proofs/Plonky2-hashchain/blob/main/src/hashchain.rs

23. Anonymous.: “Plonky2 test code.” Plonky2 Documentation, 2024. https:
//docs.rs/Plonky2/latest/src/Plonky2/recursion/cyclic_recursion.rs.
html#136-155

24. Ben-Sasson, E., Chiesa, A., Spooner, N.: “Interactive Oracle Proofs.” Cryptology
ePrint Archive, Paper 2016/116, 2016. https://eprint.iacr.org/2016/116

25. Aniket Kate, Gregory M. Zaverucha, Ian Goldberg, “Constant-Size Commitments
to Polynomials and Their Applications,” Max Planck Institute for Software Systems
(MPI-SWS), Certicom Research, University of Waterloo.

26. Nexus-xyz. “Nexus ZKVM,” GitHub repository. Available at: https://github.
com/nexus-xyz/nexus-zkvm (Accessed: 12 October 2024).

30 Ray&Barreto, 2024

27. Risc Zero, Inc. “RISC Zero ZKVM,” GitHub repository. Available at: https://
github.com/risc0/risc0 (Accessed: 12 October 2024).

28. Succinct Labs. “SP1: Zero-Knowledge Succinct Proof System,” GitHub repository.
Available at: https://github.com/succinctlabs/sp1 (Accessed: 12 October 2024).

A Quantum Adversary Simulations

We have defined in previous sections the requisite components of our argument
system, and we show that the main primitive in use in this scheme is a secure
hash function. In this section we provide a rough proof sketch of a quantum
adversary against a hash function. The purpose of this section is to provide a
concrete and formal analysis of the quantum security of this scheme, which is
identified as a gap in current research with respect to argument systems.

LetH : {0, 1}∗ → {0, 1}n be a cryptographic hash function with n-bit output.

Cryptographic Properties

– Preimage Resistance: Given a hash value y ∈ {0, 1}n, it is computation-
ally infeasible to find any x ∈ {0, 1}∗ such that H(x) = y.

– Collision Resistance: It is computationally infeasible to find any two dis-
tinct inputs x, x′ ∈ {0, 1}∗ such that H(x) = H(x′).

We stress that “computationally infeasible” is taken to mean superpolynomial
time. The following quantum attacks find preimages and collisions, but their
complexity is still exponential.

Quantum Adversary Model Let AQ be a quantum adversary with the fol-
lowing capabilities:

– Executes Grover’s algorithm (and, by extension, the BHT algorithm) to find
preimages and collisions in O(2n/2) time.

– Has access to the quantum equivalent of an oracle for H.

Finding Preimages

Adversary’s Goal Given a hash value y ∈ {0, 1}n, find an input x ∈ {0, 1}∗
such that H(x) = y.

Attack Procedure

1. Set Up the Quantum Oracle
The adversary prepares a quantum oracle UH that, for any input state |x⟩,
computes:

UH |x⟩|0⟩ = |x⟩|H(x)⟩

CAPyPQSrARK 31

2. Apply Grover’s Algorithm
The adversary uses Grover’s algorithm to search for x such that H(x) = y.
The algorithm operates in O(2n/2) time.

3. Outcome
With high probability, the adversary finds an x such that H(x) = y.

Implications

– Were it not for the exponential cost, the adversary could invert the hash
function. This would violate preimage resistance.

– In the context of the argument system, this would allow the adversary to
forge proofs or commitments that rely on the hash function.

A.1 Finding Collisions

Adversary’s Goal Find two distinct inputs x, x′ ∈ {0, 1}∗ such that H(x) =
H(x′).

Attack Procedure

1. Prepare Superposition
The adversary prepares a uniform superposition over all possible inputs:

|ψ⟩ = 1√
N

∑
x∈{0,1}n

|x⟩

where N = 2n.
2. Construct the Oracle

The oracle marks states where H(x) = H(x′) for x ̸= x′.
3. Apply Quantum Collision-Finding Algorithm

Use the BHT (Brassard-Høyer-Tapp) quantum algorithm to find collisions
in O(2n/3) time.

4. Outcome
The adversary finds x and x′ such that H(x) = H(x′).

Implications

– Were it not for the exponential cost, this would compromise collision resis-
tance.

– The adversary could produce multiple inputs mapping to the same hash
value, which would undermine the integrity of commitments in the argument
system.

32 Ray&Barreto, 2024

A.2 Impact on the Argument System

A.3 Compromising Soundness

The soundness property relies on the inability of an adversary to produce valid
proofs for false statements. By successfully attacking the hash function, the
adversary can:

– Forge commitments that appear valid to the verifier.
– Generate fraudulent proofs that pass verification.

A.4 Attack on Commitment Schemes

Commitment Scheme Overview Assume the argument system uses a hash-
based commitment scheme:

Commit(m, r) = H(m ∥ r)

where m is the message and r is a random nonce.

Adversary’s Attack

1. Attacking the Hiding Property
By finding a preimage of a commitment, the adversary can discover m with-
out the nonce r.

2. Attacking the Binding Property
By finding collisions, the adversary can produce different (m′, r′) such that:

H(m ∥ r) = H(m′ ∥ r′)

This allows the adversary to change the committed message after the com-
mitment is made.

A.5 Forging Proofs

In zero-knowledge proofs that utilize hash functions for challenge generation,
successfully attacking the hash function could allow the adversary to predict or
manipulate challenges.

Adversary’s Strategy

1. Challenge Prediction
By inverting the hash function, the adversary can predict the verifier’s chal-
lenge ahead of time.

2. Proof Manipulation
The adversary can craft responses that satisfy the verification equation with-
out possessing a valid witness.

CAPyPQSrARK 33

A.6 Adjusting Bit Security to Mitigate BHT Quantum Attacks

To mitigate the Brassard-Høyer-Tapp (BHT) quantum algorithm, which finds
collisions with a complexity of O(N1/3), the bit-length of the hash function needs
to be adjusted (namely, tripled) to ensure that the hash function remains secure
against quantum adversaries.

A.7 Understanding the BHT Attack Complexity

BHT reduces the complexity of finding a collision from the classical O(n1/2)
(as per the birthday paradox) to O(n1/3) using quantum techniques. For a hash
function with an output size of b bits:

– A classical birthday attack would require O(2b/2) operations to find a
collision.

– The BHT algorithm, however, requires only O(2b/3) operations to find a
collision, offering a quantum speedup over classical methods.

A.8 Desired Security Level

To achieve a desired security level of k bits against quantum adversaries, we
need to ensure that the quantum attack complexity is at least 2k operations.

For a quantum adversary using the BHT algorithm, this means:

2b/3 ≥ 2k

which simplifies to:
b ≥ 3k.

A.9 Example: Achieving 128-bit Quantum Security

If we desire 128-bit security against quantum adversaries (a common target
for post-quantum cryptography), we must choose the bit-length b of the hash
function such that:

b ≥ 3× 128 = 384 bits.

Thus, a hash function with at least 384-bit output is required to achieve 128-bit
quantum security.

A.10 Summary of Bit-Length Adjustments

– For classical birthday attacks, which have complexity O(2b/2), a 256-bit hash
function (e.g., SHA-256) is sufficient for 128-bit classical security.

– To mitigate the BHT quantum attack (which has complexity O(2b/3)), we
need a hash function with at least 384 bits of output to achieve 128-bit
quantum security.

34 Ray&Barreto, 2024

A.11 Recommended Hash Functions

For 128-bit quantum security:

– If a standard hash function such as SHA-256 (with a 256-bit output) is in
use, it provides:
• 128-bit classical security (since 2256/2 = 2128).
• 85-bit quantum security against BHT (since 2256/3 ≈ 285).

– To achieve 128-bit quantum security, it is recommended to use SHA-512
(truncated to at least 384 bits), providing:
• 192-bit classical security (since 2384/2 = 2192).
• 128-bit quantum security against BHT (since 2384/3 = 2128).

This simulation argues that a quantum adversary utilizing Grover’s algo-
rithm can effectively attack the preimage and collision resistance properties of
cryptographic hash functions used in the argument system. Under certain con-
ditions in a quantum setting, this attack could compromise the soundness of the
system, allowing the adversary to forge commitments and proofs. These attacks
are effectively mitigated by selecting a hash function with a sufficiently high level
of bit security.

