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Abstract

For a q-polynomial L over a finite field Fqn , we characterize the dif-
ferential spectrum of the function fL : Fqn → Fqn , x 7→ x · L(x) and show
that, for n ≤ 5, it is completely determined by the image of the rational
function rL : F∗

qn → Fqn , x 7→ L(x)/x. This result follows from the classi-
fication of the pairs (L,M) of q-polynomials in Fqn [X], n ≤ 5, for which
rL and rM have the same image, obtained in [B. Csajbók, G. Marino, and
O. Polverino. A Carlitz type result for linearized polynomials. Ars Math.
Contemp., 16(2):585–608, 2019]. For the case of n > 5, we pose an open
question on the dimensions of the kernels of x 7→ L(x)− ax for a ∈ Fqn .

We further present a link between functions fL of differential unifor-
mity bounded above by q and scattered q-polynomials and show that, for
odd values of q, we can construct CCZ-inequivalent functions fM with
bounded differential uniformity from a given function fL fulfilling certain
properties.

Keywords: linearized polynomial, differential spectrum, differential
uniformity, linear set, scattered polynomial (MSC: 11T06, 12E10, 14G50)

1 Introduction and Preliminaries

Let q = pm for a prime p and a positive integer m and let Fqn denote the field
with qn elements. A polynomial L ∈ Fqn [X] is called a q-polynomial if it is of
the form

L(X) =

n−1∑
i=0

aiX
qi , ai ∈ Fqn . (1)

There is a one-to-one correspondence of q-polynomials in Fqn [X] and Fq-linear
mappings over Fqn by means of their evaluation maps.
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For a q-polynomial L ∈ Fqn [X], we denote fL : Fqn → Fqn , x 7→ x · L(x).
Such fL are exactly the functions of the form

x 7→
n−1∑
i=0

aix
qi+1, ai ∈ Fqn . (2)

Given a function f : Fqn → Fqn and a, b ∈ Fqn , we define

Df (a, b) := |{x ∈ Fqn | f(x+ a)− f(x) = b}| .

The differential spectrum of f , denoted by Df , counts the occurrences of
Df (a, b) over all pairs (a, b) ∈ F∗

qn × Fqn , formally,

Df := (ηi)i=0,...,qn ,

where ηi = |{(a, b) ∈ F∗
qn × Fqn | Df (a, b) = i}|. The differential uniformity

([23]), denoted δf , is defined as

δf := max
a,b∈Fqn ,a̸=0

Df (a, b).

The differential uniformity, and more generally the differential spectrum of a
function can be understood as a measure on the robustness against differen-
tial cryptanalysis [8] and its variants when using f as a substitution box in a
symmetric cryptographic primitive (see e.g., [9] for a discussion). For p odd,
functions reaching the lowest possible differential uniformity δf = 1 are called
planar. For p = 2, the lowest possible differential uniformity is 2, and functions
reaching this value with equality are called almost perfect nonlinear (APN). Be-
sides the interest in functions with low differential uniformity for cryptographic
applications, planar functions and APN functions have strong connections to
objects in finite geometry and combinatorics (see [25] for a survey).

The differential uniformity of functions fL has already been studied in the
literature: In [7], Berger et al. showed that a function of the form (2) over a
field of characteristic 2 can be APN (i.e., differentially 2-uniform) only if L is
a monomial, hence the only APN functions fL are the Gold APN functions (as
defined in [18, 23]).

In the case of odd characteristic p, the planarity of functions fL was first
studied by Kyureghyan and Özbudak in [20]. They showed some sufficient
conditions on L for fL being planar as well as some non-existence results for
special types of planar functions fL. However, all of the constructed planar
functions were (CCZ-)equivalent to monomials. This study was continued in [14]
and [29] by proving some open conjectures on the non-existence raised in [20].

For L being a trinomial of the form Xq2 + aXq + bX, Bartoli and Bonini
characterized in [1] all planar functions fL over Fq3 with the restriction a, b ∈
Fq. Later, Chen and Mesnager [13] completed the characterization for general
a, b ∈ Fq3 .

In [11], Budaghyan et al. introduced the notion of an isotopic shift of a
function. Given g : Fqn → Fqn and a q-polynomial L ∈ Fqn [X], the isotopic shift

2



of g by L is defined as the function mapping x ∈ Fqn to g(x + L(x)) − g(x) −
g(L(x)). Hence, the isotopic shifts of g(x) = x2 are exactly the functions of the
form 2 · fL. In [10], the authors studied isotopic shifts for constructing planar
functions and showed that it is possible to have planar functions fL inequivalent
to monomials, more precisely, they obtained functions corresponding (up to
equivalence) to commutative Dickson semifields.

For a q-polynomial L ∈ Fqn [X], let

V(L) := {a ∈ Fqn | x 7→ L(x)− ax permutes Fqn}

and

I(L) := {L(x)
x

| x ∈ F∗
qn}.

The set I(L) denotes the image set of the rational function rL : F∗
qn → Fqn , x 7→

L(x)
x and we have I(L) = Fqn \ V(L). Those sets played a central role in

the study of planarity of fL and were also studied in previous papers in the
context of finite geometry and coding theory, see, e.g., [20, 22, 17] and the
references therein. We would like to point out the geometric interpretation in
more detail (see, e.g., [16]): Let W be a 2-dimensional Fqn -vector space and
let Λ = PG(W,Fqn) = PG(1, qn) be the projective line over Fqn . An Fq-linear
set LU of Λ of rank n is defined as the point set of the non-zero points of an
n-dimensional Fq-subspace U of W , i.e.,

LU := {⟨u⟩Fqn
| u ∈ U \ {0}}.

If L ∈ Fqn [X] is a q-polynomial, we can take U = UL := {(x, L(x)) | x ∈ Fqn}
and denote the corresponding linear set LUL

by LL. We then have

LL = {⟨(1, L(x)/x)⟩Fqn
| x ∈ F⋆

qn} = {⟨(1, y)⟩Fqn
| y ∈ I(L)}.

The study of linear sets has also been successfully applied to the study of APN
functions. For instance, in [2] the authors analyze certain classes of F2-linear
sets to prove the existence of APN functions of a specific form.

It is known that the planarity property of a function fL is completely de-
termined by a property (independent of L) of the set I(L). Indeed, fL being
planar is equivalent to x 7→ aL(x) + xL(a) having trivial kernel for all a ∈ F∗

qn ,

i.e., −L(a)
a /∈ I(L) for all a ̸= 0, i.e., 0 /∈ I(L) and for all b ∈ F∗

qn , at most one
of −b, b is contained in I(L) (see [20, Thm. 1]). So, if fL is planar and M a
q-polynomial for which I(L) = I(M), also fM is planar. Clearly, for any planar
function over Fqn , there is only one possibility of its differential spectrum, i.e.,
η1 = qn(qn − 1) and ηi = 0 for i ̸= 1.

One might ask more generally whether the differential uniformity, or even the
differential spectrum, of fL (not necessarily planar) is completely determined
by the set I(L):

Question 1. If I(L) = I(M) for q-polynomials L,M , do fL and fM have
identical differential spectra?
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The question for which pairs of q-polynomials L,M ∈ Fqn [X] the identity
I(L) = I(M) holds was studied in [17] and a classification was obtained for the
case of n ≤ 5. To recall this result, we need the notion of ΓL(2, qn)-equivalence
of two q-polynomials, given below. For a function f : Fqn → Fqn , we denote
by Gf the graph of f , defined as {(x, f(x)) | x ∈ Fqn}. The functions f and g
are called CCZ-equivalent [12], if there is an affine bijection A over Fqn × Fqn

such that A(Gf ) = Gg. An important fact is that the differential spectrum of a
function is invariant under CCZ-equivalence.

Definition 1 (see, e.g., [17]). Let s ∈ Fqn , 0 ≤ i ≤ n − 1. We denote by µs,i

the Fq-linear mapping Fqn → Fqn , x 7→ sxqi . Let

φ :=

(
µa,i µb,i

µc,i µd,i

)
(3)

for some elements a, b, c, d ∈ Fqn and 0 ≤ i ≤ n−1. We say that φ is admissible
for a q-polynomial L ∈ Fqn [X] if and only if ad − bc ̸= 0 (i.e., φ is invertible)

and either b = 0 or −(a/b)q
n−i

/∈ I(L). We say that the q-polynomials L,M ∈
Fqn [X] are ΓL(2, qn)-equivalent, if there exists an admissible mapping φ for L
as in (3) such that L and M (as linear mappings) are CCZ-equivalent via

φ(GL) = GM .

In that case, the linear mappings M and L are related via M = Hφ
L ◦ (Kφ

L)
−1,

where Kφ
L(x) = axqi + bL(x)q

i

and Hφ
L(x) = cxqi + dL(x)q

i

. We also write
M = φ(L).

Clearly (see also [17]), if M and L are ΓL(2, q)-equivalent via M = φ(L),
then |I(L)| = |I(φ(L))|. Further, given L and M with I(L) = I(M) and
admissible φ as in (3), then I(φ(L)) = I(φ(M)).

Given a q-polynomial L in the form of (1), we denote by L∗ its adjoint, i.e.,
the q-polynomial

L∗ := a0X +

n−1∑
i=1

aq
n−i

i Xqn−i

.

The induced Fq-linear mappings x 7→ L(x) and x 7→ L∗(x) over Fqn are adjoint

relative to the bilinear form (x, y) 7→ tr(xy), where tr : x 7→
∑n−1

i=0 xqi denotes
the trace function from Fqn to Fq. That is, tr(xL(y)) = tr(L∗(x)y) holds for all
x, y ∈ Fqn (see, e.g., [22]).

We have now established the necessary terminology to recall the classification
result by Csajbók et al.

Theorem 1 ([17]). Let q be a prime power, n ≤ 5 a positive integer and let
L,M ∈ Fqn [X] be q-polynomials with maximum field of linearity Fq (i.e., L or
M is not a qt-polynomial for t > 1) such that I(L) = I(M).

• If n ≤ 4, there exists λ ∈ F∗
qn such that M(X) = L(λX)/λ or M(X) =

L∗(λX)/λ.
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• If n = 5, then either

(i) there exists λ ∈ F∗
qn such that M(X) = L(λX)/λ or M(X) =

L∗(λX)/λ, or

(ii) there exists an admissible mapping φ for L and M and a, b ∈ Fqn such

that φ(L)(X) = aXqi and φ(M)(X) = bXqj with a
qn−1
q−1 = b

qn−1
q−1 and

i, j ∈ {1, . . . , 4}.

Since a q-polynomial L ∈ Fqn [X] with maximum field of linearity Fqt is also
a qt-polynomial in Fqtn/t [X] and for L,M ∈ Fqn [X] with I(L) = I(M), the
fields of linearity of L and M coincide [17, Prop. 2.1], this yields the following
corollary.

Corollary 1. Let q be a prime power, n ≤ 5 a positive integer and let L,M ∈
Fqn [X] be q-polynomials such that I(L) = I(M). Then,

(i) there exists λ ∈ F∗
qn such that M(X) = L(λX)/λ or M(X) = L∗(λX)/λ,

or

(ii) there exists an admissible mapping φ for L and M , some integers i, j ∈
{1, . . . , n− 1}, and a, b ∈ Fqn such that φ(L)(X) = aXqi and φ(M)(X) =

bXqj .

1.1 Our Results

In the first part (Section 2), we characterize the differential spectrum of a func-
tion fL for a q-polynomial L (Prop. 1). This characterization yields a sufficient
condition on a pair (L,M) of q-polynomials such that fL and fM have the same
differential spectrum, namely that, for all a ∈ Fqn , the dimension of the kernel
of x 7→ L(x)− ax is the same as the dimension of the kernel of x 7→ M(x)− ax.
While this condition is trivially fulfilled if M(X) = L(λX)/λ for λ ̸= 0, we

outline that it also holds for the pairs of q-polynomials (L,L∗), (aXqi , bXqj )

with I(aXqi) = I(bXqj ), and (φ(L), φ(M)) for L,M fulfilling the condition
above (see Lem. 1, Lem. 2, and Lem. 3, respectively).1 This yields the following
result.

Theorem 2. Let q be a prime power, n ≤ 5 a positive integer and let L,M ∈
Fqn [X] be q-polynomials such that I(L) = I(M). Then, DfL = DfM .

The case of n > 5 is left as an open problem. To settle it, we pose the
following interesting open question: If L,M ∈ Fqn [X] are q-polynomials with
I(L) = I(M) and a ∈ Fqn , does this imply the equality of the dimension of the
kernel of x 7→ L(x) − ax and the dimension of the kernel of x 7→ M(x) − ax
(Question 2)?

1While the case of (L,L∗) was known before, the other two cases follow from straightfor-
ward adaptions of the arguments given in previous literature such as [17].
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In Section 3, we show how to construct CCZ-inequivalent functions fM
with bounded differential uniformity from a given function fL using ΓL(2, qn)-
equivalence (Cor. 3) and we further give a link between functions fL of differ-
ential uniformity bounded above by q and scattered q-polynomials (Cor. 4).

2 On the Differential Spectrum of fL

Given a q-polynomial L ∈ Fqn [X], we denote by ker(L) the kernel of the Fq-
linear map x 7→ L(x) over Fqn , i.e., the subspace of all elements y ∈ Fqn with
L(y) = 0. For 0 ≤ k ≤ n, let us define

Vk(L) := {a ∈ Fqn | dimker(L(X)− aX) = k}.

Clearly, V0(L) = V(L) and ∪n
k=1Vk(L) = I(L). Further, note that, for 1 ≤ k ≤

n, we have

Vk(L) = {b ∈ I(L) | b = L(x)

x
for exactly qk − 1 distinct x ∈ F∗

qn}. (4)

The sets Vk(L) for 0 ≤ k ≤ n have the following interpretation in terms of
linear sets: For a point P = ⟨(x, y)⟩Fqn

∈ PG(1, qn) with x, y ∈ Fqn , the weight
of P with respect to the Fq-linear set LL, denoted by wLL

(P ), is defined as the
dimension of the intersection UL ∩ ⟨(x, y)⟩Fqn

as an Fq-vector space. The set
Vk(L) consists precisely of those y ∈ Fqn for which wLL

(⟨(1, y)⟩Fqn
) = k.

The crucial point for the following discussion is the fact that the differential
spectrum of fL is completely determined by (Vk(L))k=1,...,n, which we show in
the following characterization. For a set S, we denote by −S the set {−a | a ∈
S}.

Proposition 1. Let L ∈ Fqn [X] be a q-polynomial and fL : Fqn → Fqn , x 7→
xL(x). For the differential spectrum DfL = (η0, η1, . . . , ηqn), we have

ηi =


qn−k ·

∑n
ℓ=1(q

ℓ − 1) · |Vℓ(L) ∩ −Vk(L)| if i = qk∑n
k=1(q

n − qn−k) ·
∑n

ℓ=1(q
ℓ − 1) · |Vℓ(L) ∩ −Vk(L)| if i = 0

0 else

. (5)

In particular, if L,M ∈ Fqn [X] are q-polynomials such that Vk(L) = Vk(M)
holds for all 1 ≤ k ≤ n, we have DfL = DfM .

Proof. For any a ∈ Fqn , the differential mapping x 7→ fL(x + a) − fL(x) =
aL(x)+L(a)x+aL(a) is affine, hence the solutions x ∈ Fqn of fL(x+a)−fL(x) =
d (if they exist) form a coset of Sa, where Sa is the vector space of solutions
x ∈ Fqn of aL(x) + L(a)x = 0, i.e., Sa = ker(aL(X) + L(a)X). The solutions
exist if and only if (d − aL(a)) ∈ Im(x 7→ aL(x) + L(a)x). From this, we
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immediately get ηi = 0 for i ̸= 0 not being a power of q, and

ηqk = qn−k · |{a ∈ F∗
qn | dimker(L(X) +

L(a)

a
X) = k}|

= qn−k · |{a ∈ F∗
qn | −L(a)

a
∈ Vk(L)}|

= qn−k ·
n∑

ℓ=1

(qℓ − 1) · |{L(a)
a

∈ Vℓ(L) | −
L(a)

a
∈ Vk(L)}|

= qn−k ·
n∑

ℓ=1

(qℓ − 1) · |Vℓ(L) ∩ −Vk(L)|,

where the second to last equality holds because ∪̇n
ℓ=1Vℓ(L) = I(L) and each

element in Vℓ(L) has qℓ − 1 preimages under rL. The identity for η0 follows

from the fact2 that
∑qn

i=0 ηi =
∑qn

i=1 i · ηi = qn(qn − 1). Indeed, since ηi = 0 for
positive i not being a power of q, we get η0 =

∑n
k=1(q

k − 1) · ηqk .

Corollary 2. Let L ∈ Fqn [X] be a q-polynomial and fL : Fqn → Fqn , x 7→
xL(x). Then, δfL = qk, where k ∈ {0, . . . , n} is the largest integer such that
|I(L) ∩ −Vk(L)| ̸= ∅, i.e., such that there exists a ∈ Fqn for which L(X)− aX
is not permutation polynomial and dimker(L(X) + aX) = k.

Proof. Clearly, the differential uniformity of fL can only be a power of q. From
Prop. 1, the value ηqk is nonzero if and only if

⋃n
ℓ=1 (Vℓ(L) ∩ −Vk(L)) is not

empty. The statement follows from the fact that I(L) = ∪n
ℓ=1Vℓ(L).

Remark 1. Proposition 1 and Cor. 2 generalize [20, Thm. 1 (c)]. Indeed fL is
planar if and only if ηqk = 0 holds for all 1 ≤ k ≤ n. By Cor. 2, this condition
is equivalent to I(L) ∩ −I(L) = ∅, i.e., 0 /∈ I(L) and for all b ∈ F∗

qn , at most
one of b or −b is contained in I(L).

It was first proven in [3, Lem. 2.6] that V(L) = V(L∗) and I(L) = I(L∗).
There are various other proofs given in the literature, e.g., in [22], which uses
the characterization of permutations by their Walsh transforms. A particularly
elegant proof was given in [16, Rem. 3.3], proving the (a priori) more general
question of equality of Vk(L) and Vk(L

∗), 0 ≤ k ≤ n. For completeness, we
repeat this proof in the following.

Lemma 1 (see [16]). Let L ∈ Fqn [X] be a q-polynomial. For all 0 ≤ k ≤ n, we
have Vk(L) = Vk(L

∗).

Proof. For a q-polynomial L =
∑n−1

i=0 aiX
qi ∈ Fqn [X], let

DL :=


a0 a1 . . . an−1

aqn−1 aq0 . . . aqn−2
...

...
...

...

aq
n−1

1 aq
n−1

2 . . . aq
n−1

0


2This identity proved to be quite useful for studying differential spectra of APN monomial

functions over finite fields, see, e.g., [27].
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denote the corresponding n × n Dickson matrix over Fqn , so that ker(DL) =
ker(L) and (DL)

⊤ = DL∗ (see [28]). The statement follows since, for any
a ∈ Fqn , we have

dimker(L(X)− aX) = dimker(DL −DaX) = dimker((DL −DaX)⊤)

= dimker(DL∗ −DaX) = dimker(L∗(X)− aX).

Remark 2. Let ζ ∈ C be a primitive p-th root of unity. The Walsh transform
of f : Fqn → Fqn at point (a, b), a, b ∈ Fqn , is defined as

Wf (a, b) :=
∑

x∈Fqn

ζtrp(ax)+trp(bf(x)) ∈ C,

where trp(x) :=
∑mn−1

i=0 xpi

denotes the absolute trace function from Fqn to Fp.
Let a ∈ Fqn , b ∈ F∗

qn . For the Walsh transform of fL and fL∗ , we get

WfL(a, b) =
∑

x∈Fqn

ζtrp(ax)+trp(bxL(x)) =
∑

x∈Fqn

ζtrp(ax)+trp(xL
∗(bx))

=
∑

x∈Fqn

ζtrp(ab
−1x)+trp(b

−1xL∗(x)) = WfL∗ (ab
−1, b−1).

Since a function f over Fqn is a permutation if and only if Wf (0, b) = 0 holds
for all b ∈ F∗

qn (see, e.g., [19, Thm. 1.1]), we immediately get that fL is a
permutation if and only if fL∗ is.

By a folklore argument, we get the following for q-monomials.

Lemma 2. Let L = aXqi and M = bXqj , a, b ∈ Fqn , be q-polynomials in
Fqn [X] such that V(L) = V(M). Then, for all 0 ≤ k ≤ n, we have Vk(L) =
Vk(M). More precisely, if a, b ∈ F∗

qn , we have V(L)gcd(i,n) = I(L), and Vk(L) =
∅ for k /∈ {0, gcd(i, n)}.

Proof. If a = 0, then also b = 0, so that L = M . Let us therefore assume
a, b ∈ F∗

qn . It is well known that a monomial function x 7→ xd over F∗
qn is

gcd(d, qn − 1)-to-1. By assumption, we have

I(L) = {axpi−1 | x ∈ F∗
qn} = {bxpj−1 | x ∈ F∗

qn} = I(M),

hence the mappings x 7→ xqi−1 and x 7→ xqj−1 over F∗
qn have the same image

size and are thus gcd(qi − 1, qn − 1)-to-one. By using (4) and the fact that
gcd(qi − 1, qn − 1) = qgcd(i,n) − 1, the result follows.

To settle Thm. 2, we finally show that the property of equality of sets Vk(L),
Vk(M) is not affected when changing L,M under ΓL(2, qn)-equivalence using
the same φ. We can show more generally how the sets Vk(L), k = 1, . . . , n are
affected under ΓL(2, qn)-equivalence of L.
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Lemma 3. Let L ∈ Fqn [X] be a q-polynomial and let φ be an admissible map-
ping for L. Let 1 ≤ k ≤ n. The sets Vk(L) and Vk(φ(L)) are related via a
bijection νφ : I(φ(L)) → I(L) by

ν−1
φ (Vk(L)) = Vk(φ(L)).

In particular, we have |Vk(L)| = |Vk(φ(L))|, and, for a q-polynomial M ∈
Fqn [X] with I(M) = I(L) and Vk(M) = Vk(L), we have Vk(φ(M)) = Vk(φ(L)).

Proof. Let

φ =

(
µa,i µb,i

µc,i µd,i

)
be admissible for L and let us fix k ≥ 1 and let γ ∈ Vk(φ(L)). We have

|{x ∈ Fqn | φ(L)(x)− γx = 0}| = |{x ∈ Fqn | Hφ
L(x)− γKφ

L(x) = 0}|

=|{x ∈ Fqn | (d− γb)q
n−i

L(x)− (γa− c)q
n−i

x = 0}|,

which is equal to

|{x ∈ Fqn | L(x)−
(
γa− c

d− γb

)qn−i

x = 0}|

if d−γb ̸= 0. Since k ̸= 0, necessarily d−γb ̸= 0, as otherwise (d−γb)q
n−i

L(x)−
(γa−c)q

n−i

x = 0 would only have one solution x = 0 (note that both d−γb and
γa − c cannot be simultaneously zero because of the invertibility of φ). Since
ad− bc ̸= 0, the mapping

νφ : x 7→
(
xa− c

d− xb

)qn−i

is injective with domain Fqn \ {x ∈ Fqn | d − xb = 0}, hence it induces a
bijection from I(φ(L)) to I(L). The first part of the assertion follows, as we
have shown νφ(γ) ∈ Vk(L). The second part is a trivial corollary. Note that we
need I(M) = I(L) to ensure that φ is admissible for M .

The above Lem. 1, Lem. 2, and Lem. 3, together with Thm. 1 imply Thm. 2
and thus completely settle Question 1 for the case of n ≤ 5.

An interesting open question is whether the sets Vk(L), k = 1, . . . , n are
completely determined from I(L) (equivalently from V(L)) in general.

Question 2. Let L,M ∈ Fqn [X] be q-polynomials with V(L) = V(M). Does
this imply Vk(L) = Vk(M) for all k ∈ {1, . . . , n}?

In terms of linear sets, the question is equivalent to asking whether the
weights of ⟨(1, y)⟩Fqn

with respect to the linear set LL are completely determined
by the points ⟨(1, y)⟩Fqn

of weight wLL
(⟨(1, y)⟩Fqn

) = 0. Answering this question
affirmatively immediately gives a positive answer to Question 1.
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Remark 3. Besides the pairs of q-polynomials (L,L∗), (aXqi , bXqj ) fulfilling

I(aXqi) = I(bXqj ), and (φ(L), φ(M)) with I(L) = I(M), Question 2 also has
an affirmative answer when one of L or M corresponds to the trace function
x 7→ tr(x). This follows immediately from the fact that for a q-polynomial M
with I(M) = I(tr(X)), we have M = tr(λX)/λ for λ ̸= 0, as proven in [16,
Thm. 3.7] (see also [17, Thm. 1.3]).

3 Bounded Differential Uniformity and Scattered
q-Polynomials

Using Cor. 2, a simple upper bound on the differential uniformity of fL can be
given based on the emptiness of sets Vk(L). That is, if k ∈ {1, . . . , n} is the
largest integer such that Vk(L) ̸= ∅, the differential uniformity of fL is bounded
above by qk. Moreover, for the case of p = 2, we have −Vk(L) = Vk(L) ⊆ I(L).
Hence, for p = 2, the differential uniformity is equal to qk.

Then, from Lem. 3, it follows that we obtain functions of bounded differential
uniformity from fL if we stay in the same ΓL(2, qn)-equivalence class.

Corollary 3. Let L ∈ Fqn [X] be a q-polynomial and let k ∈ {1, . . . , n} be the
largest integer such that Vk(L) ̸= ∅. For any mapping φ admissible for L, the
differential uniformity of fφ(L) is bounded above by qk.

For odd values of p, this allows us to obtain functions fM with different dif-
ferential spectra (hence CCZ-inequivalent to each other), but δfM ≤ qk, from M
within the ΓL(2, qn)-equivalence class of L (an example is given in Example 1 be-
low). However, in even characteristic, we do not leave the extended-affine equiv-
alence class of fL (and hence cannot obtain distinct differential spectra), as the
following lemma states. Note that two functions f, g : Fqn → Fqn are extended-
affine equivalent (EA-equivalent) if there exist affine bijections A,B : Fqn → Fqn

and an affine function C : Fqn → Fqn such that g = B ◦ f ◦ A + C. In case
that A and B are also linear and C = 0, the functions f and g are called
linear-equivalent. Since EA-equivalence is a special case of CCZ-equivalence,
two EA-equivalent functions have the same differential spectrum.

Lemma 4. Let p = 2 and L ∈ Fqn [X] be a q-polynomial. Let φ be an admissible
mapping for L as in (3). Then, fL and fφ(L) are EA-equivalent.

Proof. fφ(L) corresponds to the mapping x 7→ x ·Hφ
L(K

φ
L
−1

(x)), which is linear-
equivalent to x 7→ Kφ

L(x) ·H
φ
L(x). Now, we have

Kφ
L(x) ·H

φ
L(x) = (ad+ bc) · (xL(x))q

i

+ ac · x2qi + bd · L(x)2q
i

,

which is linear-equivalent to

xL(x) + (ad+ bc)−q−i

((ac)q
−i

· x2 + (bd)q
−i

· L(x)2).
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Note that, since p = 2, we have ad + bc = ad − bc ̸= 0 because φ is admissible
for L. Moreover, since p = 2, the mapping x 7→ (ad + bc)−q−i

((ac)q
−i · x2 +

(bd)q
−i · L(x)2) is linear, hence fφ(L) is EA-equivalent to fL.

Remark 4. Let γ ∈ Fqn and 1 ≤ k ≤ n. Then, γ ∈ I(φ(L)) and −γ ∈ Vk(φ(L))
if and only if νφ(γ) ∈ I(L) and νφ(−γ) ∈ Vk(L). Hence, by Cor. 2, the functions
fL and fφ(L) have the same differential uniformity if νφ(−γ) = −νφ(γ) holds for
all γ ∈ Fqn with γ ∈ I(φ(L)). This condition is equivalent to abγ2 − cd = 0 for
all γ ∈ I(φ(L)). Hence, a generic choice of φ preserving differential uniformity is
such that a = d = 0 or b = c = 0. But then, fL and fφ(L) are linear-equivalent.

The q-polynomials L such that Vk(L) = ∅ for all k > 1 are called scattered
q-polynomials [26]. They are widely studied as they have applications in finite
geometry (in terms of maximum scattered linear sets) and coding theory (in
terms of rank distance codes [26]), see [21] and the references therein. It is
well known that a q-polynomial L ∈ Fqn [X] is scattered if and only if I(L) is

of maximal size, i.e., |I(L)| = qn−1
q−1 . Indeed, I(L) is of maximal size if and

only if each element L(y)
y ∈ I(L) has q − 1 preimages x = cy with c ∈ F∗

q .
This yields an affirmative answer to Question 1 and Question 2 for those L,M
for which V(L) and V(M) have size qn − qn−1

q−1 . There are only a few known

instances and families of scattered q-polynomials, see e.g., the list in [4, Section
1]. The best known family of scattered q-polynomials are the monomials Xqs

with gcd(s, n) = 1. Bartoli and Zhou [5] showed that those monomials are the
only exceptional scattered (of index 0) monic q-polynomials, i.e., the only monic
q-polynomials that are scattered over infinitely many extensions of Fq.

For scattered q-polynomials, we get the following immediate corollaries from
Prop. 1 and Cor. 3, respectively.

Corollary 4. Let L ∈ Fqn [X] be a q-polynomial. If L is scattered, the differ-
ential uniformity of fL is bounded above by q and, for DfL = (ηi)i=0,...,qn , we
have ηi = 0 for i /∈ {0, 1, q} and

ηq = qn−1(q − 1) · |I(L) ∩ −I(L)|
η1 = qn · (q − 1) · |I(L) ∩ −V(L)|
η0 = qn−1(q − 1)2 · |I(L) ∩ −I(L)|.

If p = 2, the differential uniformity of fL is equal to q if and only if L is
scattered.

Corollary 5. Let L ∈ Fqn [X] be a scattered q-polynomial and let φ be an
admissible mapping for L as in (3). Then, δfφ(L)

≤ q.

This corollary is a consequence of the fact that the property of a q-polynomial
in Fqn [X] being scattered is invariant under ΓL(2, qn)-equivalence.

Example 1. Consider q = p for an odd prime p and let L = Xps ∈ Fpn [X] for s
with gcd(s, n) = 1. Then, fL : Fpn → Fpn , x 7→ xps+1 is planar if and only if n
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is odd [15]. Since L is scattered, fL has differential uniformity of p if n is even.
Let a ∈ F∗

qn . The mapping

φ :=

(
µ1,0 0

µL(a),0 µa,0

)
is admissible for L. Then, φ(L)(x) = Hφ

L((K
φ
L)

−1(x)) with Hφ
L(x) = axps

+ap
s

x
and Kφ

L(x) = x, so φ(L) = aXps

+ ap
s

X = fL(X + a)− fL(X)− fL(a) (which
is also scattered). Hence, the differential uniformity of fφ(L) : Fpn → Fpn , x 7→
axps+1+ap

s

x2 is bounded above by p. Note that, for each a ∈ F∗
qn , the function

fφ(L) is linear-equivalent to x 7→ xps+1 + x2. We experimentally checked that,
for p ∈ {3, 5, 7}, n ∈ {2, 3, 4, 5} and gcd(s, n) = 1, the differential uniformity of
x 7→ xps+1 + x2 is indeed equal to p.

In the following example, we illustrate that it is possible to get a variety of
distinct differential spectra for fφ(L) when L is a scattered q-polynomial and φ
and admissible mapping for L (in the case where q is odd).

Example 2. Again, we consider the scattered polynomial L = Xps ∈ Fpn [X],
but for p = n = 3 and s = 1 fixed. Hence, fL is planar, so the differen-
tial spectrum is DfL = (0, 702, 0, 0, 0). Generating several admissible map-
pings φ for L, we obtain the following six additional differential spectra for
fφ(L): (252,324,126,0,0), (144,486,72,0,0), (288,270,144,0,0), (180,432,90,0,0),
(216,378,108,0,0), and (468,0,234,0,0).

In general, it would be interesting to classify all possible differential spectra of
fφ(L) for admissible mappings φ for L, for a given scattered q-polynomial L and
to understand whether a scattered q-polynomial L can yield CCZ-inequivalent
planar functions fφ(L).

Remark 5. It was proven in [7, Thm. 6] that an APN function fL for L =∑n−1
i=1 aiX

2i ∈ F2n [X] is APN (i.e., δfL = 2) if and only if L is a monomial

aX2k with gcd(k, n) = 1, a ∈ F∗
2n . To obtain this result, the authors of [7]

proved that fL is APN if and only if rL is a permutation of F∗
2n , i.e., if and

only if |I(L)| = 2n − 1, i.e., if and only if L is scattered. This is a special case
of Cor. 4. They then used the fact that rL can only be a permutation if L is
a monomial, as already proven by Payne [24] and by the authors in [6] using
Hermite’s criterion.

This means that any scattered 2-polynomial is is necessarily a monomial.
Note that there exist more instances of scattered q-polynomials for q being a
larger power of 2, see, e.g., [4].
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