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Abstract. We prove that the existence of a CPA-secure encryption scheme that is insecure in the
presence of key cycles of length n implies the existence of such a scheme for key cycles of any length
less than n. Equivalently, if every encryption scheme in a class is n-circular secure and this class is closed
under our construction, then every encryption scheme in this class is n′-circular secure for n′ > n.

1 Introduction

The question of whether encryption security is maintained in the presence of self-encryption was identified
during the early stages of modern cryptography [17], and in general, remains unanswered.

Theoretical considerations of circular security arise in a number of areas. One is the study of symbolic
(formal) encryption [14], where a syntax is defined on sets of symbols to form expressions, these expressions
combined with an entailment relation are used to model the ideal functionality of encryption functions.
Abadi and Rogaway [1] sought to reconcile this symbolic approach of cryptography with the computational
approach, highlighting the gap between them introduced by circular encryption. This gap is further studied
in [3,13,20,25,27–30]. Without additional constraints on the symbolic side, circular security is crucial to the
completeness of a logic. Another area in which circular security has become significant is the construction
of various primitives whose security relies on underlying primitives with circular security properties. For
example, LWE-based encryption with an additional circular security assumption is used to construct homo-
morphic encryption [11,16] and indistinguishability obfuscation [15]. A well-known example of how circular
encryption arises in practice is Windows BitLocker [31], where a key may be used to encrypt a disk that the
key is stored on as data.

Given its potential for application in a variety of areas, there have been numerous works dealing with the
(im)possibility of circular security under different scenarios, [2, 4, 7, 9, 12, 18, 19, 21, 24, 26, 32]. A particularly
intriguing line of work involves finding relations between various key-cycle lengths and message spaces for
circular secure schemes [5, 6, 10, 23]. Recently, it was shown in [34] that Key Dependent Message security, a
more demanding notion than that of circular security [8], is reducible to 1-circular bit encryption.

Motivated by this, we are interested in finding other relations between notions of circular security. In
this paper, we show that the existence of a longer-length circular insecure encryption scheme implies the
existence of a shorter-length circular insecure encryption scheme. Equivalently, if every encryption scheme
in a class is n-circular secure and this class is closed under our construction, then every encryption scheme
in this class is n′-circular secure for n′ > n.

1.1 Our Contribution

We present a newfound relationship for circular insecurity. To be more precise, we show that if an (n +
1)-circular insecure CPA secure encryption scheme exists, then a (1 to n)-circular insecure CPA secure
encryption scheme exists. This result applies to both public key and private key encryption schemes. We
present the proof of the public key setting, which, with slight modification, can serve as proof in the symmetric
key setting.

The proof uses a circular insecure encryption scheme as a black-box to construct another encryption
scheme. In Construction 1, we present a construction that does not preserve the message space of the initial
encryption scheme. In Construction 2, we construct an encryption scheme that preserves the message space
of the base encryption scheme if the message space of the base scheme consists of only one bit. The techniques
used in Construction 2 can be modified to preserve message spaces for a variety of base schemes.
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Intuitively, the idea is to use an n+ 1-circular insecure encryption Π to create an encryption scheme Π ′

so that a key of Π ′ consists of multiple keys in Π. This is done in a way so that from any length ℓ encryption
cycle where 0 < ℓ < n+ 1 of Π ′, we can extract an encryption cycle with length n+ 1 of Π.

Organization.

We will present the notation and definitions in Section 2. In Section 3, we present Construction 1, a message
length non-preserving black-box construction. Its analysis follows in Section 4. Section 5 contains Construc-
tion 2, in which we discuss how to preserve a message space of only one bit in the black-box technique. We
present a concise discussion on how to modify the results of this paper into the symmetric key setting in
Section 6.

2 Preliminaries

We use PPT to denote probabilistic polynomial time. For a set S, we write s ← $S to indicate that s is
sampled uniformly from S. For a randomized function f with input x, we write y ← f(x) to indicate that y
is the output of f(x) with fresh randomness.

Definition 1. A public key encryption scheme consists of three efficiently computable randomized functions:
a key generating function G, encryption function E, and decryption function D.

– The key generating function G takes a unary string 1η, where η is the security parameter and outputs a
public key, secret key pair (pk, sk). We assume for any (pki, ski) ← G(1η) and (pkj , skj) ← G(1η) that
|pki| = |pkj | and |ski| = |skj |.

– The encryption function E takes a public key pk and a message m and outputs a cipher text c.
– The decryption function D takes a secret key sk and a ciphertext c and outputs a message m or ⊥.

As usual, we require that for any (pk, sk)← G(1η) and any message m, D(sk, E(pk,m)) = m.

A (public key) bit encryption scheme has message space {0, 1}. For a bit encryption scheme and a message
m where |m| > 1, we write E(pk,m) to denote that bit-by-bit encryption of m using E(pk, ·), each encryption
using fresh randomness. More definitions of bit-encryption in circular settings can be found [32].

The definition of CPA experiment and CPA-security follows that of [22].

Definition 2. Let Π = (G, E ,D) be a public key encryption scheme. The CPA experiment for Π and adver-
sary A denoted by CPAA,Π(η) is defined as follows:

CPAA,Π(η) :
1. pk, sk← G(1η). Give η and pk to A.
2. b← $ {0, 1}.
3. A outputs two equal length challenge messages m0,m1.
4. Compute cb ← E(k,mb) and return cb to A.
5. A outputs b′ and the experiment results in 1 if b = b′, 0 otherwise.

We say Π is CPA secure if for every PPT adversary A,

Pr[CPAA,Π(η) = 1] ≤ 1

2
+ negl(η).

The definition of n-circular experiment and n-circular-security follows that of [12].

Definition 3. Let Π = (G, E ,D) be a public key encryption scheme. The n-circular experiment for Π and
adversary A denoted by CIRCA,Π(n, η) is defined as follows:

CIRCA,Π(n, η) :
1. pk0, sk0 ← G(1η), . . . , pkn−1, skn−1 ← G(1η). Give η and pk0, . . . , pkn−1 to A.
2. b← $ {0, 1}.
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3. Compute for i ∈ {0, . . . , n− 1}:

cbi ←

{
E(pki, ski+1 mod n) If b = 1

E(pki, 0|sk1|) If b = 0

Send cb0, , . . . , c
b
n−1 to A.

4. When A outputs b′, the experiment results in 1 if b = b′, 0 otherwise.

We say Π is n-circular secure if for every PPT adversary A,

Pr[CIRCA,Π(n, η) = 1] ≤ 1

2
+ negl(η).

An encryption scheme is n-circular insecure if it is not n-circular secure. An encryption scheme is (1 to
n)-circular insecure if it is ℓ-circular insecure for any ℓ ∈ {1, . . . , n}.

3 Construction of n-Circular Insecure Encryption

We show how to construct a CPA secure n-circular insecure public key encryption from a CPA secure
(n+ 1)-circular insecure public key encryption.

Construction 1 Given a CPA secure (n+1)-circular insecure public key encryption scheme Π = (G, E ,D).
We obtain Π ′ = (G′, E ′,D′) as follows:

Π ′ :
– G′(1η) : Compute

(pk[0], sk[0])← G(1η), . . . , (pk[n], sk[n])← G(1η).

Compute s← E(pk[0], sk[n]). For 3 ≤ i ≤ n compute h[i]← E(pk[i], sk[i− 1]). Return public key

pk = pk[0], . . . , pk[n], s, h[n], h[n− 1], . . . , h[3].

and secret key

sk = sk[0], . . . , sk[n− 1].

We note that when n < 3, the public key has nothing after s.
– E ′(pk,m) : Parse pk to

pk[0], . . . , pk[n], s, h[n], . . . , h[3].

If |m| ≠ |sk|, compute c← E(pk[1],m) and return

⟨0, c⟩.

Otherwise, parse m to m[0], . . . ,m[n− 1] where |m[i]| = |sk[i]| for 0 ≤ i ≤ n− 1. For 0 ≤ i ≤ n− 1
compute c[0]← E(pk[i+ 1],m[i]), return

⟨1, c[0], . . . , c[n− 1]⟩.

– D′(sk, c) : Parse sk to
sk[0], . . . , sk[n− 1].

If c = ⟨0, c′⟩, return D(sk[1], c). Else parse c into ⟨x, c[0], . . . , c[n − 1]⟩, compute sk[n] ← D(sk[0], s)
and return

D(sk[1], c[0]) ∥ . . . ∥ D(sk[n], c[n− 1]).

One can observe that if all functions of Π are efficiently computable, so are the functions of Π ′. Similarly,
one can observe that if Π is correct, then so is Π ′.

Theorem 1. If there exists a CPA secure (n + 1)-circular insecure public key encryption scheme Π, then
there exists a CPA secure (1 to n)-circular insecure encryption scheme Π ′.

The following section shows this theorem via Lemma 1 and Lemma 2.
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4 Analysis of Construction 1

In this section, we will show that if Π is (n+1)-circular insecure and CPA secure, then Π ′ is (1 to n)-circular
insecure and CPA secure.

4.1 Circular Insecurity Example

Before we show the circular insecurity of Π ′ we will give an example by setting n = 2.
Let Π be a 3-circular insecure and CPA secure public key encryption scheme and suppose Π ′ is con-

structed from Π via Construction 1. We can show that Π ′ is both 1-circular insecure and 2-circular insecure.
Fix a security parameter η. Consider some adversary A such that

Pr[CIRCA,Π(3, η) = 1] ≥ 1

2
+ ϵ(η).

To see Π ′ is 1-circular insecure, let (pk, sk)← G′(1η). Define adversary A′
1 as follows:

A′
1:
1. Receive η and pk = pk[0], pk[1], pk[2], s. Send pk[0], pk[2], pk[1] to A.
2. Receive cb = ⟨1, cb[0], cb[1]⟩. Send s, cb[1], cb[0] to A.
3. When A outputs b′, output b′.

In the event b = 1, A′
1 has sent ciphertexts

s← E(pk[0], sk[2])
c1[1]← E(pk[2], sk[1])
c1[0]← E(pk[1], sk[0])

to A, which simulates CIRCA,Π(3, η) when its internal coin is 1.
In the event b = 0, A′

1 has sent ciphertexts

s← E(pk[0], sk[2])
c0[1]← E(pk[2], 0|sk[1]|)
c0[0]← E(pk[1], 0|sk[0]|)

toA, which by Lemma 3, simulates CIRCA,Π(3, η) when its internal coin is 0 except with negligible probability.
Therefore we conclude that CIRCA′

1,Π
′(1, η) = CIRCA,Π(3, η) except with negligible probability.

To see Π ′ is 2-circular secure. Consider (pk0, sk0) ← G′(1η), (pk1, sk1) ← G′(1η). Define adversary A′
2 as

follows:

A′
2:
1. Receive η and pk0 = pk0[0], pk0[1], pk0[2], s0 and pk1 = pk1[0], pk1[1], pk1[2], s1.

Send pk1[0], pk1[2], pk0[1] to A.
2. Receive cb0 = ⟨1, cb0[0], cb0[1]⟩ and cb1 = ⟨1, cb1[0], cb1[1]⟩. Send s1, c

b
1[1], c

b
0[0] to A.

3. When A outputs b′, output b′.

In the event b = 1, A′
2 has sent ciphertexts

s1 ← E(pk1[0], sk1[2])
c11[1]← E(pk1[2], sk0[1])
c10[0]← E(pk0[1], sk1[0])

to A, which simulates CIRCA,Π(3, η) when its internal coin is 1.
In the event b = 0, A′

2 has sent ciphertexts

s1 ← E(pk1[0], sk1[2])
c01[1]← E(pk1[2], 0|sk0[1]|)
c00[0]← E(pk0[1], 0|sk1[0]|)

By Lemma 3 we conclude that CIRCA′
2,Π

′(2, η) = CIRCA,Π(3, η) except with negligible probability.
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4.2 Circular Insecurity

Lemma 1. If Π is (n+ 1)-circular insecure and CPA secure, then Π ′ is (1 to n)-circular insecure.

Proof. Let Π be (n+ 1)-circular insecure and CPA secure. Then there exists an adversary A such that

Pr[CIRCA,Π(n+ 1, η) = 1] ≥ 1

2
+ ϵ(η).

Consider an arbitrary ℓ ∈ {1, . . . , n}. We can define an adversary A′
ℓ as follows.

A′
ℓ:

1. Receive η and pk0, . . . , pkℓ−1 where for 0 ≤ x ≤ ℓ− 1

pkx = pkx[0], . . . , pkx[n], sx, hx[n], . . . , hx[3].

Send the following keys to A in the order described:

(a) pkℓ−1[0]
(b) for ℓ+ 1 ≤ i ≤ n in descending order, pkℓ−1[i]
(c) for 0 ≤ j ≤ ℓ− 1 in ascending order, pk(ℓ−1+j) mod ℓ[ℓ− j].

2. Receive cb0, . . . , c
b
ℓ−1 where for 0 ≤ x ≤ ℓ− 1

cbx = cbx[0], . . . , c
b
x[n− 1].

Send the following ciphertexts to A in the order described:

(a) sℓ−1

(b) for ℓ+ 1 ≤ i ≤ n in descending order, hℓ−1[i]
(c) for 0 ≤ j ≤ ℓ− 1 in ascending order, cb(ℓ−1+j) mod ℓ[ℓ− 1− j].

3. When A outputs b′, output b′.

When b = 1, we observe that

sℓ−1 ← E(pkℓ−1[0], skℓ−1[n])

For ℓ+ 1 ≤ i ≤ n

hℓ−1[i]← E(pkℓ−1[i], skℓ−[i− 1])

For 0 ≤ j ≤ ℓ− 1

c1(ℓ−1+j) mod ℓ[ℓ− 1− j]← E(pk(ℓ−1+j) mod ℓ[ℓ− j], skℓ+j mod ℓ[ℓ− 1− j])

which is a n+ 1 encryption cycle of Π, which means A′
ℓ simulates CIRCA,Π(n+ 1, η) when the internal coin

of CIRCA,Π(n+ 1, η) is 1.

When b = 0, we observe that

sℓ−1 ← E(pkℓ−1[0], skℓ−1[n])

For ℓ+ 1 ≤ i ≤ n

hℓ−1[i]← E(pkℓ−1[i], skℓ−[i− 1])

For 0 ≤ j ≤ ℓ− 1

c0(ℓ−1+j) mod ℓ[ℓ− 1− j]← E(pk(ℓ−1+j) mod ℓ[ℓ− j], 0|sk0[0]|)

and by Lemma 3, this simulates CIRCA,Π(n+ 1, η) when the internal coin of CIRCA,Π(n+ 1, η) is 0 except
with negligible probability.

This implies that if ϵ(η) is not negligible, then Π ′ is not ℓ-circular secure.

Therefore we conclude if Π is (n + 1)-circular insecure and CPA secure, then Π ′ is (1 to n)-circular
secure. ⊓⊔
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4.3 CPA security

Let Π be a CPA secure public key encryption scheme. We show Π ′ obtained from Π via construction 1 is a
CPA secure public key encryption scheme via a sequence of games [33].

Without loss of generality, we fix an efficient adversary A′ to play in CPAA′,Π′(η).

Game 0. This is just the game CPAA′,Π′(η) with each step stated explicitly.
1. (pk[0], sk[0])← G(1η), . . . , (pk[n], sk[n])← G(1η).

Compute s← E(pk[0], sk[n]), for 3 ≤ i ≤ n compute h[i]← E(pk[i], sk[i− 1]).
Give η and pk[0], . . . , pk[n], s, h[n], . . . , h[n− 1] to A′.

2. b← $ {0, 1}
3. (m0,m1)← A′.
4. If mb ̸= |sk[0], . . . , sk[n− 1]|, then compute cb ← ⟨0, E(pk[1],mb)⟩.

Otherwise,
(a) Parse mb into mb[0], . . . ,mb[n− 1].
(b) For 0 ≤ i ≤ n− 1, compute cb[i]← E(pk[i+ 1],mb[i]).
Return cb = ⟨1, cb[0], . . . , cb[n− 1]⟩ to A′.

5. A′ outputs b′. The experiment outputs 1 if b = b′, 0 otherwise.

Let S0 denote the event that Game 0. results in 1.

Game 1. Here, we modify how the public key is generated in step 1 of Game 0. In Game 1. sk[n], . . . , sk[2]
is not encrypted.
1. (pk[0], sk[0])← G(1η), . . . , (pk[n], sk[n])← G(1η).

Compute s← E(pk[0], 0|sk[n]|), for 3 ≤ i ≤ n compute h[i]← E(pk[i], 0|sk[i−1]|).
Give η and pk[0], . . . , pk[n], s, h[n], . . . , h[n− 1] to A′.

We let S1 denote the event that the result of Game 1 is 1.

Claim.
|Pr[S0]− Pr[S1]| ≤ negl(η).

Proof. We show this by applying Lemma 3. We define an adversary A that plays ZEROA,Π(n, 2, η) as follows.

A:
1. Receive η, pk0, . . . , pkn−1 and cb0, . . . , c

b
n−1.

2. Send the following to A′ in the order described.
(a) for 0 ≤ i ≤ n− 1 in descending order, pki+3 mod n

(b) for i ∈ {2, . . . , n− 1} in descending order, cbi .
3. Flip a coin d.
4. When A′ queries two equal length challenge messages, m0,m1, if |md| ≠ n|sk0|, compute cd ←
E(pk[1],md) and send ⟨0, cd⟩ to A′. Else parse md to md[0], . . . ,md[n− 1], for 0 ≤ i ≤ n− 1 compute
cd[i]← E(pki+3 mod n,m

d[i]). Send ⟨1, cd[0], . . . , cd[n− 1]⟩ to A′.
5. When A′ outputs d′, A outputs 1 if d = d′, output 0 otherwise.

Since A simulates Game 0. when b = 1 and Game 1. when b = 0, this means when b = 1 A wins if A′ loses,
and when b = 0, A wins if A′ loses. Therefore, we have the following.

Pr[ZEROA,Π(n, 2, η) = 1] =
1

2
Pr[¬S0] +

1

2
Pr[S1]

=
1

2
(1 + Pr[S1]− Pr[S2])

which is either ≥ 1+ϵ(η)
2 or ≤ 1−ϵ(η)

2 . This concludes the proof. ⊓⊔

Game 2.j We let Game 2.0 be Game 1. In Game 2.j where j > 0, we modify how the query is answered
in step 4 of Game 2.(j − 1).
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4. If mb ̸= |sk[0], . . . , sk[n− 1]|, then compute cb ← ⟨0, E(pk[1],mb)⟩.
Otherwise,
(a) Parse mb into mb[0], . . . ,mb[n− 1].
(b) For 0 ≤ i ≤ n− j − 1, compute cb[i]← E(pk[i+ 1],mb[i]).
(c) For n− j ≤ i ≤ n− 1, compute cb[i]← E(pk[i+ 1], 0|sk[0]|).
Return cb = ⟨1, cb[0], . . . , cb[n− 1]⟩ to A′.

We let S2.j denote the event that Game 2.j. results in 1.

Claim.
|Pr[S2.j ]− Pr[S2.(j+1)]| ≤ negl(η).

Proof. We defined an adversary A to play CPAA,Π(η) as follows.

A:
1. Receive η and pk. Label this pk as pkn−j .

2. For i ∈ {0, . . . , n} \ {n− j}, compute pki, ski ← G(1η). Compute s ← E(pk0, 0|sk0|). For 3 ≤ i ≤ n,
compute h[i]← E(pki, 0|sk0|). Send

pk0, . . . , pkn, s, h[n], . . . , h[3]

to A′.
3. Flip a coin d.
4. When receive two equal length challenge messages m0,m1 from A′, if |md| ̸= n · |sk0|, compute

cd ← E(pk[1], cd) and send ⟨0, cd⟩ to A′. Else create and query challenge messages m′
0 = md[n− (j+

1)],m′
1 = 0|md[0]| to receive cb[n−(j+1)]← E(pkn−j ,m

′
b). For i ∈ {0, n− 1}\{n− (j + 1)} compute

cd[i] =

{
E(pk[i+ 1],m[i]) if i ≤ n− (j + 1)

E(pk[i+ 1], 0|m[i]|) otherwise.

Send ⟨1, cd[0], cd[1], . . . , cd[n− 1]⟩ to A′.
5. When A′ outputs d′, A outputs 1 if d = d′, output 0 otherwise.

When b = 0, A simulates Game 2.j when the internal coin is d, and when b = 1, Asimulates Game 2.(j + 1)
when the internal coin is d. Therefore

CPAA,Π(η) =
1

2
Pr[¬S2.j ] +

1

2
Pr[S2.(j+1)]

=
1

2
(1 + Pr[S2.(j+1)]− Pr[S2.j ]).

Therefore, if Π is CPA secure, then |Pr[S2.j ]− Pr[S2.(j+1)]| is negligible. ⊓⊔

Lemma 2. If Π is CPA secure, then Π ′ is CPA secure.

Proof. This is shown via the sequence of games above. Let Π be CPA secure, then for any adversary A′,
it would have only negligible advantage in Game 2.(n). The probability of the event that A′ wins in Game
2.(n) differs from the probability of the event that A′ wins in Game 0 by a negligible amount. Therefore, we
conclude that Π ′ is CPA secure. ⊓⊔

5 Bit Encryption Construction

Construction 2 Given a CPA secure (n + 1)-circular insecure public key bit encryption scheme Π =
(G, E ,D). We obtain Πb = (Gb, Eb,Db) as follows.

Πb:
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– Gb: Compute

(pk[0], sk[0])← G(1η), . . . (pk[n], sk[n])← G(1η).

Compute s← E(pk[0], sk[n]) (bit by bit). For 3 ≤ i ≤ n compute h[i]← E(pk[i], sk[i− 1]) (bit by bit).
Return public key

pk = pk[0], . . . , pk[n], s, h[n], h[n− 1], . . . , h[3].

and secret key

sk = sk[0], . . . , sk[n− 1].

– Eb(pk,m): Note that m ∈ {0, 1}. Parse pk to

pk[0], . . . , pk[n], s, h[n], . . . , h[3].

For 0 ≤ i ≤ n− 1. For 0 ≤ i ≤ n− 1 compute c[0]← E(pk[i+ 1],m), return

c[0], . . . , c[n− 1]

– Db(sk, c) : Parse c into ⟨x, c[0], . . . , c[n− 1]⟩, return

D(sk[1], c[0]).

The proof of CPA security for this construction is similar to the previous proof. In the Games, instead
of parsing m to n strings each of length |sk[0]|, we will instead duplicate n copies of m as m is just a bit.

Now, to show this scheme is (1 to n)-circular insecure. We first remind the readers that for bit encryption,
when we say E(k,m) for |m| > 1, we mean encrypting each bit ofm in order, each time with fresh randomness.
Consider an arbitrary ℓ ∈ {1, . . . , n}. Given (pk0, sk0)← Gb(1η), . . . , (pkℓ, skℓ)← Gb(1η), for 0 ≤ i < ℓ let

cbi ←

{
Eb(pki, ski+1 mod n) if b = 1

Eb(pki, 0|sk0|) otherwise.

To keep the notation tidy, let p = |sk0[0]|.
An adversary Ab

ℓ receiving cb0, . . . , c
b
ℓ−1 can do the following. First for 0 ≤ i < ℓ, parse cbi into

cbi [0], . . . , c
b
i [n− 1]

where for 0 ≤ j ≤ n− 1, cbi [j] is sampled from Eb(pki,mb) for m1 = ski+1 mod ℓ[j], where m0 = 0p.
For 0 ≤ j ≤ n− 1, cbi [j] can be parsed into

cbi [j][0], c
b
i [j][1], . . . , c

b
i [j][p− 1]

where for 0 ≤ x ≤ p, cbi [j][x] is samples from Eb(pki,m′
b) where m′

1 = ski+1 mod ℓ[j][x] (the xth bit of
ski+1 mod n[j]) and m′

0 = 0. We remind the reader that p = |sk0[0]|.
For 0 ≤ x ≤ p− 1, cbi [j][x] can be parsed to

cbi [j][x][0], . . . , c
b
i [j][x][n− 1]

where for 0 ≤ y ≤ n − 1, cbi [i][x][y] is samples from E(pk[i][y + 1],m′′
b ) where m′′

1 = ski+1 mod ℓ[j][x] and
m′′

0 = 0.
Now that the ciphertext has been parsed, the adversary can extract the following in the order described:

1. sℓ−1

2. for ℓ+ 1 ≤ i ≤ n in descending order hℓ−1[i]
3. for 0 ≤ j ≤ ℓ− 1 in ascending order:

(a) for 0 ≤ x ≤ p− 1 in ascending order: cb(ℓ−1+j) mod ℓ[ℓ− 1− j][x][ℓ− 1− j].
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Since

cb(ℓ−1+j) mod ℓ[ℓ− 1− j][0][ℓ− 1− j], . . . , cb(ℓ−1+j) mod ℓ[ℓ− 1− j][p− 1][ℓ− 1− j]

← E(pk(ℓ−1+j) mod i[ℓ− j], sk(ℓ+j) mod ℓ[ℓ− 1− j][0]),

...

E(pk(ℓ−1+j) mod i[ℓ− j], sk(ℓ+j) mod ℓ[ℓ− 1− j][p− 1])

= E(pk(ℓ−1+j) mod i[ℓ− j], sk(ℓ+j) mod ℓ[ℓ− 1− j])

the ciphertexts that the adversary has extracted when b = 1 are sampled from:

1. sℓ1 ← E(pkℓ[0], skℓ[n])
2. for ℓ+ 1 ≤ i < n in descending order, hℓ−1[i]← E(pkℓ−1[i], skℓ−1[i− 1])
3. for 0 ≤ j ≤ ℓ− 1 in ascending order,

c1(ℓ−1+j) mod ℓ[ℓ− 1− j][0, . . . , p− 1][ℓ− 1− j]← E(pk(ℓ−1+j) mod i[ℓ− j], sk(ℓ+1) mod ℓ[ℓ− 1− j]).

which is a n+ 1-cycle with the following keys in Π,

1. pkℓ−1[0], skℓ−1[0]
2. for ℓ+ ≤ i < n, pkℓ−1[i], skℓ−1[i]
3. for 0 ≤ j ≤ ℓ− 1, pk(ℓ−1+j) mod ℓ[ℓ− j], sk(ℓ−1+j) mod ℓ[ℓ− j].

And in the event where b = 0, by Lemma 3, is indistinguishable from encyrptions of zeros.

6 Symmetric Encryption Scheme

This section discusses how to modify the construction to work in the symmetric key setting. The are two
changes to be made. The first change in the construction required is to compute the s and h[n], . . . h[3] in the
encryption function and output the result as part of the ciphertext. i.e. each time the encryption function
computes s← E(sk[0], sk[n]), h[n]← E(sk[n], sk[n− 1]), . . . , h[3]← E(sk[3], sk[2]) and append this at the end
of the ciphertext. The second change is that in the event where the message space equals the key space, the
symmetric encryption function needs to create an additional ciphertext, say with sk[1], as now the length of
the (secret) key is longer.

Acknowledgement. I thank Bruce Kapron for his helpful comments.
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A Zero Encryption Equivalence Lemma

Although CPA security does not imply circular security, it provides indistinguishability on ciphertexts that
are “almost” an encryption cycle. We formally describe what we mean by “almost” in the following experi-
ment.

ZEROA,Π(n, t, η):
1. (pk0, sk0)← G(1η), . . . , (pkn−1, skn−1)← G(1η). Send η and pk0, . . . , pkn−1 to A.
2. A random coin b is flipped.
3. For i ∈ {0, . . . , n− 1} compute

cbi ←

{
E(pki, ski+1 mod n) if b = 1 and i ≥ t,

E(pki, 0|sk1|) otherwise.

Send cb0, . . . , c
b
n−1 to A.

4. When A outputs b′, the experiment result in 1 if b = b′, 0 otherwise.

Lemma 3. If a public key encryption scheme Π = (G, E ,D) is CPA secure. Then for any PPT adversary
A, any n ≥ 1, and any t ≥ 1,

Pr[ZEROA,Π(n, t, η) = 1] ≤ 1

2
+ negl(η)

for all but finitely many η.

Applying the soundness result from [27] is an easy method to show this. However, we provide the following
proof to keep this paper self-contained without elaborating on symbolic encryption.

Proof. Assume that Π is CPA secure. We will show that for any PPT adversary A,

|Pr[ZEROA,Π(n, t, η) = 1]− Pr[ZEROA,Π(n, t+ 1, η) = 1]| ≤ negl(η)
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for any n, t ≥ 1. Then the statement follows since for any t′ ≥ n it must be the case that

Pr[ZEROA,Π(n, t′, η) = 1] =
1

2
.

Consider an arbitrary adversary A such that

|Pr[ZEROA,Π(n, t, η) = 1]− Pr[ZEROA,Π(n, t+ 1, η) = 1]| > 1

2
+ ϵ(η).

Now consider an adversary A′ to play in CPAA′,Π(η) defined as follows.

A′:
1. Receive η and pk. Label this pk as pkt.
2. For i ∈ {0, . . . , n− 1} \ {t} compute (pki, ski)← G(1η). Give pk0, . . . , pkn−1 to A.
3. Query challenge messages m0 = 0|sk| and m1 = skt+1 to receive cbt ← E(pkt,mb).
4. For i ∈ {0, . . . , n− 1} \ {t} compute

ci ←

{
E(pki, 0|sk|) if i < t

E(pki, ski+1 mod n) otherwise.

Give c0, . . . , c
b
t , . . . , cn to A.

5. When A outputs b′, output b′.

It can be observed that when b = 0, A′ has simulated ZEROA,Π(n, t+1, η) and when b = 1, A has simulated
ZEROA,Π(n, t, η). Therefore we conclude that if ϵ(η) is not negligible, then Π is not CPA secure. ⊓⊔
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