
Blind zkSNARKs for Private Proof Delegation
and Verifiable Computation over Encrypted Data

Mariana Gama1 , Emad Heydari Beni1,2 , Jiayi Kang1 , Jannik Spiessens1 ,
and Frederik Vercauteren1

1 COSIC, KU Leuven, Leuven, Belgium
firstname.lastname@esat.kuleuven.be

2 Nokia Bell Labs, Antwerp, Belgium
emad.heydari_beni@nokia-bell-labs.com

Abstract. In this paper, we show for the first time it is practical to pri-
vately delegate proof generation of zkSNARKs to a single server for com-
putations of up to 220 R1CS constraints. We achieve this by computing
zkSNARK proof generation over homomorphic ciphertexts, an approach
we call blind zkSNARKs. We formalize the concept of blind proofs, an-
alyze their cryptographic properties and show that the resulting blind
zkSNARKs remain sound when compiled using BCS compilation. Our
work follows the framework proposed by Garg et al. (Crypto’24) and
improves the instantiation presented by Aranha et al. (Asiacrypt’24),
which implements only the FRI subprotocol. By delegating proof gener-
ation, we are able to reduce client computation time from 10 minutes to
mere seconds, while server computation time remains limited to 20 min-
utes. We also propose a practical construction for vCOED supporting
constraint sizes four orders of magnitude larger than the current state-
of-the-art verifiable FHE-based approaches. These results are achieved
by optimizing Fractal for the GBFV homomorphic encryption scheme,
including a novel method for making homomorphic NTT evaluation
packing-friendly by computing it in two dimensions. Furthermore, we
make the proofs publicly verifiable by appending a zero-knowledge Proof
of Decryption (PoD). We propose a new construction for PoDs optimized
for low proof generation time, exploiting modulus and ring switching in
GBFV and using the Schwartz-Zippel lemma for proof batching; these
techniques might be of independent interest. Finally, we implement the
latter protocol in C and report on execution time and proof sizes.

Keywords: vCOED · zkDel · Blind zkSNARKs · Proofs of Decryption

1 Introduction

Zero-knowledge Succinct Non-interactive ARguments of Knowledge (zkSNARKs)
are undeniably one of the most promising advanced cryptographic protocols de-
veloped in the last decade. Simply put, a zkSNARK allows one to generate a
proof π ← ProveF (u, y) that some output y is the result of F (u). The proof π can
be verified in sublinear cost compared to the computation F itself, a property

https://orcid.org/0000-0002-2759-043X
https://orcid.org/0000-0003-3352-6968
https://orcid.org/0000-0002-1093-7978
https://orcid.org/0009-0005-4738-5758
https://orcid.org/0000-0002-7208-9599

2 M. Gama, E. Heydari Beni, J. Kang, J. Spiessens, F. Vercauteren

known as succinctness. Additionally, the proof π does not leak any private data
required for (or generated by) computing F , a property known as zero-knowledge.
Because of these unique properties, zkSNARK proofs are particularly useful in
two main categories of real-world applications.

The first category is Privacy-Enhancing Technologies (PETs), where zk-
SNARKs and their subcomponents allow one to produce an efficiently verifiable
statement of any complexity while retaining privacy. Examples of applications
are anonymous credential systems [77] (for proving possession of some private
credentials) and private transaction systems [10] (for proving that a private
ledger has been correctly updated). Note that in these settings, it is the user
who performs the costly proving operation, limiting the complexity of the state-
ment to be proven. Solutions for this problem were proposed in [75,35,48], where
multi-party computation was used to build a zero-knowledge proof delegation
(zkDel) scheme. Even though this approach is more efficient than single-server
delegation, it requires selecting a group of external servers who are trusted not
to collude and is, therefore, harder to bootstrap in practice.

Secondly, zkSNARKs are also used to add verifiability to outsourced com-
putations (e.g., in Cloud Computing scenarios [44,30]). The user outsources a
computation to the server and then verifies a zkSNARK proof to check whether
the returned output is the result of the requested computation. Since the prover
cannot compute the proof without knowing the witness, the user has to reveal
their inputs and outputs to the server. This can be avoided by using verifi-
able Computation Over Encrypted Data (vCOED). Possible constructions for
vCOED were first described by Gennaro et al. [51] and have received more aca-
demic interest in the last years following the emergence of zkSNARKs. These
schemes focus on proving the correct execution of homomorphic computations
using proof systems and are better known as verifiable Fully Homomorphic En-
cryption (vFHE). Although recent works [6] have achieved leaps in performance,
they struggle with arithmetizing the maintenance operations in homomorphic
encryption (HE) schemes.

In [49], Garg et al. proposed a technique for constructing both zkDel and
vCOED schemes by applying HE schemes to proof systems (as opposed to apply-
ing proof systems to HE schemes, as in vFHE). Generally, an HE scheme E allows
generating a ciphertext ct[u] ← Enc(u) and computing ct[y] ← HomF (ct[u]),
where ct[y] is and encryption of y = F (u); in other words, it allows homomorphi-
cally computing on ciphertexts. The technique presented in [49] can be described
as replacing the prover computation by ct[π]← HomProveF (ct[u], ct[y]), i.e., ho-
momorphically computing the proving computation. In the zkDel setting, this
allows the prover to delegate the costly proof generation to a single untrusted
server. In the vCOED setting, it promises better performance than vFHE since
it proves the operations in the plaintext space instead of the ciphertext space,
avoiding the need to arithmetize HE schemes. In [5], Aranha et al. consider a
similar approach and present a concrete instantiation of this technique for the
vCOED setting. Our paper further extends this line of research; we refer to Sec-

Blind zkSNARKs for zkDel and vCOED 3

tion 3 for a thorough comparison with previous works. In particular, we answer
the following fundamental questions:

1. What security and privacy guarantees do these constructions provide?
2. Can these constructions achieve practical performance?
3. Can these constructions be efficiently publicly verified?

To answer the first question, we construct a theoretical framework for a new
primitive we call blind proofs by defining a blind variant of holographic Inter-
active Oracle Proofs (hIOPs) and zkSNARKs. We also define the completeness,
zero-knowledge and soundness properties and prove that they hold for blind
hIOPs. We then show that the corresponding properties also hold for blind zk-
SNARKs, which can be obtained from blind hIOPs by applying the usual BCS
compilation [12].

To answer the second question, we provide the first complete method for com-
puting blind zkSNARKs, which remains practical even for large computations.
We optimize the Fractal zkSNARK [37] so that it can be efficiently evaluated
using the recent GBFV homomorphic encryption scheme [50] and design spe-
cialized homomorphic circuits using two-dimensional NTTs.

Finally, we address the last question by showing that public verifiability can
be achieved through Proofs of Decryption (PoDs). We propose a state-of-the-
art construction incorporating two techniques from homomorphic encryption,
modulus switching and ring switching, and propose a novel method for batching
PoDs. We implement3 our PoD in C and show that proving decryption of several
thousands of ciphertexts can be done in a matter of seconds and results in a small
12KB proof.

2 Technical overview

As discussed above, instead of computing ProveF , the prover computes HomProveF

to obtain a proof for valid computation of F without seeing the values that F
was computed on. The blindly generated proof should then be decrypted before
it can be verified. We coin these schemes blind proofs due to their similarity to
blind signatures [29], which allow one to sign a message without revealing its
content.

Consider, for instance, an interactive proof system that proves the claim
#»a ⊙ #»

b = #»c for some vectors of field elements that were previously committed to.
Define polynomials fa, fb, fc that interpolate these vectors over some evaluation
domain H. Now, notice that a polynomial ZH that vanishes on H, i.e. ZH(a) =
0 ⇔ a ∈ H, will divide the polynomial fa · fb − fc if and only if the claim
holds. In other words, the original claim has been reduced to the claim that
Q := (fa · fb − fc)/ZH is a polynomial of bounded degree. More generally, this
technique can be used to reduce claims about generic computations to low-degree
tests of rational functions of polynomials, also known as rational constraints [37].

3 https://github.com/KULeuven-COSIC/blind_zkSNARKs

https://github.com/KULeuven-COSIC/blind_zkSNARKs

4 M. Gama, E. Heydari Beni, J. Kang, J. Spiessens, F. Vercauteren

Moving this proof system to the blind setting requires the prover to per-
form these proving steps homomorphically, starting from the HE encryptions of
#»a ,

#»

b and #»c . Akin to all HE applications, achieving practical efficiency requires
tailoring the proving computation to homomorphic evaluation. In particular, it
includes avoiding nonlinear computations since they require costly multiplica-
tions between ciphertexts that can be orders of magnitude more expensive than
scalar multiplications depending on the specific HE scheme.

Hence, we select the Fractal proof system [37] since it reduces – using a
limited number of non-linear computations – the claim of a generic computa-
tion (in the form of an R1CS constraint system) to rational constraints. The
remaining proving steps, namely the low-degree tests, can be performed us-
ing the FRI [9] proof system, which is completely linear. In broad terms, FRI
proves that the evaluation Q

∣∣
L

at some domain |L| > |H| is sufficiently close
to a Reed-Solomon (RS) code, i.e., it corresponds to a polynomial of bounded
degree. Notice that if the commitments to #»a ,

#»

b , #»c are in the form of vector
commitments to fa

∣∣
L
, fb
∣∣
L
, fc
∣∣
L
, then the RS code of Q(X) does not need to

be explicitly computed, as each of its elements can be efficiently reconstructed
from openings to those commitments (e.g. computing Q(ℓi) from fa(ℓi), fb(ℓi)
and fc(ℓi)). The fact that Fractal and FRI are especially suitable for the blind
setting due to their linearity was first noticed by Garg et al [49].

However, homomorphic operations accumulate noise in the ciphertexts, and
HE parameters have to be large enough to accommodate this noise growth.
Therefore, besides avoiding non-linear operations, one should also limit the total
depth of the homomorphic circuit. Take, for example, the computation of the
“domain extension” from #»a = fa

∣∣
H

to fa
∣∣
L
, which is also completely linear. One

usually computes the coefficients of fa using an inverse NTT followed by an NTT
over the larger domain to compute fa

∣∣
L
. Although NTTs are usually performed

using a base-2 Fast Fourier Transform (FFT) to minimize the total number of
operations, Aranha et al. [5] have suggested computing them in a larger base
b such that the circuit depth is logb(N) for a vector of size N . Together with
several other optimizations, they were able to provide a practical construction
for computing blind FRI for polynomials up to degree 215.

As a first step towards making blind zkSNARKs practical, we provide new
algorithms that are even better tailored to HE evaluations. Thereby, we are able
to compute blind FRI for polynomials up to degree 220 in a practical estimated
runtime. Crucially, we construct algorithms that can better exploit the Single
Instruction Multiple Data (SIMD) capabilities that many HE schemes natively
support. This allows us to encrypt a vector #»a of size N into N/P ciphertexts
encrypting P plaintext elements each. HE operations performed on these packed
ciphertexts will then correspond to element-wise operations on the packing vec-
tors of size P . Therefore, our algorithms are not only fairly linear and correspond
to low-depth circuits, they also accommodate some level of parallelism to exploit
the SIMD property.

We now revisit the example of blindly computing an NTT. It is well-known
that the base-2 FFT algorithm supports local element-wise operations if and

Blind zkSNARKs for zkDel and vCOED 5

only if it simultaneously performs a bit-reversal permutation. In the blind set-
ting, such permutation would significantly increase the cost of subsequent homo-
morphic operations. Reversing the permutation before the next FFT invocation
would also be costly since it requires swapping elements that are packed in dif-
ferent ciphertexts. In this paper, we describe a different approach that orders
the N/P ciphertexts in two dimensions – one orthogonal to the SIMD packing
and one parallel to the packed vectors – and then computes a two dimensional
NTT (2D-NTT) [40]. This allows us to select an optimal homomorphic circuit
that balances operation count, circuit depth and parallelism. Specifically, the
NTT performed parallel to the packing is performed as a matrix-vector multi-
plication that uses the baby-step giant-step algorithm to minimize costly HE
operations. The second NTT can be computed as a large base butterfly FFT
since the permutation it causes will be orthogonal to the ciphertext packing.
In Section 6.1, we show that the permutation caused by the 2D-NTT does not
significantly increase the HE operation count.

Another challenge that arises when blindly computing proof systems is that
they generally rely on large field sizes (log |F| ≈ 128 to 256) for soundness
and one would therefore require an HE scheme that supports large plaintext
spaces. HE schemes such as BFV [23,46]/BGV [24] have the plaintext space

Z[X]
(Xn+1,p)

∼= Znp and therefore support a large packing size n, but have the disad-
vantage that noise growth scales linearly with p. CLPX [31], on the other hand,
uses the plaintext space Z[X]

(Xn+1,X−b)
∼= Zp of size p = bn + 1 and therefore sup-

ports no packing. However, this allows encrypting plaintexts using lower norm
polynomial representatives, thereby significantly decreasing the noise growth.
We avoid this dichotomy by using a recent HE scheme named GBFV [50] that
uses the generalized plaintext space Z[X]

(Φm(X),t(X)) , where Φm(X) is the m-th
cyclotomic polynomial and t(X) is the plaintext modulus. We select parame-
ters Φm and t such that the plaintext space becomes isomorphic to Fℓp2 , where
p = 264 − 232 + 1 is the Goldilocks prime and ℓ is the SIMD capacity. The field
extension Fp2 is a popular choice in zkSNARK implementations because of its
efficient arithmetic [17]. We notice that this extension is also especially suitable
to the blind zkSNARK setting since it causes small noise growth. In GBFV,
the SIMD packing capacity ℓ ∈ {96, 192, 384, 768, 1536, 3072} is smaller than the
lattice dimension deg(Φm). However, for our homomorphic circuit, this does not
lower performance since we find the lowest operation count for l = 384.

Thus far, we have addressed our techniques for the homomorphic evaluation
of Fractal’s hIOP proof system. These techniques are covered in more detail in
Section 6, where we provide an explicit construction for the Blind hIOP (BhIOP)
compiled from the Fractal hIOP. Ben-Sasson et al. [12] have shown that using
BCS compilation one can compile an IOP into a zkSNARK in the Random Oracle
Model (ROM). However, naively applying this compilation in the blind setting
would require homomorphically computing commitments and hash functions.
Fortunately, we prove that it is possible to simply apply BCS compilation to
BhIOPs, as previously claimed by Garg et al. and by Aranha et al. We build

6 M. Gama, E. Heydari Beni, J. Kang, J. Spiessens, F. Vercauteren

upon the existing theoretical framework by Holmgren [60] and Block et al. [16]
to prove that any BhIOP compiled from a round-by-round knowledge sound
hIOP will be round-by-round plaintext knowledge sound (rbr-pks), a property
we define for BhIOPs. We also extend the property of non-adaptivity, defined by
Nassar et al. [73] for IOPs, to the blind setting, and show that BCS compilation
can only be applied to rbr-pks non-adaptive BhIOPs, resulting in Designated-
Verifier Blind zkSNARKs (DV-BzkSNARK). To summarize, it is sufficient for
the blind prover to commit to the HE ciphertext representations of the hIOP
prover messages instead if the verifier is the holder of the secret key that can
decrypt them.

Note that DV-BzkSNARKs are applicable to the vCOED setting. The client
encrypts the inputs to some computation F using an HE scheme and sends them
to the server. The server computes F homomorphically and sends the encrypted
outputs and accompanying DV-BzkSNARK proof back to the client, who can
then decrypt them and verify the proof. In the zkDel setting, the client is a prover
that privately outsources the proving computation by sending HE ciphertexts
of their private inputs (or the entire computation trace) to the server. However,
the returned proof is designated-verifier and can thus only be verified by the
client prover. We solve this by extending our compiler such that the secret key
holder can construct a Publicly Verifiable BzkSNARK (PV-BzkSNARK) from
a DV-BzkSNARK by appending decryptions along with a zero-knowledge Proof
of Decryption (PoD), as suggested in [49]. By doing so, any party can verify a
normal zkSNARK proof on plaintexts and subsequently check that they corre-
spond to the ciphertexts committed to in BCS compilation – without learning
the secret key that could be used to decrypt the private prover inputs.

The viability of PV-BzkSNARKs for zkDel depends on the computation cost
that is required from the client prover to generate the PoDs. Therefore, we con-
struct a prover-efficient PoD scheme specifically for this setting. In particular,
we want to prove that the inherent noise in some ciphertext (c0, c1) is bounded
by ∥vinh∥∞ < Bq, where vinh := c0 + c1 · sk − ⌊(q/t) ·m⌉ for some message
m, secret key sk and ciphertext modulus q. We build upon the lattice-based
sigma-protocol LNP22 by Lyubashevsky et al. [68]; here, we discuss a few dif-
ficulties regarding compatability with our setting. Firstly, because LNP22 uses
the Jonhsonn-Lindenstrauss lemma, it can only prove 2-norm bounds with some
relaxation factor ψ(L2); because we intend to prove infinity norms, this factor
is increased to

√
nψ(L2). As a consequence we can only construct a valid proof

that ∥vinh∥∞ < Bq if ∥vinh∥∞ < Bq /(
√
nψ(L2)). We observe that in the con-

text of HE ciphertexts this can be interpreted as a log (
√
nψ(L2))-bit noise loss.

Secondly, to accommodate our parameter selection with a non-power-of-two cy-
clotomic, we have to prove the above linear relation in vectorized form instead
of proving it over the smaller power-of-two rings that are used in LNP22. Fur-
thermore, LNP22 uses a modulus q′′ = 5 mod 8 that is not optimal for efficient
HE computations; we address this by modulus switching down to modulus q′′
before committing to the ciphertexts in BCS compilation. Reducing the modulus

Blind zkSNARKs for zkDel and vCOED 7

is possible since in both the vCOED and zkDel settings, this modulus should only
accommodate limited subsequent noise growth. It also has the added benefit of
decreasing the proof size by approximately a factor of log(q/q′′).

However, the LNP22-based PoDs described above would require a proving
runtime of multiple hours because they have O(rn2) proving complexity, and
FRI-based BzkSNARKs for constraint systems of size 220 would require proving
r ≥ 2000 decryptions. We can decrease proving time by using the following
observation: the previous modulus switching operation permits switching to a
smaller lattice dimension while retaining the same level of RLWE-based security.
Therefore, we provide the prover with the required key material to ringswitch [54]
down to a smaller dimension n′, which accelerates the client prover computation
and simultaneously decreases the proof size by a factor of n/n′. Finally, using a
new technique for batching HE PoDs, we can further decrease the client prover
runtime from minutes to seconds. We exploit the additive homomorphism of the
HE ciphertexts [cti]i∈[r] to compute a random linear combination ct∗ :=

∑
αicti

that corresponds to the message m∗ :=
∑
αimi. Using the Schwartz-Zippel

lemma, we show it is sufficient to prove that ct∗ decrypts to m∗. Thereby, we
decrease the asymptotic prover runtime from O(rn2) to O(n2 + rn log n) by
computing more of the total proving computation as ring operations. On the
other hand, since soundness relies on the correctness of the HE scheme for this
linear combination, we require extra noise depth from the HE scheme. We can
again increase efficiency by modulus switching to a modulus q′′ in the PoD
after performing these homomorphic operations, since this enables a subsequent
ringswitch down to an even smaller lattice dimension n′′.

3 Related Works

The two most relevant works are Garg et al. [49] and Aranha et al. [5]. In [49],
the authors first establish FRI on hidden values leveraging linearly-homomorphic
encapsulation (LHEncap), a concept more general than HE. They use it to con-
struct a polynomial commitment scheme on hidden values, which is then com-
bined with a polynomial IOP-based SNARK to enable verifiable private del-
egation of computation (corresponding to vCOED in our paper) and private
outsourcing zkSNARKs to a single server (corresponding to zkDel in our pa-
per). They also provide a construction for weighted threshold signatures without
trusted setup.

In [5], the authors introduce a general transformation for IOPs to work over
HE, denoted as HE-IOP (where the adaptation to holographic IOPs corresponds
to the BhIOP in our paper), in the interest of building vCOED. They focus on
making FRI over HE (HE-FRI) practical by proposing several optimizations,
including a shallow fold algorithm that reduces the Fold operation depth from
n to 1 at the cost of increasing complexity from O(2n) to O(n · 2n) for input
size 2n. This shallow fold algorithm is also utilized in our instantiation of blind
zkSNARKs with Fractal. Furthermore, the authors provide an open-source im-
plementation. Based on this implementation, for a batch of 4096 polynomials of

8 M. Gama, E. Heydari Beni, J. Kang, J. Spiessens, F. Vercauteren

degree up to 215, the prover needs 207.8 seconds to run HE-FRI (including the
Reed-Solomon code encoding) using 32 threads.

Below we present detailed comparisons with these two prior works.

Comparison with Garg et al. [49] Our work constructs vCOED and zkDel
based on the observation by Garg et al. that Fractal and FRI can efficiently be
computed on hidden values due to their linearity. Their work provided the first
theoretical framework for vCOED and zkDel and discusses efficiency in asymp-
totic terms. We extend their work by providing a concrete compiler for construct-
ing vCOED and zkDel, defining the required properties of the hIOP/HE scheme
and proving that the resulting constructions achieve the completeness, soundness
and zero-knowledge properties. Notably, their framework compiles Polynomial
IOPs (PIOPs) to blind zkSNARKs by using polynomial commitment schemes on
hidden values, which they construct using FRI on hidden values. Our compiler
constructs blind zkSNARKs starting from Reed-Solomon hIOPs (RS-hIOPs) by
using FRI directly, avoiding the need of a polynomial commitment scheme on
hidden values.

We further extended their work by providing concrete algorithms for blind
Fractal and a proof of decryption scheme. We also select specific parameters for
Fractal, FRI and the HE scheme which allows us to gauge concrete efficiency and
identify practical challenges. For example, as pointed out in [5], the assumption
of decryptable LHEncap in [49] overlooked the challenge that the evaluation cor-
rectness of HE schemes needs to support the homomorphic operations in the
blind proofs, posing a significant obstacle for noise management in practice. Our
work is the first to demonstrate the feasibility of such assumptions in the context
of Fractal, as shown in Table 1. In fact, our algorithm not only ensures the result-
ing noise remains below the decryption bound but also leaves a sufficient noise
gap to enable circuit privacy (via noise flooding) in vCOED and accommodate
the relaxation factor in the PoD of the zkDel scheme.

Comparison with Aranha et al. [5] Aranha et al. [5] demonstrated the
feasibility of FRI in the blind setting (for polynomials of degree 215) through
implementation. We extend their work by also demonstrating the practicality
of blind FRI (for polynomials of degree 220) through microbenchmarking4, i.e.
deriving runtime estimates from operation counts. Furthermore, we also demon-
strate the practicality of the Fractal zkSNARK in the blind setting, of which
blind FRI is a subroutine. Fractal contains subprocedures that are more com-
putationally intensive than FRI, such as computing Az,Bz,Cz in the R1CS
constraint system and performing the lincheck protocol. Our work also provides
improved algorithms for computing FRI in the blind setting. We list technical
differences below.

4 The GBFV scheme, which serves as the HE scheme used in our construction, has not
yet been implemented for non-power-of-two cyclotomics and large plaintext spaces.

Blind zkSNARKs for zkDel and vCOED 9

– The security requirement of FRI necessitates the use of a large field Fpd
with a size of at least 128 bits. In [5], the arithmetic of Fpd is emulated
through Fp, where d ciphertexts are needed to encrypt a single value in Fpd ,
resulting in memory and efficiency overhead. In contrast, we leverage the
recent GBFV [50] homomorphic encryption scheme, which natively supports
the arithmetic of Fpd while offering flexibility in balancing packing capacity P
and noise growth. As shown in Sections 6 and 8, we select parameter sets that
offer a sufficient number of SIMD slots to achieve a practical performance
as well as sufficient noise capacity for computing blind FRI after blindly
computing the Fractal hIOP.

– The NTT algorithms in [5] are used for Reed-Solomon encoding in FRI, and
their implementation performs the NTT for a batch of 4096 polynomials that
are encoded in the 4096 SIMD slots of BGV/BFV ciphertexts. However, if
one has to perform the NTT for only k ≪ 4096 polynomials at once, their ap-
proach will only use k slots while leaving the rest unused, resulting in higher
memory usage and reduced efficiency. Note that in Fractal, one will have
to perform the NTT for at most k = 4 polynomials at once. Therefore, we
take an alternative approach that allows using all slots in a ciphertext, even
when processing a single polynomial (k = 1). We refer to it as 2D-NTT [40],
which is also known as the Map-Reduce NTT in [78] and NTT with tensorial
decomposition in [71]. While the 2D-NTT has been previously explored in
the context of horizontal scalability for distributed zero-knowledge proof sys-
tem [80] and hardware acceleration [1,14], its compatibility with HE packing
has not been studied in prior research, to the best of our knowledge.

– To verify the consistency of the messages sent by the prover, the verifier (in
vCOED) needs to decrypt to obtain a subset of messages from ciphertexts.
To reduce the cost of decrypting a subset, [5] employs a repacking proce-
dure. This involves first converting slot-encoded ciphertexts into the coef-
ficient encoding, then extracting the relevant coefficients as LWE samples,
which are subsequently repacked using a key-switching algorithm [38,39]. In
our work, we use different FHE techniques to reduce the decryption cost,
namely reducing the lattice dimension from ring switching [54] and reducing
the ciphertext modulus from modulus switching. These techniques do not
require transformation to coefficient encoding, and more importantly, their
combination with the slot-wise Schwartz-Zippel lemma significantly reduces
cost of PoD in the zkDel setting.

Finally, our formalization of blind proofs presents theoretical improvements
over [5]. This includes highlighting the necessity of non-adaptivity in BCS com-
pilation (although to the best of our knowledge, all known hIOPs possess this
property) and deriving a tighter RBR soundness error bound, where we conclu-
sively prove that the correctness error of the HE scheme does not help dishonest
provers.

Related works regarding proof of decryption. Verifiable decryption was
first introduced in [26] together with verifiable encryption, and lattice-based con-

10 M. Gama, E. Heydari Beni, J. Kang, J. Spiessens, F. Vercauteren

structions have been proposed for the BGV homomorphic encryption scheme [24]
in [66,56,4,28,61] and for the Kyber key encapsulation scheme [20] in [69,68].

The work [66] addresses the special case where the plaintext modulus is 2,
and the works [56,4,28,61] discuss distributed verifiable decryptions, where the
secret key is shared among multiple parties. While [28] also employs LNP22,
their construction (as well as the construction in [61]) requires committing to
both the NTT and the coefficient representations of the secret key (an element
in the ring Rm,q where m is a power-of-two) and uses the NTT representation to
facilitate polynomial multiplications in this ring. In contrast, we commit only to
the coefficient representation and perform polynomial multiplication via matrix-
vector multiplication using the rotation matrix of Rm,q. This not only reduces
the commitment size but also removes the restriction of m being a power-of-two
cyclotomic order, making it applicable to our parameters in Section 8, where
m = 7 · 3 · 211.

Other methods for vCOED vFHE [64,47,6,79] is an alternative approach to
achieve vCOED by applying proof systems to HE schemes. While vFHE ensures
security against key-recovery attacks, the state-of-the-art vFHE constructions
can only verifiably outsource computations involving hundreds of constraints in
a runtime similar to our vCOED approach with 220 constraints; thus, our work
achieves an improvement of four orders of magnitude compared to vFHE-based
approaches. The effect of key-recovery attacks can be mitigated by avoiding
reusing the same HE secret key. As such, at most one bit of information about
the plaintext/secret key is leaked (only when the verifier signals to the prover
whether verification passes), as carefully analyzed in [5].

4 Preliminaries

4.1 Commitment scheme

We define a commitment scheme following [45,4].

Definition 1 (Commitment scheme). A commitment scheme CT = (KeyGen,
Com,Open) includes the following probabilistic polynomial-time algorithms:

– CT .KeyGen(1λ): for a given security parameter λ, it returns public param-
eters pp, which define a message space SM , a randomness space SR and a
commitment space SC .

– CT .Compp(m, r): for a given message m ∈ SM and some randomness r←SR,
it returns a commitment Cm.

– CT .Openpp(m, r, C): for a given tuple (m, r, C) ∈ SM × SR × SC , it returns
either acc or rej.

Blind zkSNARKs for zkDel and vCOED 11

Binding. A commitment scheme CT is computationally binding if for any
pp←CT .KeyGen(1λ) and probabilistic polynomial-time adversary A, it holds that

Pr

m0 ̸= m1

∣∣∣∣∣∣
(C,m0, r0,m1, r1)←A(pp)
CT .Openpp(m0, r0, C) = acc
CT .Openpp(m1, r1, C) = acc

 = negl(λ).

Hiding. A commitment scheme CT is computationally hiding if for any
pp←CT .KeyGen(1λ) and probabilistic polynomial-time adversary A it holds that∣∣Pr [A(C) = 1

∣∣ C←CT .Compp(m0)
]

−Pr
[
A(C) = 1

∣∣ C←CT .Compp(m1)
]∣∣ ≤ negl(λ).

We also define a verification oracle OCT (Cm,m) which returns acc when there
exists an r ∈ SR such that CT .Open(m, r, Cm) = acc and rej otherwise.

4.2 Homomorphic Encryption (HE)

We define a secret-key HE scheme with plaintext space P and ciphertext space C
following [52,25,57,32].

Definition 2 (Homomorphic Encryption). An HE scheme E = (KeyGen,Enc,
Dec,Eval) includes the following polynomial-time algorithms:

– E .KeyGen(1λ): given the security parameter λ, it returns a secret key sk and
a public evaluation key evk.

– E .Encsk({mi}i∈[r]): given the secret key sk and plaintexts {mi}i∈[r] ∈ Pr, it
returns ciphertexts {cti}i∈[r] ∈ Cr, which can also be denoted as {ct[mi]}i∈[r].

– E .Decsk({cti}i∈[r]): given the secret key sk and ciphertexts {cti}i∈[r] ∈ Cr,
it returns plaintexts {mi}i∈[r] ∈ Pr.

– E .Evalevk(f, {cti}i∈[ℓ]): given the public evaluation key evk, a function
f : Pℓ → Pr and a set of ciphertexts {cti}i∈[ℓ] ∈ Cℓ, it returns ciphertexts
{ct′i}i∈[r] ∈ Cr.

CPA security. An HE scheme E is IND-CPA secure if for any (sk, evk) ←
E .KeyGen(1λ), two plaintexts m0,m1 ∈ P and probabilistic polynomial-time ad-
versary A, it holds that∣∣Pr [A(evk, ct) = 1

∣∣ ct← E .Encsk(m1)
]

−Pr
[
A(evk, ct) = 1

∣∣ ct← E .Encsk(m0)
]∣∣ ≤ negl(λ).

Correctness. An HE scheme E is correct for functions in F if for any (sk, evk)←
E .KeyGen(1λ), function f ∈ F , plaintexts {mi}i∈[ℓ] and their encryptions {cti} ←
E .Encsk({mi}), the relation

E .Decsk (E .Evalevk(f, ct1, . . . , ctℓ)) = f(m1, . . . ,mℓ),

12 M. Gama, E. Heydari Beni, J. Kang, J. Spiessens, F. Vercauteren

holds with probability no lower than 1− negl(λ).

Circuit Privacy. An HE scheme E satisfies computational circuit privacy for
functions in F if there exists a probabilistic polynomial-time simulator Sim such
that for any security parameter λ, HE keys (sk, evk) ← E .KeyGen(1λ), set of
plaintexts {mi}, function f ∈ F and probabilistic polynomial-time distinguisher
D, it holds that∣∣Pr [D(ct, sk) = 1

∣∣ ct← Sim(1λ, sk, f({mi}))
]

−Pr

[
D(ct, sk) = 1

∣∣∣∣ {cti} ← E .Encsk({mi})
ct← E .Evalevk(f, {cti})

]∣∣∣∣ ≤ negl(λ).

This property can be achieved using a technique called noise-flooding [52,18,63].

Remark. For use in Subsection 5.2, we define E .len to be the minimal length in
bits of a decryptable ciphertext. In the context of Subsection 5.3, the ciphertext
should additionally still allow for an efficient proof of decryption.

4.3 Relations and languages

A relation R on some plaintext space P is a subset of (x,w) ∈ P∗ × P∗. For
some relation R we define a language LR = {x | ∃w : (x,w) ∈ R}. Similarly we
define an indexed relation that is a subset of (i,x,w) ∈ P∗ ×P∗ ×P∗ which in
turn defines a relation

Ri =
{
(x; w) : (i; x; w) ∈ R

}
=
{
(x; w) : Az ◦Bz = Cz for z = (x,w)

}
,

and the second equality shows an example where the index i consists of a Rank-1
Constraint Satisfiability (R1CS) circuit defined by the matrices A, B and C.

4.4 Zero-knowledge Succinct Non-interactive ARgument of
Knowledge (zkSNARK)

We will define pre-processing zkSNARKs in the Random Oracle Model (ROM)
following Chiesa et al. [37]. Let us denote with U(λ) the uniform distribution
over all functions P∗ → {0, 1}λ. A function ρ← U(λ) is referred to as a Random
Oracle (RO). We denote an algorithm A having oracle access to some object x
as A[[x]].

Definition 3 (preprocessing zkSNARK in the ROM). A preprocessing
zkSNARK IΠ = (Ind,P,V) is a non-interactive proof system for some indexed
relation R that includes the following polynomial-time algorithm:

– IΠ.Ind[[ρ]](i): for a given index i, using access to the RO ρ, it returns the index
keys (ipk, ivk).

and the following probabilistic polynomial-time algorithms:

Blind zkSNARKs for zkDel and vCOED 13

– IΠ.P[[ρ]](ipk,x,w): for a given index prover key ipk, statement x and witness
w, using access to the RO ρ, it returns a proof π.

– IΠ.V[[ρ]](ivk,x, π): for a given index verifier key ivk, statement x and proof
π, using oracle access to the RO ρ, it returns either acc or rej.

A zkSNARK should satisfy the following properties.

Completeness. For any (i,x,w) ∈ R and ρ← U(λ) it holds that

Pr
[
IΠ.V[[ρ]](ivk,x, π) ̸= acc

∣∣ π ← IΠ.P[[ρ]](ipk,x,w)
]
≤ δ

where δ is the completeness error and (ipk, ivk) = IΠ.Ind[[ρ]](i)

Zero-knowledge. For any (i,x,w) ∈ R and ρ← U(λ), if there exists a proba-
bilistic polynomial-time simulator Sim such that for any unbounded distinguisher
D it holds that∣∣∣Pr [D[[ρ[µ]]](π) = 1

∣∣∣ (µ, π)← Sim[[ρ]](i,x)
]

−Pr
[
D[[ρ[µ]]](π) = 1

∣∣ π ← IΠ.P[[ρ]](ipk,x,w)
]∣∣ ≤ z

where (ipk, ivk) = IΠ.Ind[[ρ]](i) and ρ[µ] equals µ(x) if µ is defined on x and oth-
erwise equals ρ(x), then IΠ has z-statistical zero-knowledge. If D is probabilistic
polynomial-time then IΠ has z-computational zero-knowledge.

Soundness. For any index i, statement x /∈ LRi
, RO ρ ← U(λ), index keys

(ipk, ivk) = IΠ.Ind[[ρ]](i) and prover P∗ it holds that

Pr
[
IΠ.V[[ρ]](ivk,x, π) = acc

∣∣ π ← P∗[[ρ]]
]
≤ ε

where ε is the soundness error.

Knowledge soundness. For any index i, statement x, index keys (ipk, ivk)←
IΠ.Ind[[ρ]](i) and prover P∗ there exists a polynomial-time extractor Ext such that

Pr
[
(x,w) ∈ Ri

∣∣∣ w← ExtP
∗
(i,x)

]
≥ Pr

[
IΠ.V[[ρ]](ivk,x, π) = acc

∣∣ π ← P∗[[ρ]]
]
− εk

where εk is the knowledge error and ExtP
∗

may interact with P∗ by rewinding it
in a black-box manner.

Remark. Some authors [15,37] define stronger adaptive versions of these prop-
erties. For example in knowledge soundness they have the prover P ∗ choose the
index i and statement x. Although it is possible to define all these and the
following properties adaptively, for ease of notation, we will refrain.

Remark. Note that this definition of zkSNARKs has no restriction of proof
length or verifier cost and is therefore not necessarily succinct. However, in-
stead of using a different name such as Non-interactive Random Oracle Proof
(NIROP) [12], we follow Chiesa et al. [36] and use the popularized term zk-
SNARK.

14 M. Gama, E. Heydari Beni, J. Kang, J. Spiessens, F. Vercauteren

4.5 Interactive Oracle Proofs (IOPs)

First introduced by Ben-Sasson et al. [12], an Interactive Oracle Proof (IOP) is
a form of interactive proof where the prover sends µ + 1 messages in the form
of oracles [[mi]] to proof strings mi ∈ P∗ and the verifier responds with some
challenges ci ∈ Chi ⊆ P∗. They can be seen as a µ-round generalization of Prob-
abilistically Checkable Proofs (PCPs). For i ∈ [µ], we define the concatenation
m1∥c1∥ . . . ∥mi∥ci as an i-round partial transcript and m1∥c1∥ . . . ∥mµ∥cµ∥mµ+1

as a full transcript. An holographic IOP is an extension where an encoding of
some index i is generated in a preprocessing step for oracle access to the veri-
fier [37].

Definition 4 (holographic IOP (hIOP)). An hIOP Π = (Ind,P,V) is a µ-
round interactive proof system for some indexed relation R that includes the
following polynomial-time algorithm:

– Π.Ind(i): for a given index i, it returns the encoding of the index e[i].

and the following probabilistic polynomial-time algorithms:

– Π.P(e[i],x,w): for a given index encoding e[i], statement x and witness w
for the relation Ri, it returns a round message

mi ← Π.Pi(e[i],x,w, tr)

in round i ∈ [µ+ 1] where tr is the current (i− 1)-round partial transcript.
– Π.V[[e[i]]],[[tr]](x): for a given statement x, using oracle access to the encoded

index e[i] and the current partial transcript tr = m1∥ . . . ∥ci−1∥mi to obtain
queries {e[i]i}, {tri}, it returns a round challenge

ci ← Π.Vi({e[i]i},x, {tri})

when i ∈ [µ] and returns either acc or rej when i = µ+ 1.

We also define a function qr that maps a query index to its corresponding message
index. The hIOP is public-coin if all messages sent by the verifier are random
elements of some subset of the plaintext space independent of the current partial
transcript. Without loss of generality, we can assume that a public-coin verifier
performs all queries after receiving the final prover’s message. An hIOP should
satisfy the following properties.

Completeness. For any (i,x,w) ∈ R it holds that

Pr
[
Π.
〈
P(e[i],x,w),V[[e[i]]](x)

〉
̸= acc

]
≤ δ

where δ is the completeness error, e[i] = Π.Ind(i) and the bracket notation ⟨A,B⟩
represents the output of B[[tr]] where tr is a full transcript resulting from inter-
action with A.

Blind zkSNARKs for zkDel and vCOED 15

Honest-verifier zero-knowledge. For any (i,x,w) ∈ R, if there exists a
probabilistic polynomial-time simulator Sim such that for any unbounded distin-
guisher D it holds that∣∣Pr [D(i, π) = 1

∣∣ π ← Sim(i,x)
]

−Pr
[
D(i, π) = 1

∣∣ π ← View
〈
Π.P(e[i],x,w),Π.V[[e[i]]](x)

〉]∣∣ ≤ z
where e[i] = Π.Ind(i) and View⟨·⟩ is a random variable that contains all the query
responses the verifier receives during the protocol along with the verifier’s ran-
domness, then Π has z-statistical zero-knowledge. If D is probabilistic polynomial-
time then Π has z-computational zero-knowledge.

Soundness. For any index i, statement x /∈ LRi
and unbounded prover P∗ it

holds that
Pr
[〈

P∗(e[i],x),Π.V[[e[i]]](x)
〉
= acc

]
≤ ε

where ε is the soundness error and e[i] = Π.Ind(i).

Knowledge soundness. For any index i, statement x and unbounded prover
P∗ there exists a polynomial-time extractor Ext such that

Pr
[
(x,w) ∈ Ri |w← ExtP

∗
(i,x)

]
≥ Pr

[〈
P∗,Π.V[[e[i]]](x)

〉
= acc

]
− εk

where εk is the knowledge error and e[i] = Π.Ind(i). Note that ExtP
∗

may interact
with P∗ by rewinding it in a black-box manner.

The soundness and knowledge soundness properties ensure the security of
the hIOP scheme. Respectively, they guarantee (except with some small error)
that a prover interacting with a verifier cannot result in acc for a statement
that has no valid witness or for which the valid witness is not known. Note that
knowledge soundness thus implies normal soundness. However, since hIOPs are
compiled into non-interactive proofs [12], their security is best described round-
by-round [27,36]. Following Holmgren [60] and Block et al. [16], we will define
round-by-round soundness using a doomed set and round-by-round knowledge
soundness using a knowledge doomed set.

Definition 5 (Doomed set). Given a public-coin holographic hIOP Π that
proves an indexed relation R, a doomed set DΠ for index i and error ε is a set
that satisfies the following properties:

1. For any statement x, if x /∈ LRi
then (x, ∅) ∈ DΠ.

2. For any (x, tr) ∈ DΠ where tr is a (i − 1)-round partial transcript for
i ∈ [µ+ 1] and any next prover message mi, it holds that

Pr
ci←Chi

[(x, tr∥mi∥ci) /∈ DΠ] ≤ ε.

3. For any full transcript tr, if (x, tr) ∈ DΠ then Π.V[[e[i]]],[[tr]](x) = rej.

16 M. Gama, E. Heydari Beni, J. Kang, J. Spiessens, F. Vercauteren

Definition 6 (Knowledge doomed set). Given a public-coin holographic hIOP
Π that proves an indexed relation R, a knowledge doomed set DΠ

k for index i and
error εk is a set for which there exists a polynomial-time extractor Ext such that
the following properties are satisfied.

1. For any statement x, it holds that (x, ∅) ∈ DΠ
k .

2. For any (x, tr) ∈ DΠ
k where tr is a (i− 1)-round (partial) transcript tr for

i ∈ [µ+ 1] and next prover message mi, it holds that if

Pr
ci←Chi

[(x, tr∥mi∥ci) /∈ DΠ
k] > εk.

then w← Ext(e[i],x, tr∥mi) such that (x,w) ∈ Ri.
3. For any full transcript tr, if (x, tr) ∈ DΠ

k then Π.V[[e[i]]],[[tr]](x) = rej.

Remark. In property 2 in Definition 5 and 6 we slightly abuse notation by having
cµ+1 ← Chµ+1 denote the public-coin verifier’s additional randomness used in
the final verification check.

Definition 7 (Round-by-round (knowledge) soundness). An hIOP Π for
the indexed relation R is round-by-round sound with error ε or round-by-round
knowledge sound with error εk if for every index i there exists a doomed set DΠ

for error ε or knowledge doomed set DΠ
k for error εk respectively.

Along with the definition of IOPs, Ben-Sasson et al. [12] additionally introduced
BCS compilation which compiles an IOP into a zkSNARK in the ROM. Later it
was extended to hIOPs [37], round-by-round soundness notions [27], the quan-
tum ROM [36] and recently proven unconditionally UC-secure in the ROM [34].
Many of the zkSNARKs that are deployed in practice are constructed using this
compilation. We defer a high-level description of this compilaiton to Section 5.2
and describe its properties in Theorem 1. We define two complexity measures for
hIOPs. The proof length p =

∑µ+1
i=1 |mi| is the sum of the lengths of all prover

messages and the query complexity q is the number of queries performed by the
verifier.

Theorem 1 (BCS compiler [12,36]). Any hIOP Π for indexed relation R with
completeness error δ, proof length p, query complexity q, round-by-round sound-
ness error ε, round-by-round knowledge soundness error εk and z-statistical
honest-verifier zero-knowledge can be compiled into a zkSNARK IΠ in the ROM
with RO query bound Q, security parameter λ and:

– Completeness error δ,
– Proof length p′ upper bound by λ(µ+ 1 +

∑q
j=1(3 + ⌈log2 |mqr(j)|⌉)),

– Soundness error ε′ where ε′ = Qε+ 3(Q2 + 1)2−λ,
– Knowledge soundness error ε′k where ε′k = Qεk + 3(Q2 + 1)2−λ,
– z′-Statistical honest-verifier zero-knowledge where z′ = z + p2−λ/4+2,

Blind zkSNARKs for zkDel and vCOED 17

where mi is Π.P’s ith message and | · | denotes length in λ bits rounded up. Both
soundness and knowledge soundness error are Θ(Qε) and Θ(Qεk) respectively
when considering quantum adversaries that perform no more than Q−O(q log p)
RO queries.

Remark. Technically, all these error values, proof lengths, etc. can be functions
of both the statement and the index but let us disregard that here since it has
no influence on what follows.

5 Blind Proofs

In this section, we introduce a new type of proof system called blind proofs,
where one proves that some encrypted statement is in the language of a blind
relation E [R] with respect to some commitment Csk to a secret key sk. This
blind relation represents ciphertexts of statement-witness pairs such that the
underlying plaintexts are in the relation R. In other words, blind proofs allow
the prover to generate a proof using (ct[x], ct[w]) – without knowledge of the
plaintext (x,w) – that proves plaintext knowledge of (x,w) such that x ∈ LR

for the holder of the secret key sk committed to in Csk. We start by defining a
blind relation.

Definition 8 (Blind relation). For a given HE scheme E = (KeyGen,Enc,
Dec,Eval) and commitment scheme CT with security parameter λ, and indexed
relation R we define the indexed blind relation

E [R] =

 (i;x;w) = (i; Csk, ct[x]; ct[w]) :
E .Decsk((ct[x], ct[w])) = (x,w) ∈ Ri ∧

sk← E .KeyGen(1λ) ∧ OCT (Csk, sk) = acc


which defines the blind relation E [Ri] = {(x; w) : (i; x; w) ∈ E [R]}.

Theorem 2. Any probabilistic polynomial-time adversary has only negligible ad-
vantage in distinguishing the underlying (x,w) ∈ Ri given the corresponding
(x,w) ∈ E [Ri] if E is an IND-CPA secure HE scheme and Com is computation-
ally hiding.

Proof. This follows from a standard hybrid argument. Let us define an adversary
A in the game of distinguishing elements of a blind relation, which we denote
as game G0. Now let us define game G1 where the LR oracle responds with
a randomly sampled Csk instead of a commitment to the used secret key. The
advantage of A in G1 should be negligible because E is IND-CPA secure and
the difference between G0 and G1 should be negligible because Com is hiding.
Therefore we can conclude that A has negligible advantage in game G0. ⊓⊔

5.1 Blind hIOP (BhIOP)

We define a blind version of the hIOP proof system introduced in Section 4.5.

18 M. Gama, E. Heydari Beni, J. Kang, J. Spiessens, F. Vercauteren

Definition 9 (Blind hIOP (BhIOP)). For a given HE scheme E, commit-
ment scheme CT and hIOP Π for indexed relation R, a blind hIOP E [Π] =
(Ind,P,V) for the indexed blind relation E [R] includes the following probabilistic
polynomial-time algorithms:

– E [Π].Setup(1λ, i): for a given index i and security parameter λ, it returns
the encoding e[i] = Π.Ind(i), the keys (sk, evk) ← E .KeyGen(1λ) and the
commitment Csk ← CT .Com(sk).

– E [Π].Pevk(e[i],x,w): for a given statement x = (Csk, ct[x]) and witness w =
ct[w] of the blind relation E [Ri], and evaluation key evk, it returns a round
message

E .Evalevk(Π.Pi, (e[i], ct[x], ct[w], tr′))
in round i ∈ [µ+1] where tr′ is the current (i− 1)-round partial transcript.

– E [Π].V
[[e[i]]][[tr′]]OCT

sk (x): for a given statement x = (Csk, ct[x]) and secret key
sk, using oracle access to e[i] and the current (partial) transcript tr′ to
obtain queries {e[i]i}, {tr′i}, it returns

Π.Vi({e[i]i}, E .Decsk(ct[x], {tr′i}))

in round i ∈ [µ+ 1] if OCT (Csk, sk) returns acc, otherwise it returns rej.
Remark. The OCT oracle of a blind hIOP verifier is instantiated in Theo-
rem 9, similar to how the oracles of an hIOP verifier are instantiated in the
compilation of Theorem 1.

A blind hIOP can be public-coin similar to an hIOP. It should satisfy the com-
pleteness and soundness properties as defined in Definition 4. Additionally, it
should satisfy the following properties.

Plaintext knowledge soundness. For any index i, statement x, setup (e[i], sk,
evk, Csk)← E [Π].Setup(1λ, i) and unbounded prover P∗evk there exists a polynomial-
time extractor ExtODec with access to a decryption oracle ODec such that

Pr
[
(x,w) ∈ Ri

∣∣∣ (x,w)← ExtP
∗,ODec(i,x)

]
≥ Pr

[
⟨P∗evk, E [Π].V

[[e[i]]]OCT

sk (x)⟩ = acc
]
− εk

where εk is the knowledge error. Note that ExtODec may interact with P∗ by
rewinding it in a black-box manner. Similar to the plaintext scenario it is possible
to define a round-by-round variant (see Definition 10).

Honest-verifier zero-knowledge. For any security parameter λ, (i,x,w) ∈
E [R] and (e[i], sk, evk, Csk) ← E [Π].Setup(1λ, i) such that x = (Csk, ct[x]), if
there exists a probabilistic polynomial-time simulator Sim such that for any un-
bounded distinguisher D it holds that∣∣Pr [D(i, π, sk) = 1

∣∣ π ← Sim(1λ, i,x, sk)
]
−

Pr
[
D(i, π, sk) = 1

∣∣∣ π ← View
〈
E [Π].Pevk(e[i],x,w), E [Π].V

[[e[i]]]OCT

sk (x)
〉]∣∣∣ ≤ z

Blind zkSNARKs for zkDel and vCOED 19

then E [Π] has z-statistical zero-knowledge. If D is probabilistic polynomial-time
then E [Π] has z-computational zero-knowledge.

Definition 9 describes how blind hIOPs can be constructed from hIOP and
HE schemes. From this contruction, one can show that the resulting blind hIOP
satisfies the necessary properties.

Theorem 3. For security parameter λ, an HE scheme E and a δ-complete hIOP
scheme Π for indexed relation R, the blind hIOP E [Π] is complete with com-
pleteness error δ + negl(λ) for indexed blind relation E [R] if E is correct for the
homomorphic circuit E [Π].P.

Proof. For any (i,x,w) ∈ E [R] and (e[i], sk, evk, Csk) ← E [Π].Setup(1λ, i) such
that x = (ct[x], Csk), it holds that (x,w) ∈ Ri for (x,w) = Decsk(ct[x],w). Let
E be the event that

E [Π].⟨Pevk(e[i],w),V[[e[i]]]OCT
⟩(x) ̸= acc

and E′ the event that

E .Decsk(E .Evalevk(Π.P, (e[i],x,w))) = Π.P(e[i], x, w)

over the randomness in both prover and verifier. Then we can show that

Pr[E] = Pr[E |E′] Pr[E′] + Pr[E | ¬E′] Pr[¬E′]
≤ Pr[E |E′] + Pr[¬E′] ≤ δ + negl(λ)

since Pr[E |E′] represents the completeness error in the corresponding Π and
Pr[¬E′] is determined by the correctness of the HE scheme. ⊓⊔

Notice that zero-knowledge has been defined differently from the hIOP case.
Informally, an hIOP is zero-knowledge if some simulator Sim can simulate ev-
erything the verifier sees without knowledge of the witness. This is formalized
by stating no distinguisher algorithm D has an advantage in distinguishing the
simulation from a valid prover output. Therefore, since for blind hIOPs the ver-
ifier has knowledge of the secret key sk, this will also be given as an input to
D. We show that blind hIOPs can retain zero-knowledge by using circuit private
HE schemes.

Theorem 4. For an HE scheme E with security parameter λ and a z-computational
honest-verifier zero-knowledge hIOP scheme Π for indexed relation R, the blind
hIOP E [Π] is z + negl(λ)-computational honest-verifier zero-knowledge if E is
circuit-private for the homomorphic circuit E [Π].P.

Proof. The simulator for the E [Π] scheme can be constructed by combining the
simulator for the Π scheme and the simulator for circuit privacy in the E scheme.
More concretely, E [Π].Sim uses E .Decsk to compute the statement for Ri. Then,
it uses Π.Sim to sample some queries {qi} and lastly uses E .Sim to generate the
ciphertexts {ct[qi]}. The theorem follows from a standard hybrid argument re-
lying on the circuit privacy of E and the honest-verifier zero-knowledge property
of the Π scheme. ⊓⊔

20 M. Gama, E. Heydari Beni, J. Kang, J. Spiessens, F. Vercauteren

We additionally define honest-verifier zero-knowledge in the decryption oracle
setting. A blind hIOP with this property satisfies honest-verifier zero-knowledge
with a distinguisher D that has access to ODec instead of sk. Clearly, this prop-
erty is a more relaxed form of zero-knowledge since D can not see the noise in
ciphertexts. This setting will however be sufficient when the blind hIOP veri-
fier’s access to sk is also replaced by access to ODec. Such verifier corresponds to
the zkDel setting as described in Section 1 and will be used later in Theorem 9.
We show that zero-knowledge in this setting is achieved trivially since the HE
ciphertexts are hiding.

Theorem 5. For an IND-CPA secure HE scheme E for security parameter λ
and a z-computational honest-verifier zero-knowledge hIOP scheme Π for in-
dexed relation R, the blind hIOP E [Π] is z+negl(λ)-computational honest-verifier
zero-knowledge in the decryption oracle setting.

Proof sketch. The simulator E [Π].Sim is constructed similar to the simulator in
Theorem 4 except that it uses E .Encsk to encrypt the queries {qi}. ⊓⊔

One can derive the (plaintext knowledge) soundness of a blind hIOP from
the (knowledge) soundness of the underlying hIOP and the correctness of the
HE scheme. We discuss only the round-by-round variants since these are relevant
for the BCS compilation.

Theorem 6. The blind hIOP E [Π] is round-by-round sound for the indexed blind
relation E [R] with error ε if the hIOP Π is round-by-round sound for the indexed
relation R with error ε.

Proof. By the definition of round-by-round soundness, it is sufficient to show
the existence of a doomed set D′ = DE[Π] given the existence of the doomed
set D = DΠ. We construct a doomed set D′ as follows: it contains all possible
HE ciphertexts that decrypt to some element in D under the secret key sk
corresponding to Csk.

D′ =


(x′, tr′) = (Csk, ct[x]∥ct[m1]∥c1∥ . . . ∥ct[mn]) :

0 ≤ n ≤ µ+ 1 ∧ OCT (Csk, sk) = acc
∧∃x,m1, . . . ,mn, sk : (x,m1, c1, . . . ,mn) ∈ D

E .Decsk((ct[x], ct[m1], . . . , ct[mn])) = (x,m1, . . . ,mn)


We prove that this set satisfies all properties of a doomed set for any index i.

1. If x′ = (Csk, ct[x]) /∈ LE[Ri], then x = E .Decsk(ct[x]) /∈ LRi
where sk is the

opening of Csk. This means that (x, ∅) ∈ D and therefore (x′, ∅) ∈ D′.
2. For any (x′, tr′) = (Csk, ct[x], tr′) ∈ D′ where tr′ is a (i− 1)-round partial

transcript for i ∈ [µ + 1], the corresponding plaintext transcript (x, tr) =
E .Decsk((ct[x], tr′)) ∈ D where sk corresponds to the commitment Csk.
Thus, for any next blind hIOP prover message cti and its decryption mi =
E .Decsk(cti), it holds that

Pr
ci←Chi

[(x, tr∥mi∥ci) /∈ D] = Pr
ci←Chi

[(x′, tr′∥cti∥ci) /∈ D′] ≤ ε.

Blind zkSNARKs for zkDel and vCOED 21

3. For any full transcript tr′, if (x′, tr′) = (Csk, ct[x]∥tr′) ∈ D′ then, by defi-
nition of D′, the decryption (x, tr)← E .Decsk((ct[x], tr′)) ∈ D. Therefore,
by definition of E [Π].V and the assumption that D is a doomed set, it is clear
that E [Π].V[[e[i]]],[[tr′]](x) = rej where e[i] = E [Π].Ind(i).

⊓⊔

By definition 7, a public-coin hIOP Π = (Ind,P,V) for an indexed relation
R is round-by-round knowledge sound with error εk if for every index i there
exists a knowledge doomed set DΠ

k for error εk that uses some polynomial-time
extractor Ext. In the case of a blind hIOP for a blind relation E [Ri] we define
round-by-round knowledge soundness slightly different since it should be able to
extract the witness of the corresponding relation Ri.

Definition 10 (Round-by-round plaintext knowledge soundness). A
blind hIOP E [Π] for an indexed blind relation E [R] is round-by-round plain-
text knowledge sound with error εpk if for every index i there exists a knowledge
doomed set DE[Π]

k for error εpk that uses an extractor ExtODec with access to a
decryption oracle ODec.

Theorem 7. The blind hIOP E [Π] is round-by-round plaintext knowledge sound
for the indexed blind relation E [R] with error εk if the hIOP Π is round-by-round
knowledge sound for the indexed relation R with error εk.

Proof. Similar to Theorem 6, we show that there exists a knowledge doomed set
D′ = DE[Π]

k given the existence of the knowledge doomed set D = DΠ
k . Again we

define a set D′ to contain all HE ciphertext that decrypt to some transcript in
D under the secret key sk corresponding to Csk. It is clear that D′ satisfies the
first and third property of a knowledge doomed set. The second property states
that for any (i− 1)-round partial transcript (x′, tr′) ∈ D′ where i ∈ [µ+1], and
any next prover message cti, it should hold that if

Pr
ci←Chi

[(x′, tr′∥cti∥ci) /∈ D′] > εk

then Extsk(e[i],x
′, tr′∥cti) outputs a valid witness for x. Similarly as in The-

orem 6, if we define mi = E .Decsk(cti) then (x′, tr′∥cti∥ci) /∈ D′ implies
(x, tr∥mi∥ci) /∈ D for any ci and (x, tr) = E .Decsk((ct[x], tr′)). Therefore, we
can construct the extractor ExtODec as first requesting mi = E .Decsk(cti) from
ODec and subsequently running the extractor Ext(e[i],x, tr∥mi), the output will
be a valid witness for x since (x, tr) ∈ D. ⊓⊔

5.2 Designated-Verifier Blind zkSNARK (DV-BzkSNARK)

From Theorem 1, it is clear that any public-coin hIOP Π for some indexed
relation R can be compiled into a zkSNARK for R in the ROM using BCS
compilation. In practice, the RO is instantiated with some suitable hash func-
tion. The compiler functions by committing to every oracle message sent by the

22 M. Gama, E. Heydari Beni, J. Kang, J. Spiessens, F. Vercauteren

prover using a Merkle Tree MT and instead sending the commitment root C.
Then, when the verifier queries some oracle message, the prover responds to the
query by including the authentication path ap from the corresponding root to
the queried value in the message. Lastly, since Π is public-coin, one can make
the proof non-interactive using a Fiat-Shamir-like transform FS to simulate the
verifier’s challenges and generate a final RO output τ .

Let us now describe public-coin hIOP verification as follows. The verifier Π.V
receives the statement x and in each round i receives a message mi, contributing
to the current partial transcript tri, and responds with a challenge ci ← Chi.
After receiving the final prover message, the verifier queries the oracle [[tr]] to
construct a list of queries {qi} (same for the oracle [[e[i]]], but we dismiss holog-
raphy for now for ease of notation). Lastly, the verifier returns acc if and only
if some equality f(x, {qi}, τ) = 0 holds where τ represents some randomness.
In Figure 1, we illustrate the behaviour of BCS compilation from Theorem 1
using this notation. It describes the zkSNARK verifier resulting from this com-
pilation. Instead of performing queries, the verifier receives query responses and
checks their authentication paths and whether they where sampled using the RO.

IΠ.V(x, π = [{qi, api}, {Ci}, τ])

1 : foreach j :

2 : MT.Open(qj , apj , Cqr(j))
?
= acc

3 : FS(x, {Ci})
?
= τ

4 : f(x, {qi}, τ)
?
= 0

Fig. 1: Verifier of the compiled zkSNARK resulting from Theorem 1.

It should be clear that this compilation can likewise be applied to the public-
coin BhIOP from Definition 9. Since the verifier E [Π].V is public-coin, the only
difference to the hIOP verifier will be after receiving the final prover message. By
querying the oracle [[tr]], the verifier E [Π].V receives ciphertexts {ct[qi]} that are
decrypted to {qi} using sk. Similarly, the verifier decrypts the statement ct[x] to
x and then computes b← Π.Vµ+1(x, {qi}, τ), which we have previously denoted
as checking whether some equality f(x, {qi}, τ) = 0 holds, for some randomness
τ . Lastly, the verifier returns b if the commitment Csk is a valid commitment
to sk. We describe this compilation in Theorem 8 and the resulting verifier in
Figure 2. Note that we define a subroutine PartialVer that performs verifica-
tion without verifying the correspondence between the queries {ct[qi]} and their
plaintexts {qi}.

Blind zkSNARKs for zkDel and vCOED 23

E [dvIΠ].Vsk(Csk, ct[x]; πdv = [{ct[qi], api}, {Ci}, τ])

1 : (x, {qi}) = E .Decsk((ct[x], {ct[qi]}))

2 : PartialVer(Csk, ct[x], x, {qi, ct[qi], api}, {Ci}, τ)

1 : foreach j :

2 : MT.Open(ct[qj], apj , Cqr(j))
?
= acc

3 : FS(Csk, ct[x], {Ci})
?
= τ

4 : f(x, {qi}, τ)
?
= 0

5 : OCT (Csk, sk)
?
= acc

Fig. 2: Verifier of the designated-verifier blind zkSNARK resulting from Theorem
8.

The fact that E [Π].V requires knowledge of the secret key sk has two ma-
jor consequences for BCS compilation. Most notably, the resulting zkSNARK
verifier E [dvIΠ].V inherits the same requirement; thus, the compiler outputs a
designated-verifier blind zkSNARK. Secondly, the public-coin requirement for
the verifier Π.V is no longer sufficient. Strictly, it ensures that the hIOP verifier
is simulatable by the zkSNARK prover in BCS compilation. It can simulate the
random challenges using the Fiat-Shamir tranform and simulate the queries by
providing Merkle Tree openings. To ensure that the blind hIOP verifier E [Π].V
is simulatable by the blind zkSNARK prover, we must additionally require that
it performs no queries where the query location depends on previously queried
values (since those are hidden from the prover). This holds for queries to both
the [[e[i]]] and the [[tr]] oracles. Nassar et al. [73] have previously coined hIOPs
with such verifiers non-adaptive. To our knowledge, such hIOP has never been
described and so this requirement forms no restriction.

Theorem 8. Let E [Π] be a non-adaptive public-coin blind hIOP for the in-
dexed blind relation E [R] where Π has completeness error δ, proof length p,
query complexity q, round-by-round soundness error ε, round-by-round knowl-
edge soundness error εk and z-statistical honest-verifier zero-knowledge, and the
HE scheme E is correct for the homomorphic circuit in E [Π].P with security pa-
rameter λ. Such blind hIOP scheme can be compiled into a designated-verifier
zero-knowledge non-interactive argument of plaintext knowledge for E [R], which
we will coin a designated-verifier blind zkSNARK E [dvIΠ] in the ROM. Then,
against Q-query adversaries, E [dvIΠ] has:

– Completeness error δ + negl(λ),
– Proof length p′ upper bounded by

p′ = λ(µ+ 1 +

q∑
j=1

(2 + ⌈log2 |mqr(j)|/E .len⌉)) + qE .len,

24 M. Gama, E. Heydari Beni, J. Kang, J. Spiessens, F. Vercauteren

– Soundness error ε′ where ε′ = Qε+ 3(Q2 + 1)2−λ,
– Knowledge soundness error ε′k where ε′k = Qεk + 3(Q2 + 1)2−λ,
– z′-Statistical honest-verifier zero-knowledge where z′ = z+negl(λ)+p2−λ/4+2.

where mi is E [Π].P’s ith prover message and | · | denotes length in λ bits rounded
up. Both soundness and knowledge soundness error are Θ(Qε) and Θ(Qεk) re-
spectively when considering quantum adversaries that perform no more than
Q−O(q log p) RO queries.

Proof. The proof follows trivially from Theorem 1 and the discussion above.
The non-adaptivity ensures that prover E [dvIΠ].P can partly simulate the verifier
E [Π].V to compute the query locations (it can obviously not simulate the equality
checks). The proof length is similar, except for the expansion from HE encryption
of the queried values. ⊓⊔

5.3 Publicly-Verifiable Blind zkSNARK (PV-BzkSNARK)

We have shown that using an HE scheme, it is possible to construct a blind
zkSNARK in the designated-verifier setting. This primitive already has applica-
tions as a vCOED scheme; in this setting, the client would encrypt the statement
and the server would compute the encrypted witness, which can then be used
to compute the proof. Now, we will show how to compile this designated-verifier
blind zkSNARK into a publicly-verifiable blind zkSNARK; this also expands the
application of this construction to zkSNARK delegation (the zkDel setting). In
this setting, the client computes the witness and then sends the plaintext state-
ment and encrypted witness to the server, who then computes the proof. In both
scenarios, the client computes a (batched) Proof of Decryption (PoD) to make
the proof publicly verifiable. Below we provide a formal definition.

Definition 11 (Proof of Decryption). For a given HE scheme E with secu-
rity parameter λ and a commitment scheme CT , a Proof of Decryption scheme
PoD[E] = (Setup,P,V) includes the following probabilistic polynomial-time algo-
rithms:

– PoD[E].Setup(1λ): for a given security parameter λ, it returns some public
parameters pp which are implicit inputs to the following functions.

– PoD[E].Psk(Csk, ct): for a given secret key commitment Csk, ciphertext ct
and secret key sk, it returns a proof of decryption πPoD and plaintext m.

– PoD[E].VCsk(π
PoD, ct,m): for a given proof of decryption πPoD, ciphertext ct,

plaintext message m and secret key commitment Csk, it returns either acc or
rej.

It should satisfy the following properties.

Completeness. For any public parameters pp ← PoD[E].Setup(1λ),
HE keys (sk, evk) ← E .KeyGen(1λ) and ciphertexts {ct[mi]} such that

Blind zkSNARKs for zkDel and vCOED 25

{mi} = E .Decsk({ct[mi]}), it holds that

Pr

PoD[E].VCsk(π
PoD, {ct[mi],mi})
̸=
acc

∣∣∣∣∣∣ Csk ← Com(sk)
πPoD ← PoD[E].Psk(Csk, {ct[mi]})


is less than or equal to some completeness error δ.

Knowledge soundness. For any public parameters pp ← PoD[E].Setup(1λ),
HE keys (sk, evk) ← E .KeyGen(1λ) and PPT prover P∗, there exists a PPT
extractor ExtP

∗
and knowledge error εk such that

Pr

 E .Decsk∗({cti}) ̸= {mi}
∧

PoD[E].VCsk(π
PoD, {cti,mi}) = acc

∣∣∣∣∣∣
(πPoD, Csk, {cti,mi})← P∗

sk∗ ← ExtP
∗

OCT (Csk, sk∗) = acc

 ≤ εk.

Zero-knowledge. For any public parameters pp ← PoD[E].Setup(1λ), HE keys
(sk, evk)← E .KeyGen(1λ) and ciphertexts {ct[mi]}, if there exists a probabilistic
polynomial-time simulator Sim such that for any probabilistic polynomial-time
distinguisher D it holds that∣∣Pr [D(πPoD, Csk) = 1

∣∣ (πPoD, Csk)← Sim(1λ)
]

− Pr

[
D(πPoD, Csk) = 1

∣∣∣∣ Csk ← Com(sk)
πPoD ← PoD[E].Psk(Csk, {ct[mi]})

]∣∣∣∣ ≤ z
then PoD[E] has z-computational zero-knowledge.

In the following, we discuss how a proof of decryption for the HE scheme E
allows us to compile a designated-verifier blind zkSNARK E [dvIΠ] into a publicly
verifiable zkSNARK E [pvIΠ]. Any party that can verify a proof πdv is able to
construct a proof πpv by appending the plaintext queries {qi} along with a PoD
proving they are decryptions of the queries {ct[qi]} that were committed to in
{Ci}, using the secret key committed to in Csk. This results in the public verifier
described in Figure 3.

E [pvIΠ].V(x; πpv = [Csk, ct[x], πPoD, {qi, ct[qi], api}, {Ci}, τ])

1 : PoD[E].VCsk(π
PoD, (ct[x], {ct[qi]}), (x, {qi}))

?
= acc

2 : PartialVer(Csk, ct[x], x, {qi, ct[qi], api}, {Ci}, τ)
?
= acc

Fig. 3: Verifier of the publicly-verifiable zkSNARK resulting from Theorem 9.

In Figure 4, we describe the construction of πpv, and in Theorem 9, we prove
that it describes a publicly-verifiable blind zkSNARK. If the PV-BzkSNARK

26 M. Gama, E. Heydari Beni, J. Kang, J. Spiessens, F. Vercauteren

is used in the zkDel setting, one can replace ct[x] by x in the blind relation
and thus ct[x] requires no PoD and is not included in πpv. Note that it is not
necessary for the delegator to send the entire encrypted (extended) witness ct[w];
they can simply send an encryption of the private inputs, from which ct[w] can
be computed homomorphically. This would demand less encryption cost from
the verifier and would not increase HE parameters. In the vCOED setting, one
depends on Theorem 2 to hide x from the blind prover; therefore, ct[x] should
be included in the proof.

Theorem 9. For security parameter λ, the protocol in Figure 4 is a publicly-
verifiable zkSNARK for the relation R in the ROM against Q-query adversaries
with completeness error δΠ + δPoD + negl(λ) and knowledge soundness error
εPoDk +QεΠk +3(Q2+1)2−λ that is zΠ+negl(λ)+p2−λ/4+2+zPoD-computational
zero-knowledge if E is an IND-CPA secure and correct HE scheme, PoD is a
zero-knowledge proof of decryption with completeness error δPoD and knowledge
soundness error εPoDk that is zPoD-computational zero-knowlege, and Π is an
hIOP scheme with completeness error δΠ and knowledge soundness εΠk that is
zΠ-computational zero-knowledge with proof length p.

Proof. Completeness follows immediately from the completeness of the PoD
scheme along with Theorem 8. Similarly, the zero-knowledge property follows
from a hybrid argument using the zero-knowledge property of the PoD and The-
orem 8. We discuss knowledge soundness in more detail.

Let us denote P∗ as a prover that outputs a proof πpv for the index i and state-
ment x such that the verifier E [pvIΠ].V (see Figure 3) accepts with probability p.
To prove knowledge soundness, we will show that there exists a polynomial-time
extractor Ext that outputs w with probability greater than p − εPoDk − ε

E[dvIΠ]
k ,

when given access to P∗. Firstly, when E [pvIΠ].V accepts, the first line in Figure 3
states that PoD[E].VCsk also accepts. Therefore, by the knowledge soundness of
PoD, the prover P∗ can be used to extract a secret key sk ← PoD[E].Ext such
that

(x, {qi}) = E .Decsk((ct[x], {ct[qi]}))

and sk is the secret key committed to in Csk. Secondly, from Theorem 8 we know
that the designated-verifier zkSNARK E [dvIΠ] is plaintext knowledge sound. In
other words, any prover that can produce a proof πdv such that the verifier
in Figure 2 satisfies, can be used to extract a witness w ← E [dvIΠ].Extsk such
that (i,x,w) ∈ R. Note that by assumption, P∗ generates proofs that satisfy
the PartialVer subroutine in E [dvIΠ].Vsk. The knowledge soundness of the PoD
discussed before ensures that also the first line in Figure 2 is satisfied. Therefore,
our prover P∗ can be used by the extractor E [dvIΠ].Extsk where sk is the secret
key extracted previously using PoD[E].Ext. ⊓⊔

Remark. Note that the execution of PartialVer by the client is only required in a
setting where the blind prover is incentivized to be dishonest. In such setting, it
is also required to not reuse the same HE secret key. Note that most HE schemes

Blind zkSNARKs for zkDel and vCOED 27

zkDel Setting: Delegator
vCOED Setting: Designated verifier

sk, evk← E .KeyGen(1λ)
Csk ← CT .Com(sk)

w ← ExtWit(i, x)

(ct[x], ct[w])← E .Encsk((x,w)) evk, Csk, ct[x], ct[w] Blind prover

πdv ← E [dvIΠ].Pevk(e[i], (Csk, ct[x]), ct[w])

πdv = [{ct[qi], api}, {Ci}, τ] πdv

{qi} ← E .Decsk({ct[qi]})

PartialVer(x, {qi, ct[qi], api}, {Ci}, τ)
?
= acc

πPoD ← PoD[E].Psk(Csk, {ct[qi]}, {qi})

πpv = [Csk, ct[x], πPoD, {qi, ct[qi], api}, {Ci}, τ]) πpv

Public verifier

E [pvIΠ].V(Csk, x; πpv)
?
= acc

Fig. 4: Compilation of a DV-BzkSNARK into a PV-BzkSNARK.

are vulnerable to key-recovery attacks when the client leaks to the server whether
the ciphertexts properly decrypt. In the zkDel setting, the server would learn this
when it has access to the publicly-verifiable proof.

Remark. In our PoD construction, the commitment Csk is included in the πPoD.
Naturally, the proof size of πpv (see Theorem 8) is still larger than a normal proof
for the zkSNARK IΠ. This could be mediated by sending πpv to the delegatee to
delegate the computation of a recursion step.

6 Instantiation of blind zkSNARKs

In this section, we describe algorithms for computing blind zkSNARKs efficiently.
Concretely, for some specific Π, we optimize the computation of E [Π].P such that
the blind zkSNARK resulting from Theorem 8 has efficient proof generation.
The input to E [Π].P is the encrypted trace ct[z] = (x, ct[w]), where x and w are
vectors in some finite field F, and computing E [Π].P consists of homomorphically
evaluating Π.P using E .Eval.

Most HE schemes naturally support Single Instruction Multiple Data (SIMD)
operations since the plaintext space can be interpreted as the vector space P =
FP for some finite field F. Operating on plaintexts pt and/or ciphertexts ct
corresponds to pointwise operations on elements in P, such as pointwise addition

28 M. Gama, E. Heydari Beni, J. Kang, J. Spiessens, F. Vercauteren

and multiplication. Using automorphisms, it is also possible to compute arbitrary
linear operations on an encrypted vector, i.e. a matrix-vector multiply.

The inherent noise growth in a ciphertext depends on the type of operation:
additions (both pt-ct as well as ct-ct) cause additive noise growth, whereas
multiplication incurs a fixed multiplicative factor depending on the parameters
of the scheme. A pt-ct multiplication incurs a smaller noise growth than a ct-
ct multiplication and is also much faster to compute. As an example, for the
parameter set used in our implementation, the noise growth would be on average
6.2 bits for a pt-ct and 10.3 bits for a ct-ct, and a pt-ct multiply is 75× faster
than a ct-ct multiply. An automorphism causes minimal noise growth as it
does not change the norm in the canonical embedding; in our implementation,
it takes 1/4 of the time of a ct-ct multiplication. As will become clear in this
section, designing efficient homomorphic circuits is largely a trade-off between
the number of operations performed and the amount of noise they require.

Similar to Garg et al. [49], we suggest using the Fractal hIOP ΠF [37]; this
choice lets us optimize the homomorphic computation of the corresponding blind
hIOP in two ways. Firstly, many of the operations in Fractal can be performed
element-wise on vectors, which allows us to significantly lower the number of
homomorphic operations using SIMD as described above. Secondly, Fractal’s
linearity implies that many of the homomorphic operations will consist of the
cheaper pt-ct operations. In Section 8, we select an HE scheme that allows us to
exploit both these characteristics. In Section 6.1 below, we introduce some tech-
niques for homomorphically computing Number Theoretic Transforms (NTTs)
and arbitrary linear operations. In Section 6.2, we describe the Fractal scheme
and discuss an efficient algorithm for computing it blindly, namely the algorithm
E [ΠF].P from Definition 9.

6.1 Building blocks

Packing-friendly 2D-NTT. Consider some finite field F and an element ξN ∈
F of order N known as the primitive N -th root of unity. The (inverse) NTT
transformation of a vector of polynomial evaluations a = [a0, a1, . . . , aN−1] ∈ FN
is denoted as â = [â0, â1, . . . , âN−1] ∈ FN where

âk =
1

N

N−1∑
n=0

ξ−n·kN an ∀k ∈ [0, N − 1]. (1)

Observe that an inverse NTT differs from the NTT only by using ξ−1N instead of
ξN and scaling by 1/N at the end. Let us now assume the NTT size N can be
written as N = N1 ·N2. As such, we can rewrite Equation (1) by iterating over

Blind zkSNARKs for zkDel and vCOED 29

n = N2 ·n1+n2 and k = N1 ·k2+k1 using ki, ni ∈ [0, Ni−1] = [Ni]0 for i = 1, 2

âN1·k2+k1 =
1

N

N1−1∑
n1=0

N2−1∑
n2=0

ξ
−(N2·n1+n2)(N1·k2+k1)
N aN2·n1+n2

=
1

N

N2−1∑
n2=0

ξ−n2·k2
N2

(
ξ−n2·k1
N

N1−1∑
n1=0

ξ−n1·k1
N1

aN2·n1+n2

)
∀ki ∈ [Ni]0

where ξN1
= ξN2

N and ξN2
= ξN1

N are primitive N1-th and N2-th roots of unity,
respectively. Let us define fn2,k1 =

∑N1−1
n1=0 ξ

−n1·k1
N1

aN1·n2+n1
. Now, notice that a

size N NTT can be composed into three steps:
1. for n2 ∈ [N2]0 perform a size-N1 NTT to compute [fn2,k1]k1∈[N1]0 ,
2. multiply by twiddle factors to get f ′n2,k1

= ξ−n2·k1
N · fn2,k1 ,

3. for k1 ∈ [N1]0 perform a size-N2 NTT to compute [âN1·k2+k1]k2∈[N2]0 .

While a variant of the 2D-NTT algorithm has been used to achieve distributed
FFT in a distributed zero-knowledge proof system [80], our work demonstrates
its effectiveness in a different context, namely for homomorphically performing
NTTs on packed HE ciphertexts. Note that [5] also considered exploiting HE
packing but only for performing P homomorphic NTTs at once, requiring packing
and unpacking operations. They do not perform homomorphic NTTs for a degree
N polynomial packed in N/P ciphertexts since it would require expensive HE
operations to swap slots between ciphertexts (think of the bit-reversal that the
base 2 butterfly algorithm causes). These can only be avoided by using one slot
per N ciphertexts, resulting in higher memory usage and reduced efficiency.

Our approach packs the size N input into N/P = N1(N2/P) ciphertexts
and avoids swapping slots between ciphertexts by exploiting the structure of the
2D-NTT. More precisely, we packN2 elements (aN2·n1 , aN2·n1+1, . . . , aN2·n1+N2−1)
into N2/P ciphertexts for n1 ∈ [N1]0. Then, the homomorphic NTT evaluation
can be performed as follows:
1. homomorphically evaluate N2/P size-N1 NTTs using the butterfly algorithm

in some base b on packed ciphertexts,
2. perform N/P pt-ct multiplications to multiply with twiddle factors,
3. homomorphically evaluate N1 size-N2 NTTs as matrix-vector multiplications

with vectors of size N2 packed in N2/P ciphertexts.

An example is provided in Fig. 5 for N2 = P . Note that the output of the
2D-NTT is packed in column-major order, i.e.N2 elements (âk1 , âN1+k1 , . . . , âN1·(N2−1)+k1)
are packed in one ciphertext. Although this ordering may seem problematic, no-
tice that it can be reversed by a subsequent NTT operation that is computed
as

aN2·n1+n2 =

N1−1∑
k1=0

N2−1∑
k2=0

ξ
(N2·n1+n2)(N1·k2+k1)
N âN1·k2+k1

=

N1−1∑
k1=0

ξn1·k1
N1

(
ξn2·k1
N

N2−1∑
k2=0

ξn2·k2
N2

âN1·k2+k1

)
∀ni ∈ [Ni]0

30 M. Gama, E. Heydari Beni, J. Kang, J. Spiessens, F. Vercauteren

by doing the following steps:

1. homomorphically evaluate N1 size-N2 NTTs as matrix-vector multiplications
with vectors of size N2 packed in N2/P ciphertexts,

2. perform N/P pt-ct multiplications to multiply with twiddle factors,
3. homomorphically evaluate N2/P size-N1 NTTs using the butterfly algorithm

in some base b on packed ciphertexts.

The algorithms in Section 6.2 require us to compute

[a(x)x∈D2] = NTT (f (iNTT([a(x)]x∈D1))) (2)

for some evaluation domains D1, D2 and some function f that must be com-
puted on ciphertext vectors in some column-major packing. It will always be
the case that |D2| > |D1| so [âi]i∈[N]0 has to be appended with zeros. Due to
the column-major packing, the width w := N2/p has to grow with |D2|/|D1| be-
fore performing the second 2D-NTT. Importantly, this makes the matrix-vector
multiplications of the second 2D-NTT less costly since they can take these zeros
into account. Lastly, we remark that these techniques can also be applied when
D1, D2 are cosets of multiplicative subgroups.

Fig. 5: Illustration of inverse 2D-NTT when N1 = 4, N2 = 2. Elements within
the same row (represented by the same color) are packed in one HE ciphertext.

Matrix-vector multiplication. Let A ∈ FnP×nP denote a square matrix and
v ∈ FnP denote a column vector over a finite field F. For HE schemes that pack
P finite field elements per ciphertext, the multiplication of the plaintext matrix
A with encryptions of v can be visualized as A0,0 · · · A0,n−1

...
. . .

...
An−1,0 · · · An−1,n−1

 ·
 ct[v0]

...
ct[vn−1]

 (3)

Blind zkSNARKs for zkDel and vCOED 31

where vi = [vi·P , vi·P+1, . . . , vi·P+P−1] ∈ FP and Ai,j ∈ FP×P denotes the (i, j)-
th block matrix of A. For the base case of n = 1, the computation of (3) can be
performed using the following two methods

– Full matrix in the diagonal (FD) method [58], which requires P − 1 auto-
morphisms, P pt-ct multiplications, and P − 1 additions. In terms of noise
depth, it incurs the equivalent of 1 pt-ct operation, 1 automorphism and
⌈log2 P ⌉ additions.

– Baby-Step/Giant-Step diagonal (BS/GS) method [59], which requires 2
√
P − 2

automorphisms, P pt-ct multiplications, and P − 1 additions. In terms of
noise depth, it incurs the equivalent of 1 pt-ct operation, 2 automorphisms
and 2⌈log2

√
P ⌉ additions.

The performance of both methods could be further improved with the hoisting
technique [59,21], which speeds up FD around 6x and BS/GS around 1.4x for
implementations that store ciphertexts in the NTT form (e.g. the HElib library).
With hoisting, whether FD or BG/GS gives better performance depends on
parameter settings, in particular the dimension P .

For n > 1, we notice the automorphisms of ct[vi] in FD can be re-used for
multiplications with block matrices in the same block-column, i.e. A0,i,A1,i, . . . ,An−1,i.
As such, the computation of (3) requires n(P − 1) automorphisms, n2P pt-ct
multiplications, and n(nP − 1) additions. Notice that for BSGS, only the baby
step automorphisms can be re-used and so FD can be more efficient for large
n. Furthermore, if A is a sparse matrix with h non-zero elements per row, the
expected number of operations can be computed by using the following lemma.

Lemma 1 (Adapted from [76]). Given n elements grouped into m equal par-
titions, the expected number of partitions hit when sampling k distinct elements
(k ≤ n− n/m) is given by

PartsHit(n,m, k) = m ·
[
1−

(
n− n

m

k

)/(
n

k

)]
.

Then, the homomorphic evaluation of (3) requires n ·PartsHit(nP 2, nP, hP) pt-
ct multiplications, n ·PartsHit(nP (P − 1), P − 1, h(P − 1)) automorphisms, and
n · (PartsHit(nP 2, nP, hP)− 1) additions.

For our purposes, it will always be more efficient to perform the sparse matrix-
vector multiplications with a relatively large n using FD. On the other hand, the
matrix-vector products performed in 2D-NTTs always use BSGS (not considering
hoisting).

6.2 Computing Fractal blindly

Fractal is a transparent, post-quantum, preprocessing zkSNARK that proves the
Rank-1 Constraint Satisfiability (R1CS) Az ◦Bz = Cz of z = (x,w), where x is
the statement, w is the (extended) witness, and A,B,C are sparse matrices that
represent the computation to be proven. Its construction starts from a type of

32 M. Gama, E. Heydari Beni, J. Kang, J. Spiessens, F. Vercauteren

IOP named Reed Solomon encoded-holographic IOP (RS-hIOP) that is compiled
into an hIOP. In a RS-hIOP, an indexer provides RS codes in an offline phase,
the prover’s messages are RS codes and the verifier outputs a set of rational
constraints on these RS codes. A rational constraint on some RS codes checks
that some rational function of the underlying polynomials has a limited degree.
For proofs of invalid statements, at least one of these rational constraints will
not hold.

Denote by (fz, fAz, fBz, fCz) the polynomials that interpolate the vectors
(z,Az,Bz,Cz) over some cyclic subgroup H of F; then, the prover’s first mes-
sages will be the RS codes (

#»

fz,
»

fAz,
»

fBz,
»

fCz) over some domain L = {ℓi}i∈[|L|].
In particular, the RS codes correspond to evaluations of these polynomials on
some evaluation domain L and are used to prove three statements that together
imply the satisfiability of the R1CS constraint system:

(1) fAz
∣∣
H
◦ fBz

∣∣
H
− fCz

∣∣
H

= 0

(2) fz
∣∣
I
= fx

∣∣
I
= x for some subset I of H

(3) fMz

∣∣
H

=M · fz
∣∣
H

for M ∈ {A,B,C}.

The previous three statements are proven using some rational constraints on
#»

fz,
»

fAz,
»

fBz,
»

fCz and other RS codes derived from z. In our setting, however,
the blind prover will have as input the HE encrypted (extended) witness ct[w],
leading to the (partially) encrypted trace ct[z] = (x, ct[w]). Therefore, all RS
codes derived from the trace, as well as all subsequent prover messages required
for proving rational constraints, will similarly be encrypted and from now on
referred to as Encrypted RS (ERS) codes. Computing them efficiently is a trade-
off between minimizing the homomorphic depth and minimizing the execution
time (determined by the number of required homomorphic operations and the
parameters of the HE system).

6.3 Proving statement (1)

Starting from the encrypted trace ct[z] = (x, ct[w]), the prover computes the
ERS codes ct[

»

fMz] for M ∈ {A,B,C}. Computing the underlying ct[Mz] =
ct[fMz

∣∣
H
] requires a sparse matrix-vector product of size |H| over ciphertexts.

These ciphertext vectors are evaluations on domain H of some polynomial and
computing the corresponding ERS codes amounts to evaluating them on some
domain L. This is referred to as domain extensions and they are usually im-
plemented using an inverse NTT transform to compute f(x) from f

∣∣
H

, fol-
lowed by an NTT transform to compute f

∣∣
L

=
#»

f . This would result in only
O(|L| log |L|) operations but require a depth of 2 log |L| pt-ct multiplications.
Instead one could significantly reduce the pt-ct depth by computing the exten-
sion from {f (i) = f(hi−1)}i∈[|H|] where H = {hi−1}i∈[n] to domain L by using
the barycentric form

f(ℓi) =
∑
j∈[n]

f (i)λHj (ℓi) = ZH(ℓi)
∑
j∈[n]

f (i)

Z ′H(hj−1)(ℓi − hj−1)
=
ℓni − 1

n

∑
j∈[n]

f (i)
hj−1

ℓi − hj−1

Blind zkSNARKs for zkDel and vCOED 33

where i ∈ [|L|]. However, even when using the method previously described
for homomorphic matrix-vector multiplication, the large number of operations
would lead to an unrealistic execution time. A naive hybrid algorithm would
perform the first layers of the NTT as matrix-vector products and the remaining
layers using the traditional butterfly algorithm (possibly in some other base b).
This seems like a trade-off between homomorphic depth and execution time
but it has one major problem. The butterfly algorithm would require us to
move around elements between slots in different ciphertexts which would be
very costly. Therefore we homomorphically evaluate the NTT in 2 dimension as
described in Section 6.1. Only the dimension orthogonal to the ciphertext packing
uses the butterfly algorithm in some base b and thus only causes permutations
over complete ciphertexts which can be reverted by simply permuting rows of
the matrix in Fig. 5. Notice that we can still trade off noise depth for execution
time by adjusting the base b and the number of ciphertexts per row w.

Now that one has all the relevant ERS codes, one can prove statement (1)
by proving the rational constraint deg(s) ≤ |H| − 2 for

s(X) =
fAz(X)fBz(X)− fCz(X)

ZH(X)
.

Notice that the numerator of s will vanish on H if and only if statement (1)
holds. Note that the prover does not have to send ct[#»s] = ct[s

∣∣
L
] since any of

its elements can be efficiently computed at verification time. This is because the
verifier is provided with the required ct[

#»

fMz] and can compute the vector ZH
∣∣
L

efficiently.

6.4 Proving statements (2) and (3)

Starting from the encrypted trace ct[z] = (x, ct[w]), the prover computes the
ERS code ct[

»

fw] that corresponds to a polynomial fw of degree |H| − |I| − 1
such that

∀a ∈ H \ I : fw(a) =
ct[w]Ind(a) − fx(a)

ZI(a)

where Ind : H \ I → [|H \ I|] indexes H \ I, the polynomial fx interpolates
the statement x over I and ZI is the vanishing polynomial over I. This can
be computed using the domain extension described above. From ct[

»

fw] the
prover (and in verification the verifier) can derive the RS code ct[

#»

fz] such that
fz
∣∣
H

= fw
∣∣
H
◦ ZI

∣∣
H
+ fx

∣∣
H

= (x,w). Computing the ciphertext vector that fw
interpolates requires one element-wise pt-ct multiplication and addition.

In order to prove statements (2) and (3), i.e. that fMz

∣∣
H

= M · fz
∣∣
H

for
fz(X) = fw(X)ZI(X) + fx(X), the Fractal protocol performs a “holographic
lincheck” [37]. We only discuss a subprotocol of the holographic lincheck, named
the “polynomial sumcheck”, since only this particular part would require homo-
morphic computations in the blind setting. It is a univariate sumcheck protocol

34 M. Gama, E. Heydari Beni, J. Kang, J. Spiessens, F. Vercauteren

that is used to prove
∑
b∈H fsc(b) = 0 for

fsc(X) = α(X)fz(X) +
∑

M∈{A,B,C}

βM (X)fMz(X) = 0 (4)

where α and βM are polynomials such that fsc is of degree 2|H| − 2. In the
sumcheck protocol the prover sends an RS code of the degree |H|−2 polynomial
Xg = fsc mod ZH , and the verifier checks the rational constraint deg(h) ≤
|H| − 2 where h(X) = fsc(X)−Xg(X)

ZH(X) . Notice that there is no need to send ERS
codes for fsc(X) and Xg(X) since the verifier can efficiently derive any of their
elements from the ERS codes ct[

#»

fz], ct[
»

fAz], ct[
»

fBz], ct[
»

fCz] and ct[#»g].
Let us now discuss the computation of the ERS code ct[#»g] starting from the

previously derived ciphertexts. Similar to domain extension one could minimize
the homomorphic depth by expressing this computation as one matrix-vector
product as follows. First, notice that g(ℓi) =

∑
j∈[|H|] rjℓ

j−2
i where rj are the co-

efficients of r = fsc mod ZH . Now, w.l.o.g., assume that deg(f)+1 = k|H| = kn
whereH is the cyclic subgroup of F of size n. Then, we have that ZH(X) = Xn−1
and therefore rj =

∑k−1
s=0 Coeff(fsc)sn+j . Lastly, we compute these coefficients

Coeff(fsc)i =
∑
j∈[|L|] Λijf(ℓj) where Λij are the coefficients of the Lagrange

polynomials such that λLj (X) =
∑
i∈[|L|] ΛijX

i−1. Therefore, #»g and similarly
ct[#»g] could be computed as

g(ℓi) =
∑
t∈[|L|]

fsc(lt)
∑
j∈[|L|]

ℓj−2i

k−1∑
s=0

Λsn+j,t for i ∈ [|L|]

which would require |L|2 pt-ct multiplications and |L| log |L| additions. As was
the case for domain extension in the barycentric from, we will have to lower the
number of required operations in exchange for a larger homomorphic depth. We
propose the following algorithm.

Computing the ERS code of g

1 : {α
∣∣
L
, βA

∣∣
L
, βB

∣∣
L
, βC

∣∣
L
} = NTT(α, βA, βB , βC)

2 : ct[
»

fsc] = α
∣∣
L
◦ ct[#»

fz] +
∑

M∈{A,B,C}
βM

∣∣
L
◦ ct[# »

fMz]

3 : ct[Coeff(fsc)] = iNTT(ct[
»

fsc])

4 : foreach i ∈ [n] :

5 : ct[Coeff(Xg)i] =
∑k−1

s=0
ct[Coeff(fsc)sn+i]

6 : ct[
»
Xg] = NTT(ct[Coeff(Xg)])

7 : ct[#»g] = ct[
»
Xg] ◦

[
l−1
1 l−1

2 . . . l−1
|L|

]
Again we minimize the homomorphic depth of the ciphertext space NTTs on lines
3 and 4 as described before. Notice that we can reuse the domain evaluations of fz

Blind zkSNARKs for zkDel and vCOED 35

and fMz since we will always have |L| ≥ deg(fsc). Remark that the computation
on line 5 will have to be performed on ciphertexts in the column-major packing
order. We note that this computation still only requires homomorphic additions
if the width of the packing used in the iNTT of line 3 is divisible by deg(fsc)/|H|.

6.5 Proving rational constraints

We have so far shown how to blindly compute the Fractal RS-hIOP while Sec-
tion 5 and specifically Theorem 8 only apply to hIOPs. The computations in-
volved in the compilation from the Fractal RS-hIOP to the hIOP also require
homomorphic operations when this hIOP is computed blindly. This compilation
utilizes the FRI IOP [9] for checking the rational constraints. We perform this
protocol batched, as first described by the authors of Aurora [11]. In batched FRI,
one checks whether the rational constraint fFRI(X) =

∑
i(αi + βiX

d−di)fi(X)
has degree d = maxi{di} where αi, βi are some random challenges provided by
the verifier instead of checking whether each rational constraint fi is of degree di.
Computing the ERS code for the batched rational constraint ct[

»

fFRI] requires
one pt-ct multiplication.

For the Fractal RS-hIOP, the set of polynomials {fi} will be equal to the
following set of rational constraints{

fAzfBz − fCz
ZH

, g,
fsc −Xg
ZH

, fz, fAz, fBz, fCz, fpt

}
where fpt is a polynomial that interpolates plaintext values and has therefore
not been discussed. A linear combination of these polynomials can be rewritten
as a linear combination over the set {fi} equal to{

fAzfBz, g, fsc, Xg, fz, fAz, fBz, fCz, fpt
}
.

By this we mean that ct[#»s] can be computed using element-wise homomorphic
operations on ct[

#»

fi]. Every ct[
#»

fi] has been previously computed except ct
»

fAzfBz
which requires depth of one ct-ct multiplication. In the FRI IOP, the prover
interacts with the verifier in approximately log d rounds. Let us assume that the
evaluation domain L is a multiplicative coset of some cyclic subgroup such that
L = {gωi}i∈[2k] for k = log2(|L|) and g a field element. In round j ∈ [log2 d], the
prover sends the folded evaluation {fFRI/2j ((gωi)2

j

)}i∈[2k−j] of the degree d/2j
polynomial fFRI/2j where

fFRI/2j ((gω
i)2

j

) =
1 + αj(gω

−i)2
j

2
fFRI/2j−1((gωi)2

j−1

) +
1− αj(gω−i)2

j

2
fFRI/2j−1((gω2k−1+i)2

j−1

)

and αj is the j-th round verifier challenge. After the last round, the prover sends
the remaining |L|/d evaluations to the verifier, who checks that they are colinear.
Now in the blind setting, we propose to stop FRI at round k − p (where 2p

elements can be encrypted in a single ciphertext), since this would only amount
to sending one ciphertext, the minimal number we can send. It is clear that

36 M. Gama, E. Heydari Beni, J. Kang, J. Spiessens, F. Vercauteren

the computation of ct[
»

fFRI/2j] from ct[
»

fFRI/2j−1] would require 2 element-wise
pt-ct multiplications on vectors of size 2k−j . As was also noticed by [5], we can
trade off the number of operation for homomorphic depth by composing multiple
rounds of FRI. In our case we fully compose all FRI rounds.

7 Proof of Decryption

The proof of decryption (PoD) is a key component to build a publicly-verifiable
blind zkSNARK, as explained in Section 5.3. In this section, we construct PoDs
from our vectorized description of the LNP22 proof system, which is described
in detail in Appendix C.

All RLWE-based HE schemes such as BFV [23,46] and the Generalized-BFV
(GBFV) scheme [50], but also BGV [24] and CKKS [33], fit in a general frame-
work: the secret key sk ∈ χkey is an element of small norm in Rm,q and a
ciphertext (c0, c1) ∈ C = R2

m,q encrypts a message m ∈ P = Rm /I for some
ideal I ⊂ Rm. For invariant schemes such as GBFV, we have that I = (t) and
the decryption equation is given by

c0 + c1 · sk = ⌊∆ ·m⌉+ vinh ∈ Rq,m (5)

where ∆ = q/t ∈ Km is a scaling factor and vinh is called the inherent noise,
i.e. the polynomial with the lowest infinity norm such that the above equation
holds. Furthermore, the ciphertext will decrypt correctly as long as the modulus
q ≫ Bt := ∥t∥can∞ and ∥vinh∥∞ < Bq := q

2·EFm·ht·∥t∥∞
− 1

2 , where ht is the
number of non-zero terms in t(X) and the bound is proven in Appendix B.2. For
other schemes such as BGV and CKKS, a slight variation of the above equation
describes valid decryption; in particular, in all cases, valid decryption is given by
a relation over the ring Rq,m, which is linear in the secret key sk and with the
requirement that ∥vinh∥∞ < Bq for some bound Bq depending on the parameters
of the scheme.

7.1 Relations for the proof of decryption

Let Csk denote a commitment to a secret key sk ∈ χkey. For 1 ≤ i ≤ r, let
ct(i) = (c

(i)
0 , c

(i)
1) ∈ R2

m,q denote a ciphertext that decrypts to m(i) under the
secret key sk. Since valid decryption requires the norm of the inherent noise v(i)inh
in each ciphertext ct(i) to be bounded by Bq, we can derive the relation:

R1 =


(
x = (Csk, {ct(i),m(i)}i∈[r])
w = (sk)

) ∣∣∣∣∣∣∣
OCT (Csk, sk) = acc

∧∀i ∈ [r] :
∥∥∥v(i)inh∥∥∥∞ < Bq where

v
(i)
inh := c

(i)
0 + c

(i)
1 · sk−

⌊
∆ ·m(i)

⌉
 (6)

Any statement-witness pair in R1 gives r valid plaintext-ciphertext pairs in
RLWE-based HE with respect to the secret key committed to in Csk.

Blind zkSNARKs for zkDel and vCOED 37

In our work, Csk is instantiated using the ABDLOP commitment scheme.
For messages committed under ABDLOP, the LNP22 proof system (described in
detail in Appendix C) allows proving various relations over the commitment ring
Rq′′ . This includes Approximate Norm bound proofs (ANP) of linear relations
in the commitment ring Rq′′ , as detailed in Appendix C.4. While it may seem
promising to apply ANP directly to prove the boundness of inherent noises in
ciphertexts, the commitment ring Rq′′ in the LNP22 proof system differs from
the HE ciphertext ring Rm,q in two aspects.

– Firstly, the LNP22 commitment ring is defined by a power-of-two cyclotomic
polynomial, typically of degree d = 64, 128. In the above HE schemes, the
ring Rm is defined modulo the m-th cyclotomic polynomial where m is much
larger than 128 and also not necessarily a power of two.

– Secondly, in LNP22, the modulus q′′ =
∏
q′′i is chosen such that the cyclo-

tomic polynomial Xd + 1 has two irreducible factors modulo q′′i . So even
in the case where Φm would be a power-of-two cyclotomic polynomial, the
ciphertext modulus in HE is chosen such that Φm fully splits modulo each
prime factor of the ciphertext modulus.

To accommodate the first incompatibility, we first represent elements and
relations in the ciphertext ring Rm,q as relations on vectors over Zq using the
coefficient embedding. Thus, the relations for the inherent noises are given by

#»v
(i)
inh = Rotm,q(c

(i)
1) · # »sk+ #»c

(i)
0 −

»⌊
∆ ·m(i)

⌉
∈ Znq , ∀i ∈ [r]. (7)

In order to prove the boundedness of #»v
(i)
inh, we describe a vectorized version of

ANP in Appendix C.5, which is referred to as vec-ANP.
As for the second incompatibility, a natural solution to accommodate dif-

ferent moduli is to include overflows, as in [68, Section 6.3]. Concretely, for a
sufficiently large modulus q′′, there exist bounded overflows { #»

ℓ (i), ∀i ∈ [r]}
satisfying

#»v
(i)
inh = Rotm,q(c

(i)
1) · # »sk+ #»c

(i)
0 −

»⌊
∆ ·m(i)

⌉
+ q

#»

ℓ (i) ∈ Znq′′ , ∀i ∈ [r]. (8)

Since inherent noises and overflows are not independent linear combinations of
»sk, proving their bounds would require us to commit to at least one of the two.
This not only increases the commitment size, but also requires a higher modulus
q′′ > q than HE ciphertexts.

To avoid this blow-up, we use a well known technique from HE, namely
modulus switching, which allows transforming a valid ciphertext modulo q into a
valid ciphertext modulo q′′, where q′′ is taken to be lower than q in our protocols.
Let ct[m] = (c0, c1) ∈ R2

m,q denote a ciphertext with ciphertext modulus q
and inherent noise vinh. Switching the ciphertext modulus to q′′ amounts to
computing

ct′ =
(⌊

q′′

q
c0

⌉
,

⌊
q′′

q
c1

⌉)
∈ R2

m,q′′ .

38 M. Gama, E. Heydari Beni, J. Kang, J. Spiessens, F. Vercauteren

In Appendix B.3, we derive the noise bound in ct′ as ∥v′inh∥∞ ≤
q′′

q ∥vinh∥∞ +
Bms, where Bms is a constant depending on the secret key distribution. As long
as we have ∥v′inh∥∞ ≤ Bq′′ , the ciphertext ct′ will be valid and thus satisfies the
same equation as (7), but with q′′ instead of q.

7.2 Relaxed proof of decryption

For modulus switched ciphertexts {ct′(i) ∈ R2
m,q′′ , i ∈ [r]}, the proof of decryp-

tion amounts to proving the relation

R2 =


(
x = (Csk, {ct′(i),m(i)}i∈[r])
w = (sk)

) ∣∣∣∣∣∣∣
OCT (Csk, ŝk) = acc

∧∀i ∈ [r] :
∥∥∥ #»v

(i)
inh

∥∥∥
∞
< Bq′′ where

#»v
(i)
inh := Rotm,q′′(c

′(i)
1) · # »sk+ #»c

′(i)
0 −

»

⌊∆ ·m(i)⌉

,
where ŝk denotes an embedding of sk into the message space of the commitment
scheme CT . In the instantiation of the ABDLOP scheme, for an element v ∈ Rm,
we define its embedding v̂ ∈ Rn̂q′′ as n̂ =

⌈
n
d

⌉
elements in the commitment ring

Rq′′ , such that the coefficient vector of v̂ equals #»v modulo q′′.
In this section, we describe a protocol PoD(Csk, {ct′(i),m(i)}i∈[r]) using vec-ANP,

which is complete for ciphertexts whose inherent noise satisfy
∥∥∥ #»v

(i)
inh

∥∥∥
∞
< BPoD,

where

BPoD := min

{
Bq′′

ψ(L2)
√
r ·n

,
q′′

41(r ·n)3/2ψ(L2)

}
and the factor ψ(L2) is defined in Appendix C.3. In other words, our protocol is
a relaxed proof of decryption with a relaxation factor

Φr := Bq′′ /BPoD ≈ ψ(L2)
√
r ·n ·max

{
1,

41 r ·n
2δm∥t∥∞

}
.

The protocol. To begin with, the prover commits to the secret key sk using
the Ajtai part of the ABDLOP commitment scheme, i.e. Csk = A1 · ŝk+A1 · s2
where s2 ∈ Rm2

q′′ is a small randomness satisfying ∥s2∥∞ ≤ ν.
To generate a proof of decryption for r ciphertext-plaintext pairs whose in-

herent noises are bounded by BPoD, the prover applies the vec-ANP protocol
with inputs

Πvec-ANP
(
(s1 = ŝk,m = ∅, s2), (W,w, Bw = BPoD)

)
,

where

W =


Rotm,q′′(c

(1)
1)

...
Rotm,q′′(c

(r)
1)

 ∈ Zr ·n×n
q′′ , w =


#»c

(1)
0 −

»

⌊∆ ·m(1)⌉
...

#»c
(r)
0 −

»

⌊∆ ·m(r)⌉

 ∈ Zr ·n
q′′ .

Blind zkSNARKs for zkDel and vCOED 39

Denote the vector W · # »sk+w =
[

#»v
(1)
inh · · ·

#»v
(r)
inh

]⊤
as #»u ; then, the above vec-ANP

protocol convinces the verifier that the prover knows ŝk such thatOCT
(
Csk, ŝk

)
=

acc and ∥ #»u∥∞ ≤ BPoD·ψ∞ ≤ Bq′′ . This guarantees the validity of each ciphertext-
plaintext pair with respect to the secret key committed in Csk.

Asymptotic Analysis. With ABDLOP parameters ensuring sufficient hardness
of MSIS (for binding) and MLWE (for hiding), the protocol PoD(Csk, {ct′(i),m(i)}i∈[r])
achieves a constant amortized proof size (including commitment size, without
applying the Huffman coding optimization [68]) with respect to the number of
ciphertext-plaintext pairs r.

The computation cost is dominated by a subprotocol Π(2)
eval(·), where both

the prover and the verifer need to compute the function Hj , as detailed in Sec-
tion C.5. This results in O

(
rn2

)
computation costs. In Section 7.3, we describe

a protocol that achieves computation cost O
(
n2 + rn log n

)
.

7.3 Reducing the computation costs

In Figure 6, we describe another batched proof of decryption protocol that
has a reduced computation cost compared to the protocol from Section 7.2.
Instead of having the linear relation in the vec-ANP proof grow with the num-
ber of ciphertexts r, we prove the decryption of a random linear combination
of ciphertexts. The soundness of the protocol is based on the Schwartz-Zippel
Lemma. Since the computations on the r ciphertexts are moved to the ring
space, the computations are more efficient. In particular, we reduce the cost
from O

(
rn2

)
to O

(
n2 + rn log n

)
. This comes with the change of relaxation fac-

tor from Φr = O
(
(rn)

3
2

)
to ΦSZ = O

(
rn

5
2

)
. Using the Fiat-Shamir transform,

this protocol can be compiled into a non-interactive proof in the ROM.

Lemma 2. Let P = FP denote the plaintext space of an HE scheme with P slots.
If r / |F| = negl(λ), then the protocol in Figure 6 is a proof of decryption for r
ciphertexts {ct′[m(i)],m(i)}i∈[r] with negligible soundness error and relaxation
factor ΦSZ := Φ1 ·Nptct · 2⌈log r⌉ where Nptct = O(n) is the noise increase bound
for 1 pt-ct multiplication.

Proof. We start by discussing soundness. Let us define a function f : Pr → P :
{m(j)}i∈[r] 7→

∑
i∈[r] αim

(i) for some set of challenges {αi}i∈[r] such that each αi
encodes P elements {αij}j∈[P]. The proof of decryption that is verified at the
end implies that

f
(
{m(i)}i∈[r]

)
= E .Decsk

(
E .Eval

(
f, {ct′[m(i)]}i∈[r]

))

40 M. Gama, E. Heydari Beni, J. Kang, J. Spiessens, F. Vercauteren

except with negligible probability. Under the assumption that E is still correct
for f on those ciphertexts, this implies that

f
(
{m(i)}i∈[r]

)
= f

(
E .Decsk

(
{ct′[m(i)]}i∈[r]

))
⇒

∑
i∈[r]

(
m(i) − E .Decsk

(
ct′[m(i)]

))
αi = 0

⇒ ∀j ∈ [P] :
∑
i∈[r]

(
m

(i)
j − E .Decsk

(
ct′[m(i)]

)
j

)
αij = 0

where the subscript j denotes the j-th slot of a plaintext encoding. Now if the
values αij were randomly sampled from F, by the Schwartz-Zippel lemma we
can conclude that for each j ∈ [P] it holds that

∀i ∈ [r] : m
(i)
j = E .Decsk

(
ct′[m(i)]

)
j

except with probability r/ |F|. The relaxation factor ΦSZ comes from the relax-
ation factor required for a PoD on one ciphertext multiplied by the noise factors
added by homomorphically computing f . This ensures that the correctness as-
sumption above holds. ⊓⊔

Prover Verifier

Csk, {ct′[m(i)],m(i)}i∈[r]

c̃t :=
∑
i∈[r]

ptMult(ct′[m(i)], αi)
#»α #»α←Fr×P

m̃ :=
∑
i∈[r]

αi ·m(i)

πPoD←PoD.P(Csk, c̃t, m̃) πPoD
c̃t :=

∑
i∈[r]

ptMult(ct′[m(i)], αi)

m̃ :=
∑
i∈[r]

αi ·m(i)

PoD.V(πPoD, Csk, c̃t, m̃)
?
= acc

Fig. 6: A PoD protocol for {ct′[m(i)],m(i)}i∈[r] with reduced computation costs.

7.4 Proving decryptions of a subset

As discussed in Section 6, efficient instantiations of blind zkSNARKs rely on the
SIMD capabilities of the used HE scheme. Therefore, when opening the com-
mitment to a ciphertext and proving its decryption in order to reveal a queried

Blind zkSNARKs for zkDel and vCOED 41

value, we are instead revealing an entire batch of elements in the zkSNARK field.
To ensure that the zero-knowledge property of the zkSNARK scheme extends to
the blind zkSNARK scheme, we must avoid revealing more queried values than
intended, by only revealing the queried values. We give two methods to do so.

Masking. The first method consists of simply masking the ciphertext using a
plaintext-ciphertext multiplication, where the masking plaintext M encodes a 1
in the slots we want to reveal and a 0 in all other slots. Instead of giving a PoD
(πPoD, ct,m) that some ciphertext ct = (c0, c1) ∈ R2

q′′ decrypts to a plaintext
message m ∈ P, we can simply replace the ciphertext by ct∗ = ptMult(ct,M)
and give a PoD (πPoD, ct∗,m∗) where m∗ =M ·m.

Ring switching. The GBFV parameter sets we use in the blind zkSNARK
are particular instances of a family of parameter sets. To illustrate this, con-
sider the case where we want to encrypt elements in Fp2 with p the Golidlocks
prime; then, the family consists of the following: the plaintext space is given by
Z[x]/(Φm(x), t(x)) with m = 7 · 3 · 2j and t(x) = xk − b, with k = 7 · 2i+j−6 and
b = 22

i

for some integers 0 ≤ i ≤ 5 and 6 ≤ j ≤ 16. The blind zkSNARK is exe-
cuted using the set j = 11 and i = 0, resulting in a plaintext space corresponding
to a vector of 96 elements in Fp2 . As explained above, we are only interested in
a subset of these elements, which opens up the possibility to construct a valid
ciphertext for a smaller parameter set in the same family encrypting only the
subset of values we want to reveal. For this we can use a technique called ring
switching [54] to map a valid ciphertext for j = 11 to the smaller ring defined
by j = 8, which is the smallest dimension that ensures 100-bit security for the
modulus q′′′ in the relaxed PoD. The resulting protocol can be found in Ap-
pendix D. The ring switch decreases the ciphertext size by a factor of 8, which
speeds up the PoD by a factor of 64. A similar approach can be taken for the
other parameter sets.

8 Implementation

In this section, we demonstrate the practicality of using our protocols in the
vCOED setting and the zkDel setting. As discussed before, we select Fractal as
the hIOP scheme and GBFV as the HE scheme. In what follows, we will focus on
100-bit security since this is the security level targeted by FRI-based zkSNARK
implementations [17].

8.1 GBFV parameter sets

For the Fractal computation, we instantiate GBFV over the ring Rm for m =
7 · 3 · 211, resulting in the lattice dimension n := φ(m) = 12288. The ciphertext
ring is Rm,q with ciphertext modulus q ≤ 382 bits, and the plaintext polynomial
is t(X) = X7·27−24. The plaintext space is a vector space of dimension 384 over

42 M. Gama, E. Heydari Beni, J. Kang, J. Spiessens, F. Vercauteren

Fp2 , where p = 264 − 232 + 1 is the Goldilocks prime, widely used in zkSNARK
implementations because of its efficient arithmetic.

Ciphertexts committed to in the BCS compilation are in a smaller ring Rm′,q′

where m′ = 7 · 3 · 29 (dimension n′ := φ(m′) = 3072) and a 96 bit q′. For the
PoD, we switch down further to an even smaller ring Rm′′,q′′ where m′′ = 7 ·3 ·28
(with dimension n′′ := φ(m′′) = 1536) and a 48 bit q′′. All these HE parameters
provide at least 100-bit security according to the lattice estimator by Albrecht
et al. [3].

8.2 Computing Fractal blindly

We prove that the homomorphic circuit outlined in Section 6 is feasible in prac-
tice for computing blind proofs of computations with C = 220 R1CS constraints.
This is achieved by selecting parameters for Fractal and GBFV and then demon-
strating the following facts:

– they are secure instantiations of an hIOP and HE scheme respectively,
– the HE scheme will remain correct for that homomorphic circuit,
– the number of required homomorphic computations is feasible.

Fractal is calculated in a field of size log2 F = 128, thus the Fractal RS-
hIOP will remain sound for circuit sizes up to approximately 228 constraints.
The maximal degree on which we will have to perform the FRI IOP will be
approximately C = 220. Therefore, from the recent paper by Block et al. [17],
we can derive that FRI will remain secure for this field size when choosing rate
ρ = 1/2 (so |L| = C/ρ = 221) and performing ℓ = 101 repetitions of the query
phase. In Appendix D, we argue this implies opening to 3728 Fp2 elements on
average.

Let us first discuss the practicality of encrypting and sending a circuit trace
of size C, as shown in Figure 4. We propose encrypting the trace into normal
BFV ciphertexts and then unpacking them into GBFV ciphertexts on the server
side. As described in [50], when instantiating BFV using the same cyclotomic
polynomial Φm, this can be achieved using one automorphism and one pt-ct
operation per resulting GBFV ciphertext. For the parameter set with n = 12288,
the packing size for BFV is 6144 and for GBFV is 384. To facilitate the NTT
computation in proving Fractal, we only use vectors of power-of-two sizes; hence
we only use 4096 slots in BFV and 256 slots in GBFV. Therefore, the client
needs to encrypt ⌈220/4096⌉ = 256 ciphertexts, which takes approximately 3.3s.
The resulting communication size would be approximately 313MB. However,
notice that these are actually upper bounds since one would likely not encrypt
and send the entire trace but only the private inputs to the computation. Then,
the server could compute the other trace values homomorphically, which might
require bootstrapping.

The first operation performed by the server will be unpacking into GBFV
ciphertexts. Next, the server computes Fractal as described in Section 6. For
the inverse NTT required in domain extension, we choose base b = 8 and width

Blind zkSNARKs for zkDel and vCOED 43

w = 1. For all other NTTs we have chosen base b = 8 and width w = 2. Regarding
the FRI computation, we compose all rounds into one to maximally reduce noise
depth, as in [5].

During the FRI procedure, the prover outputs GBFV ciphertexts of dimen-
sion n = 12288, where P = 256 slots are used in each ciphertext. Instead
of committing to these ciphertexts in the BCS compilation, we perform rings
switching to reduce the lattice dimension, resulting in GBFV ciphertexts of di-
mension n′ = 3072, where P ′ = 64 slots are used in each ciphertext. As such,
opening to 3728 Fp2 elements for the FRI query phase corresponds to open-
ing 2514 dimension-3072 ciphertexts instead of opening 2105 dimension-12288
ciphertexts, as explained in Appendix D.

The number of operations and the noise consumption in each step are pre-
sented in Table 1. We also provide the script used to compute this table.5 Note
that we only report on the noise required in the “critical path”. For example,
in the third row, the reported noise is that of the ciphertexts ct[

»

fMz]. Also, we
reduce the required noise depth by combining subsequent pt-ct operations. For
example, all consecutive pt-ct multiplications αn(. . . (α1 ·ct)) can be computed
using one pt-ct multiplication (α1 · · ·αn) · ct.

Computation Noise (bits) Cadd Cptct Caut Cctct

Unpacking 9 0 4096 4096 0

Computing ct[Mz] 14 9421459 9433747 2978354 0

Computing ct[
#»

fz]/ct[
»

fMz] 64 4636672 4653056 491520 0

Computing ct[#»g] 138 6762496 6782976 552960 0

Computing ct[
»

fFRI] 0 65536 65536 0 8192

Computing FRI 16 98305 106496 0 0

Ringswitching 9 0 196604 589812 0

Table 1: Operation count and noise estimates for computing blind Fractal. See implementation for more details.

Estimated performance for vCOED. In the vCOED setting, we choose q =
375 bit as the starting ciphertext modulus, and apply dynamic scaling (i.e. mod-
ulus switching to lower ciphertext moduli) when computing blind Fractal. As
described in Section 8.1, the ciphertexts committed to in BCS have dimension
n′ = 3072 and a 96 bit modulus q′. To decrease the proof size and remove
5 https://github.com/KULeuven-COSIC/blind_zkSNARKs/blindFractal/estimates.

m

https://github.com/KULeuven-COSIC/blind_zkSNARKs/blindFractal/estimates.m
https://github.com/KULeuven-COSIC/blind_zkSNARKs/blindFractal/estimates.m

44 M. Gama, E. Heydari Beni, J. Kang, J. Spiessens, F. Vercauteren

ringswitching noise, we modswitch to a 60 bit modulus q′′. The resulting cipher-
texts have 9 bits of noise. Given that the GBFV decryption bound Bq ≈ 51 bits,
this leaves a 51 − 9 = 42 bit noise gap, which is sufficient to ensure circuit pri-
vacy. Circuit privacy is essential for blind hIOP to maintain zero-knowledge in
vCOED. Applying noise flooding [13] (i.e. adding encryptions of zeros with large
noise) to ciphertexts with more than 40-bit noise gap gives sufficient security for
circuit privacy [42,22].

These noise-flooded ciphertexts are committed to in BCS compilation. The
FRI-query phase requires opening on average 2514 GBFV ciphertexts (see Ap-
pendix D) of dimension n′ = 3072 and 60-bit ciphertext modulus. This results in
a 116MB proof size. To estimate the execution time for generating a blind Frac-
tal proof, we use the operation counts in Table 1. Since GBFV is currently not
implemented for non-power-of-two cyclotomics, we cannot get exact runtimes for
the homomorphic operations of n = 12288. Therefore, we use the runtimes for
the same operations in a power-of-two lattice dimension of larger size, namely
214, as presented in Table 3. Based on this, we estimate that computing blind
Fractal completely sequentually for a circuit size of 220 takes 9.26 hours. With
a 32x speedup from parallelization, the expected runtime reduces to 17.4 min.

Estimated performance for zkDel. In the zkDel setting, we choose q = 382
bit as the starting ciphertext modulus, and also apply dynamic scaling when
computing blind Fractal. As such, the resulting ciphertext has 35.7-bit noise
within a 96 bit ciphertext modulus. These ciphertexts are committed to in BCS
compilation. Note that in the zkDel setting, circuit privacy is required from the
HE scheme. Using the same estimation strategy as in vCOED, the computation
of blind Fractal takes 10.9 hours sequentially and 20.5 minutes assuming a 32
parallelization factor.

The FRI-query phase requires opening 2514 GBFV ciphertexts of dimension
n′ = 3072 and 96-bit ciphertext modulus. This results in a 186MB server-to-
client communication. Furthermore, the client prover needs to generate a PoD
for 2514 masked ciphertexts. Note that since masking is deterministic, we can
perform the linear combinations from Figure 6 along with the masking. This
results in a ciphertext with 52.9 bits of noise.

To make the PoD protocol less costly, the resulting ciphertext is ringswitched
further to dimension n′′ = 1536 in the PoD. Before this ringswitching, we need
to perform an homomorphic trace operation to aggregate messages of the 64
relevant slots in dimension n′ = 3072 into the 32 remaining slots, and a mod-
ulus switching to gaurantee the 100-bit security. Therefore, the protocol from
Figure 6 was eventually performed for 32 slots. Before ringswitching to n′′, we
modswitch to a ciphertext modulus q′′ of 48 bits, where q′′ is compatible with
the requirements of the LNP22 proof system; this results in a noise term of about
5 bits. Finally, we ringswitch down further to n′′ = 1536, which increases the
noise to 14.1 bits. Since the resulting noise is below the threshold BPoD = 16.9
bits in Appendix D.1, the final ciphertext-plaintext pair can be proven from our
instantiation of the PoD protocol.

Blind zkSNARKs for zkDel and vCOED 45

Discussion. Due to the lack of GBFV implementation for non power-of-2 cy-
clotomics, we were unable to provide an implementation for the blind Fractal
computation. Instead, we count the number of operations and estimate the run-
time using lattice dimension 214 which is 4/3 times larger than our actual di-
mension 12288. This conservative approach leaves a margin for the fact that HE
operations are slightly slower in non-power-of-two cyclotomic ciphertext space.
Furthermore, we also provide runtime estimates with 32x speedup from paral-
lelization. We think it is a reasonable assumption, since all operations in our
algorithm are highly parallelizable and the server is expected to have powerful
computational resources. Furthermore, the peak memory usage during the blind
Fractal computation remains smaller than 100GB.

Comparison with HELIOPOLIS. It is not trivial to compare our estimation
to [5] since they only implement blind FRI and choose log |F| ≈ 256 bit field size.
Thus, we make a new estimation6 for only computing FRI using the parameters
m = 214 and t(X) = X28 − 332 which results in a HE plaintext space of FPp for
P = 256 and p approximately 268 bits. Using the same method as before, we
estimate a sequential runtime of 71s and a parallelized runtime of 2.2s assuming a
32x speedup. In comparison, the implementation of [5] requires 207s runtime on a
32-thread machine. While achieving a 32x speedup on a a 32-thread machine may
not be realistic (despite our method being highly parallelizable), our estimated
runtime still demonstrates a significant improvement for blind FRI. Furthermore,
we also compare to the operation count required for their NTT algorithm for
polynomials of degree 218, as described in Figure 7 in Appendix E. Our blind 2D-
NTT only requires 584704 operations in n = 213 while their blind NTT requires
at least 107 operations in n = 212. Even though their approach can batch blind
evaluation of FRI on many polynomials, we note that in practice FRI is always
batched using a random linear combination (as described in Section 6.5) to
decrease the proof size.

8.3 Proof of Decryption

We implemented the proof-of-decryption protocol presented in Section 7 using
the C programming language7. We leveraged basic primitives used in Lazer [72],
a library for lattice-based zero-knowledge proofs, and thoroughly extended it to
construct our proof of decryption for GBFV ciphertexts.

Below, we present execution times for the Πvec-ANP protocol with increasing
number of input ciphertexts. We conclude that, in practice, following the tech-
nique from Figure 6 is always beneficial performance-wise, since the client needs
to apply Πvec-ANP to a single ciphertext at the comparably negligible expense of
executing additional HE operations. Lazer parameters for the complete proof of
6 https://github.com/KULeuven-COSIC/blind_zkSNARKs/blindFractal/largefield/

estimates_FRIonly.m
7 https://github.com/KULeuven-COSIC/blind_zkSNARKs/proof-of-decryption/

README.md

https://github.com/KULeuven-COSIC/blind_zkSNARKs/blindFractal/largefield/estimates_FRIonly.m
https://github.com/KULeuven-COSIC/blind_zkSNARKs/blindFractal/largefield/estimates_FRIonly.m
https://github.com/KULeuven-COSIC/blind_zkSNARKs/proof-of-decryption/README.md
https://github.com/KULeuven-COSIC/blind_zkSNARKs/proof-of-decryption/README.md

46 M. Gama, E. Heydari Beni, J. Kang, J. Spiessens, F. Vercauteren

decryption using the protocol from Figure 6 with r = 2514 ciphertexts and noise
bound BPoD = 16.9 bits are presented in Table 5 (Appendix D.1). The proof
size for this parameter set is 12KB and can be computed as described in [68,
Section 6.1].

r
Πvec-ANP

w/out Π
(2)
eval

Π
(2)
eval Total runtime

single thread 8 threads single thread 8 threads
1 0.04 1.15 0.45 1.19 0.49

8 0.14 6.92 1.26 7.06 1.40

64 0.93 53.01 8.09 53.94 9.02

512 7.28 424.17 64.30 431.45 71.58

1024 14.68 846.59 126.89 861.27 141.57

2048 29.40 1688.15 253.55 1717.55 282.95

4096 58.81 3407.10 516.12 3465.91 574.93

Table 2: Runtimes in seconds for the PoD instantiated with the parameters in
Table 5 and increasing number of pt-ct pairs (r). Using the optimized method
given in Figure 6 we can always reduce to the first row in practice.

Experiments. In Table 2, we present the runtimes in seconds for our Πvec-ANP
proof of decryption protocol. computed on a machine with an Intel(R) Xeon(R)
CPU E5-2690 v3 @ 2.60GHz, 8 cores and 377GB RAM. We provide separate
numbers for the following two subprotocols:

– The Πvec-ANP protocol up to the execution of Π(2)
eval, including the initial

commitment to the FHE secret key and the computation of #»z = bR #»u + #»y .
– The Π(2)

eval protocol for proving that #»z was computed correctly, including
the computation of the quadratic functions Hj .

Constructing the Hj functions involves a relatively large matrix multiplication
(for computing

#»

Rj ·W) which represents around 96% of the total runtime.
Therefore, we tested two variations of the PoD: (1) a single-threaded version that
would be used by a proof delegator with low-end device, and (2) a multi-threaded
matrix multiplication using OpenMP leveraging 8 cores for when a more powerful
machine is available. We note that the referred matrix multiplication involves
only public information, meaning that it would be possible to delegate it to the
server computing the zkSNARK. However, the single thread execution is already
significantly faster than locally computing the zkSNARK proof itself.

As we discuss in Section 7.3, executing the PoD using the optimized method
presented in Figure 6 results in reduced computational costs for the client. In
fact, not using this method and instead directly applying the Πvec-ANP to all

Blind zkSNARKs for zkDel and vCOED 47

the ciphertexts resulting from the Fractal query phase would imply executing
the protocol with on average r = 2514, as detailed in Appendix D. Conversely,
with the protocol in Figure 6, we need to prove correct decryption of a single
ciphertext, taking the client less than 2 seconds. Our current implementation
consumes 15MB RAM for r = 1, but with better memory management this
number could be further optimised.

Acknowledgments. We thank Robin Geelen for helping us use the GBFV implemen-
tation and thank Vadim Lyubashevsky and Patrick Steuer for helping us use the Lazer
library. This work was supported in part by the European Research Council (ERC)
under the European Union’s Horizon 2020 research and innovation programme (grant
agreement ISOCRYPT - No. 101020788) and by CyberSecurity Research Flanders with
reference number VR20192203. Date of this document: February 14, 2025.

References

1. Aikata, A., Mert, A.C., Kwon, S., Deryabin, M., Roy, S.S.: REED: Chiplet-based
accelerator for fully homomorphic encryption. Cryptology ePrint Archive, Report
2023/1190 (2023), https://eprint.iacr.org/2023/1190

2. Ajtai, M.: Generating hard instances of lattice problems (extended abstract). In:
28th ACM STOC. pp. 99–108. ACM Press (May 1996). https://doi.org/10.1145/
237814.237838

3. Albrecht, M.R., Player, R., Scott, S.: On the concrete hardness of learning with
errors. Cryptology ePrint Archive, Report 2015/046 (2015), https://eprint.iacr.
org/2015/046

4. Aranha, D.F., Baum, C., Gjøsteen, K., Silde, T.: Verifiable mix-nets and dis-
tributed decryption for voting from lattice-based assumptions. In: Meng, W.,
Jensen, C.D., Cremers, C., Kirda, E. (eds.) ACM CCS 2023. pp. 1467–1481. ACM
Press (Nov 2023). https://doi.org/10.1145/3576915.3616683

5. Aranha, D.F., Costache, A., Guimarães, A., Soria-Vazquez, E.: HELIOPOLIS:
Verifiable computation over homomorphically encrypted data from interactive or-
acle proofs is practical. In: Chung, K.M., Sasaki, Y. (eds.) ASIACRYPT 2024,
Part V. LNCS, vol. 15488, pp. 302–334. Springer, Singapore (Dec 2024). https:
//doi.org/10.1007/978-981-96-0935-2_10

6. Atapoor, S., Baghery, K., Pereira, H.V.L., Spiessens, J.: Verifiable FHE via lattice-
based SNARKs. CiC 1(1), 24 (2024). https://doi.org/10.62056/a6ksdkp10

7. Baum, C., Bootle, J., Cerulli, A., del Pino, R., Groth, J., Lyubashevsky, V.: Sub-
linear lattice-based zero-knowledge arguments for arithmetic circuits. In: Shacham,
H., Boldyreva, A. (eds.) CRYPTO 2018, Part II. LNCS, vol. 10992, pp. 669–699.
Springer, Cham (Aug 2018). https://doi.org/10.1007/978-3-319-96881-0_23

8. Baum, C., Damgård, I., Lyubashevsky, V., Oechsner, S., Peikert, C.: More efficient
commitments from structured lattice assumptions. In: Catalano, D., De Prisco,
R. (eds.) SCN 18. LNCS, vol. 11035, pp. 368–385. Springer, Cham (Sep 2018).
https://doi.org/10.1007/978-3-319-98113-0_20

9. Ben-Sasson, E., Bentov, I., Horesh, Y., Riabzev, M.: Fast reed-solomon interac-
tive oracle proofs of proximity. In: Chatzigiannakis, I., Kaklamanis, C., Marx, D.,
Sannella, D. (eds.) ICALP 2018. LIPIcs, vol. 107, pp. 14:1–14:17. Schloss Dagstuhl
(Jul 2018). https://doi.org/10.4230/LIPIcs.ICALP.2018.14

https://eprint.iacr.org/2023/1190
https://doi.org/10.1145/237814.237838
https://doi.org/10.1145/237814.237838
https://doi.org/10.1145/237814.237838
https://doi.org/10.1145/237814.237838
https://eprint.iacr.org/2015/046
https://eprint.iacr.org/2015/046
https://doi.org/10.1145/3576915.3616683
https://doi.org/10.1145/3576915.3616683
https://doi.org/10.1007/978-981-96-0935-2_10
https://doi.org/10.1007/978-981-96-0935-2_10
https://doi.org/10.1007/978-981-96-0935-2_10
https://doi.org/10.1007/978-981-96-0935-2_10
https://doi.org/10.62056/a6ksdkp10
https://doi.org/10.62056/a6ksdkp10
https://doi.org/10.1007/978-3-319-96881-0_23
https://doi.org/10.1007/978-3-319-96881-0_23
https://doi.org/10.1007/978-3-319-98113-0_20
https://doi.org/10.1007/978-3-319-98113-0_20
https://doi.org/10.4230/LIPIcs.ICALP.2018.14
https://doi.org/10.4230/LIPIcs.ICALP.2018.14

48 M. Gama, E. Heydari Beni, J. Kang, J. Spiessens, F. Vercauteren

10. Ben-Sasson, E., Chiesa, A., Garman, C., Green, M., Miers, I., Tromer, E., Virza,
M.: Zerocash: Decentralized anonymous payments from bitcoin. In: 2014 IEEE
Symposium on Security and Privacy. pp. 459–474. IEEE Computer Society Press
(May 2014). https://doi.org/10.1109/SP.2014.36

11. Ben-Sasson, E., Chiesa, A., Riabzev, M., Spooner, N., Virza, M., Ward, N.P.:
Aurora: Transparent succinct arguments for R1CS. In: Ishai, Y., Rijmen, V. (eds.)
EUROCRYPT 2019, Part I. LNCS, vol. 11476, pp. 103–128. Springer, Cham (May
2019). https://doi.org/10.1007/978-3-030-17653-2_4

12. Ben-Sasson, E., Chiesa, A., Spooner, N.: Interactive oracle proofs. In: Hirt, M.,
Smith, A.D. (eds.) TCC 2016-B, Part II. LNCS, vol. 9986, pp. 31–60. Springer,
Berlin, Heidelberg (Oct / Nov 2016). https://doi.org/10.1007/978-3-662-53644-5_
2

13. Bendlin, R., Damgård, I.: Threshold decryption and zero-knowledge proofs for
lattice-based cryptosystems. In: Micciancio, D. (ed.) TCC 2010. LNCS, vol. 5978,
pp. 201–218. Springer, Berlin, Heidelberg (Feb 2010). https://doi.org/10.1007/
978-3-642-11799-2_13

14. Bertels, J., Pereira, H.V.L., Verbauwhede, I.: FINAL bootstrap acceleration on
FPGA using DSP-free constant-multiplier NTTs. Cryptology ePrint Archive, Paper
2025/137 (2025), https://eprint.iacr.org/2025/137

15. Bitansky, N., Chiesa, A., Ishai, Y., Ostrovsky, R., Paneth, O.: Succinct non-
interactive arguments via linear interactive proofs. In: Sahai, A. (ed.) TCC 2013.
LNCS, vol. 7785, pp. 315–333. Springer, Berlin, Heidelberg (Mar 2013). https:
//doi.org/10.1007/978-3-642-36594-2_18

16. Block, A.R., Garreta, A., Katz, J., Thaler, J., Tiwari, P.R., Zajac, M.: Fiat-
shamir security of FRI and related SNARKs. In: Guo, J., Steinfeld, R. (eds.)
ASIACRYPT 2023, Part II. LNCS, vol. 14439, pp. 3–40. Springer, Singapore (Dec
2023). https://doi.org/10.1007/978-981-99-8724-5_1

17. Block, A.R., Tiwari, P.R.: On the concrete security of non-interactive FRI. Cryp-
tology ePrint Archive, Paper 2024/1161 (2024), https://eprint.iacr.org/2024/1161

18. Bois, A., Cascudo, I., Fiore, D., Kim, D.: Flexible and efficient verifiable com-
putation on encrypted data. In: Garay, J. (ed.) PKC 2021, Part II. LNCS,
vol. 12711, pp. 528–558. Springer, Cham (May 2021). https://doi.org/10.1007/
978-3-030-75248-4_19

19. Bootle, J., Lyubashevsky, V., Nguyen, N.K., Sorniotti, A.: A framework for practi-
cal anonymous credentials from lattices. In: Handschuh, H., Lysyanskaya, A. (eds.)
CRYPTO 2023, Part II. LNCS, vol. 14082, pp. 384–417. Springer, Cham (Aug
2023). https://doi.org/10.1007/978-3-031-38545-2_13

20. Bos, J.W., Ducas, L., Kiltz, E., Lepoint, T., Lyubashevsky, V., Schanck, J.M.,
Schwabe, P., Seiler, G., Stehlé, D.: CRYSTALS - kyber: A cca-secure module-
lattice-based KEM. In: 2018 IEEE European Symposium on Security and Privacy,
EuroS&P 2018, London, United Kingdom, April 24-26, 2018. pp. 353–367. IEEE
(2018), https://doi.org/10.1109/EuroSP.2018.00032

21. Bossuat, J.P., Mouchet, C., Troncoso-Pastoriza, J.R., Hubaux, J.P.: Efficient
bootstrapping for approximate homomorphic encryption with non-sparse keys.
In: Canteaut, A., Standaert, F.X. (eds.) EUROCRYPT 2021, Part I. LNCS,
vol. 12696, pp. 587–617. Springer, Cham (Oct 2021). https://doi.org/10.1007/
978-3-030-77870-5_21

22. Boudgoust, K., Scholl, P.: Simple threshold (fully homomorphic) encryption from
LWE with polynomial modulus. In: Guo, J., Steinfeld, R. (eds.) ASIACRYPT 2023,
Part I. LNCS, vol. 14438, pp. 371–404. Springer, Singapore (Dec 2023). https:
//doi.org/10.1007/978-981-99-8721-4_12

https://doi.org/10.1109/SP.2014.36
https://doi.org/10.1109/SP.2014.36
https://doi.org/10.1007/978-3-030-17653-2_4
https://doi.org/10.1007/978-3-030-17653-2_4
https://doi.org/10.1007/978-3-662-53644-5_2
https://doi.org/10.1007/978-3-662-53644-5_2
https://doi.org/10.1007/978-3-662-53644-5_2
https://doi.org/10.1007/978-3-662-53644-5_2
https://doi.org/10.1007/978-3-642-11799-2_13
https://doi.org/10.1007/978-3-642-11799-2_13
https://doi.org/10.1007/978-3-642-11799-2_13
https://doi.org/10.1007/978-3-642-11799-2_13
https://eprint.iacr.org/2025/137
https://doi.org/10.1007/978-3-642-36594-2_18
https://doi.org/10.1007/978-3-642-36594-2_18
https://doi.org/10.1007/978-3-642-36594-2_18
https://doi.org/10.1007/978-3-642-36594-2_18
https://doi.org/10.1007/978-981-99-8724-5_1
https://doi.org/10.1007/978-981-99-8724-5_1
https://eprint.iacr.org/2024/1161
https://doi.org/10.1007/978-3-030-75248-4_19
https://doi.org/10.1007/978-3-030-75248-4_19
https://doi.org/10.1007/978-3-030-75248-4_19
https://doi.org/10.1007/978-3-030-75248-4_19
https://doi.org/10.1007/978-3-031-38545-2_13
https://doi.org/10.1007/978-3-031-38545-2_13
https://doi.org/10.1109/EuroSP.2018.00032
https://doi.org/10.1007/978-3-030-77870-5_21
https://doi.org/10.1007/978-3-030-77870-5_21
https://doi.org/10.1007/978-3-030-77870-5_21
https://doi.org/10.1007/978-3-030-77870-5_21
https://doi.org/10.1007/978-981-99-8721-4_12
https://doi.org/10.1007/978-981-99-8721-4_12
https://doi.org/10.1007/978-981-99-8721-4_12
https://doi.org/10.1007/978-981-99-8721-4_12

Blind zkSNARKs for zkDel and vCOED 49

23. Brakerski, Z.: Fully homomorphic encryption without modulus switching from
classical GapSVP. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS,
vol. 7417, pp. 868–886. Springer, Berlin, Heidelberg (Aug 2012). https://doi.org/
10.1007/978-3-642-32009-5_50

24. Brakerski, Z., Gentry, C., Vaikuntanathan, V.: (Leveled) fully homomorphic en-
cryption without bootstrapping. In: Goldwasser, S. (ed.) ITCS 2012. pp. 309–325.
ACM (Jan 2012). https://doi.org/10.1145/2090236.2090262

25. Brakerski, Z., Vaikuntanathan, V.: Efficient fully homomorphic encryption from
(standard) LWE. Cryptology ePrint Archive, Report 2011/344 (2011), https://
eprint.iacr.org/2011/344

26. Camenisch, J., Shoup, V.: Practical verifiable encryption and decryption of
discrete logarithms. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729,
pp. 126–144. Springer, Berlin, Heidelberg (Aug 2003). https://doi.org/10.1007/
978-3-540-45146-4_8

27. Canetti, R., Chen, Y., Holmgren, J., Lombardi, A., Rothblum, G.N., Rothblum,
R.D., Wichs, D.: Fiat-Shamir: from practice to theory. In: Charikar, M., Cohen, E.
(eds.) 51st ACM STOC. pp. 1082–1090. ACM Press (Jun 2019). https://doi.org/
10.1145/3313276.3316380

28. Chatel, S., Mouchet, C., Sahin, A.U., Pyrgelis, A., Troncoso, C., Hubaux, J.P.:
PELTA - shielding multiparty-FHE against malicious adversaries. In: Meng, W.,
Jensen, C.D., Cremers, C., Kirda, E. (eds.) ACM CCS 2023. pp. 711–725. ACM
Press (Nov 2023). https://doi.org/10.1145/3576915.3623139

29. Chaum, D.: Blind signatures for untraceable payments. In: Chaum, D., Rivest,
R.L., Sherman, A.T. (eds.) Advances in Cryptology. pp. 199–203. Springer US,
Boston, MA (1983)

30. Chen, B.J., Waiwitlikhit, S., Stoica, I., Kang, D.: Zkml: An optimizing system for
ml inference in zero-knowledge proofs. In: Proceedings of the Nineteenth European
Conference on Computer Systems. p. 560–574. EuroSys ’24, Association for Com-
puting Machinery, New York, NY, USA (2024). https://doi.org/10.1145/3627703.
3650088

31. Chen, H., Laine, K., Player, R., Xia, Y.: High-precision arithmetic in homomorphic
encryption. In: Smart, N.P. (ed.) CT-RSA 2018. LNCS, vol. 10808, pp. 116–136.
Springer, Cham (Apr 2018). https://doi.org/10.1007/978-3-319-76953-0_7

32. Cheon, J.H., Choe, H., Passelègue, A., Stehlé, D., Suvanto, E.: Attacks against
the INDCPA-d security of exact FHE schemes. Cryptology ePrint Archive, Paper
2024/127 (2024), https://eprint.iacr.org/2024/127

33. Cheon, J.H., Kim, A., Kim, M., Song, Y.S.: Homomorphic encryption for arith-
metic of approximate numbers. In: Takagi, T., Peyrin, T. (eds.) ASIACRYPT 2017,
Part I. LNCS, vol. 10624, pp. 409–437. Springer, Cham (Dec 2017). https://doi.
org/10.1007/978-3-319-70694-8_15

34. Chiesa, A., Fenzi, G.: zkSNARKs in the ROM with unconditional UC-security.
Cryptology ePrint Archive, Paper 2024/724 (2024), https://eprint.iacr.org/2024/
724

35. Chiesa, A., Lehmkuhl, R., Mishra, P., Zhang, Y.: Eos: Efficient private delegation
of zkSNARK provers. In: Calandrino, J.A., Troncoso, C. (eds.) USENIX Security
2023. pp. 6453–6469. USENIX Association (Aug 2023)

36. Chiesa, A., Manohar, P., Spooner, N.: Succinct arguments in the quantum
random oracle model. In: Hofheinz, D., Rosen, A. (eds.) TCC 2019, Part II.
LNCS, vol. 11892, pp. 1–29. Springer, Cham (Dec 2019). https://doi.org/10.1007/
978-3-030-36033-7_1

https://doi.org/10.1007/978-3-642-32009-5_50
https://doi.org/10.1007/978-3-642-32009-5_50
https://doi.org/10.1007/978-3-642-32009-5_50
https://doi.org/10.1007/978-3-642-32009-5_50
https://doi.org/10.1145/2090236.2090262
https://doi.org/10.1145/2090236.2090262
https://eprint.iacr.org/2011/344
https://eprint.iacr.org/2011/344
https://doi.org/10.1007/978-3-540-45146-4_8
https://doi.org/10.1007/978-3-540-45146-4_8
https://doi.org/10.1007/978-3-540-45146-4_8
https://doi.org/10.1007/978-3-540-45146-4_8
https://doi.org/10.1145/3313276.3316380
https://doi.org/10.1145/3313276.3316380
https://doi.org/10.1145/3313276.3316380
https://doi.org/10.1145/3313276.3316380
https://doi.org/10.1145/3576915.3623139
https://doi.org/10.1145/3576915.3623139
https://doi.org/10.1145/3627703.3650088
https://doi.org/10.1145/3627703.3650088
https://doi.org/10.1145/3627703.3650088
https://doi.org/10.1145/3627703.3650088
https://doi.org/10.1007/978-3-319-76953-0_7
https://doi.org/10.1007/978-3-319-76953-0_7
https://eprint.iacr.org/2024/127
https://doi.org/10.1007/978-3-319-70694-8_15
https://doi.org/10.1007/978-3-319-70694-8_15
https://doi.org/10.1007/978-3-319-70694-8_15
https://doi.org/10.1007/978-3-319-70694-8_15
https://eprint.iacr.org/2024/724
https://eprint.iacr.org/2024/724
https://doi.org/10.1007/978-3-030-36033-7_1
https://doi.org/10.1007/978-3-030-36033-7_1
https://doi.org/10.1007/978-3-030-36033-7_1
https://doi.org/10.1007/978-3-030-36033-7_1

50 M. Gama, E. Heydari Beni, J. Kang, J. Spiessens, F. Vercauteren

37. Chiesa, A., Ojha, D., Spooner, N.: Fractal: Post-quantum and transparent recursive
proofs from holography. In: Canteaut, A., Ishai, Y. (eds.) EUROCRYPT 2020,
Part I. LNCS, vol. 12105, pp. 769–793. Springer, Cham (May 2020). https://doi.
org/10.1007/978-3-030-45721-1_27

38. Chillotti, I., Gama, N., Georgieva, M., Izabachène, M.: TFHE: Fast fully homo-
morphic encryption over the torus. Journal of Cryptology 33(1), 34–91 (Jan 2020).
https://doi.org/10.1007/s00145-019-09319-x

39. Chillotti, I., Ligier, D., Orfila, J.B., Tap, S.: Improved programmable bootstrapping
with larger precision and efficient arithmetic circuits for TFHE. In: Tibouchi, M.,
Wang, H. (eds.) ASIACRYPT 2021, Part III. LNCS, vol. 13092, pp. 670–699.
Springer, Cham (Dec 2021). https://doi.org/10.1007/978-3-030-92078-4_23

40. Chu, E., George, A.: Inside the FFT black box: serial and parallel fast Fourier
transform algorithms. CRC press (1999)

41. Costache, A., Smart, N.P.: Which ring based somewhat homomorphic encryption
scheme is best? In: Sako, K. (ed.) CT-RSA 2016. LNCS, vol. 9610, pp. 325–340.
Springer, Cham (Feb / Mar 2016). https://doi.org/10.1007/978-3-319-29485-8_19

42. Dahl, M., Demmler, D., Kazdadi, S.E., Meyre, A., Orfila, J., Rotaru, D., Smart,
N.P., Tap, S., Walter, M.: Noah’s ark: Efficient threshold-fhe using noise flooding.
In: Brenner, M., Costache, A., Rohloff, K. (eds.) Proceedings of the 11th Workshop
on Encrypted Computing & Applied Homomorphic Cryptography, Copenhagen,
Denmark, 26 November 2023. pp. 35–46. ACM (2023). https://doi.org/10.1145/
3605759.3625259

43. Damgård, I., Pastro, V., Smart, N.P., Zakarias, S.: Multiparty computation
from somewhat homomorphic encryption. In: Safavi-Naini, R., Canetti, R. (eds.)
CRYPTO 2012. LNCS, vol. 7417, pp. 643–662. Springer, Berlin, Heidelberg (Aug
2012). https://doi.org/10.1007/978-3-642-32009-5_38

44. Dokchitser, T., Bulkin, A.: Zero knowledge virtual machine step by step. Cryptol-
ogy ePrint Archive, Report 2023/1032 (2023), https://eprint.iacr.org/2023/1032

45. Esgin, M.F., Steinfeld, R., Liu, J.K., Liu, D.: Lattice-based zero-knowledge
proofs: New techniques for shorter and faster constructions and applica-
tions. In: Boldyreva, A., Micciancio, D. (eds.) CRYPTO 2019, Part I. LNCS,
vol. 11692, pp. 115–146. Springer, Cham (Aug 2019). https://doi.org/10.1007/
978-3-030-26948-7_5

46. Fan, J., Vercauteren, F.: Somewhat practical fully homomorphic encryption. Cryp-
tology ePrint Archive, Report 2012/144 (2012), https://eprint.iacr.org/2012/144

47. Ganesh, C., Nitulescu, A., Soria-Vazquez, E.: Rinocchio: SNARKs for ring arith-
metic. Journal of Cryptology 36(4), 41 (Oct 2023). https://doi.org/10.1007/
s00145-023-09481-3

48. Garg, S., Goel, A., Jain, A., Policharla, G.V., Sekar, S.: zkSaaS: Zero-knowledge
SNARKs as a service. In: Calandrino, J.A., Troncoso, C. (eds.) USENIX Security
2023. pp. 4427–4444. USENIX Association (Aug 2023)

49. Garg, S., Goel, A., Wang, M.: How to prove statements obliviously? In: Reyzin, L.,
Stebila, D. (eds.) CRYPTO 2024, Part X. LNCS, vol. 14929, pp. 449–487. Springer,
Cham (Aug 2024). https://doi.org/10.1007/978-3-031-68403-6_14

50. Geelen, R., Vercauteren, F.: Fully homomorphic encryption for cyclotomic prime
moduli. Cryptology ePrint Archive, Paper 2024/1587 (2024), https://eprint.iacr.
org/2024/1587

51. Gennaro, R., Gentry, C., Parno, B.: Non-interactive verifiable computing: Out-
sourcing computation to untrusted workers. In: Rabin, T. (ed.) CRYPTO 2010.
LNCS, vol. 6223, pp. 465–482. Springer, Berlin, Heidelberg (Aug 2010). https:
//doi.org/10.1007/978-3-642-14623-7_25

https://doi.org/10.1007/978-3-030-45721-1_27
https://doi.org/10.1007/978-3-030-45721-1_27
https://doi.org/10.1007/978-3-030-45721-1_27
https://doi.org/10.1007/978-3-030-45721-1_27
https://doi.org/10.1007/s00145-019-09319-x
https://doi.org/10.1007/s00145-019-09319-x
https://doi.org/10.1007/978-3-030-92078-4_23
https://doi.org/10.1007/978-3-030-92078-4_23
https://doi.org/10.1007/978-3-319-29485-8_19
https://doi.org/10.1007/978-3-319-29485-8_19
https://doi.org/10.1145/3605759.3625259
https://doi.org/10.1145/3605759.3625259
https://doi.org/10.1145/3605759.3625259
https://doi.org/10.1145/3605759.3625259
https://doi.org/10.1007/978-3-642-32009-5_38
https://doi.org/10.1007/978-3-642-32009-5_38
https://eprint.iacr.org/2023/1032
https://doi.org/10.1007/978-3-030-26948-7_5
https://doi.org/10.1007/978-3-030-26948-7_5
https://doi.org/10.1007/978-3-030-26948-7_5
https://doi.org/10.1007/978-3-030-26948-7_5
https://eprint.iacr.org/2012/144
https://doi.org/10.1007/s00145-023-09481-3
https://doi.org/10.1007/s00145-023-09481-3
https://doi.org/10.1007/s00145-023-09481-3
https://doi.org/10.1007/s00145-023-09481-3
https://doi.org/10.1007/978-3-031-68403-6_14
https://doi.org/10.1007/978-3-031-68403-6_14
https://eprint.iacr.org/2024/1587
https://eprint.iacr.org/2024/1587
https://doi.org/10.1007/978-3-642-14623-7_25
https://doi.org/10.1007/978-3-642-14623-7_25
https://doi.org/10.1007/978-3-642-14623-7_25
https://doi.org/10.1007/978-3-642-14623-7_25

Blind zkSNARKs for zkDel and vCOED 51

52. Gentry, C.: A fully homomorphic encryption scheme. Stanford university (2009)
53. Gentry, C., Halevi, S., Lyubashevsky, V.: Practical non-interactive publicly verifi-

able secret sharing with thousands of parties. In: Dunkelman, O., Dziembowski, S.
(eds.) EUROCRYPT 2022, Part I. LNCS, vol. 13275, pp. 458–487. Springer, Cham
(May / Jun 2022). https://doi.org/10.1007/978-3-031-06944-4_16

54. Gentry, C., Halevi, S., Peikert, C., Smart, N.P.: Field switching in bgv-style homo-
morphic encryption. J. Comput. Secur. 21(5), 663–684 (2013). https://doi.org/10.
3233/JCS-130480

55. Gentry, C., Halevi, S., Smart, N.P.: Homomorphic evaluation of the AES cir-
cuit. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol. 7417,
pp. 850–867. Springer, Berlin, Heidelberg (Aug 2012). https://doi.org/10.1007/
978-3-642-32009-5_49

56. Gjøsteen, K., Haines, T., Müller, J., Rønne, P.B., Silde, T.: Verifiable decryption
in the head. In: Nguyen, K., Yang, G., Guo, F., Susilo, W. (eds.) ACISP 22.
LNCS, vol. 13494, pp. 355–374. Springer, Cham (Nov 2022). https://doi.org/10.
1007/978-3-031-22301-3_18

57. Halevi, S.: Homomorphic encryption. In: Lindell, Y. (ed.) Tutorials on the Foun-
dations of Cryptography, pp. 219–276. Springer International Publishing (2017).
https://doi.org/10.1007/978-3-319-57048-8_5

58. Halevi, S., Shoup, V.: Algorithms in HElib. In: Garay, J.A., Gennaro, R. (eds.)
CRYPTO 2014, Part I. LNCS, vol. 8616, pp. 554–571. Springer, Berlin, Heidelberg
(Aug 2014). https://doi.org/10.1007/978-3-662-44371-2_31

59. Halevi, S., Shoup, V.: Faster homomorphic linear transformations in HElib. In:
Shacham, H., Boldyreva, A. (eds.) CRYPTO 2018, Part I. LNCS, vol. 10991, pp.
93–120. Springer, Cham (Aug 2018). https://doi.org/10.1007/978-3-319-96884-1_
4

60. Holmgren, J.: On round-by-round soundness and state restoration attacks. Cryp-
tology ePrint Archive, Report 2019/1261 (2019), https://eprint.iacr.org/2019/1261

61. Hwang, I., Lee, H., Seo, J., Song, Y.: Practical zero-knowledge PIOP for public key
and ciphertext generation in (multi-group) homomorphic encryption. Cryptology
ePrint Archive, Paper 2024/1879 (2024), https://eprint.iacr.org/2024/1879

62. Hwang, I., Seo, J., Song, Y.: Concretely efficient lattice-based polynomial commit-
ment from standard assumptions. In: Reyzin, L., Stebila, D. (eds.) CRYPTO 2024,
Part X. LNCS, vol. 14929, pp. 414–448. Springer, Cham (Aug 2024). https:
//doi.org/10.1007/978-3-031-68403-6_13

63. Ishai, Y., Su, H., Wu, D.J.: Shorter and faster post-quantum designated-verifier
zkSNARKs from lattices. In: Vigna, G., Shi, E. (eds.) ACM CCS 2021. pp. 212–234.
ACM Press (Nov 2021). https://doi.org/10.1145/3460120.3484572

64. Knabenhans, C., Viand, A., Merino-Gallardo, A., Hithnawi, A.: vfhe: Verifiable
fully homomorphic encryption. In: Bergamaschi, F., Costache, A., Rohloff, K.
(eds.) Proceedings of the 12th Workshop on Encrypted Computing & Applied
Homomorphic Cryptography, Salt Lake City, UT, USA, October 14-18, 2024. pp.
11–22. ACM (2024). https://doi.org/10.1145/3689945.3694806

65. Langlois, A., Stehlé, D.: Worst-case to average-case reductions for module lattices.
DCC 75(3), 565–599 (2015). https://doi.org/10.1007/s10623-014-9938-4

66. Luo, F., Wang, K.: Verifiable decryption for fully homomorphic encryption. In:
Chen, L., Manulis, M., Schneider, S. (eds.) ISC 2018. LNCS, vol. 11060, pp. 347–
365. Springer, Cham (Sep 2018). https://doi.org/10.1007/978-3-319-99136-8_19

67. Lyubashevsky, V.: Lattice signatures without trapdoors. In: Pointcheval, D., Jo-
hansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp. 738–755. Springer,
Berlin, Heidelberg (Apr 2012). https://doi.org/10.1007/978-3-642-29011-4_43

https://doi.org/10.1007/978-3-031-06944-4_16
https://doi.org/10.1007/978-3-031-06944-4_16
https://doi.org/10.3233/JCS-130480
https://doi.org/10.3233/JCS-130480
https://doi.org/10.3233/JCS-130480
https://doi.org/10.3233/JCS-130480
https://doi.org/10.1007/978-3-642-32009-5_49
https://doi.org/10.1007/978-3-642-32009-5_49
https://doi.org/10.1007/978-3-642-32009-5_49
https://doi.org/10.1007/978-3-642-32009-5_49
https://doi.org/10.1007/978-3-031-22301-3_18
https://doi.org/10.1007/978-3-031-22301-3_18
https://doi.org/10.1007/978-3-031-22301-3_18
https://doi.org/10.1007/978-3-031-22301-3_18
https://doi.org/10.1007/978-3-319-57048-8_5
https://doi.org/10.1007/978-3-319-57048-8_5
https://doi.org/10.1007/978-3-662-44371-2_31
https://doi.org/10.1007/978-3-662-44371-2_31
https://doi.org/10.1007/978-3-319-96884-1_4
https://doi.org/10.1007/978-3-319-96884-1_4
https://doi.org/10.1007/978-3-319-96884-1_4
https://doi.org/10.1007/978-3-319-96884-1_4
https://eprint.iacr.org/2019/1261
https://eprint.iacr.org/2024/1879
https://doi.org/10.1007/978-3-031-68403-6_13
https://doi.org/10.1007/978-3-031-68403-6_13
https://doi.org/10.1007/978-3-031-68403-6_13
https://doi.org/10.1007/978-3-031-68403-6_13
https://doi.org/10.1145/3460120.3484572
https://doi.org/10.1145/3460120.3484572
https://doi.org/10.1145/3689945.3694806
https://doi.org/10.1145/3689945.3694806
https://doi.org/10.1007/s10623-014-9938-4
https://doi.org/10.1007/s10623-014-9938-4
https://doi.org/10.1007/978-3-319-99136-8_19
https://doi.org/10.1007/978-3-319-99136-8_19
https://doi.org/10.1007/978-3-642-29011-4_43
https://doi.org/10.1007/978-3-642-29011-4_43

52 M. Gama, E. Heydari Beni, J. Kang, J. Spiessens, F. Vercauteren

68. Lyubashevsky, V., Nguyen, N.K., Plançon, M.: Lattice-based zero-knowledge
proofs and applications: Shorter, simpler, and more general. In: Dodis, Y., Shrimp-
ton, T. (eds.) CRYPTO 2022, Part II. LNCS, vol. 13508, pp. 71–101. Springer,
Cham (Aug 2022). https://doi.org/10.1007/978-3-031-15979-4_3

69. Lyubashevsky, V., Nguyen, N.K., Seiler, G.: Shorter lattice-based zero-knowledge
proofs via one-time commitments. In: Garay, J. (ed.) PKC 2021, Part I. LNCS,
vol. 12710, pp. 215–241. Springer, Cham (May 2021). https://doi.org/10.1007/
978-3-030-75245-3_9

70. Lyubashevsky, V., Peikert, C., Regev, O.: On ideal lattices and learning with er-
rors over rings. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp.
1–23. Springer, Berlin, Heidelberg (May / Jun 2010). https://doi.org/10.1007/
978-3-642-13190-5_1

71. Lyubashevsky, V., Peikert, C., Regev, O.: A toolkit for ring-LWE cryptography.
In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS, vol. 7881,
pp. 35–54. Springer, Berlin, Heidelberg (May 2013). https://doi.org/10.1007/
978-3-642-38348-9_3

72. Lyubashevsky, V., Seiler, G., Steuer, P.: The LaZer Library: Lattice-Based Zero
Knowledge and Succinct Proofs for Quantum-Safe Privacy. CCS ’24 (2024)

73. Nassar, S., Rothblum, R.D.: Succinct interactive oracle proofs: Applications and
limitations. In: Dodis, Y., Shrimpton, T. (eds.) CRYPTO 2022, Part I. LNCS,
vol. 13507, pp. 504–532. Springer, Cham (Aug 2022). https://doi.org/10.1007/
978-3-031-15802-5_18

74. Nguyen, N.K.: Lattice-Based Zero-Knowledge Proofs Under a Few Dozen Kilo-
bytes. Ph.D. thesis, ETH Zurich, Zürich, Switzerland (2022). https://doi.org/10.
3929/ETHZ-B-000574844, https://hdl.handle.net/20.500.11850/574844

75. Ozdemir, A., Boneh, D.: Experimenting with collaborative zk-SNARKs: Zero-
knowledge proofs for distributed secrets. In: Butler, K.R.B., Thomas, K. (eds.)
USENIX Security 2022. pp. 4291–4308. USENIX Association (Aug 2022)

76. Palvia, P., March, S.T.: Approximating block accesses in database organizations.
Inf. Process. Lett. 19(2), 75–79 (1984). https://doi.org/10.1016/0020-0190(84)
90101-7

77. Rosenberg, M., White, J.D., Garman, C., Miers, I.: zk-creds: Flexible anonymous
credentials from zkSNARKs and existing identity infrastructure. In: 2023 IEEE
Symposium on Security and Privacy. pp. 790–808. IEEE Computer Society Press
(May 2023). https://doi.org/10.1109/SP46215.2023.10179430

78. Sze, T.: Schönhage-strassen algorithm with mapreduce for multiplying terabit inte-
gers. In: Maza, M.M. (ed.) SNC 2011, Proceedings of the 2011 Internation Work-
shop on Symbolic-Numeric Computation, San Jose, California, USA, June 7-9,
2011. pp. 54–62. ACM (2011). https://doi.org/10.1145/2331684.2331693

79. Thibault, L.T., Walter, M.: Towards verifiable FHE in practice: Proving correct
execution of TFHE’s bootstrapping using plonky2. Cryptology ePrint Archive,
Report 2024/451 (2024), https://eprint.iacr.org/2024/451

80. Wu, H., Zheng, W., Chiesa, A., Popa, R.A., Stoica, I.: DIZK: A distributed zero
knowledge proof system. In: Enck, W., Felt, A.P. (eds.) USENIX Security 2018.
pp. 675–692. USENIX Association (Aug 2018)

https://doi.org/10.1007/978-3-031-15979-4_3
https://doi.org/10.1007/978-3-031-15979-4_3
https://doi.org/10.1007/978-3-030-75245-3_9
https://doi.org/10.1007/978-3-030-75245-3_9
https://doi.org/10.1007/978-3-030-75245-3_9
https://doi.org/10.1007/978-3-030-75245-3_9
https://doi.org/10.1007/978-3-642-13190-5_1
https://doi.org/10.1007/978-3-642-13190-5_1
https://doi.org/10.1007/978-3-642-13190-5_1
https://doi.org/10.1007/978-3-642-13190-5_1
https://doi.org/10.1007/978-3-642-38348-9_3
https://doi.org/10.1007/978-3-642-38348-9_3
https://doi.org/10.1007/978-3-642-38348-9_3
https://doi.org/10.1007/978-3-642-38348-9_3
https://doi.org/10.1007/978-3-031-15802-5_18
https://doi.org/10.1007/978-3-031-15802-5_18
https://doi.org/10.1007/978-3-031-15802-5_18
https://doi.org/10.1007/978-3-031-15802-5_18
https://doi.org/10.3929/ETHZ-B-000574844
https://doi.org/10.3929/ETHZ-B-000574844
https://doi.org/10.3929/ETHZ-B-000574844
https://doi.org/10.3929/ETHZ-B-000574844
https://hdl.handle.net/20.500.11850/574844
https://doi.org/10.1016/0020-0190(84)90101-7
https://doi.org/10.1016/0020-0190(84)90101-7
https://doi.org/10.1016/0020-0190(84)90101-7
https://doi.org/10.1016/0020-0190(84)90101-7
https://doi.org/10.1109/SP46215.2023.10179430
https://doi.org/10.1109/SP46215.2023.10179430
https://doi.org/10.1145/2331684.2331693
https://doi.org/10.1145/2331684.2331693
https://eprint.iacr.org/2024/451

Blind zkSNARKs for zkDel and vCOED 53

A Supplementary preliminaries

A.1 Number fields, rings and coefficient embedding

For any positive integer m, let Φm(X) denote the m-th cyclotomic polynomial
of degree n = ϕ (m), where ϕ(·) is the Euler totient function. Specifically, when
m is a power-of-two, Φm(X) = Xm/2 + 1. The m-th cyclotomic number field is
Km = Q[X]/ (Φm(X)) and the m-th cyclotomic ring is Rm = Z[X]/ (Φm(X)).
For g =

∑n−1
i=0 giX

i ∈ Km, its coefficient vector [g0 g1 . . . gn−1]⊺ ∈ Qn is denoted
as #»g , and its coefficient-wise norms ∥g∥p = ∥

#»g ∥p, e.g.

∥g∥1 =
∑
|gi|, ∥g∥2 = (

∑
g2i)

1
2 , ∥g∥∞ = max{|gi|}.

For c(X), s(X), b(X) ∈ Rm and b(X) = c(X) · s(X), their coefficient represen-
tations satisfy

#»

b = Rotm (c) · #»s , where

Rotm (c) ∈ Zn×n =

 # »c(0)
»c(1) . . .

»c(n−1)


and c(i) = Xi · c(X) mod Φm(X). The expansion factor with respect to the
infinity norm is defined as

δm = sup

{
∥g · f mod Φm∥∞
∥g∥∞ · ∥f∥∞

| g, f ∈ Z[X] \ 0 and deg(g),deg(f) ≤ (n− 1)

}
.

For elements in Rotm (c), let
∥∥ # »c(i)

∥∥
∞ ≤ EFm · ∥c∥∞, which consecutively gives

δm ≤ n · EFm. Specifically, when m is a power-of-two, EFm = 1 and δm = n.
For the ring Zq = Z /q Z, we use [− q2 ,

q
2) as the representative interval, and

for x ∈ Z, we denote the centered reduction modulo q by [x]q ∈ Zq. Let ⌊·⌋
and ⌈·⌉ denote the flooring and ceiling functions respectively, and let ⌊·⌉ denote
the rounding function that rounds half up. All these notations are extended to
elements in Km and Rm coefficient-wise.

For a non-zero element t(X) ∈ Rm, denote the quotient ring of Rm modulo
t(X) as Rm,t(X) = Rm /tRm. Specifically, for q ∈ Z, the quotient ring of Rm
modulo q is denoted as Rm,q. Notations for coefficient vectors and norms in Rm
naturally extend to Rm,q using representatives in [− q2 ,

q
2). For d(X) ∈ Rm,q,

the rotation matrix Rotm,q (d) contains columns
»

d(i) where d(i) = Xi ·d(X) mod
(q, Φm), which are bounded as∥∥∥ # »

d(i)

∥∥∥
∞
≤ min{EFm · ∥d∥∞,

q

2
}, 0 ≤ i ≤ n− 1.

Moreover, for an explicit power-of-two cyclotomic order 2k, let R denote the
ring R2k = Z[X]/

(
Xd + 1

)
where d = 2k−1, and Rq := R /q R.

54 M. Gama, E. Heydari Beni, J. Kang, J. Spiessens, F. Vercauteren

A.2 Probability distributions

Given a probability distribution χ, the notation a←χ implies that a is sampled
from χ. Let U(Zq) and U(Rm,q) denote the uniform distribution over Zq and over
Rm,q, respectively. For example, a←U(Rm,3) is a uniformly random polynomial
in Rm with ternary coefficients.

Let Dσ denote the discrete Gaussian distribution with standard deviation σ
over the integers, then the following properties are satisfied [67,7]

Pr [|z| > kσ | z←Dσ] ≤ 2e−k
2/2 (9)

Pr
[
∥z∥2 > t

√
r · σ | z←Dr

σ

]
≤
(
te

1−t2

2

)r
. (10)

The notation naturally extends to the ring Rm, i.e. DRm,σ denotes the discrete
Gaussian distribution with standard deviation σ over Rm.

Let Binκ denote the binomial distribution parameterized by κ, i.e. the dis-
tribution

∑κ
i=0(ai − bi) where ai, bi←{0, 1}. For example, for c←Bin1, Pr(c =

0) = 1
2 and Pr(c = 1) = Pr(c = −1) = 1

4 .

B Background on the GBFV Scheme [50]

B.1 Canonical embedding

For polynomials in Km, defining norms on coefficient vectors provides a straight-
forward measure of sizes. However, analyzing the coefficient norm growth upon
multiplication requires the expansion factor δm, which depends heavily on the
polynomial modulus Φm(X) and often results in loose bounds. This leads to the
broad use of canonical norm ∥·∥can [70,71,55,43,41], which is defined from the
canonical embedding into Cn. Recall that the canonical embedding is

τ : Km ↪→ Cn : a(X) 7→ {a(ξjm)}j∈Z×
m
,

where ξm = exp(2πi/m) is a primitive complex m-th root of unity. The canonical
norm is ∥a∥canp = ∥τ(a)∥p, and common values of p are 1, 2,∞.

Lemma 3 (Adapted from [43]). For all a, b ∈ Km, the following properties
are satisfied

– ∥a∥can∞ ≤ ∥a∥1
– ∥a∥∞ ≤ cm · ∥a∥can∞ , where cm is a constant determined by the cyclotomic

order m
– ∥a · b∥can∞ ≤ ∥a∥can∞ + ∥b∥can∞
– ∥a · b∥canp ≤ ∥a∥can∞ · ∥b∥canp

Specifically, cm = 1 for power-of-two m, and for m = pe11 · · · p
ek
k , if p1 · · · pk ≤ 400

then cm ≤ 8.6 [43].

Blind zkSNARKs for zkDel and vCOED 55

B.2 The inherent noise bound in the GBFV Scheme

Let ∆ = q/t(X) ∈ Km denote the scaling factor in GBFV. The inherent noise in
the GBFV Scheme [50] can be defined in the same way as for BFV as follows.

Definition 12. Let (c0, c1) ∈ R2
m,q be a ciphertext in the GBFV scheme that

decrypts to m ∈ Rm,t, then its inherent noise vinh ∈ Rm is the polynomial with
the lowest infinity norm such that

c0 + c1 · sk = ⌊∆ ·m⌉+ vinh + aq ∈ Rm (11)

for some polynomial a ∈ Rm.

For correct decryption, we present the following inherent noise bound Bq.

Lemma 4. The ciphertext (c0, c1) ∈ R2
m,q in the GBFV scheme decrypts to

message m correctly if its inherent noise vinh satisfies ∥vinh∥∞ < Bq := q
2·EFm·ht·∥t∥∞

−
1
2 , where ht is the number of non-zero terms in t(X).

Proof. The decryption procedure requires computing⌊
t(X)

q
(c0 + c1 · s)

⌉
mod t(X) =

⌊
t(X)

q
(⌊∆ ·m⌉+ vinh + aq)

⌉
mod t(X)

=

⌊
m+

t(X)

q
(ϵ+ vinh)

⌉
,

where ∥ϵ∥∞ < 1
2 , and the decryption is correct as long as∥∥∥∥ t(X)

q
(ϵ+ vinh)

∥∥∥∥
∞
<

1

2
. (12)

Let ht is the number of non-zero terms in t(X), then ∥t(X) · (ϵ+ vinh)∥∞ ≤
EFm · ht · ∥t∥∞ · (

1
2 + ∥vinh∥∞), relation (12) is guaranteed by

∥vinh∥∞ <
q

2 · EFm · ht · ∥t∥∞
− 1

2
.

⊓⊔

B.3 Modulus switching

Let ct[m] = (c0, c1) ∈ R2
m,q denote a ciphertext with ciphertext modulus q and

inherent noise vinh, i.e. it satisfies c0 + c1 · sk = ⌊∆ ·m⌉ + vinh + aq for some
a ∈ Rm. Switching ciphertext modulus to q′ amounts to computing

ct′ =
(⌊

q′

q
c0

⌉
,

⌊
q′

q
c1

⌉)
∈ R2

m,q′ .

56 M. Gama, E. Heydari Beni, J. Kang, J. Spiessens, F. Vercauteren

The derived ciphertext satisfies⌊
q′

q
c0

⌉
+

⌊
q′

q
c1

⌉
· sk =

q′

q
(c0 + c1 · sk) + (ϵ0 + ϵ1 · sk)

=
q′

q
(⌊∆ ·m⌉+ vinh + aq) + (ϵ0 + ϵ1 · sk)

=
q′

q

(q
t
·m+ ϵ3 + vinh + aq

)
+ (ϵ0 + ϵ1 · sk)

=
q′

q

(q
t
·m+ ϵ3 + vinh + aq

)
+ (ϵ0 + ϵ1 · sk)

= ⌊∆′ ·m⌉+ ϵ4 +
q′

q
(ϵ3 + vinh) + (ϵ0 + ϵ1 · sk) + q′ · a

for ∆′ = q′

t and ∥ϵi∥∞ ≤
1
2 , i ∈ [4]. Its inherent noise is

v′inh =
q′

q
· vinh + (ϵ4 +

q′

q
ϵ3 + ϵ0 + ϵ1 · sk), (13)

which can be bounded as ∥v′inh∥∞ ≤
q′

q ∥vinh∥∞+Bms and Bms = 1+ q′

2q +
1
2δm ·

∥sk∥∞. Moreover, for a ternary secret key with hamming weight h, the bound
Bms can be lower into (1+ q′

2q +
1
2EFm ·h) in the worst-case, and (1+ q′

2q +EFm ·

3 ·
√

h
12) heuristically.

B.4 Performance of GBFV

Here we present the runtimes used for the microbenchmark in Section 8. They
were measured on a MacBook Pro (2021) equipped with an Apple M1 Max
processor (10 cores: 8 performance and 2 efficiency), 64 GB of RAM and running
macOS Sonoma 14.7.1.

C The LNP22 Proof System

This section provides an overview of the LNP22 proof system, including the
ABDLOP commitment, commit-and-prove protocols of qudratic relations and
approximate proofs of bounded norms (ANP). The latter is extended into proving
relations in the coefficient encoding in C.5, and parameters for our instantiation
are provided in D.1. For future works, it would be interesting to prove relations
with other encodings, such as the new CLPX-like encoding in [62].

Remark 1. The modulus q in this appendix section corresponds to the LNP-
friendly modulus q′′ in the main text.

Blind zkSNARKs for zkDel and vCOED 57

log q (bits) Tadd (ms) Tctct (ms) Taut (ms) Tptct (ms)

120 0.02 5.58 0.84 0.06

180 0.04 9.44 1.66 0.1

240 0.04 9.46 1.66 0.1

300 0.1 18.12 3.98 0.24

360 0.12 23.06 5.52 0.28

420 0.14 28.4 7.24 0.34

Table 3: Timings of operations in GBFV for n = 214 and different sizes for
ciphertext modulus q.

C.1 Module-SIS, Module-LWE and the ABDLOP commitment
scheme

For some integer k let R denote the ring R2k = Z[X]/
(
Xd + 1

)
where d = 2k−1,

and Rq = R /q R. The ABDLOP commitment scheme [68] is defined over the
ring Rq and relies on the hardness of the Module-SIS (MSIS) problem and the
Module-LWE (MLWE) problem over Rq, as defined below [65].

Definition 13 (MSISκ,m,q,B). Given A←Rκ×mq , the MSISκ,m,q,B problem is to
find z ∈ Rmq such that A · z = 0κ mod q and ∥z∥2 ≤ B.

Definition 14 (MLWEκ,m,q,χ). Given a distribution χ and parameters κ, the
MLWEκ,m,q,χ problem is to distinguish (A,A · s+ e) for A←Rm×κq , secret vector
s←χκ and error vector e←χm, from (A, b)←Rm×κq ×Rmq .

The hardness of MSISκ,m,q,B and MLWEκ,m,q,χ are estimated using SISκ·d,q,B
and LWEκ·d,q,χ in the lattice estimator by Albrecht et al. [3].

The ABDLOP commitment scheme [68]. The ring modulus in ABDLOP is
q =

∏
i qi where qi = 5 mod 8 is a prime and q1 is the smallest factor. Let

σi denote an automorphism in Rq where σi(X) = Xi for odd i. This notation
extends to arbitrary vectors m ∈ Rk element-wise, i.e. σi(m) = (σi (m[j]))1≤j≤k.

In the ABDLOP commitment scheme, the public parameters pp are generated
as

pp = (A1,A2,B)←Rω×m1
q ×Rω×m2

q ×Ru×m2
q .

In order to commit to a small message s1 ∈ Rm1
q where ∥s1∥ ≤ α and an

arbitrarily large message m ∈ Ruq , one samples a small randomness s2←χm2

where χ is a distribution over Rq with bounded infinity norm ν and computes

ABDLOP .Com (pp, (s1,m, s2)) =

[
tA
tB

]
=

[
A1

0

]
· s1 +

[
A2

B

]
· s2 +

[
0
m

]
mod q.

58 M. Gama, E. Heydari Beni, J. Kang, J. Spiessens, F. Vercauteren

As such, the ABDLOP scheme not only allows the commitment of large messages
m as in the BDLOP commitment [8], but also compresses small messages s1 as
in the Ajtai commitment [2]. The commitment tB of m and tA of s1 are referred
as the BDLOP part and the Ajtai part of ABDLOP, respectively.

Moreover, the commitment does not reveal messages if
([

A2

B

]
,

[
A2

B

]
· s2
)

is indistinguishable from uniform. In other words, if the MLWEm2−(ω+u),ω+u,q,χ
problem is hard, then ABDLOP is computationally hiding.

For the proof of opening, with fixed parameters ξ, η and a power-of-two k,
the challenge space Ch is defined as

Ch =

{
c ∈ Rq : ∥c∥∞ ≤ ξ, σ−1(c) = c and 2k

√
∥c2k∥

1
≤ η

}
,

and it should be exponentially large in the security parameter for soundness
purposes. Its set of differences is denoted as Ch = {c− c′ : c, c′ ∈ Ch and c ̸= c′},
and elements in Ch are invertible if ξ < q1

2 . Example parameters for the challenge
space taken from [19] are listed in Table 4.

d ξ η k |C|

64 8 140 32 2129

128 2 59 32 2147

Table 4: Example parameters in [19] to instantiate the challenge space C assum-
ing q1 > 16

As in other lattice-based commitment schemes [2,8], the opening algorithm
in ABDLOP is relaxed. For an ABDLOP commitment [tA tB]

⊺, its relaxed opening
with respect to the commitment key ck is a tuple (s1,m, s2, c) ∈ Rm1

q ×Ruq ×Rm2
q ×Ch

that satisfies

ABDLOP .Com (ck, (s1,m, s2)) =

tA
tB


∥cs1∥2 ≤ B1 and ∥cs2∥2 ≤ B2,

where B1 = B1(α) and B2 = B2(ν) are pre-determined constants. Furthermore,
as explained in [68, Lemma 3.1] and in [19, Lemma 5.2], if MSIS

ω,m1+m2,4η
√
B2

1+B
2
2

is hard, then ABDLOP is computationally binding with respect to the relaxed
openings.

Blind zkSNARKs for zkDel and vCOED 59

C.2 Commit-and-prove of elementary relations

Let G = {g : R2(m1+u)
q → Rq} denote the set of quadratic functions over Rq, i.e.

any g ∈ G can be explicitly written as

g(a) = a⊺G2a+ g1a+ g0, ∀a ∈ R2(m1+u)
q

for some G2 ∈ R2(m1+u)×2(m1+u)
q , g1 ∈ R2(m1+u)

q and g0 ∈ Rq.
Given an ABDLOP commitment (tA, tB) to the message (s1,m) with ran-

domness s2, the commit-and-prove protocol in [68, Figure 8] (together with the
optimization in [68, Section 4.4]) allows one to prove the knowledge of the mes-
sage

s =


s1

m

σ−1(s1)

σ−1(m)

 ∈ R2(m1+u)
q

such that evaluations of public functions g1, . . . , gN in G at s satisfy

gj(s) = 0 ∈ Rq,∀j ∈ [N] (14)

and evaluations of public functions G1, . . . , GM in G at s satisfy
»

Gj(s)[1] = 0 mod q,∀j ∈ [M], (15)

where
»

Gj(s)[1] denotes the constant term of Gj(s) ∈ Rq. For convenience, this
protocol is denoted as

Π
(2)
eval ((s1,m, s2), σ−1, (g1, . . . , gN), (G1, . . . , GM)) .

In other words, condition (14) allows proving quadratic relations of committed
messages over Rq, and the vanishing constant condition in (15) allows proving
inner products between coefficient vectors of committed messages over Zq using
the following map T.

Inner product from the T map Given two vectors #»a = (a0, . . . , akd−1),
#»

b =
(b0, . . . , bkd−1) ∈ Zkdq , define the following map

T : Zkdq ×Zkdq −→ Rq

(#»a ,
#»

b)→
k−1∑
i=0

σ−1

d−1∑
j=0

aid+jX
j

 ·
d−1∑
j=0

bid+jX
j

 .

Then the constant coefficient of T(#»a ,
#»

b) is equal to the inner product of #»a and
#»

b modulo q.

60 M. Gama, E. Heydari Beni, J. Kang, J. Spiessens, F. Vercauteren

C.3 Approximate range proofs

The approximate range proofs [53,68] allow one to prove smallness of a message
#»w ∈ Zm, with respect to the proof system modulus q. Firstly, the prover com-
putes a projection #»v = R #»w, where R←Bin256×m1 is a random challenge from
the verifier. Note that [68, Lemma 2.8] provides a probabilistic bound for #»v

Pr
R←Bin256×m

1

[
∥ #»v ∥22 > 337β2

]
≤ 2−128,

where β is an upper bound on ∥ #»w∥2. Secondly, by using rejection sampling, the
prover generates a vector #»z = #»v + #»y whose distribution is independent of #»v
and indistinguishable from the masking vector #»y . The standard deviation of
#»y (hence also #»z) is s = γ∥ #»v ∥2 = γ

√
337β, where γ is a constant defining the

rejection sampling repetition rate. The following lemma shows that if #»z is small,
then the vector #»w is small with high probability.

Lemma 5 ([68, Lemma 2.9]). Given q,m, a fixed bound b ≤ q/41m and
#»w ∈ Zmq such that ∥ #»w∥2 ≥ b, then for arbitrary #»y ∈ Z256

q , the following holds

Pr
R←Bin256×m

1

[
∥R #»w + #»y mod q∥2 <

1

2

√
26b

]
< 2−128.

Following the tail bound in Equation (10) for t ≥ 1.64, the verifier check
∥ #»z ∥2 ≤ t

√
256 · s will hold with overwelming probability for a ∥ #»w∥2 ≤ β. By

rewriting this check as

∥ #»z ∥2 ≤ t
√
256 · s = t

√
256 · γ

√
337β

=
1

2

√
26

(
2

√
256

26
tγ
√
337

)
β,

it is clear that the vector #»w is proven to be small with negligible soundness error.
More precisely, if the prover knows a small #»w where ∥ #»w∥2 ≤ β and computes #»z

as described, then the verifier can extract a vector
»

w∗ such that
∥∥∥ # »

w∗
∥∥∥
2
≤ ψ(L2)·β,

assuming ψ(L2) · β < q
41m , where the factor ψ(L2) = 2

√
256
26 tγ

√
337 is called the

slack.
The procedure above can also be applied to generate approximate infinity

norm proofs with slack ψ(∞) = ψ(L2)
√
m. Specifically, consider a prover that

knows #»w ∈ Zmq satisfying ∥ #»w∥∞ ≤ α, then its L2 norm is bounded by
√
mα.

The previous procedure allows the verifier to extract a vector
»

w∗ where∥∥∥ # »

w∗
∥∥∥
∞
≤
∥∥∥ # »

w∗
∥∥∥
2
≤ ψ(L2) · ∥ #»w∥2 ≤ ψ

(L2)
√
mα,

resulting in a slack ψ(∞) = ψ(L2)
√
m.

Blind zkSNARKs for zkDel and vCOED 61

C.4 Approximate proofs of bounded norms

In the Approximate Norm bound Proofs (ANP), the prover knows the secret
message (s1,m) ∈ Rm1+u

q which satisfies∥∥∥∥∥∥E
s1
m

+ e

∥∥∥∥∥∥
∞

≤ Be (16)

for public elements E ∈ Rℓe×(m1+u)
q , e ∈ Rℓeq and a public bound Be. After com-

mitting (s1,m) into (tA, tB), the commit-and-prove protocol convinces the ver-
ifier that the prover knows (s1,m) ∈ Rm1+u

q such that OCT ((tA, tB), (s1,m)) =
acc and ∥∥∥∥∥∥E

s1
m

+ e

∥∥∥∥∥∥
∞

≤ ψ(∞) ·Be, (17)

where the infinity norm slack is ψ(∞) = ψ(L2)
√
dℓe = 2

√
256
26 tγ

√
337
√
dℓe. More-

over, approximate proofs are only complete for bounds Be ≤ q
41(dℓe)3/2ψ(L2) , as

explained in Section C.3.

The protocol. Let Bb←R1×m2
q , By←R256/d×m2

q , s := γ
√
337
√
dℓe ·Be and rej0

denote the optimized bimodal rejection sampling [68]. The protocol

ΠANP ((s1,m, s2), (E, e, Be))

gives an approximate bounded norm proof for u ∈ Rℓeq := E [s1 m]
⊤
+ e and

is presented in Figure 7.
Specifically, line 1 samples for a sign b used for bimodal rejection sampling

and line 2 samples a vector y used for masking. In line 3-4, elements b and y are
committed to in the BDLOP part, i.e. the secret messages become

s′ := (s1, (m, b,y)) ,

and dim(s′) = m1+u+1+256/d. The correct computation of #»z in line 8 and that
b ∈ {−1, 1} are proven by calling the Π(2)

eval in line 12 with appropriate public
functions v and V. These public functions are elements of V = {v : R2·dim (s′)

q →
Rq}.

To prove #»z was computed correctly, public quadratic functions Hj ∈ V for
j ∈ [256] are constructed such that their evaluations at (s′, σ−1(s

′)) satisfy

Hj (s
′, σ−1(s

′)) := T
(
b

#»

Rj ,
#»u
)
+ T(#»ej ,

#»y)− #»z [j], j ∈ [256], (18)

where
#»

Rj denote the j-th row of R and #»ej is the j-th unit vector for j ∈ [256].
The construction of Hj ∈ V is detailed later on. Then, #»z was computed correctly
iff the constant term of all equations in (18) are zero modulo q.

62 M. Gama, E. Heydari Beni, J. Kang, J. Spiessens, F. Vercauteren

Similarly, to prove b ∈ {−1, 1}, public quadratic functions g ∈ V and Jk ∈ V
for k ∈ [d− 1] are constructed such that their evaluations at (s′, σ−1(s′)) satisfy

g (s′, σ−1(s
′)) = (b− 1)(b+ 1) (19)

Jk (s
′, σ−1(s

′)) = T
(

#»

b ,
»

Xk
)
, k ∈ [d− 1]. (20)

Then b ∈ {−1, 1} iff Equation (19) gives the zero element in Rq and constant
terms of all equations in (20) are zero modulo q.

Therefore, for line 12, we define v := {g} and V := {(Jk)k∈[d−1] , (Hj)j∈[256]}
as inputs for the subprotocol Π(2)

eval.

Prover Verifier
1 : b←{−1, 1} ⊂ Rq

2 : y←D
256/d
Rq,s

3 : tb = Bbs2 + b

4 : ty = Bys2 + y

5 : tb, ty

6 : R←Bin256×ℓe
1

7 : R

8 : #»z = bR #»u + #»y

9 : If rej0(
#»z , bR #»u , s)

10 : Then continue, else abort

11 :
#»z

12 : Run Π = Π
(2)
eval

(
(s′, s2), σ−1, v,V

)
return acc iff

13 : • ∥ #»z ∥2 ≤ t
√
256s

14 : •Π verifies.

Fig. 7: The protocol ΠANP ((s1,m, s2), (E, e, Be)) that provides an approximate

norm proof for u = E

s1
m

+ e.

Blind zkSNARKs for zkDel and vCOED 63

The construction of Hj from (18). We follow the construction in [74, Section
6.4.4] to derive quadratic functions Hj ∈ V that satisfy

Hj (s
′, σ−1(s

′)) := T
(
b

#»

Rj ,
#»u
)
+ T(#»ej ,

#»y)− #»z [j], j ∈ [256]. (21)

Let Ks ∈ R(m1+u)×2·dim(s′)
q , Kb ∈ R1×2·dim(s′)

q and Ky ∈ R256/d×2·dim(s′)
q

denote projection matrices such thats1
m

 = Ks

 s′

σ−1(s
′)


b = Kb

 s′

σ−1(s
′)


y = Ky

 s′

σ−1(s
′)

 .
Let rj ∈ Rℓeq denote a vector of polynomials such that #»rj equals

#»

Rj , the j-th row
of R. Let ej ∈ R256/d

q denote a vector of polynomials such that #»ej equals the j-th
unit vector of dimension 256.

Then the quadratic function Hj ∈ V can be explicitly written as

Hj(a) = a⊺Gja+ gja+ gj , ∀a ∈ R2(dim(s′))
q

where

Gj = K⊤b · σ−1(rj)⊤ ·E ·Ks

gj = e⊤ · σ−1(rj) ·Kb + σ−1(ej)
⊤Ky

gj = − #»z [j].

C.5 Our vectorized description of the approximate norm bound
proof in LNP22

In our vectorized version of the approximate norm bound proof (vec-ANP), the
prover knows the secret message (s1,m) ∈ Rm1+u

q which satisfies∥∥∥∥∥∥W
 #»s1

#»m

+w

∥∥∥∥∥∥
∞

≤ Bw, (22)

for public elements W ∈ Zℓw ×(m1+u)d
q , w ∈ Zℓwq and a public bound Bw ≤

q

41ℓ
3/2
w ψ(L2)

. After committing (s1,m) into (tA, tB), the commit-and-prove pro-

tocol convinces the verifier that the prover knows (s1,m) ∈ Rm1+u
q such that

64 M. Gama, E. Heydari Beni, J. Kang, J. Spiessens, F. Vercauteren

OCT ((tA, tB), (s1,m)) = acc and∥∥∥∥∥∥W
 #»s1

#»m

+w

∥∥∥∥∥∥
∞

≤ ψ(∞) ·Bw, (23)

where the slack is ψ(∞) = ψ(L2)
√
ℓw = 2

√
256
26 tγ

√
337
√
ℓw.

In contrast, ANP in Appendix C.4, proves the knowledge of secret messages
(s1,m) ∈ Rm1+u

q such that ∥∥∥∥∥∥E
s1
m

+ e

∥∥∥∥∥∥ ≤ Be, (24)

for public bound Be and public elements E ∈ Rℓe×(m1+u)
q , e ∈ Rℓeq with slack

ψ(∞). Note that relation (24) is a special case of the relation (22) by taking
ℓw = ℓe ·d and taking W and w as concatenations of rotation matrices for
elements in E and e, respectively.

In the vec-ANP, we define #»u := W [#»s1
#»m]
⊤
+w ∈ Zℓwq . The approximate

norm proof for ∥ #»u∥∞ ≤ Bw is denoted as

Πvec-ANP ((s1,m, s2), (W,w, Bw)) ,

which contains the same steps as ANP in Figure 7, except that the standard
deviation in line 2 is s := γ

√
337
√
ℓw · Bw, the projection matrix R in line 6 is

R←Bin256×ℓw1 , and the quadratic functions Hj as inputs for the subprotocol are
derived differently.

The construction of Hj in vec-ANP To derive quadratic functions Hj ∈ V
that satisfy

Hj (s
′, σ−1(s

′)) := T
(
b

#»

Rj ,
#»u
)
+ T(#»ej ,

#»y)− #»z [j], j ∈ [256], (25)

we define Ks, Kb and Ky as in Appendix C.4.
Let rj

(W) ∈ R(m1+u)
q denote a vector of polynomials such that

»

rj
(W) equals

#»

Rj ·W ∈ Zd(m1+u)
q , and r(w)

j denote
#»

Rj ·w ∈ Zq.
Then the quadratic function Hj ∈ P can be explicitly written as

Hj(a) = a⊺Gja+ gja+ gj , ∀a ∈ R2(dim(s′))
q

where

Gj = K⊺
b · σ−1(rj

(W))⊺ ·Ks

gj = r
(w)
j ·Kb + σ−1(ej)

⊺ ·Ky

gj = − #»z [j].

Blind zkSNARKs for zkDel and vCOED 65

D Our instantiation of the PoD protocol

Let us first discuss how we estimate the amount of ciphertexts to decrypt. This
is based on the following lemma.

Lemma 6. For a set B constructed by taking m random values (with repetition)
from a set A, it holds that fm(n) := E[|B|] = n(1− (1− 1/n)m) with n = |A|.

Now notice that for a FRI query phase that is repeated ℓ times over a domain
|L| that is packed into vectors of size P , we can compute the expected number
of values to open as

1 + 2 · 5 · fℓ
(
|L|
2P

)
+ 2 ·

log2(
|L|
P)∑

i=2

fℓ

(
|L|
2iP

)
since for each of the ℓ queries, we are taking a random evaluation point in
half of each evaluation domain and, in Fractal, opening to the first evaluation
domain requires opening to 5 polynomials at the same evaluation point. For the
parameters discussed in Section 8,

– P = 64 results in on average 2514 ciphertexts to open
– P = 256 results in on average 2105 ciphertexts to open

For reference, in the non-blind setting, i.e. P = 1, one would open to on average
3728 values.

D.1 Parameters for our instantiation of the PoD

66 M. Gama, E. Heydari Beni, J. Kang, J. Spiessens, F. Vercauteren

parameters description value
log q′′ # bits of ciphertext and proof system modulus 48

n′′ GBFV ring dimension for PoD 1536

r average number of ciphertext-plaintext pairs 2514

BSZ
PoD noise bound 216.9

d proof ring dimension 64

ω height of A1, A2 in ABDLOP 11

m1 length of the Ajtai message s1 24

u length of the BDLOP message m 0

λ 2·(# of gj ∈ Rd,q′ for boosting soundness) 4

m2 length of the randomness s2 in ABDLOP 43

γ rejection sampling constant for ΠANP 5

sANP standard deviation for ΠANP 614147325

s1 standard deviation for Π
(2)
eval 1587.2

s2 standard deviation for Π
(2)
eval 50790.4

ξ max. coeff. of a challenge in Ch 8

D number of low-order bits cut from tA 8

Table 5: Parameters for our instantiation of the proof of decryption protocol
from Figure 6 with 100-bit security.

	Blind zkSNARKs for Private Proof Delegation and Verifiable Computation over Encrypted Data

