
Sunfish: Reading Ledgers with Sparse Nodes
Giulia Scaffino

TU Wien, Common Prefix,

CDL-BOT

Karl Wüst

Mysten Labs

Deepak Maram

Mysten Labs

Alberto Sonnino

Mysten Labs,

University College of London

Lefteris Kokoris-Kogias

Mysten Labs

ABSTRACT
The increased throughput offered by modern blockchains, such as

Sui, Aptos, and Solana, enables processing thousands of transac-

tions per second, but it also introduces higher costs for decentral-

ized application (dApp) developers who need to track and verify

changes in the state of their application. This is true because dApp

developers run full nodes, which download and re-execute every

transaction to track the global state of the chain. However, this

becomes prohibitively expensive for high-throughput chains due

to high bandwidth, computational, and storage requirements. A

common alternative is to use light nodes. However, light nodes only

verify the inclusion of a set of transactions and have no guarantees

that the set is complete, i.e., that includes all relevant transactions.
Under a dishonest majority, light nodes can also be tricked into

accepting invalid transactions.

To bridge the gap between full and light nodes, we propose and

formalize a new type of blockchain node: the sparse node. A sparse

node tracks only a subset of the blockchain’s state: it verifies that

the received set of transactions touching the substate is complete,

and re-executes those transactions to assess their validity. A sparse

node retains important security properties even under adversarial

majorities, and requires an amount of resources proportional to

the number of transactions in the substate and to the size of the

substate itself.

We further present Sunfish, an instantiation of a sparse node

protocol. Our analysis and evaluation show that Sunfish reduces

the bandwidth consumption and, in turn, the computational and

storage resources, of real blockchain applications by several orders

of magnitude when compared to a full node.

1 INTRODUCTION
In recent years, the landscape of blockchain technology has rapidly

evolved thanks to the important advancements in the area of con-

sensus and layer-2 solutions, but also to the variety of decentralized

applications (dApps) that run on-chain and, often, cross-chain. Mod-

ern blockchains, such as Sui, Aptos, and Solana, scale up to thou-

sands of transactions per second, while earlier-generation chains,

such as Bitcoin and Ethereum, only handle a throughput in the

single or double digits. This increased capacity enhances the user

experience and allows for onboarding hundreds of thousands of

new users and dApps. Still, it also introduces a new, important chal-

lenge: dApp developers who want to verifiably and trustlessly track

the state of their application face higher costs. Traditionally, dApp

developers run full nodes to listen to events, follow changes in the

state of their application, and keep audit proofs. Full nodes receive

and re-execute all blockchain transactions, and their bandwidth,

computational, and storage costs become prohibitively expensive

for high-throughput blockchains. As a result, developers resort to

querying third-party full node operators and accepting their re-

sponses blindly. This behavior is questionable, as it fully relies on

the honesty of the full node operator and negates the trust bene-

fits a decentralized blockchain provides. As blockchain throughput

increases with further advances and usage, this problem is only

getting worse: fewer full nodes will be operated by independent

entities as, at the moment, there are no incentives for providing

this costly infrastructure.

An alternative approach to operating full nodes is to run light

nodes [5, 8, 20, 32], with the Bitcoin Simplified Payment Verifica-

tion client [27] being an example. Unfortunately, light nodes are

insufficient to verifiably track the state of an application: they only

verify the inclusion of a set of desired transactions but have no

guarantees over whether this set is complete, e.g., if it includes all
transactions reading from or writing to the state of a particular

dApp. This can lead to stale and, over time, potentially inconsistent

results if the light node connects to a full node that withholds data,

either inadvertently or maliciously.

A light node is also problematic in case the security of a blockchain

is compromised: since it only verifies transaction inclusion, a light

node can be tricked into accepting invalid transactions. In contrast,

a full node re-executes all transactions and, therefore, always main-

tains a valid local state, regardless of the number of adversarial

validators. The lack of validity guarantees for light nodes is trouble-

some, as users and dApp operators mainly care about the security

of their dApps and less about the security of the blockchain as a

whole: If the underlying chain is compromised, e.g., there are forks,

dApp operators that run their own full nodes can choose one of the

forks, be sure that there are no validity violations or lost updates,

and migrate the dApp state to another blockchain.

In this paper, we introduce sparse nodes, a new type of blockchain

node that sits between light and full nodes. Sparse nodes follow a

subset of the blockchain state by retrieving, verifying inclusion of,

and re-executing only the set of transactions that read from or write

to, e.g., the state of a specific dApp or a user. We define sparse nodes

formally through a predicate, which, when applied to the global

state, identifies a subset thereof called the sparse state. Sparse nodes
verify completeness and validity of the set of received transactions,
guaranteeing that their local sparse state is always valid. Table 1

compares the security properties of sparse nodes with those of

full and light nodes. These properties hold even under adversarial

majorities, and they are the following: (i) sparse validity, which
means that the node will only accept transactions that are valid

Validity Fork Consistency Verifiable Completeness

Full Node Yes Yes Per Fork

Sparse Node Sparse Yes Per Fork

Light Node No No No

Table 1: Properties of full, sparse, and light nodes.

with respect to its local current sparse state; (ii) fork consistency
[15, 23, 25], which means that two sparse nodes with the same

predicate and reading from the same fork will output the same

sparse state. Finally, (iii) verifiable completeness, which means that a

sparse node can verify if it received all the transactions that touch

its sparse state.

The cost of running a sparse node is roughly proportional to the

number of transactions touching its sparse state, thus isolating the

cost of running a sparse node from the external workload of other

dApps. This makes it feasible again for dApp developers to down-

load, verify, execute, and store transactions on the dApp sparse state,

thus increasing the robustness of applications in high-throughput

blockchains. Sparse nodes can be run by users or operators that

wish to monitor the state of an application and listen to the events:

notable examples are bridge operators, rollup sequencers and watch-
ers, payment channel users and watchtowers, re-staking and remote
staking collectives [19, 33], user wallets, DAO token holders, and

many more. Sparse nodes can additionally function as read caches

or replicas, facilitating the separation of read and write operations

during scaling. This enables the dynamic deployment of sparse

nodes to increase redundancy and read bandwidth for popular

dApps, reducing the need for more full nodes and thereby saving

network bandwidth and disk space. While sparse nodes offer more

marked benefits when deployed for high-throughput blockchains,

their deployment on low-throughput chains such as Ethereum, still

results in lower bandwidth, computational, and storage consump-

tion when compared to full nodes.

Contributions. After presenting the model and assumptions (Sec-

tion 2), we introduce and formalize, for the first time, the concept of

a sparse node, and we define the security guarantees it provides un-

der both honest and dishonest majorities (Section 3). We focus our

analysis on quorum-based blockchains that are secure in non syn-

chronous networks, as this is the setting in which most blockchains

operate. Our formalization is, nevertheless, easily extendable to

other settings, e.g., Nakamoto-style consensus chains.

Then, we present Sunfish (Section 4), the first secure protocol

for sparse nodes. We describe two instances of Sunfish that differ

in the choice of data structures to offer different trade-offs: Sunfish-

C uses counters and minimizes validator overhead, Sunfish-HC

uses trees and hash chains and optimizes the reads (proof size).

Afterward, we showcase the required resources for both Sunfish-

C and Sunfish-HC (Section 6) based on real-world usage data of

two dApps: a blockchain bridge and a wallet user. We estimate

bandwidth reductions of 10x and 10
8
x for the bridge and wallet,

respectively, when compared to running a full node (improvement

is inversely proportional to how frequently the app interacts with

the chain). Finally, we compare sparse nodes with related work and

conclude with a discussion of the impact of our work along with

new research directions (Section 7).

2 PRELIMINARIES AND MODELS
Notation. The curly bracket notation {·} refers to sets, whereas
the square bracket notation [·] refers to ordered sequences. The

symbols 𝐴 ⪯ 𝐵 and 𝐴 ≺ 𝐸 indicate that 𝐴 is a prefix of 𝐵 and a

strict prefix of 𝐸. The notation |𝐷 | denotes the size of the sequence
if 𝐷 is a sequence, or the size of a set if 𝐷 is a set.

Ledger Model. We model a ledger L as the output of a Byzantine

fault tolerant state machine replication (BFT-SMR) protocol [16, 21,

22]. State machines are deterministic machines that, at all times,

store the state of the system and, upon receiving a set of inputs, they

output a new, updated state by evaluating the inputs over a state
transition function 𝛿 . A state transition is valid if 𝛿 executes without

errors. In a network of mutually distrusting nodes, each running a

replica of the same state machine, a BFT-SMR protocol ensures that

all correct nodes maintain a consistent state, even in the presence

of a subset of adversarial nodes. Consider a BFT-SMR protocol with

𝑛 = 3𝑓 + 1 nodes of which 𝑓 are controlled by the adversary. Upon

receiving on input a new transaction tx from the environment, a

correct node moves from state 𝑆𝑖 to 𝑆𝑖+1 = 𝛿 (𝑆𝑖 , tx) only if 𝛿 (𝑆𝑖 , tx)
is a valid state transition and if a quorum of at least 2𝑓 + 1 nodes
have acknowledged the transition. Consider an empty ledger L0

with genesis state 𝑆0. To ascertain the 𝑖-th state 𝑆𝑖 of a ledger

L𝑖 = [tx1, . . . , tx𝑖], with 𝑖 > 0, transactions are applied as follows:

𝑆𝑖 := 𝛿 (. . . 𝛿 (𝛿 (𝑆0, tx1), tx2) . . . , tx𝑖). As shorthand notation, we use
𝑆𝑖 := 𝛿 (𝑆0,L𝑖) to denote successive application of all transactions

tx ∈ L𝑖
given an initial state 𝑆0.

A ledger protocol is secure if it fulfills the following properties:

Definition 1 (Ledger Validity). For any round 𝑟 , a ledger L𝑟

is valid if 𝑆𝑟 = 𝛿 (𝑆0,L𝑟) executes errorless.

Definition 2 (Ledger Safety). For any rounds 𝑠 , 𝑟 ≤ 𝑠 , any two
correct nodes 𝑖, 𝑗 output a ledger L such that L𝑟

𝑖
⪯ L𝑠

𝑗
.

Definition 3 (Ledger Liveness). Any valid transaction that is
provided to a correct node will eventually be included in the ledger.

Let 𝐾 and 𝑉 be sets of valid keys and valid values, respectively.

We model the state of a node as a key-value store, i.e., a collection
of (𝑘, 𝑣), with 𝑘 ∈ 𝐾 and 𝑣 ∈ 𝑉 . 𝑘 is a unique identifier (e.g.,

account or contract address) used to reference a specific value in

the store, whereas 𝑣 is the data (e.g., account balance or contract

state) associated with a particular key. A transaction reads from

an input state 𝑆𝑖 and writes to an output state 𝑆𝑖+1 by consuming

some state elements (𝑘, 𝑣) in 𝑆𝑖 and generating new ones. We refer

to the values that are read and written by a transaction as the read
set and the write set, respectively. This is to clearly distinguish it

from the input and output of a transaction, which, in some chains

like Ethereum [2], is the whole state of the ledger. We let R(tx)
andW(tx) denote the read and the write set of a transaction tx,
respectively.

1

Adversarial Model. We let 𝑓 denote the resilience of a ledger

protocol against a Byzantine adversary. For synchronous proto-

cols, 𝑓 < 𝑛/2, while for asynchronous and partially synchronous

protocols 𝑓 < 𝑛/3. In this work, we consider an adversary whose

1
A more precise formulation of the read and write set is R(𝑆, tx) andW(𝑆, tx)

because, depending on the current state 𝑆 of the ledger, the state elements in the read

and write sets may be assigned to different keys.

2

corruption level can vary over time, possibly violating the resilience

threshold of the ledger.

Prover-Verifier Model. A sparse node protocol Π(P,𝑉) is a pro-
tocol between a sparse node, acting as verifier 𝑉 , and a non-empty

set P of provers. We envision a sparse node protocol to be a stream-
ing and stateful protocol, i.e., it maintains a connection to the

provers and it persists its state (received transactions, current sparse

state) over time. We present, however, also non-streaming oper-

ating modes. We assume 𝑉 is honest and adheres to the correct

protocol execution.

We will first present a backward compatible protocol for sparse
nodes in which provers are full nodes, at least one of which is

honest (existential honesty assumption), while all others can be ad-

versarial and execute any probabilistic polynomial-time algorithm.

Then, we will present an optimized protocol for sparse nodes that

operates under a different model: the sparse node connects to a
single validator prover, only trusted for liveness.
CryptographicAssumptions. Weassume collision resistant hash

functions.

Network Assumptions. We consider protocols whose execution

proceed in discrete rounds 𝑟 = {0, 1, 2, . . . }. We inherit the clas-

sic network assumption of a full node, i.e., the sparse node can

receive transactions by either connecting to full nodes or valida-

tors, or by joining the gossip network. We assume synchronous

communication between the sparse node and the provers.

3 THE SPARSE NODE
A full node downloads, validates, and re-executes all transactions,

maintaining a complete copy of the ledger and storing the entire

state. A sparse node, instead, downloads, validates, and re-executes

only a specific set of transactions, maintaining a partial copy of

the ledger, named sparse ledger, and storing a subset of the global

state, named sparse state. Transactions in the sparse ledger share a

common property: for instance, they all read from or write to the

state of the same contract or of the same address.

3.1 Definitions
Consider a ledger L. At any round 𝑟 , the state 𝑆𝑟 of L𝑟

is the set

of (𝑘, 𝑣) s.t. ∀(𝑘, 𝑣) ∈ 𝑆𝑟 : 𝑘 ∈ 𝐾, 𝑣 ∈ 𝑉 .

Definition 4 (State Predicate X𝑠). A state predicate X𝑠 is a
function X𝑠 (𝑘) : 𝐾 → {1, 0}.

A state predicate is valid for a ledger L, if it is supported by

the ledger protocol. In this work, we will only consider valid state

predicates. A sparse state 𝑆 ⊆ 𝑆 is the subset of the state elements

(𝑘, 𝑣) ∈ 𝑆 s.t. X𝑠 (𝑘) = 1.

Definition 5 (Sparse State 𝑆). At any round 𝑟 , 𝑆𝑟 := {(𝑘, 𝑣) | (𝑘, 𝑣) ∈
𝑆𝑟 ∧ X𝑠 (𝑘)} is the sparse state identified by X𝑠 .

Since 𝑆𝑟 changes any time a new transaction is appended to the

ledger, at every new append X𝑠 must be evaluated on all updated

and added elements (𝑘, 𝑣) ∈ 𝑆𝑟 .
We now define the sparse state transition ˆ𝛿 , the function that

allows to move from 𝑆𝑖 to 𝑆𝑖+1. Let us reason about the inputs of
ˆ𝛿 .

As seen in Section 2, the standard transition function 𝛿 of the ledger

takes as inputs the global state and a transaction: 𝑆𝑖+1 = 𝛿 (𝑆𝑖 , tx).

A sparse node, however, has no knowledge of the global state:

it only knows of the sparse state 𝑆 . If we let
ˆ𝛿 take as input 𝑆

and a transaction, i.e.,
ˆ𝛿 (𝑆𝑖 , tx), then ˆ𝛿 might not properly execute:

the transaction might read from state elements (e.g., gas objects,

contract bytecode) not in the sparse state. We solve this by letting

ˆ𝛿 take 𝑆 and (R(tx), tx) as inputs. This means that whenever the

sparse node receives a transaction accessing its sparse state, itmust
also receive the transaction’s read set in order to execute it.

This has two implications: First, if a transaction specifies an

external state as dependency, e.g., it calls a smart contract exter-

nal to the node’s sparse state, then this dependency affects the

sparse node’s resource consumption (we discuss this thoroughly

in Section 3.5). Second, the sparse node must be able to verify the

correctness of the read set provided by the provers, otherwise it

may be fooled into accepting an invalid read set. Some ledgers have

transactions that directly include a commitment to the values in

their read set, e.g., in Bitcoin is the hash of the transaction holding

the unspent output. Other ledgers, e.g., Ethereum, have transac-

tions that specify the keys of the state elements they read from

(e.g., account addresses or contract storage slots), but the actual

values associated with those keys (e.g., account balances, contract

storage values) are not included nor committed in the transaction

itself. This way of interacting with the global state is known as

access-by-key. To define ˆ𝛿 for access-by-key chains, we therefore

need to assume that any transaction includes a commitment to

the values in its read set or, alternatively, being
ˆ𝛿 deterministic, a

commitment to the values in its write set.
2
In this way, even if a

transaction reads from state elements external to the sparse state, a

sparse node can verify against the commitment the correctness of

the values 𝑣 received from untrusted provers; then, it can apply
ˆ𝛿

over the values. In the following, to ease notation, we will omit the

data and metadata necessary to open the commitment and, without

loss of generality, assume that the commitment is to the read set of

the transaction.

Before defining the sparse state transition
ˆ𝛿 , we introduce the

function
˜𝛿 to be both a domain restriction and a range restriction of

the function 𝛿 . This means that
˜𝛿 , on input a subset of the global

state and a transaction, modifies the state elements in the subset

in the exact same way of 𝛿 ; then, ˜𝛿 outputs a subset of the output
elements, i.e., only the ones for which X𝑠 (𝑘) = 1.

Definition 6 (Sparse State Transition
ˆ𝛿 , aka. Sparse Exe-

cution). At any round 𝑟 , on input 𝑆𝑟 and (R(tx), tx), a sparse state
transition function ˆ𝛿 is a deterministic function that outputs a sparse
state 𝑆𝑟+1 = ˆ𝛿 (𝑆𝑟 , (R(tx), tx)) by executing the following steps:

(1) It computes ˆR𝑟 = 𝑆𝑟 ∪ R(tx).
(2) It checks that ∀(𝑘, 𝑣) ∈ ˆR𝑟 s.t. X𝑠 (𝑘) = 1, (𝑘, 𝑣) ∈ 𝑆𝑟 .
(3) It checks that ∀(𝑘, 𝑣) ∈ R(tx), (𝑘, 𝑣) is in the commitment in

tx.
(4) It executes ˜𝛿 (ˆR𝑟 , tx) assuming that∀(𝑘, 𝑣) ∈ ˆR𝑟 s.t.X𝑠 (𝑘) = 0,
(𝑘, 𝑣) ∈ 𝑆𝑟 .

(5) It outputs 𝑆𝑟+1 = ˜𝛿 (ˆR𝑟 , tx).
If any of the checks fail or the execution of ˜𝛿 fails, ˆ𝛿 outputs error.

2
In many blockchains, e.g. Ethereum, such commitments are provided in blocks

through a commitment to a state tree.

3

Informally,
ˆ𝛿 checks that all elements in the transaction’s read

set are valid, i.e., they are in 𝑆𝑟 , and that all values in the read set

of tx are in the commitment. Then, on input
ˆR𝑟 and tx, and by

assuming valid the read set elements external to
ˆR𝑟 , ˆ𝛿 behaves as

the transition function 𝛿 of the ledger. Finally,
ˆ𝛿 outputs the result

of 𝛿 pruned by all the elements for which X𝑠 (𝑘) = 0.

We highlight that
ˆ𝛿 gives weaker validity compared to 𝛿 . This

is because the execution of 𝛿 fails if any state element in
ˆR𝑟 s.t.

X𝑠 (𝑘) = 0 is not in the global state 𝑆𝑟 of the ledger, while the

sparse execution enabled by
ˆ𝛿 assumes that all elements in

ˆR𝑟 s.t.
X𝑠 (𝑘) = 0 are in 𝑆𝑟 and therefore it does not fail. The definition

above can be generalized to a sequence of transactions by apply-

ing
ˆ𝛿 sequentially: 𝑆2 = ˆ𝛿 (ˆ𝛿 (𝑆0, (R(tx1), tx1)), (R(tx2), tx2)). As a

shorthand notation for
ˆ𝛿 , we consider the read set as part of the

transactions: 𝑆2 = ˆ𝛿 (ˆ𝛿 (𝑆0, [tx1, tx2])). A ledger for which sparse

validity holds is termed sparsely valid ledger or a valid sparse ledger.
From a state predicate X𝑠 we now derive a transaction predicate

X𝑡 which, on input a transaction tx, it outputs 1 if at least one of
the elements in R(tx) orW(tx) yields X𝑠 (𝑘) = 1.

Definition 7 (Transaction Predicate X𝑡). Let X𝑠 be a state
predicate. On input a transaction tx, a transaction predicateX𝑡 outputs
1 if ∃(𝑘, 𝑣) ∈ (R ∪W)(tx) s.t. X𝑠 (𝑘) = 1. Else, it outputs 0.

In this work, we will only consider valid transaction predicates,

i.e., transaction predicates derived from valid state predicates. We

define a sparse ledger ˆL as the sequence of transactions in L s.t.

X𝑡 (tx) = 1. Therefore, a sparse ledger is always definedwith respect

to a transaction predicate X𝑡 or, equivalently, by a state predicate

X𝑠 .

Definition 8 (Sparse Ledger
ˆL). Let L be a ledger and X𝑡 a

transaction predicate of L. At any round 𝑟 , ˆL𝑟
:= [tx ∈ L𝑟 |X𝑡 (tx)]

is the sparse ledger identified by X𝑡 .

We note that a full node is a sparse node for which, at any round

𝑟 , 𝑆𝑟 = 𝑆𝑟 and ˆL𝑟 = L𝑟
. We further observe that, by definition,

ˆL𝑟

is complete with respect to L𝑟
.

Observation 1 (Completeness). By definition, a sparse ledger
ˆL defined by a predicateX𝑡 is complete with respect to L. This means
that, at any round 𝑟 , it does not exist a transaction tx s.t.X𝑡 (tx) ∧ tx ∉
ˆL𝑟 ∧ tx ∈ L𝑟 .

We now relax the notion of completeness of a sparse ledger

by introducing the prefix completeness property. This will help us

defining the security of a sparse node protocol in terms of safety.

Definition 9 (Prefix Completeness). A sparse ledger ˆL identi-
fied by a predicate X𝑡 is prefix complete with respect to a ledger L if,
for a round 𝑟 and a round 𝑟 ′ ≤ 𝑟 , ˆL𝑟

:= [tx ∈ L𝑟 ′ |X𝑡 (tx)].

We now show another interesting property of a sparse ledger:

sparse validity. Let ˆL𝑟 \ ˆL𝑟−1
denote the sequence of transactions in

ˆL𝑟
but not in

ˆL𝑟−1
, and 𝑆𝑟−1 be the sparse state defined by

ˆL𝑟−1
.

Definition 10 (Sparse Validity). For any round 𝑟 , a sparse
ledger ˆL𝑟 is valid if ˆL𝑟−1 is valid and ˆ𝛿 (𝑆𝑟−1, ˆL𝑟 \ ˆL𝑟−1) executes
errorless.

Finally, we define a sparse mempool ˆM. We note that the mem-

pool is always defined in the view of a node, and honest nodes may

never share the same view of it.

Definition 11 (Sparse Mempool). At any round 𝑟 , the sparse
mempool ˆM𝑟 of a sparse node is the sequence of transactions s.t.
X𝑡 (tx) = 1 that the sparse node has received and validated, but they
have not yet been included in a valid block of the ledger.

In the rest of this work, we will only consider sparse nodes

interested in maintaining a sparse ledger and a sparse state; for

some applications and for some ledgers, however, users or protocol

operators might benefit frommaintaining a sparse mempool as well

to have early insights on the queue of transactions waiting to be

included into the ledger.

The above definitions are general and apply to any ledger, as

well as to different flavours of sparse states and sparse ledgers.

For instance, a sparse state could identify the coins owned by a

particular address, the balance of a set of addresses, the state of a
specific contract or the events emitted by a contract (this particular

case will be discussed in Section 3.3). The flavours of sparse states

that can be defined on a ledger depend on the variety of state

predicates that the ledger supports.

3.2 Sparse Node Security
A sparse node fulfilling the following definition is said secure.

Definition 12 (Sparse Node Security). Let L be a ledger. Let
X𝑠 be a state predicate for L and X𝑡 the transaction predicate derived
from X𝑠 . Consider an adversary that controls less than 𝑓 nodes, with
𝑓 being the ledger’s adversarial resilience. A sparse node protocol
Π(X𝑠 ;P,𝑉) is secure if, at any round 𝑟 ,𝑉 outputs (ˆL𝑟 , 𝑆𝑟) such that
the following properties hold:
Safety: ˆL𝑟 is identified by X𝑡 , ˆL𝑟 is sparsely valid and prefix com-

plete with respect to L𝑟 , and 𝑆𝑟 = ˆ𝛿 (𝑆𝑟−1, ˆL𝑟 \ ˆL𝑟−1).
Eventual Liveness: ˆL𝑟 is identified by X𝑡 and it will eventually be

complete with respect to L𝑟 .
Consider now an adversary that controls more than 𝑓 nodes. Then,
a sparse node protocol Π(X𝑠 ;P,𝑉) is secure if, at any round 𝑟 , 𝑉
outputs (ˆL𝑟 , 𝑆𝑟) such that the following property holds:
Weak Safety: ˆL𝑟 is identified by X𝑡 and it is sparsely valid.

We observe that when the ledger is safe and live, a secure sparse

node protocol achieves both safety and eventual liveness. Should

the adversary control more nodes than the adversarial resilience of

the ledger, any security notion of the ledger is compromised and

any notion of completeness is meaningless. However, in this case, a

sparse node still achieves the weak safety property, i.e., it outputs a

sparse ledger that is sparsely valid.

Lemma 3.1 (Fork Consistency). For any rounds 𝑟 and 𝑟 ′ ≤ 𝑟 ,
any two secure sparse nodes 𝑖, 𝑗 reading from the same fork of a
ledger L𝑟 output (ˆL𝑟

𝑖
, 𝑆𝑟

𝑖
) and (ˆL𝑟

𝑗
, 𝑆𝑟

𝑗
) s.t. ˆL𝑟 ′

𝑖
⪯ ˆL𝑟

𝑗
and s.t. 𝑆𝑟

𝑗
=

ˆ𝛿 (𝑆𝑟 ′
𝑖
, ˆL𝑟

𝑗
\ ˆL𝑟 ′

𝑖
).

Proof. Towards contradiction, suppose that there exists a round

𝑟 such that sparse nodes 𝑖, 𝑗 reading from the same fork ofL𝑟
output

ˆL𝑟 ′
𝑖

⪯̸ ˆL𝑟
𝑗
and 𝑆𝑟

𝑗
≠ ˆ𝛿 (𝑆𝑟 ′

𝑖
, ˆL𝑟

𝑗
\ ˆL𝑟 ′

𝑖
). This happens only if

ˆL𝑟 ′
𝑖
or

4

ˆL𝑟
𝑗
are not prefix complete with respect to L𝑟

or not sparsely valid,

contradicting the nodes’ security. □

As the name suggests, fork consistency is a per-fork property.

In this paper, we do not discuss fork detection, but synchronous

gossip techniques are shown to solve this problem [15, 25, 26], and

they could be used for sparse nodes as well. We will explore this as

future work.

3.3 Event-Based Sparse Node
A typical way to read blockchains is to listen to events emitted by

transactions that call a smart contract. Blockchains exhibit more

structure than a ledger, and events are stored as part of the transac-

tion’s metadata, called transaction logs. Importantly, they are not

stored in the state of the chain. Events inform about changes in the

state of a contract or about calls to specific functions. At present,

most applications developers or operators run full nodes to listen

to specific logs generated during execution.

In the spectrum between full and light nodes, a special type of

sparse node is an event node, i.e., a node that only reads specific

events. An event node is more lightweight than a sparse node: it

has no sparse ledger and no sparse execution, as events cannot be

executed. Its sparse state is an append-only key-value store whose

elements (𝑘, 𝑣) are the events of interest emitted. Completeness
and prefix completeness are now properties of the sparse state: for

instance, 𝑆𝑟 is complete w.r.t. L𝑟
log if, at any round 𝑟 , ∄(𝑘, 𝑣) s.t.

X𝑠 (𝑘) = 1 ∧ 𝑣 ∉ 𝑆𝑟 ∧ 𝑣 ∈ L𝑟
log .

It follows that an event node has weaker security than a sparse

node, as there is no notion of sparse validity. In the remainder of

the paper, we will focus on sparse nodes as defined in Section 3.1

and Section 3.2, as they are more complex. In Section 6, besides

sparse nodes, we evaluate event nodes, showing their efficiency.

3.4 Operating Modes
Sparse nodes can have various operating modes that differ in the ex-

tent of completeness. Sparse validity is unconditional in all modes.

A header node is always online and it reads all block headers
irrespective of whether a relevant transaction is in the block (they

are similar to SPV light nodes). This mode offers the benefit that

liveness failures are immediately detectable (assuming blocks are

produced at a known rate), although at the cost of increased re-

source consumption.

A continuous sparse node only receives the (scattered) headers

of those blocks that include transactions relevant for them. Such a

node is always online so that it can be immediately notified when

a relevant transaction gets appended to the ledger. Assuming it

connects to at least one honest node, the ledger of a continuous

sparse node is complete at all times.
3
This is the primary operating

mode we consider in this work.

An intermittent sparse node alternates between wake and sleep

periods, either with some periodicity or at random. Assuming it

connects to at least one honest node, the ledger of an intermittent

node is prefix complete at all times and complete only when awake.

3
We can further categorize based on how quickly a sparse node is notified, e.g.,

as soon as a transaction gets added to a block or as soon as it gets finalized (which is

consensus-specific and may be earlier). We leave this exploration for future work.

Resources

Full Node O(|L| + |𝑆 |)
Sparse Node O(𝜆𝜌 |L| + 𝜂 | ˆL| +𝜓 |𝑆 |)
Light Node O(𝜆 |L|)

Table 2: Resources consumed by full, sparse, and light nodes.

An on-demand sparse node is a node that wakes up, stays awake

for the time it takes to get the data, and then falls asleep forever.

This node is only interested in a single snapshot of a complete and

valid sparse ledger and its state.

3.5 Sparse Node Resources
We now discuss the resources consumed by a sparse node in terms

of bandwidth, computation, and storage. Table 2 compares the

resources consumed by full, sparse, and light nodes.

Similarly to light nodes and full nodes, sparse nodes need to

receive regular updates about consensus parameters, e.g., valida-

tors in the current committee. This requires expending O(𝜆 |L|)
resources where 𝜆 captures the rate of committee changes. For most

of the existing PoS chains, these changes occur rarely, e.g., once a

day, so the overhead is extremely small. For sparse nodes that sync

very rarely or only once, committee change updates can be further

compressed using Succinct Zero-Knowledge Proofs [1, 12, 34].

Sparse nodes that only download the headers of those blocks

that include relevant transactions, might receive only a subset of

the blocks of the ledger. The node needs to verify that the received

scattered blocks belong to the same (fork of the) chain. This could be

trivially done by, e.g., providing the sparse node with the headers of

all the blocks in the chain, but more efficient techniques exist under

the name of proofs of ancestry. These add within block headers a

commitment to a data structure, e.g., a Merkle Mountain Range, a

vector commitment or a skip list, that allows to navigate the chain

backward with a logarithmic or constant overhead in the age of

the last block received by the node. Let us consider ancestry proof

openings to require O(𝜌 |L|) resources.
A sparse node requires bandwidth, computational power, and

storage for downloading, validating, and storing transactions as

well as storing the sparse state. Assume a constant upper bound

on the computation associated with a transaction, these resources

are proportional to the size of 𝑆 , to the number of transactions in
ˆL, but also to the degree of dependency these transactions have

on some state external to the sparse state [6]. A sparse node that

follows a substate might have to download parts of an external

substate in order to execute transactions (recall, this external sub-

state is passed to the sparse node in the read set of a transaction).

For instance, think of a sparse node tracking a flash loan contract:

transactions that touch this contract often interact with multiple

other contracts (e.g., DEXs). The resource consumption introduced

by the dependencies may vary across different transactions, but

also depending on the specific sparse state the node monitors. In

some cases, when a sparse state has a high degree of dependency

with respect to another substate, a clever choice could be to in-

clude the external dependency into the sparse state. To capture the

overhead on the sparse node introduced by external dependencies,

we use the multiplying factor 𝜓 next to |𝑆 |. To verify transaction

5

inclusion in a block, if the sparse node reads from ledgers that use

commitments with non-constant-sized openings (e.g., Merkle trees),

a small multiplying factor 𝜂 appears next to | ˆL|, proportional to
the opening sizes.

Definition 13 (Sparse Node Resources). The bandwidth, com-
putational, and storage resources consumed by a sparse node are
O(𝜆𝜌 |L| + 𝜂 | ˆL| +𝜓 |𝑆 |).

We observe that O(𝜆𝜌 |L|+𝜂 | ˆL|+𝜓 |𝑆 |) is dominated by different

terms: if the sparse state is touched by many, frequent transactions,

then 𝜂 | ˆL| +𝜓 |𝑆 | dominates. If the sparse state is rarely used, then

the impact of 𝜆𝜌 |L| increases.
Note that the above refers to both intermittent, continuous, and

on-demand sparse nodes. The complexity for header nodes is in

between the one of a sparse and of a full node, i.e., O(𝜂 |L| +𝜓 |𝑆 |),
where |L| appears because all headers are read.

4 SUNFISH: A PROTOCOL FOR SPARSE
NODES

While a ledger outputs a partial order of transactions, a blockchain

forces transactions in a total order to have more structure and

enable, among others, efficient reads for clients. From now on, we

consider a blockchain that has commitments that the sparse node

can use for efficient reads.

4.1 Sunfish Prover-Verifier Protocol
Algorithm Notation. For the algorithms, we assume a BFT-based

Proof-of-Stake ledger (no forks), and we use𝑚 d 𝐴 to indicate

that message 𝑚 is sent to party A and 𝑚 c 𝐴 to indicate that

message𝑚 is received from party A. In the algorithms, we denote

with B a block header, with 𝜎 the validators’ signatures that assess

validity of a block, and with 𝜋𝑖 , 𝜋𝑎 , and 𝜋𝑐 the inclusion, ancestry,

and completeness proofs, respectively. We let Σ𝑠 be the set of valid
state predicates supported by the ledger. Let C be the local chain

of the prover.

BackwardCompatible Protocol. Wenow describe the backward

compatible version of our Sunfish protocol. Algorithm 1 presents

the pseudocode run by the sparse node for the backward compatible

Sunfish, while Algorithm 3 showcases the protocol run by the

provers with the exception that line 18 is removed, and the data

structure D is without 𝜋𝑐 .

Consider a sparse node 𝑉 that when wakes up has only knowl-

edge of the sparse state and of the sparse state transition function

at genesis (we denote genesis as G). The node connects to a set P
of full nodes (provers), with at least one of them being honest. The

node selects a predicate X𝑠 that is supported by the ledger and it

sends it to the provers (Algorithm 1, lines 2-5). Upon receiving X𝑠 ,
the provers extract X𝑡 from X𝑠 and they send to the sparse node

the following (Algorithm 1, line 12):

(1) The block headers necessary to extract the historical con-

sensus parameters of the chain. For BFT protocols, these

are, e.g., signed end-of-epoch block headers [5] that include

the handover message in which the current validator set

appoints the next one;

(2) All transactions such thatX𝑡 (tx) = 1, along with the headers

of the blocks they are included in, and the inclusion proofs;

(3) The data necessary to verify that the block headers in (2),

however sporadic they are, belong to the same (fork of the)

chain.

Upon receiving this data, the sparse node checks the validity

of all received block headers, the correct inclusion of transactions

s.t. X𝑡 (tx) = 1 in a valid block header, and that the transactions

execute correctly according to the sparse state transition function

(Algorithm 1, line 13). The sparse node then rejects all the responses

from provers that do not satisfy the checks above, and it adds to its

local sparse ledger the one that follows the fork choice rule of the

underlying chain and that contains the largest number of relevant

transactions (Algorithm 1, line 18). Finally, it updates it local sparse

state (Algorithm 1, line 19). As the ledger makes progress, the node

receives from the provers new blocks with relevant transactions;

upon receiving these, it updates its sparse ledger and sparse state.

We observe that thanks to the existential honesty assumption, this

protocol achieves liveness with parameter Δ, with Δ being the

network delay; this is stronger than the eventual liveness defined

in Definition 12.

Optimized Protocol. Although the protocol we have just de-

scribed realizes a secure sparse nodes, there are still a few improve-

ments that would allow to design an optimized and verifiably secure

sparse node. First, we note that in the design above the sparse node

cannot verify completeness: it can only get completeness by relying

on the fact that, among the provers, there is an honest node that

will not withhold any relevant transaction (existential honesty).

Furthermore, even though connecting to a set of full nodes is a stan-

dard assumption for light clients, this results in the following: (i) the

communication and computation of the sparse node is proportional

to the number of provers; (ii) the time it takes the sparse node to

synchronize with the ledger is bottlenecked by the synchronization

time of full nodes - interestingly, even a low throughput chain like

Ethereum has roughly 1/3 of its full nodes constantly out-of-sync

[3]; (iii) finally, as the resource requirements for operating a full

node increase proportionally to the size and/or the throughput of

the ledger, the initial existential honesty assumption becomes less

realistic as the number of public full nodes reduces, especially for

high-throughput blockchains.

If we require the sparse node to connect to validators, under

existential honesty, the node would need to connect to at least 𝑓 + 1
validators. Instead, in Sunfish, we want to minimize bandwidth

requirements for the sparse node and reduce the communication

load on validators, thus our sparse node connects to a single validator,
only trusted for liveness. To prevent a malicious validator from

withholding transactions and remain undetected, we equip Sunfish

with a mechanism to verify completeness. For this, we introduce an
authenticated data structure that enables completeness checks, and

we require validators to add a commitment to such data structure

into the block header (similar to what already exists for light clients,

that use transaction Merkle roots stored in block headers). Should

the validator-prover withhold transactions, the sparse node can

now detect the misbehavior and connect to a different prover. We

will show that this optimized protocol is safe and eventually live
when the ledger is safe and live, as the node will eventually hit an

honest validator-prover. Algorithm 2 presents the pseudocode run

by the sparse node for the optimized Sunfish, while Algorithm 3

6

Algorithm 1 The algorithm ran by the backward compatible Sunfish client 𝑉 operating in continuous mode.

1: function VerifierG (Σ𝑠 , G, ˆ𝛿)
2: X𝑠 ← Σ𝑠 , 𝑆 ← G, ˆL ← [], 𝑆 ← [], boolean←⊥, receivedData← [], validData← []

3: for 𝑃 ∈ P do
4: X𝑠 d 𝑃

5: end for
6: while True do
7: for 𝑃 ∈ P do
8: D c 𝑃 ⊲ Implicit timeout when receiving.

9: ReceivedData[𝑃] = D
10: end for
11: for 𝑃 ∈ P do
12: (B, 𝜎, txs, 𝜋𝑎, 𝜋𝑖) = ReceivedData[𝑃]
13: boolean = IsBValid(B, 𝜎) ∧ IsAncestryValid(B, 𝜋𝑎) ∧ AreTxsIncluded(B, txs, 𝜋𝑖) ∧ AreTxsRelevant(txs, X𝑠) ∧ AreTxsSpValid(txs, ˆ𝛿)
14: if boolean then
15: validData[P] = receivedData[P]
16: end if
17: end for
18:

ˆL = AppendRelevantTxs(argmax𝑃∈P size(validData[P].txs))
19: 𝑆 = ComputeState(𝑆 , ˆL)
20: end while
21: end function

showcases the protocol run by the provers in the same setting.

Note that in Algorithm 2 , line 10, the sparse node now verifies a

completeness proof, while in Algorithm 3, line 18, the prover now

generates a completeness proof by using the new commitment in

the block headers.

4.2 Data Structures for Verifying Completeness
To verify completeness, in Sunfish, we present two distinct au-

thenticated data structures (counters and hash chains) that achieve

different trade-offs.

Sunfish-C. A sparse node can verify completeness by having

knowledge of the total number of transactions in the ledger that

touch its sparse state.

Consider validators maintaining a global counter ctr𝐺 for any
sparse state whose predicate is supported by the ledger. The global
counter is initialized at 0 at genesis and incremented by 1 every

time a new transaction tx s.t. X𝑡 (tx) = 1 is added to the ledger.

One option would be to have validators building a Merkle tree

with all the counters ctr𝐺 , and include the Merkle roots in every

block header; unfortunately, this comes with the unpractical cost

of having validators maintaining a massive tree and updating it at

every block. Alternatively, validators could maintain a local counter
ctr𝐿 for any sparse state whose predicate is supported by the ledger,
with ctr𝐿 initialized at 0 at every new block and incremented by 1

every time a transaction tx s.t. X𝑡 (tx) = 1 is added to the block. For

each new block, validators construct a Merkle tree with the non-

zero local counters for the block and commit this tree within the

block header. Since the number of transactions in a block is rather

small, it is feasible for validators to handle these trees; however, to

know the total number of transactions in the sparse state, a sparse

node needs to download and check all block headers (it needs to

necessarily be a header node).

While the first approach commits to the global state of counters

ctr𝐺 , the second approach commits to the local, per-block state of

counters ctr𝐿 . Towards our final data structure, we get the best of
both worlds by combining global and local counters, but without

committing to the global state of counters. Instead, we periodically

and deterministically include in the local per-block tree a subset of

global counters, to ease bootstrapping and securely enable other

operating modes (continuous, intermittent, on-demand). Let each

sparse state 𝑆 supported by the chain have a unique identifier idŜ;
in case of the substate of a dApp, e.g., the identifier could be the

hash of the application logic.

As shown in Figure 1, Sunfish-C requires validators building a

per-block Merkle tree (or Merkle Mountain Range (MMR) [29]) as

follows: (i) the leaves of the tree are tuples (idŜ, ctr𝐺 , ctr𝐿) lexico-
graphically sorted by idŜ, (ii) the tree has one leaf for each sparse

states with ctr𝐿 ≠ 0, and (iii) the tree has one leaf for each sparse

states whose idŜ, given on input to a function 𝜑 along with the

height h of the block, yields 0. We require 𝜑 to be a deterministic,

predictable, and periodic function: e.g., 𝜑 (idŜ, h) := (idŜ + h)%𝑁
for a period 𝑁 . The root of the tree is then included in the block

header. Thus, block headers commit to the counters updated in the

block and, periodically, to a subset of global counters as well.

With this data structure, we get several advantages. A sparse

node can verify if its sparse state with identifier idŜ has a leaf in

the tree of a block (inclusion proof) and, if this is the case, it checks

completeness by reading the correspondent counters. A sparse node

can also verify if its sparse state lacks a leaf in the tree because the

tree is lexicographically sorted. A non-inclusion proof consists of

two inclusion proofs for the leaves lexicographically preceding and

following the idŜ of the sparse state, and it is verified by checking

adjacency and validity of the two proofs. With this data structure,

a sparse node can only download the block headers relevant for its

sparse state, while periodically having completeness guarantees (no

relevant block header was skipped) by verifying that the number

of transactions received match the value of ctr𝐺 committed in the

last block for which 𝜑 = 0. Finally, by reading the counters for two

7

Algorithm 2 The algorithm ran by the optimized Sunfish client 𝑉 operating in continuous mode.

1: function VerifierG (Σ𝑠 , G, ˆ𝛿 , 𝑡)
2: X𝑠 ← Σ𝑠 , 𝑆 ← G, ˆL ← [], bool←⊥, timeout← 𝑡

3: for 𝑃 ∈ P do
4: X𝑠 d 𝑃

5: while True do
6: if ¬ IsReceived(D c 𝑃 , timeout) then
7: break
8: end if
9: (B, 𝜎, txs, 𝜋𝑎, 𝜋𝑖 , 𝜋𝑐) = D
10: bool = IsBValid(B, 𝜎) ∧ IsAncestryValid(B, 𝜋𝑎) ∧ IsTxSetComplete(txs, B, 𝜋𝑐) ∧ AreTxsIncluded(B, txs, 𝜋𝑖) ∧ AreTxsSpValid(txs, ˆ𝛿)
11: if bool ∧ AreTxsRelevant(txs, X𝑠) then
12:

ˆL = AppendRelevantTxs(txs)
13: 𝑆 = ComputeState(𝑆 , ˆL)
14: else
15: break
16: end if
17: end while
18: end for
19: end function

Algorithm 3 The algorithm ran by a Sunfish prover 𝑃 . For the backward compatible protocol, line 18 is removed as well as 𝜋𝑎 in the D
structure.

1: function Constructor()

2: X𝑡 ← ⊥
3: end function

4: function OnBootstrap() ⊲ Upon establishing a new connection.

5: X𝑠 c 𝑉

6: X𝑡 = DeriveTxPredicate(X𝑠)
7: end function

8: function OnNewBlock(X𝑡) ⊲ Upon seeing a new valid block.

9: txs← [], 𝜋𝑖 ← [], 𝜋𝑐 ← [], 𝜋𝑎 ← []

10: for tx ∈ C[−1] do ⊲ C[−1] is the last block of 𝑃 ’s local chain.

11: if X𝑡 (tx) then
12: txs.append(tx)
13: 𝜋𝑖 .append(GenInclProof(tx, C [-1].header))

14: end if
15: end for
16: if txs ≠ ∅ then
17: 𝜋𝑎 .append(GenAncestryProof(C[−1].header))
18: 𝜋𝑐 = GenCompletenessProof(tx, C[−1].header) ⊲ This line is only run in the optimized version of the protocol.

19: end if
20: D ← (B, 𝜎, txs, 𝜋𝑎, 𝜋𝑖 , 𝜋𝑐) ⊲ 𝜋𝑐 is only included in the optimized version of the protocol.

21: D d 𝑉

22: end function

adjacent blocks with 𝜑 = 0, sparse nodes can read chunks of the

chain with constant cost.

Sunfish-HC. An alternative approach to using counters, is to ask

validators to generate, per sparse state, a hash chain of transactions

and include the chain head in every block header. A sparse node

can be certain to have a complete set of transactions by locally

computing the hash chain and compare the obtained chain head

with the one in the block header. Given the possibly high number

of sparse states, to optimize space, validators could arrange the

chain heads of all sparse states supported by the ledger in a tree

and include the root in every block header. However, this has two

drawbacks: validators maintaining a massive tree and updating

it at every block, and requiring strict sequentiality in processing

transactions of each sparse state.

Towards efficiency and parallelizability, we combine hash chains

andMMRs in a different manner. The data structure used by Sunfish-

HC is depicted in Figure 2 and it is constructed as follows: for each

sparse state and each block, validators build a Merkle tree with

the transactions in the block that touch the sparse state. Then, per

sparse state, they generate a hash chain with the roots of these trees

spread across different blocks. Finally, per each block, validators

8

: 1

: 1

𝖼𝗍𝗋L
𝖼𝗍𝗋G

: 1

: 1

𝖼𝗍𝗋L
𝖼𝗍𝗋G

: 1

: 1

𝖼𝗍𝗋L
𝖼𝗍𝗋G

: 2

: 3

𝖼𝗍𝗋L
𝖼𝗍𝗋G

: 1

: 2

𝖼𝗍𝗋L
𝖼𝗍𝗋G

: 1

: 4

𝖼𝗍𝗋L
𝖼𝗍𝗋G

: 1

: 2

𝖼𝗍𝗋L
𝖼𝗍𝗋G

: 1

: 3

𝖼𝗍𝗋L
𝖼𝗍𝗋G

: 1

: 5

𝖼𝗍𝗋L
𝖼𝗍𝗋G

: 2

: 4

𝖼𝗍𝗋L
𝖼𝗍𝗋G

: 4

: 9

𝖼𝗍𝗋L
𝖼𝗍𝗋G

𝖢𝗈𝗎𝗇𝗍𝖾𝗋𝖣𝗂𝗀𝖾𝗌𝗍

(, 1, 1) (, 1, 1)

𝖢𝗈𝗎𝗇𝗍𝖾𝗋𝖣𝗂𝗀𝖾𝗌𝗍

(, 1, 1) (, 3, 2)

𝖢𝗈𝗎𝗇𝗍𝖾𝗋𝖣𝗂𝗀𝖾𝗌𝗍

(, 2, 1) (, 4, 1)(, 2, 1)

𝖢𝗈𝗎𝗇𝗍𝖾𝗋𝖣𝗂𝗀𝖾𝗌𝗍

(, 4, 2) (, 5, 1)(, 3, 1)

𝖢𝗈𝗎𝗇𝗍𝖾𝗋𝖣𝗂𝗀𝖾𝗌𝗍

(, 4, 2) (, 9, 4)

φ(,5) = 0

Block

Height 1

Block

Height 2

Block

Height 3

Block

Height 4

Block

Height 5

Figure 1: Data structure for Sunfish-C. For each block, validators create an MMR whose leaves are tuples (idŜ, ctr𝐺 , ctr𝐿) lexicographically sorted by idŜ (in

the picture, the idŜ is represented by a colored coin). The MMR of a block has one leaf for each idŜ with ctr𝐿 ≠ 0 and one leaf for each idŜ s.t. 𝜑 (idŜ, h) = 0.

For instance, notice the block with height 5 on the right: its MMR includes a leaf for the red coin, because 4 transactions relevant for that coin appear in the

block; however, it also includes a leaf for the blue coin, because height 5 yields the right periodicity for the blue coin. The counter digests are included in the

respective block headers.

construct an overlay Merkle tree including the chain heads of the

sparse states that got transactions in the block; the leaves of this

tree are of the form (idŜ, head), with head being the chain head for

the sparse state idŜ. To enable the same features of Sunfish-C, i.e.,

non-inclusion proofs, efficient bootstrapping and reads, the overlay

tree is lexicographically sorted by idŜ and further includes a leaf

for a sparse state with periodicity given by 𝜑 . Finally, validators

include the Merkle root of the overlay tree in the block header.

Comparison. Let𝑄 be the average number of sparse states having

transactions in a block, and𝑀 the average number of transactions

per block.

Proof Size: In Sunfish-C, the sparse node receives O(| ˆL|) trans-
actions, reads the counters in O(| ˆL| log𝑄), and checks transac-

tion inclusion in O(| ˆL| log𝑀). The proof size is O(𝜂 | ˆL|), with
𝜂 = log𝑀 + log𝑄 . In Sunfish-HC, the sparse node receives O(| ˆL|)
transactions and verifies the chain head inclusion in O(𝜂 | ˆL|) with
𝜂 = log𝑄 . The proof size for Sunfish-HC is smaller because the

hash chain already guarantees transaction inclusion.

Validators’ storage and compute: In Sunfish-C, validators store

and update 1 counter per sparse state (8 bytes with O(1) updates).
In Sunfish-HC, validators store and update 1 chain head per sparse

state (64 bytes with O(1) updates).

4.3 Analysis
We adopt a property-based approach to prove security and effi-

ciency of Sunfish, both in its backward compatible and in its opti-

mized version. In particular, assuming existential honesty, we prove

that the backward compatible Sunfish protocol is safe and live ac-
cording to Definition 12 when the underlying ledger is safe and

live; instead, when the underlying ledger is not safe and live, the

protocol still achieves weak safety (Definition 12). Then, we show

that the same properties hold for the optimized Sunfish protocol

by assuming the validator-prover is trusted for liveness.

Theorem 1 (Sunfish Safety). In the presence of an adversary
that controls less than 𝑓 nodes, Sunfish achieves safety as defined in
Definition 12.

Proof. Backward compatible Sunfish: Suppose, towards contra-
diction, that a sparse node running the backward compatible ver-

sion of Sunfish does not achieve safety. This means that, under the

existential honesty assumption, the (ˆL𝑟 , 𝑆𝑟) output by the node

at any round 𝑟 is either not sparsely valid, not prefix complete, or

not identified by the correct predicate X𝑡 . The sparse node cannot
accept a sparsely invalid state as, by design, it is equipped with a

sparse state transition function and it sparsely executes transactions

(Algorithm 1, lines 2 and 13). For the sparse node to accept a
ˆL𝑟

that is not prefix complete, it means that the node has not taken the

largest set of valid transactions s.t. X𝑡 = 1 it has received, or that

the node has not received the complete set: the first case cannot

happen by design (Algorithm 1, line 18), whereas the second case

cannot happen because of the existential honesty assumption. Fi-

nally,
ˆL𝑟

cannot be identified by an incorrect predicate X𝑡 , because
the node has knowledge of the predicate and, before accepting any

transaction tx, it checks that X𝑡 = 1 (Algorithm 1, lines 2 and 13).

This concludes the contradiction.

Optimized Sunfish: Suppose, towards contradiction, that a sparse
node running the optimized version of Sunfish does not achieve

safety. This means that the (ˆL𝑟 , 𝑆𝑟) output by the node at any

round 𝑟 is either not sparsely valid, not prefix complete, or not

identified by the correct predicate X𝑡 . The sparse node cannot

9

φ(,5) = 0

Block

Height 1

Block

Height 2

Block

Height 3

Block

Height 4

Block

Height 5

𝖱𝗈𝗈𝗍
𝖳𝗑𝖣𝗂𝗀𝖾𝗌𝗍

𝖧𝖾𝖺𝖽𝗌𝖣𝗂𝗀𝖾𝗌𝗍

𝖢𝗁𝖺𝗂𝗇𝖧𝖾𝖺𝖽 𝖢𝗁𝖺𝗂𝗇𝖧𝖾𝖺𝖽

𝖧𝖾𝖺𝖽𝗌𝖣𝗂𝗀𝖾𝗌𝗍

𝖢𝗁𝖺𝗂𝗇𝖧𝖾𝖺𝖽 𝖧𝖺𝗌𝗁(| |)

𝖧𝖾𝖺𝖽𝗌𝖣𝗂𝗀𝖾𝗌𝗍

𝖢𝗁𝖺𝗂𝗇𝖧𝖾𝖺𝖽 𝖧𝖺𝗌𝗁(| |)𝖢𝗁𝖺𝗂𝗇𝖧𝖾𝖺𝖽

𝖳𝗑𝖣𝗂𝗀𝖾𝗌𝗍

𝖧𝖾𝖺𝖽𝗌𝖣𝗂𝗀𝖾𝗌𝗍

𝖢𝗁𝖺𝗂𝗇𝖧𝖾𝖺𝖽 𝖧𝖺𝗌𝗁(| |)𝖢𝗁𝖺𝗂𝗇𝖧𝖾𝖺𝖽

𝖧𝖾𝖺𝖽𝗌𝖣𝗂𝗀𝖾𝗌𝗍

𝖢𝗁𝖺𝗂𝗇𝖧𝖾𝖺𝖽 𝖧𝖺𝗌𝗁(| |)

𝖱𝗈𝗈𝗍
𝖳𝗑𝖣𝗂𝗀𝖾𝗌𝗍

Figure 2: Data structure for Sunfish-HC. Let the blue, green, and red coins represent transactions of the blue, green, and red sparse state, respectively. Let us

consider the red sparse state: whenever a new red transaction appears in a block, validators generate a lexicographically sorted MMR with the red transactions

in the block. The MMR roots of different blocks are used to generate a hash chain, whose chain head is included in an MMR of head digests. The MMR head

digest is then included into the block headers. In the picture we depict the MMR for the red transactions only, but the same occurs for any other sparse state

(blue, green). Notably, the block on the left with height 5 also include the chain head of the blue sparse state, since the blue sparse state idŜ and height 5 giving

the right periodicity.

accept a sparsely invalid state as, by design, it is equipped with a

sparse state transition function and it sparsely executes transactions

(Algorithm 2, lines 2 and 10). For the sparse node to accept a
ˆL𝑟

that

is not prefix complete, it means that the node appended to its local

ˆL a set of transactions that is not complete. Given the adversarial

threshold ensures the data structures are correctly generated, this is

not possible because of the properties of hash chains in Sunfish-HC

and because of the inclusion of global counters in Sunfish-C. Finally,

ˆL𝑟
cannot be identified by an incorrect predicate X𝑡 , because the

node has knowledge of the predicate and, before accepting any

transaction tx, it checks that X𝑡 = 1 (Algorithm 2, lines 2 and 11).

This concludes the contradiction. □

Theorem 2 (Sunfish Eventual Liveness). In the presence of an
adversary that controls less than 𝑓 nodes, Sunfish achieves eventual
liveness as defined in Definition 12.

Proof. Backward compatible Sunfish: The backward compatible

version of Sunfish achieves eventual liveness because of the exis-

tential honesty and synchronous network assumptions: the sparse

node connects to at least one honest node, who is live and respon-

sive whose message is received within a Δ delay.

Optimized Sunfish: The optimized version of Sunfish achieves

eventual liveness because of the assumption the adversary controls

less than 𝑓 nodes; this means, should the node receive no answer

from the connected validator within a timeout (Algorithm 2, line 6)

it connects to a different validator until it will connect to an honest

one. □

Theorem 3 (Sunfish Weak Safety). In the presence of an adver-
sary that controls more than 𝑓 nodes, Sunfish achieves weak safety,
as defined in Definition 12.

Proof. Backward compatible Sunfish: The backward compatible

version of Sunfish achieves weak safety in the presence of an adver-

sary with more than 𝑓 node because it will never output a sparse

ledger that includes transactions that are sparsely invalid (Algo-

rithm 1, line 13).

Optimized Sunfish: The optimized version of Sunfish achieves

weak safety in the presence of an adversary with more than 𝑓

node because it will never output a sparse ledger that includes

transactions that are sparsely invalid (Algorithm 2, line 10). □

Theorem 4 (Sunfish Security). Sunfish is secure according to
Definition 12.

Proof. This trivially follows from Theorem 1, Theorem 2 and

Theorem 3. □

Theorem 5 (Sunfish Resources). The bandwidth, computa-
tional, and storage resources consumed by Sunfish are O(𝜆𝜌 |L| +
𝜂 | ˆL| +𝜓 |𝑆 |).

Proof. Backward compatible Sunfish: The resource analysis for
the backward compatible protocol is similar to the one of the op-

timized version (see below): the only difference is that instead

of downloading and verifying completeness proofs, this protocol

downloads and verifies an amount of data proportional to the num-

ber of provers. This is the case for any client (most light clients)

that relies on the existential honesty assumption.

10

Optimized Sunfish: Bandwidth: Downloading ancestry proofs re-

quires O(|L| log𝑁) in the case of MMR-based ancestry proofs,

so 𝜌 = log𝑁 . Downloading transactions requires O(| ˆL|). Down-
loading inclusion proofs requires O(| ˆL| log𝑀) with𝑀 being the

average number of transactions in a block. Downloading complete-

ness proofs requires O(| ˆL| log𝑄), with 𝑄 being the average num-

ber of updated sparse states in a block. Therefore, for Sunfish-C

we have O(𝜂 | ˆL|) with 𝜂 = log𝑀 + log𝑄 , while for Sunfish-HC

we have O(𝜂 | ˆL|) with 𝜂 = log𝑄 . Computation: a Sunfish sparse

node needs to verify transaction inclusion, completeness, and it

needs to execute all transactions and compute the sparse state. We

consider an upper bound 𝛽 to the computation associated to a trans-

action. The computation required to verify transaction inclusion

and completeness is O(| ˆL| log𝑀) and O(| ˆL| log𝑄), respectively.
The computational complexity of execution is O(| ˆL|), being 𝛽 a

constant. Therefore, this makes for a total computation of O(𝜂 | ˆL|)
with 𝜂 = log𝑀 + log𝑄 for Sunfish-C and O(𝜂 | ˆL|) with 𝜂 = log𝑄

for Sunfish-HC. Storage: the sparse node stores
ˆL as well as 𝑆 ,

yielding O(| ˆL| + |𝑆 |) storage complexity.

It follows that the resources consumed by Sunfish are O(𝜆𝜌 |L| +
𝜂 | ˆL| + |𝑆 |), with 𝜂 = log𝑀 + log𝑄 for Sunfish-C and 𝜂 = log𝑄 for

Sunfish-HC.

□

5 APPLICATIONS AND DISCUSSION

Sparse Node Applications. Users can choose which node type

fits their desiderata and use case best. Prior to our work, if they

have high-security requirements (e.g., exchange), running a full

node is the go-to option; if they run an application over a resource-

constrained environment (e.g., a wallet on a phone) and favor effi-

ciency over security, light nodes are instead the best fit. However,

after a blockchain enables support for sparse nodes, operators,

developers, or users that want strong security guarantees while

retaining practical costs can now choose to run a sparse node. Ex-

amples are bridge operators, DAO token holders, re-staking [33] and
remote staking projects [19], on-chain gaming platforms, sequencers
and watchers of rollups, and users and watchtowers of state and
payment channels.

Sparse nodes can also help optimize the blockchain infrastruc-

ture: they can serve reads to light nodes, maintain custom indexes

for on-chain data, take care of hot spots to take load off of full

nodes, and communicate with other sparse nodes in a transparency

network to detect forks [26]. Finally, we conjecture that full nodes

could be fully replaced by a fleet of sparse nodes whose combined

sparse states cover the whole state of the ledger. We leave this as

future work.

Predicate Composability. To express more complex sparse states

and sparse ledgers, one might want to use Sunfish to compose pred-

icates using logical operators. Combining two or more predicates

with the OR (∨) logical operator is supported by default by both

Sunfish-C and Sunfish-HC, as the corresponding 𝑆 and
ˆL result

from checking each predicate individually and then merging the

obtained states and ledgers together. Others logical operators such

as AND (∧), XOR (⊕), NAND (↑), and NOR (↓) are not supported. For
instance, let us consider X𝑡 (tx)1 ∧X𝑡 (tx)2: evaluating X𝑡 (tx)1 and

X𝑡 (tx)2 individually and merging the resulting states and ledgers,

yields a much larger set 𝑆 and a much longer
ˆL than the desired

ones. This is because they would not only include state elements

and transactions resulting from both predicates being ⊤ at the

same time, but also the ones resulting from a single predicate be-

ing ⊤. States and ledgers resulting from applying these operators,

can be obtained only if the ledger natively supports them as valid

predicates in Σ𝑠 .
Finally, we highlight that a sparse node can simultaneously op-

erate over different ledgers, each one with its own set of valid

predicates, e.g., Σ𝑠 1 for L1 and Σ𝑠 2 for L2. For instance, a client

can be a sparse node for the contracts of a bridge deployed on two

different ledgers. We further explore predicate composability in

future work.

Completeness as a Service. As described in Section 4, the aug-

mented Sunfish achieves verifiable completeness by introducing

extra workload for validators. Indeed, they have to include an extra

commitment to block headers. While this overhead is similar to

what is in place for light clients (block headers include a transaction

Merkle root), the completeness data structure can be introduced in

a more nuanced way. For instance, developers that want to run a

sparse node to monitor the state of their dApp, could pay a small

fee to validators, incentivizing them to include their sparse state of

interest into the commitment. With an ad-hoc business model, val-

idators could offer a subscription-based service: this would optimize

and better identify the sparse states to include in the data structure,

rather than including by default all the possible ones supported by

the ledger. We leave as future work the design of such an incentive

mechanism.

6 EVALUATION
Since Sunfish performs simple operations (DB lookups, integer

arithmetic, hashing), we expect minimal computational impact on

validators. We evaluate Sunfish on the Sui blockchain to show that

it is practical even for high-performance blockchains, although it

can be integrated in most chains.

The Sui Blockchain. Sui [10] is a recent decentralized, permis-

sionless smart-contract platform designed for high-throughput and

low-latency asset management. Sui uses the Move programming

language to define assets as objects. The basic unit of storage in Sui

is the object, addressable on-chain by a unique ID. A smart contract

is also an object (“package”), and it manipulates objects on the Sui

network. To support on-chain activity monitoring, the Sui network

emits events. Sui validators produce certified checkpoints [11] that
contain a sequence of transactions and form a hash-chain, similar to

traditional blockchains. Each Sui checkpoint contains a summary,
i.e., equivalent to a block header, containing the various digests:

We assume each summary includes the Merkle root of all the trans-

actions in the checkpoint and their execution results (“effects”), as

well as the Merkle root for checking completeness.

Integrating Sunfish into Sui. We consider a few applications

currently running on the Sui blockchain. The state of Sui can be

viewed as a key-value store with object IDs as keys and the di-

gests as values. We compare the data consumed by a full and a

sparse node for the Wormhole bridge [14] and the Wave wallet

[28]. We consider sparse states identified by different predicates:

11

package-based, event-based, and address-based. We consider: (i) the

Wormhole bridge, via package: X𝑡 (tx) = 1 if tx touches a Worm-

hole package. (ii) The Wormhole bridge, via events: X𝑡 (tx) = 1 if tx
emits Wormhole events. Here, the sparse node only receives events,

not transactions. (iii) The Wave wallet, via address: X𝑡 (tx) = 1 if tx
sends coins to or receives coins from the address of a Wave wallet

user.

Data collection. We have collected real-world data from the Sui

blockchain measuring past traffic patterns of the aforementioned

applications. In this analysis we omit the term 𝜆𝜌 |L|, as we consider
popular applications for which its weight is very small compared

to 𝜂 | ˆL| + 𝜓 |𝑆 |. Specifically, we looked at a day’s worth of data

corresponding to epoch 507 (August 31st, 2024). On that day, Sui

had 356279 checkpoints, i.e., an average of 4.12 checkpoints per

second. We then measured the following data: (1) Number of dapp-

specific transactions or events emitted per second (𝑅); (2) Number

of checkpoints with at least one dapp-specific transaction or event

emitted per second (𝐶 ≤ 𝑅 and 𝐶 ≤ 4.12; worst-case estimate,

𝐶 = min(𝑅, 4.12)); (3) Avg. transaction effect size 𝑒 = 1044.74 B and

avg. event size 𝑣 = 106.48 B; (4) Avg. number of transactions per

checkpoint (𝑇 = 9.35) and unique streams touched per checkpoint

(𝑆 , which we approximate and set to 𝑆 = 𝑇); (5) Avg size of summary

𝛼 = 1457.40 B/s and full checkpoint 𝛽 = 213.49 KB/s. In table 3

we show the actual stream rate 𝑅, obtained from a blockchain

analytics software. We approximate other values by sampling 1000

checkpoints (out of 356279) and calculating the mean.

Results. We compare the proof sizes. The average size of a trans-

action inclusion proof is |𝜋𝑡𝑥 | = 𝑒 + 32 · log(𝑇) = 1172.74 B, and the

average size of a stream inclusion proof is |𝜋𝑠 | = 32 · log(𝑆) = 128

Bytes.

If the blockchain implements Sunfish-C, a sparse node only needs

to download 𝜋𝑐 = 𝑅 |𝜋𝑡𝑥 | + 𝐶 (𝛼 + |𝜋𝑠 |) B/s. With Sunfish-HC, we

have 𝜋𝑡𝑥
ℎ𝑐

= 𝑅𝑒 +𝐶 (𝛼 + |𝜋𝑠 |) B/s. With event-nodes and Sunfish-HC,

the proof sizes are smaller at 𝜋𝑒𝑣𝑒𝑛𝑡
ℎ𝑐

= 𝑅𝑣 +𝐶 (𝛼 + |𝜋𝑠 |) B/s (because
transactions are not downloaded by event nodes).

App [type] 𝑅 |𝜋𝑐 | |𝜋ℎ𝑐 |
Wormhole bridge [package] 8.55 16.56 KB/s (7.75%) 15.46 KB/s (7.24%)

Wormhole bridge [event] 8.55 16.56 KB/s (7.75%) 7.44 KB/s (3.4%)

Wave wallet user [address] 2 · 10−5 0.05 B/s (10
−7
%) 0.05 B/s (10

−7
%)

Table 3: Rate of traffic (𝑅) generated by different dapps on 31st August,

2024. Last two columns show the amount of data a sparse node needs to

download if a blockchain enables Sunfish commitments along with the

percentage improvement over a full node (213.49 KB/s).

7 RELATEDWORK
Sunfish positions itself as a middle ground between full nodes [4,

18, 31] and light nodes [1, 5, 8, 13, 17, 20, 32, 34]. Unlike full nodes,

Sunfish does not require to download and re-execute a complete

copy of the ledger: it only downloads and re-executes a subset

thereof. Sunfish ensures notions of validity, completeness, and con-

sistency that light clients do not provide because of their minimalist

design and the lack of transaction re-execution. Some light client

designs [24, 35] consider completeness as an important property,

however, they achieve it by relying on trusted execution environ-

ments [30] and do not consider re-execution. Other light clients

[7] have been designed to help securing the chain: these include

data availability and validity checks, and require to deploy multiple

client instances. In this way, each client verifies a small random sub-

set of the chain and, all together, they ensure validity of the whole

chain. A sparse node is different from [7] in scope and function-

ing: it operates stand-alone by reading the chain and consistently

verifying a specific, well-defined subset of the chain.

Light clients that help securing the chain have become popular

in the context of lazy ledgers [6]. Lazy ledgers decouple consensus

from transaction verification and execution to increase throughput.

Validity of these chains is defined at the client level, and nodes

that need to validate a specific application do not need to vali-

date transactions pertaining to external applications. In this sense,

a sparse node and an application-specific client of a lazy ledger

share some similarities. However, application-specific clients of lazy

ledgers need to download the entire dirty ledger. These clients get

completeness by forgoing communication efficiency. In our case,

completeness is much harder to get because we limit the amount

of data that is downloaded by the sparse node. Moreover, for the

first time, we formalize and generalize the idea of a sparse node,

sparse ledger, and sparse state, defining the security and efficiency

properties, even under an adversarial majority.

Finally, sharding [9] is a scalability solution in which the con-

sensus nodes of a system are divided to work in groups, with each

group running the consensus of a shard, i.e., one of many parallel

blockchains. In a sharding protocol, a subset of nodes run the con-

sensus of the shard over a subset of the transactions and a subset
of the state of the entire system. A sparse node is different from a

node of a shard: a sparse node does not participate in the consensus

protocol. A blockchain that enables sparse reads does not need to

shard its state, its transactions, or its consensus nodes.

ACKNOWLEDGMENTS
This work was supported by Mysten Labs and conducted during

Giulia Scaffino’s internship with the company. We thank George

Danezis, Zeta Avarikioti, and Dionysis Zindros for fruitful discus-

sions and feedback. We thank the Mysten Labs Data Science team

for providing necessary data to conduct our evaluation. The support

by the Christian Doppler Research Association through the Chris-

tian Doppler Laboratory Blockchain Technologies for the Internet

of Things (CDL-BOT) is gratefully acknowledged.

REFERENCES
[1] 2023. Mina Docs. (2023). https://docs.minaprotocol.com/about-mina.

[2] 2024. Ethereum Yellowpaper. (2024). https://ethereum.github.io/yellowpaper/

paper.pdf

[3] 2024. Nodewatch. (2024). https://nodewatch.io/

[4] 2024. Sui Full Node Transaction Signatures are not verified. (2024). https://

github.com/MystenLabs/sui/blob/7bc276d534c6c758ac2cfefe96431c2b1318ca01/

crates/sui-sdk/src/apis.rs#L1128

[5] Shresth Agrawal, Joachim Neu, Ertem Nusret Tas, and Dionysis Zindros. 2023.

Proofs of Proof-Of-Stake with Sublinear Complexity. In 5th Conference on
Advances in Financial Technologies (AFT 2023). Schloss Dagstuhl – Leibniz-

Zentrum für Informatik. https://drops.dagstuhl.de/entities/document/10.4230/

LIPIcs.AFT.2023.14

[6] Mustafa Al-Bassam. 2019. LazyLedger: A Distributed Data Availability Ledger

With Client-Side Smart Contracts. (2019). arXiv:cs.CR/1905.09274 https:

//arxiv.org/abs/1905.09274

12

https://docs.minaprotocol.com/about-mina
https://ethereum.github.io/yellowpaper/paper.pdf
https://ethereum.github.io/yellowpaper/paper.pdf
https://nodewatch.io/
https://github.com/MystenLabs/sui/blob/7bc276d534c6c758ac2cfefe96431c2b1318ca01/crates/sui-sdk/src/apis.rs#L1128
https://github.com/MystenLabs/sui/blob/7bc276d534c6c758ac2cfefe96431c2b1318ca01/crates/sui-sdk/src/apis.rs#L1128
https://github.com/MystenLabs/sui/blob/7bc276d534c6c758ac2cfefe96431c2b1318ca01/crates/sui-sdk/src/apis.rs#L1128
https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.AFT.2023.14
https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.AFT.2023.14
http://arxiv.org/abs/cs.CR/1905.09274
https://arxiv.org/abs/1905.09274
https://arxiv.org/abs/1905.09274

[7] Mustafa Al-Bassam, Alberto Sonnino, Vitalik Buterin, and Ismail Khoffi. 2021.

Fraud and Data Availability Proofs: Detecting Invalid Blocks in Light Clients. In

Financial Cryptography and Data Security, Nikita Borisov and Claudia Diaz (Eds.).
Springer Berlin Heidelberg.

[8] Lukas Aumayr, Zeta Avarikioti, Matteo Maffei, Giulia Scaffino, and Dionysis

Zindros. 2024. Blink: An Optimal Proof of Proof-of-Work. Financial Cryptography

and Data security 2025. (2024). https://eprint.iacr.org/2024/692

[9] Zeta Avarikioti, Antoine Desjardins, Lefteris Kokoris-Kogias, and Roger Watten-

hofer. 2023. Divide & Scale: Formalization and Roadmap to Robust Sharding. In

Structural Information and Communication Complexity. Springer Nature Switzer-
land.

[10] Same Blackshear, Andrey Chursin, George Danezis, Anastasios Kichidis, Lefteris

Kokoris-Kogias, Xun Li, Mark Logan, Ashok Menon, Todd Nowacki, Alberto

Sonnino, et al. 2023. Sui lutris: A blockchain combining broadcast and consensus.

arXiv preprint arXiv:2310.18042 (2023).
[11] Sam Blackshear, Andrey Chursin, George Danezis, Anastasios Kichidis, Lefteris

Kokoris-Kogias, Xun Li, Mark Logan, Ashok Menon, Todd Nowacki, Alberto

Sonnino, Brandon Williams, and Lu Zhang. 2024. Sui Lutris: A Blockchain

Combining Broadcast and Consensus. (2024). arXiv:2310.18042 https://arxiv.org/

abs/2310.18042

[12] Joseph Bonneau, Izaak Meckler, Vanishree Rao, and Evan Shapiro. 2020. Coda: De-

centralized Cryptocurrency at Scale. (2020). https://eprint.iacr.org/2020/352.pdf.

[13] Sean Braithwaite, Ethan Buchman, Ismail Khoffi, Igor Konnov, Zarko Milosevic,

Romain Ruetschi, and JosefWidder. 2020. A tendermint light client. arXiv preprint
arXiv:2010.07031 (2020).

[14] Wormhole Bridge. 2024. (2024). https://docs.sui.io/concepts/tokenomics/sui-

bridging.

[15] Christian Cachin, Abhi Shelat, and Alexander Shraer. 2007. Efficient fork-

linearizable access to untrusted shared memory (PODC ’07). Association for

Computing Machinery. https://doi.org/10.1145/1281100.1281121

[16] Miguel Castro and Barbara Liskov. 2002. Practical byzantine fault tolerance and

proactive recovery. (2002). https://doi.org/10.1145/571637.571640

[17] Panagiotis Chatzigiannis, Foteini Baldimtsi, and Konstantinos Chalkias. 2022. Sok:

Blockchain light clients. In International Conference on Financial Cryptography
and Data Security. Springer, 615–641.

[18] Anamika Chauhan, Om Prakash Malviya, Madhav Verma, and Tejinder Singh

Mor. 2018. Blockchain and scalability. In 2018 IEEE international conference on
software quality, reliability and security companion (QRS-C). IEEE, 122–128.

[19] Xinshu Dong, Orfeas Stefanos Thyfronitis Litos, Ertem Nusret Tas, David Tse,

Robin Linus Woll, Lei Yang, and Mingchao Yu. 2024. Remote Staking with

Economic Safety. (2024). https://arxiv.org/abs/2408.01896

[20] Aggelos Kiayias, Andrew Miller, and Dionysis Zindros. 2020. Non-interactive

Proofs of Proof-of-Work. In Financial Cryptography and Data Security, Joseph
Bonneau and Nadia Heninger (Eds.). Springer International Publishing.

[21] Leslie Lamport. 1978. The Implementation of Reliable Distributed Multiprocess

Systems. (1978). https://doi.org/10.1016/0376-5075(78)90045-4
[22] Leslie Lamport, Robert Shostak, and Marshall Pease. 1982. The Byzantine Gener-

als Problem. ACM Trans. Program. Lang. Syst. (1982). https://doi.org/10.1145/
357172.357176

[23] Jinyuan Li and David Maziéres. 2007. Beyond one-third faulty replicas in byzan-

tine fault tolerant systems. In Proceedings of the 4th USENIX Conference on Net-
worked Systems Design & Implementation. USENIX Association.

[24] Sinisa Matetic, Karl Wüst, Moritz Schneider, Kari Kostiainen, Ghassan Karame,

and Srdjan Capkun. 2019. BITE: Bitcoin lightweight client privacy using trusted

execution. In 28th USENIX Security Symposium (USENIX Security 19). 783–800.
[25] David Mazières and Dennis Shasha. 2002. Building secure file systems out of

byzantine storage. Association for Computing Machinery, New York, NY, USA.

https://doi.org/10.1145/571825.571840

[26] Marcela S. Melara, Aaron Blankstein, Joseph Bonneau, Edward W. Felten, and

Michael J. Freedman. 2015. CONIKS: Bringing Key Transparency to End

Users. In 24th USENIX Security Symposium (USENIX Security 15). USENIX As-

sociation, Washington, D.C., 383–398. https://www.usenix.org/conference/

usenixsecurity15/technical-sessions/presentation/melara

[27] Satoshi Nakamoto. 2009. Bitcoin: A Peer-to-Peer Electronic Cash System. (2009).

http://bitcoin.org/bitcoin.pdf.

[28] Wave Wallet on Sui. (????). https://waveonsui.com/.

[29] Merkle Mountain Ranges. 2024. (2024). https://docs.grin.mw/wiki/chain-

state/merkle-mountain-range/.

[30] Moritz Schneider, Ramya Jayaram Masti, Shweta Shinde, Srdjan Capkun, and

Ronald Perez. 2022. Sok: Hardware-supported trusted execution environments.

arXiv preprint arXiv:2205.12742 (2022).
[31] Christos Stefo, Zhuolun Xiang, and Lefteris Kokoris-Kogias. 2023. Executing and

Proving Over Dirty Ledgers. In Financial Cryptography and Data Security 2023.
[32] Ertem Nusret Tas, David Tse, Lei Yang, and Dionysis Zindros. 2024. Light Clients

for Lazy Blockchains. In Financial Cryptography and Data Security 2024 (FC24).
[33] EigenLayer Team. 2024. EigenLayer: The Restaking Collective. (2024). https:

//shorturl.at/sl9tE

[34] Psi Vesely, Kobi Gurkan, Michael Straka, Ariel Gabizon, Philipp Jovanovic, Geor-

gios Konstantopoulos, Asa Oines, Marek Olszewski, and Eran Tromer. 2023.

Plumo: An Ultralight Blockchain Client. (2023). https://celo.org/papers/plumo.

[35] KarlWüst, SinisaMatetic, Moritz Schneider, IanMiers, Kari Kostiainen, and Srdjan

Čapkun. 2019. Zlite: Lightweight clients for shielded zcash transactions using

trusted execution. In Financial Cryptography and Data Security: 23rd International
Conference, FC 2019, Frigate Bay, St. Kitts and Nevis, February 18–22, 2019, Revised
Selected Papers 23. Springer, 179–198.

13

https://eprint.iacr.org/2024/692
http://arxiv.org/abs/2310.18042
https://arxiv.org/abs/2310.18042
https://arxiv.org/abs/2310.18042
https://doi.org/10.1145/1281100.1281121
https://doi.org/10.1145/571637.571640
https://arxiv.org/abs/2408.01896
https://doi.org/10.1016/0376-5075(78)90045-4
https://doi.org/10.1145/357172.357176
https://doi.org/10.1145/357172.357176
https://doi.org/10.1145/571825.571840
https://www.usenix.org/conference/usenixsecurity15/technical-sessions/presentation/melara
https://www.usenix.org/conference/usenixsecurity15/technical-sessions/presentation/melara
http://bitcoin.org/bitcoin.pdf
https://shorturl.at/sl9tE
https://shorturl.at/sl9tE

	Abstract
	1 Introduction
	2 Preliminaries and Models
	3 The Sparse Node
	3.1 Definitions
	3.2 Sparse Node Security
	3.3 Event-Based Sparse Node
	3.4 Operating Modes
	3.5 Sparse Node Resources

	4 Sunfish: A Protocol for Sparse Nodes
	4.1 Sunfish Prover-Verifier Protocol
	4.2 Data Structures for Verifying Completeness
	4.3 Analysis

	5 Applications and Discussion
	6 Evaluation
	7 Related Work
	References

