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Abstract. With the demand of cryptocurrencies, threshold ECDSA recently regained popularity.
So far, several methods have been proposed to construct threshold ECDSA, including the usage
of OT and homomorphic encryptions (HE). Due to the mismatch between the plaintext space and
the signature space, HE-based threshold ECDSA always requires zero-knowledge range proofs, such
as Paillier and Joye-Libert (JL) encryptions. However, the overhead of range proofs constitutes a
major portion of the total cost.
In this paper, we propose efficient batch range proofs to improve the efficiency of threshold ECDSA.
At the heart of our efficiency improvement is a new technical tool called Multi-Dimension Forking
Lemma, as a generalization of the well-known general forking lemma [Bellare and Neven, CCS 2006].
Based on our new tool, we construct efficient batch range proofs for Paillier and JL encryptions,
and use them to give batch multiplication-to-addition (MtA) protocols, which are crucial to most
threshold ECDSA. Our constructions improve the prior Paillier-based MtA by a factor of 2 and
the prior JL-based MtA by a factor of 3, in both computation and bandwidth in an amortized
way. Our batch MtA can be used to improve the efficiency of most Paillier and JL based threshold
ECDSA. As three typical examples, our benchmarking results show:
• We improve the Paillier-based CGGMP20 [Canetti et al., CCS 2020] in bandwidth by a factor

of 2.1 to 2.4, in computation by a factor of 1.5 to 1.7.
• By implementing threshold ECDSA with the batch JL MtA of XAL+23 [Xue et al., CCS 2023]

and our batch JL MtA respectively, our batch construction improves theirs in bandwidth by a
factor of 2.0 to 2.29, in computation by a factor of 1.88 to 2.09.

• When replacing OT-based MtA in DKLs24 [Doerner et al., S&P 2024] with our Paillier-based
batch MtA, we improve the bandwidth efficiency by 7.8× at the cost of 5.7× slower computa-
tion.

1 Introduction

A (t, n) threshold signature builds on a secret-sharing scheme, which splits the signing key across n
parties, such that: (1) any subset of t honest parties can produce a valid signature, without reconstructing
the key; (2) any subset of fewer than t parties can neither produce a signature, nor find anything about
the key [40,58]. Threshold signature has received much attention in cryptocurrencies, as it can be used
to provide a high level of key protection [20]. In the industry, threshold ECDSA is the most widely
deployed threshold signature, which has become a major tool for protecting hundreds of billions of
dollars in cryptocurrency wallets, and is currently powering the wallets of Coinbase [3], Binance [1],
Zengo [5], BitGo [2], Fireblocks [4] and many other fintech companies, with servicing thousands of
financial institutions and hundreds of millions of end-user consumers. Besides cryptocurrency wallets,
threshold cryptography has also been found to have other applications in multiple scenarios, including
distributed key management [45], decentralized identity systems [52] and Byzantine fault tolerance (BFT)
consensus algorithms [63,37].

Recall that an ECDSA signature on a message msg involves computing σ = k−1 · (H(msg) + r · x),
where x is the secret key, k is a secret nonce and r is a public nonce. The intuitive approach for designing
threshold ECDSA is to secretly share x and k, with each one holding an additive share (xi, ki), but a
challenge arises when attempting to compute k−1 and k−1 · x in a distributed manner. A large number
of practical protocols [31,32,33,39,16,50,51,38,23,25,26,60] aim to address this obstacle using a two-party
multiplication-to-addition (MtA) protocol. Specifically, with shares a, b as inputs, the MtA protocol
securely computes shares α, β such that α + β = a · b as output. By having each pair of parties invoke
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Fig. 1: Our Paillier-based batch MtA protocol. Let (pkB , skB) is Bob’s key pair of Paillier encryption
scheme. Σenc[ℓ] and Σaff[ℓ] are our batch range proofs, which respectively prove that the plaintexts in
ciphertexts {Ci}i∈[ℓ and the coefficients in {Di}i∈[ℓ] are within given ranges.

Alice({ai}i∈[ℓ]) Bob(pkB , skB , {bi}i∈[ℓ])

{Ci}i∈[ℓ], Σenc[ℓ] Ci ← Enc(pkB , bi), ∀i ∈ [ℓ]

Di = Cai
i · Enc(pkB , αi), ∀i ∈ [ℓ] {Di}i∈[ℓ], Σaff[ℓ] βi ← Dec(skB , Di), ∀i ∈ [ℓ]

αi = −αi mod q, ∀i ∈ [ℓ] βi = βi mod q, ∀i ∈ [ℓ]

the two-party MtA protocol, the parties can securely split k−1 and k−1 ·x into additive shares, and thus
generate σ securely.

Multiplication-to-Addition (MtA) Protocols. Efficient constructions of MtA fall into two main cat-
egories: OT-based [31,32,33] and homomorphic encryption (HE) based, where HE-based solutions include
Paillier encryption (e.g. [39,16,50,51,38,23]), Castagnos-Laguillaumie encryption (CL, e.g. [25,26,60]) and
Joye-Libert encryption (JL, e.g. [61]). Threshold ECDSA schemes based on different methods involve
different tradeoffs between computation and communication complexity. Those based on OT are ex-
cellent in terms of computation cost, but the bandwidth (≈ 100 KB for 128-bit security) is the main
bottleneck in real-world deployment scenario. CL-based schemes enjoy the lowest bandwidth, while it
is computationally heavy. Those based on Paillier might be the most popular ones and have been em-
ployed by numerous fintech companies (Fireblocks, ZenGo, Coinbase, etc.) due to its favorable tradeoff
between computational and communicational costs. Recently, JL-based threshold ECDSA also received
significant attention due to its better performance compared to Paillier under certain parameter settings
[61].

To ensure the security of HE-based MtA protocols like Paillier [54] and JL [47] encryptions, the
ciphertexts of HE are always equipped with range-related zero-knowledge (ZK) proofs, to prove that
the underlying plaintexts/coefficients are within given ranges [59]. This is mainly due to the mismatch
between the plaintext space (e.g., 3072 bits for Paillier under 128-bit security level) and the ECDSA
signature space (e.g., 256 bits). Let us take MtA protocol based on Paillier [38,51] as an example: Bob
with private input b computes C = Enc(b) under his public key, and sends it to Alice along with a range
ZK proof of proving the underlying plaintext b is within a given range; Alice with private input a picks
a random α, computes D = Ca · Enc(α) = Enc(ab+α) homomorphically and sends it to Bob along with
a range-affine ZK proof of proving her private values a, α are respectively within given ranges. Then by
decrypting D, Bob gets β := ab + α, which together with the −α knowing by Alice constitute additive
shares of ab, i.e., −α+ β = ab. Similarly, replacing Paillier with JL yields an MtA protocol based on JL,
and it also requires those range proofs mentioned above.

Presigning/Online. Since the work of Canetti et al. [23], almost all efficient threshold ECDSA protocols
are in non-interactive mode: before seeing the message msg a presigning phase can be performed, followed
by a one-round online phase after given msg. The online phase, which typically requires only a few simple
field operations, is already nearly optimal, so the focus for improving the efficiency of threshold ECDSA
is on the presigning protocol, whose main overhead is in turn dominated by the generation of additive
shares of k−1, k−1x (or called pre-signature) using MtA.

One natural idea is to perform batch presigning, by generating the additive shares in batches of
multiple pre-signatures {(k(i))−1, (k(i))−1x}i∈[ℓ], where k(i) denotes the secret nonce required for one
signature. Those shares of pre-signatures can then be consumed by an online protocol to generate ℓ
ECDSA signatures in total. Thus the cost of presigning is in an ”amortized” way. From the above
analysis, the presigning phase heavily relies on the MtA protocol, therefore an efficient batch MtA is in
demand.

Now we consider the possible ways for achieving batch MtAs (excluding the trivial repetitions of
MtAs). Given multiple inputs {ai, bi}i∈[ℓ], Alice and Bob both need to operate on different ciphertexts for
different inputs, so the ciphertexts operations of HE cannot be cost-efficiently aggregated. Recently, Xue
et al. [61] presented a JL-based MtA construction, where a commitment scheme is required. Furthermore,
they explored batch JL MtA by utilizing vector commitment to reduce amortized costs. However, the
effectiveness of this batch technique is limited, since the commitment overhead accounts for only a small
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fraction. Moreover, it is not clear how to extend this technique into the Paillier MtA, that is probably
the most widely used by numerous companies.

There might be some hope to realize efficient batch MtAs via designing efficient batch range proofs,
since their overheads account for a large portion of the total overhead (> 75%), for both Paillier and
JL MtA. However, it is still an open problem how to efficiently generate and verify Paillier or JL range
proofs in a batched manner.

Batch Range Proofs for Paillier and JL. While there have been advances in batch techniques for
certain types of range proofs, such as aggregate range proof for Pedersen commitments in Bulletproofs
[21], extending these techniques to specifically support Paillier or JL range proofs requires careful con-
sideration of the underlying mathematical properties and operations. Recently, Gong et al. [42] adapted
the approach from Bulletproofs to compile a batch range proof for Paillier. However, the verification time
is linear with respect to the bit-length of witness even for a single proof. Thus, if using this for threshold
ECDSA, it would undeniably retard the efficiency. As a result, existing threshold ECDSA constructions
did not explore Bulletproofs to construct range proofs, for practical purposes.

In the existing threshold ECDSA, range proofs for a single instance are usually designed as Schnorr-
style Σ-protocols and they utilize the general forking lemma [12,17] with a single small challenge value,
e.g., [38,51,24]. When it comes to batched one for multiple ciphertexts, the Verifier is required to sample
multiple small challenges. Without this requirement, it is hard for the Prover to guarantee that the aggre-
gated response is within the desired range, and thus the range proof cannot be successfully completed.
However, the general forking lemma only supports a single small challenge value, and appears to be
insufficient for realizing batch range proofs. We will explain this in more details in Subsect. 1.2.

This motivates us to develop a new variant of the general forking lemma to support multiple small
challenges for constructing efficient batch range proofs, which are essential for building efficient batch
MtA based on Paillier or JL encryptions, and ultimately for improving the efficiency of threshold ECDSA.

1.1 Our Contributions

In this work, we generalize the well-known general forking lemma [12,17] to the multiple instances setting,
and propose a new Multi-Dimension Forking Lemma. It deals with ZK arguments where the Verifier’s
challenge is a vector with multiple independent and small values, and allows to construct batch range
proofs for Paillier and JL encryptions efficiently.

Based on our new flavor of forking lemma, we construct batch range-related proofs for Paillier and JL
encryptions. These include the batch range proof Σenc[ℓ] for proving that the plaintexts {bi} in ℓ Paillier
ciphertexts {Ci = Enc(bi)} are all within a given range, the batch range-affine proof Σaff[ℓ] for proving
that the coefficients {ai, αi} in ℓ homomorphically generated Paillier ciphertexts {Di = Cai

i · Enc(αi) =
Enc(aibi+αi)} are respectively within given ranges. For each proof, we compare the original costs of the
single proof and the amortized costs of the batched one, for Paillier encryption (cf. Table 2 in Sect. 4)
and JL encryption (cf. Table 3 in Sect. 5) respectively.

Next, by utilizing the proposed batch range-related proofs, we construct batch MtA protocol for
Paillier (cf. Figure 1) and JL (cf. Figure 3 in Appendix D), which improve the efficiency of existing
works with a factor about 2 to 3. More precisely, according to theoretical analysis (cf. Table 1) and
benchmarking results (cf. Table 4 in Subsect. 6.1), our batch Paillier-based MtA achieves about 2×
reduction in both bandwidth and computation compared to the existing ones [38,51], and our batch JL
MtA has 3× improvement on Xue et al.’s JL MtA and 2× improvement on their batched one [61].

By replacing the MtA in existing threshold ECDSA with our batch MtA, we can enhance the efficiency
of most Paillier and JL based constructions [50,51,38,23,61]. As three typical examples, we demonstrate
how our batch MtA protocol can significantly improve the efficiency of prior works, as follows.

• Canetti et al. [23,24] (CGGMP20) presented three versions of non-interactive threshold ECDSA based
on Paillier, the critical parts of which are three presigning schemes and two of them are proven to be
Universally Composable (UC) secure. According to our theoretical analysis (cf. Table 5 in Subsect. 6.2),
we improve all of the three presigning schemes by a factor of > 1.5. We benchmark the implementations
of the two UC-secure versions and our batched variants. The results (cf. Table 6 in Sect. 6) show that
our bandwidth costs are about 2.1× to 2.4× lower, and our computation times are approximately 1.5×
to 1.7× faster than the constructions of CGGMP20 for the two-party settings.

• Xue et al. [61] (XAL+23) exploited JL encryption to construct MtA protocol, and used JL vector
commitment to give a batch MtA. We implement threshold ECDSA using their (batch) JL MtA and
our batch JL MtA, respectively. The results (cf. Table 6 in Sect. 6) show that our batch technique
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Table 1: Theoretical cost comparisons of MtA and batch MtA protocols. The costs are amortized
over the number ℓ of instances. Here µ = logN,κ = log q correspond to the message size of elements
in ZN and EC group G, respectively. N2,N denote computing exponentiation over the rings ZN2 ,ZN ,
respectively. Note that for JL-based MtA, N will be replaced with a different JL modulus NJ.

MtA Communication Computation
µ κ N2 N

Paillier [38,51] 19 22 11 23
Our Batch Paillier 9 + 10/ℓ 6 + 16/ℓ 7 + 4/ℓ 15 + 8/ℓ

JL [61] 9 19 0 24
Batch JL [61] 6 + 3/ℓ 17 + 2/ℓ 0 20 + 4/ℓ
Our Batch JL 3 + 6/ℓ 5 + 16/ℓ 0 11 + 13/ℓ

improves the bandwidth efficiency by a factor of 2.0 to 2.29, and the computational efficiency by a
factor of 1.88 to 2.09, compared with theirs.

• Doerner et al. [33] (DKLs24) proposed an OT-based three-round threshold ECDSA, which is currently
round-minimal to the best of our knowledge. To improve the bandwidth efficiency, we replace its
underlying OT-based MtA with our batch Paillier and JL MtAs, still being round-minimal. The
Paillier-based construction improves the bandwidth efficiency by 7.8×, at the cost of 5.7× slower
computation than OT-based DKLs24. The JL-based scheme improves the OT-based one by 12× in
bandwidth, but is 14× slower in computation. Under DKLs24 construction framework, the scheme
with batch Paillier MtA has about 1.8× lower bandwidth and computational overhead than that with
the Paillier MtA from [38,51].

Finally, we note that our multi-dimension forking lemma is a general tool for obtaining efficient
batch ZK (range) proofs, and it can also be used to efficiently prove the knowledge of multiple Paillier
plaintexts, JL plaintexts or other homomorphic encryptions (with or without considering range).

1.2 Our Techniques

In this subsection, we give a high-level overview on our new techniques in constructing batch range-
related ZK proofs efficiently, and we will focus on Paillier encryption in this overview. The same ideas
can be applied to JL encryption by taking into account the underlying mathematical structure.

Firstly, we briefly recall the range proof for a single Paillier ciphertext in [38,51,24]. To show that
the plaintext m of a Paillier encryption C = Enc(m) is in a given range [0, B], the Prover first picks
a random m0 (from a set to be specified), and returns its ciphertext C0 = Enc(m0) as the ”commit”
message of Σ-protocol; after receiving a challenge e ←$ [0, 2t − 1] from the Verifier, the Prover outputs
m∗ = m0 + em over Z in response. Note that to achieve zero-knowledge with ε-bit statistical security,
m0 will be chosen from a larger set [0, 2ε+tB] to mask m. Accordingly, the Verifier will check whether
the obtained m∗ satisfies m∗ ∈ [0, 2ε+tB], and determine whether m∗ ?

= m0 + em indeed holds via
homomorphic encryption Enc(m∗)

?
= C0 · Ce. The soundness follows from the uniform randomness of

e ←$ [0, 2t − 1], which guarantees that m ∈ [−2ε+tB, 2ε+tB] can be inferred from the verification of
m∗ ∈ [0, 2ε+tB] with overwhelming probability of 1− 1

2ε . We note that there is a gap between the initial
range [0, B] and the range [−2ε+tB, 2ε+tB] guaranteed by the soundness, and the gap is approximately
2ε+t. Nevertheless, such a soundness gap (2ε+t) can be tolerated in many scenarios such as threshold
ECDSA.

When facing ℓ > 1 ciphertexts {Ci = Enc(mi)}i∈[ℓ], batch range proof aims to prove that all un-
derlying plaintexts {mi}i∈[ℓ] are in [0, B] in an aggregated manner. One natural batching idea is called
Reed-Solomon encoding [55], which has been widely applied in aggregating ZK proofs in the discrete
logarithm (DL) setting [41,17,21,14,65]. More precisely, the Prover still picks a single random masking
value m0 and sends its Paillier ciphertext C0 = Enc(m0) as the ”commit” message, and the Verifier still
sends a single challenge e←$ [0, 2t−1], similar to the case of single ciphertext. Now, to deal with multiple
ciphertexts, the Prover needs to extend the single challenge e to multiple exponents (e, e2, · · · , eℓ) and
computes the response

m∗ = m0 + e ·m1 + e2 ·m2 + · · ·+ eℓ ·mℓ , (1)
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and accordingly, the Verifier checks the range of the obtained m∗ and verifies whether (1) holds via

Enc(m∗)
?
= C0 · (C1)

e · (C2)
e2 · · · (Cℓ)

eℓ . (2)

Such batching method that extending a single challenge e to multiple exponents (e, e2, · · · , eℓ) is in
fact widely applied in the literature. The benefit is that it aggregates the proofs of multiple instances
effectively, while still allowing the extraction of witnesses (m1, · · · ,mℓ) from successful proofs to achieve
Argument of Knowledge (AoK). The later is guaranteed by the celebrated general forking lemma [12,17],
and the argument is roughly as follows. According to the general forking lemma [12,17], one can rewind
a (possibly malicious) Prover to obtain multiple successful proofs m∗

j (say j ∈ [ℓ + 1]) under distinct
challenges ej (j ∈ [ℓ + 1]), but w.r.t. a same first-round message C0. This means that each m∗

j satisfies
equation (1) under the corresponding ej , and this forms a system of linear equations in (m0,m1, · · · ,mℓ),
namely 

m∗
1

m∗
2

...

m∗
ℓ+1

 =


1 e1 e21 ... eℓ1

1 e2 e22 ... eℓ2
...

... · · ·
...

1 eℓ+1 e2ℓ+1 ... eℓℓ+1

 ·


m0

m1

m2

...

mℓ


.

Since the challenges ej ’s are all distinct (guaranteed by the general forking lemma), the above Vander-
monde matrix formed by ej ’s powers is invertible, and then one can recover the witness (m1, · · · ,mℓ)
efficiently by solving the system of linear equations.

However, such batching method suffers from two disadvantages, as explained below.

Disadvantage 1: Bad Efficiency. Note that the verification in (2) involves ℓ modular exponentiations
with exponents (e, e2, · · · , eℓ), highlighted by dotted boxes. Thus, the bit-length of challenge e dominates
the efficiency of the protocol. According to the general forking lemma [12,17], to show the AoK property
of the protocol, e should be of bit-length at least t ≥ λ, where λ denotes the security parameter.
Therefore, the exponents (e, e2, · · · , eℓ) of the modular multi-exponentiation in (2) have bit-length at
least (λ, 2λ, · · · , ℓλ), which would be extremely long in large settings. Concretely, suppose the number
of ciphertexts is ℓ = 100 and the security parameter is λ = 128, then the exponents (e, e2, · · · , eℓ) have
bit-length (128, 256, · · · , 12800), which makes the verification extremely inefficient.

Disadvantage 2: Almost No Range Guarantee. Even worse, the above batch protocol in fact cannot
support range verification for the multiple {mi}i∈[ℓ]. The reason is simple: even if all {mi}i∈[ℓ] lie in [0, B],
the m∗ computed by (1) would be as large as 2ℓλ · B due to the largest exponent eℓ. Accordingly, the
Verifier can only check the range of m∗ by verifying whether m∗ ∈ [0, 2ℓλ · B] at best, which in turn
can only guarantee that each mi lies in [−2ℓλ ·B, 2ℓλ ·B]. The gap between [0, B] and [−2ℓλ ·B, 2ℓλ ·B]
grows exponentially in the ciphertext number ℓ. Consequently, the protocol provides almost no range
guarantee when ℓ is large. For example, suppose that the bound is B = 2128, the number of ciphertexts
is ℓ = 100 and the security parameter is λ = 128, the Verifier can only be convinced that each mi is
in [−212800, 212800] while Paillier’s message space is of size only 23072, thus it is totally useless. Even in
small settings, say ℓ = 10, the Verifier can only infer that each mi belongs to [−21280, 21280], whose gap
with [0, 2128] is still very large, making it hardly useful.

Our Solution: Multiple Small Challenges & Multi-Dimension Forking Lemma. Based on the
above observations, the batching technique by extending a single challenge e to multiple exponents
(e, e2, · · · , eℓ) leads to bad efficiency and more importantly does not work well for batch range proof.

To solve the above problems, we generalize the well-known general forking lemma [12,17] to the setting
of multiple instances, and propose a new Multi-Dimension Forking Lemma. It deals with arguments where
the challenges are vectors over a small subset of a large field, and allows us to aggregate multiple instances
of range proofs by using multiple small challenges.

We show the usefulness of Multi-Dimension Forking Lemma by proposing efficient batch range-related
proofs for Paillier and JL encryptions. Let us go back to the above situation where the Prover aims to
show that all {mi}i∈[ℓ] in multiple ciphertexts {Ci}i∈[ℓ] are in [0, B]. Now our new batching technique
works as follows.
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• The challenge is a vector e = (e1, e2, · · · , eℓ) instead of a single element e, and each entry ei of the
vector e is chosen from a small subset3 (e.g. [0, 2t − 1] for t ≥ λ).

• The Prover computes the response

m∗ = m0 + e1 ·m1 + e2 ·m2 + · · ·+ eℓ ·mℓ , (3)

and the Verifier checks the range of the obtained m∗ as well as the equation

Enc(m∗)
?
= C0 · (C1)

e1 · (C2)
e2 · · · (Cℓ)

eℓ .

Here, each exponent ei has bit length of λ. Concretely, under the security parameter λ = 128, the bit-
length of each ei is just 128 no matter how many ciphertexts there are. Consequently, the efficiency of
the verification (and also the proof generation) would be ℓ

2× faster than the aforementioned solution
which uses large multiple exponents (e, e2, · · · , eℓ). This efficiency improvement is huge in large settings.

Most importantly, our batching technique now can provide range guarantee for multiple ciphertexts.
This reason is simple: since the challenge vector e = (e1, e2, · · · , eℓ) has small entries (e.g., ei ∈ [0, 2t−1]
), suppose that all {mi}i∈[ℓ] are in [0, B] and m0 is chosen from [0, 2ε+tB] where ε is the statistical
parameter with ε ≥ λ, the response m∗ computed by (3) must lie in [0, 2ε+tB + ℓ · 2tB]. Now the bound
only grows linearly in the number of instances ℓ, in stark contrast to that of the m∗ computed by (1),
which lies in [0, 2ℓt · B] and grows exponentially in ℓ. Consequently, after receiving m∗, the Verifier can
check whether m∗ ∈ [0, 2ε+tB]. It will hold unless the randomly sampled m0 > 2ε+tB − ℓ · 2tB, thus
m∗ ∈ [0, 2ε+tB] happens with overwhelming probability of 1− ℓ

2ε ≥ 1− ℓ
2λ

for a valid statement. Then
the success of the check would imply that each mi lies in [−2ε+tB, 2ε+tB], whose gap with the initial
range [0, B] is roughly 2ε+t. This shows that the range guarantee provided by our batching technique is
approximately the same as that provided by the range proof for a single ciphertext, even in large settings
(e.g., ℓ = 1000).

However, now we can no longer resort to the general forking lemma to show the Argument of Knowl-
edge (AoK) of this protocol. The reason is as follows. To apply the general forking lemma, we have to
view the challenge vector e = (e1, e2, · · · , eℓ) as a whole (e.g., as an element in [0, 2t − 1]ℓ), and by
rewinding, one can obtain multiple successful proofs m∗

j (say j ∈ [q] for some q) under distinct challenges
ej = (ej,1, ej,2, · · · , ej,ℓ) (j ∈ [q]) w.r.t. a same first-round message C0. This gives us the following system
of linear equations in (m0,m1, · · · ,mℓ):


m∗

1

m∗
2

...

m∗
q

 =


1 e1,1 e1,2 ... e1,ℓ

1 e2,1 e2,2 ... e2,ℓ
...

... · · ·
...

1 eq,1 eq,2 ... eq,ℓ

 ·


m0

m1

m2

...

mℓ


. (4)

Although each rows (1, ej,1, ej,2, · · · , ej,ℓ) of the coefficient matrix are distinct with each other (guaranteed
by the general forking lemma), the coefficient matrix formed by the ei,j ’s is not necessarily of full column
rank. Consequently, the above system of equations may not have a unique solution and one can hardly
recover the witness (m1, · · · ,mℓ) correctly.

To see this, let us consider a concrete example that, suppose by rewinding, one gets multiple successful
proofs m∗

j under challenge vectors e1 = (1, 1, · · · , 1), e2 = (2, 2, · · · , 2), · · · , eq = (q, q, · · · , q). These
challenges are distinct, but even if the number q of successful proofs is exponentially large, the coefficient
matrix of (4) is of only rank 2, far from full column rank. Nevertheless, one may think that if we choose
q sufficiently large, e.g., q = 2tℓ, then all vectors in [0, ..., 2t − 1]ℓ are taken, and the vectors must form a
coefficient matrix of full column rank. However, we stress that these vectors may not all lead to successful
proofs, and only those vectors associated with successful proofs can be used to build the system of linear
equations in (4) and contribute to the coefficient matrix. Still, there is no guarantee that the resulting
coefficient matrix formed by those vectors leading to successful proofs is of full column rank.
3 Here “small” means that the values in the subset should be small functions in the number ℓ of ciphertexts, and

this is used to provide meaningful range guarantee for our batch protocol. Recall that the existing method via
the original forking lemma involves values like (e, e2, · · · , eℓ), which grow exponentially in ℓ and thus cannot
be used to provide a meaningful range guarantee for large setting (e.g., ℓ = 100). Instead, our method involves
values (e1, e2, · · · , eℓ) with each entry being small-size independently of ℓ, and thus we say they are “small”.
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This is where our new Multi-Dimension Forking Lemma comes in. More precisely, we generalize the
general forking lemma by allowing the challenge to be vectors, i.e., e = (e1, e2, · · · , eℓ) for some dimension
ℓ. Clearly, the original general forking lemma can be viewed as a special case of our new lemma with
dimension ℓ = 1. For a challenge e, we also associated it with an extended form (1, e) = (1, e1, e2, · · · , eℓ),
named extended challenge. Then we present a carefully-designed rewinding process to output multiple
successful proofs under multiple challenge vectors w.r.t. a same first-round message, such that

– the multiple challenge vectors ej = (ej,1, ej,2, · · · , ej,ℓ) (j ∈ [q]) are not only distinct,
– but the associated extended challenges (1, ej) = (1, ej,1, ej,2, · · · , ej,ℓ) are also linearly independent.

We call such multiple successful transcripts (consisting of the multiple successful proofs and corresponding
challenge vectors ej) as Accepting Transcripts with Linearly-Independent Extended Challenges (AT-
LIEC). Of course, the number q of such extended challenges is at most 1 + ℓ with ℓ the dimension,
so does the number of AT-LIEC. Then we give a careful analysis of the (expected) running time and
successful probability of our rewinding process, showing that it indeed works as pre-described efficiently.

Now we can use our new Multi-Dimension Forking Lemma to show the AoK property of our batch
range proof. With our new rewinding process, one can get multiple successful proofs m∗

j (j ∈ [ℓ + 1])
under challenges ej (j ∈ [ℓ+ 1]) w.r.t. a same first-round message C0, and the extend challenges (1, ej)
(j ∈ [ℓ+1]) are now guaranteed to be linearly independent by our new lemma. This gives us a system of
linear equations similar to (4), where the rows of the coefficient matrix are exactly the extend challenges
(1, ej). Consequently, the linear independency of the extended challenges implies that the coefficient
matrix of (4) is now of full column rank, and then one can solve the system of linear equations to obtain
the witness (m1, · · · ,mℓ) successfully. In this way, our new forking lemma rescues the AoK of our batch
range proof for Paillier while maintaining its good efficiency.

Overall, our batching technique is to use multiple small challenges (e1, e2, · · · , eℓ) to aggregate the
multiple instances to be proved, and our new Multi-Dimension Forking Lemma helps us to analyze its
Argument of Knowledge (AoK) by linearly-independent extended challenges. The use of multiple small
challenges not only improves the efficiency of the batch range proof, but also provides range guarantees
close to proving the multiple instances individually. Based on our batching technique and multi-dimension
forking lemma, we apply the same ideas to propose more batch range-related proofs for more complex
relations that are needed in building batch MtA and threshold ECDSA protocols, to improve their
efficiency.

1.3 More Discussions

In this part, we delve further into the motivations behind our multi-dimension forking lemma, by drawing
comparisons with a recent work by Attema et al. [7]. Then, we show more application scenarios of our
batch MtA protocols. Finally, we give more detailed discussions of the soundness gap of range proofs.

Comparison with A Recent Work [7]. Recently, Attema et al. [7] have dealt with a situation which
seems to be similar as that considered in our work. However, we note that their techniques are not
applicable to build efficient batch range-related ZK proofs for Paillier or JL encryption, as ours do. The
reasons are as follows.

• Their techniques can be used to reduce the running-time of knowledge extractor. However, the problems
we encountered and resolved are not about the running-time of the extractor. In fact, as we elaborated
in Subsect. 1.2, even if the extractor can take all vectors in {0, ..., 2t − 1}ℓ, only those vectors leading
to successful proofs contribute to the coefficient matrix of (4). Consequently, even if we apply the ideas
in [7] to reduce the running-time of the extractor, there is still no guarantee that the extractor can
find a coefficient matrix of full rank and extract the witness successfully.

• Example 3 on page 12 in [7] considers a situation that might be closest to ours. In their example, it
requires the relation to be defined over a finite field F and the challenges to be uniformly sampled
from the whole field F. However, for the Paillier or JL encryption, the underlying domain is only a
ring (like ZN ), and if the challenges are sampled from the whole domain (ZN ), it will provide no
range guarantee. In contrast, our new forking lemma does not require the underlying domain to be
finite field, and allows the challenge vector sampled from a small subset to provide meaningful range
guarantee.

Besides, we note that their work [7] focuses on “knowledge soundness”, while ours achieves “witness-
extended emulation”. As motivated in [49,44,17,21], ZKAoKs are often used as subprotocols within larger
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protocols, and the notion of “witness-extended emulation” for ZKAoK will make the security analysis of
the larger protocols easier, when compared with using “knowledge soundness”. In our case, our efficient
batch ZK range proofs are used to construct efficient batch MtA protocols, which in turn are used to
build the presigning protocols of threshold ECDSA. So the adoption of “witness-extended emulation” is
more suitable for the application of threshold ECDSA.
More Application Scenarios. Our batch MtA protocol can be used to generate a batch of random
Beaver triples [11] in the offline phase of a general-purpose MPC protocols. These Beaver triples are used
later to handle multiplication gates in the online phase. Threshold ECDSA is just an instance of MPC
protocol. As another instance, our efficient batch MtA protocol could also be used to construct threshold
BBS+ signatures [34], for building an anonymous credential scheme with threshold issuance.

Furthermore, at a high level, the MtA protocol can be interpreted as an Oblivious Linear Evaluation
(OLE), which is a secure two-party protocol allowing a receiver to learn a secret linear combination of a
pair of field elements held by a sender. Thus our batch MtA can realize the functionality of vector-OLE,
with ai being the same for all i ∈ [ℓ]. Indeed, it is needed in many realistic two-party computation settings,
including privacy-preserving machine learning [28,46], VOLE-based Private Set Intersection (PSI) [56],
etc.
Range Proofs. Threshold ECDSA constructions [38,51,23,61] always pursue a simple Schnorr-type
range proofs for the sake of efficiency. Even though it is in fact quite challenging to avoid a soundness
gap as analyzed in [62], it is sufficient to ensure the security of threshold ECDSA. Gennaro and Goldfeder
[38] first discussed how, in the absence of range proofs, Alice or Bob may maliciously choose a large input
(e.g. Alice runs with input a+ q7) and then observe the success or failure of threshold ECDSA (whether
the reduction mod N took place or not) to obtain the bit information of the other party’s private input.
To solve this problem, they use range proofs to prove that the input belongs to Zq, followed by all Paillier
and JL based constructions. Although the range proofs have soundness gap, it can ensure that mod N
is determined not to occur for inputs within [−2ε+tq, 2ε+tq]. Thus the security of threshold ECDSA can
be guaranteed, which has been proven in all prior works.

Bartoli et al. [10] focused on batch Σ-protocols to devise proofs of knowledge, including the batched
plaintext proofs of JL encryption, but without providing range guarantee. Assuming that their method
is indeed amenable to range proofs for JL encryption, our batch construction is more efficient compared
to their approach. More precisely, their computation cost contains O(ℓ2) exponentiations over the JL
ring ZN where ℓ is the number of ciphertexts, while ours involves only O(ℓ) exponentiations.

2 Preliminaries

Notations. Let N and R denote the set of natural numbers and the field of real numbers, respectively.
Let λ ∈ N denote the security parameter throughout the paper. For i, j ∈ N with i < j, define [i, j] =
{i, i + 1, · · · , j} and [j] = {1, 2, · · · , j}. Denote by x ←$ X the operation of sampling x uniformly
at random from the set X . For an algorithm A, denote by y ← A(x; r), or simply y ← A(x), the
operation of running A with input x and randomness r and assigning the output to y. “PPT” is short
for probabilistic polynomial-time and “DPT” is short for deterministic polynomial-time. Denote by poly
some polynomial function, and negl some negligible function. For a primitive XX and a security notion
YY, we typically denote the advantage of a PPT adversary A by AdvYY

XX,A(λ).
For an integer N ∈ N, denote by ZN the integral ring {0, 1, · · · , N − 1} and Z∗

N the group that
contains all the elements in ZN that are co-prime to N , i.e., Z∗

N = {i ∈ ZN | gcd(i,N) = 1}, where
“gcd” stands for greatest common divisor. Let lcm : N2 → N denote the operation of computing the least
common multiple, and ϕ : N→ N denote Euler’s phi function, for instance, ϕ(N) is the size of Z∗

N .

2.1 Zero-Knowledge Arguments of Knowledge

We recall the definitions of zero-knowledge arguments of knowledge from [43,21].
Language. Our proof system will work in the plain setting. Let R ⊆ {0, 1}∗ × {0, 1}∗ be a PPT
decidable binary relation. We call w a witness for an instance u if (u,w) ∈ R, and define the language
L = {u|∃ w, s.t. (u,w) ∈ R} as the set of instances u that have a witness w in the relation R.
Proof System. A proof system Π is made up of two PPT algorithms: a prover P and a verifier V. By
tr ← ⟨P(s),V(e)⟩(u), we denote the transcript produced by P and V when interacting on common input
u, P’s private input s and V’s randomness e. We write ⟨P(w),V⟩(u) = b to indicate whether V accepts,
b = 1, or rejects, b = 0.
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Definition 1 (Completeness). Π = (P,V) has completeness, if for any (u,w) ∈ R, it holds Pr[⟨P(w),V⟩(u) =
1] = 1− negl(λ).

Definition 2 (Witness-Extended Emulation). Π = (P, V) has (statistical) witness-extended em-
ulation, if for any DPT prover P∗, there exists an expected polynomial time emulator E, such that for
any (possibly unbounded) stateful adversary A, AdvextP∗,E,A(λ) ≤ negl(λ). The advantage AdvextP∗,E,A(λ) is
defined as ∣∣∣∣∣∣

Pr
[
A(tr) = 1

∣∣ (u, s)← A, tr ← ⟨P∗(s),V⟩(u)
]
−

Pr

[
A(tr) = 1 ∧

(tr is acc.⇒ (u,w) ∈ R)

∣∣∣∣ (u, s)← A,
(tr, w)← EO(u)

] ∣∣∣∣∣∣ (5)

where the oracle is given by O = ⟨P∗(s),V⟩(u), and permits rewinding to a specific point and resuming
with fresh randomness for V from this point onwards.

We can also define computational witness-extended emulation by requiring AdvextP∗,E,A(λ) to be negligible
only for PPT A.

Definition 3 (Public Coin). Π = (P,V) is called public coin, if all challenges sent from V to P are
chosen uniformly at random and independently of P’s messages, i.e., the challenges correspond to V’s
randomness.

Definition 4 (Honest-Verifier Zero-Knowledge). Π = (P,V) has honest-verifier zero-knowledge
(HVZK), if there exists a PPT simulator S, such that for any (u,w) ∈ R and any string e, the following
two distributions are statistically indistinguishable:(

tr ← ⟨P(w),V(e)⟩(u) : tr
)

s
≈

(
tr ← S(u, e) : tr

)
,

where e is the public coin randomness used by V.

Definition 5 (Zero-Knowledge Argument of Knowledge (ZKAoK)). Π = (P,V) is a zero-
knowledge argument of knowledge (ZKAoK) for relation R, if it has completeness, witness-extended
emulation and honest-verifier zero-knowledge.

By the Fiat-Shamir transform [35], a public coin interactive ZKAoK can be easily converted to a
non-interactive, zero-knowledge argument in the random oracle model [13]. The idea is replacing the
challenges output by V with the output of a cryptographic hash function.

2.2 A General Forking Lemma

We recall the general forking lemma from [17].
Tree of Accepting Transcripts (AT-Tree). Suppose that we have a (2µ+ 1)-move argument with
µ challenges e1, · · · , eµ and (µ+ 1) responses z0, z1, · · · , zµ. Let ni ∈ N for 1 ≤ i ≤ µ. Consider

∏µ
i=1 ni

accepting transcripts with challenges in the following tree format. The tree has depth µ and
∏µ

i=1 ni

leaves. The root of the tree is labelled with the statement u. Each node of depth i < µ has exactly ni

children, each labelled with a distinct value for the i-th challenge ei. We refer to this as an (n1, · · · , nµ)-
tree of accepting transcripts, or an (n1, · · · , nµ)-AT-tree for short (cf. the left tree of Figure 2).

Lemma 1 (General Forking Lemma [17]). Let Π = (P,V) be a (2µ+1)-move, public coin interactive
protocol. For i ∈ [µ], let ni ∈ N, and let Xi be the domain from which the i-th challenge ei is uniformly
chosen. Assume that

(i) there is a PPT witness extraction algorithm χ that succeeds in extracting a witness from an
(n1, · · · , nµ)-AT-tree with overwhelming probability,

(ii)
∏µ

i=1 ni ≤ poly(λ), and
(iii) for any 1 ≤ i ≤ µ, the domain Xi is of size super polynomial in λ, i.e., |Xi| ≥ 2ω(log λ).

Then Π = (P,V) has witness-extended emulation.
Concretely, the advantage related to the witness-extended emulation of Π = (P,V) satisfies

AdvextP∗,E,A(λ) ≤ (
∏µ

i=1 ni) · poly(λ)
/

3
√

minµi=1 |Xi|,

with poly(λ) some polynomial function in λ. The advantage is negligible when conditions (ii) and (iii)
hold.
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2.3 Paillier & Joye-Libert Encryptions

Definition 6 (Paillier Encryption [54]). Define the Paillier cryptosystem as the tuple (Gen,Enc,Dec)
below.

1. (pk, sk) ← Gen(1λ): choose κ/2-long primes P,Q, and set N = PQ. Write pk = N and sk =
lcm(P − 1, Q− 1), where κ is determined according to the security level λ.

2. C ← Enc(pk,m): choose ρ←$ Z∗
N , then compute C = (1 +N)m · ρN = (1 +mN) · ρN (mod N2).

3. m← Dec(sk, C): compute m =
[Csk (mod N2)− 1]

N
· sk−1 (mod N).

Definition 7 (Joye-Libert (JL) Modulus [47,15]). Let NJ = P̄ Q̄ = (2kp′ + 1)(2q′ + 1) where P̄ , Q̄
are primes, k > 1, and p′, q′ are prime numbers. In the following, we denote such special RSA modulus
NJ as JL modulus. Under JL modulus, the Jacobi symbol is JNJ(a) = (a

P̄−1
2 (mod P̄ )) · (a

Q̄−1
2 (mod Q̄)).

Define the following sets

JNJ = {a ∈ Z∗
NJ |JNJ(a) = 1}, QNR = JNJ \QR

QR = {a ∈ Z∗
NJ |∃x ∈ Z∗

NJ , a = x2 (mod NJ)},

QR2k = {a ∈ Z∗
NJ |∃x ∈ Z∗

NJ , a = x2k (mod NJ)}.

Definition 8 (JL Encryption [61]). Define the JL cryptosystem as the tuple (JL.gen, JL.enc, JL.dec)
as follows.

1. (pkJ, skJ) ← JL.gen(1λ): define a proper integer k and choose κ/2-long primes P̄ = 2kp′ + 1, Q̄ =
2q′ + 1 where p′, q′ are odd numbers, set NJ = P̄ Q̄. It also picks y ←$ QNR and h ←$ QR2k . Write
pkJ = (NJ, h, y, k) and skJ = P̄ .

2. C ← JL.enc(pkJ,m): pick ρ←$ ZNJ and compute ciphertext C = ymhρ (mod NJ).
3. m← JL.dec(skJ, C): compute z = C

P̄−1

2k (mod P̄ ), find m ∈ Z2k such that z =
(
y

P̄−1

2k

)m

(mod P̄ ).

Based on the prior one in [15] (an extension of [47]), the above scheme is a modified JL encryption
proposed in [61].
JL Commitment. The modified JL encryption can be easily converted into a commitment scheme.
The public parameter ppJ = (ÑJ, h̃, ỹ, k) can be generated via the key generation algorithm of the
JL encryption scheme. For a message m ∈ Z, its commitment P ← JL.commit(ppJ,m) is P = ỹ2

km ·
h̃2kr (mod ÑJ) with r ←$ ZÑJ

as its randomness.

Fig. 2: Left: AT-Tree (Tree of Accepting Transcripts) in the General Forking Lemma; Right: AT-LIEC-
Tree (Tree of Accepting Transcripts with Linearly-Independent Extended Challenges) in Our Multi-
Dimension Forking Lemma

statement u
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

depth 1:
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

depth 2:
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

depth µ:
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

...<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

accept
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

accept
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

accept
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

accept
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

n1 distinct
challenges

<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

n2 distinct
challenges

<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

nµ distinct
challenges

<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

statement u
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

accept
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

accept
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

accept
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

accept
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

depth 1:
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

depth 2:
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

depth µ:
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

...<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

n1 linearly independent
challenges

<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

n2 linearly independent
challenges

<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

nµ linearly independent
challenges

<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>
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3 Multi-Dimension Forking Lemma

In this section, we propose our main technical tool — a new version of the forking lemma called Multi-
Dimension Forking Lemma, which enables an efficient aggregation of multiple instances of (homomorphic)
Σ-protocol by using only small challenges.
Tree of Accepting Transcripts with Linearly-Independent Extended Challenges (AT-LIEC-
Tree). Suppose that we have a (2µ + 1)-move argument with µ challenges e1, · · · , eµ and (µ + 1)
responses z0, z1, · · · , zµ. For i ∈ [µ], suppose that the i-th challenge ei = (ei,1, · · · , ei,di) is a vector
uniformly chosen from (Xi)

di , where Xi is a finite subset of R and di ∈ N denotes the dimension of
the vector space. For simplicity, we assume that Xi is the same for all 1 ≤ i ≤ µ, denoted by X . We
stress that X does not necessarily have any algebraic structure (e.g., being closed under multiplication).
Typically, we will set X = [0, 2t − 1]. The transcript in sequence is as follows:

P → V : z0
P ← V : e1 = (e1,1, · · · , e1,d1

) ∈ (X )d1

P → V : z1
...

P ← V : eµ = (eµ,1, · · · , eµ,dµ) ∈ (X )dµ

P → V : zµ.

For the i-th challenge vector ei, we call

(1, ei) = (1, ei,1, · · · , ei,di
) ∈ {1} × (X )di ⊆ (R)di+1

the associated i-th extended challenge. Let ni ∈ N for i ∈ [µ]. Consider
∏µ

i=1 ni accepting transcripts
with extended challenges in the following tree format. The tree has depth µ and

∏µ
i=1 ni leaves. The

root of the tree is labelled with the statement u. Each node of depth i < µ has exactly ni children, each
labelled with a value for the i-th extended challenge (1, ei) = (1, ei,1, · · · , ei,di

). Here we require that,
for each node of depth i, the extended challenges (1, e

(η)
i ) = (1, e

(η)
i,1 , · · · , e

(η)
i,di

) (η ∈ [ni]}) related to the
ni children are not only distinct, but also linearly independent. Clearly, it is necessary to require that
ni ≤ 1 + di for i ∈ [µ]. We refer to this as an (n1, · · · , nµ)-tree of accepting transcripts with linearly
independent extended challenges, or an (n1, · · · , nµ)-AT-LIEC-tree (cf. the right tree of Figure 2). We
note that an AT-LIEC-tree (as defined above) is always an AT-tree (as defined in Subsect. 2.2), but not
vice versa.

In the following, we establish a new flavor of forking lemma, called Multi-Dimension Forking Lemma,
which is able to boost a witness extractor χ who succeeds in extracting witnesses from AT-LIEC-trees
into a witness-extended emulator.

Lemma 2 (Multi-Dimension Forking Lemma). Let Π = (P,V) be a (2µ + 1)-move, public coin
interactive protocol where the challenges are vectors over set X chosen uniformly. For i ∈ [µ], let di
denote the dimension of the i-th challenge vector, and let ni ∈ N with ni ≤ 1 + di. Assume that

(i) there is a PPT witness extraction algorithm χ that succeeds in extracting a witness from an
(n1, · · · , nµ)-AT-LIEC-tree overwhelmingly. In formula, for any statement u and any (n1, · · · , nµ)-
AT-LIEC-tree related to u, denoted by AT-LIEC-tree, it holds Pr[w ← χ(u,AT-LIEC-tree) : (u,w) ∈
R] = 1− negl(λ).

(ii)
∏µ

i=1 ni ≤ poly(λ), and
(iii) the set X is of size super polynomial in λ, i.e., |X | ≥ 2ω(log λ).

Then Π = (P,V) has witness-extended emulation.
Concretely, the advantage related to the witness-extended emulation of Π = (P,V) satisfies

AdvextP∗,E,A(λ) ≤ (µ+ 1) · (
∏µ

i=1 ni) · poly(λ)
/√
|X |, (6)

with poly(λ) some polynomial function in λ. The advantage is negligible when conditions (ii) and (iii)
hold.

Before presenting the formal proof, we first give a brief overview of the intuitions behind the proof.
The core of the proof is to construct an emulator to collect accepting transcripts whose extended challenge
vectors (1, ei) form a full rank matrix (for all rounds i ∈ [µ]), and we need to ensure that this can be
done in expected polynomial-time and with high probability.
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Algorithm 1: The Emulator E
E⟨P

∗(s),V⟩(u)→ (tr, w):
1 initialize tree = ∅, is-AT-LIEC = true;
2 run (tr, b, tree)← T ⟨P∗(s),V⟩

1 (u, tree);
3 if b = 1 then
4 if is-AT-LIEC = true then

5 run w ← χ(u, tree) ;
6 return (tr, w);
7 else
8 return (tr,⊥);
9 else

10 return (tr,⊥);

The strategy of the emulator is to execute ⟨P∗,V⟩ repeatedly, ensure that the extended challenges in
the last round form a full rank matrix, then ensure that the extended challenges in the second last round
form a full rank matrix, and so forth. This will be captured by a series of tree-finders {Ti} in our proof.

For the i-th tree finder (i.e., Ti), it essentially samples challenge vectors ei freshly, checks whether
ei leads to an accepting transcript, and checks whether the extended challenge vector (1, ei) lies in the
span of those it collected so far (denoted by Si).

• To ensure Ti run in expected polynomial-time, we use two tricks:
- If the first attempt fails, Ti will terminate directly.
- If (1, ei) lies in the span of Si, Ti essentially terminates as well since it does not lead to an AT-LIEC-

tree.
These ensure that Ti would not repeat the steps too much times, and a careful analysis shows that it
runs in expected polynomial-time.

• To ensure Ti succeed in collecting accepting transcripts whose extended challenge vectors (1, ei) form
a full rank matrix, we give a careful analysis:
- Since Ti samples ei independently in each step, the extended challenge vector (1, ei) lies in the span

of Si with probability at most 1/|X | (cf. (12) for more details).
- Note that Ti succeeds as long as the chosen vectors {ei} all do not lie in the span of Si and are all

linearly independent.
Since Ti runs in expected polynomial-time, by Markov inequality, it stops in κ · poly(λ) time except
with probability at most 1/κ for some poly(λ) and κ, and in the case it runs in κ · poly(λ) time, the
bad event that there is some ei chosen by Ti lying in the span of Si can happen with probability at
most κ · poly(λ)/|X |.

Overall, Ti is able to collect enough accepting transcripts except with probability 1/κ+κ ·poly(λ)/|X |,
which is negligibly small by choosing κ =

√
|X | and by requiring |X | ≥ 2ω(log λ).

Proof: We construct an expected polynomial time emulator E , which has access to a rewindable tran-
script oracle O = ⟨P∗(s),V⟩(u) and produces a witness for statement u. See Algorithm 1 for the pseudo-
code of E . Intuitively, E proceeds in two main steps:

• Step 1 (cf. line 2 in Algorithm 1): it invokes a tree-finder T1, by which it obtains tree and a boolean
variable is-AT-LIEC indicating whether tree is an AT-LIEC-tree or not4;

• Step 2 (cf. lines 3-10 in Algorithm 1): if tree is indeed an (n1, ..., nµ)-AT-LIEC-tree (which happens
with overwhelming probability by our analysis below), it is able to extract a witness w from tree, using
the efficient algorithm χ that exists by assumption.

A key technical tool in Step 1 is the so-called “tree-finder” T1. It is constructed by recursive calls
to a series of {Ti}1≤i≤µ+1 that deal with the protocol ⟨P∗(s),V⟩(u) after the first few challenges are
already fixed. See Algorithm 2 for the pseudo-code of {Ti}1≤i≤µ+1. The i-th tree-finder Ti takes the
previous challenges (e1, ..., ei−1) given to it as input, picks random values for ei, and hands these values
4 For simplicity, we let is-AT-LIEC be a global variable that is implicitly given as input to (hence could be

modified by) the other parts of the algorithms (e.g., T1 and {Ti}1≤i≤µ+1).
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Algorithm 2: Tree Finder Ti (i ∈ [µ])
T ⟨P∗(s),V⟩
i (u, e1, ...., ei−1, tree)→ (tr, b, tree):

1 ei ←$ (X )di ;
2 (tr, b, tree)← T ⟨P∗(s),V⟩

i+1 (u, e1, ...., ei−1, ei, tree);
3 if b = 1 then
4 initialize Si = (1, ei), ctri = 1;
5 while ctri < ni do
6 ei ←$ (X )di ;
7 (tr′, b, tree)← T ⟨P∗(s),V⟩

i+1 (u, e1, ...., ei−1, ei, tree);
8 if (1, ei) ∈ span(Si) then
9 set is-AT-LIEC← false;

10 if b = 1 then
11 Si = Si ∪ {(1, ei)}, ctri = ctri + 1;

12 return (tr, 1, tree);
13 else
14 return (tr, 0,⊥);

T ⟨P∗(s),V⟩
µ+1 (u, e1, ...., eµ, tree)→ (tr, b, tree):

15 run tr ← ⟨P∗(s),V(e1, ...., eµ)⟩(u) using e1, ...., eµ as challenges and b← V(tr);
16 if b = 1 then
17 tree = tree ∪ {(1, e1)→ · · · → (1, eµ)};
18 return (tr, 1, tree);
19 else
20 return (tr, 0,⊥);

to the next tree-finder. If the transcript with (e1, ..., eµ) as challenges is accepting, Tµ+1 will add the
corresponding extended challenges {(1, e1)→ · · · → (1, eµ)} to tree (cf. lines 16-20 in Algorithm 2).

For 1 ≤ i ≤ µ, each tree finder Ti may fail on the first value of ei, ensuring that the whole process runs
in expected polynomial time. If the first value of ei leads to an accepting transcript, Ti will proceed until
it successfully collects ni accepting transcripts with the given (e1, ..., ei−1) as the first i − 1 challenges
but having different values for the i-th challenges ei (cf. lines 4-12 in Algorithm 2). The counter ctri
records the number of accepting transcripts that Ti has collected so far, and the set Si consists of the i-th
extended challenges (1, ei) that leading to accepting transcripts. If the i-th extended challenge (1, ei) of
a newly-chosen ei lies in the span of Si, the boolean variable is-AT-LIEC will be set to false (cf. lines 8-9
in Algorithm 2), indicating that the extended challenges might be linearly dependent, thus tree might
not be an AT-LIEC one. Put differently, if is-AT-LIEC has never been set to false (i.e., is-AT-LIEC still
equals true), the resulting tree must be an AT-LIEC-tree.

Due to the limited space, we provide the analyses of the expected running time of E and its advantage
AdvextP∗,E,A(λ) in Appendix A.2.

4 Batch Range Proofs for Paillier Encryption
In this section, we present the efficient batch range-related proofs for Paillier. For instance, we construct
Σ-protocols to prove that all plaintexts and coefficients in multiple ciphertexts are within given ranges.
Based on our multi-dimension forking lemma (i.e., Lemma 2) for the special case of µ = 1, we show that
the proposed batch range proofs have witness-extended emulation.

4.1 Languages
For Paillier-based threshold ECDSA [51,38,23,24], it may involve the following relations in batch pre-
signing phase, where all ZK range proofs can be generated and verified in a batched manner with our
new version of the forking lemma.

Let ℓ ∈ N denote the number of ciphertexts and N be the public key of Paillier encryption. Let
B,B1, B2 > 0 denote the bounds of range. The relation for the range proof of ℓ Paillier’s ciphertexts is

Renc[ℓ] =

{
((B, {Ci}i∈[ℓ]),

(mi, ρi)
ℓ
i=1)

∣∣∣∣ ∀ i ∈ [ℓ],mi ∈ [0, B]

Ci = (1 +N)mi · (ρi)N mod N2

}
.
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Let (G, g, q) denote the group-generator-order tuple associated with the curve of ECDSA signatures. A
variant of the above language related to the group (G, g, q) is

Rlog∗ [ℓ] =

 ((B, {Xi, Ci}i∈[ℓ]),

(mi, ρi)
ℓ
i=1)

∣∣∣∣∣∣
∀ i ∈ [ℓ],mi ∈ [0, B]

Ci = (1 +N)mi · (ρi)N mod N2

Xi = gmi ∈ G

 .

Let (g1, g2) ∈ G2 be the public parameters of ElGamal commitment over G. Another variant requires that
the plaintext mi is also the opening of ElGamal commitment ci = (Ai, Bi) with Ai = gai

1 , Bi = gmi
1 gai

2 ,
i.e.,

Renc-elg[ℓ] =

 ((B, {ci, Ci}i∈[ℓ]),

(mi, ρi, ai)
ℓ
i=1)

∣∣∣∣∣∣
∀ i ∈ [ℓ],mi ∈ [0, B]

Ci = (1 +N)mi · (ρi)N mod N2

Ai = gai
1 , Bi = gmi

1 gai
2 ∈ G

 .

For ℓ pairs of ciphertexts (Ci, Di) ∈ Z2
N2 , we consider the following relation

Raff[ℓ] =

 ((B1, B2,
{Ci, Di}i∈[ℓ]),
{mi, m̄i, ρi}i∈[ℓ])

∣∣∣∣ ∀ i ∈ [ℓ],mi ∈ [0, B1], m̄i ∈ [0, B2]

Di = Cmi
i (1 +N)m̄i(ρi)

N mod N2

 .

Given additional ℓ group elements {Xi}i∈[ℓ], a variant of the above relation is

Rafflog[ℓ] =

 ((B1, B2,
{Xi, Ci, Di}i∈[ℓ]),
{mi, m̄i, ρi}i∈[ℓ])

∣∣∣∣∣∣
∀ i ∈ [ℓ],mi ∈ [0, B1], m̄i ∈ [0, B2]

Di = Cmi
i (1 +N)m̄i(ρi)

N mod N2

Xi = gmi ∈ G

 .

Given additional ℓ Paillier’s ciphertexts {Fi}i∈[ℓ], another more complex relation requires that each m̄i

is also the plaintext of Fi under a different public key N1, i.e.,

Raff-g[ℓ] =


((B1, B2,

{Xi, Ci, Di, Fi}i∈[ℓ]),
{mi, m̄i, ρi, ρ̄i}i∈[ℓ])

∣∣∣∣∣∣∣∣
∀ i ∈ [ℓ],mi ∈ [0, B1], m̄i ∈ [0, B2]

Di = Cmi
i (1 +N)m̄i(ρi)

N mod N2

Xi = gmi ∈ G
Fi = (1 +N1)

m̄i(ρ̄i)
N1 mod N2

1

 .

Also, if each secret value mi is the plaintext of another Paillier’s ciphertext Ei under N1, there is a
similar relation as follows

Raff-p[ℓ] =


((B1, B2,

{Ci, Di, Ei, Fi}i∈[ℓ]),
{mi, m̄i, ρi, ρ̃i, ρ̄i}i∈[ℓ])

∣∣∣∣∣∣∣∣
∀ i ∈ [ℓ],mi ∈ [0, B1], m̄i ∈ [0, B2]

Di = Cmi
i (1 +N)m̄iρNi mod N2

Ei = (1 +N1)
mi ρ̃N1

i mod N2
1

Fi = (1 +N1)
m̄i ρ̄N1

i mod N2
1

 .

4.2 Constructions of Batch Proofs

Auxiliary Parameter. In range proofs for Paillier, the construction of the witness extraction algorithm
relies on the strong RSA assumption, corresponding to an RSA modulus with unknown order for the
Prover. Thus we instruct the Verifier to generate an auxiliary public parameter pp = (Ñ , h1, h2) of
the Ring-Pedersen commitment [36] in advance, where Ñ is the product of two safe primes (2p̃ + 1)
and (2q̃ + 1) with p̃, q̃ primes and h1, h2 are random squares in Z∗

Ñ
. The commitment of message m is

P = hm
1 hr

2 (mod Ñ) with r ←$ ZÑ .

Batch Proof Σenc[ℓ] for Language Renc[ℓ]. Let t > 0 represent the bit-length of challenge set X ,
i.e., X = [0, 2t − 1]. Let ε be the statistical parameter.
• Input: The common input is (B, {Ci}i∈[ℓ]), Paillier public key N and Ring-Pedersen parameter pp =

(Ñ , h1, h2) generated by Venc. Penc holds the witness (mi ∈ [0, B], ρi)
ℓ
i=1.

• The Σ-protocol Σenc[ℓ] for Renc[ℓ] is described as follows.
1) Penc → Venc: Penc picks {

m0 ←$ [0, 2ε+tB], ρ0 ←$ Z∗
N

r0 ←$ [0, 2ε+tBÑ ], ri ←$ [0, BÑ ] ∀i ∈ [ℓ],

and computes
{
C0 = (1 +N)m0 · (ρ0)N (mod N2)

Pi = hmi
1 hri

2 (mod Ñ) ∀i ∈ [0, ℓ].
Penc sends (C0, {Pi}i∈[0,ℓ]) to Venc.
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2) Venc → Penc: Venc picks e = (e1, · · · , eℓ)←$([0, 2t − 1])ℓ uniformly at random and sends it to Penc.

3) Penc → Venc: Penc computes


m∗ = m0 +

∑
i∈[ℓ] eimi

r∗ = r0 +
∑

i∈[ℓ] eiri

ρ∗ = ρ0 ·
∏

i∈[ℓ] ρ
ei
i (mod N).

Penc sends (m∗, r∗, ρ∗) to Venc.

• Verification: Venc receives (C0, {Pi}i∈[0,ℓ],m
∗, r∗, ρ∗) from Penc, and accepts if m∗ ∈ [0, 2ε+tB] and

the following equations hold:{
C0 ·

∏
i∈[ℓ] C

ei
i

?
= (1 +N)m

∗ · (ρ∗)N (mod N2)

P0 ·
∏

i∈[ℓ] P
ei
i

?
= hm∗

1 hr∗

2 (mod Ñ).
(7)

If the verification succeeds, Venc is convinced that mi ∈ [−2ε+tB, 2ε+tB] holds for each i ∈ [ℓ].

Theorem 1 (ZKAoK for Renc[ℓ]). Let ℓ ≤ poly(λ) be the number of ciphertexts we considered.
Let ε, t ≥ λ be chosen according to the security level. Then the proposed protocol Σenc[ℓ] for relation
Renc[ℓ] has completeness and honest verifier zero-knowledge (HVZK). Moreover, it has computational
witness-extended emulation under the strong RSA assumption.

Due to the space limitation, the proof is presented in Appendix B.2.

Batch Proof Σaff[ℓ] for Language Raff[ℓ]. We give a Σ-protocol for Raff[ℓ], in which the prover Paff
claims that it knows mi ∈ [0, B1], m̄i ∈ [0, B2] in range, such that the two Paillier ciphertexts Ci, Di

satisfy the affine operation, i.e., Di = Cmi
i (1 +N)m̄iρNi (mod N2) for some ρi ∈ Z∗

N , for each i ∈ [ℓ].

• Input: The common input is (B1, B2, {Ci, Di}i∈[ℓ]), Paillier public key N and Ring-Pedersen param-
eter pp = (Ñ , h1, h2). Paff holds the witness {mi ∈ [0, B1], m̄i ∈ [0, B2], ρi}i∈[ℓ].

• The Σ-protocol Σaff[ℓ] for Raff[ℓ] is described as follows.
1) Paff → Vaff: Paff picks 

ri ←$ [0, B1Ñ ], r̄i ←$ [0, B2Ñ ] ∀i ∈ [ℓ]

m′
i ←$ [0, 2ε+tB1], r

′
i ←$ [0, 2ε+tB1Ñ ] ∀i ∈ [ℓ]

m̄0 ←$ [0, 2ε+tB2], ρ0 ←$ Z∗
N , r̄0 ←$ [0, 2ε+tB2Ñ ],

and computes 
D0 =

∏
i∈[ℓ] C

m′
i

i · (1 +N)m̄0 · (ρ0)N (mod N2)

Pi = hmi
1 hri

2 , P ′
i = h

m′
i

1 h
r′i
2 (mod Ñ) ∀i ∈ [ℓ]

P̄0 = hm̄0
1 hr̄0

2 , P̄i = hm̄i
1 hr̄i

2 (mod Ñ) ∀i ∈ [ℓ].

Paff sends (D0, P̄0, {Pi, P
′
i , P̄i}i∈[ℓ]) to Vaff.

2) Vaff → Paff: Vaff picks e = (e1, · · · , eℓ)←$ ([0, 2t − 1])ℓ uniformly at random and sends it to Paff.
3) Paff → Vaff: Paff computes

m∗
i = m′

i + eimi, r
∗
i = r′i + eiri ∀i ∈ [ℓ]

m̄∗ = m̄0 +
∑

i∈[ℓ] eim̄i, r̄
∗ = r̄0 +

∑
i∈[ℓ] eir̄i

ρ∗ = ρ0 ·
∏

i∈[ℓ] ρ
ei
i (mod N).

Paff sends ({m∗
i , r

∗
i }i∈[ℓ], m̄

∗, r̄∗, ρ∗) to Vaff.
• Verification: Vaff receives from Paff the proof

Π = (D0, P̄0, {Pi, P
′
i , P̄i}i∈[ℓ], {m∗

i , r
∗
i }i∈[ℓ], m̄

∗, r̄∗, ρ∗),

and accepts if m∗
i ∈ [0, 2ε+tB1], ∀i ∈ [ℓ], m̄∗ ∈ [0, 2ε+tB2] and the following equations hold:

D0

∏
i∈[ℓ] D

ei
i

?
=

∏
i∈[ℓ] C

m∗
i

i (1 +N)m̄
∗
(ρ∗)N mod N2

P ′
i · P

ei
i

?
= h

m∗
i

1 h
r∗i
2 mod Ñ ∀i ∈ [ℓ]

P̄0 ·
∏

i∈[ℓ] P̄
ei
i

?
= hm̄∗

1 hr̄∗

2 mod Ñ .

(8)

If the verification succeeds, the verifier Vaff is convinced that mi ∈ [−2ε+tB1, 2
ε+tB1] and m̄i ∈

[−2ε+tB2, 2
ε+tB2] hold for all i ∈ [ℓ].
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Theorem 2 (ZKAoK for Raff [ℓ]). Let ℓ ≤ poly(λ) be the number of ciphertexts we considered. Let
ε, t ≥ λ be chosen according to the security level. Then the proposed protocol Σaff[ℓ] for relation Raff[ℓ] has
completeness and HVZK. Moreover, it has computational witness-extended emulation under the strong
RSA assumptions.

Due to the space limitation, the proof is presented in Appendix B.3.

Extensions and Cost Comparisons. The above batch range proofs can be extended to other languages
of Subsect. 4.1, including Rlog∗ [ℓ], Renc-elg[ℓ], Rafflog[ℓ], Raff-g[ℓ] and Raff-p[ℓ]. Due to the space limitation,
we place the extensions in Appendix B.4.

In Table 2, we show the theoretical costs of the existing range-related ZK proofs for Paillier, in which
the data is derived from [24, Table 2] as well as our batched variants. For all ZK proofs of Paillier used
in threshold ECDSA, our batching technique reduces the proof size, Prover and Verifier computations,
with a portion of the overheads being amortized. Taking Σenc[ℓ] as an instance, more than 5/6 proof size
and more than 1/2 computation can be amortized over ℓ instances, that is the amortized size is about
1/6 and the computational overhead is approximately 1/2 of the original data when considering ℓ ≥ 10.

Table 2: Cost comparisons of the existing range-related ZK proofs in [24, Table 2] and our
batched ones for Paillier (with gray row-color). Let ℓ be the number of aggregated statements
to be proven. µ = logN,κ = log q correspond to the message size of elements in ZN and EC group G,
respectively. N2,N,G denote computing exponentiation over the rings ZN2 ,ZN and the EC group G,
respectively.

ZK-Proof Proof Size Prover Computation Verifier Computation
µ κ N2 N G N2 N G

Σenc 6 6 1 5 0 2 3 0
Σenc[ℓ] 1 + 5/ℓ 6/ℓ 1/ℓ 3 + 2/ℓ 0 1 + 1/ℓ 1 + 2/ℓ 0
Σlog∗ 6 7 1 5 1 2 3 2
Σlog∗ [ℓ] 1 + 5/ℓ 7/ℓ 1/ℓ 3 + 2/ℓ 1/ℓ 1 + 1/ℓ 1 + 2/ℓ 1 + 1/ℓ

Σenc-elg 6 9 1 5 3 2 3 5
Σenc-elg[ℓ] 1 + 5/ℓ 9/ℓ 1/ℓ 3 + 2/ℓ 3/ℓ 1 + 1/ℓ 1 + 2/ℓ 2 + 3/ℓ

Σaff 9 16 2 9 0 3 6 0
Σaff[ℓ] 4 + 5/ℓ 6 + 10/ℓ 1 + 1/ℓ 7 + 2/ℓ 0 2 + 1/ℓ 4 + 2/ℓ 0
Σafflog 9 17 2 9 1 3 6 2
Σafflog[ℓ] 4 + 5/ℓ 7 + 10/ℓ 1 + 1/ℓ 7 + 2/ℓ 1 2 + 1/ℓ 4 + 2/ℓ 2

Σaff-g 12 17 3 10 1 5 6 2
Σaff-g[ℓ] 4 + 8/ℓ 7 + 10/ℓ 1 + 2/ℓ 8 + 2/ℓ 1 3 + 2/ℓ 4 + 2/ℓ 2
Σaff-p 15 16 4 11 0 7 6 0
Σaff-p[ℓ] 7 + 8/ℓ 6 + 10/ℓ 2 + 2/ℓ 9 + 2/ℓ 0 5 + 2/ℓ 4 + 2/ℓ 0

5 Batch Range Proofs for JL Encryption

In this section, we focus on the batch range proofs for JL encryption. It is worth noting that JL-based
MtA involves two range-related relations [61]. As their batched variants, we care about the following two
relations for the purpose of batch JL MtA.

Let pkJ = (NJ, h, y, k) be the public key of the modified JL encryption, ppJ = (ÑJ, h̃, ỹ, k) be the
public parameter of the JL commitment. Let ℓ ∈ N denote the number of ciphertext-commitment pairs.

For ℓ pairs (Ci, Pi) ∈ ZNJ × ZÑJ
, we consider the relation

Requ[ℓ] =

 ((B, {Ci, Pi}i∈[ℓ]),
{mi}i∈[ℓ])

∣∣∣∣∣∣
∀ i ∈ [ℓ],mi ∈ [0, B]

Ci = ymi · hρi mod NJ
Pi = ỹ2

kmi · h̃2kri mod ÑJ

 .
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Table 3: Cost comparisons of the existing range-related ZK proofs in [61] and our batched
ones for JL (with gray row-color).

ZK-Proof Proof Size Prover Comp. Verifier Comp.
µ κ N G N G

Σequ 4 7 4 0 6 0
Σequ-vector 2 + 2/ℓ 5 + 2/ℓ 3 + 1/ℓ 0 4 + 2/ℓ 0

Σequ[ℓ] 4/ℓ 7/ℓ 4/ℓ 0 2 + 4/ℓ 0

ΣJLaff 2 13 3 1 4 2
ΣJLaff [ℓ] 2/ℓ 4 + 9/ℓ 3/ℓ 1 2 + 2/ℓ 2

Let (G, g, q) denote the group-generator-order tuple associated with the curve of ECDSA signatures. For
ℓ pairs of JL ciphertexts (Ci, Di) ∈ Z2

NJ
and ℓ group elements Xi ∈ G, we also consider the relation

RJLaff [ℓ] =

 ((B1, B2,
{Xi, Ci, Di}i∈[ℓ]),
{mi, m̄i, ρi}i∈[ℓ])

∣∣∣∣∣∣
∀ i ∈ [ℓ],mi ∈ [0, B1], m̄i ∈ [0, B2]

Di = Cmi
i · ym̄ihρi mod NJ
Xi = gmi

 .

The constructions and security analysis of ZK proofs for JL are placed in Appendix C. In Table
3, we compare the theoretical costs of prior JL proofs and our batched variants. Specifically, the proof
Σequ-vector proposed by [61] is also a batched version of proof Σequ, and compared with it, our scheme
has better performance in both proof size and computations.

6 Applications in Threshold ECDSA

Building upon existing constructions of multi-party threshold ECDSA [38,51,23,32,33], we outline the
design framework of such schemes by employing the two-party MtA as a fundamental component.

Given m ∈ Zq as a hashed message to be signed, an ECDSA signature involves computing σ =
k−1 · (m+r ·x), with the signing key x, a secret nonce k and a public nonce r. With another secret nonce
γ, the signing equation can be rewritten as

σ =
γ(m+ rx)

kγ
.

For designing multi-party threshold ECDSA, the parties secretly share the values x, k, γ, with each
party holding an additive share (xi, ki, γi). In the presigning phase, their main goal is securely splitting
kγ and xγ into additive shares with the help of MtA functionality, i.e., generating (kγ)i, (xγ)i for each
party s.t. kγ =

∑
i(kγ)i, xγ =

∑
i(xγ)i. Based on this, the online phase is extremely simple, since an

ECDSA signature can be assembled easily with each party’s revealed shares (kγ)i and mγi+r(xγ)i. The
illustration of the above construction framework is depicted in Figure 5 of Appendix E.

Taking xγ as an example, we show how to securely split it into additive shares among all participating
parties with two-party MtA as a tool. Assume the number of signing parties {Pi} is n. Denote a call of
two-party MtA as MtA(a; b)→ (α;β), where one party takes a as input and obtains α as output, and the
other party takes b as input and obtains β as output. The values a, b, α, β are all secret, cannot be leaked
to the other party, s.t. α + β = ab. For n signatories of threshold ECDSA, the task is the conversion of
multiplication into addition, in a form of

(x1 + · · ·+ xn) · (γ1 + · · ·+ γn)→ (xγ)1 + · · ·+ (xγ)n.

It can be solved via two-party MtA as follows: each pair of parties Pi,Pj invoke two-party MtAs on the
cross-terms xiγj , xjγi, i.e.,

MtA(xi; γj)→ (αi,j ;βj,i), and MtA(γi;xj)→ (βi,j ;αj,i).

Finally, it yields the desired n-party multiplication-to-addition, with Pi holding the additive share (xγ)i =
xiγi+

∑
j ̸=i(αi,j+βi,j) mod q for xγ. Similar operations for generating (kγ)i can be done simultaneously.
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Overall, in multi-party threshold ECDSA, each pair of participants needs to invoke the two-party
MtA protocol in the presigning phase. It is clear that MtA protocol is a core building block, and thus
an efficient batch MtA protocol will be the key to improving the efficiency of threshold ECDSA.

In the following parts, we first present our batch MtA constructions, based on our batch range proofs.
Then we demonstrate the improvement of our scheme compared with the prior works, taking UC-secure
CGGMP20 [23,24], JL-based XAL+23 [61] and round-minimal DKLs24 [33] as three typical examples.

Table 4: Cost comparisons of MtA under various security levels λ = 128, 192, 256.

MtA Schemes Communication (KB) Computation (ms)
ℓ = 1 ℓ = 10 ℓ = 50 ℓ = 100 ℓ = 1 ℓ = 10 ℓ = 50 ℓ = 100

λ = 128

Paillier [38,51] 7.81 78.12 390.63 781.25 250 2556 12653 24583
Our Batch Paillier 7.81 39.88 182.38 360.5 260 1453 6825 13625

JL [61] 9.03 90.31 451.56 903.13 1280 12832 64180 128325
Batch JL [61] 9.03 64.44 310.69 618.5 1280 9332 46678 93246
Our Batch JL 9.03 35.47 152.97 299.84 1280 5269 22561 44142

λ = 192

Paillier [38,51] 18.77 187.68 938.38 1876.75 3366 33944 168355 336710
Our Batch Paillier 18.77 97.23 445.93 881.8 3394 19725 91013 180336

JL [61] 13.55 135.47 677.34 1354.69 7272 67931 363807 727985
Batch JL [61] 13.55 96.66 466.03 927.75 7272 49419 264587 529443
Our Batch JL 13.55 53.20 229.45 449.77 7272 29141 132293 265397

λ = 256

Paillier [38,51] 37 370 1850 3700 24740 241360 1206811 2413599
Our Batch Paillier 37 192.25 882.25 1744.75 24760 139989 651677 1279207

JL [61] 18.06 180.63 903.13 1806.25 14639 145638 728190 1456383
Batch JL [61] 18.06 128.88 621.38 1237 14639 106671 529668 1059188
Our Batch JL 18.06 70.94 305.94 599.69 14639 53718 265585 529615

6.1 Batch MtA Protocols

We first show batch Paillier-based MtA, which runs between Alice and Bob, and it can be easily extended
to a JL-based variant. Indeed, in many existing threshold ECDSA [38,23,24], MtA with checking is
required to prevent malicious parties from contributing incorrect inputs. Thus we also give the method
to realize checking.

Batch Paillier-based MtA Let (pkB , skB) be Bob’s key pair of Paillier encryption. Alice and Bob in-
voke the following protocol with their inputs {ai ∈ Zq}i∈[ℓ] and {bi ∈ Zq}i∈[ℓ], and receive {αi}i∈[ℓ], {βi}i∈[ℓ]

respectively s.t. αi + βi = ai · bi mod q for each i ∈ [ℓ].

1) Bob generates Ci ← Enc(pkB , bi) for each i ∈ [ℓ], then computes the batch proof Σenc[ℓ] for proving
each plaintext bi of Ci is within Zq, which may be replaced by Σlog∗ [ℓ] or Σenc-elg[ℓ] for checking
requirement, e.g., [24]. Bob sends ({Ci}i∈[ℓ], Σenc[ℓ]) to Alice.

2) Alice verifies the batch proof Σenc[ℓ]. Then she picks αi ←$ [0, q5] and computes Di = Cai
i ·Enc(pkB , αi)

for each i ∈ [ℓ]. Finally Alice generates the batch proof Σaff[ℓ] for proving ai ∈ Zq and αi ∈ Zq5 hold
of each Di, that may be replaced by Σafflog[ℓ], Σaff-g[ℓ] or Σaff-p[ℓ] for checking, e.g., [24]. Alice sends
({Di}i∈[ℓ], Σaff[ℓ]) to Bob, and outputs −αi mod q, ∀i ∈ [ℓ].

3) Bob verifies the proof Σaff[ℓ] and generates βi ← Dec(skB , Di). Finally, Bob outputs βi mod q, ∀i ∈ [ℓ].

The illustration of the above protocol is shown in Figure 1.

Batch JL-based MtA Replacing the Paillier encryption with JL encryption and utilizing our batch
range proofs for languages Requ[ℓ],RJLaff [ℓ] from Appendix C, we can construct another batch MtA
protocol from JL. Due to space constraints, we defer the construction and illustration (cf. Figure 3) of
our batch JL MtA to Appendix D.1.
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Benchmarking Results In Table 4, we give comparisons of Paillier-based MtA and our batched one
when computing ℓ = 1, 10, 50, 100 instances, as well as comparisons of JL-based MtA, batched variant
proposed by [61] and our batched one. About the batched construction of [61], we will present more
details in Subsect. 6.3.
Experimental Environment. Our benchmark is done using C language on CentOS Linux release
7.9.2009 (Core) with Intel(R) Xeon(R) CPU E5-2682 v4 @ 2.50GHz and 16GB of RAM. We utilize the
BIGNUM type and relevant functions provided by OpenSSL to implement optimized Paillier encryption
[48] and modified JL encryption [61].
Parameters. We benchmark the implementations under three parameter settings with security param-
eter λ = 128, 192, 256 respectively. For Paillier modulus N , it has logN = 3072, 7680, 15360 bits to
achieve the three security levels respectively, as recommended by NIST [9]. For the EC element bit-
length, it has log q = 256, 384 and 512 respectively when λ = 128, 192 and 256. We use SHA256,
SHA384, SHA512 to instantiate hash functions for λ = 128, 192, 256 respectively. For JL parameters, we
set (k, logNJ) = (1792, 7680), (2688, 11520) and (3584, 15360) respectively when λ = 128, 192, 256.

In the (batch) range-related ZK proofs, we set ε = t = log q, and the bounds B,B1, B2 are respectively
B = B1 = q, B2 = q5. These parameter settings are the same as those of [38,51,24] for fair comparisons.
The JL modulus NJ is set according to the requirement ε+ t+ logB2 ≤ k ≤ 1/4 logNJ − λ [15,61]. We
set larger JL modulus than [61] because we have larger statistical parameter ε and soundness parameter
t. For instance, ε = t = 256 for λ = 128 but ε = t = 40 in [61].
Comparison Results. When λ = 128, our batch Paillier improves Paillier-based MtA in bandwidth by
a factor of 1.96 to 2.17, in computation by a factor of 1.75 to 1.85 when ℓ ≥ 10. Our batch JL improves
JL-based MtA in bandwidth by a factor of 2.55 to 3.01, in computation by a factor of 2.44 to 2.91 when
ℓ ≥ 10. Moreover, our batch JL improves Xue et al’s batch JL [61] in bandwidth by a factor of 1.8 to
2.06, in computation by a factor of 1.8 to 2.11 when ℓ ≥ 10. When λ = 192 or 256, our batch schemes
enjoy similar improving factors as those of λ = 128.

In conclusion, our batch Paillier improves both the computational and communicational efficiency by
about 2×, our batch JL improves by about 3×. Compared with the existing batch JL-based MtA [61],
our batch technique improves by about 2×.

Table 5: Theoretical cost comparisons of the prior presigning protocols in [24, Table 1] and
our batched variants (with gray row-color). Let ℓ be the number of aggregated presignings, and n
be the number of participating parties. µ = logN,κ = log q. N2,N,G denote computing exponentiation
over ZN2 ,ZN ,G, respectively.

Schemes Communication Cost Computation Cost
µ κ N2 N G

Presigning - V1 54n 57n 33n 56n 12n
Batch Presigning - V1 (23 + 31/ℓ)n (17 + 40/ℓ)n (19 + 14/ℓ)n (36 + 20/ℓ)n (8 + 4/ℓ)n

Presigning - V2 51n 67n 33n 49n 29n
Batch Presigning - V2 (25 + 26/ℓ)n (31 + 36/ℓ)n (21 + 12/ℓ)n (33 + 16/ℓ)n (21 + 8/ℓ)n

Presigning - V3 30n 67n 19n 38n 26n
Batch Presigning - V3 (15 + 15/ℓ)n (38 + 29/ℓ)n (13 + 6/ℓ)n (26 + 12/ℓ)n (20 + 6/ℓ)n

6.2 Improvement on UC-secure CGGMP20 [24]

Canetti et al. [24] (an extension of [23]) proposed the first non-interactive threshold ECDSA scheme
with presigning / online mode, utilizing a variant with checking of Paillier-based MtA from [38,51].
More precisely, they presented three versions of presigning, we call them Presigning - V1, V2 and V3
respectively. The V1 and V2 versions are proven secure in the universally composable (UC) framework
[22], while the V3 version is lightweight and proven to be UC-secure when only logarithmically many
signatures are generated concurrently.

For each Paillier range proof utilized in the three versions, we have proposed the batched construction
in Subsect. 4.2. By utilizing them to realize batch presigning, the communicational and computational
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costs are both amortized over multiple pre-signatures. In Table 5, we compare the theoretical costs of
the existing single presigning and our batched variant for three versions. Specifically, the data of single
presigning for each version comes from [24, Table 1], and the amortized data for the corresponding
batched variant is calculated based on our Table 2. It shows that our amortization approach significantly
reduces the theoretical costs for all three presigning versions of [24]. At the same time, our batched
constructions merely replace the range proofs in the original constructions, thus maintaining the UC
security.

We benchmark the implementations of the two UC-secure versions (V1 and V2), as well as our
corresponding batched variants under the parameter settings of λ = 128. Table 6 shows that our batched
protocol improves V1 by a factor of 2.4 and 1.7, in bandwidth and computation respectively. And our
batched V2 improves V2 by a factor of 2.1 and 1.5, in bandwidth and computation respectively, for the
two-party case.

Table 6: Cost comparisons of threshold ECDSA in the two-party case with λ = 128.

Threshold ECDSA Type Communication (KB) Computation (ms)
ℓ = 1 ℓ = 10 ℓ = 100 ℓ = 1 ℓ = 10 ℓ = 100

CGGMP20 - V1 [24] Paillier 44.06 440.63 4406.25 1522 15132 151319
Batch CGGMP20 - V1 Batch Paillier 44.06 208.88 1857 1537 9533 90791
CGGMP20 - V2 [24] Paillier 42.44 424.38 4243.75 1419 14189 141876

Batch CGGMP20 - V2 Batch Paillier 42.44 228.63 2090.5 1419 9790 93638

DKLs24 [33] OT 99.4 994 9940 106.13 867.2 8671.13

DKLs24 with Paillier MtA Paillier [38,51] 25.13 251.25 2512.5 912 9119 91107
Batch Paillier 25.13 138.75 1275 922 5260 49462

DKLs24 with JL MtA
JL [61] 24.69 246.88 2468.75 3512 34769 344211

Batch JL [61] 24.69 195.13 1899.5 3520 26946 259244
Our Batch JL 24.69 97.81 829.06 3520 14296 124040

6.3 Improvement on JL-based XAL+23 [61]

Xue et al. [61] constructed MtA protocol from JL encryption. And they explored the JL vector commit-
ment to design a batch JL MtA. From Table 4 in Subsect. 6.1, we have compared their (batch) JL MtA
and ours. The result is we achieve an approximate improvement factor of 3× compared to their JL MtA,
and 2× compared to their batch JL MtA.

Furthermore, we also have an advantage in the setup phase. Their batch technique uses the vector
commitment, which increases the setup costs, since more ỹis are needed to generate. Instead, our batch
technique uses batch range proofs, without increasing the setup costs. Due to the limited space, we defer
the comparisons of theoretical costs for both JL MtA (cf. Table 7) and setup phase (cf. Table 8) to
Appendix D.2. Remark that the data of computational overhead for JL MtA in Table 1 and Table 7
is different, because we use Xue et al.’s counting method for Table 7, which will be explained in more
details in Appendix D.2.

When implementing threshold ECDSA using their batch JL MtA and ours, Table 6 shows that our
batch technique improves the bandwidth efficiency by a factor of 2.0 to 2.29, and the computational
efficiency by a factor of 1.88 to 2.09 when ℓ ≥ 10, compared with their batch technique. Remark that
we utilize the construction framework of threshold ECDSA derived from [33], which we will introduce in
Subsect. 6.4.

6.4 Improvement on bandwidth efficiency of round-minimal DKLs24 [33]

To the best of our knowledge, threshold ECDSA from Doerner et al. [33] is currently round-minimal
without honest-majority assumption. It is a three-round signing protocol, with the first two rounds
dedicated to the presigning phase. In Appendix E, we present Figure 5 to show their basic framework.
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More precisely, they realized MtA via the OT-extension protocol of Roy [57], with base OTs supplied by
the endemic OT protocol of Masny and Rindal [53]. It requires 49.7n KB total incoming communication
for each party, where n is the number of participating parties. To improve the bandwidth efficiency,
we replace its underlying MtA by our batch Paillier or JL MtA. By its modularity, the new threshold
ECDSA is still round-minimal, and requires significantly less communicational cost.

We instantiate the DKLs24 framework with (batch) Paillier and JL MtAs. The benchmarks were taken
over EC curve secp256k1 for 128 bits security. Latency is not taken into account, as these protocols have
the same communication rounds. The benchmarking results are presented in Table 6. The comparisons
of the JL-based constructions under DKLs24 framework have been analyzed in Subsect. 6.3. Compared
with OT-based scheme, when ℓ = 100, DKLs24 with our batch Paillier improves bandwidth efficiency by
7.8×, but is 5.7× slower in computation time. DKLs24 with our batch JL improves OT-based one by 12×
in bandwidth, but is 14× slower in computation. Table 6 also shows that under DKLs24 framework, the
construction with our batch Paillier MtA has about 1.8× lower bandwidth and computation overhead
than that with the original Paillier MtA from [38,51]. As analyzed in Appendix E, the storage cost for
each participant incurred by our batch technique is indeed very small (e.g., 12.5 KB for ℓ = 100 and
λ = 128).
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A Supplementary Materials of Lemma 2

In this section, we first give an illustration of the AT-LIEC-Tree of our multi-dimension forking lemma
in Appendix A.1, then provide the supplementary proofs of Lemma 2 in Appendix A.2.

A.1 The AT-LIEC-Tree of Lemma 2

To better illustrate the difference between the general forking lemma [12,17] and our multi-dimension
forking lemma, Figure 2 shows the the AT-Tree (Tree of Accepting Transcripts) in the general fork-
ing lemma and the AT-LIEC-Tree (Tree of Accepting Transcripts with Linearly-Independent Extended
Challenges) in our multi-dimension forking lemma.

The main difference with the general forking lemma [12,17] is that we require a certain number of
challenges to be linearly independent vectors, rather than just distinct ones. Generally, for a protocol of
(2µ+ 1) rounds with µ challenge vectors e1, · · · , eµ and (µ+ 1) responses, our multi-dimension forking
lemma enables the extracting of AT-LIEC-tree, where each node of depth i (< µ) in the tree has children
that are associated with linearly independent i-th extended challenges ei, and each path in the tree
denotes an accepting transcript. The extraction of such AT-LIEC-tree relies on the rewinding process
we devised in Algorithm 1 and Algorithm 2. In the next subsection, we provide the careful analysis of
its running time and successful probability.

A.2 Supplementary Proofs of Lemma 2

In this part, we analyze the expected running time of the emulator E proposed in Algorithm 1 and its
advantage AdvextP∗,E,A(λ).
Analysis of E’s running time. Firstly, we analyze the running time of E . For an algorithm A, denote
by T(A) the running time of A, and denote by E(T(A)) the expected running time of A. Clearly,
by Algorithm 1, we have E(T(E)) ≤ E(T(T1)) + E(T(χ)) + poly(λ), where poly(λ) is some polynomial
function in λ. Since χ is an efficient witness extraction algorithm, E(T(χ)) ≤ poly(λ) for some polynomial
function poly(λ). Thus,

E(T(E)) ≤ E(T(T1)) + poly(λ) + poly(λ). (9)

It remains to give an upper bound for E(T(T1)).
Fix i ∈ [µ], and fix e1, ..., ei−1. By Algorithm 2, for a freshly-chosen ei ←$ (X )di , the i-th tree-finder

Ti goes to lines 4-12 with the probability

ϵi = Pr[b = 1|(tr, b, tree)← T ⟨P∗(s),V⟩
i+1 (u, e1, ...., ei−1, ei, tree)], (10)

while with the probability (1− ϵi), it directly goes to line 14 in Algorithm 2. In the former case, denote
by #i the number of times that Ti runs the while loops in lines 5-11, where Ti invokes Ti+1 once each
time. Then we have

E(T(Ti)) ≤ (1 + ϵi · E(#i)) ·
(
E(T(Ti+1)) + poly(λ)

)
,

for some polynomial function poly(λ).
Next, we give an upper bound for E(#i), the expected number of times that Ti runs the while loops in

lines 5-11 in Algorithm 2. The loops begin with counter ctri = 1, increment ctri if the condition (b = 1) in
line 10 holds, and terminate when ctri = ni. In other words, the while loops terminate when the counter
ctri has been incremented ni−1 times. In each loop, ctri will be incremented if the condition (b = 1) in line
10 holds, whose probability is exactly the ϵi in (10). Therefore, the expected number of times that Ti runs
the while loops is E(#i) = (ni−1)/ϵi. We stress that the condition ((1, ei) ∈ span(Si)) in line 8 does not
determine whether or not ctri will be incremented. Then we have E(T(Ti)) ≤ ni ·

(
E(T(Ti+1))+poly(λ)

)
.

By recursion,
E(T(T1)) ≤ n1 ·

(
E(T(T2)) + poly(λ)

)
≤ n1 ·

(
n2 ·

(
E(T(T3)) + poly(λ)

)
+ poly(λ)

)
≤ · · · ≤

∏µ
i=1 ni · E(T(Tµ+1)) + µ ·

∏µ
i=1 ni · poly(λ).

Finally, by Algorithm 2, Tµ+1 runs the protocol ⟨P∗(s),V⟩(u) once through oracle access and runs the
efficient verification algorithm V(tr) once. Thus, E(T(Tµ+1)) ≤ poly(λ), for some polynomial function
poly(λ). So, we have

E(T(T1)) ≤ (µ+ 1) · (
∏µ

i=1 ni) · poly(λ). (11)
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Assuming that
∏µ

i=1 ni ≤ poly(λ), E(T(T1)) is a polynomial function in λ. This, together with (9), shows
that the proposed emulator E runs in expected polynomial time.
Analysis of E’s advantage. Now we analyze the upper bound of AdvextP∗,E,A(λ). The first tree-finder
T1 outputs (tr, b, tree) with b = 1 so that tr is an accepting transcript if the very first set of challenges
generated by all of the tree-finders produces an accepting transcript. This is exactly the probability that
P∗ successfully produces an accepting transcript in one run when interacting with V. Note that the
emulator E always outputs the tr output by T1 (no matter is-AT-LIEC is true or false). Therefore, we have

Pr [A(tr) = 1 ∧ tr is acc. |tr ← ⟨P∗(s),V⟩(u) ]
=Pr

[
A(tr) = 1 ∧ tr is acc.

∣∣(tr, w)← EO(u)] , and
Pr [A(tr) = 1 ∧ tr is non-acc. |tr ← ⟨P∗(s),V⟩(u) ]

=Pr
[
A(tr) = 1 ∧ tr is non-acc.

∣∣(tr, w)← EO(u)] .
Following (5), it implies that AdvextP∗,E,A(λ) is equal to∣∣∣∣∣∣∣∣∣∣

Pr [A(tr) = 1 ∧ tr is acc. |tr ← ⟨P∗(s),V⟩(u) ]
+Pr [A(tr) = 1 ∧ tr is non-acc. |tr ← ⟨P∗(s),V⟩(u) ]
−Pr

[
A(tr) = 1 ∧ tr is non-acc.

∣∣(tr, w)← EO(u)]
−Pr

[
A(tr) = 1 ∧

(tr is acc. ∧ (u,w) ∈ R)
∣∣(tr, w)← EO(u)]

∣∣∣∣∣∣∣∣∣∣
.

The above expression can be further simplified as

Pr
[
A(tr) = 1 ∧ tr is acc.

∣∣(tr, w)← EO(u)]
·
∣∣∣∣1− Pr

[
(u,w) ∈ R

∣∣∣∣ (tr, w)← EO(u)
∧ A(tr) = 1 ∧ tr is acc.

]∣∣∣∣ .
In the case of that tr is an accepting transcript (hence b = 1), for i ∈ [µ], Ti successfully collects ni

extended challenges (1, ei) associated with a common predecessor (e1, ..., ei−1) (cf. lines 4-12 in Algorithm
2). Moreover, if the boolean variable is-AT-LIEC has never been set to false (i.e., is-AT-LIEC still equals
true), these extended challenges are linearly independent. Consequently, in this case, the tree output by
the first tree-finder T1 constitutes an (n1, ...nµ)-AT-LIEC-tree. Then, the witness extraction algorithm
χ always extracts a valid witness w from tree so that (u,w) ∈ R. In formula, we have

Pr

[
(u,w) ∈ R

∣∣∣∣ (tr, w)← EO(u)
∧ A(tr) = 1 ∧ tr is acc.

]
=Pr

[
is-AT-LIEC = true

∣∣∣∣ (tr, w)← EO(u)
∧ A(tr) = 1 ∧ tr is acc.

]
.

Putting the above equations together, we get that

AdvextP∗,E,A(λ) = Pr
[
A(tr) = 1 ∧ tr is acc.

∣∣(tr, w)← EO(u)]
· Pr

[
is-AT-LIEC = false

∣∣∣∣ (tr, w)← EO(u)
∧ A(tr) = 1 ∧ tr is acc.

]
≤Pr

[
tr is acc. ∧ is-AT-LIEC = false

∣∣(tr, w)← EO(u)] .
It remains to give an upper bound for this probability.

Note that the only possible way that is-AT-LIEC could be set to false is through the condition check
((1, ei) ∈ span(Si)) in lines 8-9 in Algorithm 2. For a freshly-chosen ei ←$ (X )di in line 6, we estimate
the probability Pr [(1, ei) ∈ span(Si)] . Suppose that Si = {(1, e(η)i )}η∈[ctri], where the (1, e

(η)
i )’s are the

extended challenges leading to accepting transcripts that has been collected so far. We could represent
Si by a matrix whose rows are the (1, e

(η)
i )’s, namely

Si =


1 e

(1)
i,1 ... e

(1)
i,di

1 e
(2)
i,1 ... e

(2)
i,di

...
...

...

1 e
(ctri)
i,1 ... e

(ctri)
i,di

 ∈ (R)ctri×(1+di).
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Then span(Si) is the subspace generated by the rows of Si. Denote by rki the rank of Si. Clearly,
rki ≤ ctri < ni ≤ 1 + di. Without loss of generality, we assume that matrix Si is in its row-reduced
echelon form. (This means the rki leftmost columns of Si are linearly independent.) Therefore, for
each possible (1, ei,L) = (1, ei,1, ..., ei,rki−1) in (R)rki , there is exactly one ei,R = (ei,rki

, ..., ei,di
) in

(R)di−rki+1, such that (1, ei) = (1, ei,1, ..., ei,rki−1, ei,rki
, ..., ei,di

) ∈ span(Si). In our case, the chal-
lenge ei = (ei,1, ei,2, ..., ei,di

) is uniformly chosen from the subset (X )di of (R)di , thus for each possible
(1, ei,L) = (1, ei,1, ..., ei,rki−1) in {1}×(X )rki−1, there is at most one ei,R = (ei,rki , ..., ei,di) in (X )di−rki+1,
such that (1, ei) = (1, ei,1, ..., ei,rki−1, ei,rki , ..., ei,di) ∈ span(Si). This implies that

Pr [(1, ei) ∈ span(Si)] ≤
|X |rki−1

|X |di
≤ 1

|X |
, (12)

where the second inequality is due to rki < 1 + di.
Next, we count the number of times that the condition ((1, ei) ∈ span(Si)) in lines 8-9 in Algorithm 2

might be checked. By (11), T1 runs in expected polynomial time, i.e., E(T(T1)) ≤ p̃oly(λ) for polynomial
function

p̃oly(λ) = (µ+ 1) · (
∏µ

i=1 ni) · poly(λ). (13)

Then for any κ = κ(λ) (to be chosen later), by Markov inequality, it holds that

Pr
[
T(T1) ≤ κ · p̃oly(λ)

∣∣(tr, w)← EO(u)] > 1− 1/κ.

In the case of T(T1) ≤ κ · p̃oly(λ), the number of times that the condition check could be made is at
most κ · p̃oly(λ), and by (12) the probability that is-AT-LIEC could be set to false is at most 1/|X | each
time. By a union bound, we have

Pr

[
tr is acc.

∧ is-AT-LIEC = false

∣∣∣∣ (tr, w)← EO(u)
∧ T(T1) ≤ κ · p̃oly(λ)

]
≤ κ · p̃oly(λ)/|X |.

Taking all things together, we obtain

AdvextP∗,E,A(λ)

≤Pr
[
tr is acc. ∧ is-AT-LIEC = false

∣∣(tr, w)← EO(u)]
≤Pr

[
tr is acc.

∧ is-AT-LIEC = false

∣∣∣∣ (tr, w)← EO(u)
∧ T(T1) ≤ κ · p̃oly(λ)

]
+ Pr

[
T(T1) > κ · p̃oly(λ)

∣∣(tr, w)← EO(u)]
≤κ · p̃oly(λ)/|X |+ 1/κ.

To conclude, we choose κ =
√
|X |, then by (13), it yields

AdvextP∗,E,A(λ) ≤(p̃oly(λ) + 1)
/√
|X |

=(µ+ 1) · (
∏µ

i=1 ni) · poly(λ)
/√
|X |,

which is negligibly small under the assumption that
∏µ

i=1 ni ≤ poly(λ) and |X | ≥ 2ω(log λ). This completes
the analysis of the advantage and the proof of Lemma 2.

B Security Analysis of Batch Range Proofs for Paillier

In this section, we present the security analysis of the batch range proofs for Paillier in Section 4.2
and then extend them into more complex range-related languages. More precisely, we first present some
useful facts and claims in Appendix B.1, and then give the formal proofs of Theorem 1 and Theorem 2
in Appendix B.2 and Appendix B.3, respectively. Finally in Appendix B.4, we provide simple extension
approaches of constructing batch range proofs for more complex languages introduced in Subsect. 4.1.

26



B.1 Facts and Claims

Fact 1 Suppose that aN = bk (mod M), where k and N are coprime (∃ µ, ν ∈ Z s.t. kµ+Nν = 1) and
b ∈ Z∗

M . Then there exists b0 = aµ · bν ∈ Z∗
M such that bk0 = a (mod M).

Fact 2 Let c, d ∈ Z such that c ∤ d. There exists a prime power ab such that ab−1 | d, ab ∤ d and ab | c.

Fact 3 Let a, b←$ [0, R] and δ ←$ [0,K] be independently chosen. Then the distributions of a and b+ δ
are K/R statistically close.

Fact 4 Let Ñ be a product of two distinct primes. Let a←$ ZR·Ñ and b←$ Zϕ(Ñ). Then the distributions
of a (mod ϕ(Ñ)) and b are 1/R statistically close.

Claim. If we have that m∗ = m0 +
∑ℓ

i=1 miei ∈ [0, 2ε+tB] with each ei chosen uniformly at random
from a set of size 2t, then it holds that mi ∈ [−2ε+tB, 2ε+tB] for all i ∈ [ℓ] with the probability at least
1− 2ℓ

2t .

Proof: If there exists some i∗ such that mi∗ /∈ [−2ε+tB, 2ε+tB], we show it cannot happen with over-
whelming probability. As m∗ ∈ [0, 2ε+tB], we have

−m0 −
∑

i ̸=i∗ miei

mi∗
≤ ei∗ =

m∗ −m0 −
∑

i ̸=i∗ miei

mi∗

≤
2ε+tB −m0 −

∑
i ̸=i∗ miei

mi∗
,

assuming mi∗ > 0. That is, m∗ ∈ [0, 2ε+tB] holds if and only if ei∗ ∈ S = [s, s + 2ε+tB
mi∗

] with
s =

−m0−
∑

i ̸=i∗ miei

mi∗
. With the condition of mi∗ > 2ε+tB, the number of elements ei∗ satisfying m∗ ∈

[0, 2ε+tB] is |S| = 1 and thus the probability of ei∗ ∈ S holding for a random choice of ei∗ is at most
1/2t. The probability of mi∗ < −2ε+tB is also at most 1/2t. Thus the overall probability for each i ∈ [ℓ]
is at most 2l

2t .
We first provide the definition of the strong RSA assumption, as the upcoming claim is based on this
assumption.

Definition 9 (Strong RSA Assumption [8]). Let RSA modulus Ñ be the product of two κ/2-long
safe primes (2p̃+ 1), (2q̃ + 1) with p̃, q̃ primes, where κ is determined according to the security level λ.
Given a random element h in ZÑ , it is computationally hard to find x, e ̸= 1 such that xe = h (mod Ñ).

Claim. Given the Ring-Pedersen parameter pp = (Ñ , h1, h2), if we have hm̂i
1 hr̂i

2 = P∆E
i (mod Ñ), it

holds that ∆E | m̂i and ∆E | r̂i with overwhelming probability based on the strong RSA assumption.

Proof: Denote the predicate ¬extract = (∆E ∤ m̂i)∨(∆E ∤ r̂i), and let Ñ , h2 be our strong RSA challenge,
where h2 is a random quadratic residue in Z∗

Ñ
, of which the order is ϕ(Ñ)/4 = p̃q̃ with overwhelming

probability. We show that if ¬extract occurs with noticeable probability, then there is an algorithm that
can break the strong RSA challenge with noticeable probability.

Let h1 = hχ
2 (mod Ñ) for a random χ←$ [0, Ñ2]. It is not hard to see that the distribution of these

values is indistinguishable from the real one with sufficiently high probability. It implies

hr̂i+χm̂i

2 = P∆E
i (mod Ñ). (14)

If ∆E ∤ (r̂i +χm̂i), let δ = gcd((r̂i +χm̂i),∆E), and δ0 = (r̂i +χm̂i)/δ, δ1 = ∆E/δ > 1, then we can find
µ, ν s.t. µδ0 + νδ1 = 1 over Z. From equation (14), we have hδ0

2 = P δ1
i (mod Ñ), thus h2 = hµδ0+νδ1

2 =

[hν
2P

µ
i ]

δ1 (mod Ñ). Denote x = hν
2P

µ
i (mod Ñ), (x, δ1) is a solution to the strong RSA challenge with

xδ1 = h2 (mod Ñ).
Consider the case that ∆E | (r̂i + χm̂i) but ∆E ∤ m̂i. Write χ = χ0 + χ1p̃q̃, then r̂i + χm̂i =

r̂i + χ0m̂i + χ1m̂ip̃q̃. Since ∆E ∤ m̂ip̃q̃ where p̃, q̃ are primes, by Fact 2, there exists a prime power
ab(a ≥ 2) such that (ab | ∆E)∧ (ab−1 | m̂ip̃q̃)∧ (ab ∤ m̂ip̃q̃). If ∆E | (r̂i +χm̂i), then ab | (r̂i +χm̂i). This
also implies ab−1 | r̂i. Set a0 = (r̂i+χ0m̂i)/a

b−1 and a1 = m̂ip̃q̃/a
b−1. We have that a0+χ1a1 = 0 (mod a)

but a1 ̸= 0 (mod a), thus χ1 is uniquely determined modulo a. On the other hand, conditioned on the
Prover’s view, χ1 has full entropy, as hχ

2 = hχ0

2 (mod Ñ). That is, assuming ∆E ∤ m̂i, the probability of
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∆E | (r̂i + χm̂i) is at most 1
a + negl(λ) ≤ 1

2 + negl(λ). Finally we have the probability of ¬extract is at
most the probability of solving the strong RSA challenge divided by (1/2− negl(λ)), which is negligible
overall. In more detail, it is

Pr[¬extract] = Pr[∆E | (r̂i + χm̂i) ∧ ¬extract]
+ Pr[∆E ∤ (r̂i + χm̂i) ∧ ¬extract]

= Pr[∆E | (r̂i + χm̂i) ∧∆E ∤ m̂i] + Pr[sRSA]
≤ (1/2 + negl(λ)) · Pr[∆E ∤ m̂i] + Pr[sRSA]
≤ (1/2 + negl(λ)) · Pr[¬extract] + Pr[sRSA].

Claim. Given the Ring-Pedersen parameter pp = (Ñ , h1, h2), if we have h
m̂i,j

1 h
r̂i,j
2 = 1 (mod Ñ), then it

holds that m̂i,j = r̂i,j = 0 with overwhelming probability based on the strong RSA assumption.

Proof: let Ñ , h2 be our strong RSA challenge, where h2 is a random quadratic residue in Z∗
Ñ

. Let h1 = hχ
2

for a random χ, then we have h
χ·m̂i,j+r̂i,j
2 = 1 (mod Ñ). Consider the case of b = χ · m̂i,j + r̂i,j ̸= 0,

let a > 1 be any number that is co-prime to b. We have (h
a−1 (mod b)
2 )a = h2 (mod Ñ), which finds

x = h
a−1 (mod b)
2 as the a-th root of h2, breaking the strong RSA assumption. Thus b = 0 holds. If

m̂i,j ̸= 0, then χ is uniquely determined, while χ has full entropy conditioned on the Prover’s view. That
is, m̂i,j = r̂i,j = 0 holds with overwhelming probability, based on the strong RSA assumption.

B.2 Proof of Theorem 1

Theorem 1 (ZKAoK for Renc[ℓ]). Let ℓ ≤ poly(λ) be the number of ciphertexts we considered. Let
ε, t ≥ λ be chosen according to the security level. Then the proposed protocol Σenc[ℓ] for relation Renc[ℓ]
has completeness and honest verifier zero-knowledge (HVZK). Moreover, it has computational witness-
extended emulation under the strong RSA assumption.

Proof:

• Completeness. The protocol may reject a valid statement only if m0 > 2ε+tB−ℓ·2tB which happens
with probability at most ℓ/2ε. By choosing ε ≥ λ and ℓ ≤ poly(λ), the probability ℓ/2ε is negligible.

• Honest-verifier zero-knowledge. It suffices to construct a PPT simulator Senc such that, for a
given instance (B, {Ci}i∈[ℓ]), it produces a simulated proof which is distributed statistically close to
the real one generated by Penc interacting with the honest verifier Venc. Given the randomness e

consumed by Venc, the simulator Senc first picks


m∗ ←$ [0, 2ε+tB]

r∗ ←$ [0, 2ε+tBÑ ]

ρ∗ ←$ Z∗
N , ri ←$ [0, BÑ ] ∀i ∈ [ℓ],

then computes

Pi = hri
2 (mod Ñ) for each i ∈ [ℓ] and sets C0, P0 according to the verification equations in (7), i.e.,{

C0 = (1 +N)m
∗
(ρ∗)N ·

∏
i∈[ℓ] C

−ei
i (mod N2)

P0 = hm∗

1 hr∗

2 ·
∏

i∈[ℓ] P
−ei
i (mod Ñ).

From Facts 3 and 4, the distribution of m∗ or r∗ is ℓ/2ε close to the real distribution, and each Pi is 1/B
close to the real distribution. Overall, the real and simulated distributions are at most 2 · ℓ

2ε +ℓ · 1B ≈
3ℓ
2ε

far apart, which is negligible.
• Computational witness-extended emulation. By our multi-dimension forking lemma (i.e., Lemma

2), it suffices to construct a witness extractor χenc that succeeds in extracting a witness from an AT-
LIEC-tree with overwhelming probability. Here the AT-LIEC-tree we considered has depth µ = 1 and
n1 = (ℓ+ 1) leaves. Given (B, {Ci}i∈[ℓ]) and (ℓ+ 1) accepting transcripts

(C0, {Pi}i∈[0,ℓ], e
(η),m∗(η), r∗(η), ρ∗(η))ℓη=0

which share the same (C0, {Pi}i∈[0,ℓ]) but have linearly independent extended challenge vectors (1, e(η)) =
(1, e

(η)
1 , ..., e

(η)
ℓ ), χenc extracts the witness {mi ∈ [−2ε+tB, 2ε+tB], ρi}i∈[ℓ] as follows.
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(1) Since the extended challenge vectors (1, e(η))η∈[0,ℓ], are linearly independent, the following matrix
is invertible:

E :=


1 e

(0)
1 ... e

(0)
ℓ

1 e
(1)
1 ... e

(1)
ℓ

...
...

...

1 e
(ℓ)
1 ... e

(ℓ)
ℓ

 ∈ ({0, 1}t)(ℓ+1)×(ℓ+1). (15)

The extractor χenc computes the determinant of E, namely ∆E ∈ Z, and the adjoint matrix of E,
namely D := E∗ ∈ Z(ℓ+1)×(ℓ+1). This process could be done efficiently. By the property of adjoint
matrix, it holds that D ·E = ∆E · Iℓ+1 over Z where Iℓ+1 denotes the identity matrix of dimension
ℓ+ 1. We note that D ∈ Z(ℓ+1)×(ℓ+1), namely, each entry of D is an integer.

(2) For each i ∈ [ℓ], let d⊤
i = (di,0, · · · , di,ℓ) be the i-th row of D (ignoring its 0-th row), then

d⊤
i ·E = (0, ..., 0︸ ︷︷ ︸

#=i

,∆E, 0, ..., 0︸ ︷︷ ︸
#=ℓ−i

). (16)

The extractor χenc computes m̂i =
∑ℓ

η=0 di,η · m∗(η) and r̂i =
∑ℓ

η=0 di,η · r∗(η), as well as ρ̂i =∏ℓ
η=0(ρ

∗(η))di,η (mod N). By the verification equations, for each η ∈ [0, ℓ], it holds that

P0 ·
∏

j∈[ℓ] P
e
(η)
j

j = hm∗(η)

1 hr∗(η)

2 mod Ñ and (17)

C0 ·
∏

j∈[ℓ] C
e
(η)
j

j = (1 +N)m
∗(η)

(ρ∗(η))N mod N2. (18)

By aggregating (17) using d⊤
i as exponents, we obtain that

∏ℓ
η=0(P0 ·

∏
j∈[ℓ] P

e
(η)
j

j )di,η

=
∏ℓ

η=0(h
m∗(η)

1 hr∗(η)

2 )di,η (mod Ñ)
(19)

It is clear that the right-hand side of equation (19) is equal to hm̂i
1 hr̂i

2 . The left-hand side is equal
to P∆E

i . The above equality is due to equation (16). Thus, it holds that hm̂i
1 hr̂i

2 = P∆E
i (mod Ñ).

Similarly, by aggregating the equation (18) using d⊤
i as exponent, we obtain that (1+N)m̂i ρ̂i

N =
C∆E

i (mod N2). That is, we get two equations

hm̂i
1 hr̂i

2 = P∆E
i (mod Ñ), (1 +N)m̂i ρ̂i

N = C∆E
i (mod N2)

(3) Following Claim B.1, we have that ∆E | m̂i and ∆E | r̂i based on the strong RSA assumption.
Define mi = m̂i/∆E, and ri = r̂i/∆E. For each i ∈ [ℓ], the extractor χenc has extracted mi, ri s.t.
hmi
1 hri

2 = Pi (mod Ñ). Define m0 = m∗(0) −
∑ℓ

i=1 mie
(0)
i , r0 = r∗(0) −

∑ℓ
i=1 rie

(0)
i , it is clear that

hm0
1 hr0

2 = P0 (mod Ñ) from equation (17). As m∗(0) ≤ 2ε+tB, we have mi ∈ [−2ε+tB, 2ε+tB] for
each i ∈ [ℓ] with the overwhelming probability of 1− 2ℓ

2t , following Claim B.1.
As ∆E is co-prime to N with overwhelming probability, mi = m̂i ·∆−1

E (mod N) holds. As we
have

ρ̂i
N =

(
Ci · (1 +N)−mi

)∆E
(mod N2),

the extractor χenc can extract ρi s.t. ρ∆E
i = ρ̂i (mod N2), following Fact 1. Since mi ∈ [−2ε+tB, 2ε+tB]

holds, the witness (mi, ρi) s.t. (1 +N)miρNi = Ci (mod N2) has been extracted for each i ∈ [ℓ].
The extraction is efficient, and valid witnesses {mi ∈ [−2ε+tB,
2ε+tB], ρi}i∈[ℓ] are successfully extracted from a (µ = 1, n1 = (ℓ+1))-AT-LIEC-tree with overwhelming
probability. Moreover, note that n1 = ℓ+ 1 ≤ poly(λ), and the size of X is 2t, which is exponentially
large in λ with t ≥ λ. Therefore, by Lemma 2, the witness-extended emulation holds.

B.3 Proof of Theorem 2

Theorem 2 (ZKAoK for Raff [ℓ]). Let ℓ ≤ poly(λ) be the number of ciphertexts we considered. Let
ε, t ≥ λ be chosen according to the security level. Then the proposed protocol Σaff[ℓ] for relation Raff[ℓ]
has completeness and HVZK. Moreover, it has computational witness-extended emulation under the strong
RSA assumptions.
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Proof: The proofs of completeness and HVZK properties are similar with those of Theorem 1, so we
omit those. By our multi-dimension forking lemma, it suffices to construct a witness extractor χaff that
succeeds in extracting a witness from an AT-LIEC-tree with overwhelming probability. Here the AT-
LIEC-tree we considered has depth µ = 1 and n1 = (ℓ+ 1) leaves.

Given an instance (B1, B2, {Ci, Di ∈ ZN2}i∈[ℓ]) and (ℓ+ 1) accepting transcripts {Πη}ℓη=0, where

Πη = (D0, P̄0, {Pi, P
′
i , P̄i}i∈[ℓ], e

(η),m∗(η), r∗(η), m̄∗(η), r̄∗(η), ρ∗(η))

and m∗(η) = {m∗(η)
i }i∈[ℓ], r

∗(η) = {r∗(η)i }i∈[ℓ], sharing the same (D0, P̄0, {Pi, P
′
i , P̄i}i∈[ℓ]) but having

linearly independent extended challenge vectors (1, e(η)) = (1, e
(η)
1 , ..., e

(η)
ℓ ), χaff extracts the witness

mi ∈ [−2ε+tB1, 2
ε+tB1], m̄i ∈ [−2ε+tB2, 2

ε+tB2], ρi

for each i ∈ [ℓ] as follows.

(1) To compute the matrix D same as the Step (1) of Theorem 1’s proof. That is, for each i ∈ [ℓ], let
d⊤
i = (di,0, · · · , di,ℓ) be the i-th row of D (ignoring its 0-th row), then d⊤

i ·E = (0, ..., 0︸ ︷︷ ︸
#=i

,∆E, 0, ..., 0︸ ︷︷ ︸
#=ℓ−i

),

where ∆E is the determinant of E, as equation (15).
(2) For each i, j ∈ [ℓ], the extractor χaff computes{

m̂i,j =
∑ℓ

η=0 di,η ·m
∗(η)
j , r̂i,j =

∑ℓ
η=0 di,η · r

∗(η)
j

m̂i =
∑ℓ

η=0 di,η · m̄∗(η), r̂i =
∑ℓ

η=0 di,η · r̄∗(η)

as well as ρ̂i =
∏ℓ

η=0(ρ
∗(η))di,η (mod N). Next, we will show that the following equations hold for

each i ∈ [ℓ] 
m̂i,j = r̂i,j = 0, ∀j ∈ [ℓ] ∧ j ̸= i

h
m̂i,i

1 h
r̂i,i
2 = P∆E

i (mod Ñ), hm̂i
1 hr̂i

2 = P̄∆E
i (mod Ñ)

C
m̂i,i

i · (1 +N)m̂i(ρ̂i)
N = D∆E

i (mod N2).

(20)

By the verification process of Σaff[ℓ], for each η ∈ [0, ℓ], it holds that

D0

∏
j∈[ℓ] D

e
(η)
j

j =

(∏
j∈[ℓ] C

m
∗(η)
j

j

)
(1 +N)m̄

∗(η)

(ρ∗(η))N (21)

modulo N2 and

P ′
j · P

e
(η)
j

j = h
m

∗(η)
j

1 h
r
∗(η)
j

2 (mod Ñ) ∀j ∈ [ℓ] (22)

P̄0 ·
∏

j∈[ℓ] P̄
e
(η)
j

j = hm̄∗(η)

1 hr̄∗(η)

2 (mod Ñ). (23)

By aggregating equation (23) using d⊤
i as exponents, it is easy to obtain that hm̂i

1 hr̂i
2 = P̄∆E

i (mod Ñ).
Then, by aggregating equation (22) using d⊤

i as exponents, we obtain that

∏ℓ
η=0

(
P ′
j · P

e
(η)
j

j

)di,η

=
∏ℓ

η=0

(
h
m

∗(η)
j

1 h
r
∗(η)
j

2

)di,η

(mod Ñ) (24)

for each j ∈ [ℓ]. The right-hand side of equation (24) is h
m̂i,j

1 h
r̂i,j
2 , while the left-hand side is{

P∆E
i , j = i

1, ∀j ∈ [ℓ] ∧ j ̸= i.
As h

m̂i,j

1 h
r̂i,j
2 = 1 (mod Ñ), we have m̂i,j = r̂i,j = 0 for j ̸= i following

Claim B.1.
By aggregating the equation (21) using d⊤

i as exponents, we get

D∆E
i =

∏ℓ
η=0

(∏
j∈[ℓ] C

m
∗(η)
j

j

)di,η

· (1 +N)m̂i(ρ̂i)
N

=
(∏

j∈[ℓ] C
m̂i,j

j

)
· (1 +N)m̂i(ρ̂i)

N

= C
m̂i,i

i · (1 +N)m̂i(ρ̂i)
N (mod N2).
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(3) Combining Claim B.1 and equations in (20), we have that ∆E | m̂i,i, ∆E | r̂i,i, ∆E | m̂i, ∆E | r̂i
with overwhelming probability. Define mi = m̂i,i/∆E, ri = r̂i,i/∆E, m̄i = m̂i/∆E and r̄i = r̂i/∆E.
For each i ∈ [ℓ], the extractor χaff has extracted mi, ri, m̄i, r̄i such that hmi

1 hri
2 = Pi, hm̄i

1 hr̄i
2 =

P̄i (mod Ñ). The values m′
i, r

′
i, m̄0, r̄0 used for masking can also be extracted via

m′
i = m

∗(0)
i − e

(0)
i mi, r′i = r

∗(0)
i − e

(0)
i ri ∀i ∈ [ℓ],

m̄0 = m̄∗(0) −
∑

i∈[ℓ] e
(0)
i m̄i,

r̄0 = r̄∗(0) −
∑

i∈[ℓ] e
(0)
i r̄i.

They satisfy h
m′

i
1 h

r′i
2 = P ′

i and hm̄0
1 hr̄0

2 = P̄0 from equations (22) and (23).
As m

∗(0)
i ≤ 2ε+tB1, ∀i ∈ [ℓ] and m̄∗(0) ≤ 2ε+tB2, we have

mi ∈ [−2ε+tB1, 2
ε+tB1], m̄i ∈ [−2ε+tB2, 2

ε+tB2] (25)

for each i ∈ [ℓ] from Claim B.1. As ∆E is co-prime to N with overwhelming probability, mi =
m̂i,i ·∆−1

E (mod N), m̄i = m̂i ·∆−1
E (mod N) hold. From the equation

ρ̂i
N =

(
Di · C−mi

i (1 +N)−m̄i
)∆E

(mod N2)

the extractor χaff can extract ρi s.t. ρ∆E
i = ρ̂i (mod N2), following Fact 1. Since the range conditions

in (25) hold, the witness (mi, m̄i, ρi) s.t. Cmi
i · (1 +N)m̄i(ρi)

N = Di (mod N2) has been extracted
for each i ∈ [ℓ].

The extraction is efficient, and valid witnesses are successfully extracted with overwhelming probability.
Therefore, by Lemma 2, the witness-extended emulation holds.

B.4 Extension to other languages of Subsect. 4.1
In this part, we show the following extensions:
• Sigma-protocol Σenc[ℓ] for the language Renc[ℓ] in Subsect. 4.2 can be extended to the Sigma-protocols

Σlog∗ [ℓ] and Σenc-elg[ℓ] for the languages Rlog∗ [ℓ] and Renc-elg[ℓ], respectively.
• Sigma-protocol Σaff[ℓ] for the language Raff[ℓ] in Subsect. 4.2 can be extended to the Sigma-protocols

Σafflog[ℓ], Σaff-g[ℓ] and Σaff-p[ℓ] for the languages Rafflog[ℓ], Raff-g[ℓ] and Raff-p[ℓ] respectively.
Based on Σenc[ℓ], the batch range proof Σlog∗ [ℓ] can be constructed by adding X0 = gm0 in the

first round and verifying X0 ·
∏

i∈[ℓ] X
ei
i

?
= gm

∗ . Also, Σenc[ℓ] can be extended to the batch range proof
Σenc-elg[ℓ], by adding

A0 = ga0
1 , B0 = gm0

1 ga0
2 , a∗ = a0 +

∑
i∈[ℓ] eiai (mod q)

to the proof and verifying A0 ·
∏

i∈[ℓ] A
ei
i

?
= ga

∗

1 and B0 ·
∏

i∈[ℓ] B
ei
i

?
= gm

∗

1 ga
∗

2 in addition.
To extend Σaff[ℓ] into Σafflog[ℓ], we additionally need to prove that mi is also the discrete logarithm

of group element Xi. It is sufficient for the Prover to add X ′
i = gm

′
i in the first round and for the Verifier

to additionally check X ′
i ·X

ei
i

?
= gm

∗
i , ∀i ∈ [ℓ]. This constitutes the Sigma-protocol Σafflog[ℓ] for Rafflog[ℓ].

For the more complex relation Raff-g[ℓ] with additional ciphertexts {Fi}i∈[ℓ], the Prover needs to prove
that each m̄i is also the plaintext of Fi under public key N1. On the basis of Σafflog[ℓ], the Prover adds
a random Paillier ciphertext of m̄0 in the first round, i.e., F0 = (1 +N1)

m̄0(ρ̄0)
N1 (mod N2

1 ), and adds
ρ̄∗ = ρ̄0 ·

∏
i∈[ℓ](ρ̄i)

ei

(mod N1) in the third round. Accordingly, the Verifier needs to additionally check that F0 ·
∏

i∈[ℓ] F
ei
i

?
=

(1+N1)
m̄∗

(ρ̄∗)N1 (mod N2
1 ). In this way, we get a batch proof Σaff-g[ℓ] for Raff-g[ℓ]. To construct the batch

proof Σaff-p[ℓ] for the language Raff-p[ℓ], the Prover replaces X ′
i = gm

′
i of Σafflog[ℓ] with a random Paillier

ciphertext of m′
i, namely E′

i = (1 + N1)
m′

i(ρ̃′i)
N1 (mod N2

1 ). Then replying ρ̃∗i = ρ̃′i · (ρ̃i)ei (mod N1)

allows the Verifier to check E′
i · E

ei
i

?
= (1 +N1)

m∗
i (ρ̃∗i )

N1 (mod N2
1 ) for each i ∈ [ℓ].

C More Details on Batch Range Proofs for JL Encryption

In this section, we present the constructions and security analysis of batch range proofs for JL encryp-
tion. More precisely, we give two range proofs in Appendix C.1 and Appendix C.2, which respectively
correspond to the two relations Requ[ℓ] and RJLaff [ℓ] introduced in Section 5.
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C.1 Batch Proof Σequ[ℓ] for Language Requ[ℓ]

In this part, we present the concrete construction of Σequ[ℓ] in Appendix C.1, give some useful assump-
tions, facts and claims in Appendix C.1 and a formal security analysis in Appendix C.1.

Construction The batch proof Σequ[ℓ] allows the Prover to demonstrate that the plaintext of each JL
ciphertext is within a given range, simultaneously corresponds to the opening of the corresponding JL
commitment.

• Input: The common input is (B, {Ci, Pi}i∈[ℓ]) and pkJ, ppJ. Pequ holds the witness {mi ∈ [0, B]}i∈[ℓ]

with each one satisfying Pi = ỹ2
kmi · h̃2kri (mod ÑJ) and Ci = ymi · hρi (mod NJ) for some ri ∈

ZÑJ
, ρi ∈ ZNJ .

• The Σ-protocol Σequ[ℓ] for Requ[ℓ] is described as follows.

(1) Pequ → Vequ: Pequ picks


m0 ←$ [0, 2ε+tB]

ρ0 ←$ [0, 2ε+tNJ]

r0 ←$ [0, 2ε+tÑJ],

computes
{
C0 = ym0 · hρ0 (mod NJ)

P0 = ỹ2
km0 · h̃2kr0 (mod ÑJ),

and

sends (C0, P0) to Vequ.
(2) Vequ → Pequ: Vequ sends e←$ ([0, 2t − 1])ℓ to Pequ.

(3) Pequ → Vequ: Pequ computes


m∗ = m0 +

∑
i∈[ℓ] eimi

ρ∗ = ρ0 +
∑

i∈[ℓ] eiρi

r∗ = r0 +
∑

i∈[ℓ] eiri,

and sends (m∗, ρ∗, r∗) to Vequ.

• Verification: Vequ receives (C0, P0,m
∗, ρ∗, r∗) from Pequ, and accepts if m∗ ∈ [0, 2ε+tB] and the

following equations hold: {
C0 ·

∏
i∈[ℓ] C

ei
i

?
= ym

∗ · hρ∗
(mod NJ)

P0 ·
∏

i∈[ℓ] P
ei
i

?
= ỹ2

km∗ · h̃2kr∗ (mod ÑJ).
(26)

If the verification succeeds, Vequ is convinced that mi ∈ [−2ε+tB, 2ε+tB] holds for each i ∈ [ℓ].

Assumptions, Facts and Claims The security of the batch proof Σequ[ℓ] is based on the strong JL
and k-QR assumptions, which are also used in the single JL range proof [61]. Here, we give the definitions
of the k-QR and strong JL assumptions, and some facts for the JL modulus, as well as a claim that will
be used in the proofs of Theorem 3 and 4.

Definition 10 (k-QR Assumption). Let NJ be the JL modulus. The k-QR assumption asserts that

AdvkQR
A = |Pr[A(NJ, x) = 1|x←$ QR2k ]− Pr[A(NJ, x) = 1|x←$ QNR]|

is negligible in λ, for any PPT adversary A.

Definition 11 (Strong JL Assumption [61]). Let NJ be the JL modulus. Given a random element
h ∈ QR2k , it is computationally hard to find x, e ̸= 1 such that xe = h (mod NJ).

Fact 5 Let NJ = P̄ Q̄ = (2kp′ + 1)(2q′ + 1) be a JL modulus, we have

1. JNJ(−1) = −1.
2. QR2k is the cyclic subgroup of Z∗

NJ
of order p′q′.

3. A random element from QR2k is its generator with probability (1− 1/p′)(1− 1/q′).
4. Finding a non-trivial square root (i.e., ̸= ±1) is equivalent to factoring the modulus NJ.

Claim. Given the public parameter ppJ = (ÑJ, h̃, ỹ, k) of the JL commitment scheme, if we have a ring
element Pi ∈ ÑJ satisfying ỹ2

km̂i · h̃2k r̂i = P∆E
i (mod ÑJ), then it holds that ∆E | m̂i and ∆E | r̂i with

overwhelming probability, based on the k-QR (Definition 10) and strong JL assumptions (Definition 11).

Proof: Denote the predicate ¬extract = (∆E ∤ m̂i) ∨ (∆E ∤ r̂i). Let ÑJ, h̃ be our challenge of the strong
JL problem, where ÑJ = (2kp̃′ + 1)(2q̃′ + 1) is a JL modulus and h̃ ∈ QR2k has the order of p̃′q̃′ with
overwhelming probability. We show that if ¬extract occurs with noticeable probability, then there is an
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algorithm that can break the strong JL assumption with noticeable probability, finding a solution x, e ̸= 1
such that xe = h̃ (mod ÑJ).

Let ỹ = h̃χ (mod ÑJ) for a random χ ←$ [0, Ñ2
J ]. The only difference is the generation of ỹ (i.e.,

ỹ ∈ QNR or ỹ ∈ QR2k). The committer could not find this difference due to the k-QR assumption. It
implies

h̃2k(r̂i+χm̂i) = P∆E
i (mod ÑJ). (27)

Let ∆E = 2v · ρ for some v ≥ 0 and odd number ρ. It distinguishes two cases:
1. v ≥ k: The equation (27) can be rewritten as

[h̃r̂i+χm̂i · P−2v−kρ
i ]2

k

= 1 (mod ÑJ). (28)

Let a = r̂i + χm̂i, b = 2v−kρ and c = k ≥ 0.
2. v < k: The equation (27) can be rewritten as

[h̃2k−v(r̂i+χm̂i) · P−ρ
i ]2

v

= 1 (mod ÑJ). (29)

Let a = 2k−v(r̂i + χm̂i), b = ρ and c = v ≥ 0.
The above two cases both lead to the following equation

[h̃a · P−b
i ]2

c

= 1 (mod ÑJ). (30)

It falls into the following cases:
1. c = 0: h̃a · P−b

i = 1 (mod ÑJ).
2. c = 1: Based on the Fact 5(4), we have h̃a · P−b

i = ±1 (mod ÑJ). h̃a · P−b
i = −1 (mod ÑJ) would

never happen since JÑJ
(−1) = −1 and JÑJ

(h̃) = JÑJ
(Pi) = 1. Thus we have h̃a · P−b

i = 1 (mod ÑJ).

3. c ≥ 2: Based on the Fact 5(4), we have [h̃a ·P−b
i ]2

c−1

= ±1 (mod ÑJ). [h̃a ·P−b
i ]2

c−1

= −1 (mod ÑJ)

would never happen with the same reason as case (2). Thus we have [h̃a · P−b
i ]2

c−1

= 1 (mod ÑJ),
which could be analyzed via recursion.

Overall, all of the above three cases lead to h̃a = P b
i (mod ÑJ) from the equation (30). The next analysis

is divided into two cases:
- Case 1 - b ∤ a: Let β = gcd(b, a). There exists efficient algorithm to find f, g such that β = fb + ga.

Then we have
h̃β = h̃fb+ga = h̃fbP gb

i = [h̃fP g
i ]

b (mod ÑJ).

As p̃′, q̃′ are set to be primes, we have that β is co-prime to p̃′q̃′ with overwhelming probability. Thus
h̃ = [h̃fP g

i ]
b/β (mod ÑJ) holds. Due to b ∤ a, we have b > β and b/β > 1. Finally, in this case, we find

a solution of the strong JL problem, that is xe = h̃ (mod ÑJ) with x = h̃fP g
i and e = b/β > 1.

- Case 2 - b | a: For the case of v ≥ k, we have a = r̂i + χm̂i, b = 2v−kρ; for the other case of v < k, we
have a = 2k−v(r̂i + χm̂i), b = ρ. When b | a holds, these two cases both imply that 2vρ | 2k(r̂i + χm̂i),
that is ∆E | r̂i+χm̂i. In this case, the predicate ¬extract is equal to ∆E ∤ m̂i. The reason is, if ∆E | m̂i,
then ∆E | r̂i due to ∆E | r̂i + χm̂i, contradictory to the predicate.

Write χ = χ0 + χ1p̃
′q̃′, then r̂i + χm̂i = r̂i + χ0m̂i + χ1m̂ip̃

′q̃′. Since ∆E ∤ m̂ip̃
′q̃′ where p̃′, q̃′ are

primes, by Fact 2 in Appendix B.1, there exists a prime power ιj(ι ≥ 2) such that

(ιj | ∆E) ∧ (ιj−1 | m̂ip̃
′q̃′) ∧ (ιj ∤ m̂ip̃

′q̃′).

Due to ∆E | (r̂i+χm̂i), ιj | (r̂i+χm̂i) holds. Then ιj−1 | m̂i implies ιj−1 | r̂i. Set ι0 = (r̂i+χ0m̂i)/ι
j−1

and ι1 = m̂ip̃
′q̃′/ιj−1. We have that ι0 +χ1 · ι1 = 0 (mod ι) but ι1 ̸= 0 (mod ι) due to ιj ∤ m̂ip̃

′q̃′, thus
χ1 is uniquely determined modulo ι. On the other hand, conditioned on the Prover’s view, χ1 has full
entropy, as h̃χ = h̃χ0 (mod ÑJ). That is, assuming the predicate ¬extract happens, the probability of
∆E | (r̂i + χm̂i) (i.e., b | a) is at most 1

ι + negl(λ) ≤ 1
2 + negl(λ).

Finally we have the probability of ¬extract is at most the probability of solving the strong JL problem
or breaking k-QR assumption divided by (1/2− negl(λ)), which is negligible overall. In more detail, it is

Pr[¬extract] = Pr[b ∤ a ∧ ¬extract] + Pr[b | a ∧ ¬extract]
= Pr[k-QR] + Pr[sJL] + Pr[∆E | (r̂i + χm̂i) ∧ ¬extract]
≤ Pr[k-QR] + Pr[sJL] + (1/2 + negl(λ)) · Pr[¬extract].
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Security Analysis

Theorem 3 (ZKAoK for Requ[ℓ]). Let ℓ ≤ poly(λ) be the number of ciphertexts or commitments we
considered. Let ε, t ≥ λ be chosen according to the security level. Then the proposed protocol Σequ[ℓ] has
completeness and HVZK. Moreover, it has computational witness-extended emulation under the strong
JL and k-QR assumptions.

Proof: The analysis of completeness and HVZK is straightforward, so we only show the computa-
tional witness-extended emulation. Given an instance (B, {Ci, Pi}i∈[ℓ]) and (ℓ+ 1) accepting transcripts
(C0, P0, e

(η),m∗(η), r∗(η), ρ∗(η))ℓη=0, χequ extracts the witness as follows.

(1) To compute the matrix D, that is same as the Step (1) of the security proof in Appendix B.2. For
each i ∈ [ℓ], let d⊤

i = (di,0, · · · , di,ℓ) be the i-th row of D.
(2) The extractor χequ computes m̂i =

∑ℓ
η=0 di,η ·m∗(η), r̂i =

∑ℓ
η=0 di,η · r∗(η) and ρ̂i =

∑ℓ
η=0 di,η ·ρ∗(η).

The verification shows thatC0 ·
∏

j∈[ℓ] C
e
(η)
j

j = ym
∗(η) · hρ∗(η)

(mod NJ)

P0 ·
∏

j∈[ℓ] P
e
(η)
j

j = ỹ2
km∗(η) · h̃2kr∗(η)

(mod ÑJ),

for each η ∈ [0, ℓ]. By aggregating the above equations using d⊤
i as exponents, it is easy to get

ym̂i · hρ̂i = C∆E
i (mod NJ) and

ỹ2
km̂i · h̃2k r̂i = P∆E

i (mod ÑJ).
(31)

(3) From Claim C.1 in Appendix C.1 and ỹ2
km̂i · h̃2k r̂i = P∆E

i (mod ÑJ), we have that ∆E | m̂i and
∆E | r̂i, based on the strong JL and k-QR assumptions. Since ÑJ = (2kp̃′ + 1)(2q̃′ + 1) is a JL
modulus, we have that the order of Pi is p̃′q̃′, from items (2) and (3) of the Fact 5. As ∆E is co-prime
to p̃′q̃′ with overwhelming probability, we have that

ỹ2
kmi · h̃2kri = Pi (mod ÑJ)

with mi = m̂i/∆E and ri = r̂i/∆E. For each i ∈ [ℓ], the extractor χequ has extracted mi, ri as the
opening of the commitment Pi. Define m0 = m∗(0)−

∑ℓ
i=1 mie

(0)
i , r0 = r∗(0)−

∑ℓ
i=1 rie

(0)
i , it is clear

that ỹ2km0 · h̃2kr0 = P0 (mod ÑJ) from the verification equations in (26). As m∗(0) ≤ 2ε+tB, we have
that mi ∈ [−2ε+tB, 2ε+tB] for each i ∈ [ℓ] from Claim B.1 (c.f. Appendix B.1).

From ym̂i · hρ̂i = C∆E
i (mod NJ) and m̂i = mi∆E, we get

[Ciy
−mi ]∆E = [hρi ]∆E (mod NJ) for some ρi. (32)

As we have h ∈ QR2k , from items (2) and (3) of the Fact 5 (c.f. Appendix C.1), its order is p′q′ with
probability (1 − 1/p′)(1 − 1/q′). As p′, q′ are set to be primes, we have that ∆E is co-prime to p′q′

with overwhelming probability. In this case, ρi is some value satisfying ρi = ρ̂i ·∆−1
E (mod p′q′), and

∆E in the equation (32) can be eliminated, as Ci = ymihρi (mod NJ). As a result, the extracted mi

is the plaintext of Ci.
Since mi ∈ [−2ε+tB, 2ε+tB] holds, the witness mi as the plaintext of Ci and the opening of Pi has

been extracted for each i ∈ [ℓ].

The valid witnesses {mi ∈ [−2ε+tB, 2ε+tB]}i∈[ℓ] are successfully extracted, so the witness-extended
emulation holds.

C.2 Batch Proof ΣJLaff [ℓ] for Language RJLaff [ℓ]

In this part, we present the batch range proof for RJLaff [ℓ]. As introduced in Section 2.3, the modified JL
encryption can be easily converted into a JL commitment. If the Prover does not know the secret key
information of pkJ, then pkJ = (NJ, h, y, k) can be regarded as the public parameters of JL commitment
scheme from the Prover’s view.

Additionally, given multiple bases y1, y2, · · · , yℓ, the JL commitment scheme can be further ex-
tended into a vector commitment scheme, where the commitment of a vector m = {m1, · · · ,mℓ} is
P =

∏
i∈[ℓ] y

2kmi
i · h2kr (mod ÑJ).
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Intuitively, the homomorphically-generated ciphertext Di in relation RJLaff [ℓ] does resemble a vector
commitment in form. Taking Ci as another base with JNJ(Ci) = 1, Pi = D2k

i (mod NJ) is a vector
commitment to the vector (mi, m̄i) under the bases (Ci, y, h). Thus the relation RJLaff [ℓ] can be rewritten
as

RJLaff [ℓ] =

 ((B1, B2,
{Xi, Ci, Pi}i∈[ℓ]),
{mi, m̄i, ρi}i∈[ℓ])

∣∣∣∣∣∣
∀ i ∈ [ℓ],mi ∈ [0, B1], m̄i ∈ [0, B2]

Pi = C2kmi
i · y2

km̄i · h2kρi mod NJ
Xi = gmi

 .

We give a Σ-protocol for the relation RJLaff [ℓ].

• Input: The common input is (B1, B2, {Xi, Ci, Pi}i∈[ℓ]) and ppJ = (NJ, y, h, k). PJLaff holds the witness
{mi ∈ [0, B1], m̄i ∈ [0, B2],
ρi}i∈[ℓ].

• The Σ-protocol ΣJLaff [ℓ] for RJLaff [ℓ] is described as follows.

(1) PJLaff → VJLaff : PJLaff picks
{
m′

i ←$ [0, 2ε+tB1] ∀i ∈ [ℓ]

m̄0 ←$ [0, 2ε+tB2], ρ0 ←$ [0, 2ε+tNJ]
and computes X ′

i = gm
′
i , ∀i ∈

[ℓ],

P0 =
(∏

i∈[ℓ] C
2km′

i
i

)
· y2km̄0 · h2kρ0 (mod NJ).

PJLaff sends (P0, {X ′
i}i∈[ℓ]) to VJLaff .

(2) VJLaff → PJLaff : VJLaff sends e←$ ([0, 2t − 1])ℓ to PJLaff .
(3) PJLaff → VJLaff : PJLaff computes{

m∗
i = m′

i + eimi, ∀i ∈ [ℓ]

m̄∗ = m̄0 +
∑

i∈[ℓ] eim̄i, ρ
∗ = ρ0 +

∑
i∈[ℓ] eiρi.

PJLaff sends ({m∗
i }i∈[ℓ], m̄

∗, ρ∗) to VJLaff .
• Verification: VJLaff receives the proof

Π = (P0, {X ′
i}i∈[ℓ], {m∗

i }i∈[ℓ], m̄
∗, ρ∗)

from PJLaff , and accepts if m∗
i ∈ [0, 2ε+tB1], ∀i ∈ [ℓ], m̄∗ ∈ [0, 2ε+tB2] and the following equations hold:X ′

i ·X
ei
i

?
= gm

∗
i , ∀i ∈ [ℓ]

P0 ·
∏

i∈[ℓ] P
ei
i

?
=

(∏
i∈[ℓ] C

2km∗
i

i

)
y2

km̄∗
h2kρ∗ mod NJ

(33)

If the verification succeeds, VJLaff is convinced that mi ∈ [−2ε+tB1, 2
ε+tB1] and m̄i ∈ [−2ε+tB2, 2

ε+tB2]
hold for each i ∈ [ℓ].

Theorem 4 (ZKAoK for RJLaff
[ℓ]). The protocol ΣJLaff [ℓ] has completeness and HVZK. Moreover, it

has computational witness-extended emulation under the strong JL and k-QR assumptions.

Fig. 3: Our JL-based batch MtA protocol.

Alice(ppA, {ai}i∈[ℓ]) Bob(pkB , skB , {bi}i∈[ℓ])

Ci ← JL.enc(pkB , bi), ∀i ∈ [ℓ]

Ai = gai , ∀i ∈ [ℓ] {Ci, Pi}i∈[ℓ], Σequ[ℓ] Pi ← JL.commit(ppA, bi), ∀i ∈ [ℓ]

Di = Cai
i · JL.enc(pkB , αi), ∀i ∈ [ℓ] {Di, Ai}i∈[ℓ], ΣJLaff [ℓ] βi ← JL.dec(skB , Di), ∀i ∈ [ℓ]

αi = −αi mod q, ∀i ∈ [ℓ] βi = βi mod q, ∀i ∈ [ℓ]

Proof: For completeness and HVZK property, the security proofs are avoided as they are very simi-
lar with those in Theorem 1’s proof. Next, we show that ΣJLaff [ℓ] has computational witness-extended
emulation under the strong JL and k-QR assumptions.
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Given an instance (B1, B2, {Pi}i∈[ℓ]) and (ℓ+1) accepting transcripts (P0, {X ′
i}i∈[ℓ], e

(η),m∗(η), m̄∗(η), ρ∗(η))ℓη=0

with m∗(η)

= {m∗(η)
i }i∈[ℓ] , χJLaff extracts the witness (mi ∈ [−2ε+tB1, 2

ε+tB1],
m̄i ∈ [−2ε+tB2, 2

ε+tB2], ρi) for each i ∈ [ℓ] as follows.
(1) To compute the matrix D, that is same as the Step (1) of Theorem 1’s proof. Let d⊤

i = (di,0, · · · , di,ℓ)
be the i-th row of D.

(2) The extractor χJLaff computes


m̂i,j =

∑ℓ
η=0 di,η ·m

∗(η)
j , ∀j ∈ [ℓ]

m̂i =
∑ℓ

η=0 di,η · m̄∗(η)

ρ̂i =
∑ℓ

η=0 di,η · ρ∗(η)
without modulus. It holds that

P∆E
i =

(∏
j∈[ℓ] C

2km̂i,j

j

)
· y2km̂i · h2kρ̂i (mod NJ) (34)

and gm̂i,j =

{
1, ∀j ∈ [ℓ] ∧ j ̸= i

X∆E
i , j = i.

For each i ∈ [ℓ], the above equations are generated by aggregating

the verification equations in (33) using d⊤
i as exponents, similarly with the Step (2) of Theorem 3’s

proof.
(3) Assuming that Cj = ysj · htj (mod NJ) for random sj , tj for each j ∈ [ℓ]. Then we have

P∆E
i = y2

k(
∑

j sjm̂i,j+m̂i) · h2k(
∑

j tjm̂i,j+ρ̂i) (mod NJ)

from equation (34). From Claim C.1 in Appendix C.1, ∆E must divide
∑

j sjm̂i,j+m̂i and
∑

j tjm̂i,j+
ρ̂i. Due to the randomness of si, ti conditioned on the Prover’s view, ∆E must divide each m̂i,j , m̂i, ρ̂i.
Define mi,j = m̂i,j/∆E. As ∆E is co-prime to prime q with overwhelming probability, then we have

gmi,j =

{
1, j ∈ [ℓ], j ̸= i

Xi, j = i.

As constructed in the Algorithm 2 of the multi-dimension forking lemma (Lemma 2), a malicious
Prover P∗ is invoked after each successful sampling of a challenge vector e(η), expecting it to provide
a valid corresponding transcript, e.g., m∗(η). That is, the matrices E,D are randomly unknown for
the Prover P∗’s view before the last invocation (i.e., when η = ℓ). Thus, the probability of P∗’s
outputs m

∗(η)
j satisfying

∑ℓ
η=0 di,η ·m

∗(η)
j /∆E ̸= 0 over Z but

∑ℓ
η=0 di,η ·m

∗(η)
j /∆E = 0 (mod q) for

each i ̸= j is at most 1
q . This implies that mi,j =

∑ℓ
η=0 di,η ·m

∗(η)
j /∆E = 0 for ∀j ∈ [ℓ] ∧ j ̸= i with

overwhelming probability. Define mi = mi,i, m̄i = m̂i/∆E and ρi = ρ̂i/∆E. For each i ∈ [ℓ], χJLaff

has extracted mi, m̄i in range satisfying Pi = C2kmi
i · y2km̄i · h2kρi and Xi = gmi .

The valid witnesses are successfully extracted, so the witness-extended emulation holds.

D Comparisons of XAL+23 [61] and Ours
In this section, we first present our batch JL-based MtA protocol in Appendix D.1. Then we compare
Xue et al.’s (batch) MtA constructions [61] and ours under their counting method.

D.1 Our Batch JL-based MtA
Let (pkB , skB) be Bob’s key pair of JL encryption and ppA be the public parameter of JL commitment
generated by Alice.
1) Bob generates the ciphertext Ci ← JL.enc(pkB , bi) and commitment Pi ← JL.commit(ppA, bi) for each

i ∈ [ℓ], then compute the batch proof Σequ[ℓ] to prove that the plaintext of each Ci is within Zq and
corresponds to the opening of each Pi, Bob sends ({Ci, Pi}i∈[ℓ], Σequ[ℓ]) to Alice.

2) Alice verifies the batch proof Σequ[ℓ]. Then she picks αi ←$ [0, q5] and computes Di = Cai
i ·JL.enc(pkB , αi)

for each i ∈ [ℓ]. For checking the correctness of the input ai, Alice also generates Ai = gai for each i ∈
[ℓ]. Finally Alice generates the batch proof ΣJLaff [ℓ] to prove ((q, q5, {Ai, Ci, D

2k

i }i∈[ℓ]), {ai, αi, ρi}i∈[ℓ])
∈ RJLaff [ℓ] where ρi is the randomness used in encrypting αi. Alice sends ({Di, Ai}i∈[ℓ], ΣJLaff [ℓ]) to
Bob, and outputs −αi mod q,
∀i ∈ [ℓ].

3) Bob verifies the proof ΣJLaff [ℓ] and outputs βi ← JL.Dec(skB , Di)
mod q, ∀i ∈ [ℓ].

The illustration of the above protocol is shown in Figure 3.
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Table 7: Cost comparisons of JL-based MtA protocol by utilizing the counting method of
[61, Table 2]. µ and E correspond to one element and one full exponentiation in ZNJ , respectively.

MtAs Communication (µ) Computation (E)
Alice Bob Alice Bob

JL [61] 3.5 6.5 5 6
Batch JL [61] 3.5 3.5 + 3/ℓ 4 + 1/ℓ 4 + 2/ℓ
Our Batch JL 1 + 2.5/ℓ 2 + 4.5/ℓ 1.5 + 3.5/ℓ 2.5 + 3.5/ℓ

Table 8: Cost comparisons of setup phase in JL-based MtA.
Setup Communication (µ) Computation (E)

JL [61] 12n+ 4 8n+ 6
Batch JL [61] 6(ℓ+ 1)n+ 2ℓ+ 2 (4ℓ+ 4)n+ 2ℓ+ 4
Our Batch JL 12n+ 4 8n+ 6

D.2 Comparison

Following Xue et al.’s counting method, the computational cost of JL-based MtA is measured in terms
of full exponentiation operations over ZNJ . For example, the JL encryption algorithm computes C =
ymhρ (mod NJ). If we have the plaintext m ∈ Zq, this is counted as (1+log q/ logNJ) full exponentiation
operations.

With this counting method, we present Table 7 and Table 8. We note that the data for XAL+23 comes
from [61, Table 2, 3]. Table 7 shows that our batch JL scheme improves JL-based MtA of XAL+23 [61]
in both communication and computation by a factor of ≈ 3, additionally improves their batch JL by a
factor of ≈ 2. These improving factors under this kind of counting are similar with those in Table 1. Table
8 shows that our batch technique does not require to increase the setup costs, has better performance
than their batch JL scheme.

Fig. 4: Threshold ECDSA functionality FECDSA

• KGen: On receiving KGen(1λ) from all parties P1, · · · ,Pn

1. Pick a random x ←$ Zq and compute X = gx. Set (x,X) as an ECDSA key pair and store
(G, g, q, x,X).

2. Send X as the public key to all P1, · · · ,Pn and ignore any further call to KGen.
• Sign: On receiving Sign(sid,msg) from all parties, if KGen was already called and sid has not been

used before:
1. Sample k ←$ Zq and compute R = (rx, ry) = gk.
2. Compute r = rx mod q, σ = k−1(H(msg) + rx)) mod q.
3. Send (r, σ) to all parties P1, · · · ,Pn and store (Complete, sid) in the memory.

E Threshold ECDSA and The Framework of DKLs24 [33]

In this section, we first formally introduce the ECDSA algorithm and give the ideal functionality of
threshold ECDSA. Then, we present a construction framework proposed by DKLs24 [33] and simply
describe the batch presigning based on DKLs24. Finally, we present more related works of threshold
ECDSA.

Let (G, g, q) denote the group-generator-order tuple associated with the curve of ECDSA signatures.
ECDSA scheme [29] makes use of the hash function H : {0, 1}∗ → Zq and works as follows.
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1. KGen(1λ)→ (x,X): choose x←$ Zq, set x as the private key, then compute X = gx and set X as the
public key.

2. Sign(x,msg)→ (r, σ): choose k ←$ Zq and compute R = (rx, ry) = gk. Set r = rx mod q and compute
σ = k−1 · (H(msg) + rx) mod q. Output (r, σ) as the signature.

3. Verify(X, (r, σ)) → b: compute (r′x, r
′
y) = R′ = (gH(msg) · Xr)σ

−1 , output b = 1 if and only if r =
r′x mod q.

Figure 4 presents the ideal functionality FECDSA for threshold ECDSA.
In Figure 5, we give a construction framework of threshold ECDSA derived from DKLs24 [33], utilizing

MtA as a black-box module. In the end of presigning phase, each party Pi gets (xγ)i and (kγ)i, which are
respectively the additive shares of xγ and kγ. After receiving the message msg to be signed, each party
can compute si = γiH(msg)+(xγ)i ·r mod q, where r is assembled by

∏
i∈[n] g

ki , each of which is disclosed
by each party in the presigning phase. Then in the online phase, after each one broadcasts ((kγ)i, si) via

one round of communication, the ECDSA signature is finally generated, σ =

∑
i∈[n] si∑

i∈[n](kγ)i
(mod q).

The batched version. By replacing each MtA with batch MtA, we can easily obtain a two-round batch
presigning protocol. In the end of batch presigning, each party Pi gets additive shares {(γ(j)x)i, (γ

(j)k(j))i}j∈[ℓ]

where ℓ is the batch size, such that∑
i∈[n](γ

(j)x)i = γ(j)x,
∑

i∈[n](γ
(j)k(j))i = γ(j)k(j).

For one instance of online signing, one secret nonce k(j) and masking nonce γ(j) are consumed. Therefore,
these additive shares can be used to generate ℓ ECDSA signatures.
Storage Cost. For the usage of online phase, each party Pi is required to store 4ℓ elements in Zq, which
are

{r(j), γ(j)
i , (γ(j)x)i, (γ

(j)k(j))i}j∈[ℓ].

When the number of batched presigning instances is ℓ = 100, the storage cost is 12.5 KB for λ = 128.
More related works of threshold ECDSA. Castagnos et al. [25] replaced Paillier encryption with
Castagnos and Laguillaumie (CL) encryption [27], followed by subsequent works [64,30,26] to improve
efficiency. In CL-based threshold ECDSA, range proofs can be avoided since CL’s message space matches
the ECDSA signature space, however other ZK proofs, such as correctness proofs of CL encryption are
required. Abram et al. [6] used pseudorandom correlation generators (PCG) [18,19] to build threshold
ECDSA. Their bandwidth compleixty is 1 ∼ 2 orders of magnitude smaller than those based on Paillier,
CL or JL encryption, however, their amortized computational cost is expensive. There are schemes that
consider cheater identification, e.g., [23,26,60]. Canetti et al. [23] and Castagnos et al. [26] can only
abort the threshold signing protocol after identifying a cheater. Wong et al. [60] provided self-healing
property: after finding malicious behaviors, it allows continuation as long as a threshold number of honest
parties remains. If replacing their MtA with our batch MtA, the properties of cheater identification and
self-healing still remain intact.
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Fig. 5: The basic framework of multi-party threshold ECDSA proposed by DKLs24 [33].
Define x =

∑n
i=1 xi mod q as the secret key of ECDSA, k =

∑n
i=1 ki mod q as the secret nonce selected

for each signature and γ =
∑n

i=1 γi mod q as another secret nonce for masking k. The generated shares
(xγ)i, (kγ)i are the additive shares of xγ, kγ respectively. All MtA calls are done simultaneously, com-
pleted within two rounds of communication.

Party Pi(xi, ki, γi), i ∈ [n] Each other party Pj(xj , kj , γj), j ∈ [n] \ {i}

MtA

xi (resp. ki)

αi,j (resp. α̂i,j)

γj

βj,i (resp. β̂j,i)

MtA

γi

βi,j (resp. β̂i,j)

xj (resp. kj)

αj,i (resp. α̂j,i)

(xγ)i = γixi +
∑n

j=1,j ̸=i(αi,j + βi,j) mod q (xγ)j = γjxj +
∑n

i=1,i ̸=j(βj,i + αj,i) mod q

(kγ)i = γiki +
∑n

j=1,j ̸=i(α̂i,j + β̂i,j) mod q (kγ)j = γjkj +
∑n

i=1,i ̸=j(β̂j,i + α̂j,i) mod q

Online phase for a message msg

si = γiH(msg) + (xγ)i · r mod q Broadcast (kγ)j , sj sj = γjH(msg) + (xγ)j · r mod q

σ =

∑
j∈[n] sj∑

j∈[n](kγ)j
mod q
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