
The Sting Framework: Proving the Existence of Superclass Adversaries

Mahimna Kelkar
Cornell Tech

Yunqi Li
UIUC

Nerla Jean-Louis
UIUC

Carolina Ortega Pérez
Cornell Tech

Kushal Babel
Cornell Tech

Andrew Miller
UIUC

Ari Juels
Cornell Tech

Abstract
We introduce superclass accountability, a new notion of ac-
countability for security protocols. Classical notions of ac-
countability typically aim to identify specific adversarial play-
ers whose violation of adversarial assumptions has caused
a security failure. Superclass accountability describes a dif-
ferent goal: to prove the existence of adversaries capable of
violating security assumptions.

We develop a protocol design approach for realizing super-
class accountability called the sting framework (SF). Unlike
classical accountability, SF can be used for a broad range of
applications without making protocol modifications and even
when security failures aren’t attributable to particular players.

SF generates proofs of existence for superclass adversaries
that are publicly verifiable, making SF a promising spring-
board for reporting by whistleblowers, high-trust bug-bounty
programs, and so forth.

We describe how to use SF to prove the existence of ad-
versaries capable of breaching the confidentiality of practical
applications that include Tor, block-building infrastructure in
web3, ad auctions, and private contact discovery—as well as
the integrity of fair-transaction-ordering systems. We report
on two end-to-end SF systems we have constructed—for Tor
and block-building—and on experiments with those systems.

1 Introduction

Imagine that an intelligence agency has developed a powerful
new internal service called TorBreaker. TorBreaker violates
the network security assumptions that underpin Tor. It traces
Tor traffic and identifies the websites a target client is visiting.
In other words, TorBreaker breaks Tor’s privacy.

A whistleblower inside the intelligence agency has black-
box access to TorBreaker. She doesn’t know whether or not
TorBreaker has been used yet to violate users’ privacy. Ei-
ther way, she wants to prove to the world the existence of an
adversary that can break Tor. What can she do?

This hypothetical example illustrates the focus of our work.

In general, security proofs for cryptographic or security
protocols rely on a set of assumptions about the capabilities
or behavior of an adversary. In this work, we advance a broad
framework for proving violation of these assumptions.

In multi-party computation protocols [5], for example, a
standard assumption is that an adversary corrupts less than t
of n players. Protocols making use of trusted execution envi-
ronments (TEEs) rely on (typically strong) assumptions about
the isolation of the TEE from adversarial processes [60]. Pro-
tocols enforcing network-layer privacy, such as Tor, assume
limited adversarial control of the network [40].

What happens, however, when these assumptions are bro-
ken? Most protocol designs have all-or-nothing security. This
means that violation of a modeling assumption then results in
catastrophic failure: A complete loss of confidentiality or exe-
cution integrity. Moreover, such failures are often silent—that
is, unobservable by protocol participants. This is especially
the case with confidentiality violations, which can leak infor-
mation with no visible effect on a system’s functionality.

Several approaches have been proposed to mitigate catas-
trophic protocol failures caused by inaccurate adversarial
modeling [35, 36]. An especially popular one is accountabil-
ity [26, 49]. Broadly speaking, a security protocol is account-
able if, when the protocol fails because of misbehavior from
players, it is possible to determine (or even prove the identities
of) at least some misbehaving players.

Traitor-tracing (e.g., [8, 9, 19]) is an extensively studied
form of accountability used in practice [37] to identify players
that collude to create pirate decryption capabilities. Account-
ability can also, however, involve identifying corrupted play-
ers in BFT consensus [20, 56, 67], demonstrating subverted
setup of cryptographic protocols [1], identifying unauthorized
access or handling of data [24, 31, 48], and so forth.

Traitor-tracing schemes in particular have seen some adop-
tion in practice. But they have proven fragile in the wild [37]
(and often only allow accountability / tracing by a trusted
entity with a secret tracing key). Beyond traitor tracing, ac-
countable protocols have seen little uptake in practice.

Current approaches to accountability have two notable

1

drawbacks. First, they require purpose-designed protocols,
i.e., protocols that include accountability mechanisms by de-
sign. For example, traitor-tracing systems assign different sets
of decryption keys to different players. Thus accountability
mechanisms cannot easily be added to existing systems. Sec-
ond, nearly all accountability protocols specifically assume
that failures can be attributed to corrupted players. They are
inapplicable in the common case where security failures are
instead the result of faulty protocols or bugs and there may
not exist identifiable corrupted players.

Our goal in this work is to introduce an alternative frame-
work for accountability that addresses the limitations of prior
schemes and is more broadly and practically deployable.

1.1 Superclass Accountability
We introduce a new, broader notion of accountability that
we call superclass accountability. Our goal is not to blame
corrupted players or instances of misbehavior by corrupted
players, as in standard notions of accountability [49]. Instead,
our goal is system-level accountability—meaning proof that a
system’s security model has been violated, in the sense that an
adversary exists with capabilities outside the model. We refer
to such an adversary as a superclass adversary, meaning that
it is more powerful than defined by system’s security model.

Suppose a protocol π is designed for security against ad-
versaries in a class A. Achieving superclass accountability
with respect to π and some superclass A∗ ⊃ A then means
the following. If the adversary A happens to be within the
class A∗ \A instead, then it is possible to generate a proof of
this fact that will convince a third party verifier Judge. The
proof does not need to specify the capabilities of A , nor which
players are involved in realizing A .

A superclass adversary A could be one that has corrupted
players more aggressively than expected (e.g., corrupted t +1
players when security assumes at most t players). But it could
equally well be that A can exploit a system or protocol bug,
e.g., can break the isolation of a TEE through a side-channel
attack—and may not correspond to any particular player.

Superclass accountability is weaker in one sense than stan-
dard accountability: It does not aim to blame corrupted play-
ers. But it is at the same time stronger, in that it can cap-
ture a broader range of system failures, and can moreover
work directly with existing systems. It is consequently more
amenable to practical application than standard notions of
accountability, as we show in this work.

1.2 Sting Framework (SF)
To realize superclass accountability for a range of protocols,
we introduce an approach that we call the Sting Framework
(SF). As an approach to proving the existence of superclass
adversaries, SF has several key properties: (1) SF is applica-
ble to a wide range of protocols; (2) SF can in many cases

Prover P

Sting Enclave

Judge

subversion
oracle O

target application

1 Stinger S

4 “Generate proof", s

5 Proof of existence of O

2 Stinger S

6 Proof of existence of O

3 Leaked data s

Figure 1: Basic sting protocol flow for proving a superclass
adversary’s ability to violate target-application confidentiality.
A prover P interacts with the Sting Enclave to obtain a stinger
S. P then sends it to a target application, and uses a subver-
sion oracle O to retrieve a secret s derived from S (such as
decrypting S). Importantly, the secret s should only be known
to the target application and the Sting Enclave. Therefore,
when the user sends s back to the Sting Enclave, if s is correct,
it would prove to the Sting Enclave that there exists some
subversion oracle O. The Sting Enclave can then generate an
attestation that O exists, which P can send to other parties.

generate publicly verifiable proofs; and (3) SF requires no
modification to existing protocols.

SF assumes that a superclass adversary A is realizable
through an interface to abuse a target protocol, called a sub-
version oracle O. A subversion oracle could represent any
of a number of ways that a system is exploited: It could be
a paid dark-market service, a private service stood up by an
adversary, or a functionality created by a white-hat hacker
to prove the existence of an exploit. SF may be applied to a
given O independently of how O is realized by adversaries.

Figure 1 depicts the general flow for proving the existence
of a superclass adversary that violates a confidentiality prop-
erty. (SF can also be applied to attacks on protocol integrity.)

In SF for confidentiality, a user / prover P who has access
to O seeks to generate a proof of the existence of O—and
consequently of a superclass adversary A . To do so, P relies
on a trusted third party (TTP). For the applications we propose
in this paper, this trusted third party will be a TEE—we will
refer to it as the Sting Enclave. However, the TTP could also
be a standalone trusted entity or an MPC committee.

The key idea in SF is for P to use the TTP to generate
a specially crafted protocol input S called a “stinger”1. S
contains encrypted data s to which no one should have access
given the existence only of “expected” adversaries A ∈ A. P
then uses O to gain access to the secret s, which P then uses
to prove the existence of a superclass adversary A ̸∈ A.

A simplified application example helps illustrate the idea.

Example 1 (SF for private contact-discovery). Consider a
private contact-discovery service Contact. It enables users
to discover contacts in their contact lists that are also fellow
users of a messaging app such as Signal [55]. The security

1The term “sting” in SF refers to the idea of a “sting operation”.

2

model for Contact assumes that adversaries cannot directly
read private contact lists. Call this class of adversaries A.

Suppose, however, that Contact has a critical vulnerability
and someone has created a dark-market subversion oracle O
that leaks users’ contact lists. Thus there exists a superclass
adversary A ̸∈ A that can directly learn private contact lists.

A user / prover P with access to O can prove O’s existence
as follows (with a number of omitted details). P obtains a
stinger S from a Sting Enclave consisting of a secret contact
list s that is input—in encrypted form—into Contact. P calls
O to learn s. P then reveals s to the Sting Enclave—proving
her ability to extract s.

An attestation from the Sting Enclave that P can learn s
is itself a proof of existence of a superclass adversary A ̸∈ A
because the existence of O implies such an A . (More precisely,
A ∈ A∗ \A for an adversarial superclass A∗ that depends on
details of the SF protocol.)

Observe that the standard notion of accountability is not
applicable here. There may be no specific player(s) executing
the protocol for Contact that can be blamed for the existence
of O. Moreover, if adversaries make only clandestine use of
O, there may be no visible evidence that Contact is broken—
and thus no way for honest users outside dark markets even
to know that an accountability protocol should be invoked.

1.3 Target Applications
In this work, we show how SF can provide superclass
accountability—with no application-level modification—for
several popular applications. We implement and experimen-
tally validate SF systems for two of them:
• Tor: We introduce an SF system for proving the existence of

an adversary that can break Tor, in the sense of identifying
the website visited by a targeted Tor client. An example
application of our SF system would be publicly verifiable
whistleblowing in the case of, e.g., an intelligence agency
attacking Tor successfully [65].

• Block-building: Construction of blocks in Ethereum is in-
creasingly performed by entities, known as builders, who
must enforce confidentiality on input transactions (to pre-
vent arbitrage attacks). TEEs are a recently adopted ap-
proach to securing builder infrastructure. We show SF en-
ables proof of confidentiality failures in TEE-based builder
infrastructure, e.g., [7]. The ability to prove the existence of
such leakages will build trust in the builder market, which
is necessary for its decentralization [84].
For other applications where experiments would be less in-

formative, we outline SF-system constructions. These include
private contact discovery, and private ad auctions.

While our focus in this paper is on confidentiality, to show
that SF also applies to adversaries breaking other forms of
security, we also discuss how SF can be applied to show
violations of integrity properties on blockchain transaction
ordering [14, 15, 44, 45], and malicious behavior in auctions.

SF proofs for the applications we consider are publicly
verifiable. In addition to ensuring strong transparency, public
verifiability can support trustworthy bug-bounty programs—
an important goal given frequent reports of bug bounties going
unpaid [83]. Public verifiability can in principle support even
automated bug-bounty smart contracts on blockchains [11].

1.4 Contributions
Our summary contributions in this work are:
• Superclass accountability: We introduce and define a new

notion of accountability, superclass accountability, with
broader application than traditional notions (Section 2).

• Sting Framework (SF): We introduce a framework for super-
class accountability (Section 2) that: (1) Applies to a wide
range of protocols, (2) Generates publicly verifiable proofs,
and (3) Requires no modification to existing protocols.

• Practical applicability of SF: We demonstrate the broad
range of uses of SF by discussing its use to prove confiden-
tiality breaches (Sections 3 and 4) and integrity breaches
(Section 5) across a range of practical applications, includ-
ing Tor, block-building infrastructure, ad auctions, and fair
transaction-ordering systems.

• End-to-end implementations: We implement and experi-
mentally evaluate SF systems for Tor and block-building
infrastructure. We provide an application agnostic interface
for easier development of Sting protocols. (Section 6).

2 Sting Formalism

Basic setup. Let κ denote the system security parameter. We
adopt the standard Interactive Turing Machine (ITM) ap-
proach to model protocol execution [16]. Informally, each
party is modeled as an ITM, and a protocol details how par-
ties interact with each other. Execution (including message-
sending between parties) is handled by a special environment
machine Z(1κ). An adversary A interacts with Z to receive
information about and control specific parts of the execution,
according to pre-determined constraints. While nodes are
often individually categorized into “honest” or “adversarial”
(with honest nodes following the protocol faithfully and ad-
versarial nodes being under the control of A), we refrain from
following this convention in the case of sting protocols in
order to allow for broader classes of corruption (for example,
the corruption of only a specific sub-routine but for all nodes).

An ideal functionality abstracts out the required goals of
the system in an “ideal” world, while a protocol details the
real-world interaction between parties. We consider func-
tionalities between a set of n parties. Inputs to the parties
(often from clients) are modeled as provided by Z. We use
EXECπ(A ,Z,κ) to denote the random variable for the ex-
ecution of protocol π with environment Z, and adversary
A ; each view in its support completely defines an execution.
OUTU (view) denotes the output of party U in view. Security

3

is now defined as follows: A protocol π is said to emulate
ideal functionality F w.r.t. A if for all A ∈ A, there exists
an efficient simulated adversary S such that for all Z, the
ensembles EXECπ(A ,Z,κ) and EXECF (S ,Z,κ) are indistin-
guishable. For environment Z and ITM U , let ZU denote the
new environment which incorporates U within Z although
for simplicity, we may still refer to U as a separate party.

We now formally define sting protocols below. Recall that
we are interested in proving the existence of a “superclass”
adversary—i.e., one that belongs to a more powerful class
than the one originally considered for the protocol at hand.

Definition 1 (Superclass Accountability / Sting Protocol).
Consider adversarial classes A and A∗ with A ⊂ A∗. Con-
sider an ideal functionality F and a protocol π which emu-
lates F w.r.t. A. A sting protocol for (F ,π,A,A∗) is a tuple
(P ,Judge) where P is an ITM (we call P the prover) and
Judge is a deterministic algorithm satisfying the following
for all sufficiently large κ:
• (Completeness) For all (A∗,Z) where A∗ ∈ A∗ \A, except

with negl(κ) probability over view←$ EXECπ(A∗,ZP ,κ),
it holds that Judge(1κ,OUTP (view))⇒ 1.

• (Soundness / No Framing) For all ITM P ∗ and all
(A ,Z) where A ∈ A, except with negligible prob-
ability over view←$ EXECπ(A ,ZP ∗ ,κ), it holds that
Judge(1κ,OUTP ∗(view))⇒ 0.

We can relax these to ε-completeness and ε-soundness, i.e.,
the properties hold except with ε = ε(κ) probability. We allow
for any ε satisfying ε(κ)< 1/2−κ−c for a constant c > 0.

Setting for confidentiality applications. Looking ahead, we
will be particularly interested in the following setting: the
superclass adversary is able to learn some leakage s, which
cannot be learned by an adversary in A. We model this leakage
through a subversion oracle O which is accessible to the
superclass adversary—a very general model that does not
require specification of how the superclass adversary actively
learns the secret. Concretely, we model A∗ as the class A but
also with access to O; we write A∗ = AO .

The goal now for a sting protocol is essentially to prove
existence of O. The protocol will be carried out by any P
who has access to O. Notably, in many practical examples,
the prover may actually be a party corrupted by the superclass
adversary—a whistleblower of sorts. As an example, the party
may only have access to O due to being part of a collusion.
Here, we need to assume that the corrupted node can still
spawn the code for P as a sub-routine not corrupted by A .
This models a realistic scenario where even a node operator
corrupted by the adversary can run a different machine to
perform the sting protocol without alerting the adversary.

2.1 Formalism Implications
Adversarial detection of sting protocols. It is natural to
think that a sting protocol’s execution must not be detectable

by A∗ ∈A∗ \A in order to be performed successfully. Indeed
if it can be detected whether a sting protocol has been initiated
by P , then it can modify its responses to prevent the sting pro-
tocol from succeeding. As an example, for our confidentiality
setting, the subversion oracle O may refuse to respond when
it detects an ongoing sting protocol.

Even so, notice that the sting protocol could be run repeat-
edly (as independent instances) until it is not detected and
a valid sting proof is obtained. In essence, a sting protocol
will still work even if it is sometimes detectable, but this may
affect its efficiency.

Undetectability is partially captured within the complete-
ness notion—if A∗ is able to detect a sting proof attempt by
P with probability ε, and e.g., stops the protocol, then P ’s
sting protocol will succeed with probability at most 1− ε,
i.e., it cannot be (ε′ < ε)-complete. At the same time, false
positives should also be minimized—in that light, we define
undetectability below as the adversarial advantage in the game
for detecting sting attempts.
Definition 2 (ε-Undetectability). Let (P ,Judge) be a sting
protocol for (F ,π,A,A∗). We say that (P ,Judge) is ε-
undetectable if for any A∗ ∈ A∗ \A, no PPT distinguisher
can distinguish between the ensembles EXECπ(A∗,Z,κ) and
EXECπ(A∗,ZP ,κ) with probability more than ε.

We provide more details on undetectability, with a particu-
lar focus on our setting, in Section 3.2.1.
Reducing completeness error. Running multiple protocol
instances also enables the amplification or boosting of a sting
protocol with ε-completeness error to one with negligible er-
ror. In general, if (P ,Judge) has completeness error ε, then
(Pℓ,Judge), where Pℓ runs P internally ℓ times (can be paral-
lelized), will have completeness error εℓ. There does however
exist a practical trade-off between the efficacy of a sting pro-
tocol, and the time (and often cost) it takes to generate a valid
proof—undetectability is concretely relevant for this as we
discuss in our applications in Sections 3.
Reducing soundness error. Generic soundness amplifica-
tion is trickier since it requires some notion of sequentiality
to be enforced among the rounds. Fortunately, for our sting
protocols in particular, we can amplify soundness by enforc-
ing sequentiality in a non-black-box way, through the Sting
Enclave. We provide details in Section 3.2 and Appendix A.

3 Sting Protocols for Privacy Leakage

We consider two broad categories for sting protocols: ones
for proving privacy leaks (this section and Section 4), and
ones for proving integrity violations (Section 5). Our sting
protocols differ substantially for these two settings.

This section provides a general structure of sting proto-
cols for proving leakage of private secrets. We later detail
practical examples—on Tor (Section 4.1), block-building in
blockchains like Ethereum (Section 4.2), and Signal contact

4

discovery (Section 4.3). We also provide implementations for
the first two, and analyze them experimentally in Section 6.

3.1 Motivation and General Framework
Consider a protocol π among n nodes where a secret s is
kept hidden from individual nodes (or more generally from
adversary A from a presumed class A). What if A happens
to be in a more powerful class, i.e., a superclass A∗, and can
therefore learn s? Our goal in this section is to investigate
general techniques to publicly prove the existence of such
a superclass adversary that can learn s (or more generally
L(s) for some leakage function L). A core requirment for us
is to be able to work within existing systems—i.e., without
requiring any protocol modifications. Note that these proofs
will not require that s was actually leaked—although it may
have been—only that such an A exists.

An important observation that ultimately motivates our
approach is that there are settings where it is possible to show
the presence of a leakage, but impossible to identify exactly
which parties were responsible for it. Consider the following:

Example 2 (Secret Sharing). In the (t,n)-secret-sharing set-
ting, n parties hold shares of a secret s such that any t of them
can reconstruct the secret, but any malicious coalition smaller
than t will learn no information about it. In typical construc-
tions (such as a commonly-used one from Shamir [66]), a
t-sized coalition can recover not only the secret, but also the
shares of other parties. Even if the secret s is leaked, it is
not possible to identify responsible parties, i.e., individual
accountability is not feasible. Still, we would like to show
here that e.g., “something has gone wrong.”

More broadly, a natural question is how to equip a
whistleblower—who knows of a subversion scheme to leak
secrets—to prove this fact. While new cryptographic primi-
tives could be explored to offer accountability for individual
parties, the settings for these are typically limited, and fur-
thermore, it is challenging to retrofit them to existing systems,
both for efficiency and complexity reasons.

While individual accountability can often be infeasible, on
the flip side, simply showing knowledge of a leaked secret s
(through e.g., proofs-of-knowledge (PoKs)) can be insufficient
for many real-world applications, and especially the ones we
consider. In some settings, vanilla PoKs do indeed trivially
provide superclass accountability—as an example, some cryp-
tographic protocols use a trusted setup phase that generates a
persistent secret s which, if leaked, breaks the protocol; here,
proving knowledge of s effectively shows a malicious setup.
The sting setting. But, as we shall see, in many systems, we
want to protect against s being leaked within the protocol, even
though it is presumed that s is already known to some party—
typically the end user. Our focus is on these settings. Take, for
instance, our Signal use-case from Example 1. Here, s is the
contact list of the user U—who of course knows it because

she created it. This means that a simple PoK will not suffice
to demonstrate existence of a superclass adversary, since (a
malicious) U could on her own act as a prover P to complete
the PoK for s, even if there is no superclass adversary.

Proving superclass adversaries here requires interaction
from the prover P to inject specially crafted inputs to the
system—hence the term sting, signaling the sting operation
carried out by P to detect malicious behavior.

Detecting active exploitation of secrets. Suppose that a su-
perclass adversary A ∈ A∗ has the power to learn a secret s.
But what if A either does not reconstruct s or does not make
further use of it? Standard security definitions still consider
such an A to have broken privacy and “won” the security
game—a conservative, yet reasonable worst-case way to de-
fine adversarial success. In real-world scenarios however, ad-
versaries of concern are typically ones that take further action.
A might use s itself or even e.g., sell generalized access to
secrets in a dark marketplace—i.e., actively leak secrets.

Sting protocols hinge critically on this distinction between
an adversary that has broken protocol privacy in the standard
sense and one that actively uses or leaks secrets. In the latter
cases, sting protocols will allow any party P with the ability
to learn s—for instance, knowledge from the aforementioned
dark marketplace—to whistleblow or prove this publicly.

In fact, this P could even be a sub-entity within A—for
instance, one party within a set of colluding protocol nodes. In
practice, A is seldom the monolithic entity typical in crypto-
graphic modeling, and instead, is likely comprised of distinct
entities, with potentially competing interests. Viewed another
way, sting protocols can facilitate defection within a collusion.

Modeling leakage through a subversion oracle. We model
active adversarial leakage of secrets through a generic sub-
version oracle functionality O. Abstractly, this allows us to
generically model leakage without requiring to know the ac-
tual cause—this models not only corruption of players, but
also to other factors, such as implementation level bugs or
side-channel attacks. For now, suppose that querying O fully
leaks the secret s to the caller. We will consider more general
types of leakage later (see Section 3.3).

For the rest of this section, we consider a specific superclass
A∗ which is similar to A except that now, the adversary also
has access to O—and can therefore learn s. In effect, the sting
protocols will be carried out by any P who also has access to
this O in order to publicly prove its existence. Section 4 illus-
trates how even this simple model for a superclass adversary
captures a wide range of applications.

3.2 Protocol Design

Basic structure. Our sting protocols for showing privacy
leakages employ an instantiation of an ideal trusted party—in
the examples we explore, through a trusted hardware enclave
such as Intel SGX [21]. We refer to this functionality used by

5

the prover as the Sting Enclave, or simply enclave where it’s
clear from context.

The outline of our basic sting protocol is conceptually sim-
ple. At a high level, the Sting Enclave is first used to generate
a stinger S using a random secret input s, which will then
be used by P within the target protocol or application π, for
which we aim to construct a sting protocol.

The stinger S hides s so that it will be unknown to anyone
without access to subversion O—this provides soundness
against a malicious prover. P will now use its access to O
to retreive s, and show this to the enclave, which verifies
correctness. Later in this section, we elaborate on how to
handle a general leakage L(s) provided by O. Now, upon
verification of s, the enclave can further generate a signature of
this fact, which can be checked publicly and without requiring
private state—including by a smart contract—through the
enclave’s remote attestation functionality [21, 75]. We use
Judge to denote this public verification process.

While the above outline is simple, as we will see, there are
several nuances that come into play when concretely design-
ing sting protocols.
Communicating with target applications. Cryptographic
protocols typically assume secure communication channels
between participants, although this is often abstracted out
from the model. Our sting protocols rely on such a secure
channel—in fact, constructing the stinger will explicitly de-
pend on the details of the channel.

To illustrate why, notice an apparent conflict between the
requirements for stingers. While the stinger S needs to hide
the secret input s (from the prover), it still needs to maintain
the input format expected by the application (otherwise a
superclass adversary could easily detect the sting attempt).
Intuitively, we get around this by having the Sting Enclave
control the secure channel (instead of P), and “injecting” the
secret input directly into the channel—this will be our stinger.

As a concrete example, consider communication in practice,
which is typically encrypted with TLS. In this setting, we will
have the Sting Enclave control the TLS session key. The
enclave will now encrypt s (with the appropriate TLS cipher)
to obtain the stinger S, which can be given to P without
revealing s. Effectively, in this communication, P will simply
serve as a forwarder for the enclave’s stinger.
Why the enclave? Notice that a standalone verifier can itself
generate the stinger, without use of the enclave—the sting
protocol can be thought of as an interactive proof between a
prover P and verifier V , where P is tasked with proving in-
formation leakage from the protocol π (modeled here through
O) given a stinger from V . Such a design however, only con-
vinces V , and not any public party. Using an enclave allows us
to prove leakage—including partial—publicly and practically.
Furthermore, deploying a Judge smart contract as a public
verifier enables automated disbursement of bug bounties.

There is a separate concern however—since P should not
know s (without O), it would need to sample S without know-

ing s. In most cases, this should not be possible with a single
prover entity without e.g., a trusted third-party. As an exam-
ple, when using a secure channel which uses a semantically
secure encryption scheme, it should not be feasible to gener-
ate a valid stinger. While, a separate committee could emulate
the role of the generating the stinger, this committee itself
would need to be e.g., majority trusted without the possibility
of a superclass adversary within its own ranks.

Nevertheless, we find an interesting insight in the case
that the target application also uses a TEE—we call this the
double-TEE setting (see App. B.1).

3.2.1 Constructing Stingers

We now describe a framework for constructing stingers. Our
general finding is that in practice, the process intrinsically
depends on the target application. Still, we seek to capture its
essence in this section.

Basic model. Let χ denote the distribution of regular user
inputs (which may be unknown). For the sting protocol, the
enclave will instead sample s from an estimated distribution
χ∗. Ideally, χ∗ should sufficiently approximate χ so as to make
the sting attempt undetectable to the application—this affects
the number of rounds required for a valid proof. Choosing χ∗

appropriately will be specific to the target application.
The stinger S will be a (typically keyed and randomized)

function F(s) of the secret input s—recall that in our context,
S will be e.g., the TLS encryption of s, with the session key
being held inside the Sting Enclave. More generally, we can
define soundness of the stinger S as follows:

Definition 3 (Stinger soundness). The stinger generation is ε-
sound if for any (adversarial) prover P ∗, the following holds:

Advχ∗,F
snd (P ∗) = Pr[(P ∗(S)→ s′) = s | s←$ χ

∗;S←$ F(s)]< ε.

Let AdvF
inv(P ∗) denote the same as above except that s is

sampled uniformly at random from the domain of χ∗—this
is essentially the advantage of inverting a random input to F .
Note that for our sting protocols, since we use an encrypted
channel to communicate s to the target application, F cannot
be inverted except with negligible probability.

Lemma 1. Advχ∗,F
snd (P ∗)≤ AdvF

inv(P ∗)+ tvd(χ∗,U|χ∗|) where
tvd denotes the total variation distance and U|χ∗| is the uni-
form distribution over the domain of χ∗.

Note that since the distance is with the uniform distribution,
the tvd term here can also be bounded by 2−h where h = Hχ∗

min

denotes the min-entropy of χ∗.

Undetectability. In addition to soundness against an adver-
sarial prover, we want to ensure that the input generated for
the sting protocol appears to come from the true user distribu-
tion. In other words, this would make the sting attempt unde-
tectable to the target application. In our model, observe that

6

undetectability is nothing but the advantage for distinguishing
between χ and χ′—this can be bounded by tvd(χ,χ∗).

In general, using a good estimate χ∗ for the user distri-
bution χ is a highly application-dependent and sometimes
challenging problem. As an illustration, in our sting proto-
col for Signal contact discovery, we were unable to generate
fully functional phone numbers inside the SGX enclave—a
limitation that fundamentally influenced our protocol design.

Happily, sting protocols can be constructed even for ε-
undetectability with large (constant) ε—although at the cost
of potentially high sting-protocol round complexity.

Theorem 2 (Number of rounds). Consider a sting protocol
with χ,χ∗ as above, and assume that the stinger channel F
was perfectly non-invertible. If we require εc-completeness
and εs-soundness, then running n rounds is sufficient with

n >
−12ln(ε) ·max{1− p,1− r}

(1− p− r)2

where ε=max{εc,εs}, p= tvd(χ,χ∗), r = tvd(χ∗,U|χ∗|), and
(1− p− r)> 0 holds.

In a simpler setting where O provides no output instead
of an incorrect one when a sting attempt is detected, we can
take p = 0.

Sources of entropy. It is easy to see that a sting protocol
is inherently limited by the entropy of χ. This χ however,
models the entire user input string, including e.g., metadata,
signatures etc., which can provide additional entropy to what
comes solely from the raw input. For instance, in our block-
building application (Section 4.2), we use the signature on
the sting transaction as a source of additional entropy.
Effectively tying together multiple rounds. When using
multiple rounds for soundness amplification, it is imperative
to ensure that the prover submits the outputs of all rounds—
otherwise, e.g., a malicious prover could run more rounds and
only submit the output of the ones it succeeds in (see App. A).
Soundness amplification is simple to do in our protocol de-
sign by enforcing sequentiality through the Sting Enclave. In
particular, the Sting Enclave generates the stinger for a round
after the prover submits the output for the previous round.

3.3 Extensions
3.3.1 Partial Leakage

We now consider a generalization where the leakage given by
the subversion O is only partial. We look at two complemen-
tary axes which can be easily combined: (1) O outputs only
with probability ρ; (2) O outputs a randomized leakage L(s).

(1) If O provides an output only with probability ρ, then
by using ℓ rounds, it is easy to see that we get a sting protocol
with completeness error (1−ρ)ℓ. This works perfectly if the
only requirement is to prove existence of a superclass adver-
sary that has access to the leakage—in fact, the Sting Enclave

only needs to verify the output of a single round. However, it
can affect soundness if we aim to explicitly show existence
of a superclass adversary with the particular probability ρ

of leakage. We see this in our Tor application (Section 4.1),
where superclass adversaries with differing powers can be
considered depending on what fraction of the network they
control. Here, a malicious prover could attempt to show exis-
tence of a stronger superclass adversary than is the case.

To handle this, notice that the success for each round fol-
lows a Ber(ρ) distribution when O outputs with probability
ρ. In this abstraction, a malicious prover is effectively trying
to convince the Sting Enclave of distribution Ber(ρ′) (with
ρ′ > ρ) instead of the actual distribution Ber(ρ). The solution
is effectively a distribution testing problem—by running n
rounds of the protocol (and essentially obtaining n samples
for a distribution Ber(λ) for unknown parameter λ), the Sting
Enclave will test whether λ = ρ or not. This takes O(1/δ2)
samples when the acceptable range is |ρ−λ|< δ.

(2) Now consider the case that O outputs a (possibly ran-
domized) leakage L(s) and let D and R denote its domain
and range. Intuitively, here, the sting prover claims to have to
access to L(s); it is now up to the Sting Enclave to determine
whether or not this is true. This turns out to depend on how
easy it is to simulate the output of L without access to s.

Define L to be δ-unsimulatable if there exists a PPT dis-
tinguisher D, which given s and with at most 1 query, can
distinguish, L(s) from the output of any PPT adversary B
(without access to s) with advantage at least δ. In other words,∣∣∣Pr[DL(s)(s)⇒ 1 | s←$ D]−Pr[DB(s)⇒ 1 | s←$ D]

∣∣∣≥ δ.

Notice that the distinguisher D is tasked with the following:
Given a description of L , it needs to distinguish whether an
input value provided to it came from L(s) or from a different
(sufficiently far away) distribution. This is exactly the identity
testing problem studied extensively in the property testing
literature [17]. The exact number of samples (or rounds in our
case) needed depends on the skew of the distribution with the
worst case being roughly O(

√
|D|).

In the sting setting, P wishes to prove that the leakage it has
access to (using O) has distribution L(s). The idea is that the
Sting Enclave runs the distinguisher D to ascertain whether
the leakage shown comes from the claimed distribution.

When L is δ-unsimulatable, then one run of the sting pro-
tocol has soundness error 1−δ. Therefore, running the pro-
tocol ℓ times will get soundness error (1− δ)ℓ. Concretely,
if we require soundness error ε, and we have an L that is
δ-unsimulatable, then we need ℓ= log(ε)/ log(1−δ) rounds
when δ ̸= 1 and 1 round when δ = 1.

3.3.2 Early Leakage

Consider now, a setting where the application guarantees pri-
vacy only temporarily—that is, all parties will eventually learn
the secret s in a normal execution of the system. This is a com-
mon design in practice—for example, an auction where bids

7

are kept secret until all bids are received, or a blockchain
where transactions are only revealed after ordering [14, 27].
Here, a prover needs to show the Sting Enclave that the leak-
age it obtained was not part of the eventual public reveal.

This is simple to do in a case where the secret is always
revealed after time t—the sting proof now needs to be com-
pleted within this time. Note that this is practically realizable
since SGX enclaves are equipped with local timers.

However, in some settings—most notably our block-
building application—the secret s may be publicly revealed at
an unknown time. In this case, the previous protocol general
structure may no longer work. Instead, we will take the follow-
ing intuitive approach: the sting prover will use its knowledge
of the leakage to perform a publicly verifiable action (on,
e.g., a blockchain) which can at any later point establish the
causality between the prover’s leakage and the eventual public
release. We give concrete details in Section 4.2.

4 Confidentiality Applications

4.1 The Tor Network

Background. Our first application is for Tor [25], which en-
ables users to communicate with websites anonymously by
routing their requests through a randomly chosen path or cir-
cuit of intermediate relay nodes (run by volunteers around
the world) in the network. Tor’s design ensures that no relay
simultaneously knows the original source and the final destina-
tion of the request—each relay is only aware of its immediate
neighbors in the communication path. Theoretically, as long
as one circuit node is honest and not colluding with others, the
privacy of the user’s website access is maintained. Typically,
at initialization, a 3-length circuit (i.e., 3 intermediate nodes)
is chosen to balance anonymity and latency.

However, Tor’s privacy can be compromised if a superclass
adversary controls a significant number of network relays
or observes the traffic between them, potentially linking the
data’s source to its destination. In this section, we show a sting
protocol for demonstrating the existence of such an adversary.

Sting protocol design. To begin, we consider a superclass
adversary that can fully deanonymize any user’s network
destination—the leakage here is captured using the oracle O.

Our sting protocol follows the general structure described
earlier. First, the Sting Enclave samples a random destination
website (which remains hidden from the prover), and gener-
ates a private Tor circuit (the “stinger” circuit) to visit the
website. For this, the Sting Enclave runs a standard Tor client
within it; we will work with the default 3-hop circuit.

An important note here is that the initial hop (i.e., the first
relay node) is already observable by the prover P by simply
observing the enclave’s outgoing traffic. As a result, the secret
s—which P wishes to demonstrate access to—corresponds to
the latter two hops of the stinger circuit. P , using its access to

O, now retrieves the stinger circuit; for simplicity, we assume
that O enables access to the entire circuit (partial leakage can
be handled as discussed in Section 3.1). This is then shown
to the Sting Enclave, which provides a signature (for public
verification by Judge) after checking correctness.
Analysis and discussion. Observe that the efficacy depends
on the undetectability of the sting protocol, i.e., how easy it
is for the adversary to detect an ongoing sting attempt. We
make the sting attempt difficult to detect as follows: (1) first,
by running a standard Tor client within the Sting Enclave, we
mirror the execution trace of a regular user; (2) second, we
can sample the destination website from a typical distribution
for websites accessed through Tor (c.f., [54] which suggests a
power-law distribution). Note that whenever the sting attempt
is not detected, for the above O, the protocol always succeeds
(i.e., completeness holds with probability 1).

For soundness, we need to prevent a malicious prover from
convincing the Sting Enclave of a sting proof without hav-
ing access to O. If relays were sampled uniformly at random
to form the circuit, the probability of of randomly guessing
the circuit correctly is 1/

(n
2

)
where n is total number of Tor

relays (since the prover will always know the first “entry”
node). However, in practice, circuit selection is based on the
bandwidth of relays—those with higher bandwidth are more
likely to be chosen. Based on experimental analysis [34, 63],
in practice, the probability of correctly guessing the circuit
may in fact be closer to 1/300 or 1/500. Still, the protocol
can easily be repeated multiple times to achieve the required
soundness level. Note that we need to ensure sequential execu-
tion between attempts—this is easy to do by having the Sting
enclave generate new stinger circuits only after a response is
received from the prover for the previous execution.

Even if the prover itself controls Tor nodes and can
deanonymize the sting circuit using this power, this is no
different than it itself being a superclass adversary (or having
access to O)—in either case, the sting proof will be valid.
Proving weaker superclass adversaries. We could also
consider “weaker” superclass adversaries that only control a
fraction α of e.g., the total relay bandwidth and can therefore
deanonymize only some circuits. To show the presence of
such an adversary, we will again need multiple stinger circuits
as we discuss below—the approach follows our discussion on
partial leakage from Section 3.1.

A concern here is the soundness error—a malicious prover
could attempt to show existence of a more powerful superclass
adversary (i.e., one that has corrupted a larger fraction of
Tor bandwidth) than is the case. This can be done by the
malicious prover restarting the Sting Enclave, and requesting
a new stinger until it receives one that it can deanonymize. To
get around this issue, the Sting Enclave will generate several
stinger circuits sequentially, and ask for deanonymization by
the prover. Recall that this is effectively distribution testing
for Ber(p = α2). If the true distribution is Ber(β2) (i.e., the
superclass adversary controls β fraction of the network), and

8

the claimed distribution is Ber(α2), this can be distinguished
using O(1/δ2) stinger circuits (where δ =

∣∣α2−β2
∣∣).

4.2 Block-Building in Blockchains

Background. In blockchains, transactions sent by users get
added to the blockchain ledger by block proposers (e.g., Bit-
coin miners, or Ethereum validators). Proposers have absolute
authority on deciding the transactions and their order within
a block; being profit-maximizing, they aim to construct the
block most profitable to them. This involves not just trans-
action fees, but more complex strategies captured under the
umbrella term maximal extractable value (MEV) [4, 23, 62]
that exploit the proposer’s ordering authority.

The rise of decentralized finance, however, and the resul-
tant added complexity of crafting the most profitable block
has caused proposers to “sell” their ordering power by means
of a new division of labor [52, 82]—searchers who use spe-
cialized and often proprietary strategies to create profitable
bundles of user transactions, builders who aggregate multiple
bundles and compete to create the most profitable block, and
proposers, whose only task now is to choose the best block
and propagate it within the blockchain consensus protocol. Ef-
fectively, through searcher and builder competition, proposers
can now profit from their ordering power without having to
specialize in the complex strategies themselves.

Searchers leverage their exclusive access to specific user
transactions, as well as proprietary algorithms, to construct
profitable bundles. The profitability of searchers is crucially
dependent on the confidentiality of the contents of their bun-
dles during the builder aggregation phase. In particular, a ma-
licious builder who peeks at the contents of a bundle can steal
the exclusive user transactions contained within, manipulate
their order, or worse, exploit even the searcher’s transactions!
To enhance privacy guarantees provided to searchers, many
prominent builders have adopted secure environments for bun-
dle aggregation. For example, Flashbots (Ethereum address:
0xc83dad...0965D6) utilize Intel SGX for this purpose.

Privacy concerns for the SGX builder. In addition to con-
cerns about Intel SGX vulnerabilities, the complexity inherent
in the builder’s software and its seamless integration with
other system components also presents significant risks. In
fact, a recent incident highlights the risk magnitude: a soft-
ware glitch resulted in the leakage of bundle transactions,
which were then exploited, leading to a loss of $20 mil-
lion [47]. Similar vulnerabilities arising from discrepancies
between theoretical designs and actual implementations have
been identified in the literature [39, 43].

While we remain neutral on the ethical implications of
searchers—who may exploit ordinary users—being them-
selves exploited, it is undeniable that the searcher-builder
interaction has become a critical, load-bearing component
of the Ethereum ecosystem. We further note that even for

builders that do not use SGX, our sting protocol enables prov-
ing evidence of malicious behavior by the “trusted” builder.

Sting protocol design. The starting point is to observe that
a searcher’s transactions do not remain confidential forever—
they become public effectively as soon as they are sent to the
proposer. As alluded to in Section 3.3, the timed nature of the
setting creates a new obstacle especially because the public
reveal can happen at an indeterminate time—even the use of
a local timer within the Sting SGX Enclave does not suffice.

Instead, we employ a different approach—one that lever-
ages the public nature of the blockchain. Very roughly, the
prover will commit on-chain to its (early) knowledge of (the
secret) s, at most by the block that s is finalized in. Subse-
quently, the Sting Enclave, can now use this public blockchain
state, to verify early leakage of s.

For simplicity, suppose that the oracle O leaks every bundle
(and all transactions within) received by the SGX-builder;
partial leakage can be appropriately handled as in Section 3.

Now, the sting protocol works as follows: First, the prover
uses the Sting Enclave to create a stinger bundle S that en-
crypts a private transaction s; the bundle is sent encrypted
directly to the SGX-builder so that s is not revealed to the
prover. The Sting Enclave runs a standard, publicly known
searcher algorithm to generate the bundle transactions so as to
mimic the behavior of an ordinary searcher; this makes sure
that the sting bundle cannot be distinguished by a potentially
corrupted SGX-builder. Moreover, note that even if sampled
transactions have low entropy (e.g., to look real), note that the
transaction signature will provide enough entropy to prevent
a malicious prover from attempting a false proof by guessing
s (further, as standard, if the entropy is not sufficient for the
desired level of soundness, the protocol can be repeated).

Now, the prover uses its access to O to retrieve s, and in-
tuitively will create a new transaction t which contains a
commitment to its knowledge of s. This is done as follows:
Let C = Com(s;r) denote a cryptographic commitment to s
using randomness r. r′ = H (C) will now be used as the ran-
domness to sign transaction t, where the hash function H is
modeled as a random oracle.

Next, the prover goes through the standard searcher-builder
auction marketplace, and places the new transaction t in the
same or earlier block as s by paying a competitive bid. As
soon as both s and t are published on the blockchain, the
prover can open the commitment (by revealing r) to prove
knowledge of s to the Sting Enclave—since t was published
no later than s on the blockchain, this is sufficient to show that
the prover knew s prior to its public release. Concretely, the
prover will provide as part of the proof, r, t, and a finalized
chain containing t before or in the same block as s. The Sting
Enclave now checks the correctness as above, and issues a
signature which can be publicly checked by Judge.

We defer some subtleties and analysis to Appendix C.1.

9

https://etherscan.io/address/0xc83dad6e38bf7f2d79f2a51dd3c4be3f530965d6

4.3 Signal Contact Discovery
We now describe the sting protocol for private contact discov-
ery, as alluded to in Section 1.2.

Background. Signal is a messaging app well-known for its
prioritization of user privacy. In addition to providing end-
to-end encryption for user messages, Signal aims to provide
additional privacy by also hiding user metadata. One example
of this is its contact discovery protocol [55], which enables
a user to learn which of her contacts are also Signal users,
without the Signal servers learning her contact list.

To accomplish this, Signal makes use of an Intel SGX en-
clave. The contact discovery protocol is intuitively as follows:
the user sends her contact list to the enclave, which computes
its intersection with the set of all Signal users, and returns the
result to the user. Communication between the user and the
enclave is encrypted so that even the Signal servers cannot
eavesdrop on it, maintaining privacy of the user’s contact list.

Sting protocol design. We consider the presence of a subver-
sion oracle O that leaks the user’s entire contact list allowing
the superclass adversary to learn the user’s contacts (as be-
fore, partial leakage can be handled as in Section 3.1). As an
added obstacle, the subversion oracle is careful to not leak the
contacts list for a user it deems to be a sting prover.

A strawman sting protocol following our general structure
is now as follows: A prover P can create a new contact list
inside the Sting SGX Enclave, so that the list is even hidden
from P . The Sting Enclave registers a fresh user with Signal
with this contact list; now, if there is a subversion oracle O that
leaks the contact list, this can be shown to the Sting Enclave
which verifies the leaked contacts to complete the sting proof.

Practical constraints. We ran into some practical issues
with this design: First, what makes a contact list look “real”?
Arguably, if the Sting Enclave generated a list with random
phone numbers, this could be easily distinguished from a real
user’s contact list, thereby subverting the sting attempt. A sec-
ond challenge is that this design requires the new user’s phone
number to be “owned” by the SGX. We were unable to create
a fully functioning phone number inside an enclave that was
capable of performing the out-of-band authentication (OOBA)
required by Signal for registration and spam-prevention.

To solve the first problem, we ask P to submit a contact
list L to the Sting Enclave, which samples a portion of it for
Signal’s registration protocol. Our approach is for P to assem-
ble L by merging some of its own contacts with additional
degree-two contacts, i.e., contacts of its contacts (with their
permission). The goal is to simulate the new Signal account
being a new member of P ’s social circle. This would not be
the case if, for instance, the Sting Enclave generated random
phone numbers on its own to form L. Instead, we can leverage
a vast existing body of work on social-graphs [29, 51, 64, 77].
Although we leave the exact process as future work, from
L, the Sting Enclave sub-samples L′ to create the new user’s
contact list. L′ serves as the secret s for our sting protocol.

For the second problem, we let P control the phone number
N used for Signal registration by the Sting Enclave, allowing
P to perform Signal’s OOBA. Note that this still does not
allow P to learn L′. A concern remains that a malicious prover
could attempt to re-register the phone number on a different
device, and recover L′ using a backup. To prevent this, we
require the prover to enable the Signal functionality that cre-
ates a PIN for re-registration— this PIN will be chosen by the
enclave. We defer further details to App. C.2.

5 Sting Protocols for Integrity

We now illustrate how our sting framework captures a more
general framework beyond privacy leakages by showing sting
protocols for a number of integrity property violations.

General setting and intuition. Consider once again, a proto-
col π being run by a set of nodes. Suppose that π takes input
x and generates an output y that is publicly visible. For now,
although not important for our protocols, suppose that π has
a single input and output. Here, an integrity property P on
the output is a function of the form P(x,y)→ {0,1} which
outputs whether the property was satisfied. A common goal
now, is to ensure that P is satisfied.

This is trivial when P can be simulated without knowledge
of x. An example is when the only requirement on the output
is that it needs to be signed by a specified party—here, any
verifier can check P just using the public output y.

But often, it cannot be determined using y, whether or not P
was satisfied. A protocol π designed to guarantee P typically
makes additional assumptions on the participants (e.g., some
form of honesty). Here, if the assumption is broken, y may
no longer satisfy P, and there may be no way for a public
observer to recognize this. This illustrates a silent failure.

We aim to demonstrate sting protocols in this domain—
specifically, by injecting stinger inputs, we can prove viola-
tions of P. As we show, this allows detection of a number of
failures—even in centralized settings with a dishonest server.

5.1 Transaction Ordering Guarantees

Consider a system where users submit transactions, which are
then output as a public sequence according to the system’s
logic. This models a typical blockchain setting which acts a
sequencer for user transactions into a linearly ordered ledger.
Such a design can even model a centralized server (e.g., a
database) that processes user transactions in a sequence.

In the blockchain context, transaction ordering, i.e., the
order in which transactions are sequenced and executed by
the system, has been shown to be of high importance; ad-
versarial influence can cause exploitation of ordinary users
as well as overall system instability [23, 62]. As a potential
solution, a number of works [14,15,44,45] (among many oth-
ers) have proposed protocols that seek to reduce adversarial

10

influence by guaranteeing certain integrity properties on the
output transaction sequence. Still, all these protocols assume
for instance, honest majority among protocol participants. Fur-
thermore, simply looking at the output, one cannot determine
whether or not the ordering property was satisfied. In other
words, a violation of the protocol’s honesty assumption can
lead to a silent failure of the ordering guarantee.

We describe sting protocols for proving such violations.

Simplified setting. We model a centralized server which
processes transactions by first sequencing them. The server is
typically assumed to be honest here—our goal therefore is to
detect when the server misbehaves, i.e., when the output does
not conform to the ordering rule. As an example, suppose that
we want to enforce first-come-first-serve (FCFS) ordering;
we note that our protocol can be analogously transformed for
other ordering rules (e.g., [53]). In Appendix C.3, we provide
details on how to extend our protocol to a distributed setting.

Protocol details. The core idea is essentially to embed trap-
door information within a transaction, which can later be
revealed to demonstrate server misbehavior. Consider the fol-
lowing strawman: an informer submits a transaction A to the
server, and embeds a cryptographic commitment of the receipt
on this transaction from the server into a second transaction B
(in e.g., the randomness in the signature submitted along with
the transaction data). Now, if B gets ordered before A by the
server, the informer has convincing proof of misbehavior—all
it needs to do is to reveal the commitment. We note that even if
the server does not provide an explicit receipt for transactions,
an implicit receipt can be interpreted at the TLS network layer.
For this, the informer protocol will need to be run inside an
SGX enclave to ensure that the TLS transcript is not forged.

This sting protocol is always sound, but may not always
catch server violations, especially if the server manipulates
the ordering only in specific cases. Still, one can imagine that
the protocol can be run continuously, or by several users. Even
one server violation caught may cause sufficient harm to its
reputation of honesty detracting it from behaving dishonestly.

Tampering as a service. Apart from the server itself ma-
nipulating the ordering, a larger threat is the server(s) es-
sentially selling the rights to this manipulation on an open
marketplace—i.e., choosing the transaction ordering given
by the highest bidder. This is not a hypothetical scenario—it
already happens on blockchains like Ethereum [62,82], and is
a major reason that protocols with strong ordering guarantees
but requiring honesty assumptions are challenging to deploy.

We make the observation that the existence of such a mar-
ketplace would actually improve the efficacy of our sting
protocols. For one, the marketplace can function as a sub-
version leakage oracle—if user transaction details are leaked
through it to bidders, then an informer, posing as a bidder
could show this leakage similar to our protocols in Section 3.

Surprisingly, even if there is no leakage, such a marketplace
actually provides a unique opportunity for the sting protocols

to work by taking part in the manipulation. For instance, in
our previous protocol to show that the ordering between two
transactions was incorrect, the informer could directly effect
this change by going through the marketplace and buying the
rights to reorder transactions. In our modeling, this functions
essentially as a “tamper” instruction on the subversion service.
This can significantly improve the efficacy of our protocol.

As a general philosophy, sting protocols can help prevent
these “tampering as a service” marketplaces. If the seller
cannot distinguish whether the buyer is a “legitimate” party
interested in the tampering service, or an informer, then it may
become unprofitable for such a marketplace to be created.

Sting infrastructure as part of the server design. Remark-
ably, we can integrate the sting infrastructure within the server
itself, and allow the server to make claims about integrity prop-
erties, without the need for external users to carry out a sting
protocol—the idea is to have the server continuously attempt
to sting itself through a trusted component such as an enclave
within it. We provide details in Appendix C.3.

5.2 Malicious Behavior in Auctions

A second example is for detecting malicious auctioneer be-
havior in a second-price auction setting. While second-price
auctions are truthful—i.e., incentivize bidders to bid their true
value, a concern is that the auctioneer can improve its revenue
by maliciously posing as a bidder and bidding strategically.
This poses a problem even if bids are sealed. In fact, there is
evidence of similar behavior in the real world as brought to
light by the Justice department’s lawsuit against Google for
unfairly manipulating its ad auctions [58].

In Appendix C.4, we show a simple example of how a sting
prover, aware of such a manipulation, can prove it publicly.
The core idea is to use the Sting Enclave to generate a secret
bid b, and win the auction in a way that the bidder’s payment
could only have been influenced by an auctioneer’s fake bid.

6 SF Implementation and Evaluation
We design a concrete unified framework to aid in the develop-
ment of sting protocols for different target applications. For
concreteness, we use Intel SGX as the Sting Enclave TEE,
and an Ethereum smart contract as Judge—for proof final
verification, and release of any bounty. Algorithm 1 describes
the general interface. For different applications, the major
differences are in the stinger generation, and the required evi-
dence. Our prototype implementations leverage Gramine [76]
to run unmodified applications within SGX enclaves.

Sting enclave setup. The SGX Sting Enclave is initialized
with two identifiers: MRENCLAVE, which is the hash of its con-
tents (code and data), and MRSIGNER, which is the identity of
its creator. To enable sting verification, the Sting Enclave will
need to prove to the remote Judge contract that it runs the

11

Algorithm 1 SF Implementation Pseudocode (Chronological)
1: ProvisionEnclave(C)→ (pk,report,sigIAS,certIAS): ▷ Sting Enclave
2: pkSting, skSting = EthKeyGen()
3: report = {MRENCLAVE, MRSIGNER, UserReportData=pkSting, . . .}
4: quote = QuotingEnclave(report)
5: sigIAS, certIAS = IAS(quote, report)
6: Seal(skSting)
7: DeployJudgeContract: ▷ initiator
8: Preapprove a list of MRENCLAVEs
9: Fund reward pool

10: RegisterEnclave(report, sigIAS, certIAS): ▷ prover
11: pkIAS = VerifyCert(certIAS, pkIntel)
12: pkSting, MRENCLAVE = VerifyAtt(sigIAS, report)
13: Require(PreApproved(MRENCLAVE))
14: Approve(pkSting)
15: GenStinger(C)→ β: ▷ Sting Enclave
16: Sample stinger from context C: S = Sample()
17: Send S to target application
18: Seal(S)
19: (optional) Leak backdoor β to prover
20: Leak data L from target application ▷ Subversion Oracle
21: MakeEvidence(L, β, C)→ E: ▷ prover
22: Locate stinger S in L (using β)
23: Assign evidence of S leakage to E
24: VerifyEvidence(E)→ (prf, sigSting): ▷ Sting Enclave
25: S, skSting = Unseal()
26: if Verify(S, E) then
27: prf = GenProof()
28: sigSting = Sign(skSting, prf)
29: CollectBounty(sigSting, prf, pkSting): ▷ Judge
30: Require(Approved(pkSting))
31: if VerifySig(sigSting, prf, pkSting) then Issue bounty

expected sting program within it; this is achieved via SGX’s
EPID-based remote attestation [41].

For this, the enclave will first need to be provisioned before
the protocol. In particular, the enclave generates a report of its
identity and state, signed by its private key, and submits this
to Intel’s Quoting Enclave (QE). The QE signs the report with
its EPID private key to create a quote verifying the report’s
authenticity. The quote and report are then verified by In-
tel’s Attestation Service (IAS) using the corresponding EPID
public key. Upon validation, IAS provides a signature and a
certificate, enabling remote verifiers to confirm the quote’s le-
gitimacy. For our concrete implementation, since Judge is an
Ethereum smart contract, the Sting Enclave will generate an
Ethereum-compatible key pair (skSting,pkSting). The public
key pkSting is embedded in the UserReportData field of the
report, which allows Judge to verify that the sting proof has
been authenticated by the Sting Enclave. The correspoond-
ing secret key skSting is securely sealed by the enclave (e.g.,
stored in encrypted form on external untrusted storage).

Gramine introduces significant overheads, due to a high-
latency enclave initialization process2, but this needs to be
done only once is not time-sensitive in the context of our sting
protocols. In particular, the ProvisionEnclave operation takes

2Due to Gramine’s unoptimized implementation, SGX provisioning is
split into two stages: report generation and quote generation; each stage
requires separate enclave initialization, adding to the latency.

about 26s, but only 0.285s without Gramine initialization.
After provisioning with IAS, the Sting Enclave will further

register itself with the Judge smart contract.

Judge contract. An initator, such as an administrator of the
target application will deploy the Judge smart contract on
Ethereum. The main role of Judge is to handle registration of
a Sting Enclave, verify its attestation during the sting proof,
and manage the release of a reward for a prover supplying a
valid proof. The cost of such a smart-contract based verifica-
tion is minimal: RegisterEnclave has a gas cost of 246,000
(about $14), while CollectBounty (which verifies the enclave
signature) has a gas cost of 93,000 (about $5).

Experiment setup. Our benchmarks were conducted on a
machine with an Intel Xeon E-2276G CPU and 64GB of
RAM, running Ubuntu 20.04. We set up container-based local
networks for both applications, ideal for reproducing our re-
sults3. The machine operates on Linux kernel version 5.15.0-
92-generic and uses the SGX driver version 2.11.54c9c4c.

6.1 The Tor Network
We implement our sting protocol for Tor and experimentally
benchmark its efficiency. Algorithm 2 (Appendix D) gives the
pseudocode; the Tor-specific parts only add about 100 lines
of Python code to the Sting Framework interface.

Implementation details. To avoid detection of the sting
protocol by the target application, we do the following: (1)
The Sting Enclave runs an off-the-shelf [61] Tor client4; (2)
A public relay list is used to generate a random “sting” circuit
and destination address that mirrors an typical user’s access.

As a proof of concept, we model a subversion oracle that
targets only exit relays (the final circuit hop). Our analysis
should therefore provide a conservative bound even for more
powerful subversions that may arise as a result of complex
attacks discussed in the literature [3, 38, 50].

Once the sting Tor circuit is established, the Tor client (run-
ning inside the Sting Enclave) generates a stream through the
circuit and directs the exit relay to connect to a specified des-
tination address. The stream ID—unlike the circuit ID, which
varies at each relay—is global and visible to the exit relay.
This means that an O which models corruption of the exit
relay can link stream IDs to their respective destinations. For
efficiency reasons, instead of providing the entire output of O
to the Sting Enclave, we can do better by enabling the sting
prover to identify the correct sting circuit, amongst potentially
several circuits leaked by O. For this, the Sting Enclave will
deliberately leak the stream ID to the prover.

Evaluation. While the Tor sting protocol is not time-
sensitive, it is still useful to assess whether the running time
becomes prohibitively long when the adversary controls only

3https://anonymous.4open.science/r/sting-17C8/README.md
4Due to Gramine limitations, a child process initiates a new enclave. As

a result, our core SF program and the Tor client operate in separate enclaves.

12

a fraction α of the relay bandwidth, as this requires multiple
sequential executions as discussed in Section 4.1.

For this, we conducted a timing analysis. The setup of
starting a local Tor client and sampling a sting circuit takes
about 1.35s; using this circuit to connect to the destination
website (through WAN) takes about 3s. Verifying that the
sting prover found the correct circuit takes minimal time—
with a batch of 100 circuits taking less than 0.01s. In turn,
each round of the sting protocol will conservatively take 5s.

As one calculation, if 25% of the relay bandwidth is con-
trolled by the superclass adversary, allowing deanonymization
of about 7% of circuits [34], the sting protocol will take about
4 hours to achieve a soundness error of 2−40, but only about
25 minutes to reject the null hypothesis (that there is no su-
perclass adversary) with a typical significance level of 0.05.

6.2 Block-Building in Blockchains
Implementation details. We use the Flashbots SGX-
builder [27] for Ethereum as the target application. Algo-
rithm 3 provides the pseudocode.To simulate a superclass
adversary and model leakage by O, we modify the builder
code to leak all received transaction bundles.

Now, within our Sting Enclave, we run a standard public
searcher algorithm [28] to generate a “stinger” transaction
bundle, in a manner indistinguishable from the activities of or-
dinary searchers. Instead of using bundle transactions (which
have low entropy) as the secret, as alluded to in Section 4.2, we
instead embed the secret into the signature of a bundle trans-
action. More concretely, we use a random r as the random
nonce for the ECDSA signature (distinct from the Ethereum
transaction nonce) on a transaction s. The transaction bundle
is sent to the target application (SGX builder) via TLS.

As in the Tor example, for efficiency, the Sting Enclave can
leak the hash of S to the prover—to help the prover find the
correct stinger transaction within all the bundles leaked by
O. Once the prover obtains s, as described in Section 4.2, it
embeds a (Pedersen) commitment to it inside the signature of
a second transaction t. This t is then sent to the blockchain
with a high enough gas price to ensure inclusion in the same
or earlier block as s. The verification by the Sting Enclave is
simple—the prover simply provides it a finalized Ethereum
block sequence that contains t no later than s. Soundness is
not a concern here—entropy from the signature randomness
should already suffice for a negligibly small soundness error.

Latency. Recall that the sting protocol here needs to be time-
sensitive. To prove early leakage, the critical sequence (as
highlighted in Algorithm 3) pertains to using s to craft t
and getting it included in a block no later s. We analyze the
latency of this critical sequence. In a local network setting
(assuming O responds instantly), the added latency is 2.4s;
variation in the size of the sting bundle has negligible effect
on this. In a typical WAN setting (i.e., communication with
remote entities), the total estimated latency is about 3.3s. This

amounts to about 27% of the typical block time of 12 seconds
on Ethereum. Note that other parts of the protocol only need
to be executed once, and are not time-sensitive. Verification of
the sting proof takes about 1.63s (post Gramine initialization).

Cost implications. The gas cost for the transactions s and t
is about 21,000 ($1.25). In other words, the cost would not
be prohibitive even if several attempts are required.

7 Related Work

Accountable protocols. Accountability is a recurring theme
in the cryptography and security literature; several protocols
have been constructed for detecting e.g., maliciously sharing
of cryptographic functionalities (through traitor tracing [9,19]
and leakage-deterring schemes [46]), safety violations in BFT
consensus [57, 67], malicious generation of cryptographic
parameters [1, 32] etc. Another line of research (see, e.g., [13,
30]) allows identifying players who perform sensitive actions,
e.g., identify private data, without necessarily being malicious.

A core feature of accountable systems is identifying mali-
cious parties within the protocol execution. In contrast, sting
protocols simply demonstrate the existence of what would
otherwise be a silent failure, often without identifying e.g.,
exactly which component failed or which parties acted mali-
ciously. But, giving up on this feature is precisely what allows
sting protocols to be constructed for a broader class of sys-
tems. In a sense, the goals are incomparable—sting protocols
are both weaker (in strength), and stronger (in generality).
This is illustrated by our ability to work with existing systems
without modifications—in contrast, adding accountability can
require a complete rework of the system design, with potential
downstream effects on efficiency and legacy-compatibility.

Honeypots / honey objects. Honeypots [68] are fake systems
designed to entice, observe, and monitor adversaries. Other
honey objects (e.g., [2,6,42]) have a similar goal. While these
techniques carry an undetectability requirement like that of
sting protocols, and may help detect breaches, they require
special-purpose systems and importantly do not construct
proofs of adversarial existence.

Software-exploit proofs. A small line of prior works has
sought to construct proofs of the existence of code vulner-
abilities. These include Cheesecloth [22], which constructs
zero-knowledge proofs of knowledge of invariant violations
for code running in LLVM, and Reverie [33], which proves
exploits in microprocessor code. Unlike sting protocols, these
systems assume access to the target code and their use of ZK-
proofs scales only to relatively small code instances. Sealed-
glass proofs [75] involve the use of TEEs for a similar goal
and likewise require prover access to the target code.

13

8 Conclusion

We have introduced sting protocols, a conceptually simple
new approach for demonstrating silent failures of security
guarantees by proving the existence of superclass adver-
saries—adversaries that are stronger than what is assumed
by a protocol’s model. Sting protocols are a new twist on
accountability: they provide weaker guarantees than existing
approaches (by e.g., not identifying corrupted players), but as
a result are more general—usable with a broad range of ap-
plications and deployable with no protocol modifications. We
demonstrated these protocols by reporting on two end-to-end
prototypes, for Tor and block building, outlining approaches
for several other widely used systems.

References

[1] Prabhanjan Ananth, Gilad Asharov, Hila Dahari, and
Vipul Goyal. Towards accountability in CRS generation.
In Eurocrypt, pages 278–308, 2021.

[2] Frederico Araujo, Kevin W Hamlen, Sebastian Bieder-
mann, and Stefan Katzenbeisser. From patches to honey-
patches: Lightweight attacker misdirection, deception,
and disinformation. In CCS, pages 942–953, 2014.

[3] Daniel Arp, Fabian Yamaguchi, and Konrad Rieck. Tor-
ben: A practical side-channel attack for deanonymizing
tor communication. In CCS, pages 597–602, 2015.

[4] Kushal Babel, Philip Daian, Mahimna Kelkar, and Ari
Juels. Clockwork finance: Automated analysis of eco-
nomic security in smart contracts. In IEEE S&P, pages
2499–2516, 2023.

[5] Michael Ben-Or, Shafi Goldwasser, and Avi Wigder-
son. Completeness theorems for non cryptographic
fault-tolerant distributed computation. In STOC, pages
1–10, 1988.

[6] Maya Bercovitch, Meir Renford, Lior Hasson, Asaf
Shabtai, Lior Rokach, and Yuval Elovici. Honeygen: An
automated honeytokens generator. In IEEE ISI, pages
131–136, 2011.

[7] bert. Post mortem: April 3rd, 2023 mev-boost relay
incident and related timing issue. Flashbots Forum,
https://collective.flashbots.net/t/post-
mortem-april-3rd-2023-mev-boost-relay-
incident-and-related-timing-issue/1540,
Apr. 2023.

[8] Dan Boneh and Matthew Franklin. An efficient public
key traitor tracing scheme. In CRYPTO, pages 338–353,
1999.

[9] Dan Boneh, Aditi Partap, and Lior Rotem. Accountabil-
ity for misbehavior in threshold decryption via threshold
traitor tracing. In CRYPTO, pages 317–351, 2024.

[10] Ferdinand Brasser, Urs Müller, Alexandra Dmitrienko,
Kari Kostiainen, Srdjan Capkun, and Ahmad-Reza
Sadeghi. Software grand exposure: SGX cache attacks
are practical. In WOOT, 2017.

[11] Lorenz Breidenbach, Phil Daian, Florian Tramèr, and
Ari Juels. Enter the hydra: Towards principled bug boun-
ties and exploit-resistant smart contracts. In USENIX
Security, pages 1335–1352, 2018.

[12] Jo Van Bulck, Marina Minkin, Ofir Weisse, Daniel
Genkin, Baris Kasikci, Frank Piessens, Mark Silberstein,
Thomas F. Wenisch, Yuval Yarom, and Raoul Strackx.
Foreshadow: Extracting the keys to the Intel SGX king-
dom with transient out-of-order execution. In USENIX
Security, pages 991–1008, 2018.

[13] Mike Burmester, Yvo Desmedt, Rebecca N Wright,
and Alec Yasinsac. Accountable privacy. In Security
Protocols: 12th International Workshop, pages 83–95.
Springer, 2006.

[14] Christian Cachin, Klaus Kursawe, Frank Petzold, and
Victor Shoup. Secure and efficient asynchronous broad-
cast protocols. In CRYPTO, pages 524–541, 2001.

[15] Christian Cachin, Jovana Micic, Nathalie Steinhauer,
and Luca Zanolini. Quick order fairness. In FC, pages
316–333, 2022.

[16] Ran Canetti. Universally composable security: A new
paradigm for cryptographic protocols. In FOCS, pages
136–147, 2001.

[17] Clément L. Canonne. A survey on distribution testing:
Your data is big. but is it blue. Theory of Computing
Library Graduate Surveys, (9):1–100, 2020.

[18] Sanchuan Chen, Zhiqiang Lin, and Yinqian Zhang. Con-
trolled data races in enclaves: Attacks and detection. In
USENIX Security, pages 4069–4086, 2023.

[19] Benny Chor, Amos Fiat, and Moni Naor. Tracing traitors.
In CRYPTO, pages 257–270, 1994.

[20] Pierre Civit, Seth Gilbert, and Vincent Gramoli. Poly-
graph: Accountable byzantine agreement. In ICDCS,
pages 403–413, 2021.

[21] Victor Costan and Srinivas Devadas. Intel SGX ex-
plained. Cryptology ePrint Archive, Paper 2016/086,
2016.

14

https://collective.flashbots.net/t/post-mortem-april-3rd-2023-mev-boost-relay-incident-and-related-timing-issue/1540
https://collective.flashbots.net/t/post-mortem-april-3rd-2023-mev-boost-relay-incident-and-related-timing-issue/1540
https://collective.flashbots.net/t/post-mortem-april-3rd-2023-mev-boost-relay-incident-and-related-timing-issue/1540

[22] Santiago Cuéllar, Bill Harris, James Parker, Stuart Pern-
steiner, and Eran Tromer. Cheesecloth: Zero-knowledge
proofs of real world vulnerabilities. In USENIX Security,
pages 6525–6540, 2023.

[23] Philip Daian, Steven Goldfeder, Tyler Kell, Yunqi Li,
Xueyuan Zhao, Iddo Bentov, Lorenz Breidenbach, and
Ari Juels. Flash boys 2.0: Frontrunning in decentral-
ized exchanges, miner extractable value, and consensus
instability. In IEEE S&P, pages 585–602, 2020.

[24] Ivan Damgård, Chaya Ganesh, Hamidreza
Khoshakhlagh, Claudio Orlandi, and Luisa Sinis-
calchi. Balancing privacy and accountability in
blockchain identity management. In CT-RSA, pages
552–576, 2021.

[25] Roger Dingledine, Nick Mathewson, Paul F Syverson,
et al. Tor: The second-generation onion router. In
USENIX Security, pages 303–320, 2004.

[26] Joan Feigenbaum, Aaron D Jaggard, and Rebecca N
Wright. Towards a formal model of accountability. In
NSPW, pages 45–56, 2011.

[27] Flashbots. https://github.com/flashbots/geth-
sgx-gramine.

[28] Flashbots. https://github.com/flashbots/
simple-arbitrage.

[29] Chris Fleizach, Michael Liljenstam, Per Johansson, Ge-
offrey M. Voelker, and Andras Mehes. Can you infect
me now? malware propagation in mobile phone net-
works. In WORM, page 61–68, 2007.

[30] Christina Garman, Matthew Green, and Ian Miers. Ac-
countable privacy for decentralized anonymous pay-
ments. In FC, pages 81–98, 2017.

[31] Shafi Goldwasser and Sunoo Park. Public accountabil-
ity vs. secret laws: can they coexist? a cryptographic
proposal. In WPES, pages 99–110, 2017.

[32] Vipul Goyal. Reducing trust in the pkg in identity based
cryptosystems. In CRYPTO, pages 430–447, 2007.

[33] Matthew Green, Mathias Hall-Andersen, Eric Hen-
nenfent, Gabriel Kaptchuk, Benjamin Perez, and Gijs
Van Laer. Efficient proofs of software exploitability for
real-world processors. Proceedings on Privacy Enhanc-
ing Technologies, 2023.

[34] Angèle M. Hamel, Jean-Charles Grégoire, and Ian Gold-
berg. The mis-entropists: New approaches to measures
in Tor. CACR Technical Report 2011-18, 2011.

[35] Maurice P Herlihy and Jeannette M Wing. Specifying
graceful degradation. IEEE Transactions on Parallel
and Distributed Systems, 2(1):93–104, 1991.

[36] Martin Hirt, Christoph Lucas, Ueli Maurer, and Dominik
Raub. Graceful degradation in multi-party computation.
In ICITS, pages 163–180, 2011.

[37] Matthew Humphries. AnyDVD now rips UHD Blu-
rays with ‘unbreakable’ AACS 2.0. PC Magazine, 22
Dec. 2017.

[38] Rob Jansen, Florian Tschorsch, Aaron Johnson, and
Björn Scheuermann. The sniper attack: Anonymously
deanonymizing and disabling the Tor network. In NDSS,
2014.

[39] Nerla Jean-Louis, Yunqi Li, Yan Ji, Harjasleen Malvai,
Thomas Yurek, Sylvain Bellemare, and Andrew Miller.
Sgxonerate: Finding (and partially fixing) privacy flaws
in TEE-based smart contract platforms without breaking
the TEE. Proceedings on Privacy Enhancing Technolo-
gies, 2024.

[40] Aaron Johnson, Chris Wacek, Rob Jansen, Micah Sherr,
and Paul Syverson. Users get routed: Traffic correlation
on Tor by realistic adversaries. In CCS, pages 337–348,
2013.

[41] Simon Johnson, Vinnie Scarlata, Carlos Rozas, Ernie
Brickell, and Frank Mckeen. Intel software guard exten-
sions: Epid provisioning and attestation services. White
Paper, 1(1-10):119, 2016.

[42] Ari Juels and Ronald L Rivest. Honeywords: Making
password-cracking detectable. In CCS, pages 145–160,
2013.

[43] Sanket Kanjalkar, Joseph Kuo, Yunqi Li, and Andrew
Miller. Short paper: I can’t believe it’s not stake! re-
source exhaustion attacks on PoS. In FC, pages 62–69,
2019.

[44] Mahimna Kelkar, Soubhik Deb, Sishan Long, Ari Juels,
and Sreeram Kannan. Themis: Fast, strong order-
fairness in byzantine consensus. In CCS, pages 475–489,
2023.

[45] Mahimna Kelkar, Fan Zhang, Steven Goldfeder, and
Ari Juels. Order-fairness for Byzantine consensus. In
CRYPTO, pages 451–480, 2020.

[46] Aggelos Kiayias and Qiang Tang. How to keep a secret:
Leakage deterring public-key cryptosystems. In CCS,
pages 943–954, 2013.

[47] Oliver Knight. Ethereum bot gets attacked
for $20m as validator strikes back. Coindesk.

15

https://github.com/flashbots/geth-sgx-gramine
https://github.com/flashbots/geth-sgx-gramine
https://github.com/flashbots/simple-arbitrage
https://github.com/flashbots/simple-arbitrage

https://www.coindesk.com/business/2023/04/
03/ethereum-mev-bot-gets-attacked-for-20m-
as-validator-strikes-back/.

[48] Joshua A Kroll, Joe Zimmerman, David J Wu, Valeria
Nikolaenko, Edward W Felten, and Dan Boneh. Ac-
countable cryptographic access control, 2018. https:
//www.cs.yale.edu/homes/jf/kroll-paper.pdf.

[49] Ralf Küsters, Tomasz Truderung, and Andreas Vogt. Ac-
countability: definition and relationship to verifiability.
In CCS, pages 526–535, 2010.

[50] Albert Kwon, Mashael AlSabah, David Lazar, Marc
Dacier, and Srinivas Devadas. Circuit fingerprinting
attacks: Passive deanonymization of tor hidden services.
In USENIX Security, pages 287–302, 2015.

[51] Jure Leskovec and Eric Horvitz. Planetary-scale views
on a large instant-messaging network. In WWW, pages
915–924, 2008.

[52] Zihao Li, Jianfeng Li, Zheyuan He, Xiapu Luo, Ting
Wang, Xiaoze Ni, Wenwu Yang, Xi Chen, and Ting
Chen. Demystifying DeFi MEV activities in Flashbots
bundle. In CCS, page 165–179, 2023.

[53] Akaki Mamageishvili, Mahimna Kelkar, Jan Christoph
Schlegel, and Edward W. Felten. Buying time: Latency
racing vs. bidding for transaction ordering. In AFT,
pages 23:1–23:22, 2023.

[54] Akshaya Mani, T. Wilson-Brown, Rob Jansen, Aaron
Johnson, and Micah Sherr. Understanding tor usage
with privacy-preserving measurement. In IMC, page
175–187, 2018.

[55] Moxie Marlinspike. Technology preview: Private con-
tact discovery for signal, Sep 2017.

[56] Joachim Neu, Ertem Nusret Tas, and David Tse. The
availability-accountability dilemma and its resolution
via accountability gadgets. In FC, pages 541–559, 2022.

[57] Joachim Neu, Ertem Nusret Tas, and David Tse. Short
paper: Accountable safety implies finality. Cryptology
ePrint Archive, Paper 2023/1301, 2023.

[58] Office of Public Affairs. Justice department sues google
for monopolizing digital advertising technologies.
https://www.justice.gov/opa/pr/justice-
department-sues-google-monopolizing-
digital-advertising-technologies, 2023.

[59] Jim O’Leary. Improving first impressions on signal,
Nov 2021.

[60] Rafael Pass, Elaine Shi, and Florian Tramer. Formal
abstractions for attested execution secure processors. In
EUROCRYPT, pages 260–289, 2017.

[61] Tor Project. https://git.torproject.org/tor.
git.

[62] Kaihua Qin, Liyi Zhou, and Arthur Gervais. Quantifying
blockchain extractable value: How dark is the forest? In
IEEE S&P, pages 198–214, 2022.

[63] Florentin Rochet and Olivier Pereira. Waterfilling: Bal-
ancing the Tor network with maximum diversity. Proc.
Priv. Enhancing Technol., 2017(2):4–22, 2017.

[64] Maayan Roth, Assaf Ben-David, David Deutscher, Guy
Flysher, Ilan Horn, Ari Leichtberg, Naty Leiser, Yossi
Matias, and Ron Merom. Suggesting friends using the
implicit social graph. In KDD, page 233–242, 2010.

[65] Bruce Schneier. Attacking Tor: how the NSA targets
users’ online anonymity. The Guardian, 4:7, 2013.

[66] Adi Shamir. How to share a secret. Commun. ACM,
22(11):612–613, 1979.

[67] Peiyao Sheng, Gerui Wang, Kartik Nayak, Sreeram Kan-
nan, and Pramod Viswanath. Bft protocol forensics. In
CCS, pages 1722–1743, 2021.

[68] Lance Spitzner. Honeypots: tracking hackers, volume 1.
Addison-Wesley Reading, 2003.

[69] Signal Support. Backup and restore messages,
[n. d.]. https://support.signal.org/hc/en-
us/articles/360007059752-Backup-and-
Restore-Messages.

[70] Signal Support. Linked devices, [n. d.].

[71] Signal Support. Re-registering using your signal pin,
[n. d.].

[72] Signal Support. Signal pin, [n. d.].

[73] Signal Support. Troubleshooting multiple devices,
[n. d.].

[74] Signal Support. What do i do if my phone is lost or
stolen?, [n. d.].

[75] Florian Tramer, Fan Zhang, Huang Lin, Jean-Pierre
Hubaux, Ari Juels, and Elaine Shi. Sealed-glass proofs:
Using transparent enclaves to prove and sell knowledge.
In EuroS&P, pages 19–34, 2017.

[76] Chia-Che Tsai, Donald E Porter, and Mona Vij.
Graphene-SGX: A practical library OS for unmodified
applications on SGX. In USENIX ATC, pages 645–658,
2017.

16

https://www.coindesk.com/business/2023/04/03/ethereum-mev-bot-gets-attacked-for-20m-as-validator-strikes-back/
https://www.coindesk.com/business/2023/04/03/ethereum-mev-bot-gets-attacked-for-20m-as-validator-strikes-back/
https://www.coindesk.com/business/2023/04/03/ethereum-mev-bot-gets-attacked-for-20m-as-validator-strikes-back/
https://www.cs.yale.edu/homes/jf/kroll-paper.pdf
https://www.cs.yale.edu/homes/jf/kroll-paper.pdf
https://www.justice.gov/opa/pr/justice-department-sues-google-monopolizing-digital-advertising-technologies
https://www.justice.gov/opa/pr/justice-department-sues-google-monopolizing-digital-advertising-technologies
https://www.justice.gov/opa/pr/justice-department-sues-google-monopolizing-digital-advertising-technologies
https://git.torproject.org/tor.git
https://git.torproject.org/tor.git
https://support.signal.org/hc/en-us/articles/360007059752-Backup-and-Restore-Messages
https://support.signal.org/hc/en-us/articles/360007059752-Backup-and-Restore-Messages
https://support.signal.org/hc/en-us/articles/360007059752-Backup-and-Restore-Messages

[77] Johan Ugander, Brian Karrer, Lars Backstrom, and
Cameron Marlow. The anatomy of the facebook so-
cial graph. arXiv preprint arXiv:1111.4503, 2011.

[78] Stephan van Schaik, Alyssa Milburn, Sebastian Öster-
lund, Pietro Frigo, Giorgi Maisuradze, Kaveh Razavi,
Herbert Bos, and Cristiano Giuffrida. Ridl: Rogue in-
flight data load. In IEEE S&P, pages 88–105, 2019.

[79] Stephan van Schaik, Marina Minkin, Andrew Kwong,
Daniel Genkin, and Yuval Yarom. Cacheout: Leak-
ing data on intel cpus via cache evictions. CoRR,
abs/2006.13353, 2020.

[80] Stephan van Schaik, Alex Seto, Thomas Yurek, Adam
Batori, Bader AlBassam, Christina Garman, Daniel
Genkin, Andrew Miller, Eyal Ronen, and Yuval Yarom.
SoK: SGX.Fail: How stuff get eXposed. 2022.

[81] Wenhao Wang, Guoxing Chen, Xiaorui Pan, Yinqian
Zhang, XiaoFeng Wang, Vincent Bindschaedler, Haixu
Tang, and Carl A. Gunter. Leaky cauldron on the dark
land: Understanding memory side-channel hazards in
SGX. In CCS, page 2421–2434, 2017.

[82] Ben Weintraub, Christof Ferreira Torres, Cristina Nita-
Rotaru, and Radu State. A flash(bot) in the pan: measur-
ing maximal extractable value in private pools. In IMC,
page 458–471, 2022.

[83] Liam ‘Akiba’ Wright. Silent security scandal or dying
profession? DeFi bug bounty wall of shame has millions
in unpaid bounties. CryptoSlate, 17 Aug. 2023.

[84] Sen Yang, Kartik Nayak, and Fan Zhang. Decentraliza-
tion of ethereum’s builder market, 2024.

A Deferred Formalism Details

Challenge with generic soundness amplification. To see
multiple rounds do not generically amplify soundness, con-
sider the following standard application technique as a straw-
man: Judge asks the prover P to run the sting protocol ℓ times
and submit its outputs. Taking the majority outcome as the
output of Judge allows amplification of a sting protocol with
ε-soundness to one with ε∗-soundness where ε∗=Pr[X >ℓ/2]
for X ∼ Binomial(ℓ,ε). This would give negligible soundness
error with κ rounds.

However, a significant obstacle is that a malicious prover
P might run more than ℓ rounds and only submit the attempts
where it succeeds. If Judge cannot ensure that P submits all
rounds, a malicious P can fool Judge.

In fact, any non-negligible soundness error implies a sound-
ness error as high as≈ 1. This is because the soundness defini-
tion considers all possible P ∗, including one that runs a given
P ′ which fools Judge with εs(κ) probability poly(κ) times

(since the Judge algorithm is public and can be run internally
by P ∗ to pre-decide whether the attempt will succeed). This
will result in a soundness error of εs(κ) immediately implying
a soundness error of 1− (1−εs(κ))

poly(κ) for any polynomial
poly(κ). As a consequence, valid sting protocols will need to
have at most negligible soundness error.

Fortunately, when designing our sting protocols in particu-
lar, we can amplify soundness by enforcing sequentiality in a
non-black-box way. Recall that our protocols will typically
work by first requesting a stinger input from a trusted “Sting
Enclave”. The final output is provided to the enclave again
for a validity check on the proof. Here, we can enforce se-
quentiality in an ℓ-round proof by allowing the enclave only
after the i-th round is completed to generate a stinger for the
i+1-st round of the same proof instance.

B Deferred Protocol Details

Proof of Lemma 1. Our proof uses game-based formula-
tion. Let G0 be the stinger soundness game for χ∗,F (see
Definition 3). Let G1 be the same game except that the se-
cret s is sampled from the uniform distribution U|χ∗|. Con-

sider any B playing these game. We define Advχ∗,F
snd (B) =

Pr[B wins in G0] as and Advχ∗

inv(B) = Pr[B wins in G1].
Now, consider a game pair (G∗0,G

∗
1) for distinguishing

between the distributions D0 = χ∗ and D1 = U|χ∗|. De-
fine an adversary C for this game pair as follows: C
runs B internally and simulates G0/G1 for it (this de-
pends on what C receives from its own game). Ob-
serve that C outputs 1 in G∗b iff. B wins in Gb for
b ∈ {0,1}. Define dχ∗ to be this distinguishing advan-
tage

∣∣Pr[C outputs 1 in G∗0]−Pr[C outputs 1 in G∗1]
∣∣. Conse-

quently,

Advχ∗,F
snd (B)≤ dχ∗ +Advχ∗

inv(B)

Now, the maximum advantage for distinguishing between χ∗

and U|χ∗| (with 1 sample), even for unbounded adversaries is
the total variation distance (tvd) between the distributions—
this corresponds to guessing based on the maximum likeli-
hood estimate. In other words, the above dχ∗ is bounded by
tvd(χ∗,U|χ∗|), which completes the proof.

Proof of Theorem 2. Recall that the completeness and sound-
ness errors for 1 round are bounded by p = tvd(χ,χ∗) and
r = tvd(χ∗,U|χ∗|) respectively. In other words, in one round,
an honest prover succeeds with probability 1− p, and an ad-
versarial prover succeeds with probability r.

Now, intuitively, when 1− p > r (i.e., 1− p− r > 0), by
running more rounds, we can make the honest prover succeed
with probability close to 1, and the adversarial prover succeed
with probability close to 0.

Specifically, consider running n rounds such that the prover
is required to succeed in more than k = n(1− p+r)/2 rounds

17

for the proof to be valid. We can calculate the success prob-
ability for both the honest and adversarial provers, using a
binomial Chernoff bound which we recall below.

Fact 1 (Chernoff Bound). Consider Y ∼ Binomial(n,ρ) and
let W(n,ρ,y) = Pr[Y ≤ y]. If y < np, then W(n,ρ,y) ≤
exp(− (nρ−y)2

3nρ
).

Observe now that

Pr[Honest prover fails—that is, it succeeds in at most k rounds]

≤ exp
(
−(n(1− p)−n(1− p+ r)/2)2

3n(1− p)

)
≤ exp

(
−(n/2)2(1− p− r)2

3n(1− p)

)
≤ exp

(
−n(1− p− r)2

12(1− p)

)
If we want to bound this error by εc, we get

n >
−12ln(εc)(1− p)

(1− p− r)2

A similar calculation can be done with the probability that
an adversarial prover fails in at most n− k rounds, which is
W(n,1− r,n− k)—this is the soundness error, which if we
want to bound by εs results in

n >
−12ln(εs)(1− r)

(1− p− r)2 .

This completes the proof.

B.1 Remarks

The double-TEE setting. Over the years, a number of vul-
nerabilities [10, 12, 18, 78–81] have been identified within
TEEs such as Intel SGX and although corrective patches have
been applied to known issues, the emergence and exploitation
of new vulnerabilities remain a persistent concern. This fact
may cause concern over whether it is reasonable to use a TEE
for our sting protocols.

In the specific case where both the Sting Enclave and the
target application use the same type of TEE (e.g., Intel SGX)—
what we call the double-TEE setting—sting proofs can detect
an application vulnerability even in the face of a TEE break.

Observe that in the double-TEE setting, a sting proof shows
one of two things: (1) Secrets are leaked by some subversion
functionality O that may or may not involve a broken (appli-
cation) TEE or (2) The TEE for the Sting Enclave has been
broken. Either case would likely result in the target applica-
tion’s owner to revisit its TEE usage. Specifically, in case (2),
if the TEE for the Sting Enclave has been broken, then be-
cause the same type of TEE is used for the target application,
it could also be vulnerable to subversion. In essence, such a
sting proof will rightly deter the use of the TEE within the
target application as well.

Narrowing down the cause of failure. While sting protocols
can capture a wide range of failures (e.g., implementation
bugs to collusion to side-channel attacks), a basic limitation
of our approach is that it can be difficult to pinpoint the exact
security failure that gives rise to a subversion oracle. Still,
in practice, external evidence can help. For example, if the
target service has been formally verified and unlikely to fail, it
might be possible to ascribe the problem to corrupted players.

C Deferred Details on Applications

C.1 Block Building

Protocol subtleties. An efficiency hurdle is how to enable
the prover to identify s among the transactions leaked by O.
Of course, the prover could attempt its sting proof with all
transactions but this could be practically infeasible. One sim-
ple strategy to avoid this is to have the prover commit to the
entire leakage (through e.g., a hash of it) when constructing
t. Later, when opening the commitment, the prover can addi-
tionally prove to the Sting Enclave that it knows the preimage
(i.e., all the leaked transactions) of this hash.

A better approach is actually for the prover to, before con-
structing t, input all leaked transactions to the Sting Enclave
which identifies s if it exists within the list. Observe that
this still does not prove to the Sting Enclave that the prover
obtained s through O and not because of the fact that all
transactions are eventually publicly revealed—this will be
done by our technique of constructing a new transaction t by
embedding information from s into it.

An additional question is on the types of subversion oracles
we can handle—particularly relevant due to the time-based
nature of our setting. For instance, if O only leaks the bundle
transactions very close to public release of the block, then our
sting protocol would not be able to be completed in time.

Still, we note that such leakage may not have significant
practical relevance. For example, O could be because of a
dark marketplace where the leaked bundle information is sold
to the highest bidder. Here, if the leakage is very late, his
would also mean that the e.g., “buyer” of this information
would also have minimal time in order to exploit the leakage.
Analysis. Assume that our use of the default searcher code
to construct stinger bundles makes the sting protocol unde-
tectable to the SGX-builder. Then, observe that the sting pro-
tocol will succeed whenever places a competitive bid in the
searcher-builder auction to get the newly crafted transaction t
included.

On the soundness side, if SGX is secure, then a malicious
prover will be able to fool the Sting Enclave only when it
correctly guesses s—even if the transactions are sampled have
low entropy, the transaction signature will provide enough
entropy to prevent guessing s.

Recall that even when SGX is broken, since we are in the
double TEE setting (where the target application is also in a

18

TEE; see Section 3), the sting proof should provide sufficient
evidence to forgo the use of SGX in the builder application.

C.2 Signal Contact Discovery

Sting protocol details. In more detail, the full sting protocol
is now as follows: The sting prover P supplies a phone num-
ber N (that it owns), and a contact list L to the Sting Enclave,
which runs a Signal client within it. The enclave now ran-
domly selects a portion (half, for simplicity) of the contacts
in L to create a new contact list L′ and registers a new Signal
account U using N and L′—looking ahead, this corresponds
to the secret s whose leakage will be considered.

Now, P can use its access to a subversion oracle O which
leaks the secret L′ (again, for simplicity, we consider O that
leaks the entire contact list; partial leakage can be handled
as before). P can now show this to the Sting Enclave, which
simply checks whether it is the same as the original list L′.
As standard, upon verification, the Sting Enclave provides an
attestation, which can be checked publicly by a deterministic
Judge contract.

Analysis and discussion. Unlike our previous examples, the
actions of other users do not affect the creating of a sting proof.
We can therefore focus on a single user P , and a subversion
oracle O that leaks its contact list.

To analyze soundness, we note that the probability of P
perfectly guessing L′ on its own is 1/

(n
n′
)

where n,n′ are the
lengths of the lists L,L′ respectively. Asymptotically, even
choosing n′ = logn results in a soundness error of O(nlogn)
which is negligible in n. In practice however, it might be best
to, given n, choose an explicit n′ such that (1/

(n
n′
)
) is less

than the desired soundness error ε; a typical choice could
be n′ = n/2 (which minimizes the explicit soundness error).
As one concrete example, starting with n = 90 contacts, and
choosing half of them to form L′ already gives a soundness
error smaller than 2−80.

To completely capture soundness, we also need to ensure
that a malicious prover cannot obtain L′ through a different
route—e.g., by attempting to re-register the account, or by
linking additional devices. For this, we observe that Signal has
a feature that enables requiring a PIN for these actions. This
means that by having the Sting Enclave set the PIN for the
account, a malicious prover cannot obtain L′ in this fashion.
More details on the soundness are provided in the subsequent
paragraph. Finally, as alluded to in Section 3.1, although the
above analysis assumes that SGX is secure, even if the prover
can break privacy of the SGX Sting Enclave to retrieve L′, in
practice, this can serve as sufficient evidence for Signal to not
use SGX for its application.

For completeness, we note that if the sting protocol is un-
detectable (i.e., it is indistinguishable from a “real” user’s
registration), the protocol will always be successful in show-
ing the existence of an O that leaks the contact list.

For boosting soundness or completeness, unlike in our pre-
vious applications, it may be challenging to repeat the protocol
multiple times. For instance, repeating registration with the
same phone number many times can affect undetectability
by e.g., triggering anti-spam policies of the platform [59].
Moreover, using different phone numbers or contact lists for
each attempt could be prohibitively expensive since phone-
numbers are a limited, hard-to-acquire resource. Still, we
observe that if boosting is required, it can also be achieved
by multiple provers independently carrying out the sting pro-
tocol. Furthermore, it might also be possible to partition the
original contact list L into separate chunks for use in each
iteration.
Soundness details. If SGX is not broken, a malicious U
cannot use the control over N in any way to break sound-
ness by learning L′, without alerting the Sting Enclave. To
show this, we describe the Signal account management. Sup-
pose that π creates the Signal account USignal with the phone
number provided by the U . After this, a malicious U could ac-
cess USignal’s information using a backup, re-registering the
number N, transferring the account, or adding a new linked
device [69–71, 73, 74].

The backups are encrypted, stored locally, and disabled by
default [69]. Hence, π would not to enable backups and U
would be unable to acquire a backup. To re-register a number
in a new device and recover the previous contacts and settings,
U would need a PIN created in π [71, 72]. Such a PIN can
be a long alphanumeric string, so the SGX would construct
a PIN that is hard to guess. Even if U guessed the PIN, and
successfully re-registered N into their own device, this action
would be visible to the SGX, since its client would now be
unregistered [71]. If that was the case, it would refuse to cre-
ate a signature σ. To transfer an account, it is necessary to
have access to either the main device (inside the SGX), or to
a backup [69]. Therefore, U would not be able to obtain infor-
mation with this method. Finally, to link a new device, there
needs to be consent from the main device, which is controlled
by the Sting Enclave, so this is not an option either [70].

In summary, if SGX is not compromised, U cannot obtain
L′ without it being noticeable to the Sting Enclave, which
would cause the protocol to fail in producing a proof. Hence,
if U acts maliciously, it can break soundness by learning L′

only with negligible probability, from guessing L′ at random.

C.3 Transasction Ordering

Extension to a distributed setting. We first observe that
our approach directly works even in a distributed setting for
leader-based protocols where the current leader controls the
transaction ordering in the current block. The extension for
distribution ordering protocols (such as causal and fair order-
ing) is also straightforward. The sting prover will now submit
transaction A to all servers, and commit to receipts from a
quorum of nodes within its second transaction B. Now, once

19

the two transactions are ordered, the prover can reveal its
commitment, to show whether or not according the ordering
was consistent to the claimed policy.

Sting infrastructure as part of the server design. As a con-
crete example, consider a single centralized server which se-
quences (and executes) transactions from users. Consider the
following design as providing protection against censorship
and manipulation of the ordering by the server: The server
houses an SGX Sting Enclave which will submit “stinger”
transactions to the server itself. The enclave observe the final
output sequence to ensure that the transactions that it submit-
ted are present in the correct ordering. In essence, if the server
cannot distinguish between real user transactions, and stinger
transactions, then with high probability, if it attempts to cen-
sor or reorder transactions, this will also impact the stinger
transactions and will be detected by the Sting Enclave. This
will provide convincing proof that the server has manipulated
the transaction ordering.

C.4 Auction Setting

Consider the setting of a second-price auction—after bidders
submit bids to the auctioneer, the highest bid wins the item
but only pays the second-highest bid. Second-price auctions
are truthful—that is, the dominant strategy for a bidder is
simply to bid its value regardless of the other’s strategy. One
concern is that in settings with many or unknown bidders, the
auctioneer can itself pose itself as a bidder, and only slightly
undercut the highest bidder to maximize its revenue. This
poses a problem if the auctioneer is centralized even if bids
are sealed, and not disclosed to all bidders. In fact, there is
evidence of similar behavior in the real world as brought to
light by the Justice department’s lawsuit against Google for
unfairly manipulating its ad auctions [58].

A simple sting protocol is possible for detecting malicious
auctioneer behavior. Suppose that the prover knows that the
auctioneer strategy is to add an additional bid F(b), where
b is the highest bid. Our techniques from Section 3 already
construct a sting proof when there is a subversion oracle that
leaks b, and thus apply to this malicious-auctioneer scenario.

Sting proof without leakage. Remarkably, a sting proof is
also possible without any leakage—we provide a sketch below.
The intuitive idea is to use the Sting Enclave to generate a bid,
and win the auction in a way that the bidder’s payment could
only have been influenced by fake bid F(b).

First, the prover uses the Sting SGX Enclave to generate a
bid b′ for an auction instance so that b′ is unknown to even
the prover. With some probability, b′ will win the auction, and
F(b′) will be maliciously added by the auctioneer to make the
prover pay F(b′) instead of the true second-highest bid in the
auction. Since only the auctioneer knows the final bids, if F(b)
is the payment, then it is very likely that it was maliciously
added by the auctioneer. This can be shown to the Sting

Enclave to create a sting proof. Repeating this experiment
many times will reduce the proof soundness error.
Bidder collusion. Recall that we consider a second-price
auction setting—after bidders submit sealed bids to the auc-
tioneer, the highest bidder wins the item but only pays the
second-highest bid. For simplicity, suppose that we have only
two bidders. Recall that second-price auctions are truthful—
that is, the dominant strategy for a bidder is simply to bid its
value regardless of the other’s strategy. However, it is well-
known that bidder collusion can make the auctioneer revenue
zero; this is done by having one party bid zero. Sting proto-
cols provide one way to fix this: Communication between
parties can serve as evidence of collusion and the auction-
eer (or mechanism) can now accept such a proof to penalize
participants. For instance, if Alice communicates with Bob
to initiate the collusion, Bob can prove this to the auctioneer
so that he collects a reward and Alice is penalized. We leave
a full game-theoretic exploration of this idea for different
auction settings to future work.

20

D Deferred Details on Implementation and
Evaluation

In this section, we provide the deferred sting protocol code
for our Tor and block-building applications.

Algorithm 2 Sting Protocol for Tor
1: ProvisionEnclave(C = {DAs, rep, destSet}): ▷ Sting Enclave
2: ...
3: relaySet = HttpsRequest(DAs)
4: Seal(skSting, rep, relaySet, destSet)
5: ...
6: GenStinger(C)→ β: ▷ Sting Enclave
7: rep, relaySet, destSet = Unseal()
8: S = /0

9: for i = 1 to rep do
10: Sample stinger:

11: circuit = (relay1, relay2, exit) $←− relaySet

12: dest
$←− destSet

13: Access dest using circuit via target application (Tor)
14: Leak sid (circuit’s unique id in Tor) to prover
15: S = S ∪ (sid, dest)
16: Seal(rep, S)
17: Leak data {(sid’, dest’)} from target application ▷

Subversion Oracle
18: VerifyEvidence(E={(sid’,dest’)})→(prf,sigSting): ▷ Sting

Enclave
19: ...
20: rep, S = Unseal()
21: cnt = 0
22: Verify(S, E):
23: for (sid’, dest’) in E do
24: if (sid’, dest’) ∈ S then cnt = cnt + 1
25: return Satisfied(cnt, rep)
26: GenProof(): prf = "OK"
27: ...
28: CollectBounty(sigSting, prf, pkSting): ▷ prover
29: ...
30: VerifySig(sigSting, prf, pkSting): prf ?

= "OK"
31: ...

Algorithm 3 Sting Protocol for Block-Building
1: GenStinger(C=(U({0,1}256),Sunsigned,bundle))→ β: ▷ Sting

Enclave
2: Sample ECDSA signature nonce: k $←−U({0,1}256)
3: pkstinger, skstinger = EthKeyGen()
4: Ssigned = SignTxskstinger (Sunsigned, nonceECDSA=k)

*** CRITICAL SEQUENCE STARTS ***
5: Send bundle||Ssigned to target application
6: Seal(k)
7: Leak backdoor β=S.hash to prover
8: Leak data L (all bundles received) from builder ▷ Subversion

Oracle
9: MakeEvidence(L, β, C=Tunsigned)→ E: ▷ prover

10: Use β=S.hash to locate S in L
11: Randomly sample commitment blinding factor r
12: Make commitment com = Com(S.sig, r)
13: pkevidence, skevidence = EthKeyGen()
14: Tsigned = SignTxskevidence (Tunsigned, nonceECDSA=com)
15: Send Tsigned to target application

*** CRITICAL SEQUENCE ENDS ***
16: Make evidence E = (r,block,S,T,skevidence)
17: VerifyEvidence(E=(r,block,S,T,skevidence)) → (prf,

sigSting): ▷ Sting Enclave
18: ...
19: Verify(S, E):
20: Check both S and T are included in block
21: T.sig ?

=SignTxskevidence (StripSig(T),nonceECDSA=Com(S.sig,r))
22: GenProof(): prf = block.num||block.hash
23: ...
24: CollectBounty(sigSting, prf, pkSting): ▷ prover
25: ...
26: VerifySig(sigSting, prf, pkSting)
27: blockNum, blockHash = parse(prf)

28: blockhash(blockNum) ?
= blockHash

29: ...

21

	Introduction
	Superclass Accountability
	Sting Framework (SF)
	Target Applications
	Contributions

	Sting Formalism
	Formalism Implications

	Sting Protocols for Privacy Leakage
	Motivation and General Framework
	Protocol Design
	Constructing Stingers

	Extensions
	Partial Leakage
	Early Leakage

	Confidentiality Applications
	The Tor Network
	Block-Building in Blockchains
	Signal Contact Discovery

	Sting Protocols for Integrity
	Transaction Ordering Guarantees
	Malicious Behavior in Auctions

	SF Implementation and Evaluation
	The Tor Network
	Block-Building in Blockchains

	Related Work
	Conclusion
	Deferred Formalism Details
	Deferred Protocol Details
	Remarks

	Deferred Details on Applications
	Block Building
	Signal Contact Discovery
	Transasction Ordering
	Auction Setting

	Deferred Details on Implementation and Evaluation

