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Abstract. Bootstrapping is the core task in fully homomorphic encryption. It is designed to self-clean en-
crypted data to support unlimited level of homomorphic computing. FHEW/TFHE cryptosystem provides the
fastest bootstrapping machinery in addition to the unique homomorphic evaluation functionality. In 2021, the
problem of large-precision bootstrapping was investigated in the literature, with fast algorithms proposed and
implemented. A common strategy to all the algorithms is to decompose the plaintext homomorphically into
blocks from the tail up, at the same bootstrap the blocks sequentially.
This paper proposes two new strategies to improve the efficiency of large-precision plaintext bootstrapping.
Both strategies are based on a new design of continuous nega-cyclic function with varying resolution, for making
accurate computation with blockwise approximate computing. To minimize the approximation error in each
block, optimizations are proposed based on rigorous error estimation, and are illustrated by error bounds in
power-of-two binomial representation.
The first strategy is to make homomorphic approximate decomposition of the input plaintext from the head
on. Compared with the tail-up approach, the head-on approach reduces the number of blocks at most by half
asympotitically, at the same time reducing the final refreshed error by at most 1− 1/

√
2 ≈ 29.3%.

The second strategy extends the head-on approach from large-precision plaintext bootstrapping to large error
reduction. It can be used directly to the input ciphertext for the purpose of plaintext bootstrapping; it can
also be used after plaintext bootstrapping to further reduce the refreshed error.
Two algorithms based on the above two strategies are proposed, together with some variants combining the
tail-up approach. The tail-up approach is completely re-developed for optimal blocksize control based on careful
error analysis, and a corresponding algorithm is proposed. All the algorithms are implemented on PALISADE,
and experiments based on real data show that the by the new strategies, the speed of large-precision plaintext
bootstrapping can be improved to as many as 7 times.

Keywords: Fully homomorphic encryption, bootstrapping, FHEW/TFHE, large-precision plaintext, power-of-two
binomial representation of integers.

1 Introduction

Fully homomorphic encryption (FHE) is designed to compute directly on data in encrypted form. In the popular
LWE/RLWE based FHE cryptosystem, an encrypted data m when scrutinized with the aid of a secret key, is always
accompanied with and protected by a head error qI and a tail error e. During homomorphic computing, the errors
grow towards the plaintext data. To make correct decryption, the data needs to keep safe distance from the errors.
At some point the error will be too big to allow any further homomorphic computing. A scheme allowing a limited
level of homomorphic computing is called a somewhat homomorphic encryption system (SWHE).

FHE differs from SWHE by it capability of supporting unlimited level of homomorphic computing. In 2009,
a revolutionary idea was proposed to refresh an encrypted data by reducing the error homomorphically via the
decryption circuit [16]. This idea is called bootstrapping. The first efficient bootstrapping method is based on the
BGV scheme [3], where the plaintext m is behind both the head error qI and the tail error e in the phase qI+e+m
of the encrypted data. By taking qI as part of the tail error in a bigger-modulus BGV ciphertext, polynomial

⋆ This paper is supported partially by China National Key Research and Development Projects 2020YFA0712300,
2018YFA0704705.



2 Hongbo Li, Dengfa Liu, and Guangsheng Ma

functions defined on a finite field [18], [21] can be designed to run on the encrypted data, and output a new
ciphertext encrypting the same plaintext but with much smaller tail error. This original bootstrapping can be
called backup bootstrapping, indicating that the plaintext is backed up after the bootstrapping.

Another efficient bootstrapping method follows a similar strategy. In the phase of a CKKS-format ciphertext [11],
the plaintext m is sandwiched by the head error qI and the tail error e in the phase qI +m + e of the encrypted
data. Usually the tail error overlaps with the plaintext, and is taken as part of the plaintext, so bootstrapping the
ciphertext aims at pushing the head error farther away from the plaintext. This is done by taking qI as part of
the plaintext in a bigger-modulus CKKS ciphertext, running some appropriate polynomial functions [6], [5] that
approximate the modulo-q function on plaintext, and outputting a new ciphertext encrypting approximately the
same plaintext but with much farther away head error.

The most efficient bootstrapping method for unpacked accurate data is FHEW/TFHE. It is based on both the
BFV scheme [2], [15] and the ring variant RGSW of the GSW scheme [19]. In the phase of a BFV-format ciphertext,
the plaintext m is also sandwiched by the head error qI and the tail error e in the form qI +m+ e, but unlike the
CKKS-format, here m is separated from e and is immediately next to qI. In other words, m is a modular integer
with modulus q.

To separate m from the errors, the FHEW/TFHE method chooses an RGSW working environment where the
plaintext is stored in the exponent of a monomial. The underlying ring of RGSW has the property that xN = −1
for an integer N of power of two, so that after changing the modulus from q to 2N and lifting the phase qI +m+ e
to the exponent, the original head error qI disappears, and by xm+e = xmxe, m and e can be easily separated in the
exponent. RGSW scheme is utilized to control the error growth efficiently during the homomorphic lifting [1], [20].
Lifting the data from the coefficient to the exponent is a salient feature of FHEW/TFHE.

Another salient feature of FHEW/TFHE is programmable functional bootstrapping. To bring down plaintext
m from the exponent to the coefficient, meanwhile inserting it to the argument of a prescribed function f , a
test polynomial is used, which is essentially the look-up table of function f , so that when m is brought down to
the coefficient, the error factor xe is removed, and the encrypted plaintext becomes f(m). This functionality of
FHEW/TFHE has important applications in privacy-preserving machine learning [10].

The FHEW/TFHE bootstrapping is a blooming topic in FHE. Since its discovery in 2015, there have been a
lot of papers in the literature devoted to further explore and develop the method [4], [8], [9], [13], [22], [23], [26],
[27], [28]. On the other hand, this method has two obvious shortcomings. The first is its inadequacy for packed data
bootstrapping, due to the harsh prerequisite of RGSW scheme in the error control of the homomorphic lifting. The
second is the plaintext size limitation due to the exponent space restriction. The coefficient space in BFV/RGSW
scheme can have hundreds of bits, and even thousands of bits if RNS representation is used. On the contrary, the
exponent space cannot exceed 20 bits, due to the inability of current computer systems in manipulating large-degree
polynomials.

In 2021, several methods [12], [25], [29] were proposed to overcome the second shortcoming, namely to handle
the bootstrapping of large-precision data in FHEW/TFHE cryptosystem. These methods used the strategy of
decomposing the long plaintext into shorter blocks from the tail up, bootstrapping each block sequentially, and
finally concatenating all the blocks. In FHEW/TFHE, a cycle of bootstrapping by lifting a block of plaintext to
the exponent and then down to the argument of a programmable function, with both input and output of the same
ciphertext format, can be rightly called a uni-bootstrap. It is denoted by GenPBS in [12], by Boot in [25], and by FBS

in [29].

– [12] proposed a fast method to bootstrap each block with a single uni-bootstrap, with the price of consuming
one more bit in the exponent space, and enlarging the refreshed error by a BFV-format multiplication.

– [25] proposed a fast method to obtain the sign bit of the long plaintext homomorphically, by bootstrapping
each block with two uni-bootstraps, one for the MSB (Most Significant Bit) of the block, the other for the lower
bits. The efficiency is further improved by a sequence of modulus switches. Without reducing the moduli, the
method can also be used to backup the original long plaintext homomorphically, and output a ciphertext with
small refreshed error.

– [29] proposed a fast method to backup long plaintexts that can be either accurate or approximate. It uses the
same strategy as [25] in bootstrapping each block: two uni-bootstraps, one for the MSB and the other for the
lower bits. One difference is the implementation. While [25] is based on the public PALISADE library, [29] made
its own C++ implementation from scratch.
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We observe that in [25], [29], the phenomenon of requiring two uni-bootstraps for one plaintext blockm′ is caused
by the disappearance of the MSB ofm′ after it is lifted to the exponent. Before the lift, letm′ = m′

MSB N+m′′ ∈ Z2N

be the plaintext block after modulus switch from q to 2N , where m′
MSB ∈ {0, 1} is the MSB of m′, and m′′ is the

lower bits. Then xm′
= xm′

MSB Nxm′′
= (−1)m′

MSBxm′′
because xN = −1. So after the lift, the MSB drops from the

exponent to the coefficient, only the lower bits remains in the exponent. Because of this, two uni-bootstraps are
required to recover m′, one for m′

MSB, the other for m′′.
Consider the following special case: in two’s complement representation, plaintext block m′ has it two leading

bits, one being m′
MSB, the other being the MSB of m′′ that is denoted by m′′

MSB, having identical bit-value, i.e.,
both 0 in the positive case, or both 1 in the negative case. Let us call such a block a “compliant block”. When
such a block is lifted, although m′

MSB is not in the exponent, its value is disclosed by m′′
MSB, which is still in the

exponent. Bootstrapping such a block needs only one uni-bootstrap.
How to obtain compliant blocks? For a long plaintext, suppose that it is divided into blocks from the head

on, and the first block is already a compliant one containing at least three bits. Then one uni-bootstrap suffices
to finish bootstrapping the first block. The second block is no longer a compliant one in general. However, when
we subtract the refreshed first block from the input plaintext, then in the leftover plaintext, the bits that were
previously occupied by the first block all have bitvalue 0 if the leftover plaintext is non-negative, or all have bitvalue
1 otherwise. So if we enlarge the second block by including two extra bits as the leading bits, we get a compliant
block. This trick can be used for all later blocks, so that each successive block is compliant after the previous blocks
are bootstrapped and then subtracted from the input.

The above blockwise bootstrapping is from the head of the plaintext on. As to the leftmost block, it can be
bootstrapped by two uni-bootstraps, one for the MSB, the other for the lower bits. If everything works well, then
on one hand, including two redundant bits in every succeeding block reduces the blocksize by 2. On the other hand,
the number of uni-bootstraps is reduced by half for each succeeding block. Suppose that in the tail-up approach
to blockwise bootstrapping, each block has bitsize d + 2 where d > 0. Then in the head-on approach, from the
second block on, each block has bitsize d, where the two leading extra bits are not counted. For sufficiently long
plaintext, the bootstrapping efficiency of the head-on approach is about d bits per uni-bootstrap, while for the
tail-up approach, the bootstrapping efficiency is d/2 + 1 bits per uni-bootstrap. Another benefit of reducing the
block number is the reduction of the refreshed error in the output ciphertext.

Unfortunately, not everything works well. In a uni-bootstrap, Before lifting to the exponent, the modulus of an
encrypted block needs to be down switched from q to 2N . This incurs a rounding error eMDS that generally occupies
more than half the bits of Z2N . In the tail-up approach, error eMDS does not overlap with the plaintext, and can be
completely eliminated after the plaintext block is brought down from the exponent to the coefficient. Once a block
is bootstrapped and then subtracted from the input plaintext, the bits previously occupied by the block are vacant.
In the head-on approach, the situation is different. After the modulus down switch and before the lifting, rounding
error eMDS generally covers the succeeding plaintext blocks, if there are any. The consequence is that before the
lift, in Z2N the plaintext bits that are not covered by error eMDS are inaccurate, and there is no way to obtain an
accurate result from the plaintext bits.

For the leftmost block of the input plaintext, the situation is even worse. In FHEW/TFHE, the programmable
function must be nega-cyclic [14], [8]. Usually the function can be divided into two branches, only one branch is
correct and returns the desired bootstrapping reuslt, while the other branch is designed solely to meet the nega-
cyclicity requirement, and generally returns wrong result if the rounding error eMDS forces the leftmost plaintext
block to fall within the domain of the wrong branch. If the programmable function is discontinuous, controlling the
error caused by misuse of the wrong branch is practically impossible.

To cope with the above situations, the programmable function for bootstrapping the lower bits of a plaintext
block must be re-designed, which should be at least continuous, so that a small change in the domain of definition
caused by eMDS does not change the result too much.4 The programmable function should also have a parameter
called resolution that controls the output plaintext precision. If there are various resolutions available, then op-
timization is needed to minimize the approximation error. To handle approximate bootstrapping of the plaintext
blocks, at the same time to obtain accurate bootstrapping of the whole long plaintext, the classical idea of accurate
computation by approximate computing in computer algebra can be borrowed.

This paper realizes the above ideas. A continuous programmable function with nega-cyclicity is designed to
bootstrap the lower bits of a block. A parameter called resolution is introduced to control the precision of approx-

4 In contrast, the MSB function is not continuous, nor is any programmable function to bootstrap the MSB.
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imate bootstrapping. Rigorous error estimations are made for various resolution values. For a plaintext block, if
there is more than one resolution value available for the programmable function, then a series of lemmas are set
up to optimize the resolution value for the purpose of maximizing the block size. To make accurate bootstrapping
for the whole plaintext, the approximate plaintext is strictly separated from the refreshed tail error after each
uni-bootstrap. To facilitate error control and illustrate optimization result, the error bound is usually measured by
the so-called power-of-2 binomial representation, which is an integer of the form 2l(1± 2−k) where 0 < k ≤ l, and
provides more detail than the usual power-of-2 bound. Usually the minus sign is used in the representation, so that
there are more values approximating a power-of-2 bound from below.

Based on the above ideas, two new strategies are proposed for large-precision plaintext bootstrapping. The
first strategy is to decompose homomorphically the input plaintext into blocks from the head on. Each block
is bootstrapped approximately, whose size is maximized by optimizing the approximation precision. Every two
adjacent blocks overlap. This overlap is not redundant in that the bootstrapping result of one block also repairs the
inaccurate result of the preceding block. After all the blocks are bootstrapped, by summing up all the bootstrapping
results, a ciphertext whose plaintext equal the input one is obtained.

For the purpose of backup bootstrapping, blockwise bootstrapping the tail error instead of the plaintext, can
reach the same goal of error reduction. To bootstrap the tail error blockwise, starting from the head, namely the
head-on approach, is the best choice. On one hand, bootstrapping the tail error is usually simpler than bootstrapping
the plaintext, because for the tail error, the first block is usually compliant. On the other hand, the tail error can
never be completely eliminated, and accurate bootstrapping of the tail error is impossible.

The second strategy is to decompose dynamically and homomorphically the tail error into blocks from the head
on, back up each block approximately, and then subtract the result of bootstrapping once the block is bootstrapped.
The block size changes dynamically as a result of error optimization. In this way, the tail error is gradually reduced,
its higher bits are gradually vacant, while the plaintext keeps unchanged. This strategy can be called (tail) error
bootstrapping. It is not only applicable to the input ciphertext, but also to the bootstrapping result of any plaintext
bootstrapping algorithm, such as the algorithms in [12], [25], [29], or any algorithm based on the head-on approach
to plaintext bootstrapping.

In order to make fair comparison, we re-develop and further improve the tail-up approach to plaintext bootstrap-
ping. In [25], [29], the block size in the tail-up approach is set to be constant. This simplifies the algorithm design
with the cost of more blocks and relatively small initial tail error. In our improvement, the block size no longer
keeps constant, and each block size is the result of optimization. This improvement reduces the block number, at
the same time allows for bigger initial tail error in the input ciphertext. When the initial tail error is very big, in
the extreme case the the first plaintext block in the tail-up approach, which is at the tail of the whole plaintext,
contains only one bit, namely the LSB (least significant bit). The smaller the first block, the bigger the allowed
initial tail error. Bootstrapping the LSB of the plaintext first is called LSB precursor. It turns out that for big
initial tail error, running the LSB precursor is necessary not only for the tail-up approach, but also for the head-on
approach to plaintext bootstrapping, and in some scenario, also indispensable for the error bootstrapping.

In this paper, for each of the tail-up approach, the head-on approach, and the error bootstrapping, an algorithm
is designed. Furthermore, some variants are designed to include special tricks to handle the first block, for example
the LSB precursor. All the algorithms are implemented in the open-source FHEW/TFHE system on PALISADE
platform. For real test data such as those used in [25], the head-on approach can save run-time by 17% to 27%, and
the error bootstrapping can improve run-time speed to 7 times in the most favorable case.

The content of this paper is arranged as follows. Section 2 introduces the basics of FHEW/TFHE programmable
bootstrapping, and presents a method of bootstrapping simulation called phase bootstrapping. Section 3 presents
a continuous programmable function and the concept “resolution”, and investigates the high-resolution variants of
some programmable functions. Section 4 re-develops the tail-up approach together with the LSB precursor. Section
5 develops the head-on approach. Section 6 develops the error bootstrapping, together with combinations of various
bootstrapping strategies for FHE ciphertexts of different formats. Section 7 presents our experimental results on the
three approaches. The Appendix contains a series of lemmas on the error estimation, block size optimization, and
bootstrapping feasibility of the three approaches based on the power-of-2 binomial representation of error bounds.
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2 Basics

2.1 FHEW/TFHE programmable bootstrapping

In a programmable functional uni-bootstrap, the plaintext is first lifted from the coefficient to the exponent of a
monomial, then brought down to the argument of a programmable function, so that the output ciphertext encrypts
the value of the programmable function at the input plaintext. Because the coefficient space is much larger than the
exponent space, for large-precision plaintext only a block of it can be lifted to the exponent at a time. Bootstrapping
an encrypted long plaintext block by block is called block bootstrapping.

The input of bootstrapping is an LWE ciphertext ct = (a, b), where a = (a1, . . . , an) ∈ Zn
q and b ∈ Zq. Suppose

each entry is represented by an integer in [−q/2, q/2). The entries si of the secret key s ∈ Zn
q are assumed to be

sampled uniformly in {0, 1,−1}. The modular phase of the ciphertext is m0 ∈ Zq such that

m0 = phase(ct) := b− a · s = b−
∑
si ̸=0

aisi mod q. (2.1)

Later on when we talk about phase, we usually mean the modular one.
The first step of uni-bootstrap is to change the modulus from q to 2N , so that the MSB of the block to be

bootstrapped becomes the MSB of Z2N . This can be done by first making modulus down without scaling the input
ciphertext, then making modulus switch by scaling the ciphertext and then rounding.

Assume
m0 = ∆minit + einit mod q, (2.2)

where minit ∈ Zt is the original plaintext,
∆ = ⌊q/t⌋, (2.3)

and the original error |einit| ≤ Einit < ∆/2, so that decoding m0 gives ⌊m0/∆⌉ = minit mod t.
Let ∆ < q′ ≤ q. Since any integer in [−q/2, q/2) can be taken as a representative of a modular integer in Zq′ ,

ct ∈ Zn+1
q can be taken as a ciphertext with modulus q′, so that if q | tq′, then the encrypted plaintext is the

following tail block of minit:
m′ = (minit mod tq′/q) ∩ [−tq′/(2q), tq′/(2q)). (2.4)

Taking ct as an LWE ciphertext with modulus q′ < q is called modulus down. It changes the modulus and the
plaintext, but does not change the ciphertext components a, b. The phase of ct after modulus down is ∆m′+einit =
m0 mod q′.

Let there be an RGSW homomorphic computing environment with modulus Q ≫ q and ring dimension N >
n, that has the same security level with the input LWE ciphertext. When tq′/q ∈ Z and is small, the FHEW
bootstrapping of ct ∈ Zn+1

q by taking it as encrypting m′ ∈ Ztq′/q, is composed of three steps:

(1) Modulus down switch from LWEn,q′ to LWEn,2N :

Take LWEn,q ciphertext ct ∈ as one with modulus q′ < q, change the modulus to 2N ≪ q by scaling and
rounding:

ct’ = (a′, b′) := (⌊a× 2N/q′⌉, (⌊b× 2N/q′⌉) ∈ Zn+1
2N . (2.5)

The encrypted plaintext is m′, the rounding error is

eMDS := (b′ − b× 2N/q′)− (a′ − a× 2N/q′) · s ∈ Q2N . (2.6)

For large t, it is possible that ∆× 2N/q′ = (q/q′)× (2N/t) < 1, then the phase of ct’ is

m′
0 := ⌊b× 2N/q′⌉ − ⌊a× 2N/q′⌉ · s
= eMDS + (b− a · s)× 2N/q′

= eMDS + (∆m′ + einit)× 2N/q′

= ∆m′ × 2N/q′ + e′ mod 2N,

(2.7)

where
e′ = eMDS + einit × 2N/q′ ∈ Q, (2.8)
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For ct’ to be decryptable, |e′| < ∆N/q′ is required.

(2) Phase lift-up from LWEn,2N to RGSWN,Q:

Use identity

xphase(ct’) = xb′
∏
si ̸=0

x−aisi (2.9)

to lift phase(ct’) up to the exponent of a monomial homomorphically, by encrypting each x−aisi in RGSW format,
and making successive multiplications between RGSW ciphertexts. This procedure is called homomorphic accumu-
lation in the exponent. The result is an RGSW ciphertext ct" with modulus Q and ring dimension N , that encrypts
monomial xm′

0 = x(2N/q′)∆m′
xe′ .

(3) Phase bring-down from RGSWN,Q to LWEn,q:

A so-called programmable function f(x) is needed to bring down the plaintext m′ from the exponent to the
constant term of a polynomial. For the most general-purpose functional bootstrapping, f is from Z2N to ZQ. A
trivial RGSWN,Q encryption of test polynomial

c(x) :=
∑

d∈Z2N

f(d)x−d (2.10)

is multiplied with ct", and the result is an RLWEN,Q ciphertext encrypting a plaintext having constant term f(m′
0).

This RLWE ciphertext is then changed into LWEn,q form by key switch and modulus switch.

To get rid of the error e′ in the exponent of xm′
0 ,

f(2N∆m′/q′ + e′) = f(2N∆m′/q′) (2.11)

is sufficient. Let

g(x) =

tq′/(2q)−⌊tq′/(2q)⌋−1∑
i=−⌊tq′/(2q)⌋

f(2N∆i/q′) x−2N∆i/q′ ,

g0(x) =
∑

e∈(−∆N/q′,∆N/q′)∩Z

xe,

(2.12)

then the test polynomial c(x) = g(x)g0(x), and xm′
0c(x) has constant term f(2N∆m′/q′) as desired. Notice that

when expanding the product of polynomials g(x), g0(x), no like terms occur, due to |e| < ∆N/q′.
We see that to get rid of error e′ from the exponent, if c(x) takes the form (2.10), then the programmable

function f should satisfy (2.11). In the general case where f does not satisfy this requirement, the test polynomial
should take the form c(x) = g(x)g0(x), where factor g(x) serves as a look-up table of function f , and factor g0(x)
is used to eliminate the error e′.

If f(2N∆m′/q′) = m′, the we would have obtained a refreshed ciphertext encrypting m′. Unfortunately this is
possible only for the special case where tq′/q = 2 and N is a power of two, so that m′ ∈ Z2 and x(2N/q′)∆m′

=
xNm′

= (−1)m′
. When tq′/q > 2, the programmable function is required to be 2N -periodic nega-cyclic. A 2N -

periodic nega-cyclic function on Z is a function that satisfies

f(x+N) = −f(x), ∀x ∈ Z. (2.13)

The nega-cyclicity requirement is a direct consequence of the fact that after lifting the phase of an LWE ciphertext
to the exponent of a monomial, the MSB of m′

0 drops to the coefficient and becomes a sign factor. If m′
0 = N + c′

mod 2N for some 0 ≤ c′ < N , then xm′
0 = −xc′ , and the constant term of xm′

0c(x) is f(N + c′) = f(m′
0) = −f(c′).

Hence the nega-cyclicity guarantees no contradiction in the result.

TFHE bootstrapping is an improvement of FHEW bootstrapping in that every (matrix) multiplication between
two RGSW ciphertexts is replaced by a (vector-matrix) multiplication between an RLWE ciphertext and a GSW
ciphertext. This is achieved by putting a trivial RLWEN,Q encryption of plaintext polynomial xb′c(x) at the begin-

ning of the second step, so that the product of xb′c(x) and xaisi is homomorphically realized by the multiplication
of the RLWE ciphertext with an RGSW ciphertext encrypting xaisi .
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In TFHE bootstrapping for the case where tq′/q ∈ Z is small, there are also the above three steps, the difference
lies in the latter two steps. In the second step, the starting ciphertext is a trivial RLWE encryption of polynomial
xb′c(x); the middle and final ciphertexts, being multiplications of an RLWE ciphertext by an RGSW ciphertext,
are RLWE ones encrypting xb′c(x)xd for varying integer d. So this step essentially rotates the list of coefficients
of polynomial c(x) by a blind/secret amount d in each iteration, called blind rotation. The third step of TFHE
bootstrapping is simply changing the RLWE ciphertext into LWEn,q form by key switch and modulus switch.

When viewed from the content of the encrypted plaintext in the second step, FHEW gains accumulation on the
exponent of its plaintext monomial, while TFHE gains synchronous accumulation on the exponent of each term of
its test polynomial, or equivalently, gains rotation on the list of coefficients of its test polynomial. As the latter two
steps are closely related to each other, it is better to put them together and name them the step of “accumulative
blind rotation”.

The procedure consisting of the above two steps: modulus down switch and accumulative blind rotation, is called
a uni-bootstrap. The result is a ciphertext with refreshed error bound EB ≪ Einit that is independent of the input
minit and einit.

2.2 Backup block bootstrapping

If the output encrypts the input long plaintext, the bootstrapping is called backup bootstrapping.
From now on for simplicity of statement, it is assumed that q, q′, t, n,N are all powers of two. For example, q

can be changed into a power of two by by modulus switch. Denote

lq = log(q), lt = log(t), l∆ = log(∆),
ln = log(n), lN = log(N), lq′ = log(q′).

(2.14)

Due to the nega-cyclicity constraint of the programmable function, the MSB of m′ ∈ Ztq′/q and all the lower
bits cannot be recovered all at once by a single uni-bootstrap using only one programmable function. The MSB of
m′ is assumed to be the i-th bit of m′ from the right and have bit-value bi ∈ {0, 1}, where

i = log(tq′/q) = lq′ − l∆ > 0. (2.15)

When tq′/q = 2i is so small that in Z2N , the block m′ × 2N/2i occupied by plaintext m′ does not overlap with the
rounding error of modulus down switch, or more strictly, |e′| < N/2i, then a refreshed ciphertext encrypting m′ can
be obtained by one or two uni-bootstraps, in one of the following ways:

Double uni-bootstrap approach [25], [29]:

1. Starting from a ciphertext ct encrypting m′, the first uni-bootstrap returns a ciphertext ct1 encrypting the
integer bi 2

i corresponding to the MSB (2.15) ofm′, based on the 2N -periodic nega-cyclic programmable function
f init depicted in Fig. 1.

x

y

o N/2 N

-N/2-N

N/2

-N/2

Fig. 1. Programmable function f init for MSB bootstrapping.

2. Starting from ciphertext ct − ct1, the second uni-bootstrap returns a ciphertext ct2 encrypting all the lower
bits m′′ of m′, based on the 2N -periodic nega-cyclic programmable function f ′ depicted in Fig. 2.
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x

y

o N/2 N

-N/2-N

N/2

-N/2

-N

N

Fig. 2. Discontinuous programmable function f ′ for lower bits bootstrapping.

3. Return ct1 + ct2.

Single uni-bootstrap approach [12]:

1. Choose a new modulus q′ that is half the one used in the previous approach. Then the bit-size i of m′ in (2.15)
is reduced by 1. The error e′ ∈ Z2N is the same as before, but now satisfies |e′| < N/2i+1 for the reduced i.
Use both programmable functions f init(x), f ′(x) to construct test polynomial

c(x) = {g1(x) + x−N/2ig2(x)}g0(x), (2.16)

where g0 is defined in (2.12), and for j = 1, 2, gj(x) is obtained from g(x) in (2.12) by replacing f with f init, f ′

respectively. Because 2N∆/q′ > N/2i and |e′| < N/2i+1, no like terms occur in the polynomial addition and
multiplication of (2.16).

Do one uni-bootstrap to get two ciphertexts ct1 and ct2 encrypting respectively the coefficients of x0 and xN/2i .
ct1 encrypts the integer 2bi where bi is the MSB of m′, while ct2 encrypts the absolute value |m′|.

2. Make RLWE ciphertext multiplication to get ct3 = ct1 × ct2.
3. Return ct2 − ct3, because

m′ = (−1)bi |m′| = |m′| − (2bi)|m′|. (2.17)

The single uni-bootstrap approach has the benefit of fewer uni-bootstraps, with the cost of much larger refreshed
error. For better-quality bootstrapping, the double uni-bootstrap approach is preferred.

When tq′/q is not small, so that the block of plaintext m′ overlaps with error e′ in Z2N , then q′ must be reduced
in order not to corrupt the plaintext. This is the case of large precision lt. The original plaintext minit must be
divided into blocks, so that each block can backed up by one of the two alternate procedures. This is called backup
block bootstrapping. In all the three references [25], [29], [12], block bootstrapping is done from the tail block to the
head block sequentially, where each block has the same size.

2.3 Phase simulation of bootstrapping

In error analysis and correctness verification, once the three basic error variables: the initial error einit, the rounding
error eMDS of modulus down switch, and the refreshed error eB of uni-bootstrap, are given either variances as
subgaussian random variables, or absolute bounds as regular variables, then the two steps of a uni-bootstrap can
be both simulated by acting on the input plaintext directly. This phase simulation can dramatically simply error
analysis.

Furthermore, due to the narrow exponent space constraint of the RLWE/RGSW cryptosystem, FHEW/TFHE
method cannot apply to ring dimension bigger than 20. To investigate the asymptotic behavior of a bootstrapping
algorithm by experimentation involving large FHE parameters, phase simulation must be resorted to.

There are two approaches to error analysis. The first is the absolute error approach, in that the sum of errors eMi

is bounded by the sum
∑

i eMi of their absolute bounds eMi ≥ |eMi|. The second is the heuristic error approach [7],
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in that the following errors are taken to be independent random variables (this is called the error independence
heuristic):

– the initial error einit of the input ciphertext ct;
– the refreshed error eBi in the resulting ciphertext cti of the i-th uni-bootstrap;
– the rounding error eMi of ciphertext ct −

∑i
j=1 ctj in modulus down switch, where i ≥ 0. When i = 0, the

ciphertext is just the input ct.

Notice that the independence heuristic is on both the errors within each class and the errors of different class.
In the heuristic approach, an error e is assumed to be subgaussian with mean zero and variance σ2

e , such that
the bound Ee of |e| is determined with some failure rate by

Ee = µσe, (2.18)

where µ > 0 is a constant independent of e, and is determined first by subgaussian tail estimation and then trimmed
by experiments. The sum of errors with scaling: λ1e1+ . . .+λnen, is then subgaussian with mean zero and variance∑

i λ
2σ2

eMi
. Since µ is a universal constant, the bound of the sum of errors is

√∑
i λ

2
iE

2
i for |eMi| ≤ eMi.

For example for the error in (2.8), its absolute bound is 1/2+EMDS+Einit× 2N/q′, while its heuristic bound is√
E2

MDS + E2
init × (2N/q′)2, (2.19)

where er is too small to be considered. In this paper, we use the absolute approach and the heuristic approach in
parallel, so that the former is failure-free, while the latter is more practical.

For eMDS, let
ϵ0 = b× 2N/q′ − ⌊b× 2N/q′⌉,
ϵi = (ai × 2N/q′ − ⌊ai × 2N/q′⌉)si.

(2.20)

When the secret key is ternary uniformly random in {0,±1}, one can generate eM0 and the eMi for all si ∈ {±1}
as i.i.d. uniform distribution on interval [−1/2, 1/2]. There are 1 + 2n/3 of them all together, so random variable
eMDS = ϵ0 −

∑n
i=1 siϵi for large n is approximately Gaussian by the central limit theorem, with standard deviation

σMDS =
√
(1 + 2n/3)× (1/12) ≈

√
2n/6. (2.21)

So we can set
EMDS = µ

√
2n/6. (2.22)

Theoretically µ determines the error failure probability: for a zero-centered Gaussian distribution e(x) with standard
deviation σe,

P (|e(x)| > E) = 1− erf(E/(
√
2σe)) = erfc(µ/

√
2). (2.23)

To facilitate error analysis and algorithm implementation, we usually simulate the bounds of two important
errors by the following power-of-2-binomial integers on the upper side:

EMDS = 2l(1− 2−k) = 2−d(1− 2−k)N/4,

EB = 2lB (1− 2−kB ) = 2−dB (1− 2−kB )∆/2,

Einit = 2lI (1− 2−kB ) = 2−dI (1− 2−kI )∆/2,

(2.24)

where
d = lN − l − 2,
dB = l∆ − lB − 1,
dI = l∆ − lI − 1,

(2.25)

for non-negative integers k, l, kB , dB , kI , dI , d, dB , DI satisfying the following:

– 1 < k ≤ l, 1 < kB ≤ lB , 1 < kI ≤ lI ;
– 0 < l ≤ lN − 3, 4 ≤ lB < lI ≤ l∆ − 1;
– 0 < d ≤ lN − 3, 0 ≤ dI < dB ≤ l∆ − 5.
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Below we explain the ranges. The right side of (2.24) are all integers. Usually l ≥ 5, if k = 1, then 2l+1(1−2−k) =
2l ≈ 2l − 1 = 2l − 2l−l, so we choose 2 ≤ k ≤ l to avoid redundancy in resolution. For the same reason we have
kB , kI > 1.

By FHE standards, the error in a new ciphertext has standard deviation 3.19, the fresh error bound can be set
to be about 24. So lB ≥ 4 for refreshed error EB . As a quality requirement of bootstrapping, ⌊logEB⌉ < ⌊logEinit⌉
is necessary, which is just lB < lI . That Einit < ∆/2 requires lI ≤ l∆ − 1.

That d > 0 is for bootstrapping of long plaintexts, where d+2 is often the regular block length. So l = lN−d−2 ≤
lN − 3 and d ≤ lN − 3. In practice, at least d ≥ 3 and l ≥ 4. In our experiments, it also holds that lN ≥ l + k/2.

Alternatively, there are bounds of the form 2l(1 + 2−k) where 2 ≤ k ≤ l, which are power-of-2 binomial integers
on the lower side. They are not as useful as those on the upper side in exploring the limits of approximation to
power-of-2 upper bounds, and will not be used in this work.

0 2p+1
2

p
2

p-1
2 -2

p+1 p-1
2 -2

p+1 p-2

2 -2
p+1 p-3

2 -2
p p-2

2 -2
p p-3

2
p-2

2
p-3

2 -2
p-1 p-3

Fig. 3. power-of-2 binomial integers on the upper side. The shadow zones on the real axis are on the lower side and are
empty.

For example, for µ = 6, 12, the corresponding failure probabilities are both very small:

erfc(6/
√
2) ≈ 1.97× 10−9, erfc(12/

√
2) ≈ 3.55× 10−33; (2.26)

the parameters of EMDS and EB are the following:

– If n = 29, then
√
2n = 25. If µ = 6, then EMDS = 32 = 25 ≈ 25(1 − 2−5), so l = k = 5. If µ = 12, then

EMDS = 64 = 26 ≈ 26(1− 2−6), so l = k = 6.
– If N = 211, then

√
2N = 26. If µ = 6, then EB = 26, so lB = kB = 6. If µ = 12, then EB = 27, so lB = kB = 7.

– If n = 210, then
√
2n = 25

√
2. If µ = 6, then EMDS = 25

√
2 < 26(1 − 2−2), so l = 6, k = 2. If µ = 12, then

EMDS = 26
√
2 < 27(1− 2−2), and l = 7, k = 2.

– If N = 212, then
√
2N = 26

√
2. If µ = 6, then EB = 26

√
2, so lB = 7, kB = 2. If µ = 12, then EB = 27

√
2, so

lB = 8, kB = 2.

In the phase space Z2N , let the plaintext occupies the region from the left first bit to the left (d0+2)-bit, where
d0 ≥ −1, then there are (lN + 1)− (d0 + 2) bits left in the space. For correct decryption, there must be a gap of at
least 1 bit between the plaintext and the error. So the error occupies at most lN − d0 − 2 = l0 bits. For example in
the notations of (2.25), if d0 = d then l0 = l. Let E be the error bound in Z2N . The following is the error correctness
constraint in Z2N :

E < 2l0 = N/2d0+2. (2.27)

In the phase space Zq represented by integers bounded by q/2, the two intervals (0, q/4) and (q/4, q/2) have the
same number of positive integers. For a modular number x ∈ Qq, if |[x]±q/2| ≤ q/4, then x is said to be small; if
|[x]±q/2| ∈ (q/4, q/2], then x is said to be large. For example, for the initial error bound, if Einit ≤ ∆/4, the initial
error is small; if ∆/4 < Einit < ∆/2, the initial error is large.

The modulus down switch step can be simulated by defining a rounding function r from Zq × Z to Z2N :

r2N/q′(m, e) = m× (2N/q′) + e mod 2N, (2.28)

where error e ∈ Q simulates eMDS. The benefit of this simulation over the usual one r2N/q′(m, e) = ⌊m×(2N/q′)⌉+e
where e ∈ Z, is that the 1/2-bounded rounding error er between m × (2N/q′) and ⌊m × (2N/q′)⌉ is integrated
with e, which simplifies error analysis; the drawback is that the randomness of e is harmed by the constraint
m × (2N/q′) + e ∈ Z. Alternatively, r2N/q′ can be defined as ⌊m × (2N/q′) + e⌉. In error analysis, the above
1/2-bounded rounding error is too small to make any effect.
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For the refreshed error eB after uni-bootstrap, a Gaussian distribution with heuristic bound EB is sufficient to
simulate it. The estimation of EB from both theoretical deduction and statistical experiments, can be found in [17].
Later in this paper we also report our own estimation of EB by statistical experiments.

The accumulative blind rotation step can be simulated by the sum of a programmable function f : Z −→ Zq

and an error eB ∈ Zq, where |eB | ≤ EB and f satisfies (2.11). Then the whole uni-bootstrap procedure can be
simulated by the following function mapping m ∈ Zq to mUniBoot ∈ Zq:

mUniBoot = f(r2N/q′(m, e)) + eB mod q. (2.29)

For backup bootstrapping, defining a new programmable function f : Z2N −→ Z2N simplifies error estimation
tremendously. To further simplify error analysis, we redefine the rounding function r2N/q′ so that it is from Z× Z
to Z. The purpose of changing the domain of definition to Z is to make the modular addition in (2.28) an integer
addition. Changing the range of value to Z has no influence upon error analysis, because r2N/q′ is always coupled
with 2N -periodic function f in uni-bootstrap simulation.

3 New techniques for block bootstrapping error analysis

In this section, we first investigate the difficulties in realizing the idea of head-on block bootstrapping, then develop
some techniques to overcome the difficulties. The techniques include a continuous programmable function, resolute
numbers, and some inequalities related to them.

Suppose the two leading bits of a block m′ have identical value. When making uni-bootstrap, the first step is
modulus down switch that generates a rounding error eMDS that may occupy most of the bits of Z2N . This newly
introduced error may change the values of the two leading bits in Z2N , so that they are no longer identical.

For example, if m′ has two leading bits of value 00, the rounding error may change them into 01 or 11: the first
may occur when the lower bits of m′ all have value 1, and eMDS > 0; the second may occur when the lower bits of
m′ all have value 0, and eMDS < 0. In duality, if m′ has two leading bits of value 11, the rounding error may change
them into 10 or 00: the first may occur when the lower bits of m′ all have value 0, and eMDS < 0; the second may
occur when the lower bits of m′ all have value 1, and eMDS > 0.

The instability of leading bits also exists in previous bootstrapping methods. When bootstrapping is from the
tail up, there is a “firewall” separating the plaintext m′ from the error eMDS, which is composed of at least one
vacant bit. For example, if |e′| < 2p for the error in (2.8), and m′ is embedded into Z2N as m′ 2p+1, then the bit
occupied by 2p via its unique nonzero bit-value serves as a firewall between the plaintext and the error. The MSB
of the firewall behaves as the rounding bit of the plaintext, whose role is to stabilize not only the leading bits, but
also the lower bits of m′. Indeed, the rounding bit is already in use in factor g0(x) of the test polynomial (2.12) to
get rid of the error part.

If bootstrapping starts from the head on, there is no longer a firewall separating the plaintext from the error,
because in modulus down switch, the rounding error overlaps with the input long plaintext. Although m′ is not
covered by eMDS in Z2N , those bits behind m′ in minit are flooded by the error, leading to the consequence that the
last bit of m′ cannot be recovered even after the block of m′ has finished bootstrapping, because there is no longer
a “clean” rounding bit following m′.

In minit after subtracting the result of bootstrapping block m′, the next block should include some number of
bits that were previously occupied by m′, so that the block starts with exactly two leading bits of identical value.
The bootstrapping result of the block will repair the last few bits of the previous block m′. Such repairing finishes
only when the LSB of the input plaintext minit is bootstrapped. Before that, the sum of bootstrapping results is
not equal to the sum of the bootstrapped blocks.

Another error in bootstrapping is caused by falling into the wrong branch of the programmable function that is
designed only to meet the nega-cyclicity constraint. For example, in Fig. 2 of function f ′ that is designed to recover
the lower bits of m′, the branch defined on interval [−N, 0) does not return the correct backup result f ′(x) = x,
but rather returns f ′(x) = −x −N . The function in Fig. 2 is discontinuous at points −N, 0, making error control
very difficult.
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3.1 Continuous programmable function for block bootstrapping

We observe that in Fig. 1 of function f init, |x − f init(x)| < N/2 for any x ∈ (−N, 0) ∪ (0, N), and the function is
continuous on the two intervals. Formally,

f init : Z −→ [−N/2, N/2]

x 7→
{
N/2, if x ∈ [0, N)
−N/2, if x ∈ [−N, 0)

(3.1)

If we choose a continuous programmable function f for lower bits recovery, so that it agrees with the identity
function on interval (−N/2, N/2), then by

f init(x) + f(x− f init(x)) = x, ∀x ∈ (−N, 0) ∪ (0, N), (3.2)

the two functions f init, f correctly backup all x ∈ (−N, 0) ∪ (0, N) by first returning f init(x), then returning the
value of f at the remainder of x after subtracting f init(x), and then adding the two returns up. By continuity and
2N -periodic nega-cyclicity, function f is of the following form:

f : Z −→ [−N/2, N/2]

x 7→

x, if x ∈ [−N/2, N/2]
N − x, if x ∈ [N/2, N ]
−N − x, if x ∈ [−N,−N/2]

(3.3)

x

y

o N/2 N

-N/2-N

N/2

-N/2

Fig. 4. Continuous programmable function f for bootstrapping lower bits.

When x is nearby −N or 0, error |x−f init(x)| may exceed N/2 a little bit, then f enlarges the error furthermore,
but not too much due to continuity. Only the block of plaintext that is not flooded by the error can be approximately
backed up. The error is a mixture of the input ciphertext error, the modulus down switch error, the plaintext
rounding error, and the programmable function branch misuse error.

From the viewpoint of two’s complement representation, a block in Z2N having two leading bits of identical
value corresponds to a number of (−N/2, N/2) in the interval [−N,N) representation of Z2N . If the two leading
bits are changed into different values by a rather small error, this only occurs when the number is of the binary
form 110...0 or 001...1. In [−N,N), the number is either −N/2 or almost N/2, which are exactly the two points
from which the programmable function starts to deviate from the identity function.

3.2 Resolute numbers

In Subsection 2.1, we see that in a uni-bootstrap, to get rid of error eMDS, it is sufficient for the programmable
function f to satisfy (2.11). However, none of the three programmable functions: f ′ of Fig. 2, f init of (3.1), and f
of (3.3), meets the requirement. To revise these functions so that (2.11) is satisfied, we need a convenient concept
to name a class of numbers that has been used popularly in LWE plaintext decoding.

Denote

Q[p+1] := {x ∈ Q
∣∣∣ |x− y2p+1| < 2p, ∃ y ∈ Z},

Z[p+1] := Q[p+1] ∩ Z,
(3.4)
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and call them respectively resolute rational numbers and resolute integers with (p+1)-bit resolution. They can also
be called (p+1)-resolute numbers unanimously. When x ∈ Qq (or Zq) for some q > 2p+1, then if a rational number
(or integer) representative of x is in Q[p+1] (or Z[p+1]), so are all other representatives of x. Hence for a modular
number x, x ∈ Q[p+1] (or Z[p+1]) makes sense. Usually we require p ≥ 0, but p = −1 is still useful: Q[0] = Q.

Let x = y2p+1 + z ∈ Q[p+1] for some integer y and rational number z with |z| < 2p. Then y2p+1 is called the

center of x, denoted by (x)[p+1], and z is called the error or residue of x. For a fixed EMDS > 0, if |z| < 2p −EMDS,
then x is said to be EMDS-tolerant in Q[p+1]. If z is a random variable, EMDS is the bound of another independent

random variable, and |z| <
√
22p − E2

MDS, then x is said to be Pythagorean EMDS-tolerant.
Every x ∈ Qq or Zq has infinitely many rational or integral representatives of the form x+kq, where k ∈ Z. Since

comparison and ordering make sense only in Z, modular integers should be given common interval representatives
and then be compared as regular integers. Usually a zero-centered interval is used to offer representatives for modular
numbers, because this representation gives smaller absolute value. For example, x ∈ Zq can be represented by an
integer in interval [−q/2, q/2), and |x| makes sense. Another example is the two’s complement representation when
q is a power of two, which is just the [0, q)-interval representation in binary form. Still these are not enough.

We introduce the following notations. The unique representative of x ∈ Qq in interval [a, a+ q) can be denoted
by [x][a,a+q). The following are special shorthand notations:

[x]±q/2 := [x][−q/2,q/2);
[x]±q/2−ϵ := [x][−q/2−ϵ,q/2−ϵ).

(3.5)

The default representative of x ∈ Qq is [x]±q/2.
When x ∈ Q is a regular number, the notation “[ ][a,a+q)” serves as a map from Q to interval [a, a + q), by

taking x as a representative of some modular number in Qq. In this case, the simplified notations (3.5) also make
sense.

We further introduce the following simplified notation: for any x ∈ Q[p+1],

[x]
[p+1]
±q/2 := [(x)[p+1]]±q/2 ∈ Z ∩ [−q/2, q/2). (3.6)

Notice that

[(x)[p+1]]±q/2 =
(
[x]±q/2−2p

)[p+1]
. (3.7)

The following are some simple facts:

– For any q′ < q, both of which are powers of two, for any x ∈ Qq, x− (x mod q′) ∈ Z[lq′ ]
.

– For any two integers y1 ̸= y2, (y12
p+1 − 2p, y12

p+1 + 2p) ∩ (y22
p+1 − 2p, y22

p+1 + 2p) = ∅.
– Q\Q[p+1] = Z\Z[p+1] = {2p(1 + 2k)

∣∣∣ k ∈ Z}.

For any x ∈ Zq, it has the following unique 0-centered tail-up blockwise representative:

x =

u∑
i=0

yi2
d′
i−1 ∈ [−q, q), (3.8)

where d′j = d′j−1 + dj , d
′
−1 = 0, and d0, . . . , du are a sequence of positive integers such that d′u =

∑u
i=0 di = lq;

where for all 0 ≤ i ≤ u, integer yi ∈ [−2di−1, 2di−1) is unique.
If x ∈ Zq is represented by (3.8), then for u ≥ 1, x ∈

[
− (

∑u
i=0 2

d′
i)/2, (

∑u
i=0 2

d′
i)/2

)
. In the extreme case where

di = 1 for all i, then u = lq − 1, and
∑u

i=0 2
di−1 × 2d

′
i−1 =

∑u
i=0 2

i = 2u+1 − 1 = q − 1, so x ∈ (−q, q). This
representation is suitable for plaintexts, but not for errors, because errors are not modular integers.

The representative can be obtained as follows. In regular binary form, let x =
∑u

i=0 xi2
d′
i−1 , where |xi| ≤ 2di−1,

and if x ≥ 0, then all the xi ≥ 0, while if x < 0, then all the xi ≤ 0. For i = 0 to u, do the following:

1. Compute the regular binary form of x mod q, which is x =
∑u

j=i xj2
d′
j−1 .

2. If xi ≥ 2di−1, set yi = −2di + xi, x = x + (2di − xi)2
d′
i−1 ; else if xi < −2di−1, set yi = 2di + xi, x =

x− (2di + xi)2
d′
i−1 ; else, set yi = xi, x = x− xi2

d′
i−1 .
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For example, when q = 24 = 16, let d0 = d1 = 2, then d′0 = 2, d′1 = 4. In binary form, 7 = −9 mod 16 has the
following 0-centered tail-up blockwise representative:

0111 = 11 + 01× 22 = −01 + (01 + 01)× 22 = −01 + 10× 22 = −01− 10× 22 =: y0 + y12
d′
0 . (3.9)

In blockwise bootstrapping, to clear a signed integer instead of a modular integer, it is the 0-centered block-
wise representative that should be used. The two’s complement representation changes every signed integer into
non-negative integer, clearing such a representative in general does not clear the signed integer. This is another
reason to use the two programmable functions f init, f in blockwise bootstrapping. The two functions are themselves
almost anti-symmetric with respect to the origin, making them well suited for generating 0-centered blockwise
representatives for sign integers.

3.3 High-resolution variants of programmable functions

The following is a high-resolution variant of function f init in (3.1), with resolution p+1 bits for some 0 ≤ p ≤ lN−1.
It is first defined on the subset Z[p+1] of Z, then extended to Z by 2N -periodicity and by supplementing the points
outside Z[p+1] with value 0:

f init
p : Z −→ Z2N

x 7→


N/2, if x ∈ Z[p+1], (x)[p+1] ∈ [0, N);

−N/2, if x ∈ Z[p+1], (x)[p+1] ∈ [−N, 0);

f init
p (x− 2p), if x ∈ Z\Z[p+1].

(3.10)

It is easy to see that f init
p is 2N -periodic nega-cyclic.

The following is a high-resolution variant of function f in (3.3), with resolution p+1 bits for some 0 ≤ p ≤ lN−2,
by first defining on the subset Z[p+1] of Z, then supplementing the points outside Z[p+1] with suitable values and
extending to Z by 2N -periodicity:

fp : Z −→ Z2N

x 7→



(x)[p+1], if x ∈ Z[p+1], and
(x)[p+1] ∈ [−N/2, N/2];

N − (x)[p+1], if x ∈ Z[p+1], and

(x)[p+1] ∈ [N/2, N ];

−N − (x)[p+1], if x ∈ Z[p+1], and

(x)[p+1] ∈ [−N,−N/2];

y2p+1, if x = y2p+1 − 2p

∈ [−N/2, N/2], y ∈ Z;
N − y2p+1, if x = y2p+1 − 2p

∈ [N/2, N ], y ∈ Z;
−N − y2p+1, if x = y2p+1 − 2p

∈ [−N,−N/2], y ∈ Z.

(3.11)

It is easy to see that fp is 2N -periodic nega-cyclic, and

fp(x) ∈ 2p+1 ×
(
[−N/2p+2, N/2p+2] ∩ Z

)
, ∀x ∈ Z. (3.12)

In fact, for all x ∈ Z[p+1] ∩ Z2N ,

f init
p (x) = f init([x]

[p+1]
±N ) = sign(⌊x/2p+1⌉)×N/2,

fp(x) = f([x]
[p+1]
±N ) = ⌊f(x)/2p+1⌉ × 2p+1,

(3.13)
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and for all x ∈ (−N/2− 2p, 3N/2 + 2p) ∩ Z,

fp(x) =


⌊x/2p+1⌉2p+1, if x ∈ (−N/2− 2p,

N/2 + 2p);

N − ⌊x/2p+1⌉2p+1, if x ∈ (N/2− 2p,

3N/2 + 2p).

(3.14)

Furthermore, it can be easily verified that for x ∈ [−N,N),

f(x) = x− 2sign(x)ReLU(|x| −N/2), (3.15)

and
f init = flN−1. (3.16)

Let x =
∑lN−2

j=0 xj2
j ∈ [0, N/2). Then

fp(x) =

lN∑
j=p+1

xj2
j + xp2

p+1. (3.17)

For x = N/2 +
∑lN−2

j=0 xj2
j ∈ [N/2, N),

fp(x) = N/2−
lN∑

j=p+1

xj2
j − xp2

p+1. (3.18)

expand by 2N -periodic nega-cyclicity.
In general, we assume p ≥ 0. Still sometimes negative resolution is needed. Notice that f init

−1 = f init and f−1 = f .
For any p < 0, we can define

f init
p = f init, fp = f. (3.19)

Lemma 1 Let x1, x2 ∈ Z such that x2 = x1 + e1, where |e1| ≤ E1 < N/2.
(1) If |x1| ≤ N/2, E1 < 2p for some integer p > 0, and x1 ∈ Z[p+1] with error bound ϵ < 2p − E1, i.e.,

|x1 − y × 2p+1| ≤ ϵ for some integer y, then
|fp(x2)− x1| ≤ ϵ. (3.20)

(2) If |x1| ≤ N/2 + ϵ for some ϵ ∈ [0, N/2), and |x2| < N/2 + 2p+1 + 2p ≤ N for some integer p ≥ 0, then

|fp(x2)− x1| ≤ max(2p + E1, 2
p+1 + ϵ). (3.21)

Proof. When x2 ∈ [−N/2, N/2], then f(x2) = x2 and |fp(x2)− x2| ≤ 2p, so

|x1 − fp(x2)| ≤ |x1 − x2|+ |x2 − fp(x2)| ≤ 2p + E1. (3.22)

In particular, if |x1−y×2p+1| ≤ ϵ where ϵ < 2p−E1, then x2 ∈ Z[p+1] with (x2)
[p+1] = y×2p+1, and |x1−fp(x2)| ≤ ϵ

follows. So when x2 ∈ [−N/2, N/2], both inequalities hold.
When x2 ∈ (N/2, N ] ∪ [−N,−N/2), by symmetry we only need to consider the situation where both x1, x2 are

close to the border point N/2. Let x1 = N/2 + a and x2 = N/2 + b, where |a|, |b| < N/2, b > 0 and |a − b| ≤ E1.
Then f(x2) = N/2− b.

If b ∈ (0, 2p), then fp(x2) = N/2, and fp(x2)− x1 = −a; if b ∈ (0, 2p+1 + 2p), then fp(x2) ∈ {N/2, N/2− 2p+1},
and fp(x2)− x1 ∈ {−a,−a− 2p+1}. There are two cases: (i) a ≤ 0; (ii) a > 0.

In case (i), x1 ≤ N/2 < x2. When x1 ∈ Z[p+1] and E1 < 2p, then x2 ∈ Z[p+1], N/2 is the common center of
x1, x2, −a = |x1 −N/2| ≤ ϵ < 2p − E1, so |fp(x2)− x1| = −a ≤ ϵ. This proves (3.20).

When x2 < N/2 + 2p+1 + 2p, by 0 ≤ −a < E1, we have |fp(x2)− x1| ≤ |a+ 2p+1| ≤ max(E1, 2
p+1).

In case (ii), only (3.21) needs proof. So 0 < a ≤ ϵ and 0 < b < 2p+1+2p, and |fp(x2)−x1| ≤ |a+2p+1| ≤ 2p+1+ϵ.
Q.E.D.

The following lemma is the high-resolution version of (3.2).
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Lemma 2 For all 0 ≤ p ≤ lN − 1, all x ∈ Z2N/2p+1 ∩ [−N/2p+1, N/2p+1),

f init
p (x2p+1) + fp(x2

p+1 − f init
p (x2p+1)) = x2p+1. (3.23)

Proof. Let y = f init
p (x2p+1) and z = x2p+1 − y. Now that x2p+1 ∈ [−N,N) ∩ Z[p+1], if x2p+1 ∈ [−N, 0),

then y = −N/2, z ∈ [−N/2, N/2) ∩ Z[p+1], so fp(z) = z, and (3.23) is just the trivial relation x2p+1 = y + z. If
x2p+1 ∈ [0, N), then y = N/2, z ∈ [−N/2, N/2) ∩ Z[p+1], and fp(z) = z. Again (3.23) is trivial. Q.E.D.

Lemma 3 Let x1 ∈ (−N,N), and let x2 − x1 = e0 such that 2p < |e0| ≤ N/2 for some integer p ≥ 0.

– If x2 ∈ [−N,N), then
|x1 − f init(x2)| ≤ N/2 + |e0|. (3.24)

If x2 ∈ [−N,N − 2p) ∩ Z[p+1], then

|x1 − f init
p (x2)| ≤ N/2 + |e0|. (3.25)

– If x2 ≥ N , then
|x1 − 2N − f init(x2)| ≤ N/2 + |e0|. (3.26)

If x2 ∈ [N, 3N/2) ∩ Z[p+1], then

|x1 − 2N − f init
p (x2)| ≤ N/2 + |e0|. (3.27)

– If x2 < −N , then
|x1 + 2N − f init(x2)| ≤ N/2 + |e0|. (3.28)

If x2 ∈ (−3N/2,−N − 2p) ∩ Z[p+1], then

|x1 + 2N − f init
p (x2)| ≤ N/2 + |e0|. (3.29)

Proof. Let

x0 =

x2 − f init(x2), if x2 ∈ [−N,N);
x2 − 2N − f init(x2), if x2 ≥ N ;
x2 + 2N − f init(x2), if x2 < N.

(3.30)

Then
x1 − f init(x2) = (x1 − x2) + (x2 − f init(x2)) = e0 + x0. (3.31)

When x2 ∈ [−N,N), then |x0)| ≤ N/2. By

x1 − f init(x2) = (x1 − x2) + (x2 − f init(x2)) = e0 + x0, (3.32)

we get |x1 − f init(x2)| ≤ N/2 + |e0|.
When x2 ≥ N , then N ≤ x2 < N +E ≤ 3N/2. So −N ≤ x2− 2N < −N/2, f init(x2) = f init(x2− 2N) = −N/2,

and −N/2 ≤ x0 < 0. By

x1 − 2N − f init(x2) = (x1 − x2) + (x2 − 2N − f init(x2)) = e0 + x0, (3.33)

we get |x1 − 2N − f init(x2)| ≤ N/2 + |e0|.
When x2 < −N , the proof is similar. When x2 ∈ Z[p+1], the proof for f init

p is much the same. Q.E.D.
The following lemma is the counterpart of Lemma 1 for independent subgaussian errors.

Lemma 4 let e0, e1, e2 be independent 0-centered subgaussian random variables with heuristic bound E0, E1, E2

respectively, where E0 < N/2, and E1 ≤ E0. Let x2 = x1 + e1 satisfy |x2| < N .

1. If |x1| ≤ N/2, then for any p′ ≥ 0,

|x1 − f(x2)− e2| ≤
√
E2

1 + E2
2 ,

|x1 − fp′(x2)− e2| ≤ 2p
′
+
√
E2

1 + E2
2 .

(3.34)
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2. If |x1| ≤ N/2 + ϵ < N , then

|x1 − f(x2)− e2| ≤ 2ϵ+
√

E2
1 + E2

2 . (3.35)

3. If x1 = x0 + e0, where |x0| ≤ N/2, then

|x1 − f(x2)− e2| ≤
√

4E2
0 + E2

1 + E2
2 . (3.36)

If |x2| < N/2 + 2p + 2p−1 ≤ N for some integer p > 1, then for any p′ ≤ p,

|x1 − fp−1(x2)− e2| ≤ 2p +
√

E2
0 + E2

2 ,

|x1 − fp′(x2)− e2| ≤ 2p+1 +
√
E2

0 + E2
2

(3.37)

If instead |x2| < N/2 + 2p ≤ N , then

|x1 − fp(x2)− e2| ≤ 2p +
√

E2
0 + E2

2 . (3.38)

Proof. If x2 ∈ [−N/2, N/2], then f(x2) = x2, and f(x2) − x1 = e1. All conclusions are valid in this case. If
x2 /∈ [−N/2, N/2], by symmetry, assume x2 ∈ (N/2, N). There are three cases.

Case 1. x1 ∈ [−N/2, N/2]. Since x2 > N/2, e1 > 0. It can be decomposed into e1 = e′1 + e′′1 , where e′1 ≥ 0 and
e′′1 > 0, such that x1 = N/2 − e′1 and x2 = N/2 + e′′1 . Then f(x2) = N/2 − e′′1 , and x1 − f(x2) = e′′1 − e′1. Since
−e′′1 − e′1 ≤ e′′1 − e′1 ≤ e′′1 + e′1, the variance of e′′1 − e′1 is bounded by that of e1. So

|x1 − f(x2)− e2| = |e′′1 − e′1 − e2| ≤
√
E2

1 + E2
2 . (3.39)

For any p′ ≥ 0, |x1 − fp′(x2)− e2| ≤ |x1 − f(x2)− e2|+ |f(x2)− fp′(e2)| ≤ 2p
′
+

√
E2

1 + E2
2 .

Case 2. N/2 < x2 ≤ x1 < N . Let x1 = N/2 + a where a > 0. From x2 = N/2 + a+ e1, we get 0 ≥ e1 > −a. So
f(x2) = N/2− a− e1, and x1 − f(x2) = e1 + 2a.

If x1 ≤ N/2 + ϵ, then a ≤ ϵ, and

|x1 − f(x2)− e2| = |e1 + 2a− e2| ≤ 2a+ |e2| ≤ 2ϵ+ E2. (3.40)

If x1 = x0 + e0, where |x0| ≤ N/2 and |e0| ≤ E0, then e0 has decomposition e0 = e′0 + a where e′0 ≥ 0, such that
x0 = N/2 − e′0. Since 2a ≥ e1 + 2a > a and 0 < a < e0, the variance of e1 + 2a is bounded by that of 2e0 in this
case, so

|x1 − f(x2)− e2| = |e1 + 2a− e2| ≤
√
4E2

0 + E2
2 . (3.41)

If x2 < N/2 + 2p, then fp(x2) = N/2, and |x1 − fp(x2)− e2| = |a− e2| ≤
√

E2
0 + E2

2 .
If x2 < N/2+2p+2p−1, then fp(x2) ∈ {N/2, N/2+2p}, and x1−fp−1(x2) = a or a−2p, so |x1−fp−1(x2)−e2| ≤

2p +
√

E2
0 + E2

2 . For any p′ < p − 1, N/2 ≤ fp′(x2) ≤ N/2 + 2p + 2p−1, a ≥ x1 − fp−1(x2) ≥ a − 2p − 2p−1,

so |x1 − fp′(x2) − e2| ≤ 2p+1 +
√

E2
0 + E2

2 . For p′ = p, fp(x2) ∈ {N/2, N/2 + 2p+1}, so |x1 − fp(x2) − e2| ≤
2p+1 +

√
E2

0 + E2
2 .

Case 3. N/2 < x1 < x2. Again let x1 = N/2 + a where a > 0. Then e1 > 0. From x2 = N/2 + a + e1, we get
f(x2) = N/2− a− e1, and f(x2)− x1 = −e1 − 2a.

If x1 ≤ N/2 + ϵ, then a ≤ ϵ, and |x1 − f(x2)− e2| = |e1 + 2a− e2| ≤ 2ϵ+
√

E2
1 + E2

2 .
If x1 = x0 + e0 with |x0| ≤ N/2, again e0 has decomposition e0 = e′0 + a where e′0 ≥ 0, such that x0 = N/2− e′0.

The variance of a is bounded by that of e0, so

|x1 − f(x2)− e2| = |e1 + 2a− e2| ≤
√
4E2

0 + E2
1 + E2

2 . (3.42)

Just as in Case 2, if x2 < N/2+2p, then fp(x2) = N/2. If x2 < N/2+2p+2p−1, then fp−1(x2) ∈ {N/2, N/2+2p},
fp(x2) ∈ {N/2, N/2 + 2p+1}, and for any p′ < p − 1, N/2 ≤ fp′(x2) ≤ N/2 + 2p + 2p−1. Both (3.37) and (3.38)
remain valid in this case. Q.E.D.
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4 Tail-up backup bootstrapping

For the purpose of both improving the bootstrapping efficiency and maximizing the initial error that allows tail-
up bootstrapping, we completely re-develop the tail-up bootstrapping approach [25], [29]. There are the following
advantages of the re-development:

– the bootstrapping efficiency is improved in that the size of every block is maximized;
– the initial error is maximized under the minimal requirement that the first block to be bootstrapped has at

least two bits;
– the initial error is further maximized by the LSB precursor.

In contrast, in the literature all blocks have the same size.
The block bootstrapping from the tail up is composed of three groups of uni-bootstraps. The first group contains

a couple of uni-bootstraps, and is designed to recover the tail block, whose size ranges from 2 up to d + 2 bits,
depending mainly on the input error size. The second group is composed of a sequence of uni-bootstrap couples,
each recovering one block. All blocks of the group except for the first one, have size d + 2 bits, while the first one
may have size d+ 1 bits. The third group contains either one or two uni-bootstraps, depending on how many bits
are left.

In the following, we first introduce each group of uni-bootstraps using phase simulation, with rigorous error
analysis whose proofs can be found in the Appendix, then introduce the tail-up bootstrapping algorithm with
illustration, and finally introduce the LSB precursor. In the following subsections,

– m0 ∈ Zq is the phase of the input ciphertext, or after modulo q, the plaintext with error; for i > 0, mi ∈ Zq is
the leftover of m0 after subtracting the results of the previous i uni-bootstraps.

– m′
i ∈ Zq is the result of the i-th uni-bootstrap. When i = 2j, m′

i contains the MSB of the tail j-th block with
error; when i = 2j + 1, m′

i contains the lower bits of the tail j-th block with error.
– Each couple of phases m′

2j and m′
2j+1 are generated by the same rounding function but two different pro-

grammable functions f init and f respectively with appropriate resolution.
– m̌i is the last block of mi. When i = 2j, m̂i is the leftover of m̌i−1 after subtracting m′

i−1.
– eMi is the modulus down switch error of the i-th uni-bootstrap, eBi is the refreshed error after the i-th uni-

bootstrap, and e−i is the error of block m̌i.

4.1 First group of tail uni-bootstraps

Suppose the input BFV ciphertext encrypts plaintext minit ∈ Zt, where t ≥ 22. The phase of the ciphertext is

m0 = minit∆+ einit ∈ Z[l∆]. (4.1)

Its center is just the embedded plaintext: [m0]
[l∆]
±q/2 = ∆[minit]±t/2. We can image that at this beginning stage, there

is a pointer that points at the end of the plaintext in m0 ∈ Zq, which is the lt-th bit counted from the left.
The first plaintext block to be bootstrapped has d0 +2 bits, where 0 ≤ d0 ≤ d is the maximal integer satisfying√

E2
MDS + 2−2(d0+2)(E2

init + E2
B)(2N/∆)2 < 2−(d0+2)N, (4.2)

or in terms of l0 = lN − d0 − 2 ≥ l, √
E2

MDS + (E2
init + E2

B)(2
l0+1/∆)2 < 2l0 . (4.3)

The reason why this constraint is imposed will be clear very soon. The existence of d0 ≥ 0 is equivalent to the
inequality √

E2
MDS + (E2

init + E2
B)N

2/(2∆)2 < N/4. (4.4)

It is the prerequisite for regular tail-up bootstrapping.
Let d0 ≥ 0 be given. If d0 + 2 ≥ lt, then the first two groups are skipped. The first block to be backed up has

d0 + 2 bits, so we move the pointer leftward by d0 + 2 bits, so that it points at the beginning of the block to be
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backed up. The truncated phase from the pointer down to the end of m0, is a new phase denoted by an integer m̌0.
In the 0-centered tail-up blockwise representation of modular integer m0, phase m̌0 is just the last block of phase
m0.

Let y0 ∈ Z2d0+2 be the plaintext in phase m̌0. Then

y0 = [minit]±2d0+1 ∈ [−2d0+1, 2d0+1), (4.5)

and m̌0 = y0∆+ einit ∈ Zq. In integer form,

m̌0 = [m0]±2d0+1∆−∆/2 ∈ Z2d0+2∆ ∩ Z[l∆]. (4.6)

By 2d0+2 = 2N/2l0+1, in Z2N , the error must be < N/2d0+2 = 2l0 , so that there is a one-bit gap between the
error and the plaintext. Accordingly, the first uni-bootstrap handles the MSB of the block using programmable
function f init

l0
, and the second uni-bootstrap handles the other bits of the block using programmable function fl0 .

Each uni-bootstrap precedes by a modulus down switch from Z2d0+2∆ to Z2N . It can be simulated by function

r2l0+1/∆(m, e) = m2l0+1/∆+ e ∈ Z, (4.7)

where m ∈ Z and |e| ≤ EMDS. The function maps a phase m of Zq to a phase of Z2N .
For simplicity, denote

x0 = r2l0+1/∆(m̌0, eM0), (4.8)

where |eM0| ≤ EMDS. The error part of phase x0 is einit2
l0+1/∆+ eM0, and is bounded strictly by 2l0 , according to

(4.3). So x0 ∈ Z[l0+1].
After the modulus down switch, the first uni-bootstrap returns a refreshed ciphertext in Zq with phase

m′
0 = f init

l0 (x0)×∆/2l0+1 + eB0 mod q, (4.9)

where |eB0| ≤ EB . By m̌02
l0+1/∆ = y02

l0+1 + einit2
l0+1/∆, and |einit2l0+1/∆| < 2l0 , we get

f init
l0 (x0) = f init

l0 (y02
l0+1). (4.10)

Now subtract phase m′
0 from the input phase m0. The leftover is a phase denoted by

m1 = m0 −m′
0 mod q. (4.11)

In the second uni-bootstrap, m1 is to be converted to a phase in Z2N by modulus down switch, where only the last
(d0 + 2)-bit plaintext block is preserved.

Let the (d0 + 2)-bit plaintext block in phase m1 be y1∆. Then

y1 = y0 − f init
l0 (x0)/2

l0+1 = y0 − (2/N)× f init
l0 (x0)× 2d0 . (4.12)

If y0 ∈ [−2d0+1, 0), then f init
l0

(x0) = −N/2, so y1 ∈ [−2d0 , 2d0). If y0 ∈ [0, 2d0+1), then f init
l0

(x0) = N/2, again

y1 ∈ [−2d0 , 2d0). So |y1| ≤ 2d0 . When viewed as a modular integer in Z2d0+2 , then y1 has its first two bits having
identical value.

The error part of phase m1 is
e−1 := einit − eB0. (4.13)

By (4.3), |e−1| < ∆/2. In fact, inequality prerequisite (4.3) provides exactly what is needed:

|e−12
l0+1/∆| <

√
22l0 − E2

MDS. (4.14)

Combining error e−1 with the (d0 + 2)-bit plaintext block y1∆, we get a new phase represented by integer

m̌1 = y1∆+ e−1 ∈ Z[l∆] ∩ [−2d0+1∆−∆/2, 2d0+1∆−∆/2). (4.15)

Obviously, m̌1 is the truncation of m1 from the pointer to the right end:

m̌1 = [m1]±2d0+1∆−∆/2 = m̌0 −m′
0 mod 2d0+2∆. (4.16)
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Furthermore, by (4.14),
m̌12

l0+1/∆ = y12
l0+1 + e−12

l0+1/∆ ∈ Q[l0+1] (4.17)

is Pythagorean EMDS-tolerant.
The second uni-bootstrap precedes by the modulus down switch of phase m1 that is simulated by r2l0+1/∆.

Denote the result by
x1 = r2l0+1/∆(m̌1, eM1), (4.18)

where |eM1| ≤ EMDS. By (4.17), x1 ∈ Z[l0+1]. After the modulus down switch, based on programmable function
fl0 , the second uni-bootstrap returns a refreshed phase in Zq as follows:

m′
1 = fl0(x1)×∆/2l0+1 + eB1 mod q. (4.19)

Since x1 ∈ Z[l0+1], fl0(x1) = y12
l0+1. Now subtract m′

1 from phase m1:

m2 = m1 −m′
1 mod q. (4.20)

Denote
e−2 = e−1 − eB1 = einit − eB0 − eB1. (4.21)

We check two things: Whether or not the last (d0 + 2)-bit block of the plaintext in m2 are cleared? If so, whether
or not the plaintext in m′

0 +m′
1 is exactly the cleared plaintext block of m0?

Denote by m̂2 the last d0 + 2 bits of plaintext in m2 represented by an integer in the following interval:

m̂2 = [m2]±2d0+1∆−∆/2 ∈ Z2d0+2∆. (4.22)

By (N/2)×∆/2l0+1 = 2d0∆ < 2d0+2∆, we get m̂2 = m̌1 −m′
1 mod 2d0+2∆. So

m̂2 = m̌1 − y12
l0+1 ×∆/2l0+1 − eB1 = e−1 − eB1 ∈ (−3∆/4, 3∆/4). (4.23)

As a corollary, m2 ∈ Z[d0+2+l∆] with error e−2 bounded by 3∆/4.

By (3.23) and y02
l0+1 ∈ [−N,N),

f init
l0 (y02

l0+1) + fl0(y02
l0+1 − f init

l0 (y02
l0+1)) = y02

l0+1, (4.24)

which when written as

(f init
l0 (y02

l0+1) + fl0(y12
l0+1))×∆/2l0+1 = [minit]±2d0+1 ×∆, (4.25)

gives

[m′
0 +m′

1]
[l∆]
±q/2 = [minit]±2d0+1 ×∆. (4.26)

In 0-centered tail-up blockwise representation, the last (d0 + 2)-bit block of minit is accurately backed up into
m′

0 +m′
1 as the plaintext.

For example, if minit = 1011, d0 = 0, then the first block to be bootstrapped is composed of the last two bits
11 of minit, so y0 = [1011]±2 = −1. In the first uni-bootstrap, f init

l0
(y02

l0+1) = −N/2. In the second uni-bootstrap,

y1 = y0 − (2/N)× f init
l0

(x0)× 2d0 = 0. So m′
0 +m′

1 backs up the last block of minit in 0-centered tail-up blockwise
representation, which is y0 + y1 = −1.

In the first group, the key parameter is the size d0 +2 of the last block. Since d0 is the biggest integer satisfying
(4.2), we have

d0 = lN − 3 +
⌈
(1/2) log

(
1− 4(E2

init + E2
B)/∆

2
)
− logEMDS

⌉
. (4.27)

The computation can be greatly simplified if using in power-of-2 binomial bounds.
In the Appendix, Lemma 14 and Lemma 17 are on the existence of d0 ≥ 0 when the error bounds are in

power-of-2 binomial form. For small initial error, d0 not only exists, but is at least d − 1. For large initial error,
kI ≤ 2min(d, dB) is usually required. Lemma 15 and Lemma 16 provides complete lists of all possible results of d0.
For small initial error, d0 is always between d − 1 and d; when d0 = d, the tail-up bootstrapping is said to be in
greedy mode. For large initial error, d0 ranges from 2 to d− 1.
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4.2 Second group of tail uni-bootstraps

The input to the second group is the leftover phase m2 ∈ Z[d0+2+l∆] with error e−2. The second group consists of
w ≥ 0 pairs of uni-bootstraps, where the i-th pair backs up a di-bit block of plaintext. Integer w satisfies

d′w < lt, d′w+1 ≥ lt. (4.28)

Let d′−1 = 0, and for 1 ≤ i ≤ w + 1, let

d′i−1 = d′i−2 + di−1 + 2 =

i−1∑
j=0

(dj + 2). (4.29)

For 2 ≤ i ≤ w, d′i−1 is the number of bits backed up by the first i− 1 pairs of uni-bootstraps in the second group;
when i = 1, d′0 = d0 + 2 is the number of bits backed up in the first group.

By Lemma 15, if dI > 0, then the first block has d′0 ≥ d+1 bits. That d+1 ≥ (k+2)/2−1, namely lN ≥ l+1+k/2
is always satisfied in our experiments. So for small initial error, in practice every block in the second group has
d+ 2 bits.

If dI = 0, by Lemma 16, the first block has 2 ≤ d′0 ≤ d + 1 bits. By Lemma 18, the second block has at least
d + 1 bits, so d′1 ≥ d + 3. That d + 3 ≥ (k + 2)/2 is just lN ≥ l + k/2. So for large initial error, in practice from
the second block to the last block in the second group, each block has d+2 bits, while the first block in the second
group has d+ 1 to d+ 2 bits.

In general, after finishing h + 1 uni-bootstraps in total, where h ≥ 1, the leftover of the input phase m0 after
subtracting the sum of phases

∑h
j=0 m

′
j obtained by the previous h+ 1 uni-bootstraps, is

mh := mh−1 −m′
h−1 = m0 −

h−1∑
j=0

m′
j mod q. (4.30)

The error part of mh is

e−h := e−(h−1) − eB(h−1) = einit −
h−1∑
j=0

eBj mod q, (4.31)

where eBh is the refreshed error in m′
h. Error e−h is bounded by

√
E2

init + (h+ 1)E2
B .

For h ∈ {2i − 1, 2i} where i > 0, to bootstrap the last plaintext block in mh, whose block size is di + 2, it is
mandatory that after modulus down switch from Z

2d
′
i∆

to Z2N , the error part does not overlap with the plaintext
part. The plaintext part in Z2N occupies the first di + 2 bits, so the error part occupies only the last

lN − (di + 2) =: li (4.32)

bits. In Z2N , the error part must be bounded by√
E2

MDS + 2−2d′
i(E2

init + (h+ 1)E2
B)× (2N/∆)2 < 2li , (4.33)

or in terms of di,
22di(4/N)2E2

MDS + 2−2d′
i−1(E2

init + (h+ 1)E2
B)(2/∆)2 < 1. (4.34)

For fixed d′i−1 > 0, let di be the biggest integer satisfying (4.34) for h = 2i, then

di = lN − 3 +
⌈
(1/2) log

(
1− 41−d′

i−1(E2
init + (2i+ 1)E2

B)/∆
2
)
− logEMDS

⌉
. (4.35)

This formula can be used to compute di. Theoretically, the second group consists of the following loop:

1. Set i = 1. Set d′0 = d0 + 2. Compute d1.
2. While d′i < lt, do the following:

(a) Do uni-bootstrap to phase m2i by programmable function f init
li

. Denote the resulting phase by m′
2i.

(b) Do phase subtraction: m2i+1 = m′
2i −m2i mod q.
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(c) Do uni-bootstrap to phase m2i+1 by programmable function fli . Denote the resulting phase by m′
2i+1.

(d) Do phase subtraction: m2i+2 = m′
2i+1 −m2i+1 mod q.

(e) Set i = i+ 1. Compute di.

Let Efin be the error bound of the output ciphertext after the whole bootstrapping. The quality constraint of
bootstrapping refers to Efin ≤ Einit/2. The inequality ensures that the output ciphertext has an error bound that is
at most half that of the input ciphertext, so that the refreshed ciphertext can undergo either one addition or one
multiplication followed by modulus switch. This is a very humble requirement on the quality of the bootstrapping.

If there are all together v uni-bootstraps in the whole bootstrapping, then

Efin =
√
vEB ≤ Einit/2. (4.36)

On the other hand,
√
v ≤ Einit/2EB imposes a strong constraint on the number of uni-bootstraps. As a corollary,√

E2
init + vE2

B ≤
√
5Einit/2 < (

√
5/4)∆ < 3∆/4. (4.37)

To simplify the computation of di, and also to gain better insight of the second group, we can use the fact that
i+ 1 < v, the latter being the total number of uni-bootstraps, to enlarge (i+ 1)E2

B to

(i+ 1)E2
B ≤ (v − 1)E2

B = E2
fin − E2

B ≤ E2
init/4− E2

B . (4.38)

Then (4.34) can be strenghtened to

22diE2
MDS(4/N)2 + 2−2d′

i−1((1 + 2−2)E2
init − E2

B)(2/∆)2 < 1. (4.39)

The values of di for 1 ≤ i ≤ w under the strenghtened constraint (4.39) in power-of-2 binomial bounds, are
given by Lemma 18 in the Appendix. For small initial error, in practice each block in the second group has d + 2
bits; for large initial error, in practice from the second block to the last block in the second group, each block has
d+ 2 bits, while the first block in the second group has d+ 1 to d+ 2 bits.

In the rest of this subsection, we make step-by-step analysis of the error growth and plaintext backup accuracy
during the second group. Assume w > 0 and the di are given. The first block in the second group has d1+2 bits, so
we move the pointer in the phase space Zq leftward by d1 +2 bits, so that it points at the beginning of the block to
be backed up. The truncated phase from the pointer to the right end, is a new phase denoted by an integer m̌2. In
the 0-centered tail-up blockwise representation of modular integer m2, phase m̌2 is just the last block of phase m2:

m̌2 = [m2]±2d
′
1−1∆−3∆/4

∈ Z
2d

′
1∆

. (4.40)

Inherited from m2, phase m̌2 ∈ Z[d′
0+l∆] with error e−2:

m̌2 = y2 × 2d
′
0∆+ e−2 (4.41)

for some y2 ∈ [−2d1+1, 2d1+1). In fact, by (d1 + 1) + (d′0) = d′1 − 1 and (4.26),

[y2]±2d1+1 × 2d
′
0∆ = [m0 −m′

0 −m′
1]

[l∆]

±2d
′
1−1∆

= [m0]
[l∆]

±2d
′
1−1∆

− [m′
0 +m′

1]
[l∆]

±2d
′
1−1∆

= [m0]
[l∆]

±2d
′
1−1∆

− [m0]
[l∆]

±2d0+1∆

=
(
[minit]±2d

′
1−1 − [minit]±2d

′
0−1

)
×∆.

(4.42)

In 0-centered tail-up blockwise representation, y2/∆ is the next to the last block of minit.
For example, if minit = 1011, d0 = d1 = 0, then d′0 = 2, and the first block backs up the last block −1 in

0-centered tail-up blockwise representation, and the leftover phase m2 contains plaintext 1011 − (−1) = 1100. In
the second group, the last two vacant bits of the leftover plaintext will not be backed up. The first two bits 11 will
be backed up just as in the first group. The result will be −1× 2d

′
0 = −100 in binary form. Summing it up with the
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backed up result −1 of the first group, the 0-centered tail-up blockwise representation −100 − 1 = −101 of minit

mod 24 is recovered.
To bootstrap the first block in the second group, by 2N/(∆ × 2d

′
1) = 21−d′

1N/∆ = 2l1+1−d′
0/∆, the rounding

function for modulus down switch is

r
2l1+1−d′0/∆

(m, e) = m2l1+1−d′
0/∆+ e ∈ Z. (4.43)

Denote
x2 = r

2l1+1−d′0/∆
(m̌2, eM2), (4.44)

where |eM2| ≤ EMDS.
By (4.41),

m̌22
l1+1−d′

0/∆ = y2 × 2l1+1 + e−2 × 2l1+1−d′
0/∆. (4.45)

By (4.33), √
(e2−2(2

l1+1−d′
0/∆)2 + E2

MDS < 2l1 . (4.46)

so x2 ∈ Z[l1+1].
The first uni-bootstrap of the block gives

m′
2 = f init

l1
(x2)×∆/2l1+1−d′

0 + eB2 mod q,

m3 = m2 −m′
2 mod q,

m̌3 = [m3]±2d
′
1−1∆−3∆/4

,

(4.47)

where |eB2| ≤ EB . Integer m̌3 is chosen to represent the leftover phase m3.
We have

f init
l1 (x2) = f init

l1 (y2 2
l1+1). (4.48)

Furthermore, since (N/2)×∆/2l1+1−d′
0 = 2d

′
1−2∆, we have

m̌3 = m̌2 −m′
2 mod 2d

′
1∆. (4.49)

Below we check the resolute structure and bound of integer m̌3.
Let

y3 = y2 − (2/N)× f init
l1 (x2)× 2d1 ∈ Z. (4.50)

From y2 ∈ [−2d1+1, 2d1+1), we get y3 ∈ [−2d1 , 2d1). So

m̌3 = y2 2
d′
0∆+ e−2 − f init

l1
(y2 2

l1+1)×∆/2l1+1−d′
0 − eB2

= y3 2
d′
0∆+ e−3 ∈ Z[d′

0+l∆] ∩ [−2d′
1−1∆− 3∆/4, 2d

′
1−1∆− 3∆/4).

(4.51)

As to the bound of m̌3, by (4.51) and (4.33),

|m̌32
l1+1−d′

0/∆| ≤ N/2 + |e−3| × 2l1+1−d′
0/∆ < N/2 +

√
22l1 − E2

MDS. (4.52)

For the same reason,

|m̌32
l1+1−d′

0/∆− y3 2
l1+1| ≤ |e−3| × 2l1+1−d′

0/∆ <
√
22l1 − E2

MDS. (4.53)

So m̌32
l1+1−d′

0/∆ ∈ Q[l1+1] is Pythagorean EMDS-tolerant.
The second uni-bootstrap of the block is realized by acting programmable function fl1 on the modulus down

switch result
x3 := r

2l1+1−d′0/∆
(m̌3, eM3), (4.54)

where |eM3| ≤ EMDS. By (4.52) and (4.53), using (3.20), we get fl1(x3) = y32
l1+1.
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The second uni-bootstrap gives

m′
3 = fl1(x3)×∆/2l1+1−d′

0 + eB3 mod q,

m4 = m3 −m′
3 mod q,

m̂4 = [m4]±2d
′
1−1∆−3∆/4

,

(4.55)

where |eB3| ≤ EB .
Again by (N/2)×∆/2l1+1−d′

0 = 2d
′
1−2∆, we have m̂4 = m̌3 −m′

3 mod 2d
′
1∆. So

m̂4 = m̌3 − y32
l1+1 ×∆/2l1+1−d′

0 − eB3 = e−3 − eB3, (4.56)

both m̂4,m4 ∈ Z[d′
1+l∆] have error bound 3∆/4.

By (3.23),
f init
l1 (y22

l1+1) + fl1(y22
l1+1 − f init

l1 (y22
l1+1)) = y22

l1+1, (4.57)

which when written as

(f init
l1 (y22

l1+1) + fl1(y32
l1+1))×∆/2l1+1−d′

0 = ([minit]±2d
′
1−1 − [minit]±2d

′
0−1)×∆, (4.58)

gives

[m′
2 +m′

3]
[d′

0+l∆]

±q/2 =
(
[minit]±2d

′
1−1 − [minit]±2d

′
0−1

)
×∆. (4.59)

In 0-centered tail-up blockwise representation, m′
2 +m′

3 backs up the next to the last block of minit.
Extending the above results by mathematical induction to other blocks of the second group is straightforward.

We present the following conclusion but omit its proof.

Lemma 5 For i ≥ 1, let r
2
li+1−d′

i−1/∆
(m, e) = m2li+1−d′

i−1/∆+ e ∈ Z. For j ∈ {2i, 2i+ 1}, denote

xj = r
2
li+1−d′

i−1/∆
(m̌j , eMj), (4.60)

where |eMj | ≤ EMDS. Define

m̌2i = [m2i]±2d
′
i
−1∆−3∆/4

,

m′
2i = f init

li
(x2i)×∆/2li+1−d′

i−1 + eB(2i) mod q,

m2i+1 = m2i −m′
2i mod q,

m̌2i+1 = [m2i+1]±2d
′
i
−1∆−3∆/4

,

m′
2i+1 = fli(x2i+1)×∆/2li+1−d′

i−1 + eB(2i+1) mod q,

m2i+2 = m2i+1 −m′
2i+1 mod q,

(4.61)

where |eBj | ≤ EB . Then

1. x2i, x2i+1 ∈ Z[li+1].
2. m̌2i, m̌2i+1 ∈ Z[d′

i−1+l∆], with errors e−2i, e−(2i+1) bounded by 3∆/4. In more details,

m̌2i = y2i 2
d′
i−1∆+ e−2i,

m̌2i+1 = y2i+1 2
d′
i−1∆+ e−(2i+1),

(4.62)

where integers y2i ∈ [−2di+1, 2di+1), y2i+1 ∈ [−2di , 2di) satisfy

y2i 2
d′
i−1 = [minit]±2d

′
i
−1 − [minit]±2

d′
i−1

−1 ,

y2i+1 = y2i − f init
li

(y2i 2
li+1)/2li+1.

(4.63)
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3. m′
2i,m

′
2i+1 ∈ Z

2d
′
i∆

, and

[m′
2i +m′

2i+1]
[d′

i−1+l∆]

±q/2 =
(
[minit]±2d

′
i
−1 − [minit]±2

d′
i−1

−1

)
×∆. (4.64)

4. m2i+2 ∈ Z[d′
i+l∆] with error e−(2i+2) bounded by 3∆/4.

After the second group, the number of remaining bits in plaintext minit is

dlast := lt − d′w ∈ [1, dw + 2]. (4.65)

The leftover of minit is m2w+2 ∈ Z[d′
w+l∆], with error e−(2w+2) bounded by 3∆/4.

4.3 Third group of tail uni-bootstraps

In the third group, if dlast = 1, then only one uni-bootstrap based on function f init
lN−1 − N/2 is needed, otherwise

two uni-bootstraps are needed as before. Denote

le := lN − dlast. (4.66)

Then le ∈ [lw, lN − 1].
First consider the simple case dlast = 1. Then m2w+2 ∈ Z[lq−1] ∩ Zq. Let

m̌2w+2 = [m2w+2]±q/2−3∆/4. (4.67)

Then
m̌2w+2 = y2w+2 × q/2 + e−(2w+2) (4.68)

for some integer y2w+2 ∈ {0,−1}, and m̌2w+2 × (2N/q) ∈ Q[lN ] is Pythagorean EMDS-tolerant, by (4.34).
The modulus down switch in the uni-bootstrap uses the rounding function r2N/q(m, e) = m(2N/q) + e ∈ Z.

Denote
x2w+2 = r2N/q(m̌2w+2, eM(2w+2)), (4.69)

where |eM(2w+2)| ≤ EMDS. Then x2w+2 ∈ Z[lN ].
The uni-bootstrap is based on function f init

lN−1 −N/2, so that

f init
lN−1(x2w+2)−N/2 = f init

l (y2w+2N)−N/2 = y2w+2N. (4.70)

The uni-bootstrap gives

m′
2w+2 = f init

lN−1(x2w+2)× q/(2N) + eB(2w+2) − q/4 mod q, (4.71)

where |eB(2w+2)| ≤ EB . By (4.70),
m′

2w+2 − eB(2w+2) = y2w+2 × q/2. (4.72)

Next consider the general case dlast > 1. Then (4.67) is still valid, but now that m2w+2 ∈ Z[lq−dlast], (4.68) is
replaced by

m̌2w+2 = y2w+2 × q/2dlast + e−(2w+2) (4.73)

for some integer y2w+2 ∈ [−2dlast−1, 2dlast−1). In fact, by (4.64),

[y2w+2]±2dlast−1 × q/2dlast

= [m0 −
∑2w+1

j=0 m′
i]
[l∆]
±q/2

= [m0]
[l∆]
±q/2 −

∑w
j=0[m

′
2j +m′

2j+1]
[l∆]
±q/2

=
(
[minit]±t/2 − [minit]±2d

′
w−1

)
×∆.

(4.74)

Furthermore, by (4.34) and dw+1 ≥ dlast, m̌2w+2 × (2N/q) ∈ Q[le+1] is Pythagorean EMDS-tolerant.
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The first uni-bootstrap in the third group makes modulus down switch to m̌2w+2 by r2N/q to get x2w+2 ∈ Z[le+1].
The uni-bootstrap is based on f init

le
, and gives let

m′
2w+2 = f init

le
(x2w+2)× q/(2N) + eB(2w+2) mod q,

m2w+3 = m2w+2 −m′
2w+2 mod q,

m̌2w+3 = [m2w+3]±q/2−3∆/4,

(4.75)

where |eB(2w+2)| ≤ EB .

Similar to the case of the second group, we have f init
le

(x2w+2) = f init
le

(y2w+2 × 2le+1). Let

y2w+3 = y2w+2 − (2/N)× f init
le (x2w+2)× 2dlast−2. (4.76)

Then y2w+3 ∈ [−2dlast−2, 2dlast−2). Furthermore,

m̌2w+3 = y2w+2 × q/2dlast − f init
le

(x2w+2)× q/(2N)− eB(2w+2)

= y2w+3 × q/2dlast + e−(2w+3).
(4.77)

By (4.34), m̌2w+3 × (2N/q) ∈ Z[le+1] is Pythagorean EMDS-tolerant.
Denote

x2w+3 = r2N/q(m̌2w+3, e2w+3), (4.78)

where |e2w+3| ≤ EMDS. Then fle(x2w+3) = y2w+3 × 2le+1. The second uni-bootstrap of the third group is based on
fle , and gives

m′
2w+3 = fle(x2w+3)× q/(2N) + eB(2w+3) mod q, (4.79)

where |eB(2w+3)| ≤ EB . By (3.23),

m′
2w+2 +m′

2w+3 − eB(2w+2) − eB(2w+3) = {f init
le

(y2w+2 2
le+1) + fle(y2w+3 2

le+1)} × q/(2N)

= y2w+2 × q/2dlast .
(4.80)

Theorem 6 The correctness of the whole tail-up bootstrapping is guaranteed by

⌊
vT−1∑
i=0

m′
i/∆⌉ = ⌊m0/∆⌉ mod t. (4.81)

Proof. When dlast = 1, (4.74) is still valid, i.e.,

[y2w+2]±1 × q/2 = [m0]
[l∆]
±q/2 −

w∑
j=0

[m′
2j +m′

2j+1]
[l∆]
±q/2. (4.82)

By (4.72), [m′
2w+2]

[l∆]
±q/2 = [y2w+2]±1 × q/2. By (4.36),

[m0]
[l∆]
±q/2 = [m′

2w+2]
[l∆]
±q/2 +

w∑
j=0

[m′
2j +m′

2j+1]
[l∆]
±q/2 =

2w+2∑
j=0

m′
j

[l∆]

±q/2

. (4.83)

When dlast > 1, by (4.80),

[y2w+2]±2dlast−1 × q/2dlast = [m′
2w+2 +m′

2w+3]
[l∆]
±q/2. (4.84)

Then by (4.74) and (4.36),

[m0]
[l∆]
±q/2 = [m′

2w+2 +m′
2w+3]

[l∆]
±q/2 +

w∑
j=0

[m′
2j +m′

2j+1]
[l∆]
±q/2 =

2w+3∑
j=0

m′
j

[l∆]

±q/2

. (4.85)

Q.E.D.
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4.4 Putting everything together into ciphertext form

In FHEW/TFHE ciphertext bootstrapping, assume that the following items are all global and public after the
safety parameter is fixed:

– parameters n, q, t, δ = q/t of the input LWE ciphertext ct;
– parameters N,Q,Bg, Bks of the GSWN,Q working environment, where Bg is the base integer of the gadget

matrix in GSW encryption, and Bks is the base integer for key switch from RLWEN,Q to LWEn,q;
– public keys for bootstrapping in GSWN,Q working environment; public keys for key switch from RLWEN,Q to

LWEn,q;
– error bound Einit of the input LWE ciphertext; error bound EMDS for modulus down switch; error bound EB

for refreshed error after a uni-bootstrap; In practice, these parameters may be given in power-of-2 binomial
form.

The uni-bootstrap procedure UniBoot(f, ct, q′), on input LWEn,q ciphertext ct, programmable function f and
modulus q′ ∈ (2N, q], outputs another LWEn,q ciphertext, by the following two steps: first modulus down switch
from q′ to 2N , then accumulative blind rotation:

1. ModDownSwitch(ct, q′):
Taking ct ∈ Zn+1

q as a ciphertext with modulus q′, make modulus down switch to obtain a ciphertext ct’ ∈
Zn+1
2N .

2. AccumuBlindRot(f, ct’):
For ct’ = (a′1, . . . , a

′
n, b

′) ∈ Zn+1
2N , start with a trivial RLWEN,Q encryption of a plaintext constructed by b′ and

f , multiply it successively with GSW ciphertexts encrypting xa′
isi for i from 1 to n.

From the above multiplication result, which is an RLWEN,Q ciphertext, extract the constant term of the
encrypted plaintext polynomial homomorphically to get an LWEN,Q ciphertext, then make key switch and
modulus switch to obtain an LWEn,q ciphertext.

Details of UniBoot(f, ct, q′) and its two sub-procedures can be found in standard FHEW reference [14] and
TFHE reference [7].

Algorithm 1 “TailBoot”: Backup bootstrapping from tail up

Input: LWE ciphertext ct to bootstrap;
public FHEW/TFHE parameters.
Assume the bit-size of the first block ≥ 2.

Output: LWE ciphertext ct’.

{First group}
1: Compute d0, l0 = lN − d0 − 2, d′ = d0 + 2. (d0 + 2 is the bit-size of the first block)
2: If d′ + d0 + 2 ≥ lt then go to 7: Third group.

ct’←− UniBoot(f init
l0

, ct, 2d
′
∆);

ct←− ct− ct’ mod q;
ct’←− ct’+ UniBoot(fl0 , ct, 2

d′
∆) mod q;

ct←− ct− ct’ mod q.

{Second group}
3: Compute the bit-size of the first block of the second group, still denoted by d0 + 2.
4: while d′ + d0 + 2 < lt do
5: ct’←− ct’+ UniBoot(f init

l0
, ct, 2d

′
∆) mod q;

ct←− ct− ct’ mod q;
ct’←− ct’+ UniBoot(fl0 , ct, 2

d′
∆) mod q;

ct←− ct− ct’ mod q;
set d′ = d′ + d0 + 2;
compute the bit-size of the next block, still denoted by d0 + 2; compute l0 = lN − d0 − 2.

6: end while

{Third group}
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7: Compute dlast = lt − d′, le = lN − dlast. (dlast is the bit-size of the last block)
8: ct’←− ct’+ UniBoot(f init

le
, ct, q) mod q.

9: if dlast = 1 then
10: ct’←− ct’− q/4.
11: else
12: ct←− ct− ct’ mod q;

ct’←− ct’+ UniBoot(fle , ct, q) mod q.
13: end if
14: return ct’.

Obviously we can merge the first group into the second group as a unified while-loop. Separating the two groups
facilitates replacing the first group with the LSB precursor to be introduced in the next subsection.

The complexity of the algorithm is dominated by the number of uni-bootstraps. For small initial error, the first
block has d+1 to d+2 bits, and the second group are all (d+2)-bit blocks, if not empty. We use “is(statement)”
to denote the Boolean function that returns 1 if the argument “statement” is true, and 0 if it is false. For example,

is((d+ 2)|lt) =
{
1, if (d+ 2)|lt,
0, else,

(4.86)

i.e., is((d+ 2)|lt) = 1 if and only if dlast = 1.
If the first block has d + 2 bits, then the tail-up bootstrapping is in greedy mode, and the total number of

uni-bootstraps is

v′T := 2⌈lt/(d+ 2)⌉ − is((d+ 2) | (lt − 1)). (4.87)

In the general case, the total number of uni-bootstraps for small initial error is

vT := 2⌈(lt + 1)/(d+ 2)⌉ − is((d+ 2) | lt). (4.88)

For example, when dI = 1 and k = 2, by Lemma 15, the tail-up bootstrapping is in greedy mode. When d = 4,
for input plaintext of d+ 2 = 6 bits, a single block suffices to finish the bootstrapping.

For large initial error, in the worst case the first block contains only 2 bits. For example, if l = k = 5, dI = 0,
d ≥ 3, dB = d+ 1 and kI = 2dB − 4 = 2d− 2 > 3, then by Lemma 16, the first block has 2 bits; by Lemma 18, the
second block has d− 1 bits. When d = 4, for input plaintext of 6 bits, three blocks and 5 uni-bootstraps are needed
to finish the bootstrapping, the bit-sizes of which are 2, 3, 1 respectively.

4.5 LSB precursor for large initial error

The previous subsections have introduced the tail-up bootstrapping based on the requirement that the first block
to be bootstrapped has at least two bits. This imposes a constraint on the initial error, such that in general
kI ≤ 2min(d, dB) by Lemma 14. When the initial error goes beyond this bound, can the tail-up bootstrapping still
be executed? In this subsection, we present a simple method to loosen the requirement by allowing the first block
to be bootstrapped to have only one bit. By Lemma 19, in power-of-2 binomial bounds, the new method requires
kI ≤ 2d+ 3.

The new method is essentially an LSB-first approach, in that the LSB of the plaintext is first backed up, then
the other blocks are backed up sequentially from the tail up as usual. The purpose of plaintext LSB backup is to
reduce the large initial error to a small one with respect to the new error bound ∆, instead of the old bound ∆/2.

The LSB-first approach to tail-up bootstrapping also consists of three groups. The second group and the third
group are the same as before. The first group contains only one uni-bootstrap, which is based on programmable
function f init

lN−1 −N/2, just as the case of dlast = 1 in the third group of regular tail-up bootstrapping.
The first uni-bootstrap, or equivalently, the first group of uni-bootstraps, is called the LSB precursor. It makes

modulus down switch from Z2∆ to Z2N , so that the plaintext occupies only the first bit of Z2N , and the error bound
must be N/2. For the initial error EMDS, this gives the constraint√

E2
init(N/∆)2 + E2

MDS < N/2, (4.89)
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which is the inequality prerequisite for LSB precursor. Lemma 19 characterizes the constraint in power-of-2 binomial
bounds, which allows all small initial errors, and allows all large initial errors where kI ≤ 2d+ 3.

As before, let m0 = ∆minit + einit mod q. Let

m̌0 = [m0]±∆−∆/2. (4.90)

Then m̌0 = y0 ×∆+ einit for some y0 ∈ {0,−1}. The modulus down switch uses rounding function rN/∆.
The uni-bootstrap on the input phase represented by integer m̌0, outputs a new phase m′

0 ∈ Zq. Let

m2 = m0 −m′
0 mod q. (4.91)

Then just like (4.72), [m′
0]

[l∆]
±q/2 = [y0]±1×q/2, so that m2 = (minit−y0)∆ ∈ Z[l∆+1], with error bound

√
E2

init + E2
B .

As to the second group and the third group, for large initial error, after the LSB precursor finishes, by Lemma
18 for d′0 = 1, the second block has at least d+ 1 bits, and has d+ 2 bits if and only if k = 3, and either kI = 2, or
kI = 3 and dB = 2. From the third block to the next to the last block, each block has d+ 2 bits.

In algorithm 1, the first group is changed into the following:

– Set l0 = lN − 1, d′ = 1.
– ct’←− UniBoot(f init

l0
, ct, 2d

′
∆)−∆/2;

– ct←− ct− ct’ mod q.

In Lemma 19, the inequality k ≤ 2d + 4 can be written as lN ≥ l + k/2, which is always satisfied in our
experiments. For large initial error, (4.89) requires kI ≤ 2d + 3. On the other hand, kI ≤ lI ≤ l∆ − 1. When
2d+ 3 ≥ l∆ − 1, namely l∆ ≤ 2(d+ 2), then (4.89) is true for the extreme initial error value Einit = ∆/2− 1. For
parameters lq = 29, d = 4, l∆ ≤ 2(d+ 2) is equivalent to lt ≥ 17.

Compared with the LSB-first approach, the regular tail-up bootstrapping is generally more efficient. By Lemma
16 and Lemma 18, when the second block after the LSB precursor has d+2 bits, then in regular tail-up bootstrapping,
the first group has d+1 bits if kI = 2, and d bits if kI = 3; the second block always has d+2 bits. When d = 4, then
in the LSB-first approach, the first two blocks contain d+ 3 = 7 bits, so each uni-bootstrap in the first two blocks
handles 7/3 bits on average. In contrast, in the regular approach the first two blocks contain at least 2d + 2 = 10
bits, so each uni-bootstrap in the first two blocks handles at least 10/4 > 7/3 bits on average.

When the second block after the LSB precursor has d + 1 bits, then in regular tail-up bootstrapping, the first
group has 2 to d + 1 bits, the second block has d + 1 to d + 2 bits. When d = 4, the LSB-first approach is more
efficient if the regular approach has only 2 bits in its first group. However, if the first group in the regular approach
has more than 2 bits, then by Lemma 18, for k ≤ 5 in our experiments, the second block has d + 2 bits, so the
regular approach is more efficient.

Usually a large-precision plaintext means that lt is large. But how large is large? There should be some ruler to
measure with. When compared with bit-lengths in Z2N , An input plaintext of bit-size lt ≤ d+2 is said to be short.
It is medium if d+ 2 < lt ≤ lN , and long if lt > lN .

From the viewpoint of tail-up bootstrapping, a ciphertext is said to have single-block plaintext, if under the error
bound of the ciphertext, the plaintext it encrypts can be bootstrapped as a single block. Single-bit plaintexts are
trivially single-block ones. Besides this special class, other single-block plaintexts are provided in Lemma 15 and
Lemma 16, where the block size d0+2 is denoted by dsingle, so that a plaintext is single-block in a ciphertext if and
only if its bit-length ≤ dsingle.

By Lemma 15, for small initial error, dsingle ∈ {d + 1, d + 2}; for large initial error, dsingle ∈ {2, d + 1}. So all
single-blocked plaintexts are short.

When compared with bit-lengths in Zq, a plaintext is said to be error-squeezing if lt ≥ lq − lB − 3. By dB =
lq − lt − lB − 1, this implies dB ≤ 2. The limit of lt is lq − lB − 1, for which lI = lB , so no backup bootstrapping
is necessary. That lt = lq − lB − 3 is the limit for plaintext bootstrapping; lt = lq − lB − 2 is the limit for effective
error bootstrapping; lt = lq − lB − 1 is the limit for sign bit extraction.

Usually lq − lB > 2lN , so lq − lB − 3 > lN , and error-squeezing plaintexts are the longest plaintexts. From the
viewpoint of plaintext bootstrapping, a large-precision plaintext should be defined to be either medium or long,
namely lt > d+2. Indeed, in greedy mode a short plaintext can be bootstrapped as a single block from the tail up.

For example, when lN = 11, d = 4, lq = 29, lB = 6, small plaintexts have size at most 6 bits; medium plaintexts
have size from 7 to 11 bits, large plaintexts have size over 11 bits, very large plaintexts have size 20 to 22 bits.
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4.6 Plaintext bootstrapping in two’s complement representation

In the previous subsections we have been concentrating on obtaining the 0-centered blockwise representative of the
plaintext in a ciphertext. In practice it is more useful to obtain the popular two’s complement representative of the
plaintext. This subsection deals with this problem.

First, the programmable function f need to be replaced by the discontinuous function f ′ depicted in Fig. 2,
namely

f ′ : Z −→ Z2N

x 7→
{
y, if x = 2kN + y, k, y ∈ Z, y ∈ [0, N);
−y, if x = (2k + 1)N + y, with k, y as above.

(4.92)

The resolution-p version of f ′, denoted by f ′
p, where 0 ≤ p ≤ lN − 1, is

f ′
p : Z −→ Z2N

x 7→
{
y2p+1, if x = 2kN + y2p+1 + z, k, y, z ∈ Z, y ∈ [0, N/2p+1), z ∈ [−2p, 2p);
−y2p+1, if x = (2k + 1)N + y2p+1 + z, with k, y, z as above.

(4.93)

Notice that f ′
lN−1 ̸= f init, instead, f ′

lN−1(x) = 0 for all x ∈ Z.
The following lemma is the counterpart of (3.23).

Lemma 7 For all 0 ≤ p ≤ lN − 1, all x ∈ Z2N/2p+1 ∩ [−N/2p+1, N/2p+1),

f init
p (x2p+1)−N/2 + f ′

p(x2
p+1 − f init

p (x2p+1) +N/2) = x2p+1. (4.94)

Proof. Let y = f init
p (x2p+1)−N/2 and z = x2p+1 − y. Now that x2p+1 ∈ [−N,N) ∩ Z[p+1], if x2

p+1 ∈ [−N, 0),
then y = −N , z = x2p+1 +N ∈ [0, N) ∩ Z[p+1], so f ′

p(z) = z, and (4.94) is just the trivial relation x2p+1 = y + z.
If x2p+1 ∈ [0, N), then y = 0, z = x2p+1 ∈ [0, N) ∩ Z[p+1], again f ′

p(z) = z, and (4.94) is still the trivial relation
x2p+1 = y + z. Q.E.D.

By the above lemma, in plaintext bootstrapping from the tail up, each block is backed up by two uni-bootstraps,
the first is based on f init

p −N/2 where p is the same as before, the second is based on f ′
p. The leftover error bound

after each uni-bootstrap is also the same as before. In Algorithm 1, every fp is replaced by f ′
p, and every f init

p is

replaced by f init
p −N/2. Furthermore in the third group, the command “if dlast = 1, then ct’ ←− ct’ − q/4, else

......” is replaced by “if dlast ̸= 1, then ......”.

5 Head-on backup bootstrapping

From the viewpoint of plaintext blockwise representation, the tail-up bootstrapping based on f init, f recovers the
0-centered tail-up blockwise representative of the input plaintext. An alternative approach to backup bootstrapping
is from the head on. In this approach, the plaintext blockwise representation is dramatically different in that
practically every block of plaintext except for the last one is at random to some scale. With the ongoing of blockwise
bootstrapping, the plaintext error (not the ciphertext error!) of the backup result from the input decreases, and in
the end the plaintext error disappears.

For example, for plaintext m0 = 01011100 ∈ Z28 in binary form, suppose there are three blocks of size 3,3,2 bits
respectively.

– The first block gives the following approximate to m0: m
′
0 = 01010011. Then m0 − m′

0 = 00001011, so m1

approximates m0 with 3 bits of precision: |m0 −m′
0| × 2−8 < 2−3. Denote m1 = m0 −m′

0 = 1011.
– The second block gives the following approximate to m1: m

′
1 = 1001. Then m1−m′

1 = 0010, so m1 approximates
m0 with 6 bits of precision: |m1 −m′

1| × 2−8 = 2−6. Denote m2 = m1 −m′
1 = 11.

– The third block is just m′
2 = m2. So m0 = m′

0 + m′
1 + m′

2, with the property that each block improves the
precision of approximation.
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Let m0 ∈ Zt. let there be a sequence of non-negative integers d0, . . . , du whose sum equals lt, and where only du
can be zero. Let d′−1 = 0, and for i > 0, let d′i = d′i−1+di. If there is a sequence of integers m′

0, . . . ,m
′
u ∈ [−t, t), such

that (1) m̌0 =
∑u

i=0 m
′
i for some m̌0 ∈ (−t, t), (2) m̌0 = m0 mod t, (3) for all 0 ≤ i < u, |m̌0 −

∑i
j=0 m

′
j | ≤ t/2d

′
i ,

then
∑u

i=0 m
′
i is called a 0-centered head-on blockwise representative of modular number m0.

For any two integers x, y ∈ [−q/2, q/2), if |x − y| ≤ q/2p+1 for some p ≥ 0, they are said to approximate each
other with p-bit precision. The bits of precision are counted from the left, while the bits of resolution are counted
from the right.

For example, if q = 23, then in binary form, 011, 010, 001, 000 approximate 000 with 0-bit, 1-bit, 2-bit, 3-bit
precision, respectively. Another example is the 0-centered head-on blockwise representative

∑u
i=0 m

′
i of integer m̌0:

for all 0 ≤ j < u,
∑j

i=0 m
′
i approximates m̌0 with (d′j − 1)-bit precision.

In addition to the different recovered representatives, the head-on bootstrapping has the following two major
differences:

– For small initial error, each block is bootstrapped by one uni-bootstrap; for large initial error, only the first
block may need two uni-bootstrap. In contrast, the tail-up approach generally requires two uni-bootstraps for
each block.

– Most blocks have d+ 1 bits. In contrast, most blocks in the tail-up approach have d+ 2 blocks.

Because of the above differences, the head-on approach is more efficient: on average one uni-bootstrap handles d+1
bits of plaintext, while in the tail-up approach, averagely one uni-bootstrap handles d/2 + 1 bits of plaintext.

In bootstrapping from the tail up, the rounding error generated by modulus down switch is always separated from
the plaintext in Z2N , it does not influence the resulting plaintext of each uni-bootstrap. In sharp contrast, during
a head-on bootstrapping, every rounding error generated by modulus down switch floods the plaintext blocks that
are not yet bootstrapped. Because of this, the 0-centered head-on blockwise representative of the input plaintext is
random and denies accurate prediction.

For single-block plaintexts, the head-on approach agrees with the tail-up approach. So in the head-on approach, it
is always assumed that lt > dsingle. The head-on block bootstrapping also consists of three groups of uni-bootstraps.
The first group is composed of one couple of uni-bootstraps, and aims at approximately backing up the head block
of the plaintext. The second group is composed of a sequence of single uni-bootstraps, each backing up one block
approximately. The third group contains at most one uni-bootstrap.

As before, we shall first introduce each group by phase simulation, then introduce the general algorithm for
head-on ciphertext bootstrapping, and finally introduce the LSB precursor in the end.

In the following subsections,

– d0 + 2 is the size of the first block; for i ≥ 1, di is the size of the (i+ 1)-st plaintext block; d′i is the sum of dj
for 0 ≤ j ≤ i; de is the maximal size allowed for the last block for correct decryption.

– ls0 = ls = lN − lt, and for i ≥ 1, lsi is the resolution of programmable function f in bootstrapping the (i+1)-st
block.

– m0 ∈ Zq is the original plaintext with error; for i > 0, mi ∈ Zq is the leftover of m0 after subtracting the results
of the previous i uni-bootstraps.

– m′
i ∈ Zq is the result of the i-th uni-bootstrap. m′

0 involves the MSB of the whole block; m′
1 approximates the

lower bits of the leading block; for i > 1, m′
i approximates the i-th block. m̌0 ∈ (−q, q) ∩ Z[l∆] has its center

equal to the sum of plaintexts in all the m′
i, with each plaintext taking value in [−q/2, q/2).

– eMi is the rounding error in modulus down switch of the i-th uni-bootstrap, and eBi is the refreshed error by
the i-th uni-bootstrap.

In this section, we always use [−q/2, q/2) interval representatives for modular numbers in Zq, and use [−N,N)
interval representatives for modular numbers in Q2N by default. We assume that the plaintext is not single-block,
so that the total number of uni-bootstraps v ≥ 3.

5.1 First group of head uni-bootstraps

In the head-on approach, if the initial error is small, then the first group is skipped. For large initial error, two
uni-bootstraps are used to backup the leading block of minit approximately. The first uni-bootstrap uses f init to
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obtain the MSB of the block approximately, and the second one uses f with appropriate resolution to obtain the
lower bits approximately.

First consider long plaintexts. For such plaintexts, any resolution of f is correct. Preceding the first uni-bootstrap,
the modulus down switch is from Zq to Z2N , where the rounding error occupies the last l bits of Z2N . For long
plaintexts, t ≥ 2N , the end of the input plaintext is outside the range of Z2N . Any resolution of f can keep the
value of the function within the plaintext part in the refreshed ciphertext of Zq. Similarly, since f init(x) ∈ {±N/2},
the value of f init occupies only the first two bits of Z2N , as long as lt ≥ 2, any resolution of f init keeps the value of
the function within the plaintext part in the refreshed ciphertext of Zq.

Now that any resolution of the programmable functions is acceptable, the only concern is on the precision of
approximation of the resulting phase to the input phase. As to f init, for any x ∈ [−N,N), any p ≥ 0,

|f init(x)− x| ≤ N/4, |f init
p (x)− x| ≤ N/4 + 2p, (5.1)

so f init(x) approximates x with 1-bit precision, and introducing any non-negative resolution will reduce the precision.
The resolution-free version of f init is optimal.

For function f , the story is different. Since f(x) = x for x ∈ [−N,N), when the last l bits of x is flooded by the
rounding error, accurate information of the leading plaintext block can only be obtained from the first lN − l + 1
bits of Z2N . If p > l, then fp(x) truncates x by extracting its information only from the first lN − p + 1 bits, and
the precision cannot be bigger than using fl. On the other hand, if p < l, then fp(x) extracts information of x from
not only its exposed part, but also from the covered part by the rounding error; the smaller the value of p, the more
the covered part involved. To gain the best precision of approximation, p should be bounded from the top by l, and
somehow close to l.

The modulus down switch from Zq to Z2N is simulated by function r2N/q. For the input phasem0 = ∆minit+einit,
denote

x0 = r2N/q(m0, eM0) = m0 × (2N/q) + eM0 ∈ Z, (5.2)

where |eM0| ≤ EMDS.
The first uni-bootstrap gives a new phase

m′
0 = f init(x0)× q/(2N) + eB0 mod q, (5.3)

where |eB0| ≤ EB . As m′
0 ∈ [−q/2, q/2) by default integer representation, and eB0 ≪ q, integer m′

0 = f init(x0) ×
q/(2N) + eB0.

We first investigate the plaintext in phase m′
0. Although [m0]±q/2 × (2N/q) ∈ [−N,N), x0 ∈ (−2N, 2N) may

go beyond this interval, so that |x0 − f init(x0)| ≤ N/4 is no longer true. We need to find some rational number
m̌0 × (2N/q) ∈ (−N,N) satisfying m̌0 = m0 mod q, such that integer

x̌0 := m̌0 × (2N/q) + eM0 (5.4)

satisfies x̌0 = x0 mod 2N and |x̌0− f init(x̌0)| ≤ N/4. Notice that the plaintext part is always mixed with the error
part in phase x0, so both can be represented by rational numbers.

By Lemma 3,

m̌0 =

 [m0]±q/2, if x0 ∈ [−N,N);
[m0]±q/2 − q, if x0 ≥ N ;
[m0]±q/2 + q, if x0 < N.

(5.5)

So
|x̌0 − f init(x0)| ≤ N/4. (5.6)

For phase m′
0, the target to approximate is integer m̌0 ∈ (−q, q). The plaintext in phase m̌0 is (m̌0)

[l∆] = ∆minit

mod q.
We next investigate the approximation error of integer [m′

0]±q to integer m̌0. Let

m1 = m0 −m′
0 mod q. (5.7)

Then

m1 = m̌0 − f init(x0)× q/(2N)− eB0 = (x̌0 − f init(x0))× q/(2N)− eB0 − eM0 × q/(2N) mod q. (5.8)
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As m1 ∈ [−q/2, q/2) by default representation,

|m1| ≤ |x̌0 − f init(x0)| × q/(2N) + |eB0 + eM0 × q/(2N)| ≤ q/4 +
√

E2
MDSq

2/(2N)2 + E2
B , (5.9)

or equivalently,

|m1 × (2N)/q| ≤ N/2 +
√
E2

MDS + E2
B(2N)2/q2. (5.10)

In the second uni-bootstrap, the modulus down switch of m1 gives

x1 = r2N/q(m1, eM1)

= m1 × (2N)/q + eM1

= (x̌0 − f init(x0))× q/(2N)− eB0 × q/(2N)− eM0 + eM1,

(5.11)

where |eM1| ≤ EMDS. So

|x1| ≤ |x̌0 − f init(x0)| × q/(2N) + | − eB0 × q/(2N)− eM0 + eM1|
≤ N/2 +

√
2E2

MDS + E2
B(2N)2/q2.

(5.12)

To continue the uni-bootstrap, we need to fix the resolution of f .

On the right side of (5.10), EMDS < 2l and EB ≪ q, so if EB(2N)/q is small, then the square-root term ≤ 2l.

Similarly, on the right side of (5.12), when EB(2N)/q is small, the square-root term ≈
√
2l+1 < 2l + 2l−1. For long

plaintexts, by Lemma 23, the following two inequalities are always satisfied:√
E2

MDS + 2E2
B(2N/q)2 ≤ 2l,√

2E2
MDS + E2

B(2N/q)2 < 2l + 2l−1.
(5.13)

For long plaintexts, the second uni-bootstrap is based on fl−1. It gives

m′
1 = fl−1(x1)× q/(2N) + eB1 mod q,

m2 = m1 −m′
1 mod q,

(5.14)

where |eB1| ≤ EB . We check the bound of integer m2 ∈ [−q/2, q/2), which measures the approximation error of
integer m̌0 by the sum of integers m′

0 +m′
1.

By (5.10) and (5.12), using (3.37), we get

|m2| = |m1 − fl−1(x1)× q/(2N)− eB1|
≤ 2l × q/(2N) + |eM0 × q/(2N) + eB0 + eB1|

≤ 2l × q/(2N) +
√
E2

MDSq
2/(2N)2 + 2E2

B

≤ 2l+1 × q/(2N) = q/2d+2.

(5.15)

So the first block that is just bootstrapped has d+ 2 bits.

Notice that the error bound in (5.15) does not involve Einit. The reason is that at the current stage einit is taken
as part of the input plaintext, now that lt > lN , the plaintexts at lower bits together with einit are all truncated
when the phase is in Z2N , so after the uni-bootstrap they become part of the rounding error bounded by the first
term 2l × q/(2N) in the second line of (5.15).

By (3.12),

(m′
0 +m′

1)− (eB0 + eB1) = (f init(x0) + fl−1(x1))× q/(2N)

∈ ±q/4 + 2lq/(2N)×
(
[−N/2l+1, N/2l+1] ∩ Z

)
= q/2d+3 ×

(
[−2d+2, 2d+2] ∩ Z

)
.

(5.16)
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So m′
0 +m′

1 ∈ Z[lq−d−3]. All nonzero plaintext bits of m′
0 +m′

1 ∈ Zq are in the first d+ 3 bits. Furthermore, by

m2 = m1 −m′
1 = m0 − (m′

0 +m′
1), since |m2| ≤ q/2d+2, the plaintext of m′

0 +m′
1 approximates that of m0 with

(d+ 1)-bit precision. Let

m′
0 +m′

1 = y1q/2
d+3 + e1, where y1 ∈ [−2d+2, 2d+2] ∩ Z, (5.17)

then e1 = eB0 + eB1 is the tail error of the phase, and

m2 = (m̌0)
[l∆] − y1q/2

d+3 + (einit − e1). (5.18)

In m2, the tail error is einit − eB0 − eB1.
Denote

ls = lN − lt. (5.19)

For long plaintexts, ls < 0; for medium ones, 0 ≤ ls < l; for short plaintexts, ls ≥ l; for single-block plaintexts,
ls ≥ lN − dsingle.

Then consider medium plaintexts. In practice, the first group of bootstrapping a medium plaintext is the
same as bootstrapping a long plaintext. By Lemma 23 in the Appendix, k ≤ 2(dB + l − ls) is required. By
dB = l∆ − 1− lB = lq − lN + ls − 1− lB , we get dB + l − ls = lq − lB − d− 3. In our experiments, k ≤ l = 5 or 6,
lB = 6 or 7, lq = 29, d = 4 or 3. So lq − lB − d− 3 = 16, and k ≤ 2(dB + l − ls) is well satisfied.

Theorem 8 When lt > d+ 2, under the hypothesis k ≤ 2(dB + l− ls), in the second uni-bootstrap of the head-on
approach, only using fl−1 can the first block take the largest size of d+ 2 bits.

Proof. Denote by T the first term in the second line of (5.15). By (5.12) and (5.13), |x1| < N/2 + 2l + 2l−1.
If using fl, then when x1 ∈ (N/2, N/2 + 2l + 2l−1), fl(x1) can take value N/2 − 2l+1, enlarging term T to

2l+1 × q/(2N), and resulting in the enlarged power-of-2 bound 2l+2 × q/(2N) of |m2|.
If using any fp where p ≥ l + 1, then when x1 ∈ (−N/2, N/2), |x1 − fp(x1)| ≤ 2l+1, and term T is enlarged to

at least 2l+1 × q/(2N).
If using any fp where p ≤ l − 2, then when x1 ∈ (N/2, N/2 + 2l + 2l−1), both terms of 2l + 2l−1 are discerned

by the low-resolute fp. As a result, term T is enlarged to (2l + 2l−1) × q/(2N), and the new bound of |m2| is
(2l+1 + 2l−1)× q/(2N). Q.E.D.

Finally, consider short plaintexts, namely ls ≥ l. For short plaintexts, bootstrapping the first block is dramatically
different from that of long/medium plaintexts, because after the modulus switch from Zq to Z2N , the rounding error
floods only the last l ≤ ls bits, the plaintext in Z2N is not flooded, the resolution of f must be at least ls > l− 1. If
still using fl−1, then in Zq, the plaintext in the refreshed ciphertext goes beyond the ∆-border between the plaintext
and the tail error, and floods the latter.

In the first group of bootstrapping short plaintexts, the first uni-bootstrap based on f init is the same as before.
The leftover phase m1 has the same bound as (5.10). Before the second uni-bootstrap, the modulus down switch of
m1 gives the same x1 with bound (5.12). Now the second uni-bootstrap is based on fls .

If ls > l, the following counterpart of (5.13):√
E2

MDS + 2E2
B(2N/q)2 ≤ 2ls ,√

2E2
MDS + E2

B(2N/q)2 < 2ls
(5.20)

is well satisfied, by Lemma 24. Just as in (5.15), but now by (3.38), the leftover phase m2 is bounded by

|m2| ≤ 2ls+1 × q/(2N) = q/t, (5.21)

so the first block has lt bits. In other words, the first block contains the full length of the plaintext. Is this the end of
the whole bootstrapping? Since lt > dsingle, the bootstrapping cannot finish here. The plaintext in the bootstrapped
result approximates the input plaintext with precision lt−1 bits. Another uni-bootstrap must be launched to correct
the last bit. It belongs to the third group of uni-bootstraps.

If ls = l, then k ≤ 2(dB + l − ls) is well satisfied in practice, so by Lemma 23, (5.13) is true. As in the proof of
Theorem 8, in (5.15) the bound of |m2| is enlarged to 2l+2× q/(2N) = 2q/t = q/2lt−1, the first block has lt−1 bits.
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Similar to Theorem 8, it is easy to show that only using fls in the second uni-bootstrap can give the largest size
for the first block. Similar to (5.16), we have

(m′
0 +m′

1)− (eB0 + eB1) = (f init(x0) + fls(x1))× q/(2N)

∈ ±q/4 + 2ls+1q/(2N)×
(
[−N/2ls+2, N/2ls+2] ∩ Z

)
= q/t×

(
[−t/2, t/2] ∩ Z

)
.

(5.22)

So m′
0 +m′

1 ∈ Z[l∆]. All nonzero plaintext bits of m′
0 +m′

1 ∈ Zq are in the first lt bits. Since |m2| ≤ q/t, the
plaintext of m′

0 +m′
1 approximates that of m0 with (lt − 1)-bit precision. Let

m′
0 +m′

1 = y1∆+ eB0 + eB1, where y1 ∈ [−t/2, t/2] ∩ Z, (5.23)

then

m2 = (m̌0)
[l∆] − y1∆+ (einit − eB0 − eB1). (5.24)

5.2 Second group of head uni-bootstraps

In the first group, two different resolutions of f are used: l − 1 for long and medium plaintexts, and ls for short
ones. In the second group, the resolution of f keeps on changing, due to the decrease of the plaintext size in the
leftover phase. Short plaintext bootstrapping skips the second group. So in this subsection, lt − d− 2 = l − ls > 0
is assumed.

For long plaintexts, denote by d0 + 2 := d + 2 the size of the first block. For i > 0, let di be the size of the
(i+ 1)-st block. Denote

d′i =

i∑
j=0

dj . (5.25)

Then d′i + 2 is the bit-size of the concatenation of the first i+ 1 blocks. Set ls0 = ls, and for i > 0, set

lsi = ls + d′i−1 = ls(i−1) + di−1. (5.26)

For the (i+ 1)-st block, lsi plays the role of ls, and is the resolution of f .
In the second group and the third group, for any block to be bootstrapped, during modulus down switch, two

vacant bits are reserved ahead of the block, or equivalently, in two’s complement representation, the block starts
with two bits of identical value. Because of this, during the uni-bootstrap of the block, we often refer to di + 2 as
the full size of the (i + 1)-st block, including two leading extra bits that were occupied by the previous block. By
default, di is the size of the (i+ 1)-st block where i > 0, sometimes also called non-redundant size.

The input of the second group is m2 ∈ Zq satisfying |m2| ≤ q/2d0+2, according to (5.15). The inequality can be
written as

(m2 2
d0)× 2N/q ∈ [−N/2, N/2]. (5.27)

From now on till the end of the whole bootstrapping, f init is no longer needed, and the (i + 1)-st block will be
bootstrapped by one uni-bootstrap based on flsi .

For the first block of the second group, preceding the uni-bootstrap, the modulus down switch is realized by
function

r
2d

′
0+1N/q

(m, e) = (m 2d0)(2N/q) + e ∈ Z. (5.28)

Denote

x2 = r
2d

′
0+1N/q

(m2, eM2), where |eM2 | ≤ EMDS. (5.29)

The uni-bootstrap based on fp, where p is to be determined, generates

m′
2 = fp(x2)× q/(2d

′
0+1N) + eB2 mod q,

m3 = m2 −m′
2 mod q,

(5.30)
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where |eB2| ≤ EB . For m3 ∈ [−q/2, q/2), by (5.27), using (3.34), we get

|m2 2
d′
0+1N/q − fp(x2)− eB2 2

d′
0+1N/q| ≤ 2p +

√
E2

MDS + (EB 2d
′
0+1N/q)2, (5.31)

for any p ≥ 0; when p < 0, the term 2p is removed from the right side. So

|m3| ≤ |m2 − fp(x2)× q/(2d
′
0+1N)− eB2| ≤ 2pq/(2d

′
0+1N) +

√
E2

MDSq
2/(2d

′
0+1N)2 + E2

B ; (5.32)

again when p < 0, the term involving 2p is removed from the right side. The smaller the value of p, the better for
|m3|.

The resolution p of f is determined by ls1 = ls0 + d0 = ls + d. If ls1 < 0, then obviously the resolution-free
version f is optimal, for which (5.32) becomes

|m3| ≤
√
E2

MDSq
2/(2d

′
0+1N)2 + E2

B . (5.33)

If ls1 ≥ 0, then p ≥ ls1 is mandatory, and fls1 is optimal, for which (5.32) becomes

|m3| ≤ 2ls1q/(2d
′
0+1N) +

√
E2

MDSq
2/(2d

′
0+1N)2 + E2

B . (5.34)

Let d1 be the biggest integer such that |m3| ≤ q/2d
′
0+d1+2, then d1 is the size of the block that is just bootstrapped.

The computation of d1 by the above definition is straightforward. In power-of-2 binomial bounds, the computa-
tion can be greatly simplified. The result is presented in Lemma 25. For large-precision plaintexts where lt ≫ lN ,
lsi < 0 for the beginning blocks of the second group. When lsi < 0, then di = d+ 1; when l > lsi ≥ 0, then di = d;
when lsi ≥ l, the block-size ranges from 1 to d.

By (3.12), when ls1 ≥ 0,

m′
2 − eB2 ∈ 2ls1+1 × q/(2d

′
0+1N)×

(
[−N/2ls1+2, N/2ls1+2] ∩ Z

)
= ∆×

(
[−t/2d′

0+2, t/2d
′
0+2] ∩ Z

)
.

(5.35)

When ls1 < 0,
m′

2 − eB2 ∈ q/(2d
′
0+1N)× [−N/2, N/2] = 2−ls1−1∆× [−N/2, N/2]. (5.36)

So if ls1 < 0, then m′
2− eB2 ∈ Z[lq−d−lN−1], else m′

2− eB2 ∈ Z[lq−lt]. Together with |m′
2− eB2| ≤ q/2d+2, we get

that if ls1 < 0, then all nonzero plaintext bits of |m′
2| ∈ Zq are in the lN -bit-string from the (d + 2)-nd bit to the

(d+ lN +1)-st bit counted from the left; else, all nonzero plaintext bits of |m′
2| are in the (lt−d− 2)-bit-string from

the (d + 2)-nd bit to the lt-th bit counted from the left. Recall that all nonzero plaintext bits of |m′
0 +m′

1| ∈ Zq

are in the first d+ 3 bits. So the lN -bit-string or (lt − d− 2)-bit-string of |m′
2| overlaps with the (d+ 3)-bit-string

of |m′
0 +m′

1| by 2 bits.

Consider m3 = m2 − m′
2 = m0 −

∑2
i=0 m

′
i. Since |m3| ≤ q/2d+d1+2, the plaintext of

∑2
i=0 m

′
i approximates

that of m0 with (d + d1 + 1)-bit precision. Compared with the (d + 1)-bit precision provided by the plaintext of
m′

0 +m′
1, we see that the precision is improved by d1 bits, which is exactly the size of the block just bootstrapped.

This interprets the meaning of the term “block-size” in head-on bootstrapping.
If ls1 ≥ 0, let

m′
2 = y2∆+ eB2, where y2 ∈ [−t/2d

′
0+2, t/2d

′
0+2] ∩ Z; (5.37)

else, let
m′

2 = y2q/(2
d′
0+1N) + eB2, where y2 ∈ [−N/2, N/2] ∩ Z. (5.38)

Then

m3 = (m̌0)
[l∆] − y1q/2

d+3 − y2z2 + (einit −
2∑

i=0

eBi), (5.39)

where z2 = ∆ if ls1 ≥ 0, and z2 = q/(2d
′
0+1N) otherwise.

For the other blocks in the second group, the bootstrapping is much the same with the first block of the group.
For the i-block of the group where i ≥ 1, the input phase is mi+1 ∈ Zq satisfying |mi+1| ≤ q/2d

′
i−1 , the modulus

down switch is from Z
q/2

d′
i−1

to Z2N , so that in Z2N , mi+1 × 2d
′
i−1(2N/q) ∈ [−N/2, N/2].
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The uni-bootstrap of the i-block in the second group generates a new phase m′
i+1 ∈ Zq:

m′
i+1 = flsi(r2d

′
i−1 (2N/q)

(mi+1, eM(i+1))) + eB(i+1) mod q, (5.40)

where |eB(i+1)| ≤ EB . Let
mi+2 = mi+1 −m′

i+1 mod q. (5.41)

By (3.34), if lsi ≥ 0, then

|mi+2| ≤ 2lsiq/(2N × 2d
′
i−1) +

√
E2

MDSq
2/(2N × 2d

′
i−1)2 + E2

B ; (5.42)

if lsi < 0, then

|mi+2| ≤
√

E2
MDSq

2/(2N × 2d
′
i−1)2 + E2

B . (5.43)

In each case, the right side of each inequality above is bounded by q/2d
′
i−1+di+2 for some biggest integer di > 0,

and di is called the size of the block. Again the computation of d1 by the above definition is straightforward, and
in power-of-2 binomial bounds, the computation can be greatly simplified, with results presented in Lemma 25.

For the i-block in the second group, denote d′ = d′i−1 for short. Then d′ < lt − d − 2 = lt − lN + l = l − ls. If
lsi = ls + d′ < 0, namely lt − d′ > lN , by (5.43), let di be the biggest integer satisfying√

E2
MDSq

2/(2d′+1N)2 + E2
B ≤ q/2d

′+di+2. (5.44)

If lsi = ls + d′ ≥ 0, namely d+ 3 ≤ lt − d′ ≤ lN , by (5.42), let di be the biggest integer satisfying

2lsiq/(2d
′+1N) +

√
E2

MDSq
2/(2d′+1N)2 + E2

B ≤ q/2d
′+di+2. (5.45)

For the i-th uni-bootstrap of the second group, where i > 1, just as the i = 1 case, it can be proved by induction
that the uni-bootstrap generates a phase m′

i+1 ∈ Zq with the property that if lN − 2 > lsi ≥ 0, then d′i−1 < lt − 2,
and

m′
i+1 − eB(i+1) ∈ 2lsi+1 × q/(2d

′
i−1+1N)×

(
[−N/2lsi+2, N/2lsi+2] ∩ Z

)
= ∆×

(
[−t/2d

′
i−1+2, t/2d

′
i−1+2] ∩ Z

)
;

(5.46)

if lsi < 0, then
m′

i+1 − eB(i+1) ∈ q/(2d
′
i−1+1N)× [−N/2, N/2] = 2−lsi−1∆× [−N/2, N/2]. (5.47)

So if lsi < 0, then m′
i+1−eB(i+1) ∈ Z[lq−d′

i−1−lN−1], else m
′
i+1−eB(i+1) ∈ Z[l∆]. Together with |m′

i+1−eB(i+1)| ≤
q/2d

′
i−1+2, we get that if lsi < 0, then all nonzero plaintext bits of |m′

i+1| ∈ Zq are in the lN -bit-string from the
(d′i−1 + 2)-nd bit to the (d′i−1 + lN + 1)-st bit counted from the left; else, all nonzero plaintext bits of |m′

i+1| are in
the (lt − d′i−1 − 2)-bit-string from the (d′i−1 + 2)-nd bit to the lt-th bit counted from the left.

For the i-th block of the second group, its lN -bit-string or (lt−d′i−1−2)-bit-string starts at the (d′i−2+di−1+2)-
nd bit from the left, while for its preceding (i− 1)-st block, the lN -bit-string ends at the (d′i−2 + lN +1)-st bit from
the left. The two bit-strings overlap by lN − di−1 bits. By Lemma 25, di−1 ≤ d+ 1, so lN − di−1 ≥ l + 1.

Furthermore, by mi+2 = mi+1 − m′
i+1 = m0 −

∑i+1
j=0 m

′
j , since |mi+2| ≤ q/2d

′
i+2, the plaintext of

∑i+1
j=0 m

′
j

approximates that of m0 with (d′i + 1)-bit precision. Compared with the (d′i−1 + 1)-bit precision provided by the

plaintext of
∑i

j=0 m
′
j , we see that the precision is improved by di bits, which is exactly the size of the i-th block in

the second group.
If lsi ≥ 0, let

m′
i+1 = yi+1∆+ eB(i+1), where yi+1 ∈ [−t/2d

′
i−1+2, t/2d

′
i−1+2] ∩ Z; (5.48)

else, let
m′

i+1 = yi+1q/(2
d′
i−1+1N) + eB(i+1), where yi+1 ∈ [−N/2, N/2] ∩ Z. (5.49)

Then

mi+2 = (m̌0)
[l∆] − y1q/2

d+3 −
i+1∑
j=2

yjzj + (einit −
i+1∑
j=0

eBj), (5.50)
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where zj = ∆ if ls(j−1) ≥ 0, and zj = q/(2d
′
j−2+1N) otherwise.

The second group contains w ≥ 0 blocks, where w satisfies

d′w =

w∑
i=0

di = lt − 2, or equivalently, ls(w+1) = ls + d′w = lN − 2, (5.51)

where each di > 0. When the second group finishes, the leftover phase mw+2 has the property that |mw+2| ≤ ∆, and

the plaintext of
∑w+1

j=0 m′
j approximates that of m0 with (lt − 1)-bit precision, just like the result of short plaintext

bootstrapping after the first group.

The number of uni-bootstraps w can be directly computed by Lemma 25, together with the size of each block
in the second group. By the lemma, as long as lsi < 0, the block size remains to be the biggest value d + 1. Once
lsi ≥ l − k, then the block size reduces to be at most d. The more the smaller sized blocks, the less efficient the
bootstrapping. How many blocks in the second group have size ≤ d?

by Lemma 25, when l > lsi = ls + d′i−1 ≥ l − k, the i-block of the second group has block size di = d; when
lsi = l, then di ∈ {lt − 2− d′i−1, lt − 3− d′i−1}; when lN − 2 > lsi > l, then di = lt − 2− d′i−1. Only when i = w can
the block size take value lt − 2 − d′i−1. So if k < 2d − 1, there cannot be more than two blocks having size d, and
if there are two such blocks, then the number of small sized blocks in the second group is at most 3. The reason is
that if lsi > l, then i = w is the last block; from l− k to l, the interval length < 2d, so if lsi takes value twice in the
interval, then after the two blocks, the third block has its lsi > l, and is the last one.

For example, for practical parameters lN = 11, k = l = 5, d = 4, kB = lB = 6, for any block of small size, lsi
takes values in interval [l − k, lN − 2] = [0, 9], with l = 5 in between. by Lemma 25, when lsi = l, it is always true
that di = lt − 2 − d′i−1. The third group has at least two and at most three small sized blocks. Let the j-th block
be the first block of size ≤ d. Since the (j − 1)-st block has size dj−1 = d + 1, lsj = ls + d′j−2 + dj−1 ∈ [0, d]. The
following are all possibilities of the small sized blocks in the second group:

– lsj = 0: then dj = d = 4, dj+1 = 4, dj+2 = 1.

– lsj = 1: then dj = d = 4, dj+1 = 4.

– lsj = 2: then dj = d = 4, dj+1 = 3.

– lsj = 3: then dj = d = 4, dj+1 = 2.

– lsj = 4: then dj = d = 4, dj+1 = 1.

For another set of practical parameters lq = 29, lN = 11, k = l = 6, d = 3, kB = lB = 7, when lsi = l, then
di = lt − 2 − d′i−1 if dB > 2, and di = lt − 3 − d′i−1 if dB = 2. Assume dB = 2. Then l∆ = 10, lt = 19, ls = −8.
There are 6 blocks in the first two groups, with size 2 + 3, 4, 4, 3, 2, 1 respectively. The corresponding lsi sequence
for 0 ≤ i ≤ w + 1 = 6 is −8,−5,−1, 3, 6, 8, 9.

Theorem 9 below is a direct corollary of Lemma 25. It describes the change of block size during the whole
bootstrapping. In particular, at the beginning of the second group, all blocks have size d+ 1; in the middle, when
lsi ≥ l − k, the blocks have size d only. In greedy mode, the blocks keep size d till the end, where the last block is
viewed as being padded with some vacant bits at its end. In regular mode, when lsi grows to l, the blocks have size
d− 1, and keep it till the end.

Theorem 9 In the second group of head-on bootstrapping, take the last plaintext block as being padded with
some vacant bits at the end. Then along with the blockwise bootstrapping starting from the first group, there are
all together 5 possible sizes during the whole bootstrapping, and they occur in descending order:

d+ 2: the first block;

d+ 1: all blocks i with d′i−1 ∈ [d, lt − 2− d− k) (start of the second group);

d: all blocks i with d′i−1 ∈ [lt− 2− d− k, lt− 2) in greedy mode, or all block i with d′i−1 ∈ [lt− 2− d− k, lt− 2− d)
in regular mode (middle of the second group);

d− 1: all blocks i with d′i−1 + 2− lt ∈ [lt − 2− d, lt − 2) in regular mode (end of the second group);

0: the third group.
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5.3 Third group of head uni-bootstraps

After the first two groups of uni-bootstraps, not only the input error einit persists, but new errors
∑w

i=0 eBi grow at

the end of the leftover phase mw+2. The accumulated bootstrapping result
∑w+1

j=0 m′
j approximates the input m0

with at least (lt − 1)-bit precision.
There are two possibilities. If the precision of approximation has reached lt bit, then the whole bootstrapping

finishes after the second group, else to compensate for the loss of the 1-bit precision, a new uni-bootstrap must be
launched to bootstrap the last block, which has non-redundant size of 0 bit, or equivalently, full size of 2 bits.

Whether or not the third group is needed is determined by the bound of the tail error after the modulus down
switch preceding the last uni-bootstrap in the second group. Before the uni-bootstrap, w + 1 uni-bootstraps have
been done starting from the first group, so the tail error in phase mw+1 ∈ Zq is bounded by

√
E2

init + (w + 1)E2
B .

By d′w−1 = lt−2−dw−1, the modulus down switch from Z
q/2

d′
w−1

= Z22+dw−1∆ to Z2N introduces a rounding error,

and in Z2N , the tail error is bounded by√
E2

MDS + (E2
init + (w + 1)E2

B)(2N)2/(22+dw−1∆)2 =
√

E2
MDS + 2−2dw−1(E2

init + (w + 1)E2
B)(N/4)2(2/∆)2.

(5.52)
By lsw = ls + d′w−1 = lN − 2− dw−1, if in (5.52), the bound < 2lsw = N/22+dw−1 , then when viewed in Zq, this

tail error < ∆/2, the uni-bootstrap can cut off the old tail error completely, and replace it with a new one bounded
by EB .

If bound (5.52) ≥ N/22+dw−1 , then a uni-bootstrap is needed to repair the precision loss. The uni-bootstrap
starts with the modulus down switch on mw+2 from Z22∆ to Z2N . By ls(w+1) = ls + d′w = lN − 2, the uni-bootstrap
is based on flN−2, so that only the first two bits of Z2N are recorded in the result.

After the modulus down switch on mw+2, in Z2N , the tail error is bounded by√
E2

MDS + (E2
init + (w + 2)E2

B)N
2/(2∆)2. (5.53)

If in (5.53), the bound < N/4, then when viewed in Zq, this tail error < ∆/2, the uni-bootstrap cuts off the old
tail error completely, and the whole bootstrapping succeeds; else, the bootstrapping fails to generate an accurate
backup of the input plaintext, instead it outputs a phase whose plaintext loses 1-bit precision when compared with
the input.

It is important to know beforehand whether an input phase can be accurately bootstrapped in the head-on
approach. In the worst case, the tail error bound

√
vEB of the final output of the whole bootstrapping equals Einit/2,

where v is the total number of uni-bootstraps, then the requirement on the initial error is the most stringent. In
the best case, v takes the smallest value 3, the last block has zero non-redundant size, then the requirement on the
initial error is the most generous.

Let de be the maximal size allowed for the last block in the whole bootstrapping. To clear the tail error of the
last phase in Z2N , when viewed in Zq, the tail error must be strictly bounded by ∆/2, i.e.,√

E2
init + (v − 1)E2

B + E2
MDS(∆/2N)222(de+2) < ∆/2. (5.54)

Equivalently, when viewed in Q2N ,√
E2

MDS + 2−2(de+2)(E2
init + (v − 1)E2

B)(2N/∆)2 < 2−(de+2)N. (5.55)

The existence of integer de ≥ 0 is the inequality prerequisite for head-on bootstrapping.
Given lt, computing v is pretty easy. In the best case v = 3, when comparing (5.55) with (4.2) of the tail-up

approach, on sees that by replacing EB with
√
2EB , or approximately, replacing integer dB by rational dB−1/2, the

conclusions given by Lemma 15 and Lemma 17 on inequality (4.2) can be transported to conclusions on inequality
(5.55). For example, for large initial error, de = d or d− 1; for small initial error, if kI ≤ min(2dB − 1, 2d− 1), then
de ≥ 0 exists. Indeed, Lemma 22 of the Appendix guarantees that the above transported conclusions are correct for
v = 3.

When v continues to grow, by the power-of-two upper bound of integer v − 1, Lemma 15 and Lemma 17 can
still be approximately extended to (5.55), but the aberration becomes larger. In the worst case

√
vEB = Einit/2,
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we can use the replacement E2
init + (v − 1)E2

B = (5/4)E2
init − E2

B , so that (5.54) becomes√
((5/4)E2

init − E2
B)(2/∆)2 + 22deE2

MDS(4/N)2 < 1. (5.56)

The existence of integer de ≥ 0 in (5.56) proposes the lowest upper bound on the initial error for head-on boot-
strapping.

For (5.56), Lemma 20 gives a full classification of all possible values of de. In particular, for small initial error,
the head-on bootstrapping always works, and either de = d, or de = d − 1, so the third group is not needed.
Combining this with Lemma 25 on the block size di when d′i−1+ ls = l, we get that there are two modes of head-on
bootstrapping for small initial errors:

Greedy mode: If k ≤ 2dI + 1, and either k ≤ 2dB , or k = 2dB + 1 and kB ≤ k + 1, then ever since lsi ≥ l − k,
the blocks have size d and keep the size till the end of the whole bootstrapping.

Regular mode: Else, while still the blocks have size d when lsi ≥ l − k is reached, ever since lsi ≥ l, the blocks
have size d− 1, and keep it till the end of the whole bootstrapping.

In each mode, the last block is viewed as being padded with some vacant bits at its end.
Lemma 21 presents a simplified conclusion on de in the practical situation d ≥ 3 for large initial error, which

states that de ≥ 0 exists if and only if the initial error is not larger than (1 − 2−3)∆/2. When v is given, then
depending on v and EB , the upper bound of kI for large initial errors ranges from 3 to min(2d− 1, 2dB − 1).

Once the biggest integer de satisfying (5.54) is computed, determining whether or not the third group is necessary
is very easy: the group is necessary if and only if the last block of the second group has bit-size ≤ de.

Theorem 10 Let there be vH uni-bootstraps in the head-on bootstrapping. Let de ≥ 0 satisfy (5.55). The correct-
ness of the head-on approach is guaranteed by

⌊(
vH−1∑
i=0

m′
i)/∆⌉ = ⌊m̌0/∆⌉. (5.57)

Proof. Preceding the last uni-bootstrap of the second group, the input phase is mw+1, which is of the form (5.50)
for i = w−1, whose tail error is e = einit−

∑w
j=0 eBj , and whose plaintext is of the form ∆m, where m ∈ [−t/2, t/2],

such that

∆m = (m̌0)
[l∆] − y1q/2

d+3 −
w∑

j=2

yjzj , (5.58)

and |∆m| ≤ |mw+1|+ |e| ≤ q/2d
′
w−1+2+ |e|. By (5.54), |e| < ∆/2, so |∆m| < (2dw−1+2−1)∆, indicating |m| ≤ 2dw−1 .

After the modulus down switch from Z
q/2

d′
w−1

= Z22+dw−1∆ to Z2N , in Z2N the phase becomes

eM(w+1) +mw+1 × 2N/(22+dw−1∆) = m× 2lN−1−dw−1 + {eM(w+1) + e×N/(21+dw−1∆)}. (5.59)

The plaintext m× 2lN−1−dw−1 is bounded by 2lN−1 = N/2, the tail error is bounded by (5.52).
If the bound (5.52) < 2lsw = 2lN−2−dw−1 , then by definition, flsw = flN−1−dw−1

acting on phase (5.59) gives
m× 2lN−1−dw−1 . So the last uni-bootstrap of the second group generates the phase

m′
w+2 = m× 2lN−1−dw−1 × 21+dw−1∆/N + eB(w+2) = ∆m+ eB(w+2); (5.60)

for vH = w + 2, (5.57) is true.
If the bound (5.52) ≥ 2lsw , then the third group is necessary. Preceding the uni-bootstrap of the third group,

the input phase is mw+2, which is of the form (5.50) for i = w, whose tail error is e′ = einit−
∑w+1

j=0 eBj , and whose
plaintext is of the form ∆m′, where m′ ∈ [−t/2, t/2], such that

∆m′ = (m̌0)
[l∆] − y1q/2

d+3 −
w+1∑
j=2

yjzj , (5.61)
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and |∆m′| ≤ |mw+2|+ |e′| ≤ ∆+ |e|. By (5.54), |e′| < ∆/2, so |∆m′| < (1 + 2−1)∆, indicating m′ ∈ {0,±1}.
After the modulus down switch from Z∆/22 to Z2N , in Z2N the phase becomes

eM(w+2) +mw+2 × 2N/(22∆) = m′ ×N/2 + {eM(w+2) + e′ ×N/(2∆)}. (5.62)

The plaintext m′ ×N/2 is bounded by N/2, the tail error is bounded by (5.53).
Now that de ≥ 0 satisfies (5.55), the tail error of (5.62) is strictly bounded by N/4. By definition, flN−2 acting

on phase (5.62) gives m′ ×N/2. So the last uni-bootstrap generates the phase

m′
w+3 = m′ ×N/2× 2∆/N + eB(w+3) = ∆m′ + eB(w+3); (5.63)

for vH = w + 3, (5.57) is true. Q.E.D.

5.4 Putting everything together into ciphertext form

For head-on bootstrapping, the global parameters are the same as in tail-up bootstrapping, so are the uni-bootstrap
procedure UniBoot(f, ct, q′). The following is the general algorithm for head-on bootstrapping.

Algorithm 2 “HeadBoot”: Backup bootstrapping from head on

Input: LWE ciphertext ct to bootstrap;
public FHEW/TFHE parameters.
Assume lt ≥ 2. Assume de ≥ 0 exists.

Output: LWE ciphertext ct’.

{Control parameters setup}
1: Set d = lN − l − 2, d0 = d, d′0 = d0. (d0 + 2 is the size of the first block)
2: Compute the block sizes di > 0 in the second group, such that

∑w
j=0 dj = lt − 2. The number of blocks w ≥ 0

is thus obtained.
3: Set ls = lN − lt. For 1 ≤ i ≤ w, set d′i =

∑i
j=0 dj , lsi = ls + d′i−1.

4: Compute the allowed maximal size of the last block de.

{First group}
5: ct’←− UniBoot(f init, ct, q);

ct←− ct− ct’ mod q.
6: if lt > d+ 2 then
7: ct’←− ct’+ UniBoot(fl−1, ct, q) mod q.
8: else
9: ct’←− ct’+ UniBoot(fls , ct, q) mod q.

10: end if
11: ct←− ct− ct’ mod q.

{Second group}
12: for i = 1 to w do
13: ct’←− ct’+ UniBoot(flsi , ct, q/2

d′
i−1) mod q;

ct←− ct− ct’ mod q.
14: end for

{Third group}
15: if dw > de then
16: ct’←− ct’+ UniBoot(flN−2, ct, 4q/t) mod q.
17: end if
18: return ct’.

The complexity of the algorithm is also dominated by the number of uni-bootstraps. In the following, we consider
head-on bootstrapping for small initial error. The first block has min(d + 2, lt) bits. In the second group, when i
changes from 1 to w + 1, d′i−1 increases from d to lt − 2. Denote d′ = d′i−1 and take it as a variable. By Lemma 9,



42 Hongbo Li, Dengfa Liu, and Guangsheng Ma

– when d′ ∈ [d, lt − 2− d− k), the blocks have size d+ 1. The number of blocks in this interval of d′ is

v1 := ⌈max(0, lt − 2− 2d− k)/(d+ 1)⌉ = max(0, ⌈(lt − k)/(d+ 1)⌉ − 2). (5.64)

After these blocks are bootstrapped, the interval of d′ is reduced to [d+ v1(d+ 1), lt − 2).
– In greedy mode, when d′ ∈ [d+ v1(d+ 1), lt − 2), the blocks have size d. The number of blocks in this interval

of d′ is

v′2 := ⌈max(0, lt − 2− d− v1(d+ 1))/d⌉ = max(0, ⌈lt − 2− v1⌉ − 1− v1). (5.65)

– In regular mode, when d′ ∈ [d + v1(d + 1), lt − 2 − d), the blocks have size d. The number of blocks in this
interval of d′ is

v2 := ⌈max(0, lt − 2− 2d− v1(d+ 1))/d⌉ = max(0, ⌈lt − 2− v1⌉ − 2− v1). (5.66)

– In regular mode, when d′ ∈ [d+ v1(d+1)+ v2d, lt− 2), the blocks have size d− 1. The number of blocks in this
region of d′ is

v3 := ⌈max(0, lt − 2− d− v1(d+ 1)− v2d)/(d− 1)⌉ = max(0, ⌈lt − 3− 2v1 − v2⌉ − 1− v1 − v2). (5.67)

So for small initial error, in greedy mode, the total number of uni-bootstraps is

v′H := 2 + v1 + v′2. (5.68)

In regular mode, the total number of uni-bootstraps is

vH := 2 + v1 + v2 + v3. (5.69)

For example, when dI = 1 and k = 2, then the head-on bootstrapping is also in greedy mode. When d = 4,
for input plaintext of 15 bits, 4 uni-bootstraps suffice to finish the bootstrapping in three blocks, with size 6, 5,
4, respectively. In contrast, the tail-up approach in greedy mode needs 6 uni-bootstraps to bootstrap three blocks
from the tail up, with size 6, 6, 3, respectively. The bootstrapping efficiency is improved by (6− 4)/4 = 50%.

For large initial error, in the worst case, de = 0, so the third group is always needed. For the example used in
illustrating the tail-up approach, where l = k = 5, dI = 0, d ≥ 3, dB = d + 1 and kI = 2dB − 4 = 2d − 2 > 3, if
v ≤ 4, then by Lemma 17, with dB replaced by dB−1, kI ≤ min(2d−1, 2dB−2) is satisfied, so de ≥ 0 exists. When
d = 4, for input plaintext of 6 bits, two blocks and 3 uni-bootstraps are needed to finish the head-on bootstrapping,
the bit-sizes of which are 6, 0, respectively. The bootstrapping efficiency is improved by (5− 3)/3 ≈ 67%.

5.5 Head-on bootstrapping with LSB precursor

When the initial error is too large, the head-on approach fails. To make bootstrapping, we resort to the LSB
precursor to reduce the initial error relative to the new border between the plaintext and the tail error, which is
now ∆ instead of the old ∆/2.

By Lemma 19, the LSB precursor only requires kI ≤ 2d + 3 for large initial error. After the LSB precursor is
executed, lt, ls are replaced by lt− 1, ls +1 respectively. Then the block sizes di, the maximal allowed size de of the
last block, and the total number of uni-bootstraps v, all need update. In algorithm 2, the control parameters need
update, and the LSB precursor needs to be ahead of the first group.

Enlarging parameter de is the sole purpose of the LSB precursor. We investigate the influence of the LSB
precursor on de. In (5.55), replacing ∆ by 2∆, we get√

E2
MDS + 2−2(de+2)(E2

init + (v − 1)E2
B)(N/∆)2 < 2−(de+2)N, (5.70)

or when viewed in Zq, √
(Einit/2)2 + (v − 1)(EB/2)2 + E2

MDS∆
2/(2N)222(de+2) < ∆/2. (5.71)
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In the best case v = 3, when comparing (5.71) with (A.47), we see that dI , dB both increase by 1. By Lemma
22, the new de ∈ {d, d− 1}. In the worst case

√
vEB = Einit/2, (5.70) becomes√

((5/4)E2
init − E2

B)/∆
2 + 22deE2

MDS(4/N)2 < 1. (5.72)

Comparing (5.72) with (A.23), we see that the former is a special case of the latter with d′i−1 = 1 and di = de. By
Lemma 18, we get the following corollary:

Corollary 11 Let de be the biggest integer satisfying (5.72), Then de = d− 1, except for the following cases where
de = d:

– k ≤ 2dI + 1;
– k = 2dI + 3, and one of the following is true:
• kI = 2;
• kI = 3, dI > 0;
• kI = 3, dI = 0, dB = 2.

After executing the LSB precursor, the third group of the head-on approach is no longer needed. Moreover, the
last block has size at least d − 1 (the bootstrapped LSB is not part of the last block). If the third group is not
empty, then the LSB precursor not only allows bigger initial error, but also speeds up bootstrapping.

If the third group is empty, and the last block of the second group has only 1 bit, then the LSB precursor only
allows bigger initial error, but does not speed up bootstrapping. Indeed in head-on bootstrapping, the (d − 1)-bit
size occurs at most once. By Lemma 25, the next to the last block of the second group has size d − 1 if and only
if for i = w − 1, d′i−1 + ls = l, and either k > 2dB + 1, or k = 2dB + 1 and kB > k + 1. When this happens, the
last block has 1 bit. However in this case, since dB ≥ dI + 2, k ≥ 2dI + 5, by Corollary 11, the new de = d− 1, and
cannot increase to d.

6 Bootstrapping by blockwise error reduction

To put in Section 1:
The idea of CKKS ciphertext bootstrapping by removing the head error with FHEW/TFHE bootstrapping in

a larger-modulus phase space, was first proposed by [22]. To meet the Li-Micciancio security, the extra bits in the
result of fixed-point CKKS multiplication of two approximate plaintexts need to be removed. A method based on
tail-up bootstrapping was proposed in [29]. After removing these bits, although the extra bits that may disclose
information of the plaintext are removed, the tail error bound is enlarged by 1 bit, namely the plaintext precision
is lost by 1 bit.

After bootstrapping a BFV ciphertext with large-precision plaintext, the tail error is decreased. Due to the
number of blocks v > 1, the output tail error bound Efin =

√
vEB > EB . Now that EB is the refreshed error bound

of single-block plaintext, this seems to suggest that blockwise bootstrapping of large-precision plaintext cannot
obtain a tail error as small as EB . Is this the truth?

The head-on approach can improve the efficiency from bootstrapping d/2+ 1 bits per uni-bootstrap on average
to d+1 bits. For long plaintexts this is still not efficient. Can the efficiency be further improved? In this section, we
propose a new strategy for large-precision plaintext bootstrapping. Instead of backing up the long plaintexts, the
new strategy is to get rid of the tail error as much as possible, by blockwise approximate bootstrapping of the tail
error in the input phase. It is called error bootstrapping, in contrast to the previous plaintext bootstrapping strategy.

Error bootstrapping is obviously more effective when the input tail error is short. In fact, when the input tail
error is shorter than the concatenation of the plaintext and the output tail error after plaintext bootstrapping,
error bootstrapping is more effective. This is because the error bootstrapping approach is similar to the head-on
approach to plaintext bootstrapping. Starting from the first block of the error phase, the old errors are backed up
blockwise approximately, and then removed from the input.

What is different is that while the head of the tail error keeps on being cleared, new refreshed errors keep on
accumulating at the tail. So error bootstrapping is not simply blockwise backing up tail error and then deleting them
from the original phase. Instead, it is reducing the ever-changing tail error, including the newly added refreshed errors
that were introduced by bootstrapping previous error blocks. For every uni-bootstrap, the whole tail error in Z∆ is
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taken as the plaintext, so the plaintext is constantly changing. This is the unique feature of error bootstrapping. In
contrast, in head-on plaintext bootstrapping, although the tail error changes every time after each uni-bootstrap,
it never floods the plaintext, so the plaintext is constant.

Lemma 27 gives the feasibility condition on error bootstrapping. In practice, 2d+ 5 ≥ k − 1 is well satisfied, so
in Lemma 27, if dI = 0, the condition can be replaced by kI ≤ 2d+ 5. This condition is the weakest among all the
inequality prerequisites for blockwise bootstrapping.

For practical parameters lq = 29, d = 4, when the plaintext has lt ≥ lq − kI − 1 = 29 − 13 − 1 = 15 bits, all
decryptable ciphertexts can be bootstrapped, because 2d+ 5 = 13 on one hand, and kI ≤ lI ≤ lq − lt − 1 ≤ 13 on
the other hand, so that kI ≤ 2d+ 5 is always true.

When lt < 15,the initial error bound in Lemma 27 that allows bootstrapping is (1−2−13)∆/2 instead of ∆/2−1.
In order to keep the property that any decryptable ciphertext can be bootstrapped, the information rate lt/lq of
the ciphertext cannot be too small, or equivalently, the error-modulus ratio B/q cannot be too big.

As the input of error bootstrapping may be the result of plaintext bootstrapping, the goal is to reduce the tail
error as much as possible, or more accurately, as close to EB as possible. Because of this, the error quality constraint
Efin ≤ Einit/2 is weakened to the extreme:

EB ≤ Einit/2. (6.1)

Consequently, in this section only dI ≥ dB + 1 is assumed.
Obviously EB is the lower bound of tail error in all error bootstrapping results. Can this bound be approached?

If not, what is the limit of the tail error bound by error bootstrapping? We will calculate the limit, and show that
for many practical parameters, the limit is just EB , and can be approached in practice.

We will also investigate an extreme case where both the initial error and EB are too big to make error boot-
strapping, but still EB ≤ Einit/2, so there is still possibility to reduce the initial error. In such extreme case, we
have to resort to the LSB precursor, and use delicate error control to ultimately reduce the initial error to the limit.

The size of the error space can be measured by l∆. In consideration of the fact that after bootstrapping, the
tail error is always bounded from below by EB ≈ 2−1−dB∆, it is more appropriate to measure the size of the error
space by dB . When dB takes the minimal value 1, then dI = 0, the error space is the smallest in that practically
there are only two bits available: the MSB of the initial error, and the MSB of the refreshed error. The lower bits
of the error space are constantly occupied, and are redundant when measuring the error space.

Similar to the measurement of the input plaintext, to measure the error space we need some ruler. When the
length of Z2N is used to measure the error space, then when dB ≤ d+ 2, the error space is said to be short; when
d + 2 < dB ≤ lN , the error space is said to be medium; when dB > lN , then error space is said to be long. When
dB = d+ 2, then

EB ≈ 2−3−d∆ = 2l∆/(2N) ≈ EMDS ×∆/(2N); (6.2)

the two errors EB and EMDS × (2N/∆) approximately make a tie. When dB = lN , then EB ≈ ∆/(2N), all the
“reducible” bits of the error space are included in Z2N after modulus down switch. In fact, when ∆ < 2N , the
modulus switch from Z∆ to Z2N is modulus up switch. Only when ∆ > 2N is the modulus switch truly “down”.
Still we unanimously call it modulus down switch.

As before, we shall first introduce each group by phase simulation, then introduce the general algorithm for head-
on ciphertext bootstrapping, and finally introduce the LSB precursor in the end. For simplification, we introduce
the rationals:

δ := 2N/∆ ∈ Q, δ−1 = ∆/(2N). (6.3)

In the following subsections,

– d0 + 2 is the size of the first block; for i ≥ 1, di is the size of the (i+ 1)-st plaintext block; d′i is the sum of dj
for 0 ≤ j ≤ i; de is the maximal size allowed for the last block for correct decryption.

– e0 ∈ Zq is the initial error; for i > 0, ei ∈ Zq is the leftover error of e0 after subtracting the results of the
previous i uni-bootstraps.

– e′i ∈ Zq is the result of the i-th uni-bootstrap. e′0 involves the MSB of the whole error block; e′1 approximates
the lower bits of the leading error block; for i > 1, e′i approximates the i-th error block.

– eMi is the rounding error in modulus down switch of the i-th uni-bootstrap, and eBi is the refreshed error by
the i-th uni-bootstrap.

In this section, we always use [−∆,∆/2) interval representatives for modular numbers in Z∆, and use [−N,N)
interval representatives for modular numbers in Q2N .
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6.1 First group of error bootstrapping

If the initial error is small: Einit ≤ ∆/4, then the first group is skipped. The purpose of the first group is to reduce
the bound of the tail error to ≤ ∆/4, so only large initial error needs it.

The first group consists of two uni-bootstraps based on f init and f respectively, similar to all previous blockwise
bootstrappings. The modulus down switch is from Z∆ to Z2N , as the tail error must be within (−∆/2, ∆/2). In
error bootstrapping, the phase is usually called error phase, as only tail error is left in the phase after modulo ∆.

However, this does not mean that the the plaintext of the input phase is no longer taken care of. As shown
in (5.5), on head-on plaintext bootstrapping, the sum of plaintexts in the output phase

∑v−1
i=0 m′

i may not be
equal to the input plaintext ∆minit, instead it equals (m̌0)

[l∆] ∈ ∆minit + {0,±q}. In error bootstrapping, similar
phenomenon may occur, namely the sum of tail errors in the output phase may not be equal to the input tail
error approximately, instead it may differ from the input by approximately ∆. This will destroy the LSB of the
input plaintext. For head-on plaintext bootstrapping according to (5.9), the mistake can be avoided in the first
uni-bootstrap of the first group; for error bootstrapping, the mistake can be avoided only by taking care of both
uni-bootstraps in the first group.

For the input phase m0 = ∆minit + einit, the input error phase is denoted by integer

e0 := einit ∈ Z∆ ∩ (−∆/2, ∆/2). (6.4)

Obviously,
e0 = [∆minit + einit]±∆/2 = m0 mod ∆. (6.5)

Now that einit becomes the plaintext, it will be removed from the error independence heuristic very soon, but not
for now.

Preceding the first uni-bootstrap, the modulus down switch is from Z∆ to Z2N . In Z2N , the tail error of the
whole phase is

e := e0 × (2N/∆) + eM0 = e0δ + eM0 ∈ Z, where |eM0| ≤ EMDS. (6.6)

In the sum, the two errors are still independent heuristically, so the tail error is bounded by
√
E2

MDS + E2
initδ

2.
By Lemma 3, for f init to correctly handle the MSB of integer e0, it is both sufficient and necessary that

e ∈ [−N,N). In terms of absolute value bound, the constraint is improved to√
E2

MDS + E2
initδ

2 < N. (6.7)

When viewed in Zq, √
E2

init + E2
MDS∆

2/(2N)2 < ∆/2. (6.8)

In other words, einit ∈ Z[lδ] is Pythagorean EMDS-tolerant, by taking einit = 0×2p+1+z ∈ Z[p+1] with p = lδ−1
and z = einit. Lemma 27 discloses the requirement (6.8) in power-of-2 binomial bounds, which is the most generous
requirement so far on large initial error: kI ≤ 2d+ 5.

Denote
x0 = r2N/∆(e0, eM0) = e0 × 2N/∆+ eM0, where |eM0| ≤ EMDS. (6.9)

By (6.7), |x0| < N . The first uni-bootstrap generates

e′0 = f init(x0)×∆/(2N) + eB0 mod q,

e1 = e0 − e′0 mod q,
(6.10)

where |eB0| ≤ EB . We check the bound of e1 below.
For e′0 ∈ [−q/2, q/2), in order for integer e0 − e′0 to correctly represent e1 ∈ Z∆ in interval [−∆/2, ∆/2), the

bound |e1| < ∆/2 is needed. More accurate bound is given as follows. By (6.7), using (3.24), we get

e1 = (x0 − eM0)δ
−1 − (f init(x0)δ

−1 + eB0), (6.11)

so

|e1|δ ≤ |x0 − f init(x0)|+ |eM0 + eB0δ| ≤ N/2 +
√

E2
MDS + E2

Bδ
2. (6.12)
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That |e1| < ∆/2 can be guaranteed if √
E2

MDS + E2
Bδ

2 < N/2. (6.13)

Notice that on the left side of (6.13), nay of the two error terms may be dominant. The situation is dramatically
different from the head-on approach, where the counterpart of (6.12) is (5.10), and where ∆ is replaced by q ≫ 2N ,
so that the error term of (5.10) is completely dominated by EMDS.

Consider the effect of reducing error phase by the first uni-bootstrap. For large initial error, when EBδ ≤ EMDS,
the first uni-bootstrap reduces the error bound to about (1 + 2−1−d)N/2 ⪆ N/2, the reduction is less than but
almost 1 bit. When EBδ > EMDS, the first uni-bootstrap reduces the tail error bound to about (1 + 21−kB )N/2.

When EB is very close to Einit, for example, dB = 1 = dI + 1, by EB ≤ Einit/2, kI ≥ kB , then compared with
the initial error bound (1− 2−kI )∆/2× 2N/∆ = (2− 21−kI )N/2, the tail error is only slightly reduced; in the worst
case kI = kB = 2, the tail error is not reduced at all. Later in this subsection it will be shown that for the first group
using two uni-bootstraps based on f init, fp respectively for some suitable resolution p, it is required that dB ≥ 2.
Under this constraint, the first uni-bootstrap based on f init always reduces the tail error.

Preceding the second uni-bootstrap, the modulus down switch of e1 to Z2N gives

x1 = r2N/∆(e1, eM1) = e1δ + eM1, where |eM1| ≤ EMDS. (6.14)

That |x1| < N is required so that integer x1 provides the correct [−N,N)-interval representation of the phase. More
accurate bound is given as follows. By (6.11),

x1 = (x0 − f init(x0))− eB0δ − eM0 + eM1, (6.15)

so

|x1| ≤ |x0 − f init(x0)|+ | − eB0δ − eM0 + eM1| ≤ N/2 +
√
2E2

MDS + E2
Bδ

2. (6.16)

Then √
2E2

MDS + E2
Bδ

2 < N/2 (6.17)

is used to guarantee |x1| < N . Once (6.17) is true, so is (6.13). Hence constraint (6.13) is redundant.
The second uni-bootstrap is based on fp, where resolution p is to be determined. It outputs

e′1 = fp(x1)×∆/(2N) + eB1 mod q, where |eB0| ≤ EB ;

e2 = e1 − e′1 mod q.
(6.18)

e2 is the resulting leftover error phase of the first group. That |e2| ≤ ∆/4 is the bottom line of making the first
group of uni-bootstraps.

To gain more accurate bound of e2, the resolution p must be involved. When p < 0, then fp = f . For short,
denote

x′
0 = x0 − f init(x0),

x′
1 = e1δ = x′

0 − eM0 − eB0δ.
(6.19)

Then x′
0 ∈ (−N/2, N/2), x1 = x′

0 − eM0 − eB0δ + eM1 ∈ (−N,N), and e2δ = x′
1 − f(x1) − eB1δ. Using (3.36), we

get
|e2| = |(x′

1 − f(x1))δ
−1 − eM0δ

−1 − eB0 − eB1|
≤

√
4| − eM0δ−1 − eB0|2 + |eM1δ−1|2 + eB1|2

≤
√
5(E2

MDS + E2
Bδ

2)∆/(2N).

(6.20)

Let d0 be the biggest integer satisfying√
5(E2

MDS + E2
Bδ

2) ∆/(2N) ≤ ∆/2d0+2. (6.21)

Then d0 ≥ 0 is required, which implies condition (6.17). Lemma 28 shows that the existence of d0 ≥ 0 requires
dB ≥ 2. The lemma also presents a complete classification of all possible values of d0. There are four possible values
of d0: d, d− 1; dB − 2, dB − 3. The first two values are taken when dB ≥ d+ 1; the last two values are taken when
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dB ≤ d+ 1. When d0 = dB − 2, then d0 ≤ d− 1, the leftover error e2 is bounded by ∆/2d0+2 = 21−dB∆/2 ≈ 2EB ;
when d0 = dB − 3, the bound is about 4EB .

When p ≥ 0, then fp(x) has the advantage of suppressing an error in x that is bounded strictly by 2p, and the
disadvantage of adding a term 2p to the resulting error bound. The goal of optimization is d0, the bigger the better,
as |e2| ≤ ∆/2d0+2.

Denote

l0 := lN − dB . (6.22)

Then EBδ = 2l0(1−2−kB ) in power-of-2 binomial bound. With this notation, when EBδ ≤ EMDS, then
√

E2
MDS + E2

Bδ
2 ≤

2l + 2l−1; when EBδ ≥ EMDS,
√
E2

MDS + E2
Bδ

2 ≤ 2l0 + 2l0−1.

In (6.16), if |x1| < N/2 + 2p+1 + 2p ≤ N for some integer p ≥ 0, then p ≤ lN − 3, and using (3.37), we get

|e2| = |(x′
1 − fp(x1))δ

−1 − eM0δ
−1 − eB0 − eB1|

≤ 2p+1δ−1 +
√
| − eM0δ−1 − eB0|2 + |eB1|2

≤
(
2p+1 +

√
E2

MDS + 2E2
Bδ

2)
)
∆/(2N).

(6.23)

So |e2| ≤ ∆/2d0+2 is satisfied if

2p+1 +
√
E2

MDS + 2E2
Bδ

2) ≤ N/2d0+1. (6.24)

By (6.16), |x1| < N/2 + 2p+1 + 2p can be guaranteed if√
2E2

MDS + E2
Bδ

2 < 2p+1 + 2p ≤ (3/8)N. (6.25)

This inequality implies condition (6.17).

To maximize d0, resolution p should be as small as possible. Lemma 29 gives a complete classification of all
possible minimal values of p and the corresponding maximal values of d0 satisfying (6.24) and (6.25). By the lemma,
That d0 ≥ 0 requires dB ≥ 3, now that fp is used instead of f ; p ∈ {l− 1, l, l0− 1}, and d0 ∈ {d, d− 1, dB − 3}. The
first two values of d0 are taken when dB ≥ d + 2, namely l0 ≤ l; the last value is taken when dB ≤ d + 1, namely
l0 ≥ l + 1. When d0 = dB − 3, then d0 ≤ d− 2, the leftover error e2 is approximately bounded by 4EB .

We compare Lemma 29 based on fp with Lemma 28 based on f for the second uni-bootstrap:

– when d + 5 ≤ dB , using fp can generate d0 = d for all k < 2(dB − d − 2), while using f to generate d0 = d
requires k ≤ 3;

– when d+ 4 ≤ dB , both fp, f generate d0 = d for k ≤ 3;

– when d+ 3 = dB , using f still generates d0 = d for k ≤ 3, while using fp generates d0 = d− 1 only;

– when d + 2 = dB , although both f, fp generate d0 = d − 1, using fp requires two different resolutions under
different conditions;

– When d+ 2 > dB , using f can generate d0 = dB − 2, while using fp only generates the smallest d0 = dB − 3.

So when d+ 5 ≤ dB , fp is optimal; when d+ 3 ≥ dB , f is optimal; when d+ 4 = dB , fp, f make a tie.

There are two more observations. The first is that only f allows dB = 2. The second is that only f can lead to
a leftover error bound of about 2EB after the first group.

Theorem 12 Let d0 + 2 ≥ 2 be the size of the first block in error bootstrapping. For the second uni-bootstrap in
the first group, if dB ≥ d+ 4, then using fl−1 is optimal, if dB ≤ d+ 4, then using f is optimal.

When the initial error is large but not too large, or more accurately, ∆/4 < Einit < 3∆/8, it is possible to
reduce the error bound to within ∆/4, i.e., to small error, by using only one uni-bootstrap. This problem will be
investigated in Subsection ??. Another problem is that the first group introduced in this subsection requires dB > 1.
The case dB = 1 will be handled in Subsection ??.
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6.2 Second group of error uni-bootstraps

The leftover error phase of the first group is integer e2 satisfying |e2| ≤ ∆/2d0+2, or equivalently, e2 2
d0δ ∈

[−N/2, N/2]. If the first group is skipped, then d0 = 0. In the second group, a single programmable function
f will be used in each uni-bootstrap to reduce the error bound. When this group finishes, the leftover error bound
will be reduced to within 2lB ≈ EB .

The first uni-bootstrap of the second group is as follows. Preceding the uni-bootstrap, the modulus down switch
is from Z∆/2d0 to Z2N :

x2 := r2d0δ(e2, eM2) = e22
d0δ + eM2 ∈ Z, where |eM2| ≤ EMDS. (6.26)

The uni-bootstrap generates
e′2 = f(x2)(2

d0δ)−1 + eB2 mod q,

e3 = e2 − e′2 mod q,
(6.27)

where |eB2| ≤ EB .
Since |x2| ≤ N/2, by (3.34),

|e3| ≤
√
E2

MDS(2
d0δ)−2 + E2

B . (6.28)

Let d1 be the biggest integer satisfying√
E2

MDS(2
d0δ)−2 + E2

B ≤ ∆/2d0+d1+2. (6.29)

Then |e3| ≤ ∆/2d0+d1+2. The first block of the second group is said to have block-size d1 bits. In other words, the
first d0 + d1 + 2 bits of the tail error are cleared.

Set d′−1 = 0. For all i ≥ 0, set

d′i =

i∑
j=0

dj . (6.30)

For example, d′0 = d0, d
′
1 = d0 + d1. By induction, the following can be easily proved: for any 1 ≤ i ≤ w, the i-th

block of the second group, on input ei+1 bounded by ∆/2d
′
i−1+2, generates

e′i+1 = f(r
2
d′
i−1δ

(ei+1, eM(i+1)))× (2d
′
i−1δ)−1 + eB(i+1) mod q,

ei+2 = ei+1 − e′i+1 mod q,
(6.31)

where |eBi| ≤ EB and |eMi| ≤ EMDS. The leftover error ei+2 is bounded by ∆/2d
′
i−1+di+2, where di is the biggest

integer satisfying

|ei+2| ≤
√
E2

MDS(2
d′
i−1δ)−2 + E2

B ≤ ∆/2d
′
i−1+di+2. (6.32)

Let d′ ≥ 0. Let li be the smallest integer satisfying√
E2

B(2N/∆)2 × 22d′ + E2
MDS ≤ 2li+1. (6.33)

From the above inequality and EMDS < 2l, we get li ≥ l− 1. From the fact that in Z2N after modulus down switch,
the first two bits are from the previous block, so that the error part occupies at most the remaining lN − 1 bits, we
get li ≤ lN − 2.

The block-size di for 1 ≤ i ≤ w is given by Lemma 30, by setting d′ = d′i−1 and d0 = di in the lemma. The
second group starts with blocks of size d + 1, and for every 1 ≤ i ≤ w, as long as d′ = d′i−1 ≤ dB − d − 2 − k/2,
then di = d + 1. When d′i−1 ≥ dB − d − (k + 3)/2, then di drop to d. For the next block, d′ ≥ dB − (k + 3)/2. If
(k + 3)/2 ≤ d, then d′ ≥ dB − d, the next block will have size dB − d′ − 1 < d or dB − d′ − 2 < d.

In our experiments, when d = 3, then k = 6, and when d = 4, then k = 5. So (k+3)/2 ≤ d is satisfied for d = 4
but not for d = 3. As a consequence, if d = 4, there is at most one d-bit block in the second group; if d = 3, there are
at most two d-bit blocks in the second group, and the second d-bit block is the first block satisfying di = dB−d′− j
for some j ∈ {1, 2}.
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After the last block of size ≥ d, we have d′ ≥ dB −d, so the next block has size di = dB −d′− j ≤ d− j for some
j ∈ {1, 2}. After the di-bit block is bootstrapped, the leftover error is bounded by 2−(d′+di+2)∆ = 2j−1(2−dB∆/2) ≈
2j−1EB . When j = 1, then bound EB is approximately reached, there is no bit left before EB . When j = 2, the
bound is about 2EB , there is still 1 bit left before EB .

By Lemma 30, d0 = dB − 1 − d′ requires either d′ ≥ dB − d − 2 + kB/2, or d′ = dB − d − 2 + (kB − 1)/2 and
k ≤ kB + 1, otherwise only d0 = dB − 2− d′ is possible. Suppose we start with d′ = dB − 2. If either d ≤ kB/2− 1,
or d = (kB − 1)/2 but k ≥ kB + 2, then the new d0 = dB − 2 − d′ = 0, and d′ can no longer increase, which
means the 1-bit error before EB cannot be reduced in this case; else, the 1-bit error can still be cleared by another
uni-bootstrap. So there are at most two blocks left in the second group after the last block of size ≥ d. If there
are two such blocks, the size of the last block is dw = 1 = dB − d′ − 1; if there is only one such block, its size is
dw = dB − d′ − 1.

In our experiments, kB ≤ lB ≤ 7 and d ≥ 3, so kB ≤ 2d+1 is satisfied, namely d ≥ (kB−1)/2. If d = (kB−1)/2,
then kB = 7, and since k ≤ l ≤ 6, k ≤ kB +1 = 8 is also satisfied. So in our experiments, dw = dB − 1−d′ is always
reached, and the second group finishes with no bit left before EB .

The number of blocks of the second group is the smallest w ≥ 0 satisfying

dw+1 = 0, or in practice, d′w = dB − 1, (6.34)

as explained above. After the second group, the leftover error phase ew+2 is bounded by ∆/2d
′
w+2 = 2−dB∆/2 ≈ EB ,

or more accurately,

|ew+2| ≤
√
E2

B + E2
MDS(δ2

d′
w−1)−2, (6.35)

where d′w−1 = dB − 1− dw.
In our experiments, kB = k + 1, and (k − 1)/2 < d is always true. Then (kB − 1)/2 = k/2 ≤ d. Under these

assumptions, first consider the block size sequence when bootstrapping an error space where dB > d+ 2+ k/2. By
Lemma 29, the first block has size d+ 2.

Take d′ = d′i−1 as a variable. Then d′ ∈ [0, dB + 1]. The first block has size d+ 2, so d′ = d at the beginning of
the second group. In the second group, by Lemma 30, as long as dB ≥ d+ d′ + 2 + (k − 1)/2, the blocks have size
d + 1. When dB − d − 2 − (k − 1)/2 < d′ ≤ dB − d − 2, the block size becomes d, and there is at most one such
block. When dB − d− 2 < d′ < dB − d− 2+ ⌊(kB − 1)/2⌋, the block has size dB − 2− d′ ∈ [1, d+1−⌊(kB − 1)/2⌋],
and is next to the last block; the last block has 1-bit. When dB − 1 > d′ ≥ dB − d− 2 + (kB − 1)/2, the block has
size dB − 1− d′, and is the last block.

Next consider the error space satisfying d + 2 ≤ dB ≤ d + 2 + k/2. Then the first block has size d + 1 by
Lemma 29, so d′ = d − 1 at the beginning of the second group. Since dB − d − 2 − (k − 1)/2 ≤ 1/2 < d′, and
dB − d − 2 + (kB − 1)/2 = dB − d − 2 + k/2 ∈ [0, k], by Lemma 30, the first block of the second group has three
possible sizes:

– if d′ = d− 1 ≤ dB − d− 2, namely dB ≥ 2d+ 1, then the size is d; there are at most three blocks in the second
group;

– if dB − d − 2 < d′ < dB − 2 − d + ⌊k/2⌋, then the size is dB − 2 − d′; there are only two blocks in the second
group;

– if d′ ≥ dB − d− 2 + ⌊k/2⌋, then the size is dB − 1− d′; there is only one block in the second group.

Finally consider the error space satisfying dB < d + 2, namely small error space. By Lemma 28, if dB < d
and k = 2, then the first block has size dB , else the size is dB − 1. At the beginning of the second group, either
d′ = dB − 2 or d′ = dB − 3 > dB − d − 1 for d ≥ 3. In the former case, by k = 2 and d′ ≥ dB − d − 2 + k/2, the
second group has only one block, whose size is 1. In the latter case, if d− 1 ≥ k/2, then d′ ≥ dB − d− 2 + k/2, the
second group has only one block, whose size is 2; else, the second group has two blocks, each having size 1.

For small initial error with dI > 0, the first group is skipped, so at the beginning of the second group, d′ =
dI − 1 ≥ 0, and there are d′ vacant leading bits from the initial If d1 is the computed size of the first block of the
second group based on d′ = dI − 1, then the actual size of the first block is d1 + (dI − 1).

When k ≤ 3, then in the second group, the block size becomes d if and only if d′ = dB − d− 2, because it is the
only integer satisfying dB − d− 2− (k − 1)/2 < d′ ≤ dB − d− 2; if dB > d+ d′ + 2, the block size is always d+ 1.
Similarly, when kB ≤ 4, then ⌊(kB−1)/2⌋ ≤ 1, and no integer d′ satisfies dB−d−2 < d′ < dB−d−2+⌊(kB−1)/2⌋,
so no block has size dB − 2− d′; after the blocks of size ≥ d, there is only one block left, whose size is dB − 1− d′.
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When both k ≤ 3 and kB ≤ 4, we say the error bootstrapping is in greedy mode, no matter if the initial error is
large or small.

For practical parameters lq = 29, lN = 11, k = l = 5, d = 4, kB = lB = 6, there is no greedy mode, and (1)
d+ 2 + k/2 = 8.5, (2) d+ 2 + (k − 1)/2 = 8, (3) d+ 2− (kB − 1)/2 = d+ 2− k/2 = 3.5.

– If lt = 11, then l∆ = 29− 11 = 18, dB = l∆ − 1− lB = 11 > d+ 2 + k/2. The first block has size d+ 2 = 6, so
d′ = d = 4 at the beginning of the second group. As dB − d− 2− (k− 1)/2 = 11− 8 < d′ ≤ dB − d− 2 = 11− 6,
the first block of the second group has size d = 4. After this block, d′ = 4+ 4 = 8 ≥ dB − d− 2 + k/2 = 7.5, so
the last block has size dB − 1− d′ = 2. The whole sequence of block sizes is 6, 4, 2. Notice that the sum of block
sizes is dB + 1 = 12.
In the above analysis, the initial error bound is assumed to be very large: kI ≤ 2d + 5 = 13, namely Einit =
217 − 24. If the initial error is small, say dI = 1, then the first group is skipped, and d′ = dI − 1 = 0 at the
beginning of the second group. By dB ≥ d + d′ + 2 + (k − 1)/2 = 8, the first block has size (d + 1) + 2 = 7,
where the additional two bits are the two vacant leading bits of the error space. After this block, d′ = 0+5 = 5
satisfies dB − d− 2− (k − 1)/2 = 3 < d′ ≤ dB − d− 2 = 5, so the second block has size d = 4. The last block
has size 1. The whole sequence of block sizes is 7, 4, 1.

– If lt = 15, then l∆ = 14, dB = 7 ∈ [d + 2, d + 2 + k/2]. The first block has size d + 1 = 5. At the beginning of
the second group, d′ = d − 1 = 3 ≤ dB − d − 2 = 5, so the first block of the group has size d = 4. After this
block, d′ = 3 + d = 7 = dB − d− 2 + ⌊k/2⌋, so the last block has size dB − 1− d′ = 3. The whole sequence of
block sizes is 5, 4, 3.
For small initial error, if dI = 2, then at the beginning of the second group, d′ = dI − 1 = 1 ≤ dB − d− 2 = 5,
so the first block has size (d) + 3 = 7, where the additional three bits are the vacant leading bits of the error
space. The whole sequence of block sizes becomes 7, 4, 1, as in the case of lt = 11.

– If lt = 19, then l∆ = 10, dB = 3 < d + 2. The first block has size dB − 1 = 2. At the beginning of the second
group, d′ = 0. Since d′ ≥ dB − d − 2 + k/2 = −0.5, the second group has only one block, whose size is 2. The
sequence of block sizes is 2, 2.
For small initial error case dI = 1, again by d′ = 0 ≥ dB − d− 2 + k/2 = −0.5, there is only one block, whose
size is (dB − 1− d′) + 2 = 4.

6.3 Third group of error uni-bootstraps: limiting error refresher

After the second group, the leftover error phase ew+2 is bounded by 2−dB∆/2 ≈ EB . This is already very good,
and the whole bootstrapping can terminate. There is one more question: if one wants to further reduce the error,
what is the limit of the error reduction? The third group addresses this question. In the third group, with one
uni-bootstrap, the limit of the error reduction is almost reached. Because of this, the last uni-bootstrap is called
the limiting error refresher. It reduces an error bounded by 2−dB∆/2 to an error close to the limit of the error
reduction. Of course, the third group is optional.

By (6.35), with d′w−1 = dB − 1− dw, lB = l∆ − 1− dB and (δ2d
′
w−1)−1 = 2lB−lN+dw+1, a more accurate bound

of the input ew+2 of the third group is the following:

Aw+2 :=
√

E2
B + E2

MDS(δ2
d′
w−1)−2

= EB

√
1 + 2−2(d+1−dw)(1− 2−k)2/(1− 2−kB )2

≈ EB{1 + 2−3−2d+2dw(1− 2−k)2/(1− 2−kB )2} ≤ ∆/2dB+1.

(6.36)

Preceding the uni-bootstrap, the modulus down switch is from Z∆/2dB+1 to Z2N . The uni-bootstrap generates
a leftover error ew+3 bounded by

Aw+3 :=
√
E2

B + E2
MDS(δ2

dB−1)−2

≈ EB{1 + 2−3−2d(1− 2−k)2/(1− 2−kB )2} < EB(1 + 2−2−2d(1− 2−k)2).
(6.37)

Comparison between Aw+2 and Aw+3 shows that (Aw+2 − EB)/(Aw+3 − EB) ≈ 22dw .
For practical parameters d = 4, EB = 26 − 1, since 2−2d−2 < 2−7, Aw+3 = EB . For another set of parameters

d = 3, EB = 27 − 1, since 2−2−2d(1− 2−k)2 < 2−8, again Aw+3 = EB . So one uni-bootstrap suffices for the error to
reach EB in practice. In contrast, for dw = 1 and d = 3, Aw+2 ̸= EB ; for dw > 1 and d = 4, Aw+2 ̸= EB .
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There is another viewpoint on the ultimate error refresher. In Zq, if all the bits preceding EB by at least
two bits are taken as the plaintext bits, namely l∆ = lB + 2, then dB = 1, the input error ew+2 is bounded by
Einit = Aw+3 ≤ ∆/4. Now that EB = (1 − 2−kB )∆/4 < Einit, there is still room to reduce the error bound closer
to EB . Below we explore the limit of the error reduction.

By Lemma 30, for d′ = 0, d0 = 0 is allowed in practice, because kB ≤ lB ≤ 2d + 1 is satisfied. So on input e0
bounded by Einit, the first uni-bootstrap generates an error phase e′0, with leftover error phase e1 = e0−e′0 bounded
by

A1 :=
√
E2

B + E2
MDS∆

2/(2N)2 ≤ ∆/4. (6.38)

It is easy to see that the above A1 is just the previous (6.37).
To investigate the limit of error reduction, we now leave the power-of-2 bounds, which have been used in every

modulus down switch preceding each uni-bootstrap so far. It must be pointed out that even if the second group
can only decrease the left error bound to about 2EB , by the following non-power-of-2-bound modulus down switch,
with one uni-bootstrap based on f , the error bound can be reduced to about EB ; with another uni-bootstrap, the
error bound can be reduced to about the limit.

Since |e1| ≤ A1, we have |e1|×N/(2⌈A1⌉) ≤ N/2. The modulus down switch preceding the second uni-bootstrap
is from Z4⌈A1⌉ to Z2N . The second uni-bootstrap generates

e′1 = f(rN/(2⌈A1⌉)(e1, eM1))× 2⌈A1⌉/N + eB1 mod q,

e2 = e1 − e′1 mod q,
(6.39)

where |eB1| ≤ EB and |eM1| ≤ EMDS. By (6.38),

|e2| ≤
⌈√

E2
B + E2

MDS(2⌈A1⌉/N)2
⌉
≤

⌈√
E2

B + E2
MDS∆

2/(2N)2
⌉
= ⌈A1⌉. (6.40)

For all j ≥ 2, define

Aj =
√

E2
B + E2

MDS(2⌈Aj−1⌉/N)2. (6.41)

Then ⌈Aj⌉ ≤ ⌈Aj−1⌉. When j tends to infinity, the limit of Aj is

Elim := EB/
√

1− (2EMDS/N)2 = EB/
√
1− 2−2−2d(1− 2−k)2 ≈ EB(1 + 2−3−2d(1− 2−k)2). (6.42)

Below we make detailed comparison between the two values Elim and A1 > Elim, under the practical conditions
kB ≤ 2d+ 1 and k ≤ 2d.

By (6.37), A1 decreases with the increase of kB . The minimum of A1 for variable kB is obtained when kB = 2d+1,
and is

A1− := EB

√
1 + 2−2−2d(1− 2−k)2/(1− 2−1−2d)2. (6.43)

Denote u = 2−2−2d and x = (1− 2−k)2 ∈ (0, 1). Then

(A1−/Elim)
2 = (1+2−2−2d(1−2−k)2/(1−2−1−2d)2) (1−2−2−2d(1−2−k)2) = (1+xu(1−2u)−2)(1−xu) =: g−(x).

(6.44)
Fix d and let k vary from 2 to 2d, or equivalently, x increases from 9/16 to (1 − 2−2d)2. Parabola g−(x) takes
its maximum at g′−(x0) = 0, where x0 = 2(1 − u). As x = (1 − 2−k)2 < 2(1 − u) = 2(1 − 2−2−2d), when
k increases from 2 to 2d, g−(x) increases accordingly. The minimal value of g−(x) is taken at k = 2, and is
1 + (495/256)u2/(1− 2u)2 − (9/4)u3/(1− 2u)2 ⪅ 1 + 2−3−2d. So

(A1− − Elim)/Elim ⪅ 2−3−2d. (6.45)

The maximum of A1 for variable kB is obtained when kB = 2, and is

A1+ := EB

√
1 + 2−2−2d(1− 2−k)2 × 16/9. (6.46)
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Again let u = 2−2−2d and x = (1− 2−k)2 ∈ (0, 1). Then

(A1+/Elim)
2 = (1 + 2−2−2d(1− 2−k)2 × 16/9) (1− 2−2−2d(1− 2−k)2) = (1 + 16xu/9)(1− xu) =: g+(x). (6.47)

Parabola g+(x) takes its maximum at g′+(x1) = 0, where x1 = 7/(32u) = (7/8)22d. As x = (1 − 2−k)2 < 1 < x1,
when k increases from 2 to 2d, g+(x) increases accordingly. The maximal value of g+(x) is taken at x = (1−2−2d)2,
and is 1 + (7/9)(1− 2−2d)22−2−2d − (16/9)(1− 2−2d)42−4−4d ⪅ 1 + (7/9)2−2−2d. So

(A1+ − Elim)/Elim ⪅ (1 + 5/9)2−3−2d. (6.48)

Remark: In the first group of uni-bootstraps of Subsection 6.1, after the first uni-bootstrap based on f init = flN−1,
the leftover error e1 is bounded by

|e1| ≤ ∆/4 +
√
E2

MDS∆
2/(2N)2 + E2

B < ∆/2. (6.49)

Compared with the initial error, the bound of e1 is reduced by less than 1 bit, yet starting from this error bound,
the second uni-bootstrap reduces the error bound to within ∆/4. If the initial error is bounded by (6.49), obviously
with only one uni-bootstrap based on f , the error bound can be reduced to ∆/4. This observation suggests using
only one uni-bootstrap based on fp for some appropriate resolution p, to reduce a large but not too large initial
error to a small one.

6.4 Putting everything together into ciphertext form

For error bootstrapping, the global parameters are the same as in plaintext bootstrapping. There is also a switch to
control the third group: when the switch is on, third group is executed, otherwise the whole bootstrapping finishes.
In the following error bootstrapping algorithm, dB > 1 is assumed. If dB = 2, it is further assumed that either
kB ≤ 3, or dI > 0, or κI ≥ 2, so that the first group always works.

Algorithm 3 “ErrorBoot”: Tail error block bootstrapping

Input: LWE ciphertext ct to bootstrap;
initial error bound Einit = 2−dI (1− 2−kI )δ/2 where dI ≥ 0, or Einit = (1 + 2−κI )δ/4 where κI ≥ 2;
third group lock (on/off).

Output: LWE ciphertext ct’.

{First group}
1: if dI = 0 then
2: Compute p, d0 in the first group. (d0 + 2 is the size of the first block, p ≥ −1 is the optimal resolution of f

for the second uni-bootstrap)
3: ct’←− UniBoot(f init, ct, ∆) mod q;

ct←− ct− ct’ mod q;
ct’←− ct’+ UniBoot(fp, ct, ∆) mod q.

4: else
5: Set d0 = dI − 1.
6: end if

{Second group}
7: Compute w and di for 1 ≤ i ≤ w. (w ≥ 0 is the number of blocks in the second group, di is the size of the i-th

block in the group)
8: Set d′0 = d0. Set d

′
i = d′i−1 + di for 1 ≤ i < w.

9: for i = 1 to w do
10: ct’←− ct’+ UniBoot(f, ct, ∆/2d

′
i−1) mod q;

ct←− ct− ct’ mod q.
11: end for

{Third group}
12: if third group = on then
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13: ct’←− ct’+ UniBoot(f, ct, ∆/2dB+1) mod q.
14: end if
15: return ct’.

The complexity of the algorithm is also dominated by the number of uni-bootstraps. As an example, consider
the small initial error case dI = 1 and dB > 2. The bootstrapping starts directly from the second group. Suppose
the third group is switched off. In the second group, when i changes from 1 to w + 1, variable d′ = d′i−1 increases
from dI − 1 = 0 to dB − 1. If we denote

l′ = dB − d′, (6.50)

then variable l′ decreases from dB to 1.
In our experiments, kB = k+1 and d ≥ k/2. Under these assumptions, by Lemma 30 and ⌈(k−1)/2⌉ = ⌈k/2⌉−1,

– when l′ ∈ [d + 2 + ⌈(k − 1)/2⌉, dB ] = [d + 1 + ⌈k/2⌉, dB ], the blocks have size d + 1. The number of blocks in
this interval of l′ is

v1 := ⌈max(0, dB − d− ⌈k/2⌉)/(d+ 1)⌉ = max(0, ⌈(dB + 1− ⌈k/2⌉)/(d+ 1)⌉ − 1). (6.51)

After these blocks are bootstrapped, the interval of l′ is reduced to [1, dB − v1(d+ 1)].
– When l′ ∈ [d+2, d+ ⌈k/2⌉]∩ [1, dB − v1(d+1)] = [d+2, dB − v1(d+1)], the blocks have size d; the number of

blocks in this region of l′ is

v2 := ⌈max(0, dB − (v1 + 1)(d+ 1))/d⌉ = max(0, ⌈(dB − v1 − 1)/(d+ 1)⌉ − v1 − 1). (6.52)

– When l′ ∈ [max(3, d+3−⌊(kB − 1)/2⌋), d+1]∩ [1, dB − v1(d+1)− v2d] = [d+3−⌊k/2⌋, dB − v1(d+1)− v2d],
the block has size l′ − 2. This interval contains ≤ (dB − v1(d+ 1)− v2d)− 2 integers, and at the beginning of
this stage, l′ = dB − v1(d+ 1)− v2d. So there is at most one block in this stage. The number of blocks in this
stage is

v3 := is(dB − v1(d+ 1)− v2d > d+ 2− ⌊k/2⌋). (6.53)

After this stage, l′ = (dB − v1(d+ 1)− v2d)(1− v3) + 2v3.
– When l′ ∈ [2, d+2−⌊(kB−1)/2⌋]∩[1, (dB−v1(d+1)−v2d)(1−v3)+2v3] = [2, (dB−v1(d+1)−v2d)(1−v3)+2v3],

the block has size l′ − 1. Since l′ = (dB − v1(d+ 1)− v2d)(1− v3) + 2v3 at the beginning of this stage, there is
at most one block in this stage, and it is the last block. The number of blocks in this stage is

v4 := is((dB − v1(d+ 1)− v2d)(1− v3) + 2v3 > 1). (6.54)

So when dI = 1 and dB > 2, the total number of uni-bootstraps is

vE := v1 + v2 + v3 + v4. (6.55)

In greedy mode, k = 2, so

v1 = max(0, ⌈dB/(d+ 1)⌉ − 1), v2 = v3 = 0, v4 = is(dB − v1(d+ 1) > 1), (6.56)

the total number of uni-bootstraps in greedy mode is

v′E := v1 + v4. (6.57)

For example, when lq = 29, dI = 1, k = 2, kB = 3, the error bootstrapping is in greedy mode. When l =
5, lB = 6, d = 4, for long plaintext of lt = 15 bits, since dB = lq − lt − 1 − lB = 7, we have v1 = 1 = v4, so 2
uni-bootstraps suffice to finish the bootstrapping in two blocks, with size 7, 1 respectively, with final error bound
26 ≈ EB = 26 − 1. If the final error bound is controlled to within 27, then one uni-bootstrap is sufficient. In
contrast, the head-on approach in greedy mode needs 4 uni-bootstraps, with final error bound

√
4EB ≈ 27; the

tail-up approach in greedy mode needs 6 uni-bootstraps, with final error bound
√
6EB > 27. The bootstrapping

efficiency is improved by 4− 1 = 300% and 6− 1 = 500% respectively.
If the plaintext is short, say lt = d + 2 = 5 for l = 6, lB = 7, d = 3, suppose that the initial error is small,

and both the plaintext bootstrapping and the error bootstrapping are in greedy mode. In plaintext bootstrapping
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one block and two uni-bootstraps suffices to reduce the error bound to about 2EB , and the head-on approach
agrees with the tail-up approach. When the goal is to reduce the tail error bound to about EB , the result of
plaintext bootstrapping needs to go through an additional error uni-bootstrap, so three uni-bootstraps are needed
for plaintext bootstrapping to reach the goal. In direct error bootstrapping, now that dB + 1 = lq − lt − lB = 17,
the sequence of block sizes is 6,4,4,3, so four blocks and four uni-bootstraps are needed to reduce the error bound
to about EB . For short plaintext and large error space, direct error bootstrapping is not as efficient as plaintext
bootstrapping followed by error bootstrapping.

The last example is the one used in illustrating the tail-up approach with large initial error, where l = k = 5,
dI = 0, d = 4, dB = d + 1 = 5, kI = 2dB − 4 = 2d − 2 = 6 and lt = 6. Recall that in the tail-up approach, three
blocks and 5 uni-bootstraps are needed; in the head-on approach, two blocks and 3 uni-bootstraps are needed. For
error-bootstrapping, by Lemma 29, the first block has size d + 1 = dB , so with one block and two uni-bootstraps,
the tail error is reduced to about 2EB , just like the other two approaches. The bootstrapping efficiency is improved
by (5− 2)/2 = 150% and (3− 2)/2 = 50% respectively.

6.5 Combination of bootstrapping strategies

By now we have introduced blockwise plaintext bootstrapping and blockwise tail error bootstrapping. For BGV-
format FHE ciphertext, if the plaintext is short while the error space is long, then plaintext bootstrapping is more
efficient, and after the plaintext bootstrapping finishes, the second group of error bootstrapping can be used to
further reduce the error to about EB . If the plaintext is not short, and the tail is error is not too long, then direct
error bootstrapping is efficient for backup bootstrapping.

For large initial error and short plaintext, the first group of error bootstrapping can be used to reduce the tail
error before plaintext bootstrapping, which allows the initial error to be the largest among all existing strategies for
blockwise bootstrapping. So the first group of error bootstrapping serves as the first-block error cleaner for plaintext
bootstrapping. When plaintext bootstrapping finishes, the second group of error bootstrapping serves as the final
error cleaner. Of course, the third group of error bootstrapping can continue to reduce the error bound nearly to
the limit.

For BGV-format FHE ciphertext, the above blockwise bootstrapping works by first converting the ciphertext
into BGV format, and after the whole bootstrapping finishes, convert the format back to BGV. For CKKS-format
FHE ciphertext, the strategies need some changes.

First, in the phase of a CKKS ciphertext, the plaintext and the tail error has no gap, while the plaintext and
the head error usually has gap of at least two bits. So for plaintext bootstrapping of CKKS ciphertext, the second
group of error bootstrapping can be resorted to, where the “error” is just the plaintext together with the tail error.
At this time, the leftover error bound can be allowed to be much bigger than EB , as long as the Li-Michiancio
security [24] is guaranteed.

Second, since the main objective of CKKS ciphertext bootstrapping is to push the tail error qI farther away
from the plaintext, in a larger ciphertext space with modulus Q > 22qI, the second group of head-on plaintext
bootstrapping can be used to delete qI from the phase, where the “plaintext” is just the tail error qI, and the usual
gap between the plaintext and tail error in head-on plaintext bootstrapping, is now the gap between the head error
and the CKKS plaintext.

Third, if the main objective is to smudge the tail error in order to achieve Li-Michiancio security, then starting
from a preset bit position i in CKKS plaintext, the error bootstrapping can be used to clear all the bits of the
plaintext from bit i to the right end, in the sense that (1) the leftover error bound is not reduced, but enlarged by
a term 2i+1, (2) the leftover error has all the bits from bit i to the LSB of EB vacant.

For CKKS ciphertext, usually the head-error is short while the plaintext is long. From this aspect, bootstrapping
the head error is optimal. On the other hand, bootstrapping the head error requires a bigger modulus Q > q to
encrypt the phase of the CKKS ciphertext, which slows down each uni-bootstrap.

The reason why |I| is small in head error qI can be shown as follows. Suppose ct = (a1, . . . , an, b) ∈ Zn+1
q is

a CKKS ciphertext with uniform ternary secret s = (s1, . . . , sn) ∈ Zn
3 . Then phase(ct) = b −

∑
si ̸=0 aisi. Since

|b|, |ai| ≤ q/2, |phase(ct)| ≤ (1 + 2n/3)× q/2. From phase(ct) = qI +m+ e where |m+ e| ≤ q/2, we get

|I| ≤ n/3 + 1/2. (6.58)
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7 Experiments

Estimation and practical tests of EB :

Bootstrapping (UniBoot) results in a ciphertext with an error from Gaussian distribution of standard deviation

σB =
√

q
Q (σ2

ACC + σ2
KS) + σ2

MS , where σACC , σKS and σMS are the variance contributions by the operations:

accumulator, key switching, and modulus switching, respectively. Unlike the previous cases [25,26], our long-precision
bootstrapping chooses a large cipher module (e.g., Q = 260) at work space, so that the main variance contribution
comes from the modulus switching rather than the accumulator or key switching, the contribution of which is
negligible by scaling q/Q.

For example, suppose that the bit decomposition for Q is Q = Bg
dg , and then we have σACC = 4dgnNBgσ

2
0 .

With the practical parameters n = 210, N = 211, Q = 260, q = 229, Bg = 215, dg = 4 and σ0 = 3.7, it holds that

σB ≈ eMS =
√
211/6, and thus the growth of error in ciphertexts cased by each UniBoot will not exceed 26 with

failure probability < 10−9.

Overall behavior:

When compared to normal head-on bootstrapping approach, the error bootstrapping (“ErrorBoot”) is more
efficient if the plaintext size lt is much longer than the error size lI . Table 1 and Figure 5 show the efficiency
comparison between normal and error bootstrapping. Figure gives the under different combination lt and lI at
lq = 200. Table 1 make the comparison under practical parameters (lq = 29, lB = 6) used in [25,26]. Let the number
of uniBoots required for ErrorBoot be VH , and let V ′

H be that number in the greedy mode.

Fig. 5. Efficiency ratio of the ErrorBoot over the normal head-on approach, measured by the number of uni-bootstraps:
vH/VH and v′H/V ′

H at lq = 200.

In Figure 5, the bootstrapping efficiency of different approaches changes as the plaintext sizes changes. For
ciphertext modulo lq = 200, the plaintext size lt = 90 is a cut-off point: when lt > 90, the ErrorBoot approach is
more efficiency. To ensure a fair comparison, we stop the ErrorBoot when the resulting error is reduced to the same
magnitude as using normal head-on bootstrapping method.
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Test lq lt
V Runtime [ms]

Speedup
v′H V ′

H Head-on ErrorBoot

I 17 10 3 1 3,953 627 × 6.3

II 22 16 5 1 3,953 653 ×6.05

III 27 20 5 1 3,991 666 ×5.99

IV 29 22 6 1 4,763 671 × 7.09

Table 1. Tail error block bootstrapping tests with parameters from [25].

7.1 Experimental results on run-time cost

lq = 29, lB = 6:

lt = 18: v = 6 or 7: as long as as v < 24, 2
√
vEB < 29, so lI ≥ 9, for small initial error lI + 2 ≥ 11.

lt = 18: maximal size supporting effective backup bootstrapping using plaintext bootstrapping starting with
small initial error

19: maximal size supporting effective backup bootstrapping using plaintext bootstrapping

20: maximal size supporting effective backup bootstrapping using error bootstrapping

21: maximal size supporting sign bit extraction using tail-up approach; also maximal size supporting effective
backup bootstrapping using LSB precursor and error bootstrapping.

22: maximal size supporting sign bit extraction using LSB precursor.

Time-cost comparison: tail-up approach vs head-on approach:

The numbers of uni-bootstraps in the tail-up approach and the head-on approach, in both the regular case and
the greedy case, are respectively: vT , v

′
T , vH , v′H .

For fixed d, when lt tends to infinity, the ratio vH : vT tends to (d+2) : (2d), so does v′H : v′T . When d = 2, 3, 4, 5,
the limit of the ratio is 1, 0.83, 0.75, 0.7 respectively. The lower bound of the limit is 0.5.

Fig. 6 shows the reduction rates on the number of uni-bootstraps of the head-on approach over the tail-up
approach: 1 − vH/vT and 1 − v′H/v′T , at d = 4. Starting from about lt = 25, the reduction rates oscillate slightly
around the value 25%.

When lt is fixed but d varies, Fig. 7 presents the runtime save percentages of the head-on approach over the
tail-up approach at lt = 200. When d = 20, the upper bound of twice speedup is almost reached.

The experiments are conducted on a laptop with Intel(R) Core(TM) i5-7500 3.40 GHz CPU and 16GB RAM.
The NTL library is not installed. The Palisade library is the MinGW64 g++ 11.2.0 version v1.11.5. By experiments,
lQ = 60, lq = 29 are the maximal values of the two parameters supported by FHEW/TFHE in the Palisade library.

In [25], the largest precision supported is lt = 22. Since the purpose of the tests in [25] is to back up only the
sign bit, every time a block is bootstrapped, the modulus number of the leftover plaintext is reduced by ciphertext
modulus switch, so that lQ, lq, lt can be decreased accordingly. For backup-purposed bootstrapping, these parameters
cannot change, because all the plaintext blocks must be concatenated after bootstrapping.

We choose the following parameters that are the same as in [25]:

ln = 9, lN = 11, lQ = 60, Bg = 214. (7.1)

By experiments, under the above common parameters,

– lt = 20 is the largest value supporting Efin < ∆/2, where Efin is the refreshed error of the output ciphertext
after the whole bootstrapping;

– lt = 18 is the largest value supporting Efin ≤ Einit/2, when Einit = ∆/4.

Since we test backup bootstrapping, the run-time in our experiments is longer than that in [25]. In our tests, each
uni-bootstrap takes about 0.8s, and the overwhelming majority of the run-time is taken by the uni-bootstraps.

As to parameter d, in [25] it is 3 (3 + 2 = 5 is the block size there), while in our tests we try both 3 and 4.
When d = 4, some experimental results are presented in Table 2 for regular block bootstrapping, and in Table 3 for
greedy block bootstrapping.
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Fig. 6. Reduction rates on the number of uni-bootstraps: 1− vH/vT and 1− v′H/v′T of the head-on approach over the tail-up
approach at d = 4.

Fig. 7. Reduction rates on the number of uni-bootstraps: 1− vH/vT and 1− v′H/v′T of the head-on approach over the tail-up
approach at lt = 200.
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Test lq lt
V Runtime [ms]

Runtime save
VH VT head-on tail-up

I 22 16 5 6 3,953 4,825 18.0%

II 23 17 6 6 4,625 4,831 4.26%

III 25 18 6 7 4,654 5,632 17.3%

IV 27 19 6 8 4,689 6,431 27.0%

V 29 20 6 8 4,706 6,447 27.0%

Table 2. Block bootstrapping tests with d = 4.

Test lq lt
V ′ Runtime [ms]

Runtime save
V ′
H V ′

T head-on tail-up

VI 22 16 5 6 3,953 4,825 18.0%

VII 23 17 5 6 3,971 4,831 17.8%

VIII 25 18 5 6 3,982 4,840 17.7%

IX 27 19 6 7 4,689 5,651 17.0%

X 29 20 6 8 4,706 6,447 27.0%

Table 3. Greedy block bootstrapping tests with d = 4.

Remark : According to [25], the runtime of Homsign function with parameters lq = 22 and lt = 16 is 1, 658 ms.
The reason why our time is significantly higher than that of [25] is because that our aim is exact bootstrapping, not
just recovery of sign bits. Based on the idea of [25], we test the tail-up bootstrapping with lq = 22, lt = 16, d = 3.
The runtime is ...

For fixed n, the parameters l, k of EMDS ≤ 2l(1 − 2−k) are determined by the failure probability and verified
by simulation. In Subsection 2.3, it was shown that eMDS can be taken as a Gaussian distribution with standard
deviation (2.21), so that the failure probability of bound EMDS for eMDS can be calculated by (2.23). The following
are some results on parameter l = ⌈logEMDS⌉:

When ln = 9,

– l = 5, k = 4 has failure probability 1.86× 10−8;
– l = 6, k = 5 has failure probability 3.08× 10−31.

When ln = 10,

– l = 5, k = 4 has failure probability 6.97× 10−5;
– l = 6, k = 5 with failure probability 2.03× 10−16.

In simulation of eMDS by the sum of i.d.d. uniformly random variables in [−1/2, 1/2], 100,000 tests are made
for each ln ∈ {9, 10}. The results are the following:

– When ln = 9, then in all the tests, |eMDS| ≤ 21.9 < 24 = 25− 23, indicating the smaller bound l = 5, k = 2. On
the other hand, the theoretical failure probability of |eMDS| > 24 is 6.8× 10−6.

– when ln = 10, then |eMDS| < 33.19 <= 48 = 26 − 24, indicating the smaller bound l = 6, k = 2. On the other
hand, the theoretical failure probability of |eMDS| > 48 is 1.97× 10−10.

Both theoretical failure probability and simulation tests support l = 5 when ln = 9. This is equivalent to
d = lN − l − 2 = 4, instead of d = 3 in [25]. In [29], when ln = 11, lN = 12 or 13, then d = 4 or 5, indicating l = 6.
If the secret key is uniform ternary, then the failure probability is pretty high for l = 6.

When Einit = ∆/4, all the inequality constraints are satisfied.
If v is the number of uni-bootstraps in the head-on approach, then asymptotically v× 2d/(d+2) is the number

of uni-bootstraps in the tail-up approach. With the same initial error bound Einit, the ratio of the refreshed errors
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by the two approaches is asymptotically
√
v :

√
v × 2d/(d+ 2) =

√
(d+ 2)/(2d). The upper bound of the ratio is

1/
√
2.
In general, the bootstrapping efficiency is the relative error decrease per uni-bootstrap. In the heuristic case, the

efficiency of a bootstrapping method consisting of v uni-bootstraps is

F (v) := (1− Efin/Einit)× (1/v) = (1−
√
vEB/Einit)× (1/v). (7.2)

For a practical bootstrapping on a ciphertext with input error einit and output error efin, the bootstrapping efficiency
is

F := (1− |efin/einit|)× (1/T ), (7.3)

where T is the total time cost.
when d = 4 and Einit = ∆/4. By experiments, EB ∼ N(0, 16), and Efin =

√
vEB . Let Xi ∼ N(0, 16). Then

efin =
∑

i∈[v] Xi. In order for Pr(|efin| > Efin) ≤ 2× 10−9 (≈ 2− 2erf(6/
√
2)), theoretically

Efin = 6× 16
√
v = 96

√
v (7.4)

suffices.
In experiments, we calculated |efin| = |

∑
i∈[v] Xi| for each of v ∈ {5, 6, 7, 8} 10,000 times. The occurred results

are all within the theoretical bound (7.4):

– For v = 5, |efin| ≤ 166.1 < 214 ≈ Efin, with average 28.6, and median 24.2;
– for v = 6, |efin| ≤ 180.1 < 235 ≈ Efin, with average 31.2, and median 26.5;
– for v = 7, |efin| ≤ 200.5 < 253 ≈ Efin, with average 33.7, and median 28.6;
– for v = 8, |efin| ≤ 212.0 < 271 ≈ Efin, with average 36.1, and median 30.5.

8 Conclusion

In this paper, we proposed a new approach to large-precision bootstrapping in FHEW/TFHE cryptosystem. It
starts from the head block and backs up the blocks approximately, getting the accurate result at the end of the
whole bootstrapping procedure. The algorithm is faster and at the same time outputs smaller refreshed error.

A future work on large-precision bootstrapping is programmable functional bootstrapping. In [25] a special
function was investigated: the sign function defined on large-precision plaintexts. This function permits faster
computing by reducing the input ciphertext modulus gradually. For more general programmable function defined
on large-precision plaintexts, how to speed up corresponding functional bootstrapping is an important open problem.

Developing SIMD execution of FHEW/TFHE bootstrapping remains another open problem. 4 years ago, a
method based on Nussbaumer transform [28] was proposed to deal with this problem. It has theoretical asymptotic
analysis but no practical implementation. There is no more progress in this important direction by now.
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Appendix. Fundamental inequalities on backup block bootstrapping

A.1 Fundamental inequalities on tail-up plaintext bootstrapping: the first group

In plaintext bootstrapping, we always assume the number of uni-bootstraps v > 1.

Lemma 13 Under the error quality constraint Efin =
√
vEB ≤ Einit/2,

v < 22(dB−dI)−1. (A.1)

In particular, if v > 1, then dB ≥ dI + 2.

Proof. In power-of-2 binomial bounds, the error quality constraint is

√
v2−dB (1− 2−kB ) ≤ 2−1−dI (1− 2−kI ). (A.2)
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So
√
v < 2dB−1−dI/(1− 2−kB ) ≤ 2dB−dI+1/3, and (A.1) follows. Q.E.D.

In the rest of this section, we assume dB ≥ dI + 2.
The condition for tail-up bootstrapping is (4.4), namely

√
E2

MDS + (E2
init + E2

B)N
2/(2∆)2 < N/4. In practice,

for simplicity we can use the stronger condition in the following lemma for tail-up bootstrapping.

Lemma 14 In power-of-2 binomial bounds, (4.4) for tail-up bootstrapping is true if either (1) dI > 0, or (2) dI = 0,
k ≤ 2d, kI ≤ 2min(d, dB).

Proof. In power-of-2 binomial bounds, (4.4) becomes

2−2dI (1− 2−kI )2 + 2−2dB (1− 2−kB )2 + 2−2d(1− 2−k)2 < 1. (A.3)

When dI > 0, by dB > dI > 0 and d > 0, the inequality is always true.
When dI = 0, then dB ≥ 2, and (A.3) becomes

2−2dB (1− 2−kB )2 + 2−2d(1− 2−k)2 − 21−kI + 2−2kI < 0. (A.4)

There are three cases:
Case 1. dB > d. Then (A.4) requires 1− kI ≥ −2d. i.e., kI ≤ 2d+ 1. If kI ≤ 2d, then (A.4) is true.
Case 2. dB = d. Then (A.4) requires 1− kI > −2d, namely kI ≤ 2d. If kI = 2d, then (A.4) becomes

−21−kB + 2−2kB − 21−k + 2−2k + 2−2d < 0. (A.5)

When k ≤ 2d, then 1− k > −2d, and the above inequality is true.
Case 3. dB < d. Then (A.4) requires 1− kI ≥ −2dB , namely kI ≤ 2dB + 1. When kI ≤ 2dB , then (A.4) is true.

Q.E.D.

For uniformly random ternary key s ∈ Zn of the input ciphertext, the following inequality is usually satisfied:

k ≤ 2d, i.e., lN ≥ l + k/2 + 2. (A.6)

So essentially Lemma 14 states that for small intial error, if kI ≤ 2min(d, dB), then the tail-up approach is possible.
On the other hand, the condition provided in Lemma 14 is sufficient but not necessary. A full version of tail-up
bootstrapping condition (4.4) in power-of-2 binomial bounds, will be given in Lemma 17 as a corollary of the
following two lemmas.

The following lemma gives the maximal size of the first block when the initial error is large.

Lemma 15 Let dI > 0. Let d0 be the biggest integer satisfying (4.2), or equivalently,

22d0E2
MDS(4/N)2 + (E2

init + E2
B)(2/∆)2 < 1. (A.7)

Then d0 = d − 1, except for the following cases where d0 = d (called greedy mode): either (1) k ≤ 2dI , or (2)
k = 2dI + 1 and one of the following is true:

– dB = 2dI + 1 ≥ kI ;
– dB = 2dI + 1 and kI = 2dI + 2 ≥ kB ;
– dB ≤ 2dI and kI ≤ 2(dB − dI);
– kI = 2(dB − dI) + 1 and 2dB = 3dI and kB ≤ kI ;
– kI = 2(dB − dI) + 1 and 4dI ≥ 2dB > 3dI and kB ≤ 2(2dI − dB + 1);
– kI = 2(dB − dI) + 1 and 2dB < 3dI and kB ≤ 2(dB − dI + 1);
– dB ≥ 2dI + 2 ≥ kI .

Proof. In power-of-2 binomial bounds, (A.7) becomes

2−2dI (1− 2−kI )2 + 2−2dB (1− 2−kB )2 + 2−2(d−d0)(1− 2−k)2 < 1. (A.8)

Obviously 0 ≤ d0 ≤ d. If d0 = d− 1, then the left side of (A.8) < 1/4 + 1/16 + 1/4 < 1, so the inequality is true.
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If d0 = d, then (A.8) becomes

2−2dI (1− 2−kI )2 + 2−2dB (1− 2−kB )2 − 21−k + 2−2k < 0. (A.9)

So k ≤ 2dI + 1. If k ≤ 2dI , the above inequality is true. If k = 2dI + 1, then (A.9) becomes

−21−kI + 2−2kI + 2−2(dB−dI)(1− 2−kB )2 + 2−2−2dI < 0. (A.10)

So 1 − kI > −2 − 2dI and 1 − kI ≥ −2(dB − dI), namely kI ≤ 2dI + 2 and kI ≤ 2(dB − dI) + 1. There are three
cases.

Case 1. −2(dB − dI) = −2− 2dI , namely dB = 2dI + 1. When kI ≤ 2dI + 1, (A.10) is true. When kI = 2dI + 2,
(A.10) becomes 2−3−2dI − 2−kB + 2−1−2kB < 0, which is true if and only if kB ≤ 2dI + 2 = kI .

Case 2. −2(dB − dI) > −2 − 2dI , namely dB ≤ 2dI . When kI ≤ 2(dB − dI), then (A.10) is true. When
kI = 2(dB − dI) + 1, (A.10) becomes

2−2(dB−dI+1) − 21−kB + 2−2kB + 2−2(2dI−dB+1) < 0. (A.11)

If dB−dI +1 = 2dI −dB +1, namely 2dB = 3dI , then (A.11) is true if and only if kB ≤ 2(dB−dI +1)−1 = dI +1.
If dB − dI + 1 > 2dI − dB + 1, namely 2dB > 3dI , then (A.11) is true if and only if kB ≤ 2(2dI − dB + 1). If
dB − dI + 1 < 2dI − dB + 1, namely 2dB < 3dI , then (A.11) is true if and only if kB ≤ 2(dB − dI + 1).

Case 3. −2(dB − dI) < −2− 2dI , namely dB ≥ 2dI + 2. When kI ≤ 2dI + 1, (A.10) is true. When kI = 2dI + 2,
(A.10) becomes 2−2dI−2 + 2−2(dB−2dI−1)(1− 2−kB )2 < 1, which is always true.

In the statement of the lemma, there are 7 cases, the first two of which are covered by Case 1, the last one is
covered by Case 3, and the middle four are covered by Case 2. Q.E.D.

The following lemma gives the maximal size of the first block when the initial error is small.

Lemma 16 Let dI = 0. Let d0 be the biggest integer satisfying (A.7). Then integer d0 exists if and only if either
(1) kI ≤ 2dB , or (2) kI = 2dB + 1 and kB ≤ kI + 1. When d0 exists, then d0 ≤ d − 1, and in details, if kI ≤ 2dB ,
then d0 ∈ {d− ⌊kI/2⌋, d− ⌊kI/2⌋ − 1}, and d0 = d− ⌊kI/2⌋ if and only if one of the following is true:

1. kI = dB is odd, and kI ≥ k;
2. kI = dB = k − 1 is odd, and k ≥ kB ;
3. kI is odd, 2dB ≥ kI > dB , and k < 2dB + 2− kI ;
4. kI is odd, 2dB ≥ kI > dB , k = 2dB + 2− kI , 4dB = 3(kI − 1), kB < 2(kI − dB);
5. kI is odd, 2dB ≥ kI > dB , k = 2dB + 2− kI , 4dB ̸= 3(kI − 1), kB ≤ min(2kI − 2dB , 2dB + 3− kI);
6. kI is odd, kI < dB , k ≤ kI + 1;
7. kI is even, kI ≤ 2dB − 2;
8. kI = 2dB , k = kB ≤ 2dB + 1;
9. kI = 2dB , k < kB , k ≤ 2dB ;
10. kI = 2dB , k < kB , k = 2dB + 1, kB ≤ 2k;
11. kI = 2dB , k > kB , kB ≤ 2dB ;
12. kI = 2dB , k > kB , kB = 2dB + 1, k ≤ 2kB .

If kI = 2dB + 1 and kB ≤ kI + 1, then d0 ∈ {d− dB − ⌊kB/2⌋, d− dB − ⌊kB/2⌋ − 1}, and d0 = d− dB − ⌊kB/2⌋
if and only if one of the following is true:

– kB is odd, kI = 2kB − 1, k ≤ kB ;
– kB is odd, kI ≥ 2kB , k ≤ kB + 1;
– kB is odd, kI ≤ 2kB − 2, k ≤ 2 + kI − kB ;
– kB is even, kB ≤ kI − 1;
– kB = kI + 1, k ≤ kB .

When d0 = d−dB−⌊kB/2⌋, then d0 = d−⌊(kI+kB−1)/2⌋; when d0 = d−dB−⌊kB/2⌋−1, then d0 = d−⌈(kI+kB)/2⌉.
In particular, d0 = d− 1 if and only if one of the following is true:

– kI = 2;
– kI = 3, dB = 3, k ≤ 3;
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– kI = 3, dB = 3, k = 4 ≥ kB ;
– kI = 3, dB = 2, k = 2;
– kI = 3, dB = 2, k = 3, kB = 2;
– kI = 3, dB ≥ 4 ≥ k.

Proof. (A.8) is the power-of-2 binomial form of (A.7). Since dI = 0, we have dB ≥ 2, and (A.8) becomes

2−2dB (1− 2−kB )2 + 2−2(d−d0)(1− 2−k)2 − 21−kI + 2−2kI < 0. (A.12)

So −2(d− d0) ≤ 1− kI , namely d0 ≤ d− (kI − 1)/2. In particular, d0 ≤ d− 1.
We first prove the conditions on the existence of integer d0. When −2dB > 1− kI , namely kI ≥ 2dB +2, (A.12)

is obviously false, so kI ≤ 2dB + 1. If kI ≤ 2dB , then (A.12) is true for sufficiently small d0 < 0. If kI = 2dB + 1,
(A.12) becomes

−21−kB + 2−2kB + 2−2(d−d0−dB)(1− 2−k)2 + 2−2−2dB < 0. (A.13)

When 1− kB ≤ −2− 2dB , namely kB ≥ 2dB + 3, the above inequality is false. When 1− kB > −2− 2dB , namely
kB ≤ 2dB + 2 = kI + 1, (A.13) is true for sufficiently small d0 < 0.

Before proving the conclusions on the exact value of d0, we point out the following simple fact, whose proof is
trivial:

⌊x/2⌋ = ⌈(x+ 1)/2⌉ − 1, ⌊(x− 1)/2⌋ = ⌈x/2⌉ − 1, ∀x ∈ Z. (A.14)

In (A.12), the four terms on the left are divided into three groups: the group 2−2(d−d0)(1 − 2−k)2, which is
positive; the group 2−2−2dB , also positive; and the group −21−kI + 2−2kI , negative. There are three cases between
the first two groups.

Case 1. −2(d− d0) = 1− kI , namely kI is odd, and d0 = d− (kI − 1)/2 = d− ⌊kI/2⌋. (A.12) becomes

2−(2dB+1−kI)(1− 2−kB )2 + 2−1−kI − 21−k + 2−2k < 0. (A.15)

There are three subcases.
Subcase 1.1. −(2dB + 1− kI) = −1− kI , namely kI = dB . (A.15) becomes

2−kI (1− 2−kB + 2−1−2kB )− 21−k + 2−2k < 0. (A.16)

So −kI ≤ 1 − k, namely kI ≥ k − 1. If kI ≥ k, the above inequality is true. If kI = k − 1, then (A.16) becomes
2−kB − 2−1−2kB )− 2−1−k > 0, which is true if and only if kB ≤ k.

Subcase 1.2. −(2dB + 1 − kI) > −1 − kI , namely kI > dB . (A.15) requires −(2dB + 1 − kI) ≤ 1 − k, namely
k ≤ 2dB + 2 − kI . So 2dB + 2 − kI ≥ 2, i.e., kI ≤ 2dB . When k < 2dB + 2 − kI , then (A.15) is true. When
k = 2dB + 2− kI , (A.15) becomes

−21−kB + 2−2kB + 2−2(kI−dB) + 2−(2dB+3−kI) < 0. (A.17)

(1) If −2(kI − dB) = −(2dB + 3 − kI), namely 4dB = 3(kI − 1), then (A.17) is true if and only if 1 − kB >
1− 2(kI − dB), namely kB < 2(kI − dB). (2) If −2(kI − dB) ̸= −(2dB + 3− kI), then (A.17) is true if and only if
1− kB > max(−2(kI − dB),−(2dB + 3− kI)), namely kB ≤ min(2kI − 2dB , 2dB + 3− kI).

Subcase 1.3. −(2dB + 1− kI) < −1− kI , namely kI < dB . Then (A.15) is true if and only if −1− kI < 1− k,
namely k ≤ kI + 1.

Case 2. −2(d − d0) = −kI , namely kI is even, and d0 = d − kI/2 = d − ⌊kI/2⌋. Then kI ≤ 2dB , and (A.12)
becomes

2−(2dB−kI)(1− 2−kB )2 + 2−kI − 21−k + 2−2k − 1 < 0. (A.18)

When kI ≤ 2dB − 2, (A.18) is obviously true.
When kI = 2dB ≥ 4, (A.18) becomes

2−2dB − 21−kB + 2−2kB − 21−k + 2−2k < 0. (A.19)

If k = kB , the inequality is true if and only if k ≤ 2dB + 1. If k ̸= kB , by symmetry, assume k < kB , then (A.19)
requires −2dB ≤ 1− k, namely k ≤ 2dB + 1. If k ≤ 2dB , (A.19) is true. If k = 2dB + 1 ≤ kB − 1, (A.19) becomes
−21−kB + 2−2kB + 2−2k < 0, which is true if and only if 1− kB > −2k, namely kB ≤ 2k.
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Notice that if d0 does not satisfy Case 1, then neither does it satisfy Case 2. The converse is also true. Also
notice that in both Case 1 and Case 2, kI ≤ 2dB .

Case 3. −2(d−d0) ≤ −1−kI , namely d0 ≤ d− (kI +1)/2. Then d0 ≤ d−2. When kI ≤ 2dB , (A.12) is true, and
when this happens, d0 = d−⌈(kI +1)/2⌉ = d−⌊kI/2⌋−1. In other words, if kI ≤ 2dB , then either d0 = d−⌊kI/2⌋,
or d0 = d− ⌊kI/2⌋ − 1, and the former is true if and only if d0 satisfies Case 1 or Case 2.

In the following, we consider the situation where kI = 2dB + 1 and kB ≤ 2dB + 2 = kI + 1. (A.12) becomes

−21−kB + 2−2kB + 2kI−1−2(d−d0)(1− 2−k)2 + 2−1−kI < 0. (A.20)

So kI − 1− 2(d− d0) ≤ 1− kB . There are three subcases.
Subcase 3.1. kI−1−2(d−d0) = 1−kB , namely kB is odd, and d0 = d−(kI+kB−2)/2 = d−⌊(kI+kB−1)/2⌋ =

d− dB − ⌊kB/2⌋. Then (A.20) becomes

−21−k + 2−2k + 2−1−kB + 2−(2+kI−kB) < 0. (A.21)

(1) If −1 − kB = −(2 + kI − kB), namely kI = 2kB − 1, (A.21) is true if and only if k ≤ kB . (2) If −1 − kB >
−(2+ kI − kB), namely kI ≥ 2kB , (A.21) is true if and only if k ≤ kB +1. (3) If −1− kB < −(2+ kI − kB), namely
kI ≤ 2kB − 2, (A.21) is true if and only if k ≤ 2 + kI − kB .

Subcase 3.2. kI−1−2(d−d0) = −kB , namely kB is even, and d0 = d−(kI +kB−1)/2 = d−⌊(kI +kB−1)/2⌋ =
d− dB − ⌊kB/2⌋. (A.20) becomes

−1− 21−k + 2−2k + 2−kB + 2−(1+kI−kB) < 0. (A.22)

If 1 + kI − kB > 0, namely kB ≤ kI , then (A.22) is true. If 1 + kI − kB = 0, namely kB = kI + 1, (A.22) becomes
−21−k + 2−2k + 2−kB < 0, which is true if and only if k ≤ kB .

Notice that if d0 does not satisfy Case 1 and Case 2, then if it does not satisfy Subcase 3.1, nor does it satisfy
Subcase 3.2. The converse is also true.

Subcase 3.3. kI − 1 − 2(d − d0) ≤ −1 − kB , namely d0 ≤ d − (kI + kB)/2 = d − dB − (kB + 1)/2. Then
d0 ≤ d − ⌊(kI + kB)/2⌋. If kB ≤ kI , then (A.20) is true. If kB = kI + 1, (A.20) becomes −2−1−kI + 2−2−2kI +
2kI−1−2(d−d0)(1− 2−k)2 < 0, which is true because kI − 1− 2(d− d0) ≤ −1− kB = −2− kI .

So if d0 does not satisfy any of Case 1, Case 2, Subcase 3.1, Subcase 3.2, then d0 = d − dB − ⌈(kB + 1)/2⌉ =
d− dB − ⌊kB/2⌋ − 1.

In summary, there are four possible values of d0: (a) d − ⌊kI/2⌋, (b) d − ⌊kI/2⌋ − 1, (c) d − dB − ⌊kB/2⌋, (d)
d− dB − ⌊kB/2⌋ − 1. The former two values are taken when kI ≤ 2dB , where value (a) occurs in Case 1 and Case
2, and value (b) occurs in the beginning of Case 3. The latter two values are taken when kI = 2dB +1, where value
(c) occurs in Subcase 3.1 and Subcase 3.2, and value (d) occurs in Subcase 3.3.

In particular if d0 = d − 1, then this is possible only when kI ≤ 3 and d − ⌊kI/2⌋. In Case 2, this is possible
for kI = 2 and all dB ≥ 2. In Subcase 1.1, this is possible for kI = 3 only when dB = 3, and either k ≤ 3, or
k = 4 ≥ kB . In Subcase 1.2, this is possible for kI = 3 only when dB = 2, and either k = 2, or k = 3 and kB = 2.
In Subcase 1.3, this is possible for kI = 3 only when dB ≥ 4 ≥ k. Q.E.D.

The following lemma is a direct corollary of Lemma 16 on the existence of d0 ≥ 0 for large initial error.

Lemma 17 Let d0 be the biggest integer satisfying (A.7). Then integer d0 ≥ 0 exists if and only if (1) either
kI ≤ 2dB , or kI = 2dB + 1 and kB ≤ kI + 1, (2) one of the following is true:

– if d0 = d− ⌊kI/2⌋, then kI ≤ 2d+ 1;
– if d0 = d− ⌊kI/2⌋ − 1, then kI ≤ 2d− 1;
– if kI = 2dB + 1 and d0 = d− dB − ⌊kB/2⌋, then kB ≤ 2(d− dB) + 1;
– if kI = 2dB + 1 and d0 = d− dB − ⌊kB/2⌋ − 1, then kB ≤ 2(d− dB)− 1.

In particular, if either kI ≤ min(2dB , 2d− 1), or kI = 2dB + 1 ≤ 2d− kB , then d0 ≥ 0 exists.

A.2 Fundamental inequalities on tail-up plaintext bootstrapping: the second group

Lemma 18 Let d′i−1 > 0, and let di be the biggest integer satisfying (4.39), namely

22diE2
MDS(4/N)2 + 2−2d′

i−1((1 + 2−2)E2
init − E2

B)(2/∆)2 < 1. (A.23)

Then di = d− 1, except for the following cases where di = d (called greedy mode):
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1. d′i−1 > (k − 1)/2− dI ;
2. d′i−1 = (k − 1)/2− dI , and one of the following is true:

– kI = 2;
– kI = 3, k ≥ 4;
– kI = 3, k = 3, dI = 0, dB = 2.

Proof. In power-of-2 binomial bounds, (A.23) becomes

2−2(d−di)(1− 2−k)2 + (1 + 2−2)
(
2−2(d′

i−1+dI)(1− 2−kI )2 − 2−2(d′
i−1+dB)(1− 2−kB )2

)
< 1. (A.24)

So di ≤ d. When d− di = 1, the left side of (A.24) < 2−2 × (1 + 5/4) < 1, so (A.24) is true.
When d− di = 0, (A.24) becomes

−21−k + 2−2k + (1 + 2−2)
(
2−2(d′

i−1+dI)(1− 2−kI )2 − 2−2(d′
i−1+dB)(1− 2−kB )2

)
< 0. (A.25)

On the left side of the above inequality, the last term > 2−2(d′
i−1+dI) × (5/4) × (3/4 − 1/4) > 2−2(d′

i−1+dI)−1, so
1− k ≥ −2(d′i−1 + dI), namely d′i−1 ≥ (k − 1)/2− dI .

When d′i−1 > (k − 1)/2 − dI , (A.25) is true. When d′i−1 = (k − 1)/2 − dI > 0, then k ≥ 2dI + 3 is odd, and
(A.25) becomes

2−2 + 2−1−k − 21−kI − 2−1−kI + 2−2kI + 2−2−2kI − (1 + 2−2)2−2(dB−dI)(1− 2−kB )2 < 0. (A.26)

So −2 ≤ 1− kI , namely kI ≤ 3.
If kI = 2, then (A.26) is true. If kI = 3, (A.26) becomes

2−1−k − 2−4 + 2−6 + 2−8 − (1 + 2−2)2−2(dB−dI)(1− 2−kB )2 < 0. (A.27)

There are four cases.
Case 1. k = 4. (A.27) becomes

−2−6 + 2−8 − (1 + 2−2)2−2(dB−dI)(1− 2−kB )2 < 0, (A.28)

which is true.
Case 2. k > 4. (A.27) is obviously true.
Case 3. k = 3. By d′i−1 = (k − 1)/2− dI > 0, we get dI = 0, dB ≥ 2, and (A.27) becomes

2−6 + 2−8 − (1 + 2−2)2−2dB (1− 2−kB )2 < 0. (A.29)

It requires dB ≤ 3. When dB = 3, (A.29) is false. When dB = 2, (A.29) is true.
Case 4. k = 2. Then dI = 0, dB ≥ 2, and (A.27) becomes

2−4 + 2−6 + 2−8 − (1 + 2−2)2−2dB (1− 2−kB )2 < 0, (A.30)

which is always false. Q.E.D.

A.3 Fundamental inequalities on LSB precursor

In this section, we assume dB ≥ dI + 1 only.

Lemma 19 In power-of-2 binomial bounds, (4.89), or equivalently,

2−2E2
MDS(4/N)2 + E2

init(2/∆)2 < 1, (A.31)

is true if and only if either (1) dI > 0, or (2) dI = 0, kI ≤ 2d+ 2, or (3) dI = 0, kI = 2d+ 3, k ≤ 2d+ 4.

Proof. In power-of-2 binomial bounds, (A.31) becomes

2−2−2d(1− 2−k)2 + 2−2dI (1− 2−kI )2 < 1. (A.32)

When dI > 0, (A.32) is true. When dI = 0, (A.32) becomes

2−2−2d(1− 2−k)2 − 21−kI + 2−2kI < 0. (A.33)

So −2− 2d ≤ 1− kI , namely kI ≤ 2d+ 3.
When kI ≤ 2d+ 2, (A.33) is true. When kI = 2d+ 3, (A.33) becomes −21−k + 2−2k + 2−4−2d < 0. It is true if

and only if 1− k > −4− 2d, namely k ≤ 2d+ 4. Q.E.D.
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A.4 Fundamental inequalities on head-on plaintext bootstrapping: feasibility, and
the first group

dB ≥ dI + 2 is assumed throughout this paper.
Consider the inequality (5.56) for head-on bootstrapping, i.e.,√

((5/4)E2
init − E2

B)(2/∆)2 + 22deE2
MDS(4/N)2 < 1. (A.34)

Lemma 20 Let de be the biggest integer satisfying (A.34). Then integer de exists if and only if either dI > 0, or
dI = 0 and kI ≤ 3. When de exists, if dI > 0, then de ∈ {d, d− 1}, and de = d (called greedy mode) if and only if
one of the following is true:

– k ≤ 2dI ;
– k = 2dI + 1, kI = 2;
– k = 2dI + 1, kI = 3, dI > 1;
– k = 2dI + 1, kI = 3, dI = 1, dB ≤ 3.

If dI = 0, then kI ≤ 3, de ≤ d− 1, and de = d− 1 if and only if kI = 2.
When dI = 0 and kI = 3, then de ∈ {d− 2, d− 3}, and de = d− 2 if and only if one of the following is true:

– dB = 2;
– dB = 3, k ≤ 3;
– dB = 3, k = 4, kB ≥ 4;
– dB ≥ 4, k = 2.

Proof. In power-of-2 binomial bounds, (A.34) becomes

2−2dI (1 + 2−2)(1− 2−kI )2 − 2−2dB (1− 2−kB )2 + 2−2(d−de)(1− 2−k)2 < 1. (A.35)

Obviously de ≤ d. There are four cases.
Case 1. dI > 0 and de < d. The left side of (A.35) < 5/16 + 1/4 < 1, so the inequality holds.
Case 2. dI = 0 and de = d. The left side of (A.35) > 5/4× 9/16 + 9/16 > 1, so the inequality no longer holds.
Case 3. dI > 0 and de = d. (A.35) becomes

2−2dI (1 + 2−2)(1− 2−kI )2 − 2−2dB (1− 2−kB )2 − 21−k + 2−2k < 0, (A.36)

so −2dI ≤ 1− k, namely k ≤ 2dI +1. When k < 2dI +1, the above inequality is true. When k = 2dI +1, the above
inequality becomes

1 + 2−2dI − (22 + 1)(21−kI − 2−2kI )− 2−2(dB−dI−1)(1− 2−kB )2 < 0. (A.37)

Since dB − dI − 1 ≥ 1, if kI ≥ 4, the last two terms on the left side of (A.37) > −(1/2 + 1/8) − 1/4 > −1, the
inequality is false. So kI ≤ 3.

In (A.37), when kI = 2, the inequality becomes

2−2dI − 2−2(dB−dI−1)(1− 2−kB )2 < 3/2− 5/24, (A.38)

which is obviously true. When kI = 3, the inequality becomes

2−2dI − 2−2(dB−dI−1)(1− 2−kB )2 < 2−2 − 5/26. (A.39)

If dI > 1, the above inequality is true. If dI = 1, the above inequality becomes 2−2(dB−4)(1− 2−kB )2 > 5/4, which
is true if and only if dB ≤ 3.

Case 4. dI = 0 and de < d. Then dB ≥ 2, and (A.35) becomes

(1 + 2−2)(1− 2−kI )2 − 2−2dB (1− 2−kB )2 + 2−2(d−de)(1− 2−k)2 < 1. (A.40)



New Bootstrapping Strategies in FHEW/TFHE Cryptosystem 67

If kI ≥ 4, the above inequality is false, because on the left side, the first term ≥ 1 + 2−3 − 2−5 + 2−8 − 2−10, while
the last two terms > −2−4.

If kI = 2, inequality (A.40) can be simplified to

−2−2 − 2−4 + 2−6 − 2−2dB (1− 2−kB )2 + 2−2(d−de)(1− 2−k)2 < 0, (A.41)

which is true because the last term < 2−2.
If kI = 3, (A.40) can be simplified to

−2−4 + 2−6 + 2−8 − 2−2dB (1− 2−kB )2 + 2−2(d−de)(1− 2−k)2 < 0. (A.42)

There are the following subcases:
Subcase 4.1. dB = 2. (A.42) becomes

−2 + 2−2 + 2−4 + 21−kB − 2−2kB + 2−2(d−de−2)(1− 2−k)2 < 0. (A.43)

It is true if and only if d− de − 2 ≥ 0.
Subcase 4.2. dB = 3. (A.42) becomes

−2−4 + 2−6 − 2−6(1− 2−kB )2 + 2−8 + 2−2(d−de)(1− 2−k)2 < 0. (A.44)

which is obviously true when d− de ≥ 3, and false when d− de = 1. When d− de = 2, (A.44) becomes

−21−k + 2−2k + 2−4 + 2−1−kB − 2−2−2kB < 0. (A.45)

It requires k ≤ 4. If k ≤ 3, (A.45) is true. If k = 4, (A.45) becomes −2−4 + 2−8 + 2−1−kB − 2−2−2kB < 0. It is true
if and only if kB ≥ 4.

Subcase 4.3. dB ≥ 4. (A.42) requires d − de ≥ 2. When d − de > 2, (A.42) is true. When d − de = 2, (A.42)
becomes

2−2 + 2−4 − 2−2(dB−2)(1− 2−kB )2 − 21−k + 2−2k < 0. (A.46)

Since dB − 2 ≥ 2, the above inequality is true if and only if k = 2. Q.E.D.

Lemma 20 implies the following result on the existence of integer de ≥ 0:

Lemma 21 In power-of-2 binomial bounds, if d ≥ 3, then de ≥ 0 exists if and only if either dI > 0, or dI = 0 and
kI ≤ 3.

Lemma 21 gives the most pessimistic condition on kI for small initial error in the head-on approach. In practice
if v is small, then the condition can be significantly improved. The most optimistic case is v = 3, for which the
condition on kI differs only slightly from the prerequisite condition (14) of the tail-up approach. Consider inequality
(5.54) for v = 3, namely, √

E2
init + 2E2

B + E2
MDS2

2(de+2)∆2/(2N)2 < ∆/2. (A.47)

Lemma 22 Let de be the biggest integer satisfying (A.47). When dI > 0, then de ∈ {d, d− 1}. When dI = 0, then
under the assumption kI ≤ min(2dB − 1, 2d− 1), integer de ≥ 0 exists.

Proof. In power-of-2 binomial bounds, (A.47) becomes

2−2dI (1− 2−kI )2 + 21−2dB (1− 2−kB )2 + 2−2(d−de)(1− 2−k)2 < 1. (A.48)

Obviously de ≤ d. When dI > 0 and de < d, (A.48) holds.
When dI = 0 and de = 0, then dB ≥ 2, and (A.48) becomes

−21−kI + 2−2kI + 21−2dB (1− 2−kB )2 + 2−2d(1− 2−k)2 < 0. (A.49)

If dB ≤ d, then kI ≤ 2dB − 1 by the assumption, so (A.49) is true. If dB > d, then kI ≤ 2d− 1, and (A.49) is also
true. Q.E.D.

Consider the inequalities in (5.13) on the first group, namely√
E2

MDS + 2E2
B(2N/q)2 ≤ 2l,√

2E2
MDS + E2

B(2N/q)2 < 2l + 2l−1.
(A.50)
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Lemma 23 Let ls = lN − lt ≤ l. Then (A.50) is true if and only if either k < 2(dB + l − ls), or k = 2(dB + l − ls)
and kB ≤ 2k + 1. In particular, if ls ≤ 0, then (A.50) is true.

Proof. In power-of-2 binomial bounds,

EB(2N/q) = 2−dB (1− 2−kB )(∆N/q) = 2−dB (1− 2−kB )N/t = 2ls−dB (1− 2−kB ). (A.51)

So (A.50) becomes

(1− 2−k)2 + 21−2(dB+l−ls)(1− 2−kB )2 ≤ 1,

2(1− 2−k)2 + 2−2(dB+l−ls)(1− 2−kB )2 < 2 + 2−2.
(A.52)

After simplification, the second inequality becomes

2−2(dB+l−ls)(1− 2−kB )2 < 2−2 + 22−k − 21−2k. (A.53)

Since dB + l − ls ≥ 2, the above inequality is always true.
For the first inequality in (A.52), after simplification, it becomes

−21−k + 2−2k + 21−2(dB+l−ls)(1− 2−kB )2 ≤ 0. (A.54)

So k ≤ 2(dB+ l− ls). When k < 2(dB+ l− ls), then (A.54) is true. In particular, if ls ≤ 0, then k ≤ l < 2(dB+ l− ls),
and (A.54) is true. When k = 2(dB + l− ls), (A.54) becomes 2−1−2k − 21−kB +2−2kB ≤ 0, which is true if and only
if kB ≤ 2k + 1. Q.E.D.

Consider (5.20), namely √
E2

MDS + 2E2
B(2N/q)2 ≤ N/t,√

2E2
MDS + E2

B(2N/q)2 < N/t.
(A.55)

Lemma 24 If ls = lN − lt > l, then (A.55) is true.

Proof. In power-of-2 binomial bounds, by N/t = 2ls and (A.51), (A.55) becomes

2−2(ls−l)(1− 2−k)2 + 21−2dB (1− 2−kB )2 ≤ 1,

21−2(ls−l)(1− 2−k)2 + 2−2dB (1− 2−kB )2 < 1.
(A.56)

Since 2dB ≥ 4, 2(ls − l) ≥ 2, both inequalities are true. Q.E.D.

A.5 Fundamental inequalities on head-on plaintext bootstrapping: the second
group

First consider inequality (5.44), namely√
E2

MDSq
2/(2d′+1N)2 + E2

B ≤ q/2d
′+di+2, (A.57)

under the condition lt − d′ > lN , i.e., d′ + ls < 0.

Lemma 25 If d′ + ls < 0, then di = d+ 1 is the biggest integer satisfying (A.57).

Proof. In power-of-2 binomial bounds, by ∆/2 = q/(2t) = q × 2−1−lt , (A.57) becomes

2−2(d+1−di)(1− 2−k)2 + 2−2(lt+dB−d′−1−di)(1− 2−kB )2 ≤ 1. (A.58)

So di ≤ min(d+1, lt− d′+ dB − 1). Since lt− d′ > lN , dB ≥ 2, we have lt− d′+ dB − 1 ≥ lN +2 = d+ l+4 > d+4.
So di ≤ d+ 1.
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If di ≤ d, then (A.58) is true. If di = d+ 1, then (A.58) becomes

−21−k + 2−2k + 2−2(lt+dB−d′−d−2)(1− 2−kB )2 ≤ 0. (A.59)

It is true if k ≤ 2(dB + lt − d′ − d− 2). Since lt − d′ − d− 2 ≥ lN + 1− (lN − l) = l+ 1 and k ≤ l, the requirement
is satisfied. So (A.59) is always true. Q.E.D.

Next consider inequality (5.44), namely

2lsiq/(2d
′+1N) +

√
E2

MDSq
2/(2d′+1N)2 + E2

B ≤ q/2d
′+di+2, (A.60)

under the condition d+3 ≤ lt − d′ ≤ lN , i.e., d′ + ls ≥ 0 and d′ < lt − d− 2. Obviously in (A.60), 2lsiq/(2d
′+1N) <

q/2d
′+di+2, namely di ≤ lt − d′ − 2.

Lemma 26 When lt − 2 > d′ ≥ −ls, let di ≤ lt − d′ − 2 be the biggest integer satisfying (A.60).

– If d′ + ls < l, then di = d+ 1 or d, and di = d+ 1 if and only if d′ + ls < l − k.
– If d′ + ls ≥ l, then either di = lt − d′ − 2 ∈ [1, d] (called greedy mode), or di = lt − d′ − 3 > 0. In details,

di = lt− d′− 2 if and only if either (1) d′ + ls > l, or (2) d′ + ls = l and k ≤ 2dB , or (3) d
′ + ls = l, k = 2dB +1,

kB ≤ k + 1.

Proof. In power-of-2 binomial bounds, (A.60) becomes

2−2(d+1−di)(1− 2−k)2 + 2−2(dB+lt−d′−1−di)(1− 2−kB )2 ≤ (1− 2−(lt−d′−1−di))2. (A.61)

Since di ≤ lt−d′−2, on the right side of the above inequality, lt−d′−1−di ≥ 1. Since the right side < 1, di ≤ d+1
on the left side.

First consider the case d′ + ls < l, namely d′ < lt − d − 2. Notice that lt − d′ − 1 ≥ 2. When di ≤ d, then
lt − d′ − di − 1 ≥ 2, the right side of (A.61) ≥ 9/16, while the left side < 2−2 + 2−8, the inequality is true. When
di = d+ 1, (A.61) becomes

−21−k + 2−2k + 21−(lt−d′−d−2) − 2−2(lt−d′−d−2) + 2−2(lt−d′−d−2+dB)(1− 2−kB )2 ≤ 0. (A.62)

It is true if and only if k < lt − d′ − d− 2 = l − ls − d′.
Next consider the case lt − 2 > d′ ≥ l − ls = lt − d− 2. Then 3 ≤ lt − d′ ≤ d+ 2. Since di ≤ lt − d′ − 2 ≤ d, if

di < lt − d′ − 2, then lt − d′ − 1− di ≥ 2, so (A.61) is true. If di = lt − d′ − 2, then (A.61) becomes

2−2(d+2+d′−lt)(1− 2−k)2 + 2−2dB (1− 2−kB )2 ≤ 1. (A.63)

Since 2dB ≥ 4, (A.63) requires d+ 2 + d′ − lt ≥ 0.
If d+ 2 + d′ − lt > 0, namely d′ + ls > l, then (A.63) is true. If d+ 2 + d′ − lt = 0, then (A.63) becomes

−21−k + 2−2k + 2−2dB (1− 2−kB )2 ≤ 0. (A.64)

It requires k ≤ 2dB + 1, and is true if k ≤ 2dB . When k = 2dB + 1, (A.64) becomes 2−1−k − 21−kB + 2−2kB ≤ 0,
which is true if and only if kB ≤ k + 1. Q.E.D.

A.6 Fundamental inequalities on error bootstrapping feasibility

Consider (6.7), namely √
E2

init(2N/∆)2 + E2
MDS < N. (A.65)

Lemma 27 In power-of-2 binomial bounds, (A.65) is true if and only if either (1) dI > 0, or (2) dI = 0, kI < 2d+5,
or (3) dI = 0, kI = 2d+ 5 ≥ k − 1.

Proof. In power-of-2 binomial bounds, (A.65) becomes

2−2dI (1− 2−kI )2 + 2−4−2d(1− 2−k)2 < 1. (A.66)

When dI > 0, the inequality is always true. When dI = 0, the inequality becomes

−21−kI + 2−2kI + 2−4−2d(1− 2−k)2 < 0, (A.67)

which requires 1− kI ≥ −4− 2d, namely kI ≤ 2d+ 5. When kI < 2d+ 5, (A.67) is true. When kI = 2d+ 5, (A.67)
becomes −21−k + 2−2k + 2−1−kI < 0, which is true if and only if k ≤ kI + 1. Q.E.D.
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A.7 Fundamental inequalities on error bootstrapping: the first group

From now on, we assume dB ≥ 2.
First consider (6.21), namely √

5(E2
MDS + E2

B(2N/∆)2) ≤ N/2d0+1. (A.68)

Lemma 28 Let d0 be the biggest integer satisfying (A.68).

1. If dB < d+ 2, then d0 = dB − 2 or dB − 3, and d0 = dB − 2 if and only if one of the following is true:
– kB = 2, d > dB − 1;
– kB = 2, d = dB − 1, k ≤ 5;
– kB = 3, d > dB .

2. If dB > d+ 2, then d0 = d or d− 1, and d0 = d if and only if one of the following is true:
– k = 2, dB > d+ 1;
– k = 2, dB = d+ 1, kB ≤ 5;
– k = 3, dB > d+ 2.

3. If dB = d+ 2, then d0 = d− 1 = dB − 3.

In particular, if d > 1, then d0 ≥ 0 exists if and only either dB ≥ 3, or dB = 2 and kB ≤ 3.

Proof. In power-of-2 binomial bounds, (A.68) becomes

(1 + 2−2)
{
2−2(d−d0)(1− 2−k)2 + 2−2(dB−d0−2)(1− 2−kB )2

}
≤ 1. (A.69)

So d− d0 ≥ 0 and dB − d0− 2 ≥ 0. By (5/4)× 2× 9/16 = 45/32 > 1, we get that at most one of d− d0, dB − d0− 2
can be equal to 0. There are three cases.

Case 1. d− d0 > dB − d0 − 2 ≥ 0, namely d0 ≤ dB − 2 and dB ≤ d+ 1. Then d0 ≤ d− 1.
When d0 < dB − 2, then d− d0 > dB − d0 − 2 > 0, and (A.69) is true. When d0 = dB − 2, (A.69) becomes

(1 + 2−2)(1− 2−k)22−2(d−dB+2) + 2−2 − 21−kB + 2−2kB − 2−1−kB + 2−2−2kB ≤ 0. (A.70)

So kB ≤ 3. Also notice that d− dB + 2 ≥ 1.
When kB = 2, (A.70) becomes

(1 + 2−2)(1− 2−k)22−2(d−dB+2) − 2−2 − 2−4 + 2−6 ≤ 0. (A.71)

If d − dB + 2 > 1, the first term of (A.71) < (5/4) × 2−4 < 2−2, the inequality is true. If d − dB + 2 = 1, (A.71)
becomes −21−k − 2−1−k + 2−2k + 2−2−2k + 2−4 ≤ 0, which is true if and only if k ≤ 5.

When kB = 3, (A.70) becomes

(1 + 2−2)(1− 2−k)22−2(d−dB+2) − 2−4 + 2−6 + 2−8 ≤ 0. (A.72)

If d−dB+2 > 2, then the above inequality is true. If d−dB+2 = 2, the above inequality becomes −21−k−2−1−k+
2−2k + 2−2−2k + 2−1 + 2−2 + 2−4 ≤ 0, which is obviously false. If d− dB + 2 = 1, the inequality is also false.

Case 2. d − d0 = dB − d0 − 2 ≥ 1, namely d = dB − 2 and d0 ≤ dB − 3 = d − 1. The left side of (A.69)
< (5/4)× 2−2 × 2 < 1, so the inequality is true.

Case 3. 0 ≤ d− d0 < dB − d0− 2, namely d0 ≤ d and d ≤ dB − 3. In (A.69), when dB and d+2 are switched, at
the same time kB and k are switched, the inequality is invariant. By this Z2 symmetry, all conclusions drawn from
Case 1 can be transferred to Case 3 after the switching. Q.E.D.

Next consider inequalities (6.24), (6.25), namely

2p+1 +
√
E2

MDS + 2E2
B(2N/∆)2) ≤ N/2d0+1,√

2E2
MDS + E2

B(2N/∆)2 < 2p+1 + 2p,
(A.73)

under the assumption 0 ≤ p ≤ lN − 3. In the first inequality, obviously p+1 < lN − d0− 1, namely d0 < lN − p− 2.
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Lemma 29 Let p ∈ [0, lN−3] be the smallest integer such that integer d0 ≥ 0 exists in (A.73). Denote l0 = lN−dB ,
and denote lp = lN − 2− p ∈ [1, lN − 2]. After p is fixed, let d0 be the biggest integer satisfying the two inequalities.
Then

– If d + 2 < dB , i.e., l > l0, then p = l − 1, d0 = d − 1 or d. d0 = d if and only if either k < 2(dB − d − 2), or
k = 2(dB − d− 2) ≥ kB − 1.

– When d + 2 = dB , i.e., l = l0, if either k = 2, or k = 3 = kB + 1, then p = l − 1, else p = l. In both cases,
d0 = d− 1 = dB − 3.

– If d+ 2 > dB , i.e., l < l0, then p = l0 − 1, and d0 = dB − 3 < d− 1.

In particular, d0 ≥ 0 if and only if dB ≥ 3.

Proof. In power-of-2 binomial bounds, (A.73) becomes

2−2d−4(1− 2−k)2 + 21−2dB (1− 2−kB )2 ≤ (2−d0−1 − 2−lp−1)2,

2−2d−3(1− 2−k)2 + 2−2dB (1− 2−kB )2 < 2−2lp−1(1 + 2−3).
(A.74)

First, we consider the second inequality of (A.74), from which we get the biggest integer lp. The second inequality
can be written as

2−2(d+1−lp)(1− 2−k)2 + 21−2(dB−lp)(1− 2−kB )2 < 1 + 2−3. (A.75)

So −2(d+1− lp) ≤ 0 and 1−2(dB− lp) ≤ 0, namely, lp ≤ min(d+1, dB−1), or equivalently, p ≥ max(l−1, l0−1).
When lp < min(d+ 1, dB − 1), (A.75) is true. When lp = min(d+ 1, dB − 1), there are three cases.

Case 1. d+ 2 = dB , namely l = l0. By lp = d+ 1 = dB − 1, (A.75) becomes

(1− 2−kB )2 < 2−2 + 22−k − 21−2k. (A.76)

It requires k ≤ 3, as the left side ≥ 9/16. When k = 2, the inequality is true. When k = 3, the inequality becomes
21−kB − 2−2kB > 2−2 + 2−5, which is true if and only if kB = 2.

Case 2. d+2 < dB , namely l > l0. By lp = d+1, (A.75) becomes 2−2(dB−d−2)−1(1−2−kB )2 < 2−3+21−k−2−2k,
which is always true because the left side < 2−3.

Case 3. d+ 2 > dB , namely l < l0. By lp = dB − 1, (A.75) becomes 2−2(d+2−dB)(1− 2−k)2 + 2−1(1− 2−kB )2 <
1 + 2−3, which is always true because the left side < 3/4.

In summary, when d+2 ̸= dB , then p = max(l− 1, l0− 1). When d+2 = dB , if either k = 2, or k = 3 = kB +1,
then p = l − 1, else p = l. That 0 ≤ p ≤ lN − 3 requires l0 ≤ lN − 2, namely dB ≥ 2. That l − 1 ≤ lN − 3 is just
d ≥ 0, which is always true.

Next, we find the biggest integer d0 < lN − p− 2 = lp from the first inequality of (A.74) after the value of p is
fixed. There are four cases according to the values of p.

Case 4. d+ 2 = dB , p = l − 1, d0 < lp = dB − 1 = d+ 1. The first inequality of (A.74) becomes

(1− 2−k)2 + 2(1− 2−kB )2 ≤ (2dB−1−d0 − 1)2. (A.77)

When d0 ≤ dB − 3 = d− 1, (A.77) is true. When d0 = dB − 2, (A.77) is false.
Case 5. d+ 2 = dB , p = l, d0 < lp = dB − 2 = d. The first inequality of (A.74) becomes

2−2(1− 2−k)2 + 2−1(1− 2−kB )2 ≤ (2dB−d0−2 − 1)2, (A.78)

which is always true for d0 = dB − 3 = d− 1, because the left side < 3/4.
Case 6. d+ 2 < dB , p = l − 1, d0 < lp = d+ 1. The first inequality of (A.74) becomes

(1− 2−k)2 + 2−1−2(dB−d−3)(1− 2−kB )2 ≤ (2d+1−d0 − 1)2. (A.79)

When d0 ≤ d− 1, (A.79) is true. When d0 = d, (A.79) becomes

2−1−2(dB−d−3)(1− 2−kB )2 ≤ 21−k − 2−2k. (A.80)

It requires −1−2(dB−d−3) ≤ 1−k, namely k ≤ 2(dB−d−2), and is true if k < 2(dB−d−2). If k = 2(dB−d−2),
(A.80) becomes 21−kB − 2−2kB ≥ 2−1−k, which is true if and only if kB ≤ k + 1.

Case 7. d+ 2 > dB , p = l0 − 1, d0 < lp = dB − 1. The first inequality of (A.74) becomes

2−2(d+2−dB)(1− 2−k)2 + 2(1− 2−kB )2 ≤ (2dB−d0−1 − 1)2. (A.81)

When d0 ≤ dB − 3, (A.81) is true. When d0 = dB − 2, (A.81) is false. Q.E.D.
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A.8 Fundamental inequalities on error bootstrapping: the second group

Let di = lN − li − 2. Then (6.33) can be written as√
E2

B + E2
MDS∆

2/(2N × 2d′)2 ≤ ∆/2d
′+di+2. (A.82)

Lemma 30 Let d′ ≥ 0, and let di be the biggest integer satisfying (A.82).

1. If d + d′ < dB − 2, then di = d + 1 or d, and di = d + 1 if and only if either d + d′ < dB − (k + 3)/2, or
d+ d′ = dB − (k + 3)/2 and kB ≤ k + 1.

2. If d+ d′ = dB − 2, then di = d = dB − d′ − 2.
3. If d+d′ > dB−2, then di = dB−d′−1 or dB−d′−2, and di = dB−d′−1 if and only if either d+d′ > dB+(kB−5)/2,

or d+ d′ = dB + (kB − 5)/2 and k ≤ kB + 1.
4. di > 0 if and only if one of the following is true:

– d+ d′ ≤ dB − 2;
– dB + d− 1 > d+ d′ > dB + (kB − 5)/2;
– d+ d′ = dB + (kB − 5)/2 < dB + d− 1, k ≤ kB + 1;
– dB − 2 < d+ d′ < dB − 2 + min(d, (kB − 1)/2);
– d+ d′ = dB + (kB − 5)/2 < dB + d− 2, k > kB + 1.

Proof. In power-of-2 binomial bounds, (A.82) becomes

2−2(dB−d′−di−1)(1− 2−kB )2 + 2−2(d−di+1)(1− 2−k)2 ≤ 1. (A.83)

Then dB − d′ − di − 1 ≥ 0 and d− di + 1 ≥ 0, namely di ≤ min(d+ 1, dB − d′ − 1). If di < min(d+ 1, dB − d′ − 1),
then (A.83) is true. If di = min(d+ 1, dB − d′ − 1), there are three cases.

Case 1. d+ 1 < dB − d′ − 1. Then d′ < dB − d− 2, and di = d+ 1 ≤ dB − d′ − 2. (A.83) becomes

2−2(dB−d′−d−2)(1− 2−kB )2 − 21−k + 2−2k ≤ 0. (A.84)

So −2(dB − d′− d− 2) ≤ 1− k, namely k ≤ 2(dB − d′− d− 2)+1. If k < 2(dB − d′− d− 2)+1, then (A.84) is true.
If k = 2(dB − d′ − d− 2) + 1, (A.84) becomes −21−kB + 2−2kB + 2−1−k ≤ 0, which holds if and only if kB ≤ k + 1.

Case 2. d+ 1 = dB − d′ − 1. Then d′ = dB − d− 2, and di = d+ 1 = dB − d′ − 1. (A.83) is obviously false.
Case 3. d+ 1 > dB − d′ − 1. Then d′ > dB − d− 2, anddi = dB − d′ − 1 ≤ d. (A.83) becomes

−21−kB + 2−2kB + 2−2(d−di+1)(1− 2−k)2 ≤ 0. (A.85)

So kB ≤ 2(d−di+1)+1 = 2(d−dB+d′)+5. If kB < 2(d−dB+d′)+5, then (A.85) is true. If kB = 2(d−dB+d′)+5,
(A.85) becomes 2−1−kB − 21−k + 2−2k ≤ 0, which holds if and only if k ≤ kB + 1.

Finally, in Case 1 and Case 2, obviously di > 0. In Case 3, if di = dB−d′−1, then d+d′ < dB+d−1 is sufficient
for di > 0. If di = dB − d′ − 2, then either dB − 2 < d+ d′ < dB − 2 + (kB − 1)/2, or d+ d′ = dB + (kB − 5)/2 and
k > kB + 1; in both cases, d+ d′ < dB + d− 2 is sufficient for di > 0. Q.E.D.
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