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Abstract

The seminal work of Rabin and Ben-Or (STOC’89) showed that the problem of
secure n-party computation can be solved for t < n/2 corruptions with guaranteed
output delivery and statistical security. This holds in the traditional static model
where the set of parties is fixed throughout the entire protocol execution.

The need to better capture the dynamics of large scale and long-lived computations,
where compromised parties may recover and the set of parties can change over time,
has sparked renewed interest in the proactive security model by Ostrovsky and Yung
(PODC’91). This abstraction, where the adversary may periodically uncorrupt and
corrupt a new set of parties, is taken even a step further in the more recent YOSO
and Fluid MPC models (CRYPTO’21) which allow, in addition, disjoint sets of parties
participating in each round. Previous solutions with guaranteed output delivery and
statistical security only tolerate t < n/3 corruptions, or assume a random corruption
pattern plus non-standard communication models. Matching the Rabin and Ben-Or
bound in these settings remains an open problem.

In this work, we settle this question considering the unifying Layered MPC abstrac-
tion recently introduced by David et al. (CRYPTO’23). In this model, the interaction
pattern is defined by a layered acyclic graph, where each party sends secret messages
and broadcast messages only to parties in the very next layer. We complete the fea-
sibility landscape of layered MPC, by extending the Rabin and Ben-Or result to this
setting. Our results imply maximally-proactive MPC with statistical security in the
honest-majority setting.

∗V. Narayanan was suported by NSF grants CNS-2246355, CCF-2220450, US-Israel BSF grant 2022370,
and by Sunday Group.
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1 Introduction

1.1 Setting

In the problem of secure multi-party computation (MPC) [36, 20, 3, 8, 33] a set of mutually
distrusting parties jointly computes a function of their private data, so that nothing about
their data beyond the output of the function is leaked.

MPC protocols are traditionally designed assuming a static set of n parties, that are
required to stay online throughout the entire protocol execution. Security is guaranteed as
long as up to a threshold of parties are compromised at any point throughout the entire pro-
tocol execution. In this setting, and assuming bilateral secure channels, Ben-Or, Goldwasser
and Wigderson [3] and Chaum, Crepeau and Damgard [9] showed protocols to compute
any function with perfect security against computationally unbounded adversaries corrupt-
ing less than n/3 of the participants. Rabin and Ben-Or [33] showed that if one assumes
ideal broadcast and settles for statistical (security up to some error probability) rather than
perfect security, the resilience can be improved to the optimal threshold of less than n/2.

However, this static-participant model is ill suited for capturing large-scale secure com-
putations. These can be extremely long-lived, making the assumption that servers remain
online throughout the protocol hard to satisfy. For longer applications, it also seems reason-
able to assume that parties that are compromised at some point in the protocol execution
may be able to recover, especially if the corruption capability of the adversary is tied to
some scarce resource. The gap between the reach of traditional models and the needs of
some use-cases has revived interest in the mobile adversary model by Ostrovsky and Yung
[32]. Here, the adversary can corrupt different sets of parties in each round, as long as the
number of per-round corruptions does not exceed a fixed threshold.

Recently, models have been proposed which in addition address the need for a more
dynamic participation of parties: the YOSO [19] and Fluid MPC [11] models. They take
the mobile-adversary model a step further by allowing a different set of n parties (called a
committee) to participate in each round of the computation.

The paper introducing the YOSO model [19] also presented a protocol with statistical
security and guaranteed output delivery against a dishonest minority. However, this protocol
assumes ideal secure channels (with strong properties) between parties that come online
at different times, and the adversary corrupts parties independently and with a constant
probability τ < 1/2. The Fluid model [11] assumes a worst-case corruption model instead,
where the adversary can choose to corrupt any t < n/2 out of the n committee members
in each round. In this case, the original paper only provides protocols that fall short of full
security (guaranteed output delivery) and achieve the weaker notion of security with abort
instead. Recently in [13], the authors showed a protocol for perfect security and guaranteed
output delivery, but tolerating only up to t < n/3 corruptions. In this work, we investigate
this model further in the statistical setting striving for the optimal resilience of t < n/2
corruptions. More concretely, we ask the following question:

Is it possible to solve the MPC problem with statistical security and optimal re-
siliency of n/2 corruptions in the setting of dynamic committees?
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1.2 Contributions

We answer the question in the affirmative. We construct the first MPC protocol with dynamic
committees achieving guaranteed output delivery and statistical security tolerating up to
t < n/2 corruptions per round. We remark that prior works in this setting only tolerate
t < n/3 corruptions or assume non-standard communication and adversary models. See
Table 1 for a comparison and Section 1.3 for a discussion on related work.

We consider the Layered MPC setting that was recently introduced in [13] (this is equiv-
alent to Fluid MPC with maximal-fluidity [11]). This model provides a clean and elegant
framework to treat MPC with dynamic committees. The parties are situated in a layered
communication network which accommodates n parties in each layer. A party in any layer
has access to secure unilateral communication channels that allow them to securely commu-
nicate to each party in the very next layer. Additionally, the party can securely broadcast
messages to all the parties in the very next layer. Thus, the parties in any layer of the net-
work can only receive private or broadcast messages from the parties in the previous layer,
and send private or broadcast messages to the parties in the very next layer. The adversary
is restricted to corrupting a subset of up to t out of n parties in each layer, a specialization
of the notion of general adversary structure [22]. We consider the problem of realizing MPC
over a layered network that allows the parties in the final layer of the network to securely
compute a pre-agreed function of the inputs provided by the parties in the first layer. We
prove the following theorem.

Theorem 1. Let f be an n-party function computed by an arithmetic circuit C of depth d
over a finite field F. Then, for any t < n/2, there is a polynomial-time and polynomial-
communication (in n and |C|) layered protocol over a O(d)-layered network that computes f
with statistical t-security.

This result finally settles the feasibility landscape of optimally-resilient MPC with guaranteed
output delivery in the layered model, complementing analogous results in the settings of
perfect and computational security. Furthermore, as proven in ([13], Lemma 1), layered
MPC implies maximally proactive MPC ([13], Definition 3), so that our result also implies the
existence of a statistically-secure maximally-proactive MPC protocol in the honest majority
setting for a fixed set of n parties.

Corollary 1. Let f be an n-party function computed by an arithmetic circuit over a finite
field F with depth d. Then, for any t < n/2, there is a t-resilient polynomial-time and
polynomial-communication maximally proactive MPC protocol computing f in O(d) rounds
with statistical security.

We provide explicit ideal functionalities for all the primitives we build, and formally reduce
the security of our protocols to the security of their most basic building blocks (like linear
information-theoretic message authentication codes), whose security is captured through
formal definitions. Considering the significant complexity overhead that by design affects
constructions with dynamic committees, we consider this modelling effort a contribution in
its own right.
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1.3 Related Work

Several works use the idea of designing player-replaceable protocols that operate with dy-
namically chosen committees [10, 5, 21] as a way to achieve adaptive security and/or improve
the communication pattern. A broad spectrum of models (e.g., [19, 11]) and variants thereof
[34, 1] have been proposed to accommodate for the notion that may be summarized as
multi-party computation with dynamic committees.

We are inspired by the latest work of [13] presenting the concept of layered MPC and
showing that it is feasible to design MPC protocols that are secure in the perfect setting
against an adversary that may corrupt t parties in each layer and presented implications for
perfect MPC in related models. Also, they provided a result in the computational setting
for t < n/2 but left the question of optimal corruption threshold in the statistical setting
largely unexplored.

Other models in the realm of MPC with dynamic committees have considered the statis-
tical setting:

Fluid MPC [11]. The original work of Fluid MPC presented a protocol secure in statisti-
cal setting with optimal corruption threshold but did not obtain guaranteed output delivery.
Concretely, layered MPC can be viewed as a bare-bones version of the model of maximally
fluid MPC, ignoring some of the desirable add-on features that are part of the fluid MPC
model (e.g., dynamic sampling of parties). As a result of this simplification, layered MPC
does not need a new definition but can be cast as an instance of standard MPC with spe-
cialized adversary structure and interaction pattern.

YOSO MPC [19]. The authors introducing YOSO MPC also presented a protocol in the
statistical setting (aka. IT-YOSO) with optimal corruption threshold t < n/2. But certain
assumptions in the YOSO MPC model make techniques used in IT-YOSO incompatible
with designing protocols in the layered setting. A concrete example is the assumption of
access to idealized communication channels through the role assignment functionality. This
functionality guarantees that messages sent through these channels will arrive at the recipient
in an arbitrary future round. Thus, in contrast to layered MPC, a dishonest sender cannot
change the message while it is traveling to the recipient and is, effectively, committed to its
input. Another example, is the weaker1 probabilistic adversary which changes how protocols
can be designed securely. Consider the VSS protocol in IT-YOSO which relies on a FUPBeacon

functionality to provide unpredictable randomness. Their implementation of FUPBeacon (Sec.
3.11, [19]) has k roles commit (WSS) to an L-bit string, then opens them in sequence and
computes the sum of the correctly opened values. Transforming this protocol directly into the
layered setting (with worst-case corruption) results in a large bias on the output. Finally, we
note that while the techniques in IT-YOSO rely heavily on the properties of role assignment,
it is not known how to realize role assignment without computational assumptions (last

1The term “weak” is to emphasize the difference between random point-corruptions and worst-case cor-
ruptions within committees. In reality, the adversary models are not comparable since only in the YOSO
model does the protocol have the responsibility of sampling committees with the right distribution.
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Maximally Proactive MPC with Dynamic Committees
Functionality Reference Level Security Threshold

VSS
[13] perfect full t < n/3
[4] computational full t < n/4∗

[19] (YOSO) statistical full (w/setup†) t < n/2∗

This work statistical full t < n/2

MPC

[32] perfect full t < n/d
[13] perfect full t < n/3
[13] computational full t < n/2
[19] (YOSO) statistical full (w/setup†) t < n/2∗

[11] (Fluid) statistical w/abort t < n/2
This work statistical full t < n/2

Table 1: Protocols realizing primitives in the most extreme proactive settings. (∗protocol
security relies on the adversary only doing probabilistic corruption, †assumes access to ideal
target-anonymous channels for future messaging)

paragraph - Sec. 1.2.2, [19]). A variant of YOSO, called YOSO with worst-case corruptions
was recently considered in [31, 27] for the concrete problem of randomness generation. This
variant considers a setting where committees are executed in sequence, and the adversary
can corrupt a total of t committees. The works consider the setting where each committee
consists of one single party, and parties have access to committing channels to the future.

We summarize the landscape of relevant results in Table 1, an updated version of the
summary from [13].

2 Technical Overview

2.1 Challenges

An approach that has repeatedly proven successful in the MPC literature is to transform
protocols that provide security with abort into protocols achieving full security, or guaranteed
output delivery. However, popular techniques such as player elimination or dispute control
[23, 2] rely on detecting and excluding pairs of parties when at least one is known to be
corrupted, and then restarting the protocol from a previous step. This method reduces
the number of parties while maintaining the same corruption ratio. Unfortunately, these
techniques are not applicable to the layered setting, where new committees consist of entirely
different parties.

An alternative approach is to build upon sub-protocols, such as verifiable secret sharing,
which tolerate malicious adversaries from the outset. However, the only information-theoretic
protocols that provide guaranteed output delivery in the layered setting [13] are resilient
against t < n/3 corruptions, and the techniques used fail in the honest-majority setting with
t ≥ n/3 corruptions. In particular, the efficient verifiable secret sharing scheme in [13] is
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based on the perfectly secure VSS from Gennaro et al. [17], tailored to the t < n/3 setting.
Conversely, the computational protocol from [13] (see [14] for details) inherently utilizes
linearly-homomorphic cryptographic commitments.

Our construction follows a blueprint first adapted to the setting of dynamic committees
in the original YOSO paper [19] which constructs a protocol with guaranteed output delivery
with less than half random corruptions in each committee (layer). Their construction, as well
as ours, follows the well-known BGW paradigm. Initially, clients in the first layer distribute
their inputs using a verifiable secret sharing scheme. Then, servers in subsequent layers
process the circuit gate by gate; for each gate, servers in consecutive layers compute shares
of the output wire from shares of the input wires of that gate. Ultimately, a layer of clients
holds the output of the circuit.

However, adapting the YOSO protocol to the layered setting presents its own unique
challenges. The protocol outlined in [19] relies on a couple of crucial assumptions. Firstly,
it relies on ideal point-to-point committing channels to the future. These channels allow
parties in any layer to transmit messages to parties in any subsequent layer. More impor-
tantly, when a corrupt party in L0 sends a message to a party in a later layer Lk for k > 1,
the channel does not allow the sender to modify the message in a later layer Lk′ where
k′ > 0. Such channels trivially solve issues arising from rushing and future causal depen-
dency attacks, because a corrupted sender cannot adjust their message based on information
acquired throughout the intermediate layers until Lk. Addressing these attacks across all
the primitives we construct (including our own constructions of channels to future commit-
tees, distributed information-theoretic signatures, distributed commitments) constitutes the
primary challenge in the layered model.

Secondly, the YOSO model assumes that the adversary corrupts parties independently
and at random. To illustrate why this model is weaker, consider an example where an honest
party P ∈ L0 wants to distribute a secret s to the future. For this purpose, P generates
k additive shares s = s1 + · · · + sk and transmits si to Pi ∈ L1. The probability of the
adversary learning s in this scenario is 2−k. In contrast, in our model, the adversary can
simply corrupt the first k parties in L1 and learn the secret with probability 1.

Getting rid of these two strong assumptions requires new techniques. In this section we
go through each of the building blocks for our layered MPC protocol, explaining the main
technical challenges and the novel ideas employed to overcome them.

2.2 Robust Linear Secret Sharing

Our protocol follows the share-evaluate-reconstruct paradigm, so that naturally linear secret
sharing serves as a basic building block. In the t < n/3 setting, even simple secret sharing
schemes (think of Shamir sharing) achieve the important property of robustness : that is, if
the dealer samples the shares honestly, even if an adversary modifies up to t out of n shares,
the original secret can be correctly reconstructed. In our t < n/2 setting, robustness can
also be achieved, but only up to some error probability.

We employ a simple secret sharing scheme that achieves robustness when up to t < n/2
are swapped independently from honest ones, is linear, and only requires a single round for
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reconstruction. The construction follows well-known techniques that date back to Rabin and
Ben-Or or earlier, (also used in [15]) based on linear information theoretic message authenti-
cation codes (MAC) (see Section 3.2 for details). The secretm is shared as (m1, . . . ,mn) using
a plain t-out-of-n secret sharing scheme (such as classical Shamir [35]). Then, each share
m′

i is authenticated using n MAC keys (k1i, . . . , kni) producing MAC tags (t1i, . . . , tni). The
actual shares of the robust scheme are then defined as mi = (m′

i, (ki1, . . . , kin), (t1i, . . . , tni)),
containing the non-robust share m′

i, the tags authenticating m′
i, as well as one key used to

authenticate every other non-robust share m′
j ̸= m′

i. An adversary holding up to t of the
authenticated shares cannot forge MAC tags for the remaining n − t keys, from which the
robustness of the scheme follows. Hence, shares for which only up to t MAC checks succeed,
can be dropped to ensure that only correct shares are used during reconstruction. This
scheme is only linear if the keys for the MACs are sampled according to an appropriate dis-
tribution, and therefore it does not provide linearity among sharings performed by different
dealers. See details in Section 3.3.

Tolerating attacks by a rushing adversary that can modify corrupt shares after having ob-
served the honest ones is also important for later constructions, but achieving this guarantee
is postponed until our future broadcast functionality.

2.3 Future Messaging

This primitive effectively establishes secure channels to future layers. More specifically, future
messaging enables any sender from an initial layer, say layer L0, to transmit a message m to
any receiver in layer Lk for k > 0. If the sender is honest, the view of an adversary corrupting
up to t < n/2 parties in all intermediate layers is independent from m. It is important to
note that this functionality is considerably weaker compared to the channels assumed in the
YOSO model: if the sender is corrupted, the adversary can alter the message until the final
layer Lk. This is in contrast to the channels assumed in YOSO, where the adversary must
fix the message at the time of transmission, independently from their view in later layers.

When sender and receiver are in adjacent layers (case k = 1), they can simply communi-
cate via the provided point-to-point secure channels. When sender and receiver are separated
by exactly one layer of parties (case k = 2) future messaging reduces to the problem of one-
way secure message transmission (SMT) [16]. In this special case, an easy solution is for the
sender to distribute a t-out-of-n robust secret sharing of m to layer L1, so that each party
in this layer holds a distinct share. Then, each party in layer L1 forwards their share to the
receiver in layer L2, who reconstructs the secret. In this last step, it is crucial that the recon-
struction procedure of the secret sharing scheme is non-interactive. Since all communication
happens between parties in adjacent layers, we can take advantage of the provided secure
point-to-point channels. Note that, because the receiver is honest (we are not interested in
providing any security guarantees for corrupted receivers), we are in the best-case scenario
outlined above: the adversary can modify corrupt shares but only independently from the
honest ones. Therefore, the receiver can recover the message m thanks to the robustness of
the secret sharing scheme.

The general case (k > 2) is tackled recursively: the robust secret sharing of the message
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is distributed by the sender towards some intermediate layer Lk′ for 0 < k′ < k. The shares
are then forwarded by parties in layer Lk′ to the receiver in layer Lk. However, if k

′ ≥ 2 or
similarly if k − k′ ≥ 2, we cannot take advantage of provided point-to-point channels. To
overcome this problem, each share is treated by the sender as a new message for a receiver in
layer Lk′ , and the procedure is iterated in a recursive fashion, with the base of the iteration
being resolved by making use of point-to-point channels between adjacent layers. Choosing
k′ = ⌊k

2
⌋ results in O

(
(C ·n)log(k)

)
communication complexity for a small constant C, so that

as long as the sender and receiver are separated by a constant number of layers, as is the
case in all our constructions, the protocol is efficient.

2.4 Future Broadcast

Our secret sharing scheme fails to provide robustness against a rushing adversary. This
primitive achieves this, and in addition it provides an agreement guarantee (hence the name
broadcast) when the sender (dealer) is corrupted: all receivers agree on the same value.

Specifically, future broadcast allows a party in layer L0 to send a message m securely to
a set of recipients in layer Lk. Each honest recipient agrees on the same message m′, even
if the sender is corrupted, and m′ = m when the sender is honest. Moreover, the primitive
allows an auxiliary layer Lk′ for 0 < k′ < k to decide whether to deliver the message m or
not. Future broadcast also guarantees linearity among messages from the same sender: if
Lk′ can deliver messages m1 and m2 from the same sender, it can also deliver any linear
combination am1 + bm2 of these messages. For a single recipient, the difference from future
messaging is that the auxiliary layer can decide whether to reveal the message or not.

In our construction, the dealer samples n independent robust sharings of m and provides
them to Lk′ using future messaging. Then, each of these states are reconstructed towards a
distinct party in a buffer layer. Each party in the buffer layer finally broadcasts the value
they have reconstructed, and a majority decision over all broadcast values is taken. Because
the final decision is over public values, the agreement property follows easily. What is more,
the honest majority in the buffer layer ensures robustness, as all honest parties in the buffer
layer reconstruct the correctm if the sender is honest. Note that it is not enough to distribute
a single sharing to Lk′ and have every party in this layer broadcast their share, because a
rushing adversary sees the shares broadcasted by honest parties before broadcasting corrupt
shares. Our robust secret sharing scheme provides no guarantees in this case. However, it is
easy to observe that if the n sharings of the message m are independent this rushing attack
does not apply for an honest receiver in the buffer layer.

For context, in the non-layered model, our future broadcast protocol effectively realizes a
robust linear secret sharing scheme secure against a rushing adversary, with a reconstruction
procedure consisting of two communication rounds. We did not optimize the efficiency of
our protocol: to share an m-bit secret, the resulting share size is O(n ·m · κ), where κ is the
statistical security parameter. This is to be compared with the most efficient robust protocols
in the non-layered setting [29], where the share size ism+O(κ·log n(log n+logm)). However,
efficient constructions sacrifice the linearity properties crucial in MPC applications, and it
is anyway unclear how to use them in our model, as there is no generic way to adapt their
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interactive reconstruction procedures to the layered setting. In contrast, our construction
is linear, conceptually simple, and secure in the layered setting. Details can be found in
Section 5.

2.5 Information Theoretic Signatures

The future messaging primitives described until now provide no guarantees when the sender
is dishonest. They allow a dishonest sender to correlate their message with the information
learned in the layers previous to (and including) the output layer. As a result, the sender is
not committed to a message until the time of its delivery. Information theoretic signature
(IT signature) takes the first step in the direction of limiting this freedom.

In an IT signature protocol, a sender S ∈ L0 entrusts an intermediary M ∈ Lk with a
signed message which it can securely and verifiably reveal to receiver(s) R in Lk′′ . When
S is honest, the receivers will reject a corrupt M who attempts to reveal a value different
from the sender’s message. When M is honest, a corrupt S is committed to a message when
the protocol reaches a so called auxiliary layer, in that, the states of parties in the auxiliary
layer fix a message m such that receivers output m at the end of the protocol. The protocol
provides no guarantees when both S and M are corrupt: adversary can choose the message
based on its view until the receiving layer.

Our protocol uses the same blueprint as that of the implementation of IT signature in
the YOSO model:

• The sender transfers the signed message to the intermediary.

• The intermediary verifies the validity of the signature with the help of the parties in
the subsequent layers.

• If the signature is verified to be valid, the state held by the intermediary defines a
message that honest receivers will accept. If the signature check fails, the sender is
forced to reveal the actual message to the auxiliary layer, thereby committing to the
message.

• The receivers accept the message if the signature is valid. Since the signed message
is given only to intermediary, if the intermediary is honest the privacy of the sender’s
input is preserved until the message is revealed to the intended receiver.

S with input m computes MAC tags ti,j = Aut(ki,j,m) with respect to keys kij for
i ∈ [n] and j ∈ [κ], where κ is a security parameter. The message along with the MAC tags
effectively constitute a one time signature of the message which is privately communicated
to M ∈ Lk. To enable the verification of the signature, S sends the keys {ki,j}j to Lk+1

so that Pi ∈ Lk+1 receives ki,j for all j ∈ [κ]. We will refer to the parties in this layer as
key-holders.

A corrupt sender may supply malformed signatures which can potentially sabotage the
protocol by having the receivers reject an honest M. To avoid this, M and the key-holders
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check the validity of the MACs provided by S. This is achieved using cut and choose: each
key-holder Pi announces a random subset INDi ⊆ [κ] on which both Pi and the sender
reveal their “versions” of ki,j. The intermediary validates the MAC using the key revealed
by the sender for each j ∈ INDj. If any of the checks fail, M, now convinced that S is
corrupt, complains forcing S to reveal m to parties in layer Lk′ . Otherwise, if some key-
holder Pi’s keys are different from the sender’s, the vote of Pi is counted towards accepting
the intermediary’s message.

The cut and choose protocol ensures that a corrupt S will either be detected by the M
forcing it to reveal the message or every honest key-holder will vote for the intermediary’s
message. To see this, consider any honest key-holder Pi. Consider the event in which the
sender does not disqualify the sender while doing the MAC check for ki,j, j ∈ INDi and
the vote of Pi is not counted towards intermediary’s message. This occurs only if MAC ti,j
sent by the corrupt sender is consistent for all j ∈ INDi and inconsistent for all j /∈ INDi.
Since INDi is chosen uniformly at random unknown to S, this occurs with probability that
is negligible in κ. Thus, an honest M will successfully call out a corrupt S, in which case
S reveals the message during the checking phase, or the message of M will be accepted by
a receiver that accepts the message if a strict majority of key-holders vote for the message.
Finally, a corrupt M that uses a value m′ ̸= m will fail to receive a vote from any of the
honest key-holders by the unforgeability of MAC, causing the receiver to reject the message.

Porting the above blueprint into a layered protocol, we encounter all the inherent chal-
lenges of any framework dealing with dynamic committees (including YOSO). In particular,
the sender cannot be “present” to reveal the keys {ki,j}j∈INDi

after the key-holder Pi broad-
casts the set INDi. Clearly, S has already used up its communication round to send, among
other things, the keys {ki,j}j∈[κ] to key-holder Pi. We solve these challenges in the same way
as all constructions dealing with dynamic committees: parties who need to speak multiple
times cache their messages using future broadcast, and later layers conditionally reveal only
those messages that are required to be opened.

However, the layered model brings up many subtle challenges that are not encountered
in YOSO. It is crucial that the message and MACs are chosen by S before each honest key-
holder Pi reveals their set INDi. Otherwise, a corrupt S can choose the MAC tags ti,j to
be consistent with ki,j for all j ∈ INDi and inconsistent for all j /∈ INDi. Since none of our
communication primitives commit the sender to their messages, this is possible only if the
layer in which the key-holders make their random sets public comes after the layer in which
M is placed. Note, that this is not the case in YOSO: thanks to the assumed channels to the
future, the messages from S to M are fixed at the time of sending. This allows M, to perform
the MAC checks locally after the random sets and the keys in those sets are revealed, and
only speak after this check. In the layered protocol, on the other hand, the MAC checks–a
non-linear operation–need to be carried out by a future layer that learns INDi and has access
to cached values of the message and MAC tags m, ti,j provided by M, as well as the keys ki,j
provided by S. We construct this by having the sender’s keys made public first, and then
using them to securely compute the appropriate linear combination m, ti,j that yields 0 if
and only if the verification succeeds. We crucially use the fact that m is not revealed in this
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secure computation when S and M are honest.
Finally, because the receivers perform the MAC checks using the keys provided by the

key-holders, to ensure security against a dishonest M, it is crucial that the message and
MACs are revealed by M before the keys are revealed. We encountered the same challenge
in future broadcast, and address it similarly: the message and MACs are made public before
the keys are revealed, by adding some “dummy layers”.

2.6 Distributed Commitment

Our information theoretic signature primitive commits a dishonest sender to their input
only when the intermediary is honest. In contrast, the distributed commitment primitive
commits a sender to their input unconditionally, by leveraging the honest majority in each
layer. More specifically, we realize the following functionality: a party from an initial layer
can commit to one (or multiple) values towards many future layers, who can then decide
whether to open (any linear combination of) the committed values. Commitments can be
opened publicly (towards all parties in one layer) or privately towards a single party. The
opening of commitments made by an honest party never fails, but the adversary can prevent
the opening of commitments of dishonest parties.

The protocol we present follows a natural blueprint in which the committer produces a
Shamir sharing of their input, and uses one instance of our information theoretic signature
to sign each share; in this step, it is crucial that the intermediaries involved in the signing
of each share are distinct parties in the same layer: this guarantees that at most t of them
are corrupted, preserving the privacy of the committed message. Furthermore, there are at
least n− t ≥ t + 1 honest intermediaries, and the information theoretic signature primitive
guarantees that their shares will be accepted. Therefore, even if the committer is corrupted,
these t + 1 shares uniquely determine a committed value. By controlling the dishonest
shares, a corrupt dealer can still open the value ⊥, or in other words refuse to open their
commitment. Details are in Section 7.

2.7 Verifiable Secret Sharing

The last ring in this chain of primitives with increasingly strong commitment guarantees is
verifiable secret sharing (VSS). This can be thought of as a distributed commitment primitive
in which even a dishonest committer cannot prevent their commitment from being opened.2

As none of the few VSS constructions in the setting of dynamic committees can be
adapted to the layered setting with t < n/2, we design an entirely new protocol. Our
construction makes black-box use of a linearly homomorphic (for commitments generated by
the same party) distributed commitment primitive to construct a full-fledged VSS. We reduce
the security of VSS to that of the underlying distributed commitment perfectly: meaning

2We are faced with a dichotomy of languages: a VSS protocol can be thought of as a strong distributed
commitment. From this perspective, the party providing input is a committer, producing commitments that
can be opened. More often, the language of secret sharing is used. Here, the party providing input is a
dealer, producing sharings that can be reconstructed. We oscillate between these two abstractions.
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that this construction does not introduce any further error probability. To the best of our
knowledge, this simple black-box compiler is of independent interest even in the non-layered
setting, where parties can send messages in multiple rounds. We provide a description of its
non-layered version below. The layered version of the protocol is presented in Section 8.

An important technical point is that the resulting VSS is homomorphic even across
sharings (commitments) dealt by different dealers, despite the fact that the underlying dis-
tributed commitment protocol is only homomorphic with respect to sharings dealt by the
same dealer. This is crucial in our circuit evaluation protocol. The sharing phase works as
follows.

1. The dealer uniformly samples a random bi-variate polynomial F (x, y) of degree at
most t in each variable conditioned on F (0, 0) = s, and sends to each Pi the vertical
projection F (i, y). The dealer also commits to (all coefficients of) the polynomial
F (x, y) via the distributed commitment primitive.

2. Each Pi commits to (all coefficients of) the received polynomial vi(y) via the distributed
commitment primitive.

3. Using the homomorphism of the distributed commitments, parties privately open to-
wards each party Pj the j-th horizontal projection F (x, j) committed by the dealer,
and the j-th evaluation point vi(j) of every Pi’s committed polynomial.

4. If the private reconstructions do not match, i.e. F (i, j) ̸= vi(j) (or both fail), then Pj

broadcasts a complain message (complain, i, j).

5. For each complaint (complain, i, j) parties publicly open the commitments to the two
points, which we denote F (i, j) from the dealer and vi(j) from Pi. If the dealer’s
opening fails, disqualify the dealer. And if Pi’s opening does not match the dealer’s
point (or fails), then add Pi to a global set I of parties, and publicly open the projection
F (i, y). The dealer is disqualified if |I| > t.

If the dealer is not disqualified, each party Pi /∈ I has a committed polynomial vi(y)
which is the same as the vertical projection of the polynomial F ′(x, y) committed by the
dealer in the first step. If this was not the case, the two polynomials would differ in at least
t+1 points, and therefore one honest party Pj would have complained in Step 4, a complaint
that would have led to including Pi to the set I, a contradiction. Moreover, if the dealer
is honest, it is easy to see that F ′(x, y) = F (x, y). Further note that the sharing phase
is homomorphic across different dealers, since the distributed vertical polynomials used for
reconstruction are dealt by each of the recipients, or publicly known.

To ensure reconstruction (i.e. to open the dealer’ commitment), parties simply open the
vertical projections committed by each Pi /∈ I, and use any t+ 1 polynomials

{vi1(y), . . . , vit+1(y)} (1)

that are either reconstructed in this step, or were revealed in Step 5, to interpolate the
original secret.
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2.8 Multi-Party Computation

The circuit evaluation protocol proceeds gate-by-gate, with gates in the same layer of the
circuit being evaluated in parallel. We maintain the following invariant: there is layer of
parties, say L0, holding a state encoding the input values a and b for each gate g in a certain
level of the circuit C and a layer Lk holding a state encoding the output of g. The state
encoding an input value a to a gate g has three components:

1. A (t, n)-Shamir sharing of a: each party P 0
i ∈ L0 holds share ai = fa(i).

2. A (t, n)-Shamir sharing of a random value r, which is wasted to compute multiplication
gates. This can be easily achieved using our VSS protocol, by letting all parties in a
layer verifiably share a random value and taking the sum.

3. Verifiable sharings (aka commitments) to the coefficients of the polynomial fa(x) used
for the Shamir Sharing of a.

Input Gates. Each client needs to produce the state described above (encoding their
input) towards the layer tasked with computing the first level of gates in the circuit. To
achieve this, a client with input m simply commits via VSS towards two different layers to
each coefficient of a degree t polynomial f(x) with f(0) = m. Then, the intermediary layer
reconstructs each f(i) (exploiting the linearity of the VSS) towards party Pi in the second
layer.

Addition Gates. Since the invariant state is linear, addition gates can be performed
locally. However, as captured by the parallel functionality FVSS in Section 8, our VSS only
allows to add sharings made by dealers in the same layer. The evaluation of multiplication
gates, on the other hand, requires several rounds of interaction. We need the output of the
addition gates to also be processed in the same number of rounds, and to avoid introducing
extra machinery, we simply multiply the output of each addition gate by 1.

Multiplication Gates. The multiplication follows the classical blueprint of [18], adapted
to the layered setting and the described state invariant. Suppose that layer L0 holds the
states for the inputs a and b of the multiplication gate g. Each party P 0

i locally multiplies
their Shamir shares to compute ci = ai · bi. To reproduce the state for the value ci, the party
simply performs the client input routine described above. Note that c = a · b is a linear
combination of the ci’s, so to compute the invariant state for c it is enough that the parties
produce correct states for each ci.

To show that the party P 0
i actually produced a state for the right value ci, the party pro-

vides a distributed zero-knowledge proof. Assume that the commitments to the coefficients
of fa(x) and fb(x) are also available towards any auxiliary layer Lk′ for 0 ≤ k′ ≤ k. Then,

P 0
i produces new verifiable secret sharings to âi, b̂i and ĉi, and proves towards parties in Lk′ :

1) that âi = ai, 2) that b̂i = bi, and 3) that âi · b̂i = ĉi. If the proof fails, parties in Lk′ simply
reveal values ai and bi to parties in layer Lk.
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For the proof of equality, party P 0
i verifiably shares r̂i towards all future layers until Lk.

Then, parties in some later layer (who also hold commitments to ai, ri and âi) sample a
public common random value ρ, and the values ri + ρai and r̂i + ρâi are opened publicly. If
they are different, the proof fails. Note that if ai ̸= âi or ri ̸= r̂i, there is only one value ρ
that makes the proof succeed.

The proof of correct multiplication showing âi · b̂i = ĉi is an adaptation from [12]. For
this, party P 0

i samples a random value β and verifiably shares β and bβ. Now, parties in

some later layer (who also hold commitments to âi, b̂i and ĉi) sample a random value ρ, and
publicly open the value ρ′ = ρa + β. Finally, a later layer publicly opens and checks that
ρ′b− bβ − rc = 0. Note that if âi · b̂i ̸= ĉi, only one value ρ makes the proof succeed, which
happens with negligible probability. See details in Section 10.

3 Preliminaries

3.1 Model

A layered MPC protocol can be viewed as a special case of standard MPC with a general
adversary structure, specialized in the following way: 1) the interaction pattern is defined
by a layered graph, and 2) the adversary can corrupt at most t parties in each layer.

Definition 1 (Layered Protocol). Let n, t, d be positive integers. An (n, t, d)-layered protocol
is a synchronous protocol Π over secure point-to-point channels and a broadcast channel, with
the following special features.

• Parties. There are N = n(d + 1) parties partitioned into d + 1 layers Li, 0 ≤ i ≤ d,
where |Li| = n. Parties in the first layer L0 and the last layer Ld are referred to as
input clients and output clients, respectively.

• Interaction pattern. The interaction consists of d rounds, where in round i parties
in Li−1 may send messages to parties in Li over secure point-to-point channels. We
additionally allow each party in Li−1 to send a broadcast message to all parties in Li.

• Functionalities. We consider functionalities f that take inputs from input clients
and deliver outputs to output clients.

• Adversaries. We consider adversaries who may corrupt any number of input and
output clients, and additionally corrupt t parties in each intermediate layer Li, 0 <
i < d. We consider active, rushing and non-retroactive adaptive adversaries3.

We say that a protocol Π is a layered protocol for F if it UC-realizes F in the setting of general
adversary structures [7, 6, 22]. We consider statistical security (with guaranteed output
delivery) where κ denotes the security parameter and F is a finite field of size 1/negl(κ).

3For simplicity, we consider the notion of “non-retroactive” (see [11], Definition 3) adaptive adversaries,
who chooses at each round r a set of up to t parties from layer Lr to corrupt. Since our protocols are
information-theoretic, we conjecture that they are also secure against the stronger notion of retroactive-
adaptive adversaries that can corrupt parties in previous layers.
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3.1.1 A Note on Synchronous Universal Composability

We are interested in realizing functionalities f that take input from the input clients in layer
L0 by default and deliver outputs to the output clients in the last layer (layer Lk) of a layered
network. We develop a synchronous protocol for computing general functionalities in the UC
model. The standard UC model is asynchronous by default, but there have been a number
of works that modeled synchronous universally composable frameworks [25, 7, 30, 24, 28],
and our protocols can be described in any of those models. Very roughly, typically one
considers a functionality that keeps track of the current round number and synchronizes the
activation pattern. For example, in [25], parties have access to a clock functionality in the
real world, and can query it to learn the current round number. The clock then advances
only when all honest parties have queried the functionality (this ensures that honest parties
remain synchronized throughout the protocol). The ideal functionality then keeps track
of the activation pattern and also advances a round whenever a round-robin of activations
happen. For simplicity and ease of exposition, our descriptions omit the clock and it is
understood that protocols and ideal functionalities know the current round number.

3.1.2 On Ideal Broadcast Channels

Without assuming broadcast, information theoretic MPC for general functionalities is prov-
ably impossible for t ≥ n/3 [26]. In the original layered abstraction, the ideal broadcast
channels are only available between parties in immediately adjacent layers. However, while
describing our constructions, we always assume that broadcast messages from a certain layer
are available to parties in all later layers (but only actually need these messages up to a
constant number of layers in the future). This is without loss of generality, as in the honest
majority setting broadcast messages can be propagated through layers via bilateral channels
and sequential majority decisions, at the price of an additional quadratic factor in commu-
nication.

3.2 Statistical Message Authentication Codes

3.2.1 Definitions

Definition 2. A message authentication code (MAC) is a couple (Aut,Vfy) where Aut :
M×K → T and Vfy : T ×M×K → {0, 1} are efficient algorithms such that

Vfy(Aut(m, k),m, k) = 1 (2)

for all m ∈M and all k ∈ K.

Definition 3. Let D be a distribution on Kℓ. We say that a MAC scheme is D-linear ifM,
K and T are F-vector spaces and for all ℓ ∈ N, for keys (k1, . . . , kℓ) ←D Kℓ, all messages
(m1, . . . ,mℓ) ∈Mℓ, and all linear functions L : Fℓ → F it holds that

Vfy
(
L(k1, . . . , kℓ), L(m1, . . . ,mℓ), L (Aut(k1,m1), . . . ,Aut(kℓ,mℓ))

)
= 1. (3)
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Security. Let D be a distribution on Kℓ and let (Aut,Vfy) be a D-linear MAC scheme.
Consider the following game.

Game CorrForge
(Aut,Vfy)
D,q

– Sample (k1, . . . , kℓ)←D K;

– A can make up to q ≤ ℓ queries (m1, j1), . . . , (mq, jq) ∈ M × [ℓ] and receive the
corresponding tags ti = Aut(mi, kji);

– A provides a triple (m′, t′, L) where m′ ∈M, t′ ∈ T and L : Fq → F.

– The game output is 1 if and only if Vfy
(
t′,m′, fL(kj1 , . . . , kjq)

)
= 1 and m′ ̸=

L(m1, . . . ,mq).

Notice that one could extend the game to allow A to make multiple queries for different
messages under the same key. Since in our protocols A can never observe multiple MAC
tags for different messages under the same key, we only present simpler constructions and
we do not find it necessary to do things in full generality. Let AdvCorrForgeD,q (A) denote the

probability that the output of the game CorrForge
(Aut,Vfy)
D,q (A) is 1.

Definition 4. A D-linear MAC (Aut,Vfy) is statistically (D, q, ε)-unforgeable if for all ad-
versaries A it holds that AdvCorrForgeD,q (A) ≤ ε.

3.2.2 Construction of a Secure MAC

Let F be a finite field. Let = T = F and K = F2. We define

Aut : F× F2 → F(
m, (α, β)

)
7→ α ·m+ β.

(4)

Let A,B1, . . . , Bℓ be independent uniform random variables on F. Consider the distribution
D of

(
K1, . . . , Kℓ

)
where Ki = (A,Bi).

Lemma 1. The MAC scheme (Aut,Vfy) from equation (4) is D-linear: for a linear function
L : Fℓ → F we have fL

(
(α, β1), . . . , (α, βℓ)

)
= (α,L(β1, . . . , βℓ)).

Proof. For all α, β1, . . . , βℓ ∈ F, for all m1, . . . ,mℓ ∈ F we have

Aut
(
(α, β1),m1) + · · ·+ Aut((α, βℓ),mℓ

)
=

αm1 + β1 + · · ·+ αmℓ + βℓ =

α(m1 + · · ·+mℓ) + (β1 + · · ·+ βℓ) =

Aut
(
(α, β1 + · · ·+ βℓ),m1 + · · ·+mℓ

)
=

Aut
(
fL

(
(α, β1), . . . , (α, βℓ)

)
, L(m1, . . . ,mℓ)

)
.

(5)
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Lemma 2. The MAC (Aut,Vfy) from equation (4) is statistically (ℓ, 1/|F|)-unforgeable under
D-correlated keys.

Proof. For clarity we prove the statement for ℓ = 2, the general case follows by induction on
ℓ. Let (k1, k2) ←D F2. Let m1,m2 ∈ F, and let ti = Aut(mi, kji) ∈ F for i ∈ 1, 2.4 For all
linear functions L : F2 → F, all m′, t′ ∈ F such that m′ ̸= L(m1,m2) we have

Pr
[
Vfy

(
(fL(k1, k2),m

′, t′
)
= 1 | Aut (k1,m1) = t1 ∧ Aut (k2,m2) = t2

]
=

Pr [αm′ + L(β1, β2) = t′ | β1 = t1 − αm1 ∧ β2 = t2 − αm2]

=Pr [αm′ + L(t1 − αm1, t2 − αm2) = t′]

=Pr
[
α ·

(
m′ − L(m1,m2)

)
+ L(t1, t2) = t′

]
=Pr

[
α =

t′ − L(t1, t2)

m′ − L(m1,m2)

]
=

1

|F|
.

(6)

This shows that for all adversaries A and all possible transcripts t the probability that an
adversary wins the game given a certain transcript is at most 1/|F|. Therefore we have

Pr
[
CorrForge

(Aut,Vfy)
D,ℓ (A) = 1

]
=
∑
t

Pr
[
CorrForge

(Aut,Vfy)
D,ℓ (A) = 1 | t

]
· Pr [t]

≤ 1

|F|
∑
t

Pr[t] =
1

|F|

(7)

3.3 Statistical Robust Secret Sharing Schemes

3.3.1 Definitions

Definition 5. (Linear Secret Sharing) A D-linear (t, n)-secret sharing scheme over a F-
vector spaceM is a tuple (Sh,Rec) of algorithms such that

- Sh(s, r) → (s1, . . . , sn) that takes as input a message s ∈ M and randomness r ∈ R
and outputs shares (s1, . . . , sn) ∈ Sn where the F-vector space S is referred to as the
share space.

- Rec(s1, . . . , sn) → s′ takes as input an element (si1 , . . . , sit+1) ∈ St+1 and outputs a
message s′ ∈M.

- (Privacy) For all random variables S on S and uniform random variable R on R,
and for all subsets I ⊆ [n] such that |I| ≤ t we have

S ∼
(
S |

(
Sh(S,R)i

)
i∈I

)
. (8)

4We can assume without loss of generality that ji = i since the distribution D is symmetric.
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- (Correctness and D-Linearity) Assume thatM and S are F-vector spaces and let
D be a distribution on Rℓ. We require that for all s1, . . . , sℓ ∈ M, r1 . . . , rℓ ←D Rℓ,
and all linear functions L : Fℓ → F we have

Rec
(
L
(
Sh(s1, r1)i1 , . . . , Sh(sℓ, rℓ)i1

)
,

. . . ,

L
(
Sh(s1, r1)it+1 , . . . , Sh(sℓ, rℓ)it+1

))
=

L(s1, . . . , sℓ).

(9)

Notice that when L is simply the projection onto the k-th component, if the support of
each marginal distribution of D is the entire set R then we get the typical correctness
property of secret sharing, that is for all s ∈ S and r ∈ R

Rec
(
Sh(s, r)i1 , . . . , Sh(s, r)it+1

)
= s. (10)

We want to define a notion of robustness for secret sharing, ensuring that even when an
adversary can maliciously modify some of the shares of a well-formed sharing, the reconstruc-
tion procedure still outputs the intended value. This should still hold when an adversary is
given access to a subset of shares of multiple secrets computed under correlated keys. Let
D be a distribution on Rℓ for some ℓ ∈ N. Let (Sh,Rec) be a D-linear (t, n)-secret sharing
scheme with secret spaceM and randomness space R. Consider the following security game,
where q ≤ ℓ.

Game Rob
(Sh,Rec)
D,q (A)

1. A picks secrets s(1), . . . , s(q) ∈M.

2. Sample r1, . . . , rq ←D R, compute (s
(i)
1 , . . . , s

(i)
n ) = Sh(s(i), ri) for i ∈ [q].

3. A picks an index i ∈ [n] and is given shares
(
s
(1)
i , . . . , s

(q)
i

)
. Repeat this step at

most t times. Let I denote the set of indices queried by A.

4. A picks a vector (s′i)i∈I and a linear function L : Fq → F.

5. Let

ŝi =

{
L
(
s1i , . . . , s

(q)
i

)
if i /∈ I,

s′i if i ∈ I.
(11)

Return 1 if and only if Rec(ŝ1, . . . , ŝn) ̸= L
(
s(1), . . . , s(q)

)
.

Definition 6 (Robust Secret Sharing). We say a D-linear (t, n)-secret sharing scheme
(Sh,Rec) is (D, q, ε)-robust if for all adversaries A it holds that

Pr[Rob
(Sh,Rec)
D,q (A) = 1] ≤ ε. (12)
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Observe that this security game only captures attacks where the adversary modifies
corrupted shares independently from the remaining honest shares. By allowing interactive
reconstruction procedures, even in the t < n/2 setting it is possible to achieve a stronger
security notion, tolerating attacks in which the corrupt shares are chosen after having seen
all the honest shares. Indeed, our future broadcast protocol from Section 5 can be shown to
satisfy this stronger guarantee. However, since we capture the security of future broadcast
via a stronger simulation-based definition, we do not treat such a security notion separately
here.

3.3.2 Construction of a Robust Secret Sharing Scheme

Consider a D′-linear (q, ε)-secure MAC system (Aut,Vfy) with message spaceM, key space
K and tag space T , as well as a U -linear5 (t, n)-secret sharing scheme (Sh,Rec) with secret
spaceM, randomness space R and share space S. Consider the following couple of efficient

algorithms (AuthShare,AuthRec). Let s ∈M and r =
(
K, r′

)
∈ Kn2 ×R.

Robust Secret Sharing

Sharing Algorithm AuthShare(s, r)

Given message and randomness (s, r) as inputs do:

–

K =

k11 . . . k1n
...

. . .
...

kn1 . . . knn.

 . (13)

– (s′1, . . . , s
′
n)← Sh(s, r′).

– Compute the following MAC tags:

T =

t11 . . . t1n
...

. . .
...

tn1 . . . tnn

 =

Aut (k11, s
′
1) . . . Aut (k1n, s

′
n)

...
. . .

...
Aut (kn1, s

′
1) . . . Aut (knn, s

′
n)

 (14)

– si ← (s′i, (k11, . . . , k1n), (t11, . . . , tn1)).

– Output (s1, . . . , sn).

Reconstruction Algorithm AuthRec(s, r)

Given shares (ŝ1, . . . , ŝn) as input do:

5By U we denote the uniform random distribution on Rℓ.

21



– Accept a share ŝi if and only if

|{j ∈ [n] | Vfy (tij, si, kij) = 1}| ≥ t+ 1. (15)

– Let G denote the set of indices of the first t + 1 accepted shares. Output s′ =
Rec((ŝi)i∈G).

Lemma 3. Let D be the distribution (D′,U) on R′ = Kn2 ×R. Then (AuthShare,AuthRec)
is a D-linear (t, n)-secret sharing scheme with message space M′ =M, randomness space
R′ and secret space S ′ = S × Kn × T n.

Proof. D-linearity follows from direct computation applying the D′-linearity of (Aut,Vfy)
and U -linearity of (Sh,Rec). Similarly, privacy and correctness follow from the corresponding
properties of the underlying schemes.

Lemma 4. If (Sh,Rec) is a U-linear (t, n)-secret sharing scheme and (Aut,Vfy) is a (D′, q, ε)-
secure MAC scheme, then (AuthShare,AuthRec) is a (D, q, δ)-robust secret sharing scheme
where D = (D′,U), that is

Pr[Rob
(AuthShare,AuthRec)
D,q (A) = 1] ≤ ε · tn. (16)

Proof. First, we provide some intuition. Let I denote the set of shares corrupted by A
in Rob

(AuthShare,AuthRec)
D,q (A). Consider the event that for some i ∈ I a wrong share ŝi ̸=

L
(
s(1), . . . , s(q)

)
is accepted in AuthRec. Clearly, this event can only occur if at least t+ 1 of

the MAC tags tij of s
′
i (recall that s

′
i is composed of a proper share s′i as well as n of MAC

tags and n MAC keys) pass verification under the corresponding linear combination L of

keys contained in shares s
(1)
j , . . . , s

(q)
j . Since |I| ≤ t then at least for one j the corresponding

linear combinations of keys is not known to the adversary. This should violate security of the
MAC scheme. We formalize this argument by providing an appropriate reduction: given an
adversary A such that Rob

(AuthShare,AuthRec)
D,q (A) ≥ ε we produce an adversary A′(A) against

CorrForge
(Aut,Vfy)
D′,q (A′) ≥ ε

nt
. The adversary A′ needs to simulate the game Rob

(AuthShare,AuthRec)
D,q

for A. Upon receiving queries s(1), . . . , s(q) from A, for all j ∈ [q] adversary A′ samples

r(j) ←U R uniformly at random and computes
(
s
′(j)
1 , . . . , s

′(j)
n

)
← Sh

(
s(j), r(j)

)
for all j ∈

[q]. Then, adversary A′ queries CorrForge
(Aut,Vfy)
D′,q with s

′(1)
1 , . . . , s

′(q)
1 receiving MAC tags

t(1), . . . , t(q). After this, for all i, j ∈ [n] the adversary A′ samples keys
(
k
(1)
i,j , . . . , k

(q)
i,j

)
←D′ K

and computes6

T (i) =


t(i) . . . Aut

(
k
(i)
1,n, s

(i)
n

)
...

. . .
...

Aut
(
k
(1)
n,1, s

(1)
)

. . . Aut
(
k
(i)
n,n, s

(i)
n

)
 . (17)

6The position of tag t(i) in the matrix must actually be chosen uniformly at random (the same for all
i ∈ [q]). However, to keep notation simple, we put in position (1, 1) of the matrix but assume its position to
be uniformly random in later analysis.
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Now, adversary A′ computes s
(i)
j ←

(
s
′(i)
j ,

(
k
(i)
j,1, . . . , k

(i)
j,n

)
,
(
t
(i)
1,j, . . . , t

(i)
n,j

))
for all j ̸= 1

and all i ∈ [q] and then receives up to t indices as queries from A. Upon being queried

index i ∈ [n] from A, adversary A′ gives shares
(
s
(1)
i , . . . , s

(q)
1

)
to A, and continues an-

swering the queries. If A queries index j = 1, then A′ answers with fixed messages all
remaining queries of A and sets the output of Rob

(AuthShare,AuthRec)
D,q (A) to 0. Otherwise let

I ⊆ [n] denote the set of indices queried by A with 1 /∈ I. Now adversary A′ receives the
last query

(
L, (si)i∈I

)
from A. Let ℓ ←$ I. Recall the description of each corrupt share

si =
(
s′i,

(
ki,1, . . . , ki,n

)
,
(
t1,i, . . . , tn,i

) )
. Adversary A′ makes the forgery query

(
L, s′it1,i

)
to Rob

(AuthShare,AuthRec)
D,q . The output of Rob

(AuthShare,AuthRec)
D,q (A) is taken to be the output of

CorrForge
(Aut,Vfy)
D′,q (A′). Let bad denote the event that 1 ∈ I. We have

Adv
CorrForge

(Aut,Vfy)

D′,q (A′) =

Pr
[
CorrForge

(Aut,Vfy)
D′,q (A′) = 1

]
=

Pr
[
CorrForge

(Aut,Vfy)
D′,q (A′) = 1 | bad

]
Pr[bad]

+Pr
[
CorrForge

(Aut,Vfy)
D′,q (A′) = 1 | ¬bad

]
Pr[¬bad] =

Pr
[
CorrForge

(Aut,Vfy)
D′,q (A′) = 1 | ¬bad

]
Pr[¬bad] =

Pr
[
CorrForge

(Aut,Vfy)
D′,q (A′) = 1 | bad

]
· (n− t)

n
=

Pr
[
Vfy

(
L
(
k(1), . . . , k(q)

)
, s′i, t1,i

)
= 1 | ¬bad

]
· (n− t)

n
.

(18)

Now, observe that if ¬bad occurs, then the view of A in the simulated game is the same as in
a real instance of Rob

(AuthShare,AuthRec)
D,q (A). If A wins a real instance of the game, then it has

forged the MAC tags in the corrupted shares (this is clear by inspection AuthRec function).
Let (ŝi)i∈I denote the corrupted shares. A simple avaraging argument shows that for all
j /∈ I and all i ∈ I

Pr
[
Vfy (kj,i, s

′
i, ti,j) = 1 | Rob(AuthShare,AuthRec)D,q (A) = 1

]
·Pr[Rob(AuthShare,AuthRec)D,q (A) = 1] ≥

ε

t(n− t)
,

(19)

which combined with equation (18) yields

Adv
CorrForge

(Aut,Vfy)

D′,q (A′) ≥ ε

t(n− t)
· (n− t)

n
=

ε

tn
. (20)
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Consider a (D, q, δ)-robust secret sharing scheme (AuthShare,AuthRec). Such a scheme
allows for efficient patching if for (s1, . . . , sn) ← AuthShare (s, r) where s ∈ M and r ∈ D
and any subset I with |I| ≤ t, there exists a polynomial time computable function G such
that for any s′ ∈M where s ̸= s′, it holds that

AuthRec
(
G(s, r, I, s′), (sj)j∈I

)
= s′. (21)

That is, it is possible to explain the shares of any subset of size |I| ≤ t as the shares of any
secret s′ ∈M.

Lemma 5. (AuthShare,AuthRec) is amenable to efficient patching.

Proof. Consider the shares (s1, . . . , sn) ← AuthShare (s, r) where s ∈ M and r ∈ D. We
present a proof by construction of the patching function G. On input (s, r, I, s′), G first
obtains the aforementioned shares (s1, . . . , sn) where si = (ŝi, (ki,1, . . . , ki,n) , (t1,i, . . . , tn,i)).
We may assume that the underlying secret sharing scheme (Sh,Rec) is amenable to patching.
That is, there exists an efficient function that on input (s, r, I, s′), outputs a value r′ with
the following properties: (1) r′ is uniformly random in D given s′ and (2) (by construction)
is the value where (ŝ′1, . . . , ŝ

′
n) ← Sh(s′, r′) such that ŝ′i = ŝi for all i ∈ I. What remains

is to recompute tags t1,i, . . . , tn,i for each share si where i /∈ I such that t′j,i ← Aut (kj,i, ŝ
′
i).

Finally, G outputs the final patched shares (s′i)i/∈I where

s′i ←
(
ŝ′i, (ki,1, . . . , ki,n) ,

(
t′1,i, . . . , t

′
n,i

))
. (22)

By inspection of the above construction, G runs in polynomial time and for any D-linear
combination of shares the same constructive approach is applicable.

4 Future Messaging

4.1 Future Messaging Functionality

As discussed in the technical overview, a basic challenge in the layered setting is for a party
in a layer L0 to communicate securely with parties in a later layer Lk for k > 0. If k = 1,
communication happens via provided point-to-point secure channels. However, if k ≥ 2
secure channels must be emulated via an appropriate layered protocol. Our parallel future
messaging functionality allows each party in layer L0 to send a message to each party in a
layer Lk for any k ≥ 1. We remark that the guarantees provided by the functionality are
quite weak, as the adversary is allowed to fix the messages from corrupted parties in L0

to honest parties in Lk after having received the messages sent by honest parties in L0 to
corrupted parties in Lk.

The parallel functionality we describe below is the strongest functionality that can be
obtained by composing our protocol for a single sender and receiver in parallel, due to the
rushing attacks we just described.
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Parallel Future Messaging Functionality Fk
FutureMsg

Public Parameters. Senders S1, . . . ,Sn ∈ L0, receivers R1, . . . ,Rn ∈ Lk where k ≥ 1.
The domain Mi,j of message from Si to Rj.

Secret Inputs. For each Si messages mi,j ∈Mi,j for j ∈ [n] to be sent to each Rj.

Layer L0:
• For each honest Si ∈ L0 \I0 and each Rj ∈ Lk, receives message mi,j from Si to Rj.

Layer Lk:

• For each honest Si ∈ L0 \ I0 and corrupt Rk ∈ Ik, forward mi,j to the (ideal)
adversary.

• For each corrupt Si ∈ I0 and each Rj ∈ Lk, receive from the (ideal) adversary the
message mi,j that Si wants to send to Rj.

• For each Si ∈ L0 and Rj ∈ Lk, send mi,j to Rj as message from Si.

4.2 Future Messaging Protocol

We give a formal description of the protocol outlined in Section 2.3 realizing functionality
Fk

FutureMsg. The security of the protocol, captured by Lemma 6, is proven in Section 4.3. The
protocol crucially relies on a (D, t, negl(κ))-robust (t, n)-secret sharing scheme. One such
scheme is described in Section 3.3.

Parallel Future Messaging Protocol Πk
FutureMsg

Public Parameters. Senders S1, . . . ,Sn ∈ L0. Receivers R1, . . . ,Rn ∈ Lk. The domain
Mi,j of message from Si to Rj.

Secret Inputs. From Si a message mi,j ∈Mi,j to be sent to Rj for i, j ∈ [n].

Resources. A (D, t, negl(κ))-robust (t, n)-secret sharing scheme (Sh,Rec); functionalities
Fk′

FutureMsg and Fk−k′

FutureMsg for some k′ ∈ [k − 1].

Layer L0: Each Si ∈ L0 samples ri,j ←$ R, computes

(m1
i,j, . . . ,m

n
i,j)← Sh(mi,j, ri,j) (23)

for all j ∈ [n], and sets (mℓ
i,1, . . . ,m

ℓ
i,n) as the message a to P k′

ℓ in functionality Fk′

FutureMsg.
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Layer Lk′: Each P k′

ℓ ∈ Lk′ receives (from Fk′

FutureMsg) values m̂ℓ
i,j for all i ∈ [n] and

j ∈ [n], and sets the message mℓ,j to Rj in Fk−k′

FutureMsg to be the vector

mℓ,j = (m̂ℓ
1,j, . . . , m̂

ℓ
1,j). (24)

Layer Lk: Each Rj computes their output

mi,j ← Rec
(
m1

i,j, . . . ,m
n
i,j

)
(25)

for all i ∈ [n], where
(
mℓ

1,j, . . . ,m
ℓ
n,j

)
is the message from P k′

ℓ to Rj in Fk−k′

FutureMsg.

aThe set Mi,ℓ in Fk′

FutureMsg is set large enough to accommodate (mℓ
i,1, . . . ,m

ℓ
i,n).

4.3 Future Messaging Security

Lemma 6. If (Sh,Rec) is a (D, t, negl(κ))-robust (t, n)-secret-sharing scheme, then for any
k′ ∈ [k − 1] the (n, t, k)-layered protocol Πk

FutureMsg realizes functionality Fk
FutureMsg with

(negl(κ), t)-statistical security in the
(
Fk′

FutureMsg,Fk−k′

FutureMsg

)
-hybrid model.

Proof. For any adversary A we describe a simulator σ such that the joint distribution of
the outputs of the adversary and honest parties in the real (hybrid) world (the adversary A
interacting with protocol Πk

FutureMsg and functionalities Fk′

FutureMsg,Fk−k′

FutureMsg) is statistically

close to that in the ideal world (the simulator σ interacting with functionality Fk
FutureMsg).

We will show that if this statistical distance is non-negligible, then we can produce an adver-
sary A′(A) that wins game Rob

(Sh,Rec)
D,q with non-negligible probability, therefore reducing the

security of Πk
FutureMsg in the

(
Fk′

FutureMsg,Fk−k′

FutureMsg

)
-hybrid model to the (D, ℓ, δ)-robustness

of (Sh,Rec). First, given any adversary A interacting with protocol Πk
FutureMsg and function-

alities Fk′

FutureMsg,Fk−k′

FutureMsg we describe the simulator σ.

Simulator σ(A) for protocol Πk
FutureMsg

Layer L0:
- For each honest Si /∈ I0 sample ri,j ←$ R for j ∈ [n];

- For each honest Si /∈ I0 compute(
m̂1

i,j, . . . , m̂
n
i,j

)
← Sh(0, ri,j) (26)

for j ∈ [n].a

Layer Lk′:
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- For each corrupt P k′

ℓ ∈ Ik′ send to A values m̂ℓ
i,j for all honest Si /∈ I0 and j ∈ [n]

(on behalf of Fk′

FutureMsg).

- For each corrupt Si ∈ I0 receive from A values
(
m̂1

i,j, . . . , m̂
n
i,j

)
for all ℓ ∈ [n].

Layer Lk:

- For each Rj ∈ Ik receive values mi,j for each honest Si ∈ I0 as outputs from
Fk

FutureMsg.

- Patch the simulated honest states(
m̂1

i,j, . . . , m̂
n
i,j

)
7→

((
m̂ℓ

i,j

)
ℓ∈Ik′

,
(
mℓ

i,j

)
ℓ/∈Ik′

)
(27)

to match these values, as explained in Lemma 5.

- For all honest P k′

ℓ /∈ Ik′ and all corrupt Rj ∈ Ik send the patched mℓ
i,j for all i ∈ [n]

to A as (on behalf of Fk′−k
FutureMsg).

- For each corrupt P k′

ℓ ∈ Ik′ receive from A values mℓ
i,j for all i, j ∈ [n].

- For all corrupt Si ∈ I0 and honest Rj /∈ Ik compute

mi,j ← Rec
(
m̂1

i,j, . . . , m̂
n
i,j

)
(28)

and input them to Fk
FutureMsg.

- Set output to the output of A.
aNotice that 0 is en element of the F-vector space Mi,j for all i, j ∈ [n].

Let’s start by arguing about the view of the adversary. By inspection of the protocol and
the simulation we conclude that the only difference between the view of A in the real world

and the ideal world is that values m̂ℓ
i,j for all Si /∈ I0 and j ∈ [n] received from A in layer Lk′

in the simulation are sampled according to Sh(0, ri,j), while in the real protocol execution
they are sampled according to Sh(mi,j, ri,j) where mi,j are the real honest parties inputs.
However, since |Ik′ | ≤ t, from t-privacy of (Sh,Rec) we know that any set of up to t shares
is identically distributed regardless of the secret s, from which we conclude that the view of
the adversary in both scenarios is identically distributed. Next, we argue about the outputs
of honest parties. In the ideal world the outputs of each honest Rj /∈ Ik is simply the vector
(m1,j, . . . ,mn,j) received from Fk

FutureMsg , where if Si is honest then mi,j is the real input of

Si, while if Si is corrupt then mi,j = Rec
(
m1

i,j, . . . ,m
n
i,j

)
as set by σ. In the real world, an
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honest Rj always outputs mi,j = Rec
(
m1

i,j, . . . ,m
n
i,j

)
. If Si is corrupted, then the shares are

the same in the real and ideal world, so that the output of Rj is trivially the same. If Si is

honest, in the real world at least n− t of the shares mℓ
i,j received by Rj from parties P k′

ℓ are
by from Si as Sh(mi,j, r) for some r ←$ R. Here, if the output mi,j of Rj /∈ Ik is different
in the real and ideal world, then A can be used to construct an adversary A′ that wins
Rob

(Sh,Rec)
D,q with non-negligible probability. We only sketch the proof. The reduction (that

is, A′) chooses a Si /∈ I0 and a Rj /∈ Ij, and simulates protocol Πk
FutureMsg where the input

of Si for Rj is set (by A′) to mi,j. value mi,j to Rob
(Sh,Rec)
D,q , and then the t-shares to send to

corrupted parties in Lk′ are queried by A′ from Rob
(Sh,Rec)
D,q . Then, the reduction continues to

simulate the protocol and uses the shares received by Rj from corrupted parties P ℓ
k′ ∈ Lk′

as its final query to Rob
(Sh,Rec)
D,q . If A is such that the probability that the output of some

honest Rj from an honest sender Si is different in the real and ideal world, then

AdvRob
(Sh,Rec)
D,q (A′) =

δ

O(n2)
. (29)

5 Future Broadcast

5.1 Future Broadcast Functionality

This primitive allows a sender to broadcast any linear combination of some input values to
a later layer (or one single party in a later layer), and guarantees that 1) the messages (or
their wanted linear combination) remains secret until the decision to reveal them is taken,
and 2) even when the sender is dishonest, all honest parties in the receiving layer agree
on a single message. The decision to reveal a message (or not) can be taken by honest
parties in a certain layer depending on public information. Again, this primitive provides no
commitment guarantees when the sender is corrupt, as adversary is allowed to modify the
message up until the moment of delivery.

Linear Future Broadcast Functionality Fk
FutureBC

Public Parameters. Sender S ∈ L0. Auxiliary layer Lk deciding which messages are
revealed. Layer Lk′ onto which the messages are broadcast. The domainM of the messages
from S. The maximum number of messages ℓ to be broadcast by each sender.

Secret Inputs.

– Messages (m1, . . . ,mℓ) ∈M from S to be broadcast to Lk′ .

– A public value (L, r) agreed up on by all honest P k
j , where

- L : M ℓ →M is a linear operator.
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- r ∈ Lk′ ∪ {Lk′} is the intended recipient of L(m1, . . . ,mℓ): either some specific
party P k′

s in Lk′ or all the parties in layer Lk′ .

Layer L0: If S /∈ I0 receive messages (m1, . . . ,mℓ) from S.

Layer Lk: For each honest P k
i ∈ Lk \ Ik, receive the same input (L, r).

Layer Lk′−1 : If r = Lk′ , forward (L,L(m1, . . . ,mℓ)) to the (ideal) adversary.

Layer Lk′:
• If r = P k′

s ∈ Ik′ , and S /∈ I0, forward
(
L,L(m1, . . . ,mℓ)

)
to the (ideal) adversary.

• If S ∈ I0 receive from the (ideal) adversary message lA that S wants to broadcast.

• If r = P k′
s /∈ Ik′ , and S /∈ I0, send the value L(m1, . . . ,mℓ) to P k′

s .

• If r = P k′
s /∈ Ik′ , and S ∈ I0, send the value lA to P k′

s .

• If r = Lk′ , and S /∈ I0, send the value L(m1, . . . ,mℓ) to all parties in Lk′ .

• If r = Lk′ , and S ∈ I0, send the value lA to to all parties in Lk′ .

5.2 Future Broadcast Protocol

The first solution that comes to mind to realize FFutureBC is the following: to broadcast a
message m onto layer Lk′ , simply provide, using future messaging, a robust sharing of s to
layer Lk, and ask parties in layer Lk to broadcast their shares using the provided broadcast
channels. This construction is secure if there is only one recipient (notice that we do not
provide any guarantees for dishonest recipients).

However, when the robust shares are broadcast, this construction is insecure, because if
the the dealer is honest a rushing adversary can wait to see the shares broadcast by honest
parties in Lk before broadcasting shares of corrupted parties. As mentioned in Section 2.4,
the robustness guarantees provided by the secret sharing scheme are insufficient in this
scenario, because the corrupted shares can depend on the honest shares. For instance, in
the robust secret sharing scheme in Section 3.3, a rushing adversary would be able to make
the reconstruction fail by first observing the keys broadcast by honest parties, and only
then computing new valid MAC tags (with respect to these observed keys) for new arbitrary
values.

To avoid this, we instead have the dealer set up n independent robust sharings of m and
provide them to Lk using future messaging. Then, each of these states are reconstructed
towards distinct parties in some auxiliary layer (no rushing attack applies if the recipient is
honest), and then we leverage the honest majority in the auxiliary layer to agree on a single
value: each party in the auxiliary layer simply broadcasts the value they have reconstructed.
In this construction, the adversary learns the broadcasted value one layer before the intended
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target layer. Note, our functionality matches this protocol since the message is leaked to the
adversary in the auxiliary layer.

We get around this shortcoming by ensuring that the adversary gains no advantage by
having learned the broadcast message one layer in advance. This is arranged by having all
the other protocols run in parallel with the future broadcast completely ignore the auxiliary
layer. Consequently, the view of the adversary in any set of layers including the auxiliary
layer and the output layer of a future broadcast is identical to that in the subset excluding
the auxiliary layer. We formally describe the protocol below, and argue about its security,
captured by Lemma 7, in Section 5.3.

Future Broadcast Protocol Πk
FutureBC

Public Parameters. Sender S ∈ L0. Receiving layer Lk. The domainM of S’s messages.

Secret Inputs. Messages (m1, . . . ,mℓ) ∈M from sender S.

Resources. A (D, t, negl(κ))-robust (t, n)-secret sharing scheme (Sh,Rec) with mes-
sage space M = M , randomness space R and share space S; functionalities Fk

FutureMsg,

Fk′−k−1
FutureMsg, and F

k′−k
FutureMsg.

Layer L0: S ∈ L0 does
- Sample (r1,j . . . , rℓ,j)←D R for all j ∈ [n].

- Compute (m1
i,j, . . . ,m

n
i,j)← Sh(mi, ri,j) for each i ∈ [ℓ] and j ∈ [n].

- For each r ∈ [n], set mr as the message a to P k
r in Fk

FutureMsg, where mr is the matrix
of values mr

i,j for all i ∈ [ℓ] and j ∈ [n].

Subroutine 1: Revealing L(m1, . . . ,mℓ) to P k′
s :

Layer Lk: Each P k
r ∈ Lk receives (from Fk

FutureMsg) values m̂
r
i,j for all i ∈ [ℓ] and j ∈ [n]

and set input mr,s towards P
k′
s in F (k′−k)

FutureMsg to the value L
(
m̂r

1,1, . . . , m̂
r
ℓ,1

)
.

Layer Lk′: Party P k′
s receives (from Fk′−k

FutureMsg) values l̂r for all r ∈ [n] and computes

their output ms ← Rec
(
l̂1, . . . , l̂n

)
.

Subroutine 2: Revealing L(m1, . . . ,mℓ) to all parties in Lk′:

Layer Lk: Each P k
r ∈ Lk receives (from Fk

FutureMsg) values m̂
r
i,j for all i ∈ [ℓ] and j ∈ [n]

and sets input mr,j towards P
k′−1
j in F (k′−k−1)

FutureMsg to L
(
m̂r

1,j, . . . , m̂
r
ℓ,j

)
.
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Layer Lk′−1: Each P k′−1
j receives (from Fk′−k−1

FutureMsg) values l̂
r
j for all r ∈ [n] and broadcasts

(using the provided ideal broadcast channels) value lj ← Rec
(
l̂1j , . . . , l̂

n
j

)
.

Layer Lk′: Each party in Lk′ outputs the value which was broadcast the most times by
Lk′−1.

aSince we are using the parallel FFutureMsg functionality with only one sender we drop the indices for
clarity.

5.3 Future Broadcast Security

Lemma 7. If t < n/2 and (Sh,Rec) is a (D, t, negl(κ))-robust (t, n)-secret-sharing scheme,

then for all k ∈ [k′] the (n, t, k′)-layered protocol Πk,k′

FutureBC realizes Fk,k′

FutureBC with (negl(κ), t)-
statistical security in the FFutureMsg-hybrid model.

Proof. For any adversary A we describe a simulator σ such that the joint distribution of
the outputs of the adversary and honest parties in the real (hybrid) world (the adversary
A interacting with protocol Πk

FutureMsg and functionalities Fk
FutureMsg,Fk′−k

FutureMsg, F
k′−k−1
FutureMsg) is

statistically close to that in the ideal world (the simulator σ interacting with functionality

Fk,k′

FutureBC). We will show that if this statistical distance is non-negligible, then we can produce

an adversary A′(A) that wins game Rob
(Sh,Rec)
D,q with non-negligible probability, therefore

reducing the security of Πk
FutureBC in the

(
Fk

FutureMsg,Fk′−k
FutureMsg,F

k′−k−1
FutureMsg

)
-hybrid model to

the (D, ℓ, δ)-robustness of (Sh,Rec). First, given any adversary A interacting with protocol
Πk

FutureBC we describe the simulator σ.

Simulator σ for Protocol Πk,k′

FutureBC

Layer L0: If S /∈ I0
- Sample (r1,j . . . , rℓ,j)←D R for all j ∈ [n].

- Compute
(
m1

i,j, . . . ,m
n
i,j

)
← Sh(0, ri,j) for all i ∈ [ℓ] and j ∈ [n].

Layer Lk:

- If S /∈ I0, for all P k
r ∈ Ik send A the matrix of values mr

i,j for all i ∈ [ℓ] and j ∈ [n]
as output from Fk

FutureMsg.

• If S ∈ I0 receive from A values
(
m̂1

i,j, . . . , m̂
n
i,j

)
for all i ∈ [ℓ] and j ∈ [n] as inputs

to Fk
FutureMsg.

Layer Lk′−1: If S /∈ I0

- Receive (L,L(m1, . . . ,mℓ)) (possibly ⊥) from Fk,k′

FutureBC.
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- For all P k
r ∈ Ik compute lrj =

(
mr

1,j, . . . ,m
r
ℓ,j

)
for all j ∈ [n].

- For all j ∈ [n] patch the simulated honest states to((
lrj
)
r∈Ik

,
(
l̂rj

)
r/∈Ik

)
(30)

to obtain a valid sharing of lj = L′(m1, . . . ,mℓ), as explained in Lemma 5.

- For each P k
r /∈ Ik and all j ∈ [n] send l̂rj to A as output from Fk′−k−1

FutureMsg.

- For all P k
r ∈ Ik receive from A values l̂rj as input to Fk′−k−1

FutureMsg for P k′−1
j .

- For all honest P k′−1
j compute

lj = Rec

((
l̂rj

)
r∈Ik

,
(
l̂rj

)
r/∈Ik

)
, (31)

and broadcast lj on behalf of P k′−1
j .

Layer Lk′: If S /∈ I0
- Receive (L′, L′(m1, . . . ,mℓ)) from Fk,k′

FutureBC (possibly ⊥) from Fk,k′

FutureBC.

- For all P k
r ∈ Ik compute l′r1 =

(
mr

1,j, . . . ,m
r
ℓ,j

)
for all j ∈ [n].

- Patch the simulated honest state((
l′
r
1

)
r∈Ik

,
(
l̂′r1

)
r/∈Ik

)
. (32)

to obtain a valid sharing of l′1 = L′(m1, . . . ,mℓ), as explained in Lemma 5.

- For each P k
r /∈ Ik send l̂rj to A as output from Fk′−k

FutureMsg.

- For all P k
r ∈ Ik receive from A values l̂rj as inputs to Fk′−k

FutureMsg for P k′
j .

- For each P k′−1
j ∈ Ik′−1 receive broadcast values lj from A.

- If S ∈ I0 and L ̸= ⊥ compute lA as any value appearing at least t+ 1 times among
values (l1, . . . , ln), and input lA to Fk

FutureBC.

- If S ∈ I0 and L′ ̸= ⊥ compute

l′A = Rec

((
l̂′r1

)
r∈Ik

,
(
l̂′r1

)
r/∈Ik

)
(33)

and input l′A to Fk
FutureBC.

- Set output to the output of A.
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Let’s start by arguing about the view of the adversary. By inspection of the protocol, the
only difference between the view of A in the real and ideal world is that when the sender S
is honest, in the ideal world values mr

i,j for P
k
r ∈ Ik that A receives in layer Lk are sampled

as
(
m1

i,j, . . . ,m
n
i,j

)
← Sh(0, ri,j) for all i ∈ [ℓ] and j ∈ [n], while in the real world they are

sampled as
(
m1

i,j, . . . ,m
n
i,j

)
← Sh(mi, ri,j) for all i ∈ [ℓ] and j ∈ [n], where mi for i ∈ [ℓ] are

the real inputs of S. However, since |Ik| ≤ t, by t-privacy of (Sh,Rec) the distribution of up
to t shares is identical regardless of the secret. To continue, we distinguish two cases: if all
honest parties execute Subroutine 1 (private reveal of L(m1, . . . ,mℓ) to P k′

s ), then both in
the real and ideal world the adversary does not learn any further values if P k′

s is honest. If

P k′
s is corrupt, the adversary observes shares l̂′r1 for all honest P k

r /∈ Ik in the ideal world,

while it observes values L
(
m̂r

1,1, . . . , m̂
r
n,1

)
for all honest P k

r /∈ Ik in the real world if the

sender is honest (the case where the sender is corrupt is trivial as all values A receives here
are sampled from A). Thanks to the correct patching of (Sh,Rec) and its D-linearity, in both
scenarios the adversary receives t+1 shares from honestly sampled sharings of L(m1, . . . ,mℓ),
so that the view of the adversary is identically distributed in the real and ideal world. When
honest parties execute Subroutine 2 the argument is analogous, even though when S is honest
then A learns t + 1 shares from each of t + 1 independent and honestly generated sharings
of L(m1, . . . ,mℓ). Now let’s argue about the output of honest parties in Lk′ \ Ik′ . If all
honest parties in layers Lk to Lk′ execute Subroutine 1 with the same linear function L and
towards the same party P k′

s , then P k′
s is the only honest party with output. If the sender S

is corrupted, then the output of P k′
s is calculated in the same way in the real and in the ideal

world. Now, if S is honest, in the ideal world the output of P k′
s is simply L(m1, . . . ,mℓ) of

the inputs of the sender. In the real world the output of P k′
s is ms = Rec

(
l̂1, . . . , l̂n

)
, where

l̂r is the message received from P k′
s in Fk′−k

FutureMsg. Because at least n − t parties in Lk \ Ik
are honest, then at least n− t of values l̂r are equal to L

(
m̂r

1,1, . . . , m̂
r
ℓ,1

)
. Therefore, If S is

honest, m̂r
i,1 for r ∈ [n] is a correct robust sharing of mi. If with non-negligible probability

the the output of P k
s in the real world is not L(m1, . . . ,mℓ) (let’s say with probability δ) we

can easily produce an adversary A′ such that

AdvRob
(Sh,Rec)
D,q (A′) =

δ

O(n)
. (34)

Analyzing the outputs of honest parties in Subroutine 2 is analogous: if the (unique) output
of honest parties is different in the real and ideal world with non-negligible probability, by
leveraging the honest majority in Lk′−1, this means that with non negligible probability the
adversary breaks the robustness of the underlying secret sharing scheme for at least one
honest party in Lk′−1. We omit the details.
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6 Information Theoretic Signature

6.1 Information Theoretic Signature Functionality

This functionality allows a sender to entrust an intermediary with a message that a later
layer can then reliably reveal to a receiver. The functionality ensures that an honest inter-
mediary will always be able to convince the honest receiver to accept the message that the
intermediary received from the sender. If the sender is honest, the functionality ensures that
a potentially corrupt intermediary cannot convince an honest receiver to accept a distinct
message than the one it received from the sender. When both the sender and intermediary
are corrupt, the functionality provides no guarantees. Notice that in the layered setting,
the message is not actually revealed by the intermediary itself, but rather by a later layer
holding an appropriate state provided by the intermediary.

The functionality described below describes a generalization useful in our later con-
structions in which the message receiver(s) can be selected from a set of possible layers
{Lr1 , . . . ,Lrv} by one among a set of auxiliary layers {Lk1 , . . . ,Lkv}. Note, the sender is
forced to commit to the message by the first among the auxiliary layers.

Information Theoretic Signature Functionality Fk1,...,kw
ITSig

Public Parameters. Sender S ∈ L0. Intermediary M ∈ Lk for k ≥ 1. Auxiliary layers
Lk1 , . . . ,Lkw for kw > . . . > k1 ≥ k + 8. Candidate receiver layers Lr1 , . . . ,Lrv , r1 > k1.
The F-vector space M , domain of S’s messages.

Inputs. From S, secret messages (m1, . . . ,mℓ) ∈ M ℓ. The same public input (L, r) from
all honest parties from a unique auxiliary layer Lki , i ∈ [w].

- L : M ℓ →M is the linear operator.

- r ∈ Lri ∪ {Lri} for some i ∈ [v] is the intended recipient of L(m1, . . . ,mℓ): either a
specific party in Lri or all parties in layer Lri .

Layer L0:
• If S /∈ I0, receive messages (m1, . . . ,mℓ) from S.

Layer Lk :

• If M ∈ Ik is corrupt, reveal (m1, . . . ,mℓ) to the (ideal) adversary.

Layer Lk1: If M /∈ Ik is honest and S ∈ I0 is corrupt, receive messages (m1, . . . ,mℓ)
from the (ideal) adversary.

Layer Lki for i ∈ [w]:
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• Receive (the same) message (r, L) or ⊥ from each honest party in Lki . Ignore
messages from Lki′

, i′ > i if (r, L) is received in Lki .

Layer Lri−3 for i ∈ [v]:

• If r = Lri (i.e., specifically, the set of receivers is the entire Lri instead of an indi-
vidual receiver P ri

j ∈ Lri for some j ∈ [n]), and both M /∈ Ik and S /∈ I0 are honest,
deliver L(m1, . . . ,mℓ) to the ideal adversary.

Layer Lri for i ∈ [v]:

1. If r = Lri or r = P ri
j ∈ Lri :

- If M is honest deliver L(m1, . . . ,mℓ) to r.

- If M is corrupt then:

- If S is corrupt receive m′ from the (ideal) adversary and forward it to r.

- If S is honest receive boolean reveal ∈ {0, 1} from the (ideal) adversary. If
reveal = 1 then deliver L(m1, . . . ,mℓ) to r.

6.2 Information Theoretic Signature Protocol

For improved legibility, we describe a protocol realizing the above functionality for ℓ = 1,
w = 1 and v = 1, meaning the auxiliary layer is fixed to Lk′ and receiver layer is Lk′′ . We
only consider the more involved construction in which the message is revealed to all the
parties in Lk′′ . We will describe later how the protocol can be modified to realize the general
functionality for arbitrary, finite ℓ, w and v. Section 2.5 contains a more detailed description
of the protocol.

Information Theoretic Signature Protocol Πk′

ITSig

Public Parameters. Sender S ∈ L0, intermediary M ∈ Lk, a committing layer k′ and
receiver layer R = Lk′′ where 1 ≤ k < k′ < k′′. The message domain M which is a finite
field. A security parameter κ.

Secret Inputs. S has a message m ∈M to be sent to R via M.

Resources. Functionality FFutureMsg; functionality FFutureBC; a message authentication
code in which key (a, b)←$ M

2 and Aut(m, (a, b)) = a ·m+ b for any message in M .

Layer L0: The sender S does:
1. Sample keys ki,j ←$ F2 for each i ∈ [n], j ∈ [κ], and compute ti,j = Aut(ki,j,m) for

all i ∈ [n] and j ∈ [κ].
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2. Send (m, {ti,j}i∈[n],j∈[κ]) to M ∈ Lk using FFutureMsg.

3. Send {ki,j}i∈[n],j∈[κ] to each Pi ∈ Lk+1 using FFutureMsg for all i ∈ [n].

4. Invoke FFutureBC with ki,j as input and Lk+2 for all i ∈ [n] and j ∈ [κ].

5. Invoke FFutureBC with m as input and Lk+6 as auxiliary layer.

Layer Lk: The intermediary M does:

1. Invoke FFutureBC with input (m, ti,j) and Lk+4 as auxiliary layer for all i ∈ [n] and
j ∈ [κ].

2. Invoke FFutureBC with input m and Lk′ as auxiliary layer.

3. Invoke FFutureBC with input ti,j and Lk′ as auxiliary layer for all i ∈ [n] and j ∈ [κ].

Layer Lk+1: Each P k+1
i ∈ Lk+1 does:

1. Choose a random subset INDi ⊂ [κ] of size κ/2, and broadcasts INDi.

2. Broadcast ki,j for all j ∈ INDi

3. Invoke FFutureBC with ki,j as input and Lk+4 as auxiliary layer for all j /∈ INDi.

Layer Lk+2:

1. For each i ∈ [n], j ∈ INDi, to FFutureBC with S as sender, ki,j as message, and Lk+2

as auxiliary layer, all parties send (L← (1), r ← Lk+4) as input.

Layer Lk+4:

1. For each i ∈ [n], j ∈ INDi, each party stores ki,j sent by S using FFutureBC as k̄i,j,
and that sent by Pi ∈ Lk+2 as k̃i,j.

2. Each party computes and broadcasts

votes = {i ∈ [n] : ∃j ∈ INDi, k̄i,j ̸= k̃i,j}. (35)

3. For each i ∈ [n], j ∈ INDi, invoke FFutureBC with M as sender, (m, ti,j) as message,
and Lk+4 as auxiliary layer, all parties send (L ← (ai,j, bi,j), r ← Lk+4), where
(ai,j, bi,j) = k̄i,j, as input.

4. For each i /∈ votes, j /∈ INDi, invoke FFutureBC with Pi ∈ Lk+1 as sender, ki,j as
message, and Lk+4 as auxiliary layer, all parties send (L← (1), r ← Lk′′) as input.
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Layer Lk+6:

1. If there exists i ∈ [n] and j ∈ INDi such that the output of FFutureBC with M as
sender and (m, ti,j) as message, is non-zero, then set success = 0, otherwise set it
to 1. Broadcast success.

2. If success = 0, call FFutureBC with S as sender, m as message, and Lk+6 as auxiliary
layer, parties send (L← (1), r ← Lk′) as input.

Layer Lk′:

1. If success = 0, each party receives m′ as the output of FFutureBC with S as sender,
m as message, and Lk+6 as auxiliary layer. Each party broadcasts m′.

2. If success = 1:

(a) Invoke FFutureBC with M as sender, m as message, and Lk′ as auxiliary layer,
parties send (L← (1), r ← Lk′′−2) as input.

(b) For each i /∈ votes, j /∈ INDi, to FFutureBC with M as sender, ti,j as message,
and Lk′ as auxiliary layer, parties send (L← (1), r ← Lk′′−2) as input.

Layer Lk′′−2:

1. Each party recovers m̃ as the output of FFutureBC with M as sender, m as message,
and Lk′ as auxiliary layer.

2. For each i /∈ votes and j /∈ INDj, each party recovers t̃i,j as the output of FFutureBC

with M as sender, ti,j as message, and Lk′ as auxiliary layer.

3. Each party broadcasts m̃ and {t̃i,j}i∈[n],j∈INDi
.

Layer Lk′′:

1. If success = 0, the parties output m′ broadcasted by parties in Lk′ .

2. If success = 1:

(a) For each i /∈ votes, j /∈ INDi, each party recovers k̃i,j as the output of FFutureBC

with Pi ∈ Lk+1 as sender, ki,j as message, and Lk+4 as auxiliary layer

(b) For each i /∈ [votes], and j /∈ INDi, using m̃ and t̃i,j broadcast by the Lk′′−2,
and k̃i,j, each party checks if Vfy(t̃i,j, m̃, k̃i,j) = 1; if so, votes← votes ∪ {i}.

(c) If |votes| ≥ t+ 1, each party outputs m̃; else outputs ⊥.
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6.3 Information Theoretic Signatures Security

Lemma 8. If t < n/2 and (Aut,Vfy) is a (D, t, negl(κ))-secure MAC, then the (n, t, k′′)-
layered protocol ΠITSig realizes functionality FITSig with ℓ = 1, w = 1 and v = 1 with
(negl(κ), t)-statistical security in the (FFutureMsg,FFutureBC)-hybrid model.

Proof. We describe a simulator σ such that, for any adversary A, the joint distribution of
the outputs of the adversary and honest parties in the real world where the adversary A
interacts with protocol ΠITSig in the (FFutureMsg,FFutureBC)-hybrid world is statistically close
to that in the ideal world interaction between simulator σ(A) and functionality FITSig.

Simulator σ(A) for protocol ΠITSig

For clarity in presentation, the behavior of the simulator is described separately for four
different scenarios based on the corruption status of S and M. We stress that, despite
this, the behavior of the simulator in a layer does not depend on the set of corrupt parties
in the subsequent layers.

Case: S ∈ I0 and M ∈ Ik
S is the only party with input. Hence, the simulator σ(A) emulates all the honest parties
and the ideal functionalities FFutureMsg and FFutureBC, and interacts with the adversary A.
In Lk′′ , let m′ be the output computed by of one of the emulated honest parties. σ(A)
sends m′ to FITSig in Lk′′ . Finally, σ(A) outputs whatever A outputs in the interaction.

Case: S ∈ I0 and M /∈ Ik
S is the only party with input. Hence, once again, the simulator σ(A) emulates all the
honest parties and the ideal functionalities FFutureMsg and FFutureBC, and interacts with the
adversary A. In Lk′ , suppose one of the emulated honest parties, say Pi ∈ Lk′ , has set
success = 0. Then, σ(A) sends m′ computed by Pi (see Lk′ step 1 of the protocol) to
FITSig in Lk′ . Otherwise, σ(A) sends m to FITSig in Lk′ , where m is the message that
A sends to emulated M on behalf of the corrupt sender (see L0 step 2). Finally, σ(A)
outputs whatever A outputs in the interaction.

Case: S /∈ I0 and M ∈ Ik

In Lk, simulator σ(A) learns that M ∈ Ik. σ(A) receives m from FITSig. At this point,
σ(A) emulates S with input m, all the honest parties in Lk, . . . ,Lk′′ and the ideal func-
tionalities FFutureMsg and FFutureBC, and interacts with A. Here, we crucially used the fact
that, delaying the emulation of S till Lk does not affect the simulation since no party in
L1, . . . ,Lk − 1 receive any message in (FFutureMsg,FFutureBC)-hybrid model.
In Lk′′ , let m′ be the output computed by of one of the emulated honest parties. σ(A)
sends m′ to FITSig. Finally, σ(A) outputs whatever A outputs in the interaction.

Case: S /∈ I0 and M /∈ Ik
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In Lk, simulator σ(A) learns that M /∈ Ik. At this point, σ(A) emulates S with default
input 0, all the honest parties in Lk, . . . ,Lk′′ and the ideal functionalities FFutureMsg and
FFutureBC, and interacts with A. Once again, we crucially used the fact that, delaying the
emulation of S till Lk does not affect the simulation since no party in L1, . . . ,Lk−1 receive
any message (from the sender) in FFutureMsg and FFutureBC hybrid model.
In Lk′′−3, receive m from FITSig. From the states of an emulated honest party, σ(A)
extracts votes and INDi for each i /∈ votes. Then, behaves as follows:

1. σ(A) reports m as the output of FFutureBC with M as sender, m as message, and Lk′

as auxiliary layer (see steps 1.(a) in Lk, 2. (a) in Lk′ , and 1 in Lk′′−2).

2. For each i /∈ votes and j /∈ INDi, let Ki,j be the value sampled by S (see step 1
in L0), then σ(A) computes Mi,j = Aut(m,Ki,j), and reports Mi,j as the output of
FFutureBC with M as sender, Mi,j as message, and Lk′ as auxiliary layer (see steps
1.(b) in Lk, 2. (b) in Lk′ , and 2 in Lk′′−2).

Finally, σ(A) outputs whatever A outputs in the interaction.

We will separately consider the four different scenarios considered in the simulation.

Case: S ∈ I0 and M ∈ Ik. In this scenario, the real and ideal executions are identical
but with exactly one distinction: the output of the honest parties in the latter is m provided
by FITSig where m is the output of one of the honest receivers emulated by σ(A). Clearly,
the joint distribution of the output of the simulator and the outputs of the honest receivers
emulated by σ(A) in the ideal execution is identical to that of the output of A and the
output of the honest parties in the real execution. But, the output of all honest parties are
equal since their views are identical; this follows from the fact that every message received
by the receivers in Lk′ is a broadcast message.

Case: S ∈ I0 and M /∈ Ik. In this scenario also, the real and ideal executions are identical
but with exactly one distinction: the output of the honest parties in the latter is m provided
by FITSig, where m is chosen as follows by σ(A):

• In Lk′ , suppose one of the emulated honest parties, say Pi ∈ Lk′ has set success = 0.
Then, m = m′ computed by Pi (see Lk′ step 1 of the protocol).

• Otherwise, m is the message that A sends to emulated M on behalf of the corrupt
sender (see L0 step 2).

The joint distribution of the output of the simulator and the outputs of the honest receivers
emulated by σ(A) in the ideal execution is identical to that of the output of A and the output
of the honest parties in the real execution. Hence, it suffices to show that, with overwhelming
probability, the outputs of the all the honest receivers emulated by σ(A) coincide with m′.

First, consider the event where an honest party in Lk′ has set success = 0. In this
event, all honest parties in the layer would set success = 0 since this value is received by
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the parties over a broadcast. It can be verified by inspection that the output of all honest
parties is m as computed by all honest parties in step 1 of Lk′ . Thus, in this event, the
outputs of the all the honest receivers emulated by σ(A) coincide with m′.

Next, suppose success = 1. In this event, we claim that, for each honest Pi ∈ Lk+1, there
exists j /∈ INDi such that Ki,j received by Pi from S and m and Mi,j received by M from S
satisfy Mi,j = Aut(m,Ki,j). Assuming this holds, we claim that i ∈ votes whenever Pi ∈ Lk

is honest. This is argued as follows: suppose i is not added to votes in step 2 of Lk+4.
Then, in step 2.(b), i will be added to votes by our assumption. Hence, |votes| ≥ t + 1.
Therefore, all honest parties output the message m that M received from S.

We conclude the proof by proving our assumption. Fix i such that Pi ∈ Lk+1 is honest.
When m,Mi,j and Ki,j for j ∈ [κ] are as described above, define Good = {j ∈ [κ] : Mi,j =
Aut(m,Ki,j)}. By a Chernoff bound, when INDi is a random subset of [κ] of size κ/2, the
probability with which Good = INDi is negligible in κ. This implies the assumption.

Case: S /∈ I0 and M ∈ Ik. In this scenario also, the real and ideal executions are identical
but with exactly one distinction: the output of the honest parties in the ideal execution is
⊥ whenever the emulated honest receivers’ output is not equal to the sender’s message m.

We will prove that the output of the emulated honest parties belong to the set {m,⊥}.
Since the emulation is identical to the real execution in the presence of A, we will prove the
statement in this setting.

Consider the event where all honest parties in Lk′ has set success = 0. In this case, the
output of all honest parties is m.

Next, consider the event success = 1. Observe that, since S is honest, for each honest
Pi ∈ Lk+1 and j ∈ INDi, the values of K̄i,j and K̃i,j stored by every honest party in Lk+4

are identical. Hence, i /∈ votes (according to all honest parties in Lk+4). Consequently, all
parties in Lk′′ receive votes such that votes ⊆ Ik+1. Let m̃ and {M̃i,j}i/∈votes,j∈INDi

be the
values received by all honest parties in Lk−2 from M (see steps 1 and 2 in Lk−2). We claim
that, in step 2. (b), no honest party in Lk′′ adds i ∈ Ik+1 to votes if m̃ ̸= m. This would
directly imply security in this case.

The above claim is proved as follows: the output of FFutureBC with M as sender with
(purported) m as input, Lk′ as auxilliary layer, and Lk′′−2 as receivers are independent of
the output of FFutureBC with Lk′′ as receivers. A similar claim holds the output of FFutureBC

with M as sender with Mi,j as input, Lk′ as auxilliary layer, and Lk′′−2 as receivers for
each i /∈ votes, j /∈ INDj. Hence, A’s choice of m̃ and {M̃i,j}i/∈votes,j∈INDi

is independent
of {Ki,j}i/∈votes,j /∈INDi

conditioned on the values m and {Mi,j} received from the honest
sender. Hence, by unforgeability of MAC, Pr[∃i /∈ votes, j ∈ INDi : Vfy(M̃i,j, m̃,Ki,j) = 1
is negligible in κ by a union bound. In other words, provided an adversary who succeeds
with a non-negligible probability, we can break the unforgeability condition of MAC with
non-negligible advantage. This concludes the proof.

Case: S /∈ I0 and M /∈ Ik. We first observe that, when S and M are honest, all honest
parties in Lk+6, computes success = 1. Consequently, FFutureBC with S as sender and Lk+6
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as auxiliary layer is not revealed to receivers in Lk′ . Furthermore, for any i /∈ votes and
j /∈ INDi, (m,Mi,j) revealed in Lk′′−2 satisfies the MAC check with respect to Ki,j which
is chosen uniformly. It can be verified that adversary’s view and honest receivers’ outputs
are entirely determined by these random variables. The simulator arranges for the same
correlation between these random variables, proving the equivalence.

6.4 Generalizing ΠITSig to implement FITSig

We now discuss the modifications that are needed to adapt the above protocol and proof
to handle a message vector from the sender, support multiple auxiliary layers, and choose
among multiple receiver layers.

Handling vector messages. First, we handle the the case where sender’s message is a
vector instead of a scalar, while still considering single auxiliary and receiving layers. We
exploit the D-linearity of MACs as described in Definition 3 (this basically just means that
linearity holds as long as keys are sampled from an appropriate distribution). To sign a
message vector m = (m1, . . . ,mℓ) ∈ M ℓ, sender samples key vectors {Ki,j}i∈[n],j∈[κ], where,
for each i, j,

Ki,j = (K1
i,j, . . . , K

ℓ
i,j)←D Kℓ, (36)

and computes the MAC vector

Mi,j = (M1
i,j, . . . ,M

ℓ
i,j) =

(
Aut(m1, K

1
i,j), . . . ,Aut(mℓ, K

ℓ
i,j

)
, (37)

for each i, j. The protocol proceeds as described above with the following differences:

1. The public MAC check of (m,Mi,j) reported by M using the key K̄i,j reported by S
for i ∈ [n], j ∈ INDi that occurs in step 1 of Lk+6 is replaced by MAC check of each
(ml,M

l
i,j) reported by M using the key K̄ l

i,j reported by S for i ∈ [n], j ∈ INDi and
l ∈ [ℓ]. Success flag is set to 0 is any of these checks fail.

2. The parties in Lk′ broadcasts (m1, . . . ,mℓ) if success = 0 in step 1. Whereas, if
success = 0, they reveal m = L(m1, . . . ,mℓ) in step 2(a), and Mi,j = L(M1

i,j, . . . ,M
ℓ
i,j)

for each i /∈ votes, j /∈ INDi to Lk′′−2 using FFutureBC, where L is the linear functional
that all honest parties in Lk′ agree on.

3. Finally, parties in Lk′′ verify the purported values of of message m and MAC Mi,j using
L(K1

i,j, . . . , K
ℓ
i,j) for each i /∈ votes, j /∈ INDi

When the sender and intermediary are honest, only L(m1, . . . ,mℓ) is revealed to the receivers.
In this case, success flag is always set to 1. Further, when the sender is honest, the keys
distributed by the sender to honest parties in Lk′+1 are unknown to the adversary. Since MAC
is D-linear, having learned the

(
m, {M l

i,j}l∈[ℓ]
)
, an adversary corrupting the intermediary

cannot choosem′ ̸= L(m1, . . . ,mℓ) andM ′
i,j such that Vfy

(
m′,M ′

i,j, L(K
1
i,j, . . . , K

ℓ
i,j)

)
= 1 for

any i such that P k+1
i ∈ Ik+1 since the keys are unknown to the adversary. As a consequence,

when the sender is honest and intermediary is corrupt, the receivers either receive the right
linear combination of the message vector or they abort.
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Handling multiple auxiliary layers and receiver layers. In order to realize multiple
auxiliary layers Lk1 , . . . ,Lkw , we replicate the state held by Lk′ in the above protocol on
all the layers in our general version. This is achieved in a straightforward manner: when
success = 0, Lk+6 broadcasts the message vector from the sender, hence this value is
available to all auxiliary layers which are necessarily downstream from this layer. To handle
the case where success = 1, the intermediary sets up FFutureBC of m and Mi,j for each
i ∈ [n], j ∈ [κ], with Lki as auxiliary layer, for each i ∈ [w].

Next, to set up multiple receiver layers Lr1 , . . . ,Lrw , we essentially set up the same state
on Lr1 , . . . ,Lrv as we did in Lk′′ in our construction above. However, the similarity here
necessarily means that each Lri has fresh keys that have been unused for MAC verification
so far. This is arranged by having parties in Lk′+4 forward fresh keys from [κ] \ INDi to each
receiver layer for each i /∈ votes. For this, parties in Lk′+4 send the first κ/2v key vectors
in [κ] \ INDi to Lr1 , the next κ/2v key vectors to Lr2 and so on.

An auxiliary layer Lki can reveal L(m) to Lrj , where ki ≤ rj − 4, by revealing L(m) and
L(Ml,l′) for all l, l

′ such thatKi,j has been supplied to Lrj . Note that, here l ∈ [n]\votes and
l′ ranges over the ith block of κ/2v keys in [κ]\ INDi. Since, in each receiver layer, the MAC
check being performed is using fresh keys, an adversary corrupting the intermediary fails to
forge the wrong linear combination as long as the sender is honest by linear homomorphism
of MAC. If the sender’s message is not made public due to success set to 0, to each receiver
layer, only the required linear combination of the message and MAC vectors are revealed;
this ensures security.

Handling individual receivers. The functionality allows revealing the message to all
parties in a receiver layer or to an individual parties in the layer specified by the auxiliary
layer. As mentioned previously, it is easier to reveal the secret to a single party than to the
whole layer. This is because, future broadcast to a single receiver does not leak the message
to the adversary at an earlier layer (See description of FITSig). Consequently, both the keys
and authenticated message can be directly revealed to the receiver bypassing the need for
the early fixing of the authenticated message 2 layers previous to the target layer. These
modifications yield the following Lemma, whose proof follows the same outline as the proof
of Lemma 8.

Lemma 9. If t < n/2 and assuming a linear (D, t, negl(κ))-secure MAC, there exists a
protocol ΠITSig which realizes functionality FITSig with (negl(κ), t)-statistical security in the
(FFutureMsg,FFutureBC)-hybrid model for a security parameter κ.

7 Distributed Commitment

7.1 Distributed Commitment Functionality

We describe a distributed commitment functionality that allows parties to commit to values
that can then be opened towards future layers. There might be multiple intermediate layers
with the right to open a value. The functionality also allows for linear combinations of values

42



to be opened. If the dealer was corrupted by the adversary at the time of commitment,
then when an open request is submitted, the adversary is given the option to open the ⊥
value (analogously as what happens with a traditional cryptographic commitment, where
the dealer can always decide not to open a value). Notice the main differences between
FDistCommit and FFutureBC:

1. In FDistCommit, even when the committer C is corrupted, then the adversary A must
decide its inputs after some fixed number of layers, unlike in Fk,k′

FutureBC where A can
choose the value of a corrupt S until the very last moment. In other words, the
adversary is committed to its inputs in FDistCommit.

2. Functionality FDistCommit provides the ability for multiple layers to open the same com-
mitments. While this can be achieved by FFutureBC when S is honest, in FDistCommit one
has the guarantee that, even when C is corrupt, if two different layers open the same
linear combination of commitments, in both cases the opened value will be the same
(that is, if in both cases the opened value is not ⊥).

Linear Distributed Commitment Functionality Fk1,...,kw
DistCommit

Public Parameters. Committer C ∈ L0. Auxiliary layers Lki i ∈ [w] deciding which
messages are opened. The domain M of the messages from C. The maximum number of
messages ℓ to be committed by C.

Secret Inputs.

– From C messages (m1, . . . ,mℓ) ∈M to be committed.

– From each P ki
j i ∈ [w] message (L, r):

- L : M ℓ →M the linear combination of C’s messages to compute.

- r ∈ Lk′ ∪{Lk′} is the intended recipient of this linear combination: either some
specific party in Lk′ or all the parties in layer Lk′ .

Layer L0: If C /∈ I0 receive messages (m1, . . . ,mℓ) from C.

Layer Lki for i ∈ [w]:
- If C ∈ I0 receive from the (ideal) adversary messages (m1, . . . ,mℓ) that C wants to
commit.

- For each honest P ki
i ∈ Lki \ Iki , receive the same input (L, r).

Layer Lk′−3 : If r = Lk′ , then forward (L,L(m1, . . . ,mℓ)) to the (ideal) adversary.

Layer Lk′:

• If r = P k′
s ∈ Ik′ , then forward

(
L,L(m1, . . . ,mℓ)

)
to the (ideal) adversary.
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• If C ∈ I0 receive from the (ideal) adversary boolean open ∈ {0, 1}.

• If C ∈ I0 and open = 1, or if C /∈ I0:

- If r = P k′
s , send L(m1, . . . ,mℓ) to P k′

s .a

- If r = Lk′ , send L(m1, . . . ,mℓ) to all parties in Lk′ .

• If C ∈ I0 and open = 0:

- If r = P k′
s , send ⊥ to P k′

s .

- If r = Lk′ , send ⊥ to all parties in Lk′ .

aThe projection map onto a component of (m1, . . . ,mℓ) is linear, so that parties can decide to recon-
struct exactly one of C’s inputs.

7.2 Distributed Commitment Protocol

The distributed commitment protocol we present takes full advantage of the guarantees pro-
vided by Fk1,...,kw

ITSig from Section 6. To commit to value m, because no single intermediary
can be trusted (they could be corrupted), a party creates a (t, n)-shamir sharing of m and
then invokes Fk1,...,kw

ITSig with a different intermediary (in the same layer) for each share. Intu-
itively, only the shares corresponding to corrupted intermediaries (at most t) are leaked to
the adversary. This is not a problem thanks to the t-privacy of the secret sharing scheme.
Furthermore, even a dishonest dealer, or committer, is committed to the shares entrusted to
honest intermediaries. Since the latter are at least t+1, they determine a unique polynomial
and the dealer is now committed to the unique value identified by the honest intermediaries’
shares.

Clearly, since Fk1,...,kw
ITSig provides no guarantees when both the dealer and an intermediary

are corrupt, the reconstruction of the sharing might still fail, as the shares corresponding
to dishonest intermediaries can be fixed arbitrarily by the adversary. However, if the re-
construction succeeds, the output of the reconstruction will be the unique value defined by
the shares of honest intermediaries, providing the commitment property of our construction.
The security of the protocol below, captured in Lemma 10, is proven in Section 7.3.

Linear Distributed Commitment Protocol Πk1,...,kw
DistCommit

Public Parameters. Committer C ∈ L0. Auxiliary layers Lki for i ∈ [w] deciding which
messages are opened. The domain M of the messages from C. The maximum number of
messages ℓ to be committed by C. Latest layer L′

k onto which messages can be opened.

Secret Inputs. From C messages (m1, . . . ,mℓ) ∈M .

Resources. Functionality Fk1,...,kw
ITSig .
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Layer L0: The committer C does:
- Sample a polynomial fi(x) of degree at most t such that fi(0) = mi and do
(mi,1, . . . ,mi,n)← (fi(1), . . . , fi(n)) for all i ∈ [ℓ].

- Input (m1,j . . . ,mℓ,j) to Fk1,...,kw
ITSig [j]a for j ∈ [n] with intermediary P k

j ∈ Lk for all
j ∈ [n].

Revealing L(m1, . . . ,mℓ) to r ∈ Lk′ ∪ {Lk′}:

Layer Lki for any i ∈ [w]: Each P ki
s inputs (L, r) to Fk1,...,kw

ITSig [j] for all j ∈ [n].

Layer Lk′: Party r = P k′
s (or all parties in Lk′ if r = Lk′) does:

- Receive value lj from Fk1,...,kw
ITSig [j] for all j.

- Interpolate a polynomial f̂(x) through any of the t+ 1 points (i, li) for li ̸= bot and

compute l̂ = f̂(x) and output l.

aThis notation is used to identify the n distinct parallel instances of Fk1,...,kw

ITSig [j] for j ∈ [n].

7.3 Distributed Commitment Security

Lemma 10. If t < n/2 then the (n, t, k′)-layered protocol Πk1,...,kw
DistCommit realizes F

k1,...,kw
DistCommit with

(0, t)-statistical security in the Fk1,...,kw
ITSig -hybrid model.

Proof. For any adversary A we describe a simulator σ(A) such that the joint distribution of
the outputs of the adversary and honest parties in the real world (the adversary A interacting
with protocol Πk1,...,kw

DistCommit and functionality Fk1,...,kw
ITSig ) is identically distributed to that in

the ideal world (the simulator σ(A) interacting with functionality Fk1,...,kw
DistCommit).Given any

adversary A interacting with protocol Πk1,...,kw
DistCommit we describe the simulator σ below.

Simulator σ(A) for Protocol Πk1,...,kw
DistCommit

The simulator σ(A) emulates all honest parties and functionality Fk1,...,kw
ITSig .

Layer L0: If C /∈ I0 is honest do:

- Compute a shamir sharing (mi,1, . . . ,mi,n) of 0 for all i ∈ [ℓ].

Layer Lk: If C /∈ I0 is honest, for all corrupt P k
j ∈ Ik send (m1,j, . . . ,mℓ,j) to A on

behalf of the simulated functionality Fk1,...,kw
ITSig [j] for all j ∈ [n] .
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Layer Lk1: If C ∈ I0 is corrupt do:

- If P k
j /∈ Ik is honest receive messages (m1,j, . . . ,mℓ,j) from A on behalf of the simu-

lated functionality Fk1,...,kw
ITSig [j] for all j ∈ [n].

- Interpolate mi through (mi,1, . . . ,mi,n) for all i /∈ Ik, if the values don’t lie on a
polynomial of degree at most t set mi = ⊥.

- Input (m1, . . . ,mℓ) to Fk1,...,kw
DistCommit.

Layer Lk′−3: If C /∈ I0 is honest do:

- Receive (L,L(m1, . . . ,mℓ)) from Fk1,...,kw
DistCommit.

- For all P k
j ∈ Ik compute lj = L (m1,j, . . . ,mℓ,j).

- Patch the simulated honest states to a valid sharing of L(m1, . . . ,mℓ)(
(lj)j∈Ik ,

(
l̂j

)
j /∈Ik

)
. (38)

- For each honest P k
j /∈ Ik forward lj to A on behalf of Fk1,...,kw

ITSig [j].

Layer Lk′:

- If C is honest, for each corrupt P k
j ∈ Ik receive boolean revealj ∈ {0, 1} from A

on behalf of Fk1,...,kw
ITSig [j]. If revealj = 0 set l̂j ← ⊥, otherwise set l̂j ← lj that was

computed before.

- If C is corrupt, for each corrupt P k
j ∈ Ik receive value l̂j from A on behalf of

Fk1,...,kw
ITSig [j].

- If

((
l̂j

)
j∈Ik

,
(
l̂j

)
j /∈Ik

)
lie on a polynomial of degree t then set open← 1, otherwise

set open← 0.

- Input boolean open to Fk1,...,kw
DistCommit.

- Set the output of σ(A) to the output of A.

Let’s first argue about the view of A in the real versus the ideal world. We consider the
cases where C is honest or corrupt separately.Below, Sh and Rec denote Shamir Sharing and
reconstruction.
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Adversary View, Corrupt Committer C. In this case, by inspection of the protocol
and the simulation we conclude that the view of the adversary in the real and ideal world is
trivially identically distributed, as C is the only party with secret inputs and all values sent
to A by σ(A) are computing according to the protocol, as in the real world.

Adversary View, Honest Committer C. In this case, in Lk the adversary A learns
shares mi,j for all i ∈ [ℓ] and P k

j ∈ Ik. In the ideal world, these shares are sampled ac-
cording to (mi,1, . . . ,mi,n) ← Sh(0, ri), while in the real world they are sampled according
to (mi,1, . . . ,mi,n) ← Sh(mi, ri), where mi for i ∈ [ℓ] are the honest C’s inputs. However,
thanks to the t-privacy of the secret sharing scheme, any subset of up to t shares are iden-
tically distributed regardless of the secret. Because |Ik| ≤ t it follows that in these two
scenarios the view of the adversary is identically distributed. Similarly, in layer Lk′−3 the
adversary A learns values lj for P

k
j /∈ Ik. Both in the real and in the ideal world, thanks to

the correct patching of the secret sharing scheme, these values are valid shares of honestly
sampled sharings of L(m1, . . . ,mℓ), and are therefore identically distributed.

Next, we argue about the distribution of outputs of the honest parties. Again, we distin-
guish the two cases where C is honest or corrupt. We only argue about the case of private
outputs, but the case of a single honest receiver is completely analogous.

Honest Outputs, Corrupt Committer C. In this setting, in the ideal world, the
outputs of honest parties in layer Lk′ are simply L(m1, . . . ,mℓ), where values m1, . . . ,mℓ

are the values input by σ(A) to Fk1,...,kw
DistCommit in layer Lk1 . These value are computed as

Rec(L({mi,j}j /∈Ik)) In the real world, the output of honest parties are computed by first
checking that all shares (for all j ∈ [n]) lie on a polynomial of degree at most t and then
choosing any t + 1 to reconstruct the secret. However, the t + 1 shares corresponding to
honest P k

j (which are the same in the real and ideal world because of FITSig) determine a
unique polynomial of degree at most t, so the outputs in the real and ideal world are the
same.

Honest Outputs, Honest Committer C. In this case, in the ideal world the output
of honest parties is simply L(m1, . . . ,mℓ), where values mi for i ∈ [ℓ] are the inputs of the
honest C. In the real world, the output of honest parties is computed as Rec(l1, . . . , ln),
where value lj for j ∈ [n] is computed by Fk1,...,kw

ITSig as L(mj,1, . . . ,mj,n), and these are the

values input to the functionality by P k
j . For P

k
j ∈ I0 these values can be set to ⊥ by A, but

for P k
j /∈ I0, the values mi,j are sampled honestly from C as (mi,1, . . . ,mi,n) ← Sh(mi, ri).

Since |Ik| ≤ t, these values determine a unique polynomial of degree t.
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8 Parallel Linear VSS

8.1 Parallel Linear VSS Functionality

In this section we describe our parallel VSS functionality Fk1,...,kw
VSS . The functionality can

be thought of as a strong distributed commitment functionality: parties in an initial layer
L0 can input (commit to) values, and then later parties (in layers k1, . . . , kw) can decide to
perform linear operations on the values and reveal them as long as the majority of parties in
the layer agree (from which the distributed nature of the commitment). Parties are strongly
committed to the values they input, in the sense that they cannot abort the opening of
these values, or linear combinations of them, at a later time: this is the first big difference
between this functionality and FDistCommit. The second major difference is that parties in
layers k1, . . . , kw can perform linear operations on values committed by different parties (in
the functionality, this is modeled by the linear function L). This stronger linearity property
is crucial to perform secure addition and multiplication.

Parallel Linear VSS Functionality Fk1,...,kw
VSS

Public Parameters. Committers C1, . . . ,Cn ∈ L0. Auxiliary layers Lki for i ∈ [w]
deciding which messages are opened. The domain M of the messages from Ci for all
i ∈ [n]. The maximum number of messages ℓ to be committed by each committer.

Secret Inputs.

– From each honest Ci messages (m1,i, . . . ,mℓ,i) ∈M to be committed.

– From each P ki
j i ∈ [w] message (L,L1, . . . , Ln; r):

- Li : M
ℓ →M the linear combination of C′

is inputs to compute.

- L : Mn →M the linear combination of these linear combinations to compute.

- r ∈ Lk′ ∪{Lk′} is the intended recipient of this linear combination: either some
specific party in Lk′ or all the parties in layer Lk′ .

Layer L0: For each Ci /∈ I0 receive messages (m1,i, . . . ,mℓ,i) from Ci.

Layer Lki for i ∈ [w]:
- For each Ci ∈ I0 receive from the (ideal) adversary messages (m1,i, . . . ,mℓ,i) that
Ci wants to commit.

- For each honest P k
i ∈ Lk \ Ik, receive the same input (L,L1, . . . , Ln; r).

Layer Lk′−3 :

- Let l = L
(
L1(m1,1, . . . ,mℓ,1), . . . , L(m1,n, . . . ,mℓ,n)

))
.

48



- If r = Lk′ , then forward (L,L1, . . . , Ln; l) to the (ideal) adversary.

Layer Lk′:

• If r = P k′
s , send the value l to P k′

s .

• If r = Lk′ , send the value l to all parties in Lk′ .

8.2 Linear VSS Protocol

Starting from the distributed commitment functionality FDistCommit we construct a protocol
that realizes FVSS with perfect security.

The task is to prevent a corrupt dealer from disrupting the opening of their commitment
at a later time. A basic idea is to ask the dealer to robustly secret share the input s and
send each share to a distinct party in a following layer. Each party can then commit to their
share. This simple approach fails because the secret sharing provides no guarantees when
the dealer is corrupted: the adversary can selectively abort the reconstruction by preventing
the opening of different subsets of corrupted commitments.

An even bigger problem is that even with an honest dealer, corrupted parties can commit
to arbitrary values. To tackle both these problems at once, we ask the dealer to commit
to the randomness used in the sharing (in our case, a polynomial) and prove in ZK that
that they are providing valid shares (with respect to this randomness) to the auxiliary layer.
Then, parties in the auxiliary layer prove in ZK that they are committing to the values
received from the dealer. Since we cannot rely on public randomness for these distributed
ZK-proofs (we are using this VSS protocol to implement our random beacon later) we resort
to techniques based on bi-variate polynomials and leverage the honest majority in each layer.

The dealer produces a two-dimensional polynomial sharing of their input, and sends each
share (now a univariate vertical projection of the bi-varate polynomial) to a distinct party
in an auxiliary layer. The dealer also commits to their bi-variate polynomial. Each of the
parties in the auxiliary layer now commits to the polynomial received from the dealer. The
opening of commitments to the dealer’s polynomial can fail if the dealer is corrupted, but
the projections committed by honest parties in the auxiliary layer will open correctly, even
if those by dishonest parties might be inconsistent with the dealer’s polynomial. To ensure
consistency of all projections with the dealer’s polynomial, every horizontal projection of
the dealer’s polynomial and the corresponding cross points with the vertical projections are
opened towards distinct parties in another layer. If any inconsistency is detected, the conflict
is then publicly resolved. Privacy is not an issue as there are no inconsistencies between an
honest dealer’s polynomial and honest parties’ projections.

Linear VSS Protocol Πk1,...,kw
VSS

Public Parameters. Dealer D ∈ L0. Layers Lk1 , . . . ,Lkw receiving sharing states.
Domain S of the secret. The domain S of each share. Finite field F.
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Secret Inputs. From D the secret s to share.

Resources. Functionality Fk1,...,kw
DistCommit (as the functionality is only invoked with this set

of parameters throughout the protocol, in the description below we omit the parameters
for legibility).

Layer L0: The dealer D does:
- Sample fk,ℓ ←$ F for k, ℓ ∈ {0, . . . , t} such that (k, ℓ) ̸= (0, 0).

- Let

(x, y) =
t∑

k,ℓ=0

fk,ℓx
kyℓ (39)

where f0,0 = s.

- Let hi(x) = F (x, i) =
∑t

k=0 hi,kx
k.

- Let vi(y) = F (i, y) =
∑t

k=0 vi,ky
k.

- For all k, ℓ ∈ [0, t] input fk,ℓ to FDistCommit[D].a

- Send (vi,0, . . . , vi,t) to P 1
i via bilateral secure channels.

Layer L1: Each P 1
i does:

- If vi,k was not received for some k ∈ {0, . . . , t} set vi,k to 0.

- Input vi,k to FDistCommit[i] for all k ∈ {0, . . . , t}.

Layer Lk1: Each P k1
s does:

- Input
(
L = (j0, . . . , jt), r = P k2

j

)
to FDistCommit[i] for k ∈ {0, . . . , t}.b

- Input
(
L = (i0j0, . . . , itjt), r = Lk4

)
to FDistCommit[D] for i ∈ [n].

Layer Lk2: Each P k2
j does:

- Receive value v̂i(j) from FDistCommit[i] for all i ∈ [n].

- Receive values ĥj(i) from FDistCommit[D] for all i ∈ [n].

- If v̂i(j) = ⊥, or ĥj(i) = ⊥, or v̂i(j) ̸= ĥj(i), then broadcast complaini,j.
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Layer Lk3: Each P k3
s does:

- For all i, j ∈ [n], if complaini,j was broadcast by P k2
j do:

- Input
(
L = (j0, . . . , jt), r = Lk4

)
to FDistCommit[i].

c

- Input
(
L = (i0j0, . . . , itjt), r = Lk4

)
to FDistCommit[D].d

Layer Lk4: Each P k4
s does:

- For all i, j ∈ [n], if complaini,j was broadcast by P k2
j , do:

- Receive value vi(j) from FDistCommit[i].

- Receive value hj(i) from FDistCommit[D].

- If hj(i) = ⊥ the dealer D is disqualified.

- If vi(j) = ⊥ or vi(j) ̸= hj(i), then add index i to a set I (if |I| > t then D is
disqualified) and for all j ∈ [n] do:

- Input
(
L = (j0, . . . , jt), r = Lk5

)
to FDistCommit[i].

e

- Input
(
L = (i0j0, . . . , itjt), r = Lk4

)
to FDistCommit[D].f

Layer Lk5: Each P k5
s does:

- Receive values vi(j) for all j ∈ [n] from FDistCommit[i]. 2

- Receive values hj(i) for all j ∈ [n] from FDistCommit[D].

- If hj(i) = ⊥ for any j ∈ [n], then the dealer D is disqualified.

Sharing State VSS:

Public State. Set I and each i ∈ I polynomial vi,D(y) through values hj(i) for all j ∈ [n]
revealed in layer Lk5 .
Private State. For all i /∈ I the state of functionality FDistCommit[i].

Dealer With Multiple Inputs (s1, . . . , sℓ):

We described the protocol in the case where D only has one input s to avoid a notational
blow-up. However, it is easy to generalize the construction to the case where D has
multiple inputs s1, . . . , sℓ. The protocol is simply executed ℓ times in parallel, but using
the same instances of FDistCommit[i] for all ι ∈ [n] and FDistCommit[D], which allow for
an arbitrary number of inputs. This ensures homomorphism across the sender’s inputs.
Furthermore, in each parallel execution with input sι for ι ∈ [ℓ] the set I(ι) might be
different: we consider I =

⋃
ι∈[ℓ] I(ι) to be the union of all such sets. Again, if |I| > t then

D is disqualified.

Revealing L(s1, . . . , sℓ) to r ∈ L′
k ∪ {Lk′}:

Suppose D has inputs s1, . . . , sℓ. If D was disqualified in any of the executions correspond-
ing to any sι the honest party simply output 0.
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Layer Lkr for r ≥ 5: Each P ki
s does:

- For all i /∈ I input (L′, r) to FDistCommit[i], where L′ is the linear function that

comptutes L(v̂
(1)
i (0), . . . , v̂

(n)
i (0)).

• For all i ∈ I input (π′
ι, r) to FDistCommit[i] for all ι ∈ [ℓ].g

Layer Lk′: Each P k′
s does:

- Receive output li from FDistCommit[i] for i /∈ I.

- Receive outputs si,ι from FDistCommit[i] for i ∈ I and ι ∈ [ℓ].

- Let li = L(s1,i, . . . , sℓ,i) for i ∈ I.

- Interpolate the unique polynomial f̂(x) through any of t+1 among points (i, li)i∈[n]
and output f̂(0).

Multiple Dealers D1, . . . ,Dn:

We described the protocol in the case where there is only one dealer to avoid a notational
blow-up. However, when invoked in parallel by different dealers the protocol provides
linearity among values dealt by different dealers. Consider parallel executions with dealer
Dι with input sι for ι ∈ [n]. Suppose party P 1

i commits to polynomials v̂
(ι)
i (y) in execution

with Dι. Revealing a linear combination of values L′(s1, . . . , sn) can be done by revealing

the corresponding linear combination of the polynomials v̂
(ι)
i (y). Some care must be put to

ensure privacy. Indeed, in executions with different dealers the sets I(ι) could be different.
Suppose that P 1

i ∈ I(1) but P 1
i /∈ I(ι) for all other ι ̸= 1. Then, we cannot simply

reconstruct all polynomials v̂(i)(0) for ι ̸= 1 and compute L′ on public information, as
this would violate the privacy of honest dealer’s values. Therefore, we first compute the
projection of L′ on v̂(i)(0) for ι ̸= 1, and then add v̂(1)(0) afterwards. Details follow.

Revealing L(s1, . . . , sn) to r ∈ L′
k ∪ {Lk′}:

Suppose dealer Dι has input sι.

Layer Lkr for r ≥ 5: Each P ki
s does:

- If L = (a1, . . . , an) then let L′ = (ã1, . . . , ãn) where ãι ← aι if i /∈ I(ι), and ãι ← 0
if i ∈ I(ι).

- For all i ∈ [n] input (L′, r) to FDistCommit[i].
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Layer Lk′: Each P k′
s does:

- Receive output l′i from FDistCommit[i] for i ∈ [n].

- If l′i ̸= ⊥ let li = l′i +
∑

ι such that i∈I(ι) v
(ι)
i,Dι

(0) for all i ∈ [n].

- Interpolate the unique polynomial f̂(x) through any of t+1 among points (i, li) and

output f̂(0).

aThis notation is used to identify different parallel instances of FDistCommit.
bThis reveals v̂i(j) to P k2

j .
cThis publicly reveal values v̂i(j) to all parties in Lk3

.
dThis publicly reveals F̂ (i, j) = ĥj(i) to all parties in layer L4.
eThis reveals values hj(i) for all j ∈ [n] to all parties in Lk5

.
fThis reveals values vi(j) for all j ∈ [n] to all parties in Lk5 .
gWe denote by π′

ι the linear projection map computing v̂
(ι)
i (0) for ι ∈ [ℓ].

8.3 Linear VSS Security

Lemma 11. If D is honest in an execution of Πk1,...,kw
VSS then I ⊆ I1, and therefore also

|I| ≤ t.

Proof. If D is honest, then each honest party P 1
i ̸∈ I1 receives from D polynomial vi(y) =

F (i, y). Therefore, in Lk4 it always holds that, if P 1
i is honest, then

vi(j) = F (i, j) = hj(i), (40)

so that i /∈ I. Since there are at most t corrupted parties in I1, it also follows that |I| ≤ t.

Lemma 12. In an execution of Πk1,...,kw
VSS there exists a polynomial F̂ (x, y) such that 1) for

i /∈ I then party P 1
i ’s inputs to Fk1,...,kw

DistCommit[i] are the coefficients of F̂ (i, y), and 2) for i ∈ I
then vi,D(y) = F̂ (i, y). If D is honest then F̂ (x, y) = F (x, y).

Proof. Let F̂ (x, y) denote the unique polynomial determined by dealer’s inputs to function-
ality Fk1,...,kw

DistCommit[D] for all j ∈ [n]. Furthermore let v̂i(y) denote the unique polynomials

determined by party P 1
i ’s inputs to F

k1,...,kw
DistCommit[i] for all i ∈ [n]. We argue that for all i ∈ [n]

we have vi,D(y) = v̂i(j). We distinguish two cases:

Claim 1) Suppose that v̂i(y) ̸= F̂ (i, y). Since both these polynomials have degree at most
t, they differ in at least n− t ≥ t+ 1 points. This means that at least one honest P k2

j /∈ Ik2
would have broadcast a complaint complaini,j which could not be answered correctly by the
dealer in Lk4 , which in turn would mean i ∈ I, a contradiction.
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Claim 2) This case is trivial because point vi,D(j) is by definition the same as F̂ (i, j) (it

is computed by Fk1,...,kw
DistCommit[D] in exactly the same way).

Now notice that at the time of reconstruction the values li = v̂i(0) of honest parties with
i /∈ I will not be ⊥. Together with the polynomial vi,D for i ∈ I there are at least t + 1
values li ̸= ⊥. All the following properties follow trivially from this.

Lemma 13. . Assume that t < n/2. The (n, t, k′)-layered protocol Πk1,...,kw
VSS realizes func-

tionality Fk1,...,kw
VSS with (0, t)-statistical security (i.e. perfect security) in the Fk1,...,kw

DistCommit-hybrid
model.

Proof. For any adversary A we describe a simulator σ(A) such that the joint distribution of
the outputs of the adversary and honest parties in the real world (the adversary A interacting
with protocol Πk1,...,kw

VSS and functionality Fk1,...,kw
DistCommit) is identical to that in the ideal world

(the simulator σ(A) interacting with functionality Fk1,...,kw
VSS ). This shows that Fk1,...,kw

VSS can

be realized from Fk1,...,kw
DistCommit with perfect security. First, given any adversary A interacting

with protocol Πk1,...,kw
VSS we describe the simulator σ. For ease of notation we only describe

the simulator for the case of one dealer and one input, but the general case is analogous up
to notational hurdles.

Simulator σ(A) for Protocol Πk1,...,kw
VSS

The simulator σ(A) executes the protocol on behalf of honest parties. We highlight how
the simulator deals with the missing inputs of an honest dealer.

Layer L0: If D /∈ I0 do:

- Sample fk,ℓ ←$ F for k, ℓ ∈ {0, . . . , t} such that (k, ℓ) ̸= (0, 0).

- Let f0,0 ← 0 (the simulator sets the dealer’s input to 0).

- Let F (x, y) =
∑t

k,ℓ=0 fk,ℓx
kyℓ.

- For each corrupt P 1
i ∈ I1 send F (i, y) to Pj.

Layer L1:

- For each corrupt P 1
i ∈ I1 receive coefficients v̂i,k for k ∈ {0, . . . , t} on behalf of

Fk1,...,kw
DistCommit[i].

Layer Lk1:

- For each P 1
i ∈ I1 receive from A coefficients ĥi,k for k ∈ {0, . . . , t} on behalf of

functionality Fk1,...,kw
DistCommit[i].
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- If D ∈ I0 receive from A coefficients f̂k,ℓ for k, ℓ ∈ {0, . . . , t} that the dishonest

dealer wants to commit, on behalf of functionality Fk1,...,kw
DistCommit[D].

- If D ∈ I0 and D was not disqualified in the simulation, input f0,0 to Fk1,...,kw
VSS . If D

was disqualified in the simulation, input 0 to Fk1,...,kw
VSS .

Then σ(A) continues to emulate the protocol and functionalities Fk1,...,kw
DistCommit[i] and

Fk1,...,kw
DistCommit[D] on behalf of the honest parties (using the simulated states in the case

D ∈ I0).

Layer k′ − 3:

- If D /∈ I0 receive from Fk1,...,kw
VSS the actual dealer’s input s.

- Sample a uniform random polynomial F̂ (x, y) of degree at most t in each variable

such that F̂ (i, y) = F (i, y) for all i ∈ I1 and F̂ (x, j) = F (x, j) for all j ∈ Ik2 . This
can be done efficiently by first interpolating the unique polynomial through F (i, 0)
for i ∈ I1 and s, let it be h(x), and then interpolating the polynomial through F (i, j)
and h(i) for j ∈ Ik2 for all i /∈ I0. It is clear that all these polynomials are consistent

and define a unique polynomial F̂ (x, y).

- For each P 1
i /∈ I1 send the coefficients of F̂ (i, y) to A on behalf of Fk1,...,kw

DistCommit[i].

Layer k′:

- Set the output of σ(A) to the output of A.

We first start by arguing that the view of A in the real and ideal world is identically
distributed. When the dealer D is corrupted, the simulator simply executes the protocol on
behalf of the honest parties, so this case is trivial. When the dealer is honest, by inspection
of the protocol and the simulation we conclude that the only difference in the view of the
adversary in the two scenarios is that 1) in the ideal world A learns polynomials F (i, y) for all
i ∈ I1 and F (x, j) for all j ∈ Ik2 respectively. These are projections of a polynomial F (x, y)
sampled uniform at random conditioned on that facts that the degree in each variable is at
most t and that F (0, 0) = 0, while 2) in the real world the polynomials the adversaryA learns

are the projections of a polynomial F̂ (x, y) which is sampled uniformly at random conditioned
on that facts that the degree in each variable is at most t and that F (0, 0) = s, where s is
the actual input of the honest dealer. However, a subset of up to t vertical and horizontal
projection is independent from the secret s. More formally, once these projections are fixed
there exists exactly one polynomial for each possible secret s′ with the same projections.
Therefore, the view of the adversary is identically distributed in these two scenarios.

Next, we argue about the outputs of honest parties. We distinguish two cases. First
suppose that D is honest. In the ideal world, the outputs of honest parties (who receive
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output) is simply the honest dealer’s input s. In the real world, the output of the honest

parties is computed by interpolating any the polynomial f̂(x) through t + 1 of the values

(i, v̂i(0)) for i /∈ I and (i, vi,D(0)) for i ∈ I and outputting f̂(0). By Lemma 11 the dealer

is not disqualified, so that by Lemma 12 we can conclude f̂(x) = F (x, 0), so that f̂(0) = s.
Now suppose that D is corrupted. The dealer is disqualified in the simulation if and only if
it is disqualified in the real world, because all messages are computed by σ(A) according to
the protocol. In this case, in both the ideal and the real world the output of honest party
is 0 (because in the ideal world σ(A) sets the corrupted dealer’s input to 0 in Fk1,...,kw

VSS ). If

the dealer is not disqualified, then in the ideal world the output of honest parties is f̂0,0, and

in the real world by Lemma 12 the output of honest parties is also f̂(x) = F̂ (x, 0), so that

f̂(0) = f̂0,0.

9 Uniform Random Beacon

Our beacon functionality, when queried by all honest parties in a layer, samples uniform
random field elements and provides this value to parties in a later layer.

9.1 Uniform Random Beacon Functionality

Beacon Functionality Fk
Beacon

Public Parameters. The output spaceR of values of Fk
Beacon. Layer L0 deciding whether

or not to sample a value. Layer Lk receiving the sampled value.

Secret Inputs. From each P 0
i ∈ L0 boolean value samplej ∈ {0, 1}.

Layer L0:
- Receive the same input sample from all P 0

i /∈ I0.

Layer Lk:

- If sample = 1 sample r ←$ R.

- Send r to all parties in Lk.

9.2 Uniform Random Beacon Protocol and Security

Given our Fk
VSS functionality, implementing Fk

Beacon is straight-forward using a simple commit-
and-open approach: each party in L0 commits to a uniform random value in R by inputting
this value to Fk

VSS and then parties in Lk ask Fk
VSS to open the sum of all committed values.

Clearly, this approach is quite wasteful because from n − t uniform random values input
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by honest parties in Lk only one public random value is produced, but we choose it for its
simplicity.

10 Circuit Evaluation

In this section, we explain how the layered components we developed so far can be used
to securely evaluate a circuit C encoding a function f . Let F be a finite field, and let f
be a function f : Fℓ → Fℓ′ . We denote by Ff the functionality that takes a set of inputs
(si)i∈inputsi from all input clients Ci for i ∈ [n] belonging to an initial layer L0, and delivers
f(s1, . . . , sℓ)j∈outputsi to the output clients C ′1, . . . , C ′n.

Theorem 1. Let t < n/2. If C is a circuit with depth d computing f , the (n, t, O(d))
layered protocol ΠC

MPC realizes functionality Ff with (negl(κ), t)-statistical security in the
(FVSS,FBeacon)-hybrid model.

Protocol Invariant. Throughout the circuit evaluation, we maintain the following invari-
ant: there is a layer of parties, say L0, holding a state encoding the input values a and b to
every gate g in a certain level of the circuit C, and a layer Lk holding a state encoding the
output c = g(a, b) of g. It is clear that this invariant allows performing the computation of
the whole circuit layer by layer. The state encoding an input value a to a gate g has three
components:

1. A (t, n)-Shamir Sharing of a, where each party P 0
i ∈ L0 holds share ai.

2. A (t, n)-Shamir Sharing of a random value r (which is used to securely evaluate mul-
tiplication gates).

3. Commitments (in the strong sense, produced using FVSS) to the coefficients of the
polynomial fa(x) used for the Shamir Sharing of a. Observe that, because of the linear
properties of FVSS, this means that parties also hold commitments to each share ai.

The need for such a cumbersome state is somewhat inherent to the t ≥ n/3 honest
majority setting. Unlike in the t < n/3 case, where robust linearly homomorphic sharings
have a simple description (typically a polynomial sharing, for example Shamir sharing), in
the honest majortiy setting combining robustness and linearity is trickier. In particular, the
robust sharing scheme from Section 3.3 does not provide linearity across different dealers.
We now descrive protocol ΠC

MPC, which comprises of four sub-protocols, two for receiving
inputs and providing outputs to clients, and two for computing addition and multiplication
gates.

10.1 Client Input Protocol

Clients must provide the necessary state encoding their input onto the layer tasked with the
evaluation of the first level of the circuit. The protocol is simple because all the difficult
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guarantees (commitment, linearity among values input by different dealers) are derived from
FVSS, so that the only real task is to produce the polynomial sharing securely even when the
client is dishonest. To achieve this, we simply require the client to VSS the coefficients of a
polynomial which shares their input, and then we reconstruct each share towards the intended
recipient exploiting the VSS linearity. This ensures that all shares lie on a polynomial of
degree t even when the dealer is dishonest. We only describe the protocol for one client
and one input, but a parallel version where every party in a layer has up to ℓ inputs can be
obtained exactly as in ΠVSS.

Client Input Protocol Πk
Input

Public Parameters. Clients C1, . . . ,Cn ∈ L0. Layer k receiving the input state. The
domain M of the inputs from Ci.

Secret Inputs. Each Cj has input sj.

Resources. Functionality F0,...,2k
VSS for 2k.

Layer L0: Each committer Cj ∈ L0 does:
- Sample coefficients

(
f1,j, . . . , ft,j

)
←$ Ft.

- Input (sj, f1,j, . . . , ft,j) to F0,...,2k
VSS .

Layer Lk′: Each P k1
s ∈ Lk1 does:

- Input
(
(πj, (m

0, . . . ,mt)), r = P k
m

)
to F0,...,2k

VSS
a for all m, j ∈ [n].

Layer Lk: Each P k
m ∈ Lk receives values (s1,m, . . . , sn,m) from F0,...,2k

VSS .

aπi is the linear function denoting the projection on the i-th component. This command reveals
λ(fi(m)) to P k

m.

10.2 Secure Multiplication Protocol

Layer L0 holds the states for the inputs a and b of the multiplication gate g. Each party
P 0
i locally multiplies their polynomial shares of a and b and computes ci = ai · bi. Then

this party reproduces the input state but for the value ci towards the layer (say Lk) who
is tasked to compute the following layer of the circuit. It does so by using the client input
protocol ΠInput. Notice that c = a · b can be expressed as a linear combination of the ci’s for
i ∈ [n], because (i, ci)i∈[n] are points on a polynomial g(x) of degree 2t (the product of fa(x)
and fb(x)) such that g(0) = c, and both polynomial interpolation and polynomial evaluation
at 0 are linear functions. Therefore, the state for c can be obtained from the states for each
ci locally.

However, a corrupt P 0
i ∈ I0 who inputs a value ĉi ̸= ai·bi can easily disrupt the correctness
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of this procedure. We therefore require that each party proves, via a distributed ZK-proof,
that the input ĉi they provided is indeed ĉi = ai · bi. To this end, each party P 0

i produces

new FVSS commitments to âi, b̂i and ĉi, and proves (to parties in some auxiliary layer Lk′)

that 1) âi = ai, 2) b̂i = bi, and 3) âi · b̂i = ĉi. If they fail to do so (honest parties never
fail in these proofs) then parties in Lk′ simply reveal values ai and bi to layer Lk. Finally
parties in Lk hold commitments to each ci (the ones for which the proof fails are just taken
as standard states of the reconstructed values) and with this to the product c = a · b.

To finish, we just need to explain how parties perform the three required ZK-proofs. Let
us first discuss the proof of equality for the commitments to values âi and ai performed by
P 0
i . To begin the proof of equality, party P 0

i produces new commitments via FVSS to r̂i
(his claimed version of ri), towards all future layers until Lk. Then, parties in some later
layer (who also hold commitments to ai, ri and âi) receive a public random value ρ from
functionality FBeacon. The values ri + ρai and r̂i + ρâi are opened publicly, and if they are
different the proof fails. Intuitively, if ai ̸= âi or ri ̸= r̂i, there is only one value ρ that
satisfies the equality, and this can only be guessed with negligible probability if the space of
random values sampled by the beacon is large enough.

The proof of correct multiplication to show âi · b̂i = ĉi works as follows: party P 0
i samples

a random value βi and commits (via FVSS) to values βi and biβi. Now, parties in some later

layer (who also hold commitments to âi, b̂i and ĉi) receive a random value ρ from functionality
FBeacon, and publicly open the value ρ′ = ρai + βi. Finally, a later layer publicly opens the
value ρ′bi − biβi − ρci and the proof succeeds if and only if this value is 0. Again, the
intuition is that if âi · b̂i ̸= ĉi, there is only one value ρ that satisfies the equality, and the
proof succeeds with negligible probability if the value ρ comes from a large enough space.
The fresh randomness to be used in the next layer of the circuit is generated in parallel to
the multiplication protocol.

Secure Multiplication Protocol Πk;a,b,g
Mult

Public Parameters A layer L0 holding the invariant state for input values a and b to a
multiplication gate g. A layer Lk holding the invariant state for output value c = a · b of
g. Layers until L2k hold commitments to c and each polynomial share ci.

Secret Inputs. Each P 0
i holds:

- Values ai = fa(i) and bi = fb(i), where fa(0) = a and deg(fa) ≤ t and fb(0) = b and
deg(fb) ≤ t.

- Values ri = fr(i) and r′i = fr′(i) where fr(0) = r and deg(fr) ≤ t and fr′(0) = r′

and deg(fr′) ≤ t.

Resources. Functionality FBeacon. Protocol ΠInput. Functionality FVSS. Function-

ality F0,...,k
VSS [a, b, r, r′] such that a, b, r, r′ are linear combinations of values input to

F0,...,k
VSS [a, b, r, r′] in a previous layers.
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Layer L0: Each P 0
i does:

- Sample βi ←$ F.

- Compute ci = ai · bi.

- Input (ai, bi, ri, r
′
i, ci, βi, bi ·βi) to Π0,...,2k

Input . Denote by FVSS the corresponding instance
of the functionality.

- Sample γi ←$ F and input Πk
Input.

- Input sample to Fk1
Beacon[j, a] for all j ∈ [n].

- Input sample to Fk1
Beacon[j, b] for all j ∈ [n].

- Input sample to Fk1
Beacon[j, c] for all j ∈ [n].

Layer Lk1: Each P k1
s does, for all i ∈ [n]:

- Receive value ρi,a from Fk1
Beacon[i, a].

- Receive value ρi,b from Fk1
Beacon[i, b].

- Receive value ρi,c from Fk1
Beacon[i, c].

- Query FVSS to reveal ρi,aâi + r̂i to Lk2 .

- Query FVSS to reveal ρi,bb̂i + r̂′i to Lk2 .

- Query FVSS[a, b, r, r
′] to reveal ρi,aai + ri to Lk2 .

- Query FVSS[a, b, r, r
′] to reveal ρi,bbi + r′i to Lk2 .

- Query FVSS to reveal ρ′i = âiρi,c + βi to Lk2 .

Layer Lk2: Each party P k2
s does, for all i ∈ [n]:

- If âiρi,a + r̂i ̸= aiρi,a + ri add index i to set FailProof.

- If b̂iρi,b + r̂′i ̸= biρi,b + r′i add index i to set FailProof.

- Query FVSS to reveal ρ′ib̂i − b̂iβi − ρi,cĉi to Lk3 .

Layer Lk3: Each party P k2
s does:

- If ρ′ib̂i − b̂iβi − ρi,cĉi ̸= 0 then add index i to set FailProof for all i ∈ [n]

- For all i ∈ FailProof query functionality FVSS[a, b, r, r
′] to reveal values ai and bi

publicly to layer Lk.
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Layer Lk: Each P k
s does:

- Consider standard (constant) sharings of each ci for i ∈ FailProof. Let ci,s denote
P k
s share.

- Receive from FVSS share ci,s of ci for each i /∈ FailProof.

- Compute ci as a linear combination λ(c1,s, . . . , cn,s), where λ is the linear function
obtained by composing polynomial interpolation and evaluation at 0.

- Receive from FVSS share γi,s of γi for each i ∈ [n].

- Compute γs =
∑n

i=1 γi,s.

Lemma 14. In an execution of Πk;a,b,g
Mult it holds that Pr[i /∈ FailProof | ĉi ̸= ai · bi] = negl(κ)

for all i ∈ [n].

Proof. We have

Pr[i /∈ FailProof | ĉi ̸= ai · bi] =

Pr

ρ′ib̂i − b̂iβi − ρi,cĉi = 0 ∨ ĉi ̸= âi · b̂i ∨
b̂iρi,b + r̂′i = biρi,b + r′i ∨ âi ̸= ai ∨
âiρi,a + r̂i = aiρi,a + ri b̂i ̸= bi

 ≤
Pr

[
ρ′ib̂i − b̂iβi − ρi,cĉi = 0 ĉi ̸= ai · bi

]
+Pr [âiρi,a + r̂i = aiρi,a + ri | âi ̸= ai]

+Pr
[
b̂iρi,b + r̂′i = biρi,b + r′i | b̂i ̸= bi

]
=

Pr

[
ρi,c =

b̂iβ̂i − b̂iβi

âib̂i − ĉi

]
+ Pr

[
ρi,a =

ri − r̂i
âi − ai

]
+ Pr

[
ρi,b =

r′i − r̂′i

b̂i − bi

]
=

3

|F|
,

(41)

where the first inequality follows from a union bound and the last equality from the obser-
vation that the three public random values ρi,c, ρi,b and ρi,a are independent from

(ai, bi, ri, r
′
i, ci, βi, bi · βi). (42)

10.3 Secure Addition Protocol

Addition gates (and linear gates in general) could be evaluated locally by exploiting the
linearity of FVSS and of polynomial sharings. However, since the linearity only holds for
parallel executions of ΠVSS, to allow the next layer of parties to compute the next layer of
the circuit, we need to “refresh” the state, so that the commitments to the inputs for the
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next layer are all generated in parallel executions of ΠVSS. This can be trivially achieved by
multiplying by 1 after performing the addition locally. The state encoding the input of this
dummy gate fixed to 1 can be computed as a default state of protocol ΠInput. We denote
this procedure by ΠAdd. Notice that this protocol preserves the invariant necessary for the
circuit computation.

10.4 Client Output Protocol

The output protocol ΠOutput is trivial: parties in the layer holding the state corresponding
to output c of an output gate g can query FVSS[c] to reveal c to the intended recipient (or
recipients).

10.5 Circuit Evaluation Functionality and Protocol

The circuit evaluation functionality is straightforward: it receives inputs from parties in
Layer L0 and hands the output of the computation to the intended parties in the last Lk.
We refer to the parties in these two layers as the clients.

SFE Functionality Fk
f

Public Parameters. Input clients C1, . . . , Cn in L0 and output clients C ′1, . . . , C ′n in layer
Lk. A function f : Fℓ → Fℓ′ . For each input client Ci a subset of input indices inputsi. For
each output client C ′i subset of output indices outputsi

Secret Inputs. From each client Ci inputs (si)i∈inputsi to f .

- Receive inputs (si)i∈inputsi from all input clients Ci for i ∈ [n]

- Deliver f(s1, . . . , sℓ)j∈outputsi to all output clients C ′i for all i ∈ [n].

Below, we present a layered protocol implementing functionality Fk
f in the hybrid model

with FVSS and FBeacon. In addition, and for ease of notation, the protocol invokes the
multiplication and inputs protocols described in the previous sections as subroutines.

Circuit Evaluation Protocol ΠC
MPC

Public Parameters. Input Clients C1, . . . , Cn in L0. Output Clients C ′1, . . . , C ′n in Lk. A
layered arithmetic circuit with depth d and fan-in 2 over F computing function f : Fℓ →
Fℓ′ . For each input client Ci a subset of input indices inputsi. For each output client C ′i
subset of output indices outputsi

Secret Inputs. From each input client Ci inputs (si)i∈inputsi to f .

Resources. Functionality FVSS. Functionality FBeacon. Protocol ΠInput. Protocol ΠMult.
Protocol ΠAdd. Protocol ΠOutput.
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Layer 0: Each input client Ci inputs (si)inputsi to Πk
Input.

Layer ℓ · k: In each layer Lℓ·k for ℓ ∈ [d] we have the same invariant:

Invariant:

Each P ℓ·k
i holds, for every gate g in layer ℓ of the circuit C with input wires a and b:

- Values ai = fa(i) and bi = fb(i), where fa(0) = a and deg(fa) ≤ t and fb(0) = b and
deg(fb) ≤ t.

- Values ri = fr(i) and r′i = fr′(i) where fr(0) = r and deg(fr) ≤ t and fr′(0) = r′

and deg(fr′) ≤ ta.

Furthermore Lℓ·d is an auxiliary layer in an instance of functionality
F (ℓ−1)k,...,(ℓ+1)k

VSS [a, b, r, r′] holding commitments to a, b, r, r′.

Each party P ℓ·k
i participates in Π

(ℓ+1)k;a,b,g
Mult for each multiplication gate g in the ℓ-th layer

of C and in Π
(ℓ+1)k;a,b,g
Add for each multiplication gate g in the ℓ-th layer of C.

Layer L(d+1)·k: For every output wire c each party P
(d+1)·k
i participates in Π

(d+1)k+1;c
Output

towards each output client Cj such that c ∈ outputsj.

aIn the first computation layer Lk, we can assume without loss of generality that these random values
are computed as sums of additional inputs to the circuit C. They could also generated by means of a
layered protocol not involving the clients if asking clients to input randomness is a problem.

10.6 Circuit Evaluation Security

Theorem 1. If t < n/2 and C is a circuit with depth d computing f , the (n, t, O(d))
layered protocol ΠC

MPC realizes functionality Ff with (negl(κ), t)-statistical security in the
(FVSS,FBeacon)-hybrid model.

Proof. For any adversary A we describe a simulator σ(A) such that the joint distribution of
the view of A and the output of honest parties in the real world (A interacting with protocol
ΠC

MPC and functionalities FVSS,FBeacon) is statistically close to that the ideal world (σ(A)
interacting with Ff ).

The simulator σ(A) behaves as follows: it fixes all inputs of honest clients Ci /∈ I0 to
0. Then, the simulator executes the protocol on behalf of honest parties and simulating all
instances of FVSS,FBeacon in accordance with these input states and the messages received
from A. Upon receiving the output of corrupted output clients C ′ ∈ Ik, the simulator (that
kept track of the view of A) patches the state of honest parties to match this view. Notice
that this involves 1) patching polynomial sharings, which is trivial to do, and 2) patching
the state of FVSS, which can be done as explained in Lemma 13.
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The adversary, for each layer of the circuit, only learns up to t polynomial shares on
polynomials of degree at most t for each value a of each wire in the circuit, and because
these sharings are all generated from independent randomness, the view of the adversary in
the real and the ideal world is the same (in addition to this, in protocol ΠMult the adversary
only sees uniform random values that are independent from honest clients inputs and can
be perfectly simulated by σ(A)).

To argue that the outputs of honest clients are statistically close in the real and ideal
world, notice that 1) in the ideal world the outputs of honest clients are simply the outputs
of Ff computed on the real inputs of honest clients, while 2) in the real world the output
of honest clients are computed according to the outputs of FVSS for the output wires of C.
Thanks to the linearity of FVSS and of polynomial shares, these values are exactly the outputs
of f unless A manages to break one of the multiplication proofs for some gate g in any layer
ℓ of circuit C for some corrupted parties in P ℓ·k

i . Thanks to Lemma 14 this only happens
with probability |C| · t · negl(κ), which is again negligible in the security parameter.
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