
Computationally Efficient Asynchronous MPC with Linear
Communication and Low Additive Overhead

Akhil Bandarupalli1, Xiaoyu Ji2, Aniket Kate3, Chen-Da Liu-Zhang4, and Yifan Song5

1 abandaru@purdue.edu, Purdue University
2 jixy23@mails.tsinghua.edu.cn, Tsinghua University

3 aniket@purdue.edu, Purdue University & Supra Research
4 chen-da.liuzhang@hslu.ch, Lucerne University of Applied Sciences and Arts & Web3 Foundation

5 yfsong@mail.tsinghua.edu.cn, Tsinghua University and Shanghai Qi Zhi Institute

Abstract. We explore the setting of asynchronous multi-party computation (AMPC) with optimal
resilience n = 3t + 1, and develop an efficient protocol that optimizes both communication and
computation.
The recent work by Goyal, Liu-Zhang, and Song [Crypto’ 24] was the first to achieve AMPC
with amortized linear communication cost without using computationally heavy public-key cryp-
tography. However, its O(n14) additive communication overhead renders it impractical for most
real-world applications.
It is possible to reduce the communication overhead significantly by leveraging cryptographic tools
such as homomorphic commitments, public-key cryptography, or zero-knowledge proofs; however,
the corresponding AMPC protocols introduce computation overhead of Ω(nC) public-key cryp-
tographic operations that become bottleneck as n grows. Overall, achieving AMPC with linear
communication complexity, low additive communication overhead, and low computation overhead
remains an open challenge.
In this work, we resolve this efficiency challenge by utilizing the random oracle model. By relying
solely on computationally efficient primitives such as random oracle hash and symmetric-key cryp-
tography, our protocol is not only efficient in terms of computation and communication overhead
but also post-quantum secure. For a circuit with C multiplication gates, our protocol achieves
O(Cn) communication per multiplication gate with an additive overhead of O(n4) communica-
tion. In terms of computation, our protocol only introduces an additive overhead of O(n5) hash
computations independent of the circuit size.

1 Introduction

Multi-Party Computation (MPC) [Yao82, GMW87, BGW88, CCD88, RB89] enables n mutually dis-
trustful parties to compute any function on their private inputs. Moreover, it is guaranteed that the
adversary does not learn any information about the inputs apart from what can be inferred from the
output.

The cryptographic literature has studied MPC for more than forty years and the last decade has
seen tremendous progress towards making it practical. However, most existing MPC systems still rely on
strong networking assumptions such as (bounded) synchrony that make their practicability questionable,
especially for low-latency application scenarios.

In the synchronous model, messages are assumed to be delivered within a fixed time frame. In high-
throughput low-latency application scenarios in the real world, we cannot set synchronous time bounds
generously and instead unpredictable delays must be tolerated. This makes most existing synchronous
MPC systems inadequate. While protocols designed in the asynchronous model are resilient to such
delays, the current designs may not scale as n grows: Indeed, current asynchronous MPC (AMPC)
protocols struggle to scale to hundreds of parties either due to their 1) huge communication complexity
from the information-theoretic (IT) approach [BKR94, PCR10, PCR08, CP23, GLZS24] which does
not rely on any cryptographic assumptions or 2) computational complexity from the usage of threshold
cryptography for common coins, additive homomorphic encryption/commitments and/or non-interactive
zero-knowledge proofs [CP15, Coh16, BKLZL20, HNP05, HNP08, CHLZ21]. Concretely, the best-known
IT-secure AMPC with t < n/3 resilience protocols require O(nC + κn14) [GLZS24] for a circuit with
C gates and n parties. Current computational AMPC protocols [LYK+19, SLL+24] rely on significant
“heavy-weight” public-key cryptography and/or non-interactive zero-knowledge proofs requiring Ω(nC)

public-key cryptographic operations, which becomes the primary scalability bottleneck with increasing
n.
Lightweight Cryptography. We aim to reduce the high computational cost of heavyweight cryptography-
based MPC by developing an MPC protocol that relies exclusively on lightweight cryptography. The term
lightweight cryptography, first introduced by Shoup and Smart [SS24], refers to computationally efficient
cryptographic primitives such as hash functions and symmetric key encryption. These operations are at
least 100-1000× faster than simple public-key cryptographic operations such as discrete-log exponentia-
tions. Consequently, replacing heavyweight cryptography with lightweight alternatives can significantly
improve the computation time of the AMPC protocol. At the same time, as the offered security is com-
putational and not information-theoretic, communication complexity can be significantly smaller than
IT-secure AMPC protocols.

Moreover, similar to IT-secure protocols, lightweight cryptographic tools such as SHA3 (a crypto-
graphic hash function) and AES (a symmetric key encryption algorithm) also provide post-quantum secu-
rity. As quantum computing inches closer to practical realization, major companies like Apple have begun
transitioning from traditional cryptographic schemes to post-quantum alternatives. Notably, lightweight
cryptography inherently offers post-quantum security at no additional cost.

However, a key limitation of lightweight cryptographic tools is that they do not naturally support ho-
momorphic transcript aggregation, making it challenging to match the communication efficiency of heavy-
weight cryptography-based MPC. Despite this, specific prior works [BBB+24, DDL+24] have shown that
the performance benefits of computational efficiency often outweigh the increase in communication com-
plexity—provided the increase remains justifiable. For instance, HashRand [BBB+24], an asynchronous
random beacon protocol based on hash functions, achieved a 5× increase in throughput compared to
Spurt, a discrete-log-based beacon protocol, at n = 136 parties despite having an O(n) factor higher
communication and hash computation complexity, mainly because of better computational efficiency.

However, recent attempts at building an MPC from lightweight cryptography, such as Momose [Mom24]
give up a lot of communication in exchange for computational complexity. For instance, their protocol
requires at least O(n2C) communication complexity for computing a circuit of size C while achieving
Guaranteed Output Delivery (GOD). They also have a high concrete overhead of O(κn6) bits of com-
munication, which is at least O(n3) factor higher than primitives based on heavyweight cryptography
and makes their protocol too expensive in communication for practical use [CP15, SLL+24]. We aim to
address these limitations and strike a balanced middle ground between the communication complexity of
information-theoretic MPC and the computational overhead of heavyweight cryptography-based MPC.

1.1 Our Contributions

In this work, we consider the setting of AMPC with linear communication and optimal resilience t < n/3
[BOKR94, ADS20] active corruptions. Given the above considerations, and in particular, the fact that
the only linear protocol has an O(κn14) additive overhead, we ask whether lightweight cryptography can
be used to achieve AMPC with linear communication complexity and low additive overhead:

Can we achieve optimally resilient AMPC with linear communication and a low additive overhead
from lightweight cryptography?

We answer in the affirmative by presenting a scalable AMPC protocol that combines the computa-
tional efficiency of IT-secure protocols with practical communication overhead, without compromising
post-quantum security. More precisely, we achieve communication complexity of O(n) elements per mul-
tiplication, and O(n4) elements of additive overhead.

Theorem 1. Let n = 3t + 1 and κ denote the security parameter. Further let F be a finite field of size
2Ω(κ) and C be a circuit of size |C| and depth D. Assuming random oracles, there is a fully malicious
asynchronous MPC protocol computing the circuit that is secure against at most t corrupted parties with
guaranteed output delivery. The achieved communication complexity is O(|C| · n + D · n2 + n4) field
elements and round complexity is O(D + n).

Computational Efficiency. On top of communication efficiency, our protocols are computationally
efficient. Our AMPC with GOD protocol requires O(n5) Hash computations overall or O(n4) compu-
tations per party. In comparison, protocols based on homomorphic cryptography like [CP15, AJM+23]

2

require Ω(n|C|) computations per party, where each such operation is 100× to 1000× more expensive
than a Hash computation.

1.2 Related Work

The communication complexity in AMPC has been the subject of a very significant line of work.
Information-Theoretic MPC. In the IT setting, the first protocol with optimal resilience t < n/3
was provided by Ben-Or, Kelmer, and Rabin [BKR94]. The works [PCR10, PCR08] achieved O(n5) field
elements per multiplication, which was further improved in [CP23] to O(n4). The works [GLZS24, JLS24]
recently improved the scope to O(n) elements, but the additive overhead is Ω(n14) elements, making
it impractical. In the case of t < n/4 and perfect security, the recent work [AAPP24] achieves linear
communication O(n) elements per multiplication with an additive overhead of O(n5) elements.
Cryptographic MPC. Several communication-efficient protocols with optimal resilience t < n/3 under
different assumptions have been proposed. However, most of these works make use of heavy cryptography,
typically in the form of threshold (somewhat homomorphic) encryption and/or non-interactive zero-
knowledge proofs, and/or homomorphic commitments, which increases considerably the computational
overhead. Our protocols only make use of hash functions, which are orders of magnitude faster.

The works [HNP05, HNP08, CHLZ21] make use of an additive homomorphic encryption, with [HNP08,
CHLZ21] communicating O(n2) elements per multiplication. The recent work Dumbo-MPC [SLL+24]
improves upon this work and presents a protocol based on homomorphic commitments that communi-
cates O(n2) elements per multiplication in the worst-case, and O(n) elements in the optimistic case when
the network is synchronous and all parties are honest. The work [CP15] achieves O(n) elements per mul-
tiplication at the cost of using somewhat-homomorphic encryption. The work [CHLZ21] also achieves
linear cost using additive-homomorphic encryption for t < (1 − ϵ)n/3, but considers the atomic-send
model. The works [Coh16, BKLZL20] achieve a communication independent of the circuit size using
fully-homomorphic encryption.

The works [LYK+19, DGKN09] introduce AMPC protocols where the preprocessing phase may not
terminate, i.e. they are not live. This undesirable condition is more critical than the standard security
with abort, as in the latter case, parties realize that the protocol failed (they obtain ⊥ as output).

There also exist works that use homomorphic commitments to achieve ACSS with linear communica-
tion [AJM+23] per secret. However, this protocol requires O(n) discrete-log operations per secret, which
is a scalability bottleneck.
Lightweight Protocols. Some protocols based on lightweight cryptography have appeared for con-
crete functionalities, including asynchronous distributed random beacons [BBB+24], asynchronous com-
mon subset [DDL+24], and asynchronous verifiable secret sharing [BKP11, SS24]. The work [BKP11]
introduces an ACSS protocol with O(n3L) communication for sharing L secrets. [SS24] improve this
complexity to O(nL + κn2 log(n)) bits when the dealer is honest using Hash-based Zero-Knowledge
proofs and Pseudorandom functions (PRFs). However, a malicious dealer can increase communication
to O(n2L + κn3) bits. This ACSS is used in a recent work [Mom24], which introduces an AMPC with
O(n2) elements per multiplication in the worst-case, and O(n) elements in the optimistic case.6

2 Technical Overview

In the following, we use [s]d to denote a degree-d Shamir secret sharing of s and α0, . . . , αn to denote
distinct field elements. Here, we denote the security parameter by κ and require the field size to be 2Ω(κ).

Following [CP23, GLZS24], an asynchronous MPC (AMPC) can be obtained in three steps. The first
step is to realize an asynchronous complete secret sharing (ACSS) [PCR09] protocol which ensures that
all honest parties can obtain their shares of a degree-t Shamir sharing [s]t distributed by a dealer. Then,
the second step is to prepare Beaver triples [Bea92] with the help of ACSS in the offline phase. After
preparing a sufficient number of Beaver triples, all parties only need to do public reconstruction in the
online phase, which can be achieved with linear communication complexity and high concrete efficiency.

In the information-theoretic setting, the recent two works [JLS24] and [GLZS24] have addressed the
first two steps respectively with linear communication complexity, thus yielding a full asynchronous
6 The paper [Mom24] claims linear cost in the worst-case, but after private communication with the author, it

was acknowledged that the cost is quadratic in the worst case and linear in the optimistic case.

3

MPC protocol with linear communication complexity. However, both works incur a large (circuit-size
independent) communication overhead, making the final asynchronous MPC protocol not practical at all.
Concretely, the ACSS protocol in [JLS24] incurs an additive overhead of O(n12) and the triple generation
protocol in [GLZS24] incurs another additive overhead of O(n7) (regardless of the costs of ACSS).

In this work, we aim to improve the concrete efficiency of asynchronous MPC by using computa-
tionally efficient cryptographic tools such as pseudorandom number generators (PRGs), symmetric-key
encryptions, and random oracles. A recent prior work by Shoup and Smart [SS24] uses these tools to
construct an ACSS protocol with linear communication in the optimistic case (where all parties follow the
protocol) where the additive overhead is as small as O(n2 log n). Building upon [SS24], Momose [Mom24]
constructs an asynchronous MPC assuming random oracles with linear communication in the optimistic
case where the additive overhead is O(n5). However both works would fall back to quadratic communi-
cation in the pessimistic case as we will discuss later.

We note that the quadratic fallback of [Mom24] is due to the fallback procedure of the ACSS protocol
in [SS24]. Thus, to achieve linear communication, it is sufficient to use an ACSS protocol with linear
communication in [Mom24]. However, to the best of our knowledge, known solutions for ACSS with linear
communication either incurs a large additive overhead [JLS24] or requires computationally expensive
cryptographic primitives [AJM+23] such as the homomorphic KZG polynomial commitment scheme.

Our contribution lies on two aspects. First, building upon [Mom24], we show how to achieve overall
linear communication while maintaining the O(n5) overhead. Then, we show how to further reduce the
additive communication overhead from O(n5) to O(n4). In the following, we start by recapping the
techniques in [Mom24] and then introduce our new solutions.

2.1 Overviews of Previous Works

The construction in [Mom24] follows the general paradigm we mentioned above: Parties first prepare
random Beaver triples in the offline phase, and then use them to compute the circuit in the online phase.

Sketch of Triple Generation in [Mom24]. For the preparation of triples, [Mom24] extends the DN
technique [DN07] and party elimination framework [HMP00] to the asynchronous communication setting.
To generate a random Beaver triple, all parties run the following steps.

1. All parties prepare random Shamir sharings ([a]t, [b]t) and random double sharings ([r]t, [r]2t).
2. All parties compute their shares of [z]2t = [a]t · [b]t + [r]2t and together reconstruct the secret z.
3. Each party locally computes his share of [c]t = z− [r]t and terminates with his share of ([a]t, [b]t, [c]t).

After preparing a sufficient number of (possibly incorrect) random Beaver triples, all parties verify the
correctness of the triples. If the verification passes, all parties move on to the online phase. Otherwise,
all parties will together identify a corrupted party who deviates from the protocol.

To achieve GOD, the party elimination framework [HMP00] is used: For a parameter L, the triple
generation process is divided into |C|/L segments, where |C| is the total number of Beaver triples required
in the online phase. In each segment, all parties run the following steps to prepare L random Beaver
triples. If a corrupted party is identified, all parties eliminate this party and rerun this segment. Since
there are at most t corrupted parties, the number of rerun is bounded by t. By carefully choosing the
parameter L, it eventually leads to a linear communication per triple.

Technical Difficulties in [Mom24]. To make the above idea work, there are two main challenges.

– Prepare degree-t and degree-2t Shamir sharings with linear cost per sharing.
– Detect a corrupted party when the verification fails.

We start by introducing their techniques in handling the second challenge as it would eventually lead to
a solution for the first challenge as well.

In the synchronous setting, the second challenge can be resolved by letting every party send his view of
the generation process to each other. Then each party, after receiving the views from all parties, can find
out the corrupted party that deviates from the protocol. However, in the asynchronous setting, an honest
party can only expect to receive n − t = 2t + 1 parties’ views since corrupted parties may never respond.
With only 2t + 1 parties’ views, it may be insufficient to identify the corrupted party. To address this
issue, the author in [Mom24] makes use of a functionality FPrivSend which allows the sender to verifiably

4

send his message to the receiver. To be more concrete, FPrivSend ensures that all parties acknowledge that
the sender has sent the message to the receiver (named DispersePhase), and when needed, all parties
can together recover the message (named RevealPhase). We refer the readers to Appendix B for the
realization of this functionality.

Functionality FPrivSend

FPrivSend proceeds as follows, running with parties P = {P1, . . . , Pn}, a dealer D, a receiver R and an
adversary S.
1: Initialize a set M = ∅. Upon receiving a message m from D, add m to M , send a request-based delayed

output m to R and a request-based delayed message Delivered to all parties.
2: Upon receiving a message Reveal from t + 1 parties, send a request-based delayed output M to all

parties if it has sent Delivered before.

Now in the triple generation phase, every point-to-point message is sent via FPrivSend. Then when the
verification fails, all exchanged messages will be reconstructed to all parties so that they will obtain the
full view of the triple generation process. This addresses the second challenge.

Coming back to the first challenge, the solution is to let each party act as the dealer and distribute
random degree-t and degree-2t Shamir sharings. Then they agree on a set of n − t = 2t + 1 successful
dealers and extract random sharings following the techniques in [DN07]. For degree-t Shamir sharings,
[Mom24] uses the ACSS protocol in [SS24]. For degree-2t Shamir sharings, the dealer uses FPrivSend to
send the shares to all parties. As shown in [Mom24], there is no need to ensure that the dealer distributes
a valid degree-2t Shamir sharings. Instead, any deviation of the protocol would be caught in the triple
verification with overwhelming probability.

Communication Overhead of [Mom24]. During the triple generation phase, to prepare L random
Beaver triples, all parties need to communicate O(Ln+n4) field elements if the triple verification passes.
Here the term O(n4) comes from O(n2) instances of FPrivSend, one instance for each pair of parties, and
each instance of FPrivSend needs O(|m| + n2) to send an m-bit message. If the triple verification fails, the
communication becomes O(Ln2 + n4). This is because all parties need to reconstruct the entire view
of the generation phase to all parties via FPrivSend, and FPrivSend needs O(|m|n + n2) communication to
reconstruct the message m to all parties. Since at most t segments fail, to prepare |C| random Beaver
triples, the communication is |C|/L · O(Ln + n4) + t · O(Ln2 + n4) = O(|C|n + |C|n4/L + Ln3 + n5).
To ensure the second term is bounded by |C|n, we have L ≥ n3 and thus the communication complexity
of [Mom24] is O(|C|n + n6)7.

However, the above analysis assumes the underlying ACSS protocol from [SS24] achieves linear com-
munication per sharing and does not consider the fallback procedure in the pessimistic case. We note
that the ACSS protocol in [SS24] only achieves linear communication in the optimistic case, but requires
quadratic communication in the pessimistic case. To be more concrete, the ACSS protocol in [SS24]
guarantees that each party Pi either obtains his correct share or a proof against a corrupted dealer D.
In the latter case, to recover Pi’s share, Pi first sends the proof to all other parties. Then upon accepting
the proof, all parties invoke the fallback procedure which reconstructs the whole degree-t Shamir sharing
to Pi to let him recover his share. In the worst case, O(n) parties may trigger the fallback procedure,
resulting in O(n2) communication per sharing.

Unfortunately, the quadratic fallback is also inherited by the asynchronous MPC in [Mom24]. At a
first glance, one may try to resolve this issue by using the party elimination framework: when Pi sends the
proof to all parties, instead of reconstructing the whole sharings to Pi, all parties can just eliminate the
dealer D and discard the sharings distributed by D. However, this idea only works in the synchronous
network where a party without receiving his share will be noticed immediately. In the asynchronous
network setting, due to the unknown network latency, parties may not receive the proof from Pi on time.
Consider the scenario where the fallback process is triggered only after all |C| random Beaver triples
have been generated. Discarding the sharings generated by D would make all |C| random Beaver triples
invalid.
7 We note that this is different from the claimed efficiency in [Mom24]. However, we do not find a detailed cost

analysis in [Mom24] that supports their claim. Note that the cost analysis here is mainly used to demonstrate
the difficulties we need to address to achieve linear communication with O(n4) overhead.

5

In summary, the asynchronous MPC in [Mom24] achieves O(|C|n + Dn2 + n6) (the Dn2 term comes
from the online evaluation phase) in the optimistic case where the fallback procedures of the ACSS
protocol are not triggered, and O(|C|n2 + n6) in the pessimistic case.

In the following, we first introduce our new techniques towards achieving linear communication in
section 2.2, and then show how to further reduce the additive overhead to O(n4) in section 2.3.

2.2 Achieve Linear Cost in the Pessimistic Case

High-Level Idea. In the online phase, with random Beaver triples prepared, all parties can evaluate
addition gates locally and evaluate multiplication gates by only reconstructing degree-t Shamir sharings.
For a multiplication gate with input sharings [x]t, [y]t with a random Beaver triple ([a]t, [b]t, [c]t), all
parties locally compute [x + a]t, [y + b]t and publicly reconstruct x + a, y + b. Then the multiplication
result can be locally computed by [z]t := (x + a)(y + b) − (x + a)[b]t − (y + b)[a]t + [c]t.

It is known that if all honest parties have their shares of a degree-t Shamir sharing, the public
reconstruction is guaranteed to succeed. However, the optimistic path of [SS24] with linear communication
does not guarantee that every honest party obtains his shares from the dealer. The pessimistic path, while
ensuring shares of honest parties, requires quadratic communication per sharing.

Fig. 1. Online Phase: We achieve linear communication in our online phase by splitting our circuit into O(n)
smaller sub circuits. Parties first share their inputs using ACSS-Id protocol. Then, they evaluate the sub-circuit
using Beaver triples generated during the preprocessing phase. At the end of sub-circuit evaluation, parties
publicly reconstruct the output gates. In case the reconstruction fails and parties output ⊥ because of a faulty
party Pi, all parties participate in party elimination. Here, they reconstruct Pi’s secrets with linear communication
and re-evaluate the sub circuit by replacing Pi’s shares with the secrets.

To achieve linear communication, our idea is to avoid the fallback procedure in [SS24]. After all parties
accept the proof from Pi, instead of recovering Pi’s shares, all parties publicly reconstruct the secrets
of the corrupted dealer D = Pj . As we will show later, such a step can be done efficiently with linear
communication per secret/sharing. However this still does not help us since Pi cannot obtain his shares
from the secrets. To make progress, we borrow an important observation in [BSFO12, GSZ20]: for each
sharing [s]t ∈ {[x + a]t, [y + b]t} to be reconstructed, [s]t can be represented by [s]t =

∑n
i=1[si]t where

[si]t is a linear combination of the degree-t Shamir sharings distributed by Pi through ACSS. Now with
the publicly reconstructed secrets distributed by the corrupted dealer D = Pj , all parties can compute
sj in clear. Then they will replace their shares of [sj]t by sj and recompute their shares of [s]t. In this
way, Pi can compute his share of [s]t.

To make this idea work, we construct a weaker variant of the ACSS protocol, which we refer to
as ACSS-Id, with the following guarantee: (1) Each party Pi either receives his correct share from
the dealer D or a proof against the corrupted dealer D; (2) Upon receiving t + 1 parties’ requests,
all parties can together reconstruct the secrets of all degree-t Shamir sharings distributed by D with
linear communication. We point out that the optimistic path in [SS24] has already achieved the first
property but not the second property, which is the key idea towards achieving linear communication

6

in our construction. Jumping ahead, we show how to achieve linear communication in the online phase
assuming ACSS-Id.
Party-Elimination Based Public Reconstruction. In the online phase, all parties perform the public
reconstruction of [s]t =

∑n
i=1[si]t as follows, where each [si]t is a linear combination of degree-t Shamir

sharings distributed by Pi through ACSS-Id.

Step 1: Check Degree-t Shares. For i ∈ [n], each party checks whether he holds his share of [si]t.
If true, he computes his share of [s]t and broadcasts it. Otherwise, he broadcasts the proof against
the corrupted Pi.
Step 2: Public Reconstruction. Each party waits to receive messages from others:

• When receiving enough shares of [s]t and reconstructing the secret s by online error correction,
he sets the reconstruction result as s.

• When receiving a valid proof against some party Pi, he sets the reconstruction result as ⊥.
Step 3: Agreement on Public Reconstruction Result. All parties run an agreement protocol
for the reconstruction result. If the agreement result is not ⊥, all parties output the result and
terminate. Otherwise, all parties continue to agree on a corrupted dealer Pi.
Step 4: Public Reconstruction of Corrupted Dealer’s Secrets. In case a corrupted dealer Pi

is identified, all parties reconstruct the secrets shared by Pi, compute si by the linear combination
of Pi’s secrets, and replace their shares of [si]t by si.

For completeness, note that whenever a corrupted dealer Pi is identified, all parties will replace [si]t
by the constant value si. This ensures that the above procedure will not fail due to Pi again. Thus, all
parties can eventually reconstruct the secret s by repeating the above four steps and removing corrupted
dealers. To achieve linear communication, we replace the public reconstruction in Step 1 and Step 2 by
the efficient public reconstruction protocol in [DN07], and apply the party-elimination framework where
the online phase is divided into O(n) segments of equal size. We refer the readers to Section 5 for more
details.
Realization of ACSS-Id. As we mentioned above, the optimistic path in [SS24] has already achieved
the first property required by ACSS-Id. We show how to upgrade the construction in [SS24] to also
achieve the second property.

We first note that the optimistic path in [SS24] is also an asynchronous verifiable secret sharing
protocol, which allows all parties to reconstruct the whole sharings to a receiver with linear commu-
nication. Indeed, the fallback procedure just uses this property to let a party Pi recover his share. To
achieve efficient public reconstruction, we combine the ACSS protocol in [SS24] with the efficient public
reconstruction technique [DN07].

Suppose the dealer D wants to share t + 1 degree-t Shamir sharings, denoted by [s0]t, . . . , [st]t. The
dealer first constructs a degree-t polynomial [f(x)]t = [s0]t + [s1]t · x + · · · + [st]t · xt. Then the dealer
uses an instance of the ACSS protocol in [SS24] to share [f(αi)]t for all i ∈ [n]. On one hand, parties
with their shares of {[f(αi)]t}n

i=1 can locally compute their shares of {[si]t}t
i=0. On the other hand,

to publicly reconstruct the secrets shared by D, we first reconstruct f(αi) to Pi. By the property of
the ACSS protocol in [SS24], this step can be achieved with linear communication per sharing. Then
each party Pi sends f(αi) to all other parties. Relying on online error correction, all parties can recover
s0, s1, . . . , sn. Note that the above construction only uses the optimistic path in [SS24].

In Section 4, we give the concrete construction and prove its security. Apart from the above de-
scription, our construction does not use the ACSS protocol in [SS24] directly. Instead, we use a similar
construction with O(n3) overhead, which is worse than O(n2 log n) achieved in [SS24], but avoids the
use of Merkle trees and is sufficient for our purpose.
Efficiently Agree on the Corrupted Party. One issue we omitted in the above sketch is the cost
of agreeing on a single corrupted party when the public reconstruction fails. To prove a dealer D is
corrupted, a party Pi needs to provide all his shares from D as the proof against D. In the worst case
where O(n) parties accuse the same dealer D, we need to pay quadratic communication just for sending
the proofs.

To address this issue, the idea is to let all parties first agree on a single party Pi who wants to accuse
some dealer D. Then all parties only open Pi’s shares (Both [SS24] and our construction allow parties to
verifiably reconstruct the shares Pi received from D). To be more concrete, all parties do the following
in each segment.

7

1. At the beginning of this segment, each party reliably broadcasts the identity of the corrupted dealer
he wants to accuse, and all parties will accept his accusation if they terminate the sharing phase of
ACSS-Id invoked by this dealer.

2. If the public reconstruction succeeds, all parties move to the next segment.
3. Otherwise, all parties agree on a single party’s accusation, say Pi accusing D, and only open the

shares D sends to Pi. If Pi’s shares are incorrect, all parties reconstruct the secrets shared by D and
re-evaluate the current segment. Otherwise, all parties mark Pi as a corrupted party, and re-evaluate
the current segment.

In summary, with the above new techniques, we manage to achieve O(|C|n+Dn2+n4) communication
in the online phase. We refer the readers to Appendix E for the detailed cost analysis.

2.3 Optimizing Triple Generation

In this subsection, we show how to improve the triple generation phase and achieve O(|C|n + n4) com-
munication for generating |C| random Beaver triples.

High-Level Idea. Recall that in [Mom24], to prepare L random Beaver triples, the communication
complexity is O(Ln + n4) if the triple verification passes, and O(Ln2 + n4) otherwise. To achieve our
goal, we have to bring down the cost in both cases to O(Ln + n3). This means that

– In each segment, we cannot afford to use FPrivSend to send point-to-point messages between every
pair of parties since it would cost O(n4) immediately.

– When the verification fails, we cannot afford to let every party receive the entire view of the triple
generation process since it would cost at least O(Ln2).

Our idea is to divide each segment further into n groups. For the i-th group, we ask Pi to act as
Pking and take the lead. When using the DN technique to compute multiplications, Pking is responsible
to reconstruct the degree-2t sharing [z]2t by collecting shares from all parties and broadcasting the
reconstruction results. The triple verification is also done for each group separately. Note that we no
longer use FPrivSend for point-to-point messages.

Now when the triple verification fails for the i-th group, we ask Pi who acts as Pking for this group
to find the corrupted party who deviates from the protocol description. For each multiplication gate,
Pi has already received [z]2t from all parties. Thus, it is sufficient to reconstruct the random sharings
[a]t, [b]t, [r]t, [r]2t to Pi.

– For degree-t Shamir sharings, each party directly sends his shares and Pi may use online error
correction to reconstruct the whole sharings.

– For the degree-2t Shamir sharing [r]2t, it is a linear combination of degree-2t Shamir sharings dealt
by each dealer. Thus, we will let all parties verifiably reconstruct the degree-2t Shamir sharings used
in this group dealt by each dealer to Pi, which is realized by a protocol ΠSh2t-Id introduced below.
With all information in hand, Pi is able to find the corrupted party.

However, this is not the end of the story. Although Pi can localize a corrupted party Pj , it is not clear
how Pi can convince others that Pj is indeed corrupted. To overcome this issue, our final construction
makes use of the dispute control [BTH06]: A dispute pair of parties (Pi, Pj) satisfies that at least one
of these two parties is corrupted. Now Pi simply broadcasts that he has conflict with Pj , and all parties
take the dispute pair (Pi, Pj) as output.

Note that when Pking is honest, the above execution will eventually terminate. Thus in each segment,
we can expect that n − t = 2t + 1 groups terminate.

– If the triple verification passes for at least t + 1 groups, then we obtain O(L) random Beaver triples
from these t + 1 groups. All parties move on to the next segment.

– Otherwise, we obtain at least t+1 dispute pairs, and each pair is broadcast by a distinct Pking. These
contain at least (t + 1)/2 = O(n) distinct dispute pairs since each dispute pair can only be counted
twice. In this case, parties need to rerun the current segment. Since there are at most O(n2) dispute
pairs, the number of rerun is bounded by O(n).

8

Fig. 2. Beaver Triple Generation Overview: The flowchart describes a segment of our Beaver triple gener-
ation protocol. For simplicity, we assume that all paries will get their shares from ACSS and Sh2t, later we will
replace it by ACSS-Id and Sh2t-Id in detailed construction. First, each party acts as dealer and invokes ACSS
and Sh2t to distribute random degree-t and 2t sharings. Then, each party acts as a king and compiles a list of
2t + 1 dealers whose protocols it terminated. Each king then uses the technique in [DN07] to generate triples,
and parties verify them using a triple verification process. If the verification fails, the parties cooperate with the
king to locate the faulty party. A king succeeds if he either successfully generates correct triples or identifies a
faulty party. Parties then agree on a set of 2t + 1 successful kings. The overall success of the segment depends
on whether at least t + 1 kings successfully generated triples. If not, parties enter the dispute control phase for
this segment, where each king who did not generate triples successfully reports a dispute with a party. Each king
records this dispute and reruns the segment while ignoring all messages from its disputed party. Furthermore, if a
party conflicts with t + 1 parties, then it is marked malicious and parties trigger the party elimination framework
on it.

Ideally, this would give us a solution with O(Ln + n3) communication in each segment. To make the
above idea work, it is crucial that the same dispute pair will not be identified multiple times by the same
Pking.

In the following, we first discuss how to realize ΠSh2t-Id and then show how to avoid an honest Pking
from finding the same dispute pair multiple times.

Preparation of Degree-2t Sharings with Partial Reconstruction. We follow the idea in [Mom24]
to prepare degree-2t Shamir sharings. Recall that in [Mom24], the dealer uses n instances of FPrivSend
to send the shares to all parties. As we have mentioned, to achieve O(|C|n + n4) communication, we
cannot afford n2 instances of FPrivSend in each segment. Thus, we will let the dealer distribute a sufficient
number of random degree-2t Shamir sharings in one shot. Then these random degree-2t Shamir sharings
are divided into O(n2) groups, where the group with label (j, i) is used in the i-th group of the j-th
segment.

In the above sketch of preparing random Beaver triples, we need all parties to be able to reconstruct
the degree-2t Shamir sharings used in a group with label (j, i) to the party Pi. To this end, we let the
dealer also broadcast a commitment for the shares sent to each party Pk in each group. In this way, Pk

can simply send his shares to Pi and Pi can verify Pk’s shares by checking the commitment broadcast
by the dealer. Note that doing it naively requires each dealer to broadcast O(n3) commitments, leading
to O(n4) communication per dealer, and O(n5) communication in total. To reduce a factor of n, we let
the dealer compute a hash node on every n commitment, send the corresponding commitments to Pi

for verification, and only broadcast these O(n2) hash node. We refer the readers to Section 6.1 for more
details.

Dispute Control. To apply the dispute control framework, all parties together maintain a set of iden-
tified disputed pairs. Note that a party who has conflict with t + 1 parties is identified as a corrupted
party, and an identified corrupted party automatically has conflict with every other party. Now for an
honest Pking, we need to ensure that Pking would not identify the same pair of disputed parties multiple
times (or otherwise, there is no guarantee on the number of rerun). Note that this is unlike the party
elimination framework where the identified party is eliminated, and thus the same party would not be
identified twice.

The idea is to avoid using the sharings or messages from parties that have conflict with Pking. To
be more concrete, in the beginning of each segment, Pking broadcasts a set W of 2t + 1 parties who

9

successfully distribute degree-t and degree-2t random sharings and do not conflict with Pking. Then all
parties will use the sharings generated by parties in W to extract random sharings ([a]t, [b]t, [r]t, [r]2t)
for this group. During the reconstruction of [z]2t, Pking will only accept messages from parties that do
not conflict with Pking (but may not in the set W chosen by Pking in the beginning of this segment). In
this way, an honest Pking will always find a new dispute pair when the verification fails. We refer the
readers to Section 6.2 for more details.

Final Solution for Triple Generation. We summarize the outline of our triple generation protocol.
First, we divide the generation of triples into O(n) segments. Let L = O(C/n). Then in each segment,
the goal is to prepare L random Beaver triples.

In the beginning, each party uses ΠACSS-Id and ΠSh2t-Id to distribute sufficient number of random
degree-t and degree-2t Shamir sharings. Then all parties do the following for each segment.

1. Each party acts as Pking and leads one group to prepare O(L/n) random Beaver triples. Pking first
broadcasts a set W of 2t+1 parties that have no conflict with Pking. Then all parties use the degree-t
and degree-2t random sharings dealt by parties in W to locally prepare ([a]t, [b]t, [r]t, [r]2t) for each
triple. Next, Pking helps reconstruct the degree-2t Shamir sharings required by the DN protocol and
the triple verification process. In particular, Pking only accepts messages from parties that have no
conflict with him.

– If the triple verification succeeds, all parties take their shares of the prepared Beaver triples as
output and terminate.

– Otherwise, all parties reconstruct [a]t, [b]t, [r]t and the degree-2t Shamir sharings used in this
group and dealt by parties in W to Pking. Then Pking identifies the corrupted party and announces
a new dispute pair. Finally, all parties take the new dispute pair as output.

2. All parties agree on a set of successful kings (of size n − t).
3. After agreeing on such a set, if at least t + 1 groups provide correct triples, all parties proceed to

the next segment. Otherwise, all parties find at least O(n) new dispute pairs. They update the set
of identified disputed pairs and rerun the current segment.

After at most O(n) rerun, all parties will terminate with |C| random Beaver triples. The achieved
communication complexity is O(|C|n + n4).

For simplicity, the above sketch omits the problem that a party may not obtain his correct shares
in ΠACSS-Id or ΠSh2t-Id, but only a proof against the corrupted dealer. We address this problem using a
similar approach to that in the online phase. We refer the readers to Section 6.2 for more details.

3 Preliminaries

3.1 Model

We consider protocols among a set P of n parties P1, . . . , Pn. For the security of our protocols, we use
the UC framework introduced by Canetti [Can01], based on the real and ideal world paradigm [Can00].
Parties have access to a network of point-to-point asynchronous and secure channels (for details of the
asynchronous network model, we refer the reader to [CR98]). Asynchronous channels guarantee eventual
delivery, meaning that messages sent are eventually delivered, and the adversary does the scheduling
of the messages. In particular, the adversary can arbitrarily (but finitely) delay all messages sent and
deliver them out of order. We also consider the fully malicious adversary, that can completely control
the behavior of corrupted parties.

Functionality of Asynchronous MPC. We use the functionality of AMPC in [CP23] as follows.

Functionality FAMPC

FAMPC proceeds as follows, running with parties P = {P1, . . . , Pn}, an adversary S, and a n-party function
f : ({0, 1}∗ ∪ {⊥})n → {0, 1}∗ ∪ {⊥}. For each party Pi, initialize an input value x(i) =⊥ and output value
y(i) =⊥.
1: Upon receiving an input v from Pi ∈ P, if CoreSet has not been recorded yet or if Pi ∈ CoreSet, set

x(i) = v.

10

2: Upon receiving an input CoreSet from S, verify that CoreSet is a subset of P of size at least n − t, else
ignore the message. If CoreSet has not been recorded yet, then record CoreSet and for every Pi /∈ CoreSet,
set x(i) = 0.

3: If the CoreSet has been recorded and the value x(i) has been set to a value different from ⊥ for every
Pi ∈ CoreSet, then compute y = f(x(1), . . . , x(n)) and generate a request-based delayed output y(i) = y
for every Pi ∈ P.

3.2 Distributed Zero-Knowledge Proof
The distributed zero-knowledge proof (DZK) allows a prover to prove correctness of degree-t Shamir
sharings that have been distributed to all parties, and each party can verify whether his shares are
correct. In the random oracle model, the authors in [ABCP23] give a construction of DZK protocol that
realizes the following functionality FdZK with communication complexity O(κn2), where κ is the output
size of the random oracle. We refer the reader to Appendix A.3 for a brief recap of their construction.

Functionality FdZK

Public Input: (α0, . . . , αn), N
FdZK runs with parties P = {P1, . . . , Pn}, a prover P ∈ P, and an adversary S.
1: Upon receiving polynomials f1(x), . . . , fN (x) from prover P , record them and send a requested-based

delayed message Delivered to all parties.
2: Upon receiving (VerifyDZK, s1, . . . , sN , αk) from a party, if it has sent Delivered, k ∈ [n] and

f1(x), . . . , fN (x) are of degree-t and s1, . . . , sN equal f1(αk), . . . , fN (αk), send a requested-based delayed
output true to this party. Otherwise, send a requested-based delayed output false to this party.

3.3 Building Blocks
Our construction makes use of the following build blocks, and we give the definitions of them in Ap-
pendix A.1. Assuming the random oracle model, all of them can be efficiently realized in the asynchronous
setting against a malicious adversary and 1/3 corruptions.

– Reliable Broadcast Frbc. It allows parties to agree on the value of a sender and can be realized
with O(L · n + n2) communication complexity for broadcasting a message of size L [DXR21].

– Byzantine Agreement Fba. It allows parties to agree on a common output and can be realized with
O(L ·n+κ ·n2 log(n)) communication complexity for the agreement of a message of size L [NRS+20].

– Reliable Agreement Fra. It is the agreement version of the reliable broadcast where all parties
have input. When all parties terminate it, at least t + 1 of them provide matching input. It can be
realized with O(L·n2) communication complexity for the agreement of a message of size L [DDL+24].

– Agreement on a Common Set Facs. If allows parties to agree on a set of at least n − t parties
that satisfy a certain property. It can be realized with O(n3) communication complexity [DDL+24].

– Verifiable Private Send FPrivSend. It allows a sender to verifiably send a message to a receiver.
For a message of size L, the author in [Mom24] gives a construction with communication complexity
O(L + n2) in the DispersePhase and O(Ln + n2) in the RevealPhase.

4 Asynchronous Completing Secret sharing with Identified Abort

4.1 Functionality of ACSS-Id
We describe the ACSS with Identifiable Abort functionality in Section 4.1. Notice that the adversary S
can change the output of any honest party to (Corrupt, D) when the dealer D is corrupt. Furthermore,
each party can request the functionality to open the view of a party Pi. On receiving t + 1 such requests,
the functionality changes outputs of parties to (Corrupt, D) if the proof is valid, indicating that D is
corrupt. If the proof is invalid, parties instead mark Pi as corrupt because he accused a correct dealer
of being corrupt. Parties can also reconstruct the secrets distributed by D by sending a Public-Recon
request.

11

Functionality FACSS-Id

Public Input: (α0, . . . , αn), N
FACSS-Id runs with parties P = {P1, . . . , Pn}, a dealer D ∈ P, and an adversary S.
1: Upon receiving the set of corrupted parties PCorr, if D ∈ PCorr, initialize Pproof = PCorr. Otherwise,

set Pproof = ∅.
2: Upon receiving N degree-t polynomials q1(·), . . . , qN (·) from D, for each party Pi ∈ P, send an request-

based delayed output q1(αi), . . . , qN (αi) to Pi.
– Upon receiving a request (proof, Pi) from S, if D ∈ PCorr and the output of Pi has not been

delivered, change the output of Pi by (Corrupt, D) and add Pi in Pproof. Otherwise, ignore this
request.

3: Upon receiving request (Open-Proof, Pi) from t + 1 parties, do the following.
– If Pi ∈ Pproof, send a request-based delayed output (Corrupt, D) to all parties.
– If Pi ∈ PCorr and D /∈ PCorr, send a request-based delayed output (Corrupt, Pi) to all parties.
– Otherwise, send all views to S and give up security.

4: Upon receiving Public-Recon from t + 1 parties, send a requested-based delayed output
q1(α0), . . . , qN (α0) to each Pj ∈ P.

4.2 Construction

Protocol ΠACSS-Id

Let α0, . . . , αn be distinct field elements, L be the number of secrets. Denote the instance of FPrivSend between
the dealer D and each Pi as F (i)

PrivSend.
Distribution Phase

1: D possesses L degree-t polynomials f1(x), . . . , fL(x) as inputs, then he divides them into t + 1 groups,
each of size L′ = L/(t + 1). Denote the degree-t polynomials in the k-th group as f

(k)
1 (x), . . . , f

(k)
L′ (x),

where k ∈ [t + 1].
2: For each ℓ ∈ [L′], we define a degree-(t, t) bivariate polynomial gℓ(x, y) as follows:

gℓ(x, y) := f
(1)
ℓ (x) + f

(2)
ℓ (x) · y + · · · + f

(t+1)
ℓ (x) · yt

For each i ∈ [n], D sends g1(x, αi), . . . , gL′ (x, αi) to an instance of FdZK, denoted by F (i)
dZK.

3: For i ∈ [n], let mi = {gℓ(αi, y)}ℓ∈[L′], D sends mi to F (i)
PrivSend.

Verification Phase
1: Upon receiving Delivered from F (i)

PrivSend and F (i)
dZK for all i ∈ [n], all parties proceed.

2: For each party Pi, when he receives mi from F (i)
PrivSend, he parses it to {gℓ(αi, y)}ℓ∈[L′] and check whether

each gℓ(αi, y) is a degree-t polynomial. If true, he computes f
(1)
ℓ (αi), . . . , f

(t+1)
ℓ (αi) from the coefficients

of gℓ(αi, y). Then he sends (VerifyDZK, {gℓ(αi, αj)}ℓ∈[L′], αi) to F (j)
dZK for each j ∈ [n] and records the

output of each F (j)
dZK.

3: If Pi gets {f
(1)
ℓ (αi), . . . , f

(t+1)
ℓ (αi)}ℓ∈[L′] and terminates all F (j)

dZK with true, he accepts his shares and
sets them as his output. Otherwise, he sets his output as (Corrupt, D).

Termination Phase
1: All parties jointly invoke an instance of Fra, if a party accepts his shares, he sets his input for Fra as 1.

When all parties terminate Fra with 1, they terminate with their output.

In our ACSS-Id construction, the dealer D encodes t+1 degree-t sharings into a degree-(t, t) bivariate
polynomial. D uses FPrivSend to send the ith row polynomial to each party. D and all parties then use
FdZK to check if their received shares are valid. To accommodate a bivariate polynomial, we modify the
prior DZK protocol [ABCP23] to work over the entire bivariate polynomial. On receiving and validating
their shares, each party Pi participates in an instance of Reliable Agreement Fra with input 1. Then, on
terminating Fra, parties terminate the sharing phase.

12

Protocol ΠACSS-Id

Upon receiving request (Open-Proof, Pi) from the environment, if all parties have terminated the sharing
phase, they do the following.

Accusation Phase
1: They send request Reveal to F (i)

PrivSend.
2: Upon receiving mi from F (i)

PrivSend, all parties honestly follow the verification phase to do the check. If
the verification result is wrong, all parties terminate with (Corrupt, D) and (Corrupt, Pi) otherwise.

Upon receiving request Public-Recon from the environment, if all parties have terminated the sharing phase,
they do the following.

Public Reconstruction Phase
1: Each party Pi who has set his input as 1 for Fra during the termination phase will send {gℓ(αi, αj)}ℓ∈[L′]

to each party Pj .
2: When Pi receives {gℓ(αj , αi)}ℓ∈[L′] from Pj , he sends (VerifyDZK, {gℓ(αj , αi)}ℓ∈[L′], αj) to F (i)

dZK and
checks whether the output of F (i)

dZK is true. If true, he accepts {gℓ(αj , αi)}ℓ∈[L′]. Otherwise, he ignores
these messages.

3: When Pi accepts {gℓ(αj , αi)}ℓ∈[L′] from t + 1 distinct Pj , he reconstructs {gℓ(α0, αi)}ℓ∈[L′] and sends
them to all parties.

4: When Pi receives {gℓ(α0, αj)}ℓ∈[L′] from Pj , he records it. When Pi succeeds in reconstructing
{gℓ(α0, y)}ℓ∈[L′] by OEC, he outputs the coefficients of {gℓ(α0, y)}ℓ∈[L′].

If a corrupt dealer D sends incorrect shares to a party Pi, then this party outputs (Corrupt, D),
and accuses D of being corrupt. Parties later react to the accusation by participating in the Accusation
phase. Essentially, parties reconstruct their views to everyone using FPrivSend. If any view is inconsistent
with FdZK or is not a valid degree-t polynomial, parties mark D as corrupt. Otherwise, they mark the
accuser as corrupt for wrongly accusing a correct dealer D. In either case, all parties mark one party as
corrupt.

In case parties mark a dealer as corrupt, they aim to publicly reconstruct its secrets after receiving
a Public-Recon message from the environment. Parties try to reconstruct the point gℓ(α0, αi) to party
Pi. Each party Pj sends points on its row gℓ(αj , αi) for ℓ ∈ [1, . . . , L′] to Pi. Party Pi uses FdZK to verify
each set of points and waits to accept t+1 points on the column gℓ(x, αi). Note that at least t+1 honest
parties accepted their shares, so Pi eventually receives t + 1 valid points and reconstructs its column
and point gℓ(αi, α0). Then, parties use Online Error Correction to reconstruct polynomial gℓ(x, α0) and
output its coefficients.

Lemma 1. Protocol ΠACSS-Id securely computes FACSS-Id against a fully malicious adversary A who cor-
rupts at most t < n/3 parties.

We prove Lemma 1 and analyze the costs in Appendix C.

5 Party Elimination Based Public Reconstruction

In this section, we give the construction of party elimination based public reconstruction (refer to sec-
tion 2.2) based on ACSS-Id. We start with the construction of two sub-protocols ΠBatchPubRec and
ΠAgreement.

For ΠBatchPubRec, we follow the technique in [DN07] to realize a public reconstruction with linear cost
per secret. Compared to standard public reconstruction, ΠBatchPubRec allows some parties not to terminate
with a failure symbol ⊥, but they will learn an accusation between a dealer and a party. The detailed
construction is as follows.

Protocol ΠBatchPubRec

For each party Pi:
1: Initialize a vector mi of size L and divide it into L/(t + 1) sub-vectors, each of size t + 1, denoted by

mi = (mi,1, . . . , mi,L/(t+1)). Divide [x(1)]t, . . . , [x(L)]t into L/(t + 1) groups, each of size t + 1. For all
k ∈ [L/(t + 1)], Pi does the following.

13

(1). Let [s(0)]t, . . . , [s(t)]t denote the k-th group of degree-t Shamir secret sharings. Define f(X) =
s(0) + s(1) · X + · · · + s(t) · Xt. Pi sends his share of [f(αj)]t = [s(0)]t + [s(1)]t · αj + · · · + [s(t)]t · αt

j

to each Pj .
(2). To reconstruct f(αi), Pi waits to receive messages:

– Upon receiving new shares of [f(αi)]t, Pi uses online error correction on all received shares of
[f(αi)]t to reconstruct f(αi). If succeeds, Pi sends f(αi) to all parties and moves to Step 1.(3).
Otherwise, Pi keeps waiting for more messages.

– Upon receiving (Accusation, Pk, dealer, ACSS) from Pk’s broadcast and he has terminated
FACSS-Id invoked by dealer, Pi records the identity of Pk and sets mi = ⊥ and moves to Step 2.

(3). To reconstruct f(X), Pi waits to receive messages from all parties:
– Upon receiving f(αk) from Pk, Pi uses online error correction on all received f(αk) to reconstruct

f(X). If succeeds, Pi sets the k-th sub-vector mi,k as (s(0), . . . , s(t+1)) (the coefficients of f(x)).
Otherwise, Pi keeps waiting for more messages.

– Upon receiving (Accusation, Pk, dealer, ACSS) from Pk’s broadcast and he has terminated
FACSS-Id invoked by dealer, Pi records the identity of Pk and sets mi = ⊥ and moves to Step 2.

2: Output mi.

When all parties terminate ΠBatchPubRec, they do the following to agree on the same output of
ΠBatchPubRec, which is either the correct public reconstruction result or a failure symbol ⊥. This is achieved
by two instances of BA. For the first one, they use the output of ΠBatchPubRec as inputs. Upon terminating,
they check whether the agreement results are equal to their inputs. If true, they set input 1 for the second
BA and 0 otherwise. This can ensure that if all parties terminate the second BA with 1, then the output
of the first BA must be some honest party’s input. That can prevent all parties from agreeing on an
incorrect result chosen by the adversary. The detailed construction is as follows.

Protocol ΠAgreement

1: All parties invoke Fba and party Pi uses mi as his input. Upon receiving result m from Fba, Pi checks
whether m = mi. If true, he sets bi = 1. Otherwise, he sets bi = 0.

2: All parties invoke Fba and party Pi uses bi as his input. Upon receiving the result b from Fba, if b = 1,
Pi outputs m. Otherwise, Pi uses ⊥ as his output.

3: When the output is not ⊥, all parties terminate. Otherwise, all parties follow the steps to agree on the
identity of a corrupted party.
(1). For each party, if he has recorded the identity of a party Pk during ΠBatchPubRec, he reliably broadcasts

the first one he has recorded.
(2). All parties set the property Q as follows, a party Pi will like Pj if Pi (1) receive an identity Pk from

Pj , (2) receive (Accusation, Pk, dealer, ACSS) from Pk’s broadcast, (3) terminate FACSS-Id invoked
by dealer. Then, all parties jointly invoke Facs with property Q to agree on a set D of size n − t.

(3). For the identity Pk broadcast by the first party in this set, all parties send (Open-Proof, Pk) to
FACSS-Id invoked by dealer and terminate with the output of FACSS-Id, which is (Corrupt, dealer)
or (Corrupt, Pk).

Sub-Circuit Evaluation. With the above two sub-protocols, we give the so-called sub-circuit evaluation
protocol ΠSubCktEval, which is used in the online phase later. Recall that with the help of Beaver triples,
all parties in the online phase only need to do public reconstruction. Then based on our idea of party
elimination based public reconstruction, all parties can execute ΠSubCktEval to evaluate a circuit with
the help of Beaver triples, and they will either succeed in evaluating this circuit or agree on a corrupted
party. For a circuit C ′ of depth D′ with |C ′| multiplication gates and C ′

O output gates, the communication
complexity is O((C ′ + C ′

O)n + D′ · n2 + n3) field elements.

Protocol ΠSubCktEval

1: Check Shares.
Given a circuit C′ of depth D′ with |C′| multiplication gates and C′

O output gates, all parties hold
degree-t Shamir sharings of the inputs of C′ and |C′| random Beaver triples. Each party Pi checks:

– Whether he has all shares of the Beaver triples,
– And whether he has all shares of the input degree-t Shamir sharings for the circuit C′.

14

If true, he moves to Step 2. Otherwise, he received (Corrupt, dealer) from FACSS-Id invoked by one
dealer. Then he sets the output mi = ⊥, reliably broadcasts (Accusation, Pi, dealer, ACSS), and
moves to Step 4.

2: Circuit Evaluation.
From k = 1 to D′, for the k-th layer in the circuit C′:

– For every addition gate with input sharings [x]t, [y]t, locally compute [z]t = [x]t + [y]t.
– Let L be the number of multiplication gates in the k-th layer. Suppose the input degree-t Shamir

sharings are denoted by ([xi]t, [yi]t)L
i=1. Let ([ai]t, [bi]t, [ci]t)L

i=1 denote the random Beaver triples
assigned to these L gates. Each party Pj executes ΠBatchPubRec with his shares of ([xi + ai]t, [yi +
bi]t)L

i=1, and gets output m
(k)
j after terminating ΠBatchPubRec.

• If m
(k)
j = ⊥, Pj moves to Step 4.

• Otherwise, for all i ∈ [L], Pj parses m
(k)
j to get {xi + ai, yi + bi}L

i=1 and locally compute

[zi]t = (xi + ai)(yi + bi) − (xi + ai)[bi]t − (yi + bi)[ai]t + [ci]t.

3: Output Reconstruction.
For the output layer in the circuit C′ (if have):

– Each party Pj executes ΠBatchPubRec with his output sharings and gets output m
(D′+1)
j after termi-

nating ΠBatchPubRec.
4: Agreement on Output.

Each party Pj checks whether ∃k ∈ [D′ + 1], m
(k)
j = ⊥. If true, Pj sets mj = ⊥. Otherwise, Pj sets

mj = (m(1)
j , . . . , m

(D′+1)
j) and executes ΠAgreement with input mj and gets the output after terminating

ΠAgreement:
– If the output is the identity of a corrupted dealer, all parties output this identity.
– Otherwise, all parties terminate ΠSubCktEval with the output.

6 Triple Generation

In this section, we give the construction of a triple generation protocol.

6.1 Preparing Random degree-2t Shamir Sharing

We start with the functionality of FSh2t-Id as follows. It divides the sharings received from the dealer into
n2 groups and allows all parties to open a partial of them to a fixed receiver. Similarly to FACSS-Id, some
honest parties may terminate with (Corrupt, D) when the dealer is corrupted, and they can jointly open
an accusation and learn an corrupted party.

Functionality FSh2t-Id

Public Input: (α0, . . . , αn), N
FSh2t-Id runs with parties P = {P1, . . . , Pn}, a dealer D ∈ P, and an adversary S.
1: Upon receiving the set of corrupted parties PCorr, if D ∈ PCorr, initialize Pproof = PCorr. Otherwise,

set Pproof = ∅.
2: Upon receiving N polynomials q1(·), . . . , qN (·) from D (when the dealer is honest, the degree should

be 2t), divide it into n2 groups, each of size N ′ = N/n2. Denote the polynomials in the k-th group
as q

(k)
1 (·), . . . , q

(k)
N′ (·), send an requested-based delayed output {q

(k)
1 (αi), . . . , q

(k)
N′ (αi)}j∈[n],k∈[n] to each

party Pi.
– Upon receiving a request (proof, Pi) from S, if D ∈ PCorr and the output of Pi has not been

delivered, change the output of Pi by (Corrupt, D) and add Pi in Pproof. Otherwise, ignore this
request.

3: Upon receiving request (Open-Proof, Pi) from t + 1 parties, do the following.
– If Pi ∈ Pproof, send an requested-based delayed output (Corrupt, D) to all parties.
– If Pi ∈ PCorr and D /∈ PCorr, send an requested-based delayed output (Corrupt, Pi) to all parties.
– Otherwise, send all views to S and give up security.

15

4: Upon receiving request (Accusation, D, Pi) from t + 1 parties, if both D and Pi are honest, send all
views to S and give up security. Otherwise, send a requested-based delayed output (Accusation, D, Pi)
to all parties.

5: Upon receiving (Private-Recon-Vrfy, k, Pj) from t + 1 parties and k ∈ [(j − 1) · n + 1, j · n], let M
denote the set of first 2t + 1 parties, for each ℓ ∈ [N ′], compute a degree-2t polynomial fℓ(x) based on
{q

(k)
ℓ (αi)}i∈M. Then if fℓ(x) = q

(k)
ℓ (x) for all ℓ ∈ [N ′], send a request-based delayed output true and

{fℓ(x)}ℓ∈[N′] to Pj . Otherwise, send a request-based delayed output false to Pj .
– Upon receiving a set M′ from S, if |M′| = 2t + 1, M′ ∩ Pproof = ∅, and the output of Pj has not

been delivered, set M = M′ and do the above thing again.
– Upon receiving a request (Accusation, D, Pi) from S, if it has sent (Accusation, D, Pi) to all parties

before and the output of R has not been delivered, change the output of Pj by the identity of Pi.

In the sharing phase, the dealer sends each party’s shares through FPrivSend. To guarantee verifiable
reconstruction, the dealer needs to compute commitments on each party’s shares. After each party
receives his shares from FPrivSend, he will check whether the commitments broadcast by the dealer are
correct. If not, he can let all parties open his shares delivered by FPrivSend to accuse this dealer later.

Protocol ΠSh2t-Id

Let α0, . . . , αn be distinct field elements, L be the number of sharings to be prepared. Denote the instance
of FPrivSend between the dealer D and each Pi as F (i)

PrivSend. The termination and accusation phases are the
same as the construction in ΠACSS-Id.

Distribution Phase
1: D possesses degree-2t polynomial f1(x), . . . , fL(x) as inputs. He randomly samples degree-2t polynomial

f̃1(x), . . . , f̃L(x).
2: For f1(x), . . . , fL(x), D divides them into n2 groups, each of size L′ = L/n2. Denote the degree-2t

polynomials in k-th group as f
(k)
1 (x), . . . , f

(k)
L′ (x). For i ∈ [n], k ∈ [n2], we define:

m(k)
∗ [i] := (f (k)

1 (αi), . . . , f
(k)
L′ (αi)), m̃(k)

∗ [i] := (f̃ (k)
1 (αi), . . . , f̃

(k)
L′ (αi))

Then D computes h
(k)
∗ [i] = H(m(k)

∗ [i], m̃
(k)
∗ [i]), and a matrix Com of size n × n such that Com[i][j] =

H(h((j−1)·n+1)
∗ [i], . . . , h

(j·n)
∗ [i]).

3: D reliably broadcasts Com and sends {fℓ(αi), f̃ℓ(αi)}ℓ∈[L], {h
((i−1)·n+1)
∗ [j], . . . , h

(i·n)
∗ [j]}j∈[n] to F (i)

PrivSend
for each i ∈ [n].

Verification Phase
1: Upon receiving Delivered from F (i)

PrivSend for all i ∈ [n] and Com from D’s broadcast, all parties proceed.
2: Each party Pi waits to receive {fℓ(αi), f̃ℓ(αi)}ℓ∈[L] and {h

((i−1)·n+1)
∗ [j], . . . , h

(i·n)
∗ [j]}j∈[n] from F (i)

PrivSend.
Then he checks whether for all j ∈ [n], Com[i][j] = H(h((j−1)·n+1)

∗ [i], . . . , h
(j·n)
∗ [i]) and Com[j][i] =

H(h((i−1)·n+1)
∗ [j], . . . , h

(i·n)
∗ [j]). If true, he accepts his shares. Otherwise, he sets his output as

(Corrupt, D).

The following construction realizes steps 4 and 5 in FSh2t-Id, it allows all parties to reconstruct a
group of sharings distributed by the dealer to one party Pj . In our construction, to reduce the additive
overhead to O(n4), each party Pj can only verify 1/n fraction of sharings, where the group index is
between (j − 1) · n + 1 and j · n.

Protocol ΠSh2t-Id

Upon receiving request (Accusation, D, Pi) from the environment, all parties do the following.
Agreement Accusation Phase

1: All parties jointly invoke an instance of Fra with input message (Accusation, D, Pi). When they termi-
nate Fra, they set their output as (Accusation, D, Pi) and terminate.

Upon receiving request (Private-Recon-Vrfy, k, Pj) and k ∈ [(j − 1) · n + 1, j · n] from the environment, if
all parties have terminated the sharing phase, they do the following. During the following protocol, Pj will
listen to the output of the Agreement Accusation Phase.

Private Reconstruction and Verification Phase
1: For each party Pi, if he has accepted his shares, he sends m

(k)
∗ [i], m̃

(k)
∗ [i] to Pj .

16

2: If Pi’s output in the sharing phase is (Corrupt, D), he waits until he gets (Accusation, D, Pi) (i can be
equal to j) and then terminates with it. Otherwise, Pj has received h

((j−1)·n+1)
∗ [i], . . . , h

(j·n)
∗ [i] for all

i ∈ [n] in the sharing phase and waits to receive messages from each party Pi.
– If he receives m

(k)
∗ [i], m̃

(k)
∗ [i], he accepts them if h

(k)
ℓ,∗ [i] = H(m(k)

∗ [i], m̃
(k)
∗ [i]) and Com[i][j] =

H(h((j−1)·n+1)
∗ [i], . . . , h

(j·n)
∗ [i]).

– Otherwise, if he gets (Accusation, D, Pi), he records the identity of Pi.
If Pj first accepts 2t+1 distinct m

(k)
∗ [i], m̃

(k)
∗ [i], he reconstructs degree-2t polynomials f

(k)
1 (x), . . . f

(k)
L′ (x),

f̃
(k)
1 (x), . . . f̃

(k)
L′ (x) and proceed. Otherwise, Pj terminates with the identity of the first Pi he has

recorded.
3: For each i ∈ [n], Pj checks whether h

(k)
∗ [i] = H(m(k)

∗ [i], m̃
(k)
∗ [i]). If true, he outputs true and

f
(k)
1 (x), . . . f

(k)
L′ (x). Otherwise, he outputs false.

Lemma 2. Protocol ΠSh2t-Id securely computes FSh2t-Id against a fully malicious adversary A who cor-
rupts at most t < n/3 parties.

We prove Lemma 2 and analyze the costs in Appendix D.

6.2 Generating Triples by Pking

In this subsection, we construct ΠTripleKingDN which allows a king to generate Beaver triples and will be
used as a sub-protocol later. All parties takes their degree-t and 2t shares distributed by a set of dealers
as inputs, and then extract random sharings. Following from the observation in [GLO+21], for double
sharings, we may instead prepare ([r]t, [o]2t) where [o]2t is a random degree-2t Shamir secret sharing of
0. This allows us to decouple the relation of these two sharings. With these random sharings, all parties
follow the DN technique to generate triples.

If king notifies all parties to wait for an accusation broadcast by a party, they will terminate
ΠTripleKingDN with this accusation until they receive it from this party, and they can open it later to
agree on a corrupted party. Otherwise, they need to check whether the triples generated by king are
correct or not.

Protocol ΠTripleKingDN

Let N be the number of Beaver triples prepared by Pking and N ′ = (2N + 1)/(t + 1), W be the set of
successful dealers broadcast by Pking and |W| = 2t + 1. Denote the sharings distributed by each Pj ∈ W
as {[s(j)

ℓ′]t}3N′

ℓ′=0 and {[o(j)
ℓ′]2t}ℓ′∈[N′]. Pking takes set Disputeking as input and ignores messages received from

parties in Disputeking.
Generating Random Shamir Sharings.
1: All parties agree on a Vandermonde matrix V of size (t + 1) × (2t + 1) and locally compute:

∀ℓ′ ∈ [3N ′], ([sℓ′,1]t, . . . , [sℓ′,t+1]t) = V · ([s(j)
ℓ′]t)j∈W .

∀ℓ′ ∈ [N ′], ([oℓ′,1]2t, . . . , [oℓ′,t+1]2t) = V · ([o(j)
ℓ′]2t)j∈W .

2: All parties transform the above Shamir sharings into {[aℓ]t, [bℓ]t, [rℓ]t, [oℓ]2t}ℓ∈[2N+1] and compute their
share of [r]t :=

∑
[s(j)

0]t, j ∈ W.
Generating Triples by Pking

1: Let [zℓ]2t := [aℓ]t · [bℓ]t + [rℓ]t + [oℓ]2t, each party Pi locally computes his share of {[zℓ]2t}ℓ∈[2N+1]
and send them to Pking. Each party Pi who cannot compute his shares has reliably broadcast
(Accusation, Pi, D, ACSS) or (Accusation, Pi, D, Sh2t) for on D ∈ W outside the protocol.

2: Pking waits to receive messages from each party Pi /∈ Disputeking:
– If Pking receives Pi’s shares of {[zℓ]2t}ℓ∈[2N+1], Pking records them.
– Otherwise, when Pking receives (Accusation, Pi, D, ACSS) or (Accusation, Pi, D, Sh2t) from Pi’s

broadcast for one D ∈ W, he records it.
If Pking first accepts 2t + 1 parties’ shares of {[zℓ]2t}ℓ∈[2N+1], he locally reconstructs {zℓ}ℓ∈[2N+1] and
reliably broadcasts them. Otherwise, Pking reliably broadcasts the first message broadcast by a party he
has recorded.

3: Each party waits to receive messages from Pking:

17

– If he receives {zℓ}ℓ∈[2N+1] and he has shares of {[rℓ]t}ℓ∈[2N+1], he locally computes his share of
[cℓ]t = zℓ − [rℓ]t for all ℓ ∈ [2N + 1] and proceeds. If he does not have shares of [rℓ]t, he set his
shares of [cℓ]t as ⊥. Then all parties move to verify the triples generated by Pking.

– If he receives (Accusation, Pi, D, ACSS) or (Accusation, Pi, D, Sh2t) for one D ∈ W, upon receiving
it from Pi’s broadcast, he terminates with this message.

The verification process follows the approach in [NV18, BSFO12]. At a high-level idea, all parties
first prepare 2N + 1 Beaver triples {[aℓ]t, [bℓ]t, [cℓ]t}2N

ℓ=0 and a random degree-t sharing [r]t. Then they
set two polynomials f, g of degree N such that [f(αℓ)]t = [aℓ]t and [g(αℓ)]t = [bℓ]t for all ℓ ∈ [0, N]. Then
for all ℓ ∈ [N + 1, 2N], all parties use the ℓ-th Beaver triple {[aℓ]t, [bℓ]t, [cℓ]t} to compute [f(αℓ) · g(αℓ)]t.
Now all parties set a degree-2N polynomial h such that [h(αℓ)]t = [cℓ]t for all ℓ ∈ [0, N] and [h(αℓ)]t =
[f(αℓ) · g(αℓ)]t.

The main observation is that, if all random Beaver triples are correct, then we have h = f · g and
vice verse. Therefore, to check whether all Beaver triples are correct, it is sufficient to check whether
h = f · g. By Schwartz-Zippel lemma, it is sufficient to test a random evaluation point. All parties will
reconstruct f(r), g(r), h(r) and check whether h(r) = f(r) · g(r).

Similarly, during the verification process, king may notify all parties to wait for an accusation and
all parties can terminate as above. If all parties get the verification result, they will accept their triples
if the result is true. Otherwise, they will help king to detect a corrupted party.

Protocol ΠTripleKingDN

All parties take their shares of {[aℓ]t, [bℓ]t, [cℓ]t}2N
ℓ=0 and [r]t as inputs and do the following to verify their

triples.
Build Polynomials
1: All parties set two polynomials f, g of degree N such that [f(αℓ)]t = [aℓ]t and [g(αℓ)]t = [bℓ]t for all

ℓ ∈ [0, N].
2: For all ℓ ∈ [N + 1, 2N], all parties locally compute [f(αℓ)]t, [g(αℓ)]t. Then they send [xℓ]t := [f(αℓ) +

aℓ]t, [yℓ]t := [g(αℓ) + bℓ]t to Pking.
3: If Pking first succeeds in using OEC to reconstruct {xℓ, yℓ}2N

ℓ=N+1, he reliably broadcasts them. Otherwise,
Pking first receives (Accusation, Pi, D, ACSS) and will reliably broadcast it.

4: All parties wait to receive messages from Pking. If they receive {xℓ, yℓ}2N
ℓ=N+1 from Pking, they proceed.

Otherwise, they terminate with (Accusation, Pi, D, ACSS) broadcast by Pking.
5: For all ℓ ∈ [N + 1, 2N], all parties locally compute:

[f(αℓ) · g(αℓ)]t = xℓ · yℓ − xℓ[bℓ]t − yℓ[aℓ]t + [cℓ]t

Then they set a polynomial h of degree 2N such that [h(αℓ)]t = [cℓ]t for all ℓ ∈ [N] and [h(αℓ)]t =
[f(αℓ) · g(αℓ)]t for all ℓ ∈ [N + 1, 2N].

Verification of Triples
1: Al parties send their share of [r]t to Pking. If Pking first succeeds in using OEC to recon-

struct the whole sharing [r]t, he reliably broadcasts it. Otherwise, he reliably broadcasts the first
(Accusation, Pi, D, ACSS) he received.

2: If all parties receive (Accusation, Pi, D, ACSS), they terminate with it. Otherwise, all parties invoke an
instance of Fra with input 1 if his share of [r]t broadcast by Pking is correct. When all parties terminate
Fra with 1, if r /∈ {α1, . . . , αN }, they proceed. Otherwise, all parties aborts.

3: All parties locally compute their shares of {[f(r)]t, [g(r)]t, [h(r)]t} and send them to Pking. Pking does the
same thing as above to do reconstruction. He will broadcast the whole sharing {[f(r)]t, [g(r)]t, [h(r)]t}
or (Accusation, Pi, D, ACSS).

4: If all parties receive (Accusation, Pi, D, ACSS), they terminate with it. Otherwise, they proceed.
5: All parties invoke an instance of Fra with input 1 if their shares of {[f(r)]t, [g(r)]t, [h(r)]t} broadcast by

Pking are correct. When they terminate Fra with 1, they check whether h(r) = f(r) · g(r). If true, they
terminate with shares of {[aℓ]t, [bℓ]t, [cℓ]t}N

ℓ=1. Otherwise, they help Pking to do fault localization.

To help king detect a corrupted party, all parties reconstruct the whole degree-t and 2t sharings
to king. For degree-t sharings, all parties can send the extracted random sharings to king since king
can use OEC to do reconstruction. For degree-2t sharings, all parties verifiably reconstruct the sharings
distributed by each dealer. Finally, king may receive an accusation from a party or detect a corrupted

18

party. For the former case, he will let all parties terminate with this party’s accusation. For the latter
case, he will broadcast a dispute pair to claim that he conflicts with this party and ignore the messages
received from this party from then on.

Protocol ΠTripleKingDN

Fault Localization
1: All parties do the following, let k be the index of the group of sharings used for Pking in this segment.

(1). Send shares of {([aℓ]t, [bℓ]t, [rℓ]t)}2N
ℓ=0 to Pking.

(2). Send (Private-Recon-Vrfy, k, Pking) to FSh2t-Id invoked by dealers in W.
2: Pking first checks the degree-2t sharings of zero distributed by each Pi ∈ W. For the outputs of all FSh2t-Id:

– If one of them is (Accusation, D, Pi), Pking reliably broadcasts (Accusation, Pi, D, Sh2t) when he
receives it from Pi’s broadcast.

– If one of them is false, Pking reliably broadcasts (Dispute, Pi, Pking) and terminates.
– Otherwise, Pking gets sharings distributed by Pi, denoted each one by [o(i)]2t. If one of secret o(i) ̸= 0,

Pking reliably broadcasts (Dispute, Pi, Pking) and terminates. Otherwise, Pking proceeds.
3: Then Pking checks which party provides incorrect shares of [zℓ]2t.

(1). If Pking first uses OEC to reconstruct {([aℓ]t, [bℓ]t, [rℓ]t)}2N
ℓ=0, he proceeds. Otherwise, he reliably

broadcasts the first (Accusation, Pi, D, ACSS) he received from Pi’s broadcast and terminates.
(2). Pking computes each [oℓ]2t from {o(i)}i∈W . Then he follows the protocol to compute [zℓ]2t = [aℓ]t ·

[bℓ]t + [rℓ]t + [oℓ]2t. For the first party Pi who provides incorrect shares of [zℓ]2t, Pking reliably
broadcasts (Dispute, Pi, Pking) and terminates.

4: All parties wait for the message from Pking’s broadcast.
– If it is (Accusation, Pi, D, ACSS) or (Accusation, Pi, D, Sh2t) and D ∈ W, all parties terminate

with it when they receive it from Pi’s broadcast.
– If it is (Dispute, Pi, Pking), all parties terminate with it.

Summary. During the protocol ΠTripleKingDN, all parties follow the DN technique to generate Beaver
triples. All parties may terminate with (1) Valid triples, (2) An accusation broadcast by a party, or
(3) A dispute pair broadcast by king. For both cases (2) and (3), all parties can help king to find a
corrupted party later. Then this king can ignore the messages received from this party from then on and
after at most t failure times, an honest king will always generate valid triples. The total communication
complexity of ΠTripleKingDN is O(Nn + n3) field elements for preparing N Beaver triples.

6.3 Triple Generation Procedure

In this subsection, we give the construction of triple generation protocol ΠTriple. Each party will act as
the dealer and invoke FACSS-Id to distribute degree-t random sharings and FSh2t-Id to distribute degree-2t
random sharings of zero. For the shares received from each dealer, all parties divide them into O(n2)
groups, and each one will be used for each king to generate triples in each group.

Protocol ΠTriple

Let N be the number of Beaver triples to be prepared and N ′ = 6N/(t + 1) + n.
Preparation of Random Shamir Sharings.
1: Each party acts as the dealer and invokes FACSS-Id and FSh2t-Id to distribute 9N ′ random degree-t Shamir

sharings and 3N ′ random degree-2t Shamir sharings of 0 respectively.
2: Each party Pi initializes a set Wi = ∅, once Pi terminates FACSS-Id and FSh2t-Id invoked by a dealer Pj ,

he adds Pj to Wi:
– If Pi terminates FACSS-Id or FSh2t-Id with (Corrupt, Pj), he reliably broadcasts

(Accusation, Pi, Pj , ACSS) or (Accusation, Pi, Pj , Sh2t).
– Otherwise, Pi divides his degree-t and 2t shares into n2 groups, each group contains 9N ′/n2 degree-t

sharings and 3N ′/n2 degree-2t sharings. They assign the group with indices in [(j − 1) · n, j · n] to
each party Pj .

In the generation phase, each party will act as a king and all parties help him to generate O(N/n2)
triples. Then all parties agree on a set of successful kings (of size n − t), and decide whether they can
move to the next segment. Recall that a king is considered to be successful if all parties terminate with

19

(1) Valid Beaver triples, (2) An accusation between a party and a dealer, and (3) A dispute pair between
a king and a party. If there are not a sufficient number of valid triples generated by these n − t successful
kings, all parties will either open an accusation to publicly eliminate a corrupted party or let each king
locally eliminate a corrupted party. Since each honest king is guaranteed to generate valid triples after
removing all corrupted parties, all parties will eventually generate a sufficient number of triples in each
segment. The communication complexity of ΠTriple is O(Nn+n4) field elements for generating N Beaver
triples.

Protocol ΠTriple

Generation Phase.
Divide the generation of N random Beaver triples into t segments, each party Pi initializes a set
Disputei = ∅, in the following, Pi will ignore messages received from parties in Disputei.

1: Generation of Random Triples:
Each party acts as Pking and leads an instance of ΠTripleKingDN, when |Wking| ≥ 2t + 1, Pking reliably
broadcasts a set W ⊆ Wking of size 2t + 1.
For each party Pi, upon receiving W ⊆ Wi from Pking, if Pking has not broadcast (Dispute, Pj , Pking) for
all Pj ∈ W, he participates in ΠTripleKingDN with the first unused group of shares distributed by dealers
in W.

2: Determine the Set of Successful Kings:
Each party sets the property Q as he terminates the ΠTripleKingDN led by one Pking, and all parties invoke
Facs with property Q to agree on a set D of successful kings with size |D| = 2t + 1.

3: Determine the Outputs:
For the outputs of all Pking ∈ D, all parties check the following things in order:

– If at least t + 1 of them are valid Beaver triples, all parties terminate the current segment with the
first t + 1 of them and move to the next segment.

– If at least one of them is (Accusation, Pi, D, ACSS) or (Accusation, Pi, D, Sh2t), for Pi with the
smallest index, all parties send request (Open-Proof, Pi) to FACSS-Id or FSh2t-Id invoked by D. Upon
receiving the output (Corrupt, D) or (Corrupt, Pi), all parties move to Step 4 with the identity of
the corrupted party.

– Otherwise, all parties records all dispute pairs broadcast by all Pking, and each Pking whose output
is (Dispute, Pi, Pking) locally removes Pi from Wking (if exists) and adds Pi to Disputeking. When
all parties find that one party conflicts with at least t + 1 parties, they agree on the identity of this
party and move to Step 4.

4: Reconstruct Corrupted Party’s Secret
When all parties agree on a corrupted party Pk, each party Pi adds Pk to Disputei and removes Pk

from Wi (if exists). Then all parties do the following.
– If Pk has distributed degree-t Shamir sharings, all parties send Public-Recon to the FACSS-Id invoked

by him and replace their shares by the secrets received from FACSS-Id. All parties locally update their
shares of triples prepared in the previous segment.

Finally, all parties execute the current one again.

7 Main Protocol

In this section, we construct ΠMain to realize FAMPC. All parties first execute ΠTriple to prepare triples in
the offline phase and then use them to evaluate a circuit in the online phase. To achieve linear cost, we use
the party elimination framework and divide the circuit into t disjoint sub-circuits C1, . . . , Ct (sorted by
the topology), each containing |C|/t multiplication gates and the depth is bounded by O(D/n). For each
circuit segment, all parties only need to do public reconstruction, which can be realized by ΠSubCktEval. As
a result, we obtain the following theorem. We refer the reader to Appendix E for detailed construction,
security proof, and cost analysis.

Theorem 1. Let n = 3t + 1 and κ denote the security parameter. Further let F be a finite field of size
2Ω(κ) and C be a circuit of size |C| and depth D. Assuming random oracles, there is a fully malicious
asynchronous MPC protocol computing the circuit that is secure against at most t corrupted parties with
guaranteed output delivery. The achieved communication complexity is O(|C| · n + D · n2 + n4) field
elements and round complexity is O(D + n).

20

8 Conclusion

In this work, we presented an asynchronous Multi-Party Computation protocol that relies exclusively
on computationally efficient lightweight cryptographic tools. To address the absence of transcript homo-
morphism, we introduced several techniques to optimize the communication overhead of our protocols.
The first of these is the asynchronous party elimination framework with efficient public reconstruction,
which is mainly used in the online phase and allows us to achieve GOD with only linear cost per gate.
Additionally, our second technique—an asynchronous dispute control framework, which is mainly used
for triple generation in the offline phase and enables us to attain an additive communication overhead
of O(n4), marking an O(n2) improvement over previous approaches in this domain. Together, these con-
tributions advance distributed cryptography by leveraging lightweight cryptography to verifiably detect
malicious behavior and effectively manage corrupted parties in an asynchronous network.

References

[AAPP24] Ittai Abraham, Gilad Asharov, Shravani Patil, and Arpita Patra. Perfect asynchronous MPC with
linear communication overhead. In Marc Joye and Gregor Leander, editors, EUROCRYPT 2024,
Part V, volume 14655 of LNCS, pages 280–309. Springer, Cham, May 2024.

[ABCP23] Shahla Atapoor, Karim Baghery, Daniele Cozzo, and Robi Pedersen. VSS from distributed ZK
proofs and applications. In Jian Guo and Ron Steinfeld, editors, ASIACRYPT 2023, Part I, volume
14438 of LNCS, pages 405–440. Springer, Singapore, December 2023.

[ADD+22] Nicolas Alhaddad, Sourav Das, Sisi Duan, Ling Ren, Mayank Varia, Zhuolun Xiang, and Haibin
Zhang. Brief announcement: Asynchronous verifiable information dispersal with near-optimal com-
munication. In Proceedings of the 2022 ACM Symposium on Principles of Distributed Computing,
pages 418–420, 2022.

[ADS20] Ittai Abraham, Danny Dolev, and Gilad Stern. Revisiting asynchronous fault tolerant computation
with optimal resilience. In Yuval Emek and Christian Cachin, editors, 39th ACM PODC, pages
139–148. ACM, August 2020.

[AJM+23] Ittai Abraham, Philipp Jovanovic, Mary Maller, Sarah Meiklejohn, and Gilad Stern. Bingo: Adap-
tivity and asynchrony in verifiable secret sharing and distributed key generation. In Advances in
Cryptology – CRYPTO 2023: 43rd Annual International Cryptology Conference, CRYPTO 2023,
Santa Barbara, CA, USA, August 20–24, 2023, Proceedings, Part I, page 39–70, Berlin, Heidelberg,
2023. Springer-Verlag.

[BBB+24] Akhil Bandarupalli, Adithya Bhat, Saurabh Bagchi, Aniket Kate, and Michael K. Reiter. Hashrand:
Efficient asynchronous random beacon without threshold cryptographic setup. ACM CCS 2024 (to
appear), 2024. https://eprint.iacr.org/2023/451.

[Bea92] Donald Beaver. Efficient multiparty protocols using circuit randomization. In Joan Feigenbaum,
editor, Advances in Cryptology — CRYPTO ’91, volume 576 of Lecture Notes in Computer Science,
pages 420–432, Berlin, Heidelberg, 1992. Springer Berlin Heidelberg.

[BGW88] Michael Ben-Or, Shafi Goldwasser, and Avi Wigderson. Completeness theorems for non-
cryptographic fault-tolerant distributed computation (extended abstract). In 20th ACM STOC,
pages 1–10. ACM Press, May 1988.

[BKLZL20] Erica Blum, Jonathan Katz, Chen-Da Liu-Zhang, and Julian Loss. Asynchronous byzantine agree-
ment with subquadratic communication. In Rafael Pass and Krzysztof Pietrzak, editors, TCC 2020,
Part I, volume 12550 of LNCS, pages 353–380. Springer, Cham, November 2020.

[BKP11] Michael Backes, Aniket Kate, and Arpita Patra. Computational verifiable secret sharing revisited.
In Dong Hoon Lee and Xiaoyun Wang, editors, Advances in Cryptology – ASIACRYPT 2011, pages
590–609, Berlin, Heidelberg, 2011. Springer Berlin Heidelberg.

[BKR94] Michael Ben-Or, Boaz Kelmer, and Tal Rabin. Asynchronous secure computations with optimal
resilience (extended abstract). In Jim Anderson and Sam Toueg, editors, 13th ACM PODC, pages
183–192. ACM, August 1994.

[BOKR94] Michael Ben-Or, Boaz Kelmer, and Tal Rabin. Asynchronous secure computations with optimal
resilience (extended abstract). In Proceedings of the Thirteenth Annual ACM Symposium on Prin-
ciples of Distributed Computing, PODC ’94, page 183–192, New York, NY, USA, 1994. Association
for Computing Machinery.

[BSFO12] Eli Ben-Sasson, Serge Fehr, and Rafail Ostrovsky. Near-linear unconditionally-secure multiparty
computation with a dishonest minority. In Reihaneh Safavi-Naini and Ran Canetti, editors, Ad-
vances in Cryptology – CRYPTO 2012, pages 663–680, Berlin, Heidelberg, 2012. Springer Berlin
Heidelberg.

21

https://eprint.iacr.org/2023/451

[BTH06] Zuzana Beerliova-Trubiniova and Martin Hirt. Efficient multi-party computation with dispute con-
trol. In Theory of Cryptography Conference, pages 305–328. Springer, 2006.

[Can00] Ran Canetti. Security and composition of multiparty cryptographic protocols. Journal of Cryptol-
ogy, 13:143–202, 2000.

[Can01] Ran Canetti. Universally composable security: A new paradigm for cryptographic protocols. In
42nd Annual Symposium on Foundations of Computer Science, FOCS 2001, 14-17 October 2001,
Las Vegas, Nevada, USA, pages 136–145. IEEE Computer Society, 2001.

[CCD88] David Chaum, Claude Crépeau, and Ivan Damgård. Multiparty unconditionally secure protocols
(extended abstract). In 20th ACM STOC, pages 11–19. ACM Press, May 1988.

[CGHZ16] Sandro Coretti, Juan A. Garay, Martin Hirt, and Vassilis Zikas. Constant-round asynchronous
multi-party computation based on one-way functions. In Jung Hee Cheon and Tsuyoshi Takagi,
editors, ASIACRYPT 2016, Part II, volume 10032 of LNCS, pages 998–1021. Springer, Berlin,
Heidelberg, December 2016.

[CHLZ21] Annick Chopard, Martin Hirt, and Chen-Da Liu-Zhang. On communication-efficient asynchronous
MPC with adaptive security. In Kobbi Nissim and Brent Waters, editors, TCC 2021, Part II, volume
13043 of LNCS, pages 35–65. Springer, Cham, November 2021.

[Coh16] Ran Cohen. Asynchronous secure multiparty computation in constant time. In Chen-Mou Cheng,
Kai-Min Chung, Giuseppe Persiano, and Bo-Yin Yang, editors, PKC 2016, Part II, volume 9615 of
LNCS, pages 183–207. Springer, Berlin, Heidelberg, March 2016.

[CP15] Ashish Choudhury and Arpita Patra. Optimally resilient asynchronous MPC with linear communi-
cation complexity. In Proc. Intl. Conference on Distributed Computing and Networking (ICDCN),
pages 1–10, 2015.

[CP23] Ashish Choudhury and Arpita Patra. On the communication efficiency of statistically secure asyn-
chronous mpc with optimal resilience. Journal of Cryptology, 36(2):13, 2023.

[CR98] Ran Canetti and Tal Rabin. Fast asynchronous byzantine agreement with optimal resilience, 1998.
[DDL+24] Sourav Das, Sisi Duan, Shengqi Liu, Atsuki Momose, Ling Ren, and Victor Shoup. Asynchronous

consensus without trusted setup or public-key cryptography. Cryptology ePrint Archive, 2024.
[DGKN09] Ivan Damgård, Martin Geisler, Mikkel Krøigaard, and Jesper Buus Nielsen. Asynchronous multi-

party computation: Theory and implementation. In Stanislaw Jarecki and Gene Tsudik, editors,
PKC 2009, volume 5443 of LNCS, pages 160–179. Springer, Berlin, Heidelberg, March 2009.

[DN07] Ivan Damgård and Jesper Buus Nielsen. Scalable and unconditionally secure multiparty computa-
tion. In Advances in Cryptology - CRYPTO 2007, 27th Annual International Cryptology Conference,
Santa Barbara, CA, USA, August 19-23, 2007, Proceedings, volume 4622 of Lecture Notes in Com-
puter Science, pages 572–590. Springer, 2007.

[DXR21] Sourav Das, Zhuolun Xiang, and Ling Ren. Asynchronous data dissemination and its applications.
In Giovanni Vigna and Elaine Shi, editors, ACM CCS 2021, pages 2705–2721. ACM Press, November
2021.

[FY92] Matthew Franklin and Moti Yung. Communication Complexity of Secure Computation (Extended
Abstract). In Proceedings of the Twenty-Fourth Annual ACM Symposium on Theory of Computing,
STOC ’92, page 699–710, New York, NY, USA, 1992. Association for Computing Machinery.

[GLO+21] Vipul Goyal, Hanjun Li, Rafail Ostrovsky, Antigoni Polychroniadou, and Yifan Song. ATLAS:
Efficient and scalable MPC in the honest majority setting. In Tal Malkin and Chris Peikert, edi-
tors, CRYPTO 2021, Part II, volume 12826 of LNCS, pages 244–274, Virtual Event, August 2021.
Springer, Cham.

[GLZS24] Vipul Goyal, Chen-Da Liu-Zhang, and Yifan Song. Towards achieving asynchronous MPC with
linear communication and optimal resilience. In Leonid Reyzin and Douglas Stebila, editors,
CRYPTO 2024, Part VIII, volume 14927 of LNCS, pages 170–206. Springer, Cham, August 2024.

[GMW87] Oded Goldreich, Silvio Micali, and Avi Wigderson. How to play any mental game or A completeness
theorem for protocols with honest majority. In Alfred Aho, editor, 19th ACM STOC, pages 218–229.
ACM Press, May 1987.

[GSZ20] Vipul Goyal, Yifan Song, and Chenzhi Zhu. Guaranteed output delivery comes free in honest
majority MPC. In Daniele Micciancio and Thomas Ristenpart, editors, CRYPTO 2020, Part II,
volume 12171 of LNCS, pages 618–646. Springer, Cham, August 2020.

[HMP00] Martin Hirt, Ueli Maurer, and Bartosz Przydatek. Efficient secure multi-party computation. In
International conference on the theory and application of cryptology and information security, pages
143–161. Springer, 2000.

[HNP05] Martin Hirt, Jesper Buus Nielsen, and Bartosz Przydatek. Cryptographic asynchronous multi-
party computation with optimal resilience (extended abstract). In Ronald Cramer, editor, EURO-
CRYPT 2005, volume 3494 of LNCS, pages 322–340. Springer, Berlin, Heidelberg, May 2005.

[HNP08] Martin Hirt, Jesper Buus Nielsen, and Bartosz Przydatek. Asynchronous multi-party computation
with quadratic communication. In Luca Aceto, Ivan Damgård, Leslie Ann Goldberg, Magnús M.

22

Halldórsson, Anna Ingólfsdóttir, and Igor Walukiewicz, editors, ICALP 2008, Part II, volume 5126
of LNCS, pages 473–485. Springer, Berlin, Heidelberg, July 2008.

[JLS24] Xiaoyu Ji, Junru Li, and Yifan Song. Linear-communication asynchronous complete secret sharing
with optimal resilience. In Leonid Reyzin and Douglas Stebila, editors, CRYPTO 2024, Part VIII,
volume 14927 of LNCS, pages 418–453. Springer, Cham, August 2024.

[LYK+19] Donghang Lu, Thomas Yurek, Samarth Kulshreshtha, Rahul Govind, Aniket Kate, and Andrew K.
Miller. Honeybadgermpc and asynchromix: Practical asynchronous MPC and its application to
anonymous communication. In Proceedings of the 2019 ACM SIGSAC Conference on Computer
and Communications Security, CCS 2019, London, UK, November 11-15, 2019, pages 887–903.
ACM, 2019.

[Mom24] Atsuki Momose. Practical asynchronous mpc from lightweight cryptography. Cryptology ePrint
Archive, 2024.

[NRS+20] Kartik Nayak, Ling Ren, Elaine Shi, Nitin H Vaidya, and Zhuolun Xiang. Improved extension
protocols for byzantine broadcast and agreement. arXiv preprint arXiv:2002.11321, 2020.

[NV18] Peter Sebastian Nordholt and Meilof Veeningen. Minimising communication in honest-majority
mpc by batchwise multiplication verification. In International Conference on Applied Cryptography
and Network Security, pages 321–339. Springer, 2018.

[PCR08] Arpita Patra, Ashish Choudhury, and C. Pandu Rangan. Efficient asynchronous multiparty com-
putation with optimal resilience. Cryptology ePrint Archive, Report 2008/425, 2008.

[PCR09] Arpita Patra, Ashish Choudhary, and C Pandu Rangan. Efficient statistical asynchronous verifi-
able secret sharing with optimal resilience. In International Conference on Information Theoretic
Security, pages 74–92. Springer, 2009.

[PCR10] Arpita Patra, Ashish Choudhary, and C. Pandu Rangan. Efficient statistical asynchronous verifiable
secret sharing with optimal resilience. In Kaoru Kurosawa, editor, ICITS 09, volume 5973 of LNCS,
pages 74–92. Springer, Berlin, Heidelberg, December 2010.

[RB89] Tal Rabin and Michael Ben-Or. Verifiable secret sharing and multiparty protocols with honest
majority (extended abstract). In 21st ACM STOC, pages 73–85. ACM Press, May 1989.

[Sha79] Adi Shamir. How to share a secret. Commun. ACM, 22(11):612–613, November 1979.
[SLL+24] Yuan Su, Yuan Lu, Jiliang Li, Yuyi Wang, Chengyi Dong, and Qiang Tang. Dumbo-mpc: Efficient

fully asynchronous mpc with optimal resilience. Cryptology ePrint Archive, 2024.
[SS24] Victor Shoup and Nigel P. Smart. Lightweight asynchronous verifiable secret sharing with optimal

resilience. J. Cryptol., 37(3):27, 2024.
[Yao82] Andrew Chi-Chih Yao. Theory and applications of trapdoor functions (extended abstract). In 23rd

FOCS, pages 80–91. IEEE Computer Society Press, November 1982.

23

A Additional Preliminaries

A.1 Definitions of Agreement Primitives

We describe functionalities for the agreement primitives, following the descriptions from [CGHZ16,
Coh16].
Reliable Broadcast. We describe the functionality Frbc for reliable broadcast. When a party Ps inputs
a value v to the functionality as the sender, we will say that “Ps (reliably) broadcasts value v”. Moreover,
when some party Pj receives an output v in a reliable broadcast functionality with sender Pi, we will
say that “Pj receives output v from Pi’s reliable broadcast”, and we will omit specifying the sender if
the context is clear.

Functionality Frbc

Frbc proceeds as follows, running with parties P1, . . . , Pn, where one of the parties is the sender Ps, and the
adversary S. Initialize y = ⊥.
1: Upon receiving an input v from party Ps (the sender, or the adversary on behalf of the corrupted

sender), set the output to y = v and send v to the adversary.
2: Upon receiving v from the adversary, if Ps is corrupted and no party has received their output, then

set y = v.
3: When the output is y set to be some value v, the functionality outputs y as a request-based delayed

output to all parties.

Byzantine Agreement. We describe the functionality Fba for Byzantine agreement.

Functionality Fba

Fba proceeds as follows, running with parties P1, . . . , Pn and the ideal adversary S. Let I = H, where H is
the set of honest parties. For each party Pi, initialize xi and yi to ⊥. Let the message length be L.
1: Upon receiving P ′ from S, with |P ′| ≤ t, if no party has received output, then set I = H \ P ′.
2: Upon receiving a message m ∈ {0, 1}L from party Pi, do as follows.

– If any party or S has received an output y, then ignore this message; otherwise, set xi = m.
– If xi ̸= ⊥ for every Pi ∈ I, then set yj = y for every j ∈ [n], where y = x if all inputs xj = x for

Pj ∈ I, for some x ̸= ⊥. Otherwise, set y = xj for Pj /∈ H with the smallest index.
– Send m to S.

3: When the output yi is set to be some value y, the functionality outputs y as a request-based delayed
output to Pi.

Reliable Agreement. We describe the functionality Fra for Reliable Agreement.

Functionality Fra

Fra proceeds as follows, running with parties P1, . . . , Pn and the ideal adversary S. Let I = H, where H is
the set of honest parties. For each party Pi, initialize xi and yi to ⊥. Set AdvDeliver = 0.
1: Upon receiving P ′ from S, with |P ′| ≤ t, if no party has received output, then set I = H \ P ′.
2: Upon receiving a bit message m from party Pi, do as follows.

– If any party or S has received an output y, then ignore this message; otherwise, set xi = m.
– If xi ̸= ⊥ for every Pi ∈ I, then set yj = y for every j ∈ [n], where y = x if all inputs xj = x for

Pj ∈ I, for some x ̸= ⊥. Otherwise, set AdvDeliver = 1.
– Send m to S.

3: Upon receiving v from the adversary, if AdvDeliver = 1, then set yi = v for every i ∈ [n].
4: When the output yi is set to be some value y, the functionality outputs y as a request-based delayed

output to Pi.

Agreement on a Common Subset. The agreement on a common subset (ACS) primitive allows the
parties to agree on a set of at least n−t parties that satisfy a certain property (a so-called ACS property).

24

Definition 1. Let P be a set of n parties and let Q be a property that can be influenced by multiple
protocols running in parallel. Every party Pi ∈ P can decide for every party Pj ∈ P based on the
protocols running in parallel whether Pj satisfies the property towards Pi or not. If it does, we say Pi

likes Pj for Q or simply Pi likes Pj if the property Q is clear from the context. We require that once a
party likes another party, it cannot unlike it. Such a property Q is called an ACS property if for every
pair of uncorrupted parties (Pi, Pj) ∈ P2 we have that Pi will eventually like Pj.

We state the traditional property-based formalization of ACS.

Definition 2. Let Π be an n-party protocol where all parties take as input a global ACS property Q
and each party Pi outputs a set Si of parties. We say that Π is a t-resilient ACS protocol for Q if the
following holds whenever up to t parties are corrupted:

– Consistency: Each honest party outputs the same set Si = S.
– Set quality: Each output set has size at least n − t, and for each Pi ∈ S there exists at least one

honest party Pj that likes Pi for Q.
– Termination: All honest parties eventually terminate.

We also describe a functionality for ACS. In the functionality, each party can input k ∈ [n]. And it is
guaranteed that every party receives at least n − t such indices. Moreover, any index k input by a party
Pi will also be eventually input by Pj .

For an ACS property Q, we will say that the parties invoke Facs, meaning that each party Pi inputs
k to the functionality as soon as Pi likes Pk.

Functionality Facs

Facs proceeds as follows, running with parties P1, . . . , Pn and the adversary S. Initialize Si = ∅ for every
i ∈ [n], and S = ⊥.
1: Upon receiving an index k from Pi, add index k to Si. Then forward k to S. If |Si| ≥ n − t, then we

say that Pi is ready. If n − t honest parties are ready, set S to be the set of indices k such that there is
some honest party that inputs k.

2: Upon receiving S′ from S, check that |S′| ≥ n − t, and that for every k ∈ S′, there is some honest party
that has input k. If so, then set S = S′.

3: Upon setting S, output it to all parties as a request-based delayed output.

A.2 Shamir Secret Sharing Scheme

In this work, we will use the standard Shamir Secret Sharing Scheme [Sha79]. Let n be the number of
parties and F be a finite field of size |F| ≥ 2n. Let α1, . . . , αn be n distinct non-zero elements in F.

A degree-d Shamir sharing of x ∈ F is a vector (x1, . . . , xn) which satisfies that there exists a poly-
nomial f(·) ∈ F[X] of degree at most d such that f(0) = x and f(αi) = xi for i ∈ [n]. Each party Pi

holds a share xi and the whole sharing is denoted by [x]d. We recall the properties of the Shamir secret
sharing scheme:

– Linear Homomorphism:
∀ [x]d, [y]d, [x + y]d = [x]d + [y]d.

– Multiplying two degree-d sharings yields a degree-2d sharing. The secret value of the new sharing is
the product of the original two secrets.

∀ [x]d, [y]d, [x · y]2d = [x]d · [y]d.

Packed Shamir Sharings. The packed Shamir secret sharing, introduced by Franklin and Yung [FY92],
is a generalization of the standard Shamir secret sharing scheme. Let k be the number of secrets to pack
in one sharing. Let β1, . . . , βk be k distinct elements that are different from α1, . . . , αn in F. A degree-d
(d ≥ k −1) packed Shamir sharing of x = (x1, . . . , xk) ∈ Fk is a vector (x1, . . . , xn) for which there exists

25

a polynomial f(·) ∈ F[X] of degree at most d such that f(βi) = xi for all i ∈ [k], and f(αi) = xi for all
i ∈ [n].

Reconstructing a degree-d packed Shamir sharing requires d + 1 shares and can be done by Lagrange
interpolation. For a random degree-d packed Shamir sharing of x, any d−k +1 shares are independent of
the secret x. If d − (k − 1) ≥ t, then knowing t of the shares does not leak anything about the k secrets.
In particular, a sharing of degree t + (k − 1) keeps hidden the underlying k secret.

A.3 Distributed Zero-Knowledge Proof

We briefly recap the construction of DZK protocol in [ABCP23]. In this protocol, the n parties with L
shares fi(αℓ) for i ∈ [1, L] act as verifiers Pℓ, and the dealer D who dealt these shares acts as a prover
trying to prove the shares belong to valid degree-t polynomials. First, the prover samples a random
degree-t challenge polynomial Y(x), generates commitments C[ℓ] to points Y(αℓ) for ℓ ∈ [1, n] using the
random oracle H, and broadcasts C. The verifiers then sample a random challenge point p and ask the
prover to broadcast r(x) := Y(x) −

∑L
i=1 pifi(x). Then, each verifier Pℓ verifies whether the challenge is

successful by checking H(r(αℓ) +
∑L

i=1 pifi(αℓ))
?= C[ℓ]. The prover’s probability of passing this check

with an invalid shares is negligible because of the Schwartz-Zippel lemma, which prevents a non-zero
polynomial evaluating to zero on a randomly sampled point with probability no more than L

|S| . This proof
technique can be made non-interactive by using the Fiat-Shamir heuristic, where the prover creates the
challenge point p by applying H on generated commitments.

B Verifiable Private Send

Recall the functionality of FPrivSend in section 2.1, the author in [Mom24] assumes the random oracle and
gives a construction of it based on the primitive Asynchronous Verifiable Information Dispersal (AVID)
defined below. AVID also contains two phases, a disperse phase and a retrieve phase. For L bits message,
the author in [ADD+22] realizes FAVID with communication complexity O(L + n2) in the disperse phase
and O(L + n) in the retrieve phase for each receiver.

Functionality FAVID

FAVID proceeds as follows, running with parties P = {P1, . . . , Pn}, a dealer D and an adversary S.
1: Upon receiving a message M from D, send a request-based delayed message Dispersed to all parties

and M to S.
2: Upon receiving a message (Retrieve, R) from t + 1 parties, send a request-based delayed output M to

R if it has sent Dispersed before.

To realize his construction, he also assumes between the sender and receiver, they know a symmetric
key key, which can be efficiently prepared by FAVSS defined below.

Functionality FAVSS

Public Input: (α0, . . . , αn)
FAVSS runs with parties P = {P1, . . . , Pn}, a dealer D ∈ P, and an adversary S.
1: Upon receiving a degree-t polynomials q(·) from D and learn the set of corrupted parties Corr ⊂ P, do

the following:
1. Send {q1(αi), . . . , qN (αi)}Pi∈Corr to the corrupted parties.
2. If all the polynomials q1(·), . . . , qN (·) are degree-t polynomials, send a request-based delayed output

message success to all parties. Otherwise, do nothing.
2: Upon receiving (Private-Recon, R) from t + 1 parties, send a requested-based delayed output q(x) to

R.

We first give his construction as follows, then give an efficient construction of FAVSS with O(n2)
communication complexity.

26

Protocol ΠPrivSend

The initialize phase will be only executed one time when all parties first participate in an instance of ΠPrivSend

for the sender D and receiver R.
Initialize Phase

1: D randomly samples a value key ∈ F, then he randomly samples a degree-t polynomial f(x) such that
f(α0) = key. Then he sends f(x) to FAVSS.

2: When all parties receive success from FAVSS, they send (Private-Recon, R) to FAVSS.
3: When R receives f(x) from FAVSS, he records key = f(α0).

The disperse phase can be executed multiple times. All parties need to agree on a unique message id (denoted
by Id) each time they participate.

Disperse Phase(Id)
1: The sender takes a message mId as input, then he computes cId = mId ⊕ H(key, Id). Then he sends mId

to FAVID.
2: When all parties receive Dispersed from FAVID, they send (Retrieve, R) to FAVID and output Delivered.
3: When R receives mId from FAVID, he outputs mId = cId ⊕ H(key, Id).

The reveal phase can be executed one time. All parties will open all messages delivered in the disperse phase
before.

Reveal Phase
1: All parties send (Retrieve, Pi) to FAVID and (Private-Recon, Pi) to FAVSS for all i ∈ [n].
2: For each Id, when each party Pi receives Id from FAVID and key from FAVSS, he outputs mId = cId ⊕

H(key, Id).

Lemma 3. Protocol ΠPrivSend securely computes FPrivSend against a fully malicious adversary A who
corrupts at most t < n/3 parties.

We first analyze the cost of ΠPrivSend and then prove lemma 3. Here we exclude the cost for the
preparation and reconstruction of key, which will be shown in section B.1.

Communication Complexity. Based on the construction of AVID in [ADD+22], in each disperse
phase, it requires O(|mId| + n2) field elements. In the reveal phase, it requires O(|mId|n + n2) field
elements for each mId.

Round Complexity. In the disperse phase and reveal phase, based on the construction of AVID
in [ADD+22], it is Rbc + 1 = 4 + 1 = 5 and 1, respectively.

Proof of Lemma 3. We start with constructing the ideal adversary S as follows. Note that when the
sender or receiver is corrupted, S can honestly follow the protocol to do a simulation. Therefore, we focus
on the case when both the sender and receiver are honest.

Simulator S

When the sender and receiver are both honest
Initialize Phase

1: S does nothing,
Disperse Phase

2: S randomly samples a value as cId, then S sends cId to the adversary on behalf of FAVID.
Reveal Phase

3: S receives each message mId from FPrivSend, then he randomly samples a value as key, and send all
mId, key to corrupted parties.

4: S maps H(key, Id) to cId ⊕ mId. If cId ⊕ mId has been mapped to other inputs queried by the adversary
before, S aborts the simulation.

The hybrid arguments are as follows.
Hyb0: In this hybrid, we consider the execution in the real world.
Hyb1: In this hybrid, in the disperse phase, S change the generation of H(key, Id), he will first

randomly sample a value as cId and then computes H(key, Id) = cId ⊕mId. Since both cId and H(key, Id)
are randomly sampled, this makes no difference. Therefore, the distributions of Hyb1 and Hyb0 are
identical.

27

Hyb2: In this hybrid, S delays the generation of honest receiver’s key since it is not used in the
disperse phase. The distributions of Hyb2 and Hyb1 are identical.

Hyb3: In this hybrid, S no longer generates honest receiver’s key. In the reveal phase, when he
needs to send key to the corrupted parties, he will randomly sample a value as key and map each
H(key, Id) to cId ⊕mId. If cId ⊕mId has been mapped to other inputs queried by the adversary, S aborts
the simulation. This will happen when the adversary finds a collision of the random oracle, which is
negligible in the security parameter. Therefore, the distributions of Hyb3 and Hyb2 are computationally
indistinguishable.

Note that Hyb3 corresponds to the ideal world, then ΠPrivSend securely computes FPrivSend when the
dealer is honest.

B.1 Construction of ΠAVSS

In the following, we give the construction of ΠAVSS which realizes FAVSS.

Protocol ΠAVSS

Distribution Phase
1: D possesses a degree-t polynomial f(x) as inputs. Then he randomly samples a degree-t polynomial

Y (x) and computes a commitment vector Com of size n such that Com[i] = H(f(αi), Y (αi)).
2: D sends f(x) to an instance of FdZK, {f(αi), Y (αi)} to each party Pi and reliable broadcasts Com.

Verification Phase
3: When all parties receive Delivered from FdZK and Com from D’s reliable broadcast, they proceed.
4: For each party Pi who receives {f(αi), Y (αi)}, he sends request (VerifyDZK, f(αi), αi) to FdZK and

checks whether Com[i] = H(f(αi), Y (αi)). If both results are true, he accepts his shares f(αi).
Termination Phase

5: All parties jointly invoke an instance of Fra, when a party accepts his shares, he sets his input for Fra
as 1. When all parties terminate Fra with 1, they terminate with success.

Upon receiving (Private-Recon, R) from the environment, if all parties terminate the sharing phase, they
do the following.

Private Reconstruction Phase
1: For each party who accepts his shares f(αi) before, he sends {f(αi), Y (αi)} to R.
2: When R receives {f(αi), Y (αi)} from Pi, he follows the verification phase to do the check. If he accepts

f(αi), he records it. When R accepts f(αi) received from t + 1 distinct parties, he reconstructs the
degree-t polynomial f(x) and outputs the secret f(α0).

Lemma 4. Protocol ΠAVSS securely computes FAVSS against a fully malicious adversary A who corrupts
at most t < n/3 parties.

We first analyze the cost of ΠAVSS and then prove lemma 4.
Communication Complexity. In the sharing phase, it contains a reliable broadcast and an instance
of FdZK and Fra, resulting in O(n2) field element in total. In the private reconstruction phase, for each
receiver, the communication complexity is O(n) field elements.
Round Complexity. It is Rbc +Rra = 4+2 = 6 in the sharing phase and 1 in the public reconstruction
phase.
Proof of Lemma 4. We start with constructing the ideal adversary S as follows. Note that when the
dealer is corrupted, S can honestly follow the protocol to do the simulation. Therefore, we focus on the
case of the honest dealer.

Simulator S

When the dealer is honest
Distribution Phase

1: S receives shares of corrupted parties from FAVSS. Then S randomly samples each corrupted party Pi’s
Y (αi).

2: For each corrupted party Pi, S honestly computes Com[i]. For the rest of the honest parties, S randomly
samples a value as their Com[i]. Then S reliable broadcasts Com on behalf of the dealer.

28

3: S simulates FdZK as follows.
– Upon receiving (VerifyDZK, s, αi) from corrupted party Pi, if s equals the share received from FAVSS,

S returns true as the output of FdZK. In any other case, S returns false.
Verification Phase

4: When each honest party receives his shares, S considers this honest party to accept his shares.
Termination Phase

5: For each honest party who accepts his shares, S sets this honest party’s input for Fra as 1.
Private Reconstruction Phase

6: S receives f(x) from FAVSS. Then S randomly samples the whole Y (x) based on shares of corrupted par-
ties. For each honest party Pi, S sends {f(αi), Y (αi)} to all corrupted parties and maps H(f(αi), Y (αi))
to Com[i].

The hybrid arguments are as follows.
Hyb0: In this hybrid, we consider the execution in the real world.
Hyb1: In this hybrid, in the distribution phase, S first samples shares of corrupted parties. Then

samples the whole sharing based on the secret and corrupted party’s shares. Based on the property of
the Shamir secret sharing scheme, this makes no difference. Therefore, the distributions of Hyb1 and
Hyb0 are identical.

Hyb2: In this hybrid, in the distribution phase, S changes the simulation of FdZK as above. Compared
to Hyb1, the difference is when the adversary correctly guesses honest parties’ shares, S will still return
false. For a sufficiently large field, the probability is negligible in the security parameter. Therefore, the
distributions of Hyb2 and Hyb1 are statistically close.

Hyb3: In this hybrid, we delay the generation of honest party Pi’s shares of f(αi) and Y (αi) to the
private reconstruction phase since they are never used in the sharing phase. S will randomly sample a
value as Com[i] for each honest party Pi, if this value has been mapped to other inputs queried by the
adversary, S will abort the simulation. For a computation-bounded adversary and a sufficiently large
field, the probability is negligible. Therefore, the distributions of Hyb3 and Hyb2 are computationally
indistinguishable.

Hyb4: In this hybrid, S lets FAVSS distribute each party’s shares and learns f(x) from FAVSS in the
private reconstruction phase, which makes no difference. Therefore, the distributions of Hyb4 and Hyb3
are identical.

Note that Hyb4 corresponds to the ideal world, then ΠPrivSend securely computes FPrivSend when the
dealer is honest.

C Secure and Cost Analyze of ACSS-Id
C.1 Cost Analysis
We analyze the communication and round complexity as follows.
Communication Complexity. In the sharing phase, the dealer invoke t + 1 instances of FdZK and the
Disperse Phase of n instances of FPrivSend. Each FdZK can be realized with O(n2) field elements [ABCP23],
result in O(n3) communication complexity in total. For each FPrivSend, the Disperse Phase requires
O(L + n2) field elements, results in O(Ln + n3) communication complexity in total. All parties invoke
an instance of Fra, which requires O(n2) field elements. Therefore, the total costs in the sharing phase
are O(Ln + n3) field elements.

In the accusation phase, all parties execute the Reveal Phase, which requires O(Ln+n2) field elements
in total.

In the public reconstruction phase, the communication complexity is O(Ln + n2) field elements.
Round Complexity. Denote the round complexity of reliably broadcast as Rbc, which can be realized
by 4 by the construction in [DXR21]. We recall the round complexity of each functionality.

– For FdZK, the construction in [ABCP23] is a non interactive protocol and the round complexity is
Rbc.

– For FPrivSend, excluding the preparation of the symmetric key, it is 5 in the Disperse Phase and 1 in
the Reveal Phase.

Therefore, in the sharing phase, the round complexity is max{Rbc + Rra, 5} = 6. In the accusation phase,
the round complexity is 1. In the public reconstruction phase, the round complexity is 2.

29

C.2 Security Analyze

We prove lemma 1 and start with constructing the ideal adversary S as follows. We first consider the
case of the honest dealer.

Simulator S

For honest dealer
Distribution Phase

1: S receives shares of corrupted parties from FACSS-Id. Then for each corrupted party Pj , S computes
g1(αj , y), . . . , gL′ (αj , y).

2: S simulates each F (i)
dZK as follows.

1. When D’s inputs has been delivered to F (i)
dZK, S sends Delivered to corrupted parties on behalf of

F (i)
dZK.

2. When S receives request (VerifyDZK, s1, . . . , sN , αk) from a corrupted party, if k is an index of
a corrupted party and s1, . . . , sN equal g1(αk, αi), . . . , gL′ (αk, αi), S sends true to this corrupted
party as the output of F (i)

dZK. Otherwise, S sends false to this corrupted party as the output of
F (i)

dZK.
3: S honestly emulates each F (i)

PrivSend.
Verification Phase

4: S does nothing. When each honest party gets his shares, S considers this honest party to accept his
shares.

Termination Phase
5: When an honest party accepts his shares, S sets this honest party’s input for Fra as 1. Then S honestly

emulate Fra.
Accusation Phase

6: For request (Open-Proof, Pi) received from the environment, if i is the index of a honest party, S aborts
the simulation. Otherwise, S proceeds.

7: S sends Reveal to F (i)
PrivSend on behalf of each honest party. Then S computes and sends mi to each party

on behalf of F (i)
PrivSend.

Public Reconstruction Phase
8: S sends request Public-Recon to FACSS-Id on behalf of each honest party and receives f1(α0), . . . , fL(α0).

Then S computes g1(α0, y), . . . , gL′ (α0, y).
9: For each ℓ ∈ [L′], S randomly samples a degree-(t, t) bivariate polynomial gℓ(x, y) based on gℓ(α0, y)

and {gℓ(αj , y)}j∈Corr. Then S honestly execute each honest party Pi with his g1(αi, y), . . . , gL′ (αi, y).
S also honestly emulates each F (i)

dZK with inputs g1(x, αi), . . . , gL′ (x, αi).
10: S outputs the views of A.

The hybrid arguments are as follows.
Hyb0: In this hybrid, we consider the execution in the real world.
Hyb1: In this hybrid, S first generate corrupted parties’ shares. Then he samples honest parties’

shares based on the secret f1(α0), . . . , fL(α0) and shares of corrupted parties. Based on the property of
the Shamir sharing scheme, this makes no difference. The distributions of Hyb1 and Hyb0 are identical.

Hyb2: In this hybrid, S change the simulation of each F (i)
dZK as above. The difference between Hyb1

and Hyb0 is S will reply false when the adversary sends request (VerifyDZK, {gℓ(αj , αi)}ℓ∈[L′], αj) to
F (i)

dZK and j is the index of an honest party. That means the adversary can correctly guess the shares of
honest parties, which is negligible in the security parameter. Therefore, the distributions of Hyb2 and
Hyb1 are statistically close.

Hyb3: In this hybrid, during the accusation phase, if the identity of Pi is an honest party, S aborts
the simulation. Since we do not allow this case to happen in the real world, the distributions of Hyb3
and Hyb2 are still identical.

Hyb4: In this hybrid, S no longer generates honest parties’ shares since they are never used. Then
S also does not require the dealer’s secrets f1(α0), . . . , fL(α0) in the sharing phase. He will learn them
from FACSS-Id during the public reconstruction phase. The distributions of Hyb4 and Hyb3 are identical.

Note that Hyb4 corresponds to the ideal world, then ΠACSS-Id securely computes FACSS-Id when the
dealer is honest.

Then we consider the case of the corrupted dealer.

30

Simulator S

For Corrupted dealer
Distribution Phase

1: S honestly emulates each F (i)
PrivSend and F (i)

dZK.
Verification Phase

2: For each honest party Pi, S gets g1(αi, y), . . . , gL′ (αi, y). Then S does the following check on behalf of
Pi.

– For ℓ ∈ [L′], each gℓ(αi, y) is a degree-t polynomial.
– For each j ∈ [n], send (VerifyDZK, g1(αi, αj), . . . , gL′ (αi, αj), αi) to F (j)

dZK and the output is true.
If so, S considers Pi accepts his g1(αi, y), . . . , gL′ (αi, y). Otherwise, S sends (proof, Pi) to FACSS-Id.

Termination Phase
3: If all parties terminate Fra with 1, let H denote the set of the first t+1 honest parties who have accepted

their g1(αi, y), . . . , gL′ (αi, y). S uses {g1(αi, y), . . . , gL′ (αi, y)}i∈H to reconstruct g1(x, y), . . . , gL′ (x, y)
and gets degree-t polynomials f1(x), . . . , fL(x).

4: S sends f1(x), . . . , fL(x) to FACSS-Id and deliveries the output from FACSS-Id to each honest party.
Accusation Phase

5: S follows the protocol and executes each honest party honestly.
Public Reconstruction Phase

6: S follows the protocol and executes each honest party honestly.
7: S outputs the views of A.

The hybrid arguments are as follows.
Hyb0: In this hybrid, we consider the execution in the real world.
Hyb1: In this hybrid, S uses {g1(αi, y), . . . , gL′(αi, y)}i∈H to reconstruct g1(x, y), . . . , gL′(x, y). For

each honest Pi /∈ H, if he accepts his g′
1(αi, y), . . . , g′

L′(αi, y) but there exists ℓ ∈ [L′] such that g′
ℓ(αi, y) ̸=

gℓ(αi, y), S aborts the simulation.
Since each honest party Pi ∈ H accepts their g1(αi, y), . . . , gL′(αi, y), then their outputs of each F (j)

dZK
for j ∈ [n] are true. Then for each j ∈ [n], these t+1 honest parties’ g1(αi, αj), . . . , gL′(αi, αj) determines
the dealer’s degree-t input polynomial g1(x, αj), . . . , gL′(x, αj). For a honest party Pi /∈ H, if he also
accepts his g′

1(αi, y), . . . , g′
L′(αi, y), then for each j ∈ [n] and ℓ ∈ [L′], g′

ℓ(αi, αj) = gℓ(αi, αj), which
implies g′

ℓ(αi, y) = gℓ(αi, y). Therefore, S will never abort the simulation. The distributions between
Hyb1 and Hyb0 are identical.

Hyb2: In this hybrid, S sends f1(x), . . . , fL(x) to FACSS-Id and let it deliver the output to each party.
The distributions between Hyb2 and Hyb1 are identical.

Note that Hyb2 corresponds to the ideal world, then ΠACSS-Id securely computes FACSS-Id when the
dealer is corrupted.

D Secure and Cost Analyze of Sh2t-Id

D.1 Cost Analysis

We analyze the communication and round complexity as follows.

Communication Complexity. In the sharing phase, it contains n instances of FPrivSend (each message
size is O(L + n2)) and an instance of reliably broadcast (for n2 field elements), results in O(Ln + n4)
communication cost in total. The accusation phase is the same as ΠACSS-Id, which is O(Ln + n3) field
elements.

In the agreement accusation phase, it is O(n2) field elements. In the private reconstruction and
verification phase, for one j ∈ [n], when all parties reconstruct f

(k)
1 (x), . . . , f

(k)
L′ (x) to party Pj , it requires

O(L/n + n) field elements.

Round Complexity. In the sharing and accusation phase, it is the same as ΠACSS-Id, which are 6 and 2,
respectively. In the agreement accusation phase, it is Rra=2. In the private reconstruction and verification
phase, it is 1.

31

D.2 Security Analyze

We prove lemma 2 and start with constructing the ideal adversary S as follows. We first consider the
case of the honest dealer.

Simulator S

For honest dealer
Distribution Phase

1: S receives shares of corrupted parties from FSh2t-Id. For each corrupted party Pi, he randomly samples
f̃1(αi), . . . , f̃L(αi) and computes m

(k)
∗ [i], m̃

(k)
∗ [i] for all k ∈ [n2].

2: For each Pi, if Pi is honest, S randomly samples values as {h
(k)
∗ [i]}k∈[n2] and then computes Com[i][j]

for all j ∈ [n]. If Pi is corrupted, S follows the protocol to compute each Com[i][j].
3: S honestly emulates each F (i)

PrivSend and reliably broadcasts Com on behalf of D.
Verification, Termination and Accusation Phase

4: S does the same simulation as the construction in ΠACSS-Id.
Agreement Accusation Phase

5: S honest execute each honest party. When all parties terminate with (Accusation, D, Pi), if Pi is the
identity of an honest party, S aborts the simulation. Otherwise, S records the identity of Pi.

Private Reconstruction and Verification Phase
6: If R = Pj is honest, S does the following simulation.

– If Pi is an honest party, S considers R accepts Pi’s shares when his messages are delivered.
– If Pi is an corrupted party, when S receives m′(k)

∗ [i], m̃′(k)
∗ [i] from Pi, he checks whether h

(k)
∗ [i] =

H(m′(k)
∗ [i], m̃′(k)

∗ [i]). If true but m′(k)
∗ [i], m̃′(k)

∗ [i] are not equal to m
(k)
∗ [i], m̃

(k)
∗ [i], S aborts the sim-

ulation.
If S records the identity of a corrupted party Pi during the Agreement Accusation Phase before R
accepts shares from 2t + 1 parties, S sends (Accusation, D, Pi) to FSh2t-Id.

7: If R = Pj is corrupted, S receives f
(k)
1 (x), . . . , f

(k)
L′ (x) from FSh2t-Id. For each honest party Pi, S does

the following.
– Randomly sample f̃

(k)
1 (αi), . . . , f̃

(k)
L′ (αi) based on shares of corrupted parties, then compute

m
(k)
∗ [i], m̃

(k)
∗ [i] and map H(m(k)

∗ [i], m̃
(k)
∗ [i]) to h

(k)
∗ [i]. If h

(k)
∗ [i] has been mapped to other inputs

queried by the adversary or H(m(k)
∗ [i], m̃

(k)
∗ [i]) has been mapped to other output, S aborts the

simulation. Otherwise, S sends m
(k)
∗ [i], m̃

(k)
∗ [i] to R on behalf of Pi.

8: S outputs the views of A.

The hybrid arguments are as follows.
Hyb0: In this hybrid, we consider the execution in the real world.
Hyb1: In this hybrid, S first generates shares of corrupted parties, then he samples shares of honest

parties based on the dealer’s secrets and the shares of corrupted parties. Based on the Shamir secret
sharing scheme, this makes no difference. Therefore, the distributions of Hyb1 and Hyb0 are identical.

Hyb2: In this hybrid, we delay the generation of honest parties’ shares. For honest party Pi’s Com[i][j],
S randomly samples values as {h

(k)
∗ [i]}k∈[n2] and computes it. Since honest parties’ shares are never used

so far, this makes no difference. Therefore, the distributions of Hyb2 and Hyb1 are identical.
Hyb3: In this hybrid, if the identity of Pi is an honest party, S aborts the simulation. Since we do

not allow this case to happen in the real work, the distributions of Hyb3 and Hyb2 are identical.
Hyb4: In this hybrid, in the private reconstruction and verification phase, for a corrupted receiver

R, S does the simulation as above. The probability S aborts is equal to the adversary finding a collision,
which is negligible in the security parameter for a computationally bounded adversary. Therefore, the
distributions of Hyb4 and Hyb3 are computationally indistinguishable.

Hyb5: In this hybrid, in the private reconstruction and verification phase, for an honest receiver R, S
does the simulation as above. The difference between Hyb5 and Hyb4 is that a corrupted party Pi may
send incorrect shares to R and still match the commitment. While the probability equals the adversary
finds collision, which is negligible in the security parameter. Therefore, the distributions of Hyb5 and
Hyb4 are computationally indistinguishable.

Hyb6: In this hybrid, S no longer requires honest dealer’s inputs. S lets FSh2t-Id do the same thing
the deliver the output to each party, which makes no difference. Therefore, the distributions of Hyb6
and Hyb5 are identical.

32

Note that Hyb6 corresponds to the ideal world, then ΠSh2t-Id securely computes FSh2t-Id when the
dealer is honest.

Then we consider the case of the corrupted dealer.

Simulator S

For Corrupted dealer
Distribution Phase

1: For each party Pi, S receives his shares during the simulation of F (i)
PrivSend.

Then S interpolates polynomials f1(x), . . . , fL(x) based on all parties’ shares.
Verification and Termination Phase

2: S follows the protocol to do verification on behalf of each honest party. For each honest party Pi whose
output is (Corrupt, D), he sends (proof, Pi) to FSh2t-Id.

3: When all parties terminate the sharing phase, S sends f1(x), . . . , fL(x) to FSh2t-Id.
Accusation and Agreement Accusation Phase

4: S honest execute each honest party. When all parties terminate with (Accusation, D, Pi), S records the
identity of Pi.

Private Reconstruction and Verification Phase
5: If R = Pj is corrupted, S honestly follows the protocol to execute each honest party.
6: If R = Pj is honest and his output is (Corrupt, D), he follows the protocol to execute R. Otherwise, S

initializes a set M′ and does the following simulation on behalf of R.
(1). When S receives shares from honest party Pi, he consider R accepts his shares and S adds Pi to

M′. When S receives shares from a corrupted party Pi, he follows the protocol to do the check. If
true, he adds Pi to M′.

(2). If S first gets M′ such that |M′| = 2t + 1, he proceeds. Otherwise, he considers R first receives
(Accusation, D, Pi) and will forward it to FSh2t-Id.

(3). For each corrupted party Pi ∈ M′, S checks whether the shares received from then lie on the
polynomial f

(k)
1 (x), . . . , f

(k)
L′ (x). If true, S sends M′ to FSh2t-Id and proceeds. Otherwise, S aborts

the simulation.
(4). S reconstructs degree-2t polynomials based on shares of parties in M′ and checks whether these

polynomials are equal to f
(k)
1 (x), . . . , f

(k)
L′ (x). If true, deliver the output true and f

(k)
1 (x), . . . , f

(k)
L′ (x)

from FSh2t-Id to R. Otherwise, deliver the output false from FSh2t-Id to R (after S considers R can
terminate).

7: S outputs the views of A.

The hybrid arguments are as follows.
Hyb0: In this hybrid, we consider the execution in the real world.
Hyb1: In this hybrid, in the private reconstruction and verification Phase, S will abort the simulation

as above. The probability equals the adversary finding a collision, which is negligible in the security
parameter for a computationally bounded adversary. Therefore, the distributions between Hyb1 and
Hyb0 are computationally indistinguishable.

Hyb2: In this hybrid, S let FSh2t-Id deliver the output to each party, which makes no difference.
Therefore, the distributions between Hyb1 and Hyb0 are identical.

Note that Hyb2 corresponds to the ideal world, then ΠSh2t-Id securely computes FSh2t-Id when the
dealer is corrupted.

E Secure and Cost Analyze of AMPC

E.1 Construction of Main Protocol

We give the protocol ΠMain which realizes FAMPC as follows.

Protocol ΠMain

Offline Phase
1: Initialization of Verifiable Private Channel. For each pair of parties (Pi, Pj), all parties initialize

an instance of FPrivSend.

33

2: Preparation of Beaver Triples. Let C denote the circuit to be computed. All parties invoke ΠTriple

to prepare |C| random Beaver triples and assign one random triple with each multiplication gate in the
circuit.

Online Phase
1: Distributing Inputs. Each party Pi invokes FACSS-Id to shares his secret xi.
2: Agreement the Set of the Inputs. Each party Pi sets the property Q as Pi terminates FACSS-Id

where Pj acts as the dealer. Then all parties invoke Facs with property Q to agree on a set D of parties
that successfully share their inputs. For every Pi /∈ D, all parties set their shares of Pi’s input as 0.

3: Preprocessing for the Circuit. All parties divide the circuit C into t disjoint sub-circuits C1, . . . , Ct

(sorted by topology) such that each sub-circuit contains |C|/t multiplication gates.
4: Circuit Evaluation. From k = 1 to t, for each sub-circuit Ck, let ([ai]t, [bi]t, [ci]t)|C|/t

i=1 denote the
random Beaver triples assigned to multiplication gates in Ck, all parties execute ΠSubCktEval with input
sharings for Ck and these |C|/t random Beaver triples to evaluate Ck.

– If the output of ΠSubCktEval is the identity of a corrupted party, all parties send Public-Recon to the
FACSS-Id invoked by this corrupted party and wait to receive his secrets from FACSS-Id. Then they
replace their shares with the secrets and invoke ΠSubCktEval for the current Ck again.

– Otherwise, all parties set k = k + 1.
5: Output Reconstruction. Upon all parties terminating the last sub-circuit Ck and learning their

shares of output, they divide CO output wires into t segments and invoke ΠSubCktEval as above for each
segment to do public reconstruction in order. As a result, all parties get all CO outputs.

E.2 Cost Analysis

We analyze the communication and round complexity as follows.

Communication Complexity of ΠTriple. First, all parties need to distribute O(N/n + n) random
degree-t and 2t sharings, which requires O(N · n + n4) field elements. All parties also need to broadcast
their accusation, which requires O(n4) field elements in total.

Then, all parties invoke n instance of ΠTripleKingDN, each king needs to prepare O(N/n2) triples in
each segment, for each of them.

– Pking broadcasts a set, which requires O(n2) field elements.
– All parties send their shares to Pking, which requires O(N/n + n) field elements.
– Pking broadcasts the reconstruction results or an accusation, which requires O(N/n + n2) field ele-

ments.
– During the process of building polynomials, they let king help to do reconstruction, which requires

O(N/n + n2) field elements.
– During the verification of triples, king needs to broadcast O(n) field elements, and all parties need

to invoke two instances of Fra. The total cost is O(n2) field elements.
– During the fault localization process, all parties send their degree-t shares to Pking, which requires

O(N/n + n) field elements. They reconstruct each dealer’s degree-2t sharings (of size O(N/n3)) to
king, which requires O(N/n + n2) field elements. Then king broadcasts his output, which requires
O(n2) field elements.

Therefore, the total cost for each king in each segment is O(N/n + n2) field elements, resulting in the
total cost for all kings in this segment is O(N + n3) field elements.

Then, in each segment, all parties invoke an instance of Facs, which requires O(n3) field elements. All
parties agree on the generation result, if they need to agree on a corrupted party, they require O(N +n2)
field elements to open an accusation and reconstruct this corrupted party’s secrets.

Therefore, the total cost in each segment is O(N +n3) field elements, and the total cost for the whole
triple generation protocol is O(Nn + n4) field elements.

Communication Complexity of ΠMain. In the offline phase, all parties first initialize FPrivSend for each
pair of parties, each one contains an instance of FAVSS, and requires O(n4) field elements in total. Then
they invoke ΠTriple to prepare triples, which requires O(Cn + n4) field elements.

In the online phase, all parties first invoke FACSS-Id to distribute their inputs and Facs to agree on
a set of successful dealers, which requires O(CI · n + n4) field elements. Then they invoke ΠSubCktEval

34

to do reconstruction in each circuit segment, for each instance of ΠSubCktEval, denote the number of
multiplication gates and output gates as C ′, C ′

O and the circuit depth as D′, then

– All parties broadcast their accusation, which requires O(n3) field elements.
– During the circuit Evaluation process, it requires O(C ′n + D′n2) field elements.
– During the Output Reconstruction, it requires O(C ′

On + n2) field elements.
– During the agreement, all parties first prepare O(1) random coin for Fba, which can be realized with

O(n3) field elements. Then they invoke two instance of Fba, which requires O((C ′ + CO)n + n2 log n)
field elements.

Therefore, the total cost of ΠSubCktEval is O((C ′ + C ′
O)n + D′n2 + n3) field elements. For the preparation

of random coins, it can be built based on our construction of ΠAVSS, and we refer the reader to see
the idea introduced in [Mom24]. In the online phase, all parties will fail the ΠSubCktEval for at most t
times. When they fail, they reconstruct the corrupted party’s secrets, which requires O(C + n2) field
elements. Let Dmax = max{D1, . . . , Dt}, if Dmax is bounded by O(C/n2 + D/n), the total cost will be
O((C + CI + CO)n + D · n2 + n4) = O(Cn + D · n2 + n4) field elements.

Round Complexity. We denote the round complexity of Facs and Fba as Racs, Rba. In the offline phase,
the initialization of FPrivSend requires 7 rounds. For the preparation of triples, in the preparation process,
all parties distribute random sharings and broadcast their accusation, which requires 10 rounds in total.
In each segment,

– Each king broadcasts a set of successful dealers, which requires 4 rounds.
– During the generation of triples, all parties send shares to king, and king broadcasts the result, which

requires 1 + 4 = 5 rounds.
– During the verification of triples, it requires 19 rounds.
– During the fault localization, all parties help king to reconstruct shares, and king broadcasts his

output, which requires 5 rounds.
– All parties agree on a set of successful kings, which requires Racs.
– If all parties need to open an accusation and reconstruct a corrupted party’s secret, it requires 3

rounds.

Then, the total rounds for each segment are 33 + Racs (if they do not open an accusation). Since all
parties may execute the segments for at most n times, then the total rounds in the offline phase are:

10 + (33 + Racs) · n + 3 · t = 10 + (34 + Racs)n.

In the online phase, for each ΠSubCktEval:

– In the check shares phase, it requires 4 rounds for broadcast.
– In the circuit evaluation, it requires 2D′ rounds, where D′ ∈ {D1, . . . , Dt}.
– In the output reconstruction phase, it requires 2 rounds.
– In the agreement phase, it requires 2Rba rounds. If all parties need to open an accusation and

reconstruct the secrets, it requires 7 + Racs rounds.

Therefore, the total round complexity in the online phase is:

(6 + 2Rba) · 2t + 2(D + Dmax) + (7 + Racs) · t = 2D + t · (Dmax + 19 + 4Rba + Racs).

Since Facs and Fba can be realized with constant rounds, if Dmax is bounded by O(D/n), the total round
complexity is O(D + n).

E.3 Security Analyze

We prove theorem 1 and start with constructing the ideal adversary S as follows. Let Corr denote the
set of corrupted parties, then |Corr| = t′ ≤ t. Let Corr′ be the set of all corrupted parties with the first
t − t′ honest parties, then |Corr′| = t.

35

Simulator STripleKingDN

Simulation of ΠTripleKingDN.
Generating Random Shamir Sharings.

1: S follows the protocol to compute corrupted parties’ shares of {[aℓ]t, [bℓ]t, [rℓ]t, [oℓ]2t}ℓ∈[0,2N+1] and [r]t.
2: Denote H as the set of honest parties in W, we rewrite each [oℓ]2t = [oH]2t + [oCorr]2t, where [oH

ℓ]2t is
honest dealers’ contribution to [oℓ]2t and [oCorr

ℓ]2t is the corrupted parties’ contribution.
Generating Triples.

3: Let [z′
ℓ]2t = [aℓ]t · [bℓ]t + [rℓ]t + [oH

ℓ]2t, S first randomly samples the whole sharing [z′
ℓ]2t based on shares

of corrupted parties. Then for each honest party, Pking sets his share of [zℓ]2t as [z′
ℓ]2t + [oCorr

ℓ]2t.
4: If Pking is honest, S honestly execute Pking and records the shares of [zℓ]2t received from corrupted parties.

– If Pking first receives an accusation, S reliably broadcast it on behalf of Pking.
– Otherwise, S uses the first 2t + 1 shares of [zℓ]2t he received to reconstruct zℓ and broadcasts them.

If Pking is corrupted, S sends each honest party’s shares of [zℓ]2t to Pking. Upon receiving secret zℓ from
Pking, S records the additive error dℓ = zℓ − z′

ℓ.
Build Polynomials.

5: S randomly samples the whole {[xℓ]t, [yℓ]t} based on shares of corrupted parties. If Pking is honest, S
does the following things on behalf of him:

– If Pking first receives an accusation, S reliably broadcasts this accusation.
– Otherwise, S reliably broadcasts {xℓ, yℓ}.

If Pking is corrupted, S send each honest party’s shares of {[xℓ]t, [yℓ]t} to Pking. Upon receiving secret
x′

ℓ, y′
ℓ from Pking, S computes e

(x)
ℓ = x′

ℓ − xℓ, e
(y)
ℓ = y′

ℓ − yℓ.
6: For all ℓ ∈ [0, 2N], S follows the protocol to compute corrupted parties’ shares of [h(αℓ)]t. Then S

computes a degree-2N polynomial d(·) such that d(αℓ) = dℓ.
Verification of Triples.

7: Upon getting {xℓ, yℓ}, S randomly samples the whole sharing [r]t based on shares of corrupted parties.
If Pking is corrupted, S send each honest party’s shares of [r]t to Pking. Otherwise, S does the following
things on behalf of honest Pking:

– If Pking first receives an accusation, S reliably broadcasts this accusation.
– Otherwise, S reliably broadcasts the whole sharing [r]t.

When all parties terminate Fra with 1, S continues.
8: For all ℓ ∈ [N + 1, 2N], S checks that if any of e

(x)
ℓ , e

(y)
ℓ is none zero:

– If true, S randomly samples {[aℓ]t, [bℓ]t, [rℓ]t}2N
ℓ=0 based on shares of corrupted parties. Then, he

follows the protocol to execute each honest party. If S gets h(r) = f(r) · g(r), he aborts the
simulation.

– Otherwise, S randomly samples values as f(r), g(r) and computes h(r) = f(r) ·g(r)+d(r). Then he
randomly samples the whole sharings {[f(r)]t, [g(r)]t, [h(r)]t} based on shares of corrupted parties
and secrets f(r), g(r), h(r).

9: If Pking is honest, S reliably broadcasts the whole sharings {[f(r)]t, [g(r)]t, [h(r)]t} on behalf of Pking.
Otherwise, S sends each honest parties’ shares of {[f(r)]t, [g(r)]t, [h(r)]t} to Pking and executes the rest
of steps honestly.

Fault Localization.
10: If Pking is corrupted and S has not samples {[aℓ]t, [bℓ]t, [rℓ]t}2N

ℓ=0, S randomly samples
{[aℓ]t, [bℓ]t, [rℓ]t}2N

ℓ=0. S also random samples the degree-2t sharings of zero distributed by each hon-
est dealer Pi ∈ W. Then S honestly executes the rest of the steps.

11: If Pking is honest, S honestly follows the protocol to execute Pking.

Simulator STriple

Simulation of ΠTriple

Preparation of Random Shamir Sharings.
1: S simulates each FACSS-Id and FSh2t-Id invoked by a party Pi as follows.

– If Pi is honest, S randomly samples shares of corrupted parties.
– If Pi is corrupted, S honestly execute FACSS-Id, FSh2t-Id and records each honest party’s outputs.

2: For each honest party Pi, if he terminates FACSS-Id or FSh2t-Id invoked by a corrupted dealer D with
(Corrupt, D), S reliably broadcasts (Accusation, Pi, Pj , ACSS) or (Accusation, Pi, Pj , Sh2t) on behalf
of Pi.

Generation Phase.

36

3: In step 1, for each honest Pking, S follows the protocol to reliably broadcast W on behalf of this Pking.
Then S invokes STripleKingDN for each king. If all parties get valid shares of triples, S records shares of
corrupted parties.

4: For the rest of the steps, S follows the protocol to honestly execute each honest party.

Simulator SSubCktEval

For circuit evaluation, S takes shares of degree-t Shamir sharings ([x(i)]t, [y(i)]t) and ([a(i)]t, [b(i)]t, [c(i)]t for
parties in Corr′ as inputs. For public reconstruction, S takes the whole degree-t output Shamir sharings as
inputs.
Simulation of ΠSubCktEval

1: In Step 1, if an honest party Pi has received (Corrupt, dealer) before, S reliably broadcasts
(Accusation, Pi, dealer, ACSS) on behalf of Pi.

2: In Step 2, in each layer, for every addition gate, S computes shares of [z(i)]t for parties in Corr′. For
a group of L multiplication gates, S first computes shares of [x(i) + a(i)]t, [y(i) + b(i)]t for parties in
Corr′, then randomly samples the whole [x(i) + a(i)]t, [y(i) + b(i)]t based on shares of parties in Corr′

and simulates ΠBatchPubRec with honest parties’ shares. Then S computes shares of [z(i)]t for parties in
Corr′.

3: In Step 3, S honestly simulates ΠBatchPubRec with honest parties’ shares.
4: In Step 4, S follows the protocol to compute each honest party Pj ’s input mj . Then S honestly simulates

ΠAgreement and learns each honest party’s output.

Simulator S

Simulation of ΠMain

Offline Phase
1: S honestly emulates FPrivSend and invokes STripleKingDN to learns corrupted parties’ shares of Beaver triples.

For honest parties in Corr′ \ Corr, S randomly samples values as their shares of Beaver triples. S also
learns which honest party does not get his shares but an ACSS proof during STriple.

Online Phase
2: In Step 1, S simulates FACSS-Id as follows:

– For each honest dealer, S randomly samples shares of parties in Corr′.
– For each corrupted dealer, S waits to receive degree-t Shamir sharings and learns the identity of

the honest party whose output is (Corrupt, D). S uses these degree-t Shamir sharing to compute
the shares of honest parties in Corr′.

3: In Step 2, S honestly simulates Facs and learns a set D of size 2t + 1.
4: In Steps 3 and 4, for each sub-circuit Ck and k ∈ [t], S invokes SSubCktEval with shares of parties in Corr′

for Ck:
– If S learns that all parties agree on a corrupted dealer during SSubCktEval, S sends Public-Recon to

FACSS-Id invoked by this dealer on behalf of honest parties. When S receives t + 1 requests, S sends
this corrupted dealer’s secrets to all parties on behalf of FACSS-Id. Then S updates each honest party’s
shares distributed by this corrupted dealer with secrets. Finally, S invokes SSubCktEval again.

– Otherwise, S proceeds.
5: In Step 5, for each output wire [y]t, upon getting shares of [y]t for parties in Corr′, S sends the inputs

of corrupted parties and the set D to FAMPC and receives the output y. Then S computes the whole
[y]t based on the secret y and shares of parties in Corr′ and honestly follows the protocol to invoke
SSubCktEval.

6: S outputs the views of A.

The hybrid arguments are as follows.
Hyb0: In this hybrid, we consider the execution in the real world.
Hyb1: In this hybrid, when S simulates FACSS-Id and FSh2t-Id on behalf of honest dealers, S first

randomly samples corrupted parties’ shares and then generates the whole sharings based on shares of
corrupted parties and the secrets. According to the property of Shamir sharing, the distribution of the
whole sharing is the same. Therefore, the distributions of Hyb1 and Hyb0 are identical.

Hyb2: In the following, we focus on the simulation of ΠTriple in the offline phase.

37

Hyb2.1: In this hybrid, we delay the generation of honest parties’ shares until the set W is broadcast
by each king. Since their shares have not been used before, this makes no difference. The distributions
of Hyb2.1 and Hyb1 are identical.

Hyb2.2: In this hybrid, we change the generation of honest parties’ shares. Let H denote the set
of honest parties in W and H′ ⊆ H, |H′| = t + 1. For honest dealers in H \ H′, S still generates the
whole sharings. Then for degree-t sharings, S first randomly samples the sharings ([sℓ′,1]t, . . . , [sℓ′,t+1]t)
based on shares of corrupted parties, then he computes the whole sharings [s(j)

ℓ′]t distributed by dealers
in H′. Since V is a Vandermonde matrix, any (t + 1) × (t + 1) sub-matrix of V is invertible, then given
([sℓ′,1]t, . . . , [sℓ′,t+1]t), there is a one to one map between these sharings and {[s(j)

ℓ′]t}j∈H′ . Therefore, The
distributions of Hyb2.2 and Hyb2.1 are identical.

Hyb2.3: In this hybrid, we change the generation of each secret rℓ. S first randomly samples a value
as z′

ℓ = aℓ · bℓ + rℓ and then computes rℓ = z′
ℓ − aℓ · bℓ. This does not change the distribution of

{[aℓ]t, [bℓ]t, [rℓ]t}, then the distributions of Hyb2.3 and Hyb2.2 are identical.
Hyb2.4: In this hybrid, we rewrite each [oℓ]2t = [oH

ℓ]2t +[oCorr
ℓ]2t and change the generation of [oH

ℓ]2t.
S first randomly samples the whole sharings [z′

ℓ]2t = [aℓ]t ·[bℓ]t +[rℓ]t +[oH
ℓ]2t based on shares of corrupted

parties and secret z′
ℓ, then computes the whole sharing [oH

ℓ]2t = [z′
ℓ]2t − [aℓ]t · [bℓ]t − [rℓ]t. This does not

change the distribution of [oH
ℓ]2t, so the distributions of Hyb2.4 and Hyb2.3 are identical.

Hyb2.5: In this hybrid, we delay the generation of honest party’s shares of {[aℓ]t, [bℓ]t, [rℓ]t}. When a
party needs to send his shares of [zℓ]2t to Pking, S sets this party’s shares as [z′

ℓ]2t + [oCorr
ℓ]2t and sends

it to Pking on behalf of this party. The distributions of Hyb2.5 and Hyb2.4 are identical.
Hyb2.6: In this hybrid, we change the way of sampling [rℓ]t. If Pking first receives 2t+1 shares of [zℓ]2t

and succeeds in broadcasting the secret zℓ, S computes honest parties’ shares of [cℓ]t, then randomly
sampling the whole [cℓ]t based on shares of corrupted parties and secret cℓ = aℓ · bℓ + zℓ − z′

ℓ. Finally, S
computes [rℓ]t = zℓ − [cℓ]t. This does not change the distribution of [rℓ]]t, the distributions of Hyb2.6
and Hyb2.5 are identical.

Hyb2.7: In this hybrid, let d = h − f · g. If r /∈ {α1, . . . , αN }, d ̸≡ 0 and d(r) = 0, S aborts the
simulation. By the Schwartz-Zipple lemma, the probability is at most 2Nn

2κ−N , which is negligible in the
security parameter κ. Thus, the distributions of Hyb2.7 and Hyb2.6 are statistically close.

Hyb2.8: In this hybrid, if any of e
(x)
ℓ , e

(y)
ℓ is not zero but h(r) = f(r) · g(r), S aborts the simulation.

Due to the same reason in Hyb2.7, the distributions of Hyb2.8 and Hyb2.7 are statistically close.
Hyb2.9: In this hybrid, we delay the generation of ([aℓ]t, [bℓ]t) for all ℓ ∈ [N + 1, 2N]:
For [aℓ]t, [bℓ]t, S first follows the protocol to compute corrupted parties’ shares of [f(αℓ)+aℓ]t, [g(αℓ)+

bℓ]t for all k ∈ [2t + 1], i ∈ [N + 1, 2N]. Then S randomly samples values as f(αℓ) + aℓ, g(αℓ) + bℓ and
recomputes aℓ, bℓ. Finally S randomly samples the whole [aℓ]t, [bℓ]t based on the secrets aℓ, bℓ and shares
of corrupted parties.

To compute [cℓ]t, S first computes cℓ = aℓ · bℓ + dℓ and then samples the whole [cℓ]t based on the
secret cℓ and shares of corrupted parties. The distributions of ([aℓ]t, [bℓ]t, [cℓ]t) remain unchanged, so the
distributions of Hyb2.9 and Hyb2.8 are identical.

Hyb2.10: In this hybrid, we delay the generation of ([cℓ]t) for all i ∈ [N + 1, 2N]. S first follows
the protocol to compute corrupted parties’ shares of [h(αℓ)]t, then randomly samples the whole [h(αℓ)]t
based on the secret h(αℓ) = f(αℓ) · g(αℓ) + d(αℓ) and shares of corrupted parties. Finally S computes
[cℓ]t = [h(αℓ)]t − (f(αℓ) + aℓ) · (g(αℓ) + bℓ) + (f(αℓ) + aℓ)[b]t + (g(αℓ) + bℓ)[a]t. The distributions of
Hyb2.10 and Hyb2.9 are identical.

Hyb2.11: In this hybrid, we change the generation of ([a0]t, [b0]t, [c0]t). If r /∈ {α1, . . . , αN }, f(r) is a
linear combination of {f(αℓ)}N

ℓ=0 and the coefficient of f(α0) = a0 is non-zero. Then f(α0) also can be
computed by the linear combination of {f(αℓ)}N

ℓ=1 and f(r). We let S first compute corrupted parties’
shares of [f(r)]t by the linear combination of {[f(αℓ)]t}N

ℓ=0, then randomly samples the whole [f(r)]t
based on shares of corrupted parties. S does the same thing to generate [g(r)]t. Finally, S computes
[a0]t, [b0]t by the linear combination of {[f(αℓ)]t, [g(αℓ)]t}N

ℓ=1 and {[f(r)]t, [g(r)]t}. S also computes
c0 = a0 · b0 + d0 and randomly samples the whole [c0]t based on the secret c0 and shares of corrupted
parties. The distributions of Hyb2.11 and Hyb2.10 are identical.

Hyb2.12: In this hybrid, we change the generation of [h(r)]t. When r ̸∈ {α0, . . . , α2N }, we let S
randomly sample [h(r)]t based on the secret h(r) = f(r) · g(r) + d(r) and shares of corrupted parties.
Since [h(r)]t is a linear combination of {[h(αℓ)]t}2N

ℓ=0 and when r /∈ {α0, . . . , α2N }, the coefficient of
[h(α0)]t is non-zero. S computes [h(α0)]t by a proper linear combination of {[h(αℓ)]t}2N

ℓ=1 and [h(r)]t.

38

Note that in Hyb2.11, [h(r)]t is a random degree-t Shamir sharings given shares of corrupted parties and
the secret h(r). The distributions of Hyb2.12 and Hyb2.11 are identical.

Hyb2.13: In this hybrid, we no longer generate honest parties’ shares of {[a0]t, [b0]t, [c0]t}∪{[aℓ]t, [bℓ]t, [cℓ]t}2N
i=N+1

since they are never used. During the fault localization, for corrupted Pking, S will randomly degree-t
and 2t sharings as the sharings distributed by honest dealers and honestly execute the protocol. The
distributions of Hyb2.13 and Hyb2.12 are identical.

Hyb3: In this hybrid, we focus on the simulation of ΠMain in the online phase.
Hyb3.1: In this hybrid, in the input phase, for each honest dealer, after randomly sampling shares of

parties in Corr′, S delays the generation of the rest of honest parties’ shares until the set D is determined.
Since these honest parties’ shares are not used in the input phase, the distributions of Hyb3.1 and Hyb2.13
are identical.

Hyb3.2: In this hybrid, in the input phase, for each honest dealer not in D, S does not generate
shares of honest parties. Since these honest dealers’ sharings are never used, the distributions of Hyb3.2
and Hyb3.1 are identical.

Hyb3.3: In this hybrid, in the computation phase, S invokes SSubCktEval to simulate each ΠSubCktEval.
The difference is as follows, in Hyb3.2, S first randomly samples [a]t, [b]t then computes [x + a]t, [y + b]t,
while in Hyb3.3 we let S first randomly samples [x+a]t, [y+b]t and then computes [a]t, [b]t, which makes
no difference. The distributions of Hyb3.3 and Hyb3.2 are identical.

Hyb3.4: In this hybrid, S first computes y = f(x1, . . . , xn), then computes the whole [y]t based on
secret y and shares of parties in Corr′. For honest parties not in Corr′ \ Corr, we also no longer generate
their shares during each ΠSubCktEval since they are never used. The distributions of Hyb3.4 and Hyb3.3
are identical.

Hyb4: In this hybrid, for honest parties not in Corr′ \ Corr, we no longer generate their shares of
Beaver triples since they are never used. The distributions of Hyb4 and Hyb3.4 are identical.

Hyb5: In this hybrid, S sends the inputs of corrupted parties and the set D to FAMPC and receives
the output y. Since FAMPC computes y in the same way as S, S no longer needs honest parties’ inputs.
The distributions of Hyb5 and Hyb4 are identical.

Note that Hyb5 corresponds to the ideal world, then ΠMain securely computes FAMPC when the dealer
is corrupted.

39

	Computationally Efficient Asynchronous MPC with Linear Communication and Low Additive Overhead
	Introduction
	Our Contributions
	Related Work

	Technical Overview
	Overviews of Previous Works
	Achieve Linear Cost in the Pessimistic Case
	Optimizing Triple Generation

	Preliminaries
	Model
	Distributed Zero-Knowledge Proof
	Building Blocks

	Asynchronous Completing Secret sharing with Identified Abort
	Functionality of ACSS-Id
	Construction

	Party Elimination Based Public Reconstruction
	Triple Generation
	Preparing Random degree-2t Shamir Sharing
	Generating Triples by Pking
	Triple Generation Procedure

	Main Protocol
	Conclusion
	Additional Preliminaries
	Definitions of Agreement Primitives
	Shamir Secret Sharing Scheme
	Distributed Zero-Knowledge Proof

	Verifiable Private Send
	Construction of AVSS

	Secure and Cost Analyze of ACSS-Id
	Cost Analysis
	Security Analyze

	Secure and Cost Analyze of Sh2t-Id
	Cost Analysis
	Security Analyze

	Secure and Cost Analyze of AMPC
	Construction of Main Protocol
	Cost Analysis
	Security Analyze

