
zkFFT
Extending Halo2 with Vector Commitments & More

Aram Jivanyan1, Gohar Hovhannisyan1, Hayk Hovhannisyan∗1,2, and Nerses
Asaturyan1,2

1Yerevan State University,
aram@skycryptor.com,goharhovhannisyann@gmail.com

2Layerswap Labs,{hayk,nerses}@layerswap.io

Abstract

This paper introduces zkFFT, a novel zero-knowledge argument designed to ef-
ficiently generate proofs for Fast Fourier Transform (FFT) relations. Our approach
enables the verification that one committed vector is the FFT of another, addressing an
efficiency need in general-purpose non-interactive zero-knowledge proof systems where
the proof relation utilizes vector commitments inputs.

We present a concrete enhancement to the Halo2 proving system, demonstrating
how zkFFT optimizes proofs in scenarios where the proof relation includes one or more
vector commitments. Specifically, zkFFT incorporates streamlined logic within Halo2
and similar systems, augmenting proof and verification complexity by only O(logN),
where N is the vector size. This represents a substantial improvement over conventional
approach, which often necessitates specific circuit extensions to validate the integrity of
vector commitments and their corresponding private values in the arithmetic framework
of the proof relation. The proposed zkFFT method supports multiple vector commit-
ments with only a logarithmic increase in extension costs, making it highly scalable.
This capability is pivotal for practical applications involving multiple pre-committed
values within proof statements.

Apart from Halo2, our technique can be adapted to any other zero-knowledge
proof system that relies on arithmetization, where each column is treated as an eval-
uation of a polynomial over a specified domain, computes this polynomial via FFT,
and subsequently commits to the resulting polynomial using a polynomial commitment
scheme based on inner product arguments. Along with efficient lookup and permu-
tation arguments, zkFFT will streamline and significantly optimize the generation of
zero-knowledge proofs for arbitrary relations.

Beyond the applications in augmenting zero-knowledge proof systems, we believe
that the formalized zkFFT argument can be of independent interest.

Contents

1 Introduction 2
1.1 Our contribution . 2
1.2 Related Work . 3
1.3 Applications . 3
1.4 Structure of the paper . 3

2 Preliminaries 3
2.1 Polynomial Commitment Schemes . 3
2.2 Fast Fourier Transforms . 4
2.3 Inner Product Proofs . 4

∗corresponding author: hayk@leyerswap.io

1

3 Modified Inner Product Argument 4
3.1 MIPA Protocol . 4
3.2 Security Analysis . 8

4 zkFFT: Zero-Knowledge Argument for FFT Relation Check 11
4.1 zkFFT Protocol . 11
4.2 Aggregating zkFFT Proofs . 13
4.3 Batch Verification of zkFFT proofs . 14

5 Supporting Vector Commitment Inputs in Halo2 14

6 Curve Tree Relation 16

7 Implementation and Performance 17

8 References 18

A Detailed benchmarks 19

1 Introduction

In this paper, we discuss a method to generalize the Halo2 [16] proof system by including
input vector commitments in the relation where the commitment openings are known to the
prover. This method allows significant optimization of Plonkish constructions by leveraging
the fact that commitment openings can participate in the AIR constraints without the
extra need to prove that these values, locked in the AIR and participating in the constraint
equations,match the original openings of the input commitments.

A concrete motivation for this work has been the desire to implement an efficient
membership-proof algorithm referred to as Curve Trees which uses the cycle of curves and
a d-ary tree-like structure to commit to a set of cryptographic commitments and generate a
proof of knowledge of a secret element belonging to the committed set. The original Curve
Trees [7] were implemented with a Bulletproof [6] proof system that was analogously ex-
tended to support vector commitments. Replacing the underlying proof system with Halo2
might allow us to leverage the recursive proof composition features of the latter and get
smaller membership proofs which are also faster to verify compared to the Bulletproof-based
proofs. The Bulletproof proof system can be extended to support extra vector commitments
quite naturally as its core R1CS commitment [5] approach is aligned with the Pedersen com-
mitment method [15]. Halo2’s reliance on AIR and polynomial commitment logic makes it
nontrivial to efficiently support extra vector commitments.

1.1 Our contribution

Our contribution is threefold:

zkFFT Proofs. We formalize and provide an efficient proof system for the zkFFT relation.
The zkFFT logic can prove that the first vector commitment hides the evaluation points of
a concrete polynomial over a known domain whose coefficients are committed through the
second commitment. The need for zkFFT proof arises from the following consideration: The
Halo2 system interprets the witness as advice column values in its AIR. For each column,
the corresponding values are interpreted as the values of a polynomial evaluated over the
given fixed domain. This polynomial is computed using FFT operations, and the computed
polynomial is committed using some polynomial commitment scheme. Halo2 uses an inner
product arguments based polynomial commitment scheme, which commits to the polynomial
coefficients using a generalized Pedersen commitment scheme. Assuming the initial vector

2

commitment is given as Cv = gv00 gv11 . . . g
vn−1

n−1 and its opening values v0, v1, . . . , vn−1 will
form a separate advice column in the AIR representation. The corresponding polynomial
P (x) = a0+a1x+ · · ·+an−1x

n−1 will be computed using FFT operations such that P (ωi) =
vi. The polynomial P (x) is then committed through the Pedersen commitment scheme as
Cc = ha00 ha11 · · ·h

an−1

n−1 which becomes part of the final Halo2 proof. We end up with a
situation where there are two commitments Cv and Cc committing to the same polynomial’s
values and coefficients respectively and there is a need to prove the concrete FFT relation
between their openings.

Halo2 Generalization to Support Vector Commitments. We provide a full descrip-
tion of the generalized Halo2 system which can take as input numerous vector commitments,
and create zkFFT proofs for the given vectors.

Membership Proofs: We implement our modifications in the Halo2 proof system and
run benchmarks to showcase the efficiency of the applied method in building full circuits for
curve trees, allowing the building of efficient membership proofs.

1.2 Related Work

The Bulletproof[6] proof system has been generalized[1] recently to support arbitrary vector
commitment inputs. The extension of the Bulletproof system comes quite naturally as its
underlying R1CS commitment technique is simply generalized Pedersen commitment to all
gate values, and thus structure-wise is equivalent to the extra input commitment structure.
This extension has allowed optimizing Curve Tree based membership proofs implemented
through Bulletproofs.

1.3 Applications

There are numerous zero-knowledge applications where the prover relation may contain
public vector commitment inputs including membership and non-membership proofs, digital
identity schemes, or private defi systems.

1.4 Structure of the paper

Section 2 introduces all the necessary preliminary notions. In Section 3, we introduce the
modified inner product arguments, and formally prove their security. In Section 4 we in-
troduce the zkFFT technique, and additionally show how multiple zkFFT proofs can be
aggregated and batched. Section 5 details the extension of Halo2 with vector commitments,
and Section 6 explains why zkFFT is essential for Curve Trees in Halo2. The performance
of zkFFT is discussed in Section 7, and detailed benchmarks are provided in Appendix.

2 Preliminaries

2.1 Polynomial Commitment Schemes

Polynomial commitment schemes form a fundamental building block in many modern argu-
ments of knowledge. In these schemes, a prover can construct commitments to polynomials
and then later provably evaluate the committed polynomials at arbitrary points. We will
use the polynomial commitment scheme from [4] as we discuss and extend the well-known
Halo2 system. This polynomial commitment scheme is based on generalized Pedersen com-
mitments.

3

2.2 Fast Fourier Transforms

The FFT (Fast Fourier Transform) [9] algorithm efficiently performs computations over
polynomials.Specifically, for d = 2D over a field F with characteristic p = qd+ 1, and ω as
a primitive d-th root of unity it computes:

- P (ωi) for i = 0, . . . , d− 1 given coefficients of P (X) with deg(P) < d
- Coefficients of P (X) with deg(P) < d given P (ωi) for i = 0, . . . , d− 1

2.3 Inner Product Proofs

1. By the vector commitment of a given vector a⃗ = (a0, a1, ..., an−1), we will denote
Ca⃗ = ga00 · g

a1
1 · ... · g

an−1

n−1 .

2. By power-vector of a we are going to denote the following vector a = (a0, a1, ..., an−1)

3. The w = [ω1, ..., ωn−1, ωn = ω0 = 1] are the n-th roots of unity.

4. So the n power-vectors of the roots of unity are going to be

• ω0 = (ω0, ω0, · · · , ω0) = (1, 1, · · · , 1)
• ω1 = (ω0, ω1, · · · , ωn−1)

...

• ωn−1 = (ω0, ωn−1, · · · , ω(n−1)·(n−1))

5. The dot product of 2 vectors is denoted as ⟨⃗a, b⃗⟩ =
∑n−1

i=0 ai · bi.

6. We will say that the vector commitment Cv is the Fast Fourier Transformation of
another vector commitment Ca and denote it as Cv = FFT(Ca) if

(a) The polynomial whose coefficients are the elements of the vector a⃗
P (X) = a0 + a1 ·X + ...+ an−1 ·Xn−1

(b) Evaluates to the elements of the vector v⃗ at the n-th roots of unity.
∀i ∈ [0, 1, ..., n− 1] P (ωi) = vi

3 Modified Inner Product Argument

The original inner product argument introduced in [3] provides an efficient proof system for
the following relation,

{(g,h, u ∈ Gn, P ∈ G,α ∈ Zp; a,b ∈ Zn
p) : P = gahbu<a,b>hα}

but a single inner product argument is not sufficient for zkFFT, and using multiple
IPAs is not efficient that’s why we introduce a new protocol called modified inner product
arguments.

3.1 MIPA Protocol

Modified inner product argument corresponds to the following relation

RELMIPA :=


 g,h1, . . . ,hk,∈ Gn

h, u1, . . . , uk, P ∈ G;

a,b1, . . . ,bk ∈ Zn
p , α ∈ Zp,

 ∣∣∣ P = gahb1
1 · · ·h

bk
k u<a,b1>

1 · · ·u<a,bk>
k hα


Note that in our modified inner product relation, there are numerous vectors bi whose inner
product values with the committed vector a are committed through independent bases.

4

The grand product value P is also blinded by an extra factor hα in the commitment key,
all generator vectors g,h1, . . . ,hk are comprised of mutually orthogonal generator points.
The provided proof system for the modified inner product argument will be further tailored
for our specific needs in the extension of the Halo2 system, where the vectors b1, . . . ,bk are
public and known to the verifier. This fact will allow us to drastically reduce the final proof
size.

Overview. The inputs to the inner product argument are independent generators
g, h1, · · · , hk ∈ Gn, scalars c1, · · · , ck ∈ Zp, and P ∈ G. The argument allows the prover to
convince a verifier that the prover knows 1 + k vectors a,bi ∈ Zn

p such that

P = gahb1
1 · · ·h

bk
k u<a,b1>

1 · · ·u<a,bk>
k hα

We refer to P as a binding vector commitment to a,b1, · · · ,bk. Throughout the section,
we assume that the dimension n is a power of 2. If need be, one can easily pad the inputs
to ensure that this holds.

More precisely, the inner product argument is an efficient proof system for the following
relation:

RELMIPA :=


 g,h1, . . . ,hk,∈ Gn

h, u1, . . . , uk, P ∈ G;

a,b1, . . . ,bk ∈ Zn
p , α ∈ Zp,

 ∣∣∣ P = gahb1
1 · · ·h

bk
k u<a,b1>

1 · · ·u<a,bk>
k hα


To give some intuition for how the proof system for the relation works, let us define

a hash function H : Zn+(n+1)·k+1
p → G as follows. First, set n′ = n/2 and fix generators

g, h1, · · · , hk ∈ Gn, u ∈ G. Then the hash function H takes as input (a, a′, b1, b′1, · · · , bk, b′k) ∈
Zn′
p , c1, · · · , ck ∈ Zp and α and outputs

H(a, a′, b1, b
′
1, · · · , bk, b′k, c1, · · · , ck, α) = ga

[:n′]·g
a′

[n′:]·h1
b1
[:n′]·h1

b′1
[n′:] · · ·hk

bk
[:n′]·hk

b′k
[n′:]·u

c1
1 · · ·u

ck
k ·h

α ∈ G.

Now, using the setup in the relation, we can write P as
P = H(a[:n′], a[n′:], b1[:n′], b1[n′:], · · · , bk [:n′], bk [n′:], ⟨a,b1⟩, · · · , ⟨a,bk⟩, α) . Note that H is
additively homomorphic in its inputs, i.e.,

H(a1, a11, b1, b11, c1) ·H(a2, a12, b2, b12, c2) = H(a1+a2, a11+a12, b1+ b2, b11+ b12, c1+ c2).

Consider the following protocol for the relation, where P ∈ G is given as input:

1. The prover chooses 2 random values dL, dR ∈ Zpand computes L,R ∈ G as follows:

L = H(0n′
,a[:n′], b1[n′:],0n′

, · · · bk [n′:],0n′
, ⟨a[:n′], b1[n′:]⟩, · · · , ⟨a[:n′], bk [n′:]⟩, dL)

R = H(a[n′:],0n′
,0n′

, b1[:n′], · · · ,0n′
, bk [:n′], ⟨a[n′:], b1[:n′]⟩, · · · , ⟨a[n′:], bk [:n′]⟩, dR)

and recall that P = H(a[:n′], a[n′:], b1[:n′], b1[n′:], · · · , bk [:n′], bk [n′:], ⟨a,b1⟩, · · · , ⟨a,bk⟩, α′).
It sends L,R to the verifier.

2. The verifier chooses a random x ∈ Zp and sends x to the prover.

3. The prover computes

(a) a′ = xa[:n′] + x−1a[n′:] ∈ Zn′
p

(b) ∀i b′i = x−1bi[:n′] + xbi[n′:] ∈ Zn′
p

(c) α′ = dLx
2 + α+ dRx

−2

and sends a′, b′1, · · · , b′k ∈ Zn′
p to the verifier.

5

4. Given (L,R, a′, b′1, · · · , b′k), the verifier computes P1 = L(x2) · P ·R(x−2) and outputs
“accept” if

P ′ = H(x−1a′, xa′, xb′1, x
−1b′1, · · · , xb′k, x−1b′k, ⟨a′,b′

1⟩, · · · , ⟨a′,b′
k⟩)

It is easy to verify that a proof from an honest prover will always be accepted. Indeed, the
left hand side of the final equation is

L(x2) · P ·R(x−2) = H(a[:n′] + x−2a[n′:], x
2a[:n′] + a[n′:], x

2b1[n′:] + b1[:n′], b1[n′:] + x−2b1[:n′], · · ·

x2bk [n′:] + bk [:n′], bk [n′:] + x−2bk [:n′], ⟨a′, b′1⟩, · · · , ⟨a′, b′k⟩)

which is the same as the right hand side of the final equation. In this proof system, the
proof sent from the prover is the tuple (L,R, a′, b′1, · · · , b′k, α′) and contains only (k+1)· n2 +2
elements. This is about half the length of the trivial proof where the prover sends the com-
plete a,b1, · · · ,bk ∈ Zn

p to the verifier.

Shrinking the proof by recursion.Observe that the test in (4) is equivalent to testing
that

P ′ =
(
gx

−1

[:n′] · g
x
[n′:]

)a′ (
hx1 [:n′] · hx

−1

1 [n′:]

)b′1 · · ·
(
hxk [:n′] · hx

−1

k [n′:]

)b′k · u⟨a,b′1⟩ · · ·u⟨a,b′k⟩hα′
.

Hence, instead of the prover sending the vectors a′, b′1, · · · , b′k, α′ to the verifier, they can
recursively engage in an inner product argument for P ′ with respect to generators(
gx

−1

[:n′] ◦ g
x
[n′:], h

x
1 [:n′] ◦ hx

−1

1 [n′:], · · · , hxk [:n′] ◦ hx
−1

k [n′:], u1, · · · , uk, α′
)
. The dimension of this

problem is only n′ = n
2 .

The resulting log2 n depth recursive protocol is shown in figure 1. This log2 n round
protocol is public coin and can be made non-interactive using the Fiat-Shamir heuristic. The
total communication of the Protocol is only ⌈2 log2(n)⌉ elements in G plus 1 + k elements
in Zp. Specifically, the prover sends the following terms:

(L1, R1), . . . , (Llog2 n, Rlog2 n), a, b1, · · · , bk

where a, b1, · · · , bk ∈ Zp are sent at the tail of the recursion.

6

RELMIPA :=




g,h1, . . . ,hk ∈ Gn

h, u1, . . . , uk, P ∈ G;

a,b1, . . . ,bk ∈ Zn
p ,

α ∈ Zp,


∣∣∣ P = gahb1

1 · · ·h
bk
k u<a,b1>

1 · · ·u<a,bk>
k hα


If n = 1:

P : r, s1, · · · , sk, δ, η
$←− Zp and computes

A = grhs11 · · ·h
sk
k u<r,b1>+<s1,a>

1 · · ·u<r,bk>+<sk,a>
k hδ ∈ G

B = u<r,s1>
1 · · ·u<r,sk>

k hη ∈ G
P → V : A,B

V : x
$←− Zp

P ← V : x

P : computes
r′ = r + a · x ∈ Zp

s′i = si + b · x ∈ Zp ∀i ∈ [1, k]
δ′ = η + δ · e+ α · x2 ∈ Zp

P → V : r′, δ′, s′i ∀i ∈ [1, k]

V : outputs Accept if the following equality holds
Ax · P x2 ·B = gr

′·xh
s′1·x
1 · · ·hs

′
k·x
k u

<r′,s′1>
1 · · ·u<r′,s′k>

k hδ
′ ∈ G

Else (n > 1):
P : dL, dR

$←− Zp and computes
Let n′ = n

2
cLi = ⟨a[:n′], b[n′:]⟩, cRi = ⟨a[n′:], b[:n′]⟩ ∈ Zp ∀i ∈ [1, k]

L = g
a[:n′]
[n′:] h1

b1[n′:]
[:n′] · · ·hk

bk[n′:]
[:n′] ucL1

1 · · ·ucLk
k hdL ∈ G

R = g
a[n′:]
[:n′] h1

b1[:n′]
[n′:] · · ·hk

bk[:n′]
[n′:] ucR1

1 · · ·ucRk
k hdR ∈ G

P → V : L,R

V : x
$←− Zp

P ← V : x

P and V : compute
g′ = gx

−1

[:n′] ◦ g
x
[n′:] ∈ Gn′

h′i = hxi [:n′] ◦ hx
−1

i [n′:] ∈ Gn′ ∀i ∈ [1, k]

P ′ = Lx2
PRx−2 ∈ G

P : computes

1. a′ = xa[:n′] + x−1a[n′:] ∈ Zn′
p

2. b′i = x−1bi[:n′] + xbi[n′:] ∈ Zn′
p ∀i ∈ [1, k]

3. α′ = dLx
2 + α+ dRx

−2

P and V : recursively run the protocol on
(g′, h′1, · · · , h′k, u1, · · · , uk, h, P ′; a′, b′1, · · · , b′k, α′)

Figure 1: Zero Knowledge Argument for MIPA relation

7

3.2 Security Analysis

Now we are going to construct an efficient extractor for the MIPA protocol. The construction
of the extractor is similar to the extractor of the IPA protocol.
First, let us consider n = 1 case. In the first move, the prover sends A and B to the verifier.
By rewinding the oracle ⟨P ∗, V ⟩ four times with five distinct challenges x1, x2, x3, x4 and x5
while using the same A and B, the extractor obtains five tuples (r′i, s

′
i,j , δ

′
i) satisfying the

following verification equation:

P x2
iAxiB = gr

′
i·xi

k∏
j=1

(
h
s′i,j ·xi

j u
⟨r′i,s′i,j⟩
j

)
hδ

′
i for i = 1, . . . , 4 (20)

We can use the first three challenges x1, x2, x3, to compute ν1, ν2, ν3 ∈ Zp such that

3∑
i=1

νi · x2i = 1,
3∑

i=1

νi = 0,
3∑

i=1

νi · x−2
i = 0.

Then, taking a linear combination of the first three equalities , with ν1, ν2, ν3 as the coeffi-
cients, we can compute aA, aP , aB, bj,A, bj,P , bj,B, cj,A, cj,P , cj,B, dA, dP , dB such that

P = gaP
k∏

j=1

(
h
bjP
j u

cjP
j

)
hdP ,

A = gaA
k∏

j=1

(
h
bjA
j u

cjA
j

)
hdA ,

B = gaB
k∏

j=1

(
h
bjB
j u

cjB
j

)
hdB .

Using the above three equations and the verification equation, we obtain for each xi ∈
{x1, x2, x3, x4, x5}:

gr
′
ixi−aP x2

i−aAxi−aB

k∏
j=1

(
h
s′i,jxi−bjP x2

i−bjAxi−bjB
j · u

⟨r′i,s′i;j⟩−cjP x2
i−cjAxi−cjB

j

)
hδ

′
i−dP x2

i−dAxi−dB = 1G.

Thus, under the discrete logarithm relation assumption, we have 2k + 2 equations of
exponents according to the bases g, h1, · · · , hk, u1, · · · , uk, h:

r′ixi − aPx
2
i − aAxi − aB = 0

s′i,jxi − bjPx
2
i − bjAxi − bjB = 0 ∀j ∈ [1; k]

⟨r′i, s′i,j⟩ − cjPx
2
i − cjAxi − cjB = 0 ∀j ∈ [1; k]

δ′i − dPx
2
i − dAxi − dB = 0

and, equivalently:
r′i = aPxi + aA + aBx

−1
i

s′i,j = bjPxi + bjA + bjBx
−1
i

⟨r′i, s′i,j⟩ = cjPx
2
i + cjAxi + cjB

δ′i = dPx
2
i + dAxi + dB.

By eliminating r′i and s′i,j from the equations we have for i ∈ {1, . . . , 5}:

⟨aP , bjP ⟩ · x2i + (⟨aP , bjA⟩+ ⟨bjP , aA⟩) · xi + (⟨aP , bjB⟩+ ⟨bjP , aB⟩+ ⟨aA, bjA⟩)+

8

(⟨aA, bjB⟩+ bjA, aB⟩)x−1
i + ⟨aB, bjB⟩ · x−2

i = cjPx
2
i + cjAxi + cjB ∈ Zp ∀j ∈ [1; k].

Since equality holds for all the 5 challenges x1, x2, x3, x4, x5 and there are five variable
terms x2, x, 1, x−1, x−2 then each coefficient on the left-hand side of must be equal to the
corresponding coefficient on the right-hand side:

⟨aP , bjP ⟩ = cjP ∀j ∈ [1; k].

As intended, the extractor either extracts a witness or a discrete logarithm relation between
the generators.

Next, we show that for each recursive step (n > 1 case) on input (g, h1, · · · , hk, u1, · · · , uk, P)
we can efficiently extract from the prover a witness a, b1, · · · , bk or a non-trivial discrete loga-
rithm relation between g, h1, · · · , hk, u1, · · · , uk. The extractor runs the prover to get L and
R. Then, by rewinding the prover four times and giving it four challenges x1, x2, x3, x4,
such that xi ̸= xj for 1 ≤ i < j ≤ 4, the extractor obtains a′i, b

′
j,i, α

′
i ∈ Zn′

p where
i ∈ [1, 4], j ∈ [1, k] such that

Lx2
iPRx−2

i =

(
g
x−1
i

[:n′] ◦ g
xi

[n′:]

)a′i
·
(
hxi
1 [:n′] ◦ h

x−1
i

1 [n′:]

)b′1,i
· · ·

(
hxi
k [:n′] ◦ h

x−1
i

k [n′:]

)b′k,i
·

u
⟨a′i,b′1,i⟩
1 · · ·u

⟨a′i,b′k,i⟩
k · hα′

i

We can use the first three challenges x1, x2, x3, to compute ν1, ν2, ν3 ∈ Zp such that

3∑
i=1

νi · x2i = 1,

3∑
i=1

νi = 0,

3∑
i=1

νi · x−2
i = 0.

Then, taking a linear combination of the first three equalities , with ν1, ν2, ν3 as the coeffi-
cients, we can compute aL, aP , aR, bj,L, bj,P , bj,R, cj,L, cj,P , cj,R, dL, dP , dR such that

L = gaLh
b1,L
1 · · ·hbk,Lk u

c1,L
1 · · ·uc1,L1 hdL , (1)

P = gaP h
b1,P
1 · · ·hbk,Pk u

c1,P
1 · · ·uc1,P1 hdP , (2)

R = gaRh
b1,R
1 · · ·hbk,Rk u

c1,R
1 · · ·uc1,R1 hdR . (3)

Now, for each x ∈ {x1, x2, x3, x4} and the corresponding a′, b′j ∈ Zn′
p , we can rewrite (eq.

1) as:

gaL·x
2+aP+aR·x−2 ·

k∏
j=1

(h
bj,L·x2+bj,P+bj,R·x−2

j · ucj,L·x
2+cj,P+cj,R·x−2

j) =

Lx2
PRx−2

=

ga
′·x−1

[:n′] · ga′·x[n′:]h
b′1·x−1

1 [:n′] · h
b′1·x
1 [n′:] · · ·h

b′k·x
−1

k [:n′] · h
b′k·x
k [n′:] · ux

a′,b′1
1 · · ·ux

a′,b′k
k .

This implies that:

a′ · x−1 = aL,[:n′] · x2 + aP,[:n′] + aR,[:n′] · x−2

a′ · x = aL,[n′:] · x2 + aP,[n′:] + aR,[n′:] · x−2

b′1 · x = b1L,[:n′] · x2 + b1P,[:n′] + b1R,[:n′] · x−2,

b′1 · x−1 = b1L,[n′:] · x2 + b1P,[n′:] + b1R,[n′:] · x−2,

...

9

b′k · x = bkL,[:n′] · x2 + bkP,[:n′] + bkR,[:n′] · x−2,

b′k · x−1 = bkL,[n′:] · x2 + bkP,[n′:] + bkR,[n′:] · x−2,

⟨a′, b′1⟩ = c1,L · x2 + c1,P + c1,R · x−2.

...

⟨a′, b′k⟩ = ck,L · x2 + ck,P + ck,R · x−2.

If any of these equalities do not hold, we directly obtain a non-trivial discrete logarithm
relation between the generators. If the equalities hold, we can deduce that for each challenge
x ∈ {x1, x2, x3, x4}:

aL,[:n′] · x3 +
(
aP,[:n′] − aL,[n′:]

)
· x+

(
aR,[:n′] − aP,[n′:]

)
· x−1 − aR,[n′:] · x−3 = 0

This equality follows from the first 2 equations above, as the equality holds for all the 4
challenges x1, x2, x3, x4 and there are 4 variable terms x3, x, x−1, x−3 then

aL,[:n′] = aR,[n′:] = 0,

aL,[n′:] = aP,[:n′], aR,[:n′] = aP,[n′:]

We can do the same for each bj∀j ∈ [1; k].

bjL,[n′:] · x3 +
(
bjP,[n′:] − bjL,[:n′]

)
· x+

(
bjR,[n′:] − bjP,[:n′]

)
· x−1 − bjR,[:n′] · x−3 = 0

bjR,[:n′] = bjL,[n′:] = 0,

bjL,[:n′] = bjP,[n′:], bjR,[n′:] = bjP,[:n′]

Now using these relations we obtain that for every x ∈ {x1, x2, x3, x4} we have:

a′ = aP,[:n′] · x+ aP,[n′:] · x−1 and bj = bjP,[:n′] · x−1 + bjP,[n′:] · x.

Now, using these values, we can see that the extracted cjL, cjP , and cjR have the
expected form ∀j ∈ [1 : k]:

cjL · x2 + cjP + cjR · x−2 = ⟨a′, b′j⟩ = ⟨aP,[:n′] · x+ aP,[n′:] · x−1, bjP,[:n′] · x+ bjP,[n′:] · x−1⟩ =

= ⟨aP,[:n′], bjP,[n′:]⟩ · x2 + ⟨aP,[:n′], bjP,[:n′]⟩+ ⟨aP,[n′:], bjP,[n′:]⟩+ ⟨aP,[n′:], bjP,[:n′]⟩ · x−2

= ⟨aP,[:n′], bjP,[n′:]⟩ · x2 + ⟨aP , bjP ⟩+ ⟨aP,[n′:], bjP,[:n′]⟩ · x−2.

Since this relation holds for all x ∈ {x1, x2, x3, x4}, it must be that:

⟨aP , bjP ⟩ = cjP ∀j ∈ [1; k].

Thus, the extractor either extracts a discrete logarithm relation between the generators
or the witness. We can see that for each recursive step the extractor uses 4 transcripts and
5 transcripts for the last step 5 ·4log2(n) = 5n2 transcripts in total and thus runs in expected
polynomial time.

10

4 zkFFT: Zero-Knowledge Argument for FFT Relation Check

Given 2 vector commitments Cv⃗ = uv00 · u
v1
1 · ... · u

vn−1

n−1 and Ca⃗ = ga00 · g
a1
1 · ... · g

an−1

n−1 , the
Verifier wants to check that the first one is the Fast Fourier Transformation of the second
one Cv⃗ = FFT(Ca⃗).
The Prover knows the polynomial P (x) whose 2 different commitments are the Cv⃗ and Ca⃗ .
The first one commits to the coefficients of the polynomial P (x),while the second one com-
mits to the evaluations of the polynomial at the n roots of unity.
Let’s observe that the evaluation of the polynomial P (x) at some x is the dot product of
it’s coefficients and the power-vector of x

P (x) = a0 · x0 + a1 · x1 + ...+ an−1 · xn−1 = ⟨⃗a, x⃗⟩

So if vi is the evaluation of the polynomial P (x) at the i-th root of unity,then it should be
equal to the dot product of the a⃗ and power-vector of the ωi.

P (w0) = ⟨⃗a,w0⟩ =
∑n−1

i=0 ai · ω0·i = ⟨⃗a, (1, 1, ..., 1)⟩ =
∑n−1

i=0 ai = v0

P (w1) = ⟨⃗a,w1⟩ =
∑n−1

i=0 ai · ωi = ⟨⃗a, (1, ω, . . . , ωn−1)⟩ = v1
...

P (wn−1) = ⟨⃗a,wn−1⟩ =
∑n−1

i=0 ai · ω(n−1)·i = ⟨⃗a, (1, ωn−1, ..., ω(n−1)·(n−1))⟩ = vn−1

Trivial Approach. The Prover generates n IPA proofs, which prove that

⟨⃗a,wi⟩ = vi,∀i ∈ [0, 1, ..., n− 1]

This would have been a great solution if the Verifier had the commitment of each vi, but
the Verifier only has the commitment to the whole vector Cv⃗ = uv00 · u

v1
1 · ... · u

vn−1

n−1 .
Of course, the Prover could send all the commitments uvii to the Verifier, then the Verifier
will be able to multiply them and check if the product is equal to the committed Cv⃗

n−1∏
i=0

uvii = Cv⃗

however this will make the proof size O(N).

Our Approach. Instead The Prover uses our modified IPA on the following relation.

P = Cah
ω0

0 · · ·hω
n−1

n−1 Cvh
r = gahω

0

0 · · ·hω
n−1

n−1 u<a,w0>
0 · · ·u<a,wn−1>

n−1 hr

4.1 zkFFT Protocol

We provide a argument of knowledge for the following relation

RELzkFFT :=





(g0, . . . , gn−1) ∈ Gn

(u0, . . . , un−1),∈ Gn

f,Cvalues,Ccoeff ∈ G
(ω0, ω1, . . . , ωn−1) ∈ Fn;

(c0, c1, . . . , cn−1) ∈ Fn,

(v0, v1, . . . , vn−1) ∈ Fn,

rC , rV ∈ F,



∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

Ccoeff = gc0
0 gc1

1 · · · g
cn−1

n−1 frc

Cvalues = uv0
0 uv1

1 · · · u
vn−1

n−1 frv

v0 = P (ω0)

...
vn−1 = P (ωn−1)

where

P (x) = c0 + · · ·+ cn−1x
n−1 ∈ Fn[x]


11

As previously mentioned, we are going to use our modified IPA to prove this relation.

P = gchω
0

0 · · ·hω
n−1

n−1 uv00 · · ·u
vn−1

n−1 h
r = Cah

ω0

0 · · ·hω
n−1

n−1 Cvh
r

Recall that during the last round of MIPA, the prover was sending bi values to the verifier,
so it may seem that MIPA is not that efficient as the proof size will be O(n). However, in
the case of zkFFT the bi values are the power-vectors of the roots of unity. Thus, they are
public, and there is no need to blind them, and the verifier can independently compute all
the values of bi. This means that the relation P will be

P = gcuv00 · · ·u
vn−1

n−1 h
r = CaCvh

r

during the proof generation the prover only sends the left and right points in each round,
and A, r′ and δ′ in the final round, reducing the proof size to just 2 log n+ 3 elements.
Of course, since the verifier is computing the bi values, the verification time increases, but
only logarithmically. With logn rounds and k roots of unity, the verification time is increased
by k log n. The security of zkFFT follows directly from the security of MIPA.

12

RELzkFFT :=




g ∈ Gn

h, u1, . . . , uk, P ∈ G;

a,b1, . . . ,bk ∈ Zn
p ,

α ∈ Zp,


∣∣∣ P = gau<a,b1>

1 · · ·u<a,bk>
k hα


If n = 1:

P : r, δ
$←− Zp and computes

A = gru<r,b1>
1 · · ·u<r,bk>

k hδ ∈ G
P → V : A

V : x
$←− Zp

P ← V : x

P computes
r′ = r + a · x ∈ Zp

δ′ = δ + α · x ∈ Zp

P → V : r′, δ′

V : outputs Accept if the following equality holds
A · P x = gr

′
u<r′,b1>
1 · · ·u<r′,bk>

k hδ
′ ∈ G

Else (n > 1):
P : dL, dR

$←− Zp and computes
Let n′ = n

2
cLi = ⟨a[:n′], bi[n′:]⟩, cRi = ⟨a[n′:], bi[:n′]⟩ ∈ Zp ∀i ∈ [1, k]

L = g
a[:n′]
[n′:] u

cL1
1 · · ·ucLk

k hdL ∈ G

R = g
a[n′:]
[:n′] u

cR1
1 · · ·ucRk

k hdR ∈ G

P → V : L,R

V : x
$←− Zp

P ← V : x

P and V : compute
g′ = gx

−1

[:n′] ◦ g
x
[n′:] ∈ Gn′

b′i = x−1bi[:n′] + xbi[n′:] ∈ Zn′
p ∀i ∈ [1, k]

P ′ = Lx2
PRx−2 ∈ G

P : computes

1. a′ = xa[:n′] + x−1a[n′:] ∈ Zn′
p

2. α′ = dLx
2 + α+ dRx

−2

P and V : recursively run the protocol on (g′u1, · · · , uk, h, P ′; a′, b′1, · · · , b′k, α′)

Figure 2: Zero Knowledge Argument for zkFFT relation

4.2 Aggregating zkFFT Proofs

In many real-world applications, the prover often needs to handle multiple pre-committed
vectors. Creating zkFFT proofs for each vector separately would be inefficient, particularly

13

because these vectors are committed using the same bases. While the naive approach in-
volves performing multi-scalar multiplications independently for each vector, the aggregated
approach combines all the shared bases’ multiplications into one.

P1 = ga1u
⟨a1,b1⟩
1 · · ·u⟨a1,bk⟩k hα1

P2 = ga2u
⟨a2,b1⟩
1 · · ·u⟨a2,bk⟩k hα2

...

Pm = gamu
⟨am,b1⟩
1 · · ·u⟨am,bk⟩

k hαm

After obtaining the m pre-committed vectors,the Verifier samples a random challenge s
and sends it to the Prover. The Prover then uses this challenge to combine these vectors.

P =
m∏
j=1

P sj

j =
m∏
j=1

gs
jaju
⟨sjaj ,b1⟩
1 · · ·u⟨s

jaj ,bk⟩
k hs

jαj

= g
∑m

j=1 ajs
j

u
⟨∑m

j=1 ajs
j ,b1⟩

1 · · ·u⟨
∑m

j=1 ajs
j ,bk⟩

k h
∑m

j=1 αjs
j

If we define the sum
∑m

j=1 ajs
j as a, where a represents the coefficients aj scaled by sj ,

and similarly
∑m

j=1 αjs
j as α, Then P becomes:

P = gau
⟨a,b1⟩
1 · · ·u⟨a,bk⟩k hα

Now we can see that the Aggregated-zkFFT boils down to the zkFFT protocol with
P1, P2, · · · , Pk added to the proof.

4.3 Batch Verification of zkFFT proofs

Having discussed the scenario where the prover aggregates multiple pre-committed vectors
into a single zkFFT proof, let’s now focus on the case where the verifier receives multiple
proofs and wants to efficiently batch-verify them, rather than verifying each one individually.

Given m independently generated proofs, each consisting of

{P1, L1,1, R1,1, · · · , L1,logn, R1,logn, A1, r
′
1, δ

′
1}

{P2, L2,1, R2,1, · · · , L2,logn, R2,logn, A2, r
′
2, δ

′
2}

...
{Pm, Lm,1, Rm,1, · · · , Lm,logn, Rm,logn, Am, r′m, δ′m}

the verifier samples a random challenge s and replaces the final verification check on
each proof, with a new aggregated check that verifies all the proofs simultaneously.

m∏
i=1

(
Asi

i · P
sixi
i

)
= g

∑m
i=1 s

ir′i
i u

<
∑m

i=1 s
ir′i,b1>

1 · · ·u<
∑m

i=1 s
ir′i,bk>

k h
∑m

i=1 s
iδ′i ∈ G

This will drastically reduce the number of exponentiations preformed by the Verifier.

5 Supporting Vector Commitment Inputs in Halo2

The arithmetization used by Halo2 is derived from UltraPLONK [12], which is an extension
of the PLONK system [13]. Halo2[16] supports custom gates and lookup arguments, and
the arithmetic circuit is represented through a rectangular matrix where the cell values (for

14

a given statement and witness) are elements of a fixed finite field F. The circuit depends on
a configuration consisting of Fixed Columns, Advice Columns and Instant Columns. Fixed
Columns will encode values predetermined by the circuit,while the Instance Columns are
usually used for public inputs and for any shared elements between the prover and verifier.
The Advice Columns will encode the prover’s witness data. We will not describe the full
Halo2 proof system here but for a general context let’s summarize that the proof system
works through the following logical steps:

1. Create the arithmetic circuit comprised of Fixed, Advance and Instance Columns which
will encode both the public and witness data.

2. Encode the circuit-satisfiability logic through polynomials.

3. Commit to the circuit data and logic through polynomial commitment.

4. Open the polynomial commitment at random points to ensure circuit satisfiability.

During the circuit commitment phase, each column’s data is represented through a spe-
cific polynomial, which coefficients are computed using discrete numerical transformation
(FFT over finite fields) over the column values and a fixed domain of evaluation points. The
polynomial is next committed using a polynomial commitment scheme. We extend the Halo2
to additionally prove that these polynomials are the Fourier transforms of pre-committed
vectors. The generic relation of the Halo2 proof system is given as follows:

Let ω ∈ F be a primitive n = 2k root of unity, forming the domain D = (ω0, ω1, . . . , ωn−1),
with t(X) = Xn− 1 as the vanishing polynomial over this domain.ng, ne,na, and p are pos-
itive integers, where na is the number of unique commitments from which p is the number
of pre-committed vectors, ne is the maximum number of points in any query set, and ng is
the maximum degree of the constraint system. Additionally ensure ne, na < n and ng > 4.

R =


(g (X,C0, . . . , Cna−1, a0(X), . . . , ana−1 (X,C0, . . . , Cna−1, a0(X), . . . , ana−2(X)))) ,

(a0(X), a1 (X,C0, a0(X)) , . . . , ana−1 (X,C0, . . . , Cna−1, a0(X), . . . , ana−2(X)) ,

al+1 (w1, . . . ,wn) , . . . , al+p (v1, . . . , vn) , g
(
ωi, . . .

)
= 0 ∀i ∈ [0, n)


Here, g represents the complete PLONKish constraint system that enforces all circuit

relations to zero. This includes standard and custom gates, rules for lookup argument,
equality constraint permutation and commitment arguments.The polynomials ai, for all
i ∈ [0, n) \ {l+1, . . . , l+ p}, embody the witness values. Meanwhile, the formal variables Ci

represent the verifier’s challenges.
The arguments of each ai, specifically for i ∈ {l+1, . . . , l+p}, are vectors precommitted

in advance.This aspect utilizes MIPA to extend Halo2, enabling support for precommitted
vectors. The resulting commitment is expressed as:

Cv = Commit(v1, . . . , vn) =
n∏

j=1

gj
vj .

The proving system is divided into five phases, plus our extension.

1. Commit to polynomials to encode the circuit.

2. Prove that these polynomials are FFTs of the pre-committed values.

3. Construct the vanishing argument to enforce that all relations equal zero.

4. Evaluate the given polynomials at all required points.

15

5. Create the multi-point opening argument to ensure that all evaluations align with their
respective commitments.

6. Run the inner product argument to provide a polynomial commitment opening proof
for the multi-point opening argument polynomial.

The provided relation is generic enough to support any type of input, including vector
commitment inputs, and prove the circuit satisfiability. We augmented the existing scheme
to support zkFFT proofs with vector commitments inputs in a more efficient way.

6 Curve Tree Relation

In this section, we show how zkFFT can be used in membership proofs. Using Halo2
extended with zkFFT instead of multi-scalar multiplication (MSM), we can improve the
efficiency of the Curve Tree structure.

The Curve Tree[7] provides efficient means for proving private set membership in a fully
transparent setup. Its architecture is modeled after a shallow Merkle tree, where both the
leaves and the internal nodes are points on an elliptic curve.

The hashing mechanism in a Curve Tree involves a specifically instantiated Pedersen
hash, alternating curves at each layer to maintain a 2-cycle of curves, thereby enhancing the
security of data commitments. Zero-knowledge proofs of membership within Curve Trees are
facilitated using commit-and-prove capabilities integrated with Bulletproofs [6], leveraging
the algebraic properties of the data structure.

The functionality of the Curve Tree is encapsulated in the mathematical relation below,
detailing the conditions for set membership:

Rcurve tree :=

(i, r, δ, x⃗, y) :

C =
〈
[x⃗], G⃗x

(−)

〉
+ [r] ·H(−)

∧ (xi, y) ∈ Pother(−)

∧ Ĉ = (xi, y) + [δ] ·Hother(−)


where field scalars are denoted by [], and vectors by ⃗. The inner product is represented
by

〈
x⃗, G⃗x

(−)

〉
, and elliptic curve points by P(−) and Pother(−). Random scalars δ and r are

included as [r] ·H(−) and [δ] ·Hother(−).
To implement scalar multiplication, the secret scalar is decomposed into 3-bit windows,

and tables T are defined accordingly.
For i ∈ 1, . . . ,m− 1,table Ti is defined as:

Ti =
{[

j · 23(i−1) + 23i
]
·H | j ∈ 0, . . . , 23 − 1

}
The definition of Tm is given by:

Tm =

{[
j · 23(m−1) −

m−1∑
i=1

23i

]
·H | j ∈ 0, . . . , 23 − 1

}

To enforce (x̃, ỹ) = [r] ·H + (x, y), it is expressed as:

(x̃, ỹ) = Rerand(x, y)

≡ {(x̃, ỹ) = (x, y) + Tm + (Tm−1 ⊕ Tm−2 ⊕ . . .⊕ T1)}

The proposed approach for scalar multiplication necessitates a considerable amount of
pre-computed tables to achieve efficiency. Specifically, for a single 256-bit scalar multiplica-
tion [x] ·H, the method requires

⌊
256
3

⌋
+1 = 86 pre-computed tables. When this method is

extended to handle n scalar multiplications, the pre-computed tables demand scales linearly.

16

Mathematically, if we consider n scalars k1, k2, . . . , kn, each decomposed into 3-bit win-
dows, the scalar multiplication can be expressed as:

[kj] ·H =

m1∑
i=1

kj,i · 23(i−1) ·H ∀j ∈ [1;n]

where kj,i represents the 3-bit window for the i-th position of the j-th scalar.
The total number of pre-computed tables required for n scalar multiplications is n · 86,

where each scalar is 256 bits. The definition of table Ti (for i = 1, . . . ,m − 1) and Tm is
described earlier in this section.

For multiple scalar multiplications, the final points (x̃j , ỹj) for each j-th scalar kj are
computed as:

(x̃j , ỹj) = (xj , yj) + Tmj + (Tmj−1 ⊕ Tmj−2 ⊕ . . .⊕ Tj) ∀j ∈ [1;n]

The proposed method of scalar multiplication using 3-bit windows and precomputed tables
can be enhanced by replacing it with advice columns in Halo2 to store pre-committed vectors,
making the use of zkFFT more efficient than MSM.

7 Implementation and Performance

Below are the benchmark results demonstrating the performance of zkFFT compared to
MSM for the Curve Tree relation. Since the zkFFT Verifier must compute all the bi values,
it is in general slower than the MSM Verifier. However, this is the only downside of zkFFT,
and the verification speed can be improved by the aggregation or batching techniques dis-
cussed in the paper.
As for prover time and proof size, our benchmarks indicate that zkFFT’s prover is approxi-
mately five times faster, and the proof sizes are about 5.5-6 times smaller. All benchmarks
were performed using the MacBook Pro M2. For more detailed results, refer to Appendix
Code. The Implementations are open source zkFFT library, Halo2 with vector commit-
ments library.

(a) Proving Time (b) Proof Size

(c) Verification Time

17

https://github.com/ghovhann/zkFFT
https://github.com/Haykhovhannisyan1/halo_extended
https://github.com/Haykhovhannisyan1/halo_extended

8 References

[1] Generalized bulletproof. https://hackmd.io/6g5oC5xWRLOoYcTnYBuE7Q?view.

[2] Eli Ben-Sasson, Iddo Bentov, Yinon Horesh, and Michael Riabzev. Scalable, trans-
parent, and post-quantum secure computational integrity. Cryptology ePrint Archive,
Paper 2018/046, 2018.

[3] Jonathan Bootle, Andrea Cerulli, Pyrros Chaidos, Jens Groth, and Christophe Petit.
Efficient zero-knowledge arguments for arithmetic circuits in the discrete log setting.
Cryptology ePrint Archive, Paper 2016/263, 2016.

[4] Sean Bowe, Jack Grigg, and Daira Hopwood. Recursive proof composition without a
trusted setup. Cryptology ePrint Archive, Paper 2019/1021, 2019.

[5] Vitalik Buterin. Quadratic arithmetic programs. https://medium.com/
@VitalikButerin/quadratic-arithmetic-programs-from-zero-to-hero-f6d558cea649,
2016.

[6] Benedikt Bünz, Jonathan Bootle, Dan Boneh, Andrew Poelstra, Pieter Wuille, and Greg
Maxwell. Bulletproofs: Short proofs for confidential transactions and more. Cryptology
ePrint Archive, Paper 2017/1066, 2017. https://eprint.iacr.org/2017/1066.

[7] Matteo Campanelli, Mathias Hall-Andersen, and Simon Holmgaard Kamp. Curve trees:
Practical and transparent zero-knowledge accumulators. Cryptology ePrint Archive,
Paper 2022/756, 2022. https://eprint.iacr.org/2022/756.

[8] Heewon Chung, Kyoohyung Han, Chanyang Ju, Myungsun Kim, and Jae Hong Seo.
Bulletproofs+: Shorter proofs for privacy-enhanced distributed ledger. Cryptology
ePrint Archive, Paper 2020/735, 2020.

[9] James W. Cooley and John W. Tukey. An algorithm for the machine calcula-
tion of complex fourier series. https://www.ams.org/journals/mcom/1965-19-090/
S0025-5718-1965-0178586-1/S0025-5718-1965-0178586-1.pdf, 1965.

[10] Liam Eagen, Sanket Kanjalkar, Tim Ruffing, and Jonas Nick. Bulletproofs++: Next
generation confidential transactions via reciprocal set membership arguments. Cryp-
tology ePrint Archive, Paper 2022/510, 2022.

[11] Amos Fiat and Adi Shamir. How to prove yourself: Practical solutions to identification
and signature problems, 1986.

[12] Ariel Gabizon. From airs to raps - how plonk-style arithmetization works. Blog post
on https://hackmd.io/@aztec-network/plonk-arithmetiization-air, 2024.

[13] Ariel Gabizon, Zachary J. Williamson, and Oana Ciobotaru. Plonk: Permutations over
lagrange-bases for oecumenical noninteractive arguments of knowledge. Cryptology
ePrint Archive, Paper 2019/953, 2019. https://eprint.iacr.org/2019/953.

[14] Jens Groth. On the size of pairing-based non-interactive arguments. Cryptology ePrint
Archive, Paper 2016/260, 2016. https://eprint.iacr.org/2016/260.

[15] Torben P. Pedersen. Non-interactive and information-theoretic secure verifiable secret
sharing, 1991.

[16] Zcash. Halo2 book. https://zcash.github.io/halo2/index.html.

18

https://hackmd.io/6g5oC5xWRLOoYcTnYBuE7Q?view
https://medium.com/@VitalikButerin/quadratic-arithmetic-programs-from-zero-to-hero-f6d558cea649
https://medium.com/@VitalikButerin/quadratic-arithmetic-programs-from-zero-to-hero-f6d558cea649
https://eprint.iacr.org/2017/1066
https://eprint.iacr.org/2022/756
https://www.ams.org/journals/mcom/1965-19-090/S0025-5718-1965-0178586-1/S0025-5718-1965-0178586-1.pdf
https://www.ams.org/journals/mcom/1965-19-090/S0025-5718-1965-0178586-1/S0025-5718-1965-0178586-1.pdf
https://hackmd.io/@aztec-network/plonk-arithmetiization-air
https://eprint.iacr.org/2019/953
https://eprint.iacr.org/2016/260
https://zcash.github.io/halo2/index.html

A Detailed benchmarks

Here are detailed benchmarks of zkFFT, including the improvements achieved with the
aggregation and batching techniques.

n prover
time (ms)

proof
size (kb)

verifier
time (ms)

aggregated
prover

time (ms)

aggregated
proof

size (kb)

aggregated
verifier

time (ms)

batch
verifier

time (ms)

26 23.895 0.46875 4.507 25.176 3.59375 19.736 174

27 44.142 0.53125 7.9774 49.880 3.65625 22.090 339

28 87.585 0.59375 14.744 106.80 3.71875 28.588 687

29 186.07 0.65625 33.645 263.34 3.78125 47.97 1368

210 434.05 0.71875 94.776 753.11 3.84375 109.1 3253

211 1115.8 0.78125 295.28 5101.0 3.90625 316.13 8101

Table 1: Performance Metrics for zkFFT (Batch size = 100)

In the tables below you can find in-depth comparison of zkFFT and MSM on Curve Tree
relation

• n is the number of elements in the tree

• depth is the depth of the tree

• 2k is the number of elements in each node.

n (k, Depth)
Keygen

Time (ms)
Prover

Time (ms)
Proof Size

(kb)
Verifier

Time (ms)

zkFFT MSM zkFFT MSM zkFFT MSM zkFFT MSM

216 (4, 4) 3748 52586 7344 31188 18.125 93.875 337 110

220 (4, 5) 3794 52555 9345 39050 22.65625 117.3437 426 114

224 (4, 6) 3770 52365 10944 47112 27.1875 140.8125 523 121

228 (4, 7) 3755 53273 12803 54691 31.71875 164.28125 535 131

232 (4, 8) 3678 53024 14528 62136 36.25 187.75 915 173

236 (4, 9) 3709 52567 16614 70002 40.78125 211.21875 676 144

240 (4, 10) 3717 52481 18410 77250 45.3125 234.6875 799 197

Table 2: Performance Metrics for MSM and zkFFT (k = 4)

19

n (k, Depth)
Keygen

Time (ms)
Prover

Time (ms)
Proof Size

(kb)
Verifier

Time (ms)

zkFFT MSM zkFFT MSM zkFFT MSM zkFFT MSM

215 (5, 3) 3661 100177 5481 44583 13.59375 128.71875 272 172

220 (5, 4) 3707 101178 7536 56464 18.125 171.625 343 174

225 (5, 5) 3670 100849 9500 70885 22.65625 214.53125 414 280

230 (5, 6) 3699 101454 11010 84810 27.1875 257.4375 464 185

235 (5, 7) 3755 100103 13111 99197 31.71875 300.34375 559 207

240 (5, 8) 3768 100866 14784 113280 36.25 343.25 644 212

Table 3: Performance Metrics for MSM and zkFFT (k = 5)

n (k, Depth)
Keygen

Time (ms)
Prover

Time (ms)
Proof Size

(kb)
Verifier

Time (ms)

zkFFT MSM zkFFT MSM zkFFT MSM zkFFT MSM

218 (6, 3) 3773 206042 5799 105879 13.59375 245.15625 285 349

224 (6, 4) 3687 208391 7544 141408 18.125 326.875 336 348

230 (6, 5) 3717 208139 9450 176345 22.65625 408.59375 405 420

236 (6, 6) 3718 207579 11370 212208 27.1875 490.3125 471 603

Table 4: Performance Metrics for MSM and zkFFT (k = 6)

n (k, Depth)
Keygen

Time (ms)
Prover

Time (ms)
Proof Size

(kb)
Verifier

Time (ms)

zkFFT MSM zkFFT MSM zkFFT MSM zkFFT MSM

221 (7, 3) 4886 410746 8976 206982 13.96875 477.65625 515 783

228 (7, 4) 4818 411693 12120 277332 18.625 636.875 631 866

235 (7, 5) 4879 412268 15200 349405 23.28125 796.09375 761 815

Table 5: Performance Metrics for MSM and zkFFT (k = 7)

n (k, Depth)
Keygen

Time (ms)
Prover

Time (ms)
Proof Size

(kb)
Verifier

Time (ms)

zkFFT MSM zkFFT MSM zkFFT MSM zkFFT MSM

216 (8, 2) 8142 937983 10878 408988 9.5625 628.8125 821 2186

224 (8, 3) 8115 939068 16305 616857 14.34375 943.21875 1051 2219

232 (8, 4) 8265 935709 21840 822164 19.125 1257.625 1282 2217

240 (8, 5) 8205 936802 27280 1027705 23.90625 1572.03125 1804 2256

Table 6: Performance Metrics for MSM and zkFFT (k = 8)

20

	Introduction
	Our contribution
	Related Work
	Applications
	Structure of the paper

	Preliminaries
	Polynomial Commitment Schemes
	Fast Fourier Transforms
	Inner Product Proofs

	Modified Inner Product Argument
	MIPA Protocol
	Security Analysis

	zkFFT: Zero-Knowledge Argument for FFT Relation Check
	zkFFT Protocol
	Aggregating zkFFT Proofs
	Batch Verification of zkFFT proofs

	Supporting Vector Commitment Inputs in Halo2
	Curve Tree Relation
	Implementation and Performance
	References
	Detailed benchmarks

