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Abstract

Recent advances in differentially private federated learning (DPFL) algorithms have found that using
correlated noise across the rounds of federated learning (DP-FTRL) yields provably and empirically better
accuracy than using independent noise (DP-SGD). While DP-SGD is well-suited to federated learning
with a single untrusted central server using lightweight secure aggregation protocols, secure aggregation is
not conducive to implementing modern DP-FTRL techniques without assuming a trusted central server.
DP-FTRL based approaches have already seen widespread deployment in industry, albeit with a trusted
central curator who provides and applies the correlated noise.

To realize a fully private, single untrusted server DP-FTRL federated learning protocol, we introduce
secure stateful aggregation: a simple append-only data structure that allows for the private storage of
aggregate values and reading linear functions of the aggregates. Assuming Ring Learning with Errors,
we provide a lightweight and scalable realization of this protocol for high-dimensional data in a new secu-
rity/resource model, Federated MPC : where a powerful persistent server interacts with weak, ephemeral
clients. We observe that secure stateful aggregation suffices for realizing DP-FTRL-based private fed-
erated learning: improving DPFL utility guarantees over the state of the art while maintaining privacy
with an untrusted central party. Our approach has minimal overhead relative to existing techniques
which do not yield comparable utility. The secure stateful aggregation primitive and the federated MPC
paradigm may be of interest for other practical applications.

1 Introduction
The widespread use of deep learning on user-generated data, that is often sensitive, has made privacy-
preserving techniques increasingly important. One prominent framework that has emerged for conducting
privacy-preserving machine learning is differentially-private federated learning (DPFL).

Differentially-private federated learning framework. While the exact details of differentially-private
federated learning protocols may vary widely, many such systems [McMahan et al.(2018)] follow a similar
architecture:

• A single central party plays the role of conductor for the learning process, grouping users into cohorts
and facilitating communication. We refer to this persistent and powerful party as the server, but it
need not be localized onto a single device.

• Lightweight, ephemeral client devices (such as phones) are grouped into “cohorts”. We refer to such
these parties as clients.
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When a client’s cohort’s time comes, the device downloads the current model state and uses the on-
device data to compute a local update (in gradient descent, this involves computing local gradients). These
local updates are then aggregated across the entire cohort with some noise. The server then uses this noisy
aggregate to update the model.

With this communication architecture and resource allocation in mind, we introduce a new practi-
cal model for designing secure multi-party computation at scale: secure federated multiparty computation
(FMPC). This model/paradigm can be seen as a hybrid of two emerging trends in secure multiparty com-
putation: combining ephemeral, stateless participants (Fluid MPC [Choudhuri et al.(2021)], YOSO [Gentry
et al.(2021)]) with a powerful persistent central (untrusted) party (Gulliver MPC [Alon et al.(2024)]).

Learning with independent noise (differentially-private stochastic gradient descent) and secure
aggregation. Early successes in DPFL were due to a learning framework known as differentially-private
stochastic gradient descent (DP-SGD) [Song et al.(2013), Bassily et al.(2014), Abadi et al.(2016), Bonawitz
et al.(2019)]. DP-SGD learners perform stochastic gradient descent, but at each step, they clip gradients
to bound their influence and add independent Gaussian noise to the gradient update to preserve privacy
throughout the learning process. These algorithms exhibited favorable privacy/utility tradeoffs and were easy
to adapt to the federated learning architecture using lightweight protocols for secure aggregation [Bonawitz
et al.(2017), Bell et al.(2020), Bell et al.(2023a), Ma et al.(2023), Karthikeyan and Polychroniadou(2024)].

A secure aggregation protocol enables a server to learn a sum of vectors and nothing else. Practical secure
aggregation protocols are characterized by the ability to scale with very high dimensional data and massive
numbers of participants (in contrast to generic secure multiparty computation): they should have very limited
interaction (and a simple, sparse communication pattern), almost no communication overhead for high
dimensional inputs (relative to the privacy-free baseline of sending inputs in the clear), low computational
complexity, and robustness to client dropouts.

Given a secure aggregation protocol, one can turn DP-SGD into a federated learning protocol via the
following:

1. The server distributes the (differentially-private) state of the model to the current client cohort.

2. Clients locally compute a gradient update add some locally sampled noise1 and securely aggregate the
result across the entire cohort.

3. The server then uses the aggregated gradient to update the model. Because the output of the ag-
gregation is differentially-private (due to the local noise contributions), the new model also preserves
differential privacy.

A number of examples of secure aggregation protocols exist in the literature [Bonawitz et al.(2017), Bell
et al.(2023b), Ma et al.(2023), Li et al.(2023)] and indeed been proposed for deploying DP-SGD-based
federated learning at scale.

The use of such techniques has been refined in a series of papers [Chen et al.(2022a), Chen et al.(2022b),
Kairouz et al.(2022), Agarwal et al.(2021)] and this work has seen production deployment [Hartmann and
Kairouz(2023)].

Unfortunately, due to the less than optimal2 privacy/utility tradeoff of DP-SGD, such federated learning
procedures can yield underwhelming accuracy guarantees. [Abadi et al.(2016), Tramer and Boneh(2020),
Kairouz et al.(2021), Xu et al.(2023), Choquette-Choo et al.(2024), Choquette-Choo et al.(2023)]

A new paradigm for private learning: correlated noise (differentially-private follow-the-regularized-
leader). In recent years, a new paradigm for private learning has emerged. At a very high level, it has
been observed both provably and empirically that by adding correlated noise in the training steps, the utility

1The local noise contributions need not be wide enough to provide privacy on their own: they need only provide privacy in
aggregate. This is critical to yielding useful utility/accuracy guarantees at scale.

2DP-SGD utility can be improved using privacy amplification via sampling or shuffling, but these techniques are infeasible
in the federated learning setting where data arrives in an arbitrary order.
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can be dramatically improved while preserving the same level of privacy throughout the training process. In
particular, in such mechanisms, the noise added at different training steps is not independently sampled.

This new family of algorithms, differentially-private follow-the-regularized-leader (DP-FTRL), is similar
to DP-SGD but instead of adding independent noise ηi to the gradient in round i, instead adds ⟨λi,η⟩ where
λi is a public vector (associated with round i) and η is a vector of independent noise samples.

While we shall give a simple example illustrating how such correlated noise can help improve priva-
cy/utility trade-offs later (see 1.1), for now, observe that the straightforward template for securely realizing
DP-SGD via secure aggregation does not work here. Critical to that implementation was the fact that noise
samples were independent in each learning step and, hence, amenable to local sampling by clients before
aggregation.

To apply the DP-FTRL paradigm, the underlying noise vector η must persist throughout the entire
learning process across the life of many cohorts, and it is not clear how to efficiently do this with secure
aggregation alone. To date, no one has successfully realized private federating learning via such an approach
without leveraging untenable trust assumptions on the central server.

We introduce a new primitive, secure stateful aggregation, that enables a seamless realization of the DP-
FTRL approach to differentially private federated learning. We provide a simple, scalable secure stateful
aggregation protocol in the federated multiparty computation setting.

1.1 Our Results
We begin by introducing our conceptual contributions: the secure stateful aggregation functionality and
the federated multiparty computation model. Then, we will sketch our stateful aggregation protocol and
illustrate its applicability with a simple example: computing private partial sums.

Secure Stateful Aggregation. Secure stateful aggregation is a reactive functionality that can be thought
of as a simple append-only data structure with two operations:

1. Store: Appends the sum of current inputs to the data structure state.

2. Reveal: Outputs a linear function of the current data structure state to the server.

The actual functionality rolls these two operations together, but for the sake of clarity we provide this
equivalent, albeit less efficient presentation. We refer the reader to Section 2 for further details on the
functionality and Figure 1 in particular.

A secure realization of this functionality reveals nothing beyond its input/output behavior. The state
of the data structure and any aggregated inputs will remain private, up to the linear functions that are
revealed.

It is easy to see that this functionality is a mild generalization of the secure aggregation functionality.
Moreover, this functionality allows for the secure aggregation of data across many cohorts. Moreover, this
pared-down formulation allows for extremely efficient and nonetheless suffices for powerful applications in
federated learning.

The (γ, β)-secure federated MPC paradigm. As mentioned above, we introduce a new paradigm for
designing MPC protocols that aligns closely with many large scale distributed protocol deployments.

Concretely, a federated MPC (FMPC) protocol is broken into a sequence of rounds. A powerful stateful
server persists throughout the computation and is capable communicating with all participants. In each
round, lightweight ephemeral clients are scheduled to arrive in a cohort. These clients have limited commu-
nication and computational capability and can only participate for at most a few rounds, sometimes just
one.

Communication takes place on a bulletin board with a PKI: clients can send secure, private messages
to clients in the successive cohort, but metadata about messages is visible to all participants (even if their
contents are not). However, given the massive number of clients, each client can only send and receive a
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few short messages with other clients. While larger messages to (and from) the server are possible, this
communication should also be as close to the information-theoretic minimum as possible.

We assume all communication is effectively synchronous.
The adversary can corrupt an γ-fraction of any given cohort in addition to the server. Additionally, a

β-fraction of the clients in any given cohort may drop out, failing to complete their roles in the protocol. In
this work, we consider a semi-honest adversary making static corruptions and guaranteed output delivery.

The FMPC paradigm can be seen as a hybrid of two emerging trends in MPC: protocols with ephemeral
participants (such as Fluid MPC [Choudhuri et al.(2021)] and YOSO [Gentry et al.(2021)]) and protocols
with a strong central party and very weak clients (such as GMPC [Alon et al.(2024)]). Federated MPC
is comprised of a powerful persistent central party with a massive number of weak ephemeral clients. In
contrast to Fluid MPC and YOSO, where minimal interaction is prized above all else, we assume a single
persistent party. In contrast to the GMPC, we assume a much more reliable and transparent communication
infrastructure for clients, and on the other hand that the clients are shortlived and unreliable.

It is our hope that this loosely-defined paradigm will help bring theory and practice closer together, at
least in certain settings.

A lightweight protocol from RLWE. We provide a simple lightweight realization of stateful aggregation
in the federated learning setting. Our protocol scales well with high-dimensional data and massive client
cohorts.

The key ingredient is a (high-rate) linearly homomorphic secret key encryption scheme that also admits
a kind of key homomorphism (enabling distributed encryption and decryption), which we instantiate via the
Ring Learning with Errors (RLWE) assumption [Lyubashevsky et al.(2010)].

The high level idea is very straightforward. Throughout, a persistent global secret key is reshared from
cohort to cohort using additive secret sharing (reminiscent of DC-nets [Chaum(1988)]).

1. To Store an aggregate: clients encrypt their private inputs using their share of the secret key and the
server aggregates the ciphertexts to produce an encryption of the aggregate under the global key and
appends the result to its state. This is possible due to the key homomorphism of the scheme.

2. To Reveal a linear function of the secret state: the server homomorphically evaluates the linear function
over ciphertexts it is holding. Then the clients use their secret shares to run a distributed decryption
of the resulting ciphertext.

Ensuring that this does not inadvertently compromise semantic security of the state (up to the linear function
output) is slightly delicate. An elementary committee-based approach is proposed to handle client dropouts.
We refer readers to Section 4 for more details.

In our protocol, communication to the server approaches the size of the aggregated elements. Clients
send roughly κ2 messages of length κ to other clients, where 2−κ is the desired security level. The server is
completely silent and hence the protocol is actually secure against a malicious server by default. (We only
guarantee security against semi-honest clients.) Precise benchmarking can be found in Section 5.

Computational demands on clients are comparable to the communication costs.

Application 1: Releasing private partial sums (introduction to correlated-noise mechanisms).
Let xi denote the value of the aggregated inputs in cohort i. Consider the task of releasing a differentially-
private running sum:

x1, x1 + x2, x1 + x2 + x3, . . . ,

i∑
j=1

xj , . . . ,

N∑
j=1

xj

A naive mechanism for doing this (assuming a trusted central curator) is to simply add independent
noise (be it Gaussian or Laplacian or otherwise) to each output above, treating each output as a single
count mechanism. Then by composition, we can argue that the whole release is differentially private. The
downside of this approach is that the input x1 appears in every single output, which means (according to the
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DP composition theorem) that privacy will degrade by a factor of N . This means that to achieve ϵ-privacy
we need to use ϵ/N -private noise on each component, which potentially drowns out the partial sums entirely.
Note that it is unclear how to realize even this naive mechanism using secure aggregation, but it can be
trivially realized using stateful secure aggregation: in each round, clients can store their aggregated inputs
and noise samples separately and reveal their aggregatation of all inputs.

A clever mechanism introduced by Dwork et al. [Dwork et al.(2010)] (referred to as Tree Aggregation in
the literature) proposes to instead think about a complete binary tree with x1, x2, ..., xN at its leaves. Label
each internal node with the sum of the nodes beneath it (so the root is labeled with

∑N
j=1 xj). Now, simply

add independent noise to the label of each node in the tree and release all the noisy labels. To estimate the
ithe partial sum, one can compute a linear function of the noisy labels.3 Because any input appears in at
most log2 N labels, to achieve ϵ-privacy one need only use ϵ/ logN noise for each internal node.

Now, it is easy to see how to create a mechanism that releases this entire noisy tree using secure stateful
aggregation. However, recall that the ultimate i partial sum is a linear function, λi, of the noisy internal
labels. This estimator is constructed so that the output is equal to the partial sum plus a linear function of
all the independent noise in the tree η :

i∑
j=1

xj + ⟨λi,η⟩.

From this perspective, we can imagine a new mechanism that samples persistent independent noise η
(possibly in an offline phase, although it is possible to construct this mechanism so the noise can be generated
in an online manner, one new independent component per partial sum), then at step i directly releases the
value above. To realize this new mechanism via secure stateful aggregation is again quite straightforward:
clients aggregate their inputs and separately aggregate a fresh noise sample. Then, the expression above can
be released by computing the appropriate linear function of the state: releasing the value described above.4

We can rephrase this last mechanism in linear algebraic terms. Let C be the matrix that maps to cohort
input aggregates x = (x1, . . . , xN ) to tree labels as described above. Then let B denote the matrix such that
the ith row is λi, the linear function that produces the ith partial sum estimator. Then, in this notation
our mechanism will output

B(Cx+ η) = y,

where y = (y1, . . . , yn) and yi =
∑i

j=1 xj + ⟨λi,η⟩.

Application 2: Differentially-private federated learning via DP-FTRL. Kairouz et al. [Kairouz
et al.(2021)] developed a new approach for training models with differential privacy using batch gradients.
At a very high level their idea was that for convex optimization, one can bound regret by looking at a linear
function of the loss of the model at time i. This means that the next model step can be computed using
a linear function of the batch gradients seen thus far, essentially a partial sum of these gradients. Thus
training a model privately effectively reduces to building a mechanism for releasing iterative partial sums as
in Application 1 above!

Thus we can effectively use the same mechanism, albeit with a different choice of matrices C and B, as
the one described above to perform state-of-the-art differentially private learning at scale. In particular, we
will choose B and C such that A = BC where A is the linear function that maps the sequence of batch
gradient described above. A “good” factorization of A = BC yielding nearly optimal privacy/utility tradeoff
for this paradigm can be found using semi-definite programming. [Kairouz et al.(2021), Choquette-Choo
et al.(2024)] The stateful secure aggregation then need only output

B(C + η) = Ax+Bη.

3A straightforward approach simply sums the roots of the any left children on path to ith leaf (and the ith leaf), but better
approaches are possible [Honaker(2015), Kairouz et al.(2021)].

4The advantage of this alternate approach (over releasing the entire tree), is that the partial sum estimator can be released
in one shot as soon as the data is available. Releasing the whole noisy tree, while also possible and private, not only requires
many releases at certain times but also requires more releases (leading to a higher cost overall).
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At the ith training step, this is simply Aix+Biη where Ai,Bi are the ith rows of A and B, respectively.
This new approach has been shown to yield dramatic improvements over other methods such as DP-SGD

approaches, both theoretically [Kairouz et al.(2021), Choquette-Choo et al.(2023)] and empirically [Kairouz
et al.(2021), Choquette-Choo et al.(2024)]. Moreover this is already being deployed at scale for private next
word prediction in the Google Keyboard [Xu et al.(2023)], albeit with a trusted server.5

1.2 Limitations and Future Directions
We suspect that the protocols listed here are maliciously secure, assuming the presence of a PKI and a
means of choosing which parties should take part in each round. However, in practice those would be
very big assumptions in the presence of a malicious server so we have not prioritized showing this formally.
Demonstrating malicious security and finding ways to integrate with realistic ways to resist Sybil attacks
would be a useful contirbution.

Our implementation of MF-DP-FTRL requires the matrix C to be banded. In the central model con-
current work has shown that is is possible to work with Buffered Toeplitz matrices [McMahan et al.(2024)]
giving slightly better results. That approach however doesn’t interact well with discretization, so we cannot
straight forwardly extend to it. Finding a way to make that work is a possible future direction.

Of course it isn’t obvious that the communication and computation couldn’t be reduced by practically
meaningful constant factors by some other approach. This could also be a aim of future work.

2 Stateful Aggregation
The system consists of a server and a sequence of r cohorts of clients. The ith cohort Ci is available to make
a submission at time step i. It must also know the public keys for Ci+1 and Ci+2 at that time, thus Ci must
have been chosen and provided their public keys by time i− 2.

In each step, multiple aggregations can be conducted. Each of these aggregations computes a linear
combination of inputs from the clients that step and values stored in the protocol’s memory in previous
steps. The result of each aggregation can either be stored in memory or revealed to the server. For notational
clarity we will assume that exactly one aggregation is conducted per step.

An aggregation instruction has three arguments: one indicating whether the result should be revealed,
taking values in {Store,Reveal}; a rule explaining what value each client should provide for aggregation,
taking values in a set I; and the weights to be applied to stored values for inclusion in the aggregation
which form a value in Fq for some prime q. An aggregation in the ith round can thus be written as either
Agg (Store, Ii, {λi,k}k<i) or Agg (Reveal, Ii, {λi,k}k≤i). The input rule Ii can be any object that the clients
know how to use to derive their inputs to the specific aggregation, we will write xi,j for the input that the
jth client in Ci derives from Ii. A program P for our system consists of a sequence of aggregations, one per
round. The ith entry in the sequence being the aggregation for the ith cohort to perform. We say a program
of that form is valid if the dependency graph defined by input and outputs of its instructions is acyclic.

We make two simplifying assumptions, neither is a hard restriction but they will keep things simpler
and hold for the applications we have in mind. Firstly, we assume that the program is known in advance,
although it would be possible to decide the ith entry of the sequence after the (i− 1)th cohort have spoken.
In the malicious server case the ith cohort would have to check that the ith entry of the sequence was in
some sense legitimate or the adversary could ask for the submission of secrets it shouldn’t learn, but this
would be doable for many applications. Secondly, as mentioned above, each cohort conducts at most one
Store and one Reveal aggregation. Let vi be the value stored or revealed in the ith round. We define the
following ideal functionality.

5User gradients in this process are aggregated securely, yielding some privacy guarantees. However, while the model outputs
preserved differentially-privacy to external parties and users, Google’s internal view was not differentially-private. By using our
secure stateful aggregation, the view of all parties remains differentially-private.
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Stateful Aggregation Functionality I

Public Parameters:

• A program to be executed P :=
〈
t1, . . . , tr

〉
. Each instruction ti is of the form (Modei, Ii, {λi,k}k<i),

with Mode ∈ {Store,Reveal}.
• Vector length ℓ, input domain Fℓ.

Parties:

• A Server S.

• A sequence of (not necessarily disjoint) cohorts C1, . . . , Cr of clients. Each cohort contains n clients.
We denote by Ci,j the jth client in the ith cohort. Each client holds a private database Di,j .

• A trusted party I holding state State := ⟨(vi) ∈ Fℓ⟩i∈[≤r], initially ⟨⟩ (empty).

Private Parameters: Client Ci,j may hold private input xi,j := Ii(Di,j) for round i.

Functionality:

For each round i ∈ [r]:

• Let (Modei, Ii, {λi,k}k<i) = ti.

• Each client Ci,j sends xi,j to I.

• I computes vi :=
∑

j∈[n] xi,j +
∑

k<i λi,kvk.

• I updates State := State || vi.
• If Modei−1 = Reveal then I sends vi−1 it to S.

Figure 1: The Stateful Aggregation Functionality

Long running aggregation. As a basic example, consider the case where the server just wants to compute
the sum of the private input from clients across different round. Let input be a rule that just returns the
client’s input to the server. In this case each cohort except the last one will run Agg (Store, input, {µi,k :=
0}k<i) . The final cohort will run only Agg (Reveal, input, {νi,k := 1}k<i).

3 Applications of Stateful Aggregation in Distributed Differential
Privacy

In this section, we describe a couple of programs for releasing prefix sums with distributed differential privacy
using our system. We have a sequence of cohorts, each client in these cohorts has a vector as input, let the
sum of inputs in cohort i be xi. The server should after each cohort receive an estimate of the sum of all
inputs from all clients who have submitted so far, which we call Si, i.e. after cohort i it should receive
an estimate of Si :=

∑
j≤i xj . This is useful in federated learning, where the inputs are user contributed

updates to a model and the current parameters are the sum of the initial parameters and all inputs so far.
In both cases the noise will be added by the clients making the submissions and for privacy we will

assume that at most a fraction γ of them are corrupt (which is also an assumption for the security of the
protocol so this is no extra assumption).

Following a standard trick, when we want a Gaussian random variable with variance α2 for differential
privacy, each client can provide Gaussian noise with variance α2/n(1− γ). The sum of honest contributions
will then have the correct variance. For privacy purposes any extra noise added can be considered post-
processing. The effect of this approach is to inflate the variance of the added noise by a factor of 1/(1− γ),
this will be small compared to our other gains.

Throughout we assume that each client’s input has a bounded sensitivity and that in order to achieve the
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required DP epsilon locally the required variance of Gaussian noise (for each coordinate) would be (1− γ)σ2

to each entry. The choice of σ will in practice depend on sensitivity, γ and ϵ, but the total noise in all of the
following methods will depend on those parameters only through σ, thus this will simplify presentation.

3.1 Baselines
If we don’t require differential privacy we can have a secure aggregation for each cohort providing the sum
xi of that cohort’s inputs. This provides the server with the difference between their output for this round
and their output for the previous round, which they would learn anyway and from which they can compute
their current output

∑
j≤i xi as xi plus their previous output

∑
j<i xi.

This extends naturally to the baseline differentially private idea of using a separate secure aggregation
with each cohort to produce xi + zi where the zi is a Gaussian noise with variance σ2. However, the prefix
sum that the server outputs in the jth round is

∑
i≤j xi + zi which has noise

∑
i≤j zi which has variance

proportional to jσ2, we can do better than this.

3.2 Prefix Tree Aggregation
Dwork et. al. [Dwork et al.(2010)] suggested the following DP mechanism that has since come to be known as
Tree Aggregation. Suppose we have 2h cohorts for some integer h. Assign the cohort’s inputs xi to the leaves
li of the tree from left to right. Assign Gaussian noise samples zi to each of the left child nodes in the tree
and to the root, such that zi’s node ni has li as its rightmost descendant (about half the time ni = li). Let
υ(i) be the index of the leftmost descendant of ni. At time step i the curator calculates ri = zi+

∑i
j=υ(i) xj ,

that is the true sum of the leaves descended from ni masked by the noise at ni. It then adds the output
from step υ(i)− 1 (or nothing if υ(i) = 1) and outputs the result.

As the full sequence of outputs is a post processing of the ri it suffices to show that the ri are cumulatively
DP. As each input xi has at most h ancestors amongst the ni, it is included in at most h of the ri. By
advanced composition it is thus sufficient for each of the noises to have variance O(kσ2). Each output is the
sum of at most h of the ri and thus the variance of the noise on each output is O(h2σ2) i.e. O(log2(r)

2σ2).
The constants resulting from this protocol can be optimized at the cost of extra computation was described
by Honaker [Honaker(2015)], we will not bother implementing a version of that as it is more complicated (so
not interesting for exposition) and superfluous given MF-DP-FTRL.

We now provide a program P = ⟨t1, ..., t2h+1⟩ for our functionality that will implement the above. In this
program the odd numbered cohorts will not provide data, only Gaussian noise to be used for DP and the
even numbered cohorts will be the cohorts providing the noise, thus xi will be uploaded in round 2i.

We remark that there is no reason why the same physical devices couldn’t play the role of cohorts 2i− 1
and 2i, further this would avoid the cost of transferring the key for that change, that would further allow the
work for the two rounds to be done in parallel. This is probably how the protocol would be run in practice
but we haven’t explained the details here to keep the exposition and interface simple.

Let Gσ2 be a function that generates and returns a vector in Fl of discrete Gaussians with variance σ2/n.
In round 2i−1 we will have the cohort generate and store the noise zi that is we take t2i−1 = (Store, Gσ2 , 0k).
In round 2i we will have the server learn the xi plus the noise that we want applied to Si minus the noise
that was applied to Si−1. The server can then add this to its previous output to get the output for round i.

Let 2hi be the largest power of two dividing i. The difference of the noise for Si and Si−1 is given by
zi −

∑hi−1
d=0 zi−2d . We let I map a client’s data to the input we want them to provide to the aggregation

and define λ2i,k = −1 if k ∈ {2i − 2d − 1|d ∈ {1, ..., hi}} and λ2i,k = 0 otherwise. Then the even indexed
instructions in our program are given by t2i = (Reveal, I2i, {λ2i,k}k<2i).

3.3 MF-DP-FTRL
The state of the art in central model DP federated learning is given by the matrix factorization ap-
proach [Choquette-Choo et al.(2024)]. We now describe an outline of this procedure and the optimizations
provided in that paper.
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Define A to be the lower triangular matrix with all entries (on and below the diagonal) equal to one.
Note that if x is a vector (of vectors) with the ith cohort’s contribution in the ith place then the task we
are aiming for is to estimate Ax in a streaming fashion.

The matrix factorization in the name is of A into two components A = BC. The calculated result will be
given by B(CX+η) for some Gaussian noise η. To prove that this is DP it is enough to show that CX+η
is DP, which is done by requiring C to have Frobenius norm at most one and setting the variance of η to
be the same as would make X + η DP. Thus the factorization is usually chosen to minimise Bη subject to
the bound on the norm of C. This optimization is then done numerically and results in substantial practical
improvements over the Tree Aggregation idea above.

In practice it is also important that the necessary matrix multiplications can be calculated efficiently
in an online fashion. Efficiently here largely means that the server doesn’t want to have to store Ω(r)
vectors in memory at any point. To achieve this it is recommended to choose C to be banded with band
width b. The result can then be calculated as AC−1(CX + η) using online algorithms for multiplying by a
known banded matrix or its inverse that each require storing only b vectors at any point (these are given by
Algorithms 8 and 9 in [Choquette-Choo et al.(2024)]). Adding the restriction that C is bounded is shown
numerically to lead to little loss in utility and so this restriction is recommended.

In our protocol we will also use the fact that C is banded to get an efficient protocol in runtime and
storage in much the same way. We will add one more restriction on C which is that we require it to be
discrete. This is a minimal change because we can discretize at any fixed level of precision. Thus we propose
optimizing C over the reals as in the central model and then rounding each entry in C to discrete values.
This may increase the Frobenius norm of C to slightly more than 1, if this happens then rounding down
some of the entries that were barely rounded up should bring it back down without significantly damaging
the fidelity of the approximation. If all rounding is toward 0 then the Frobenius norm will not increase and
the fidelity will still be good for sufficiently fine discretizations.

We note that the multiplication by AC−1 can be considered post processing and so can be done in the
clear. It is enough to implement the online processing of CX + η using our system.

Again to have i cohorts provide inputs we will run a program P with 2i instructions. The same possibilities
for combining these rounds apply as in the Tree Aggregation case. In the Tree Aggregation case where the
noise was stored and then applied to each input as it was revealed. In this case we will store the inputs
in the odd numbered rounds and then in each even numbered round reveal a new instance of noise with
the appropriate linear combination of the inputs on top. The odd indexed instructions are thus t2i−1 =
(Store, I, {0}) and the even ones are t2i = (Reveal, Gσ2 , {λ2i,2k−1 = Ci,k}k≤i).

The outputs from this Program can then be scaled back from fixed point to floating point encodings and
then online multiplied by B = AC−1 as in the central model.

4 Realizing Secure Stateful Aggregation
For clarity, we begin by describing a protocol for securely realizing this functionality in the fully-synchronous
(or no client dropouts) semi-honest setting, and provide some intuition for its security. (A formal security
proof for this protocol can be found in Appendix B) This setting captures the key ideas in realizing stateful
secure aggregation. In Section 4.3, we describe how to augment this basic protocol to achieve resilience to
client dropouts.

Before continuing, let us recall the stateful secure aggregation functionality. A stateful secure aggregation
program consists of a sequence of instructions ti = (Modei, Ii,λ

i) and maintains an append-only data
structure whose state at time i we denote v.

At time i when instruction ti is executed, all clients currently present in cohort Ci (|Ci| = n) submit
their inputs xi,1, . . . ,xi,n to the server. Then the sum of these inputs with a linear function, λi ∈ Z∗

q for
some prime q, of the prior state is appended to the state: v ← v||vi where vi =

∑
j∈[n] xi,j + ⟨λi,v⟩.

If Modei = Store, then this is all that happens. No output is produced. Otherwise, if Modei = Reveal,
then value just appended to the state, vi, will be released in the next time step.
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We will show how to securely implement this functionality in the presence of a semi-honest adversary
who can corrupt at most an γ-fraction of any cohort and the central server. We then show how to augment
this protocol to achieve robust correctness (and security) guarantees in the presence of a fail-stop adversary
who can force corrupt clients to drop out.

4.1 Preliminaries: Linearly Homomorphic Encryption with Distributed En-
cryption/Decryption via (R)LWE

The key ingredient in our scheme is a simple symmetric key encryption scheme based on learning with errors
(LWE) assumptions that admits both key and message homomorphism. In particular, given a key A, s where
A can be public, a message x is encrypted as

EncA,s(x)→ As+ Te+ x

where e is sample from some appropriate small noise distribution and T is an appropriately chosen scalar.
To decrypt a ciphertext c = As+ Te+ x, one subtracts As and removes the noise:

DecA,s(c) = c−As mod T = (As+ Te+ x)−As mod T = Te+ x mod T = x

The first key property that we will rely on is linear message homomorphism: given encryptions of x and
y under the same secret key (but possibly different public keys), one can produce an encryption of a ·x+b ·y
(albeit with respect to a different public key).

a · (As+ Te+ x) + b · (Bs+ Tf + y) = (aA+ bB)s+ T (ae+ bf) + ax+ bf

So long as the coefficients a and b are appropriately bounded (and hence the noise ae + bf and message
ax+ by are not too large), this can be correctly decrypted.

The second key property we rely on is key homomorphism, which enables a form of distributed encryption
and decryption. In what follows, imagine Alice and Bob are holding s1 and s2 additive shares of the secret
key s such that s1 + s2 = s.

To compute a distributed encryption of the sum of their inputs (x1,x2 respectively), Alice can send
As1 + x1 + Te1 and Bob can send As2 + x2 + Te2. The server can sum the result to get an encryption of
x1 + x2 : c = As+ (x1 + x2) + T (e1 + e2). So long as e1 + e2 is small (which is the case if e1 and e2 are
small, c can later be correctly decrypted.

Now to see how key homomorphism enables distributed decryption, imagine the server is holding a cipher
text c = As+ Te+ x. Now, Alice and Bob can simply compute and send As1 and As2 respectively. This
enables the server to recover x

(As+ Te+ x)−As1 −As2 ≡T x

Unfortunately, this also allows the server to recover e, and in turn s. While this may be ok in a one-
time scenario, we will require a distributed decryption that only reveals “safe” leakage on e (or following
the terminology of Lee et al. [Lee et al.(2018), Cheon et al.(2021), Bell et al.(2023b)]: hints about e) that
won’t compromise s. Following Bell et al. [Bell et al.(2023b)], we note that semantic security on correlated
ciphertexts can be preserved without impinging upon correctness if Alice and Bob add some noise to their
messages (effectively sending encryption of 0 using their private keys):

(As+ Te+ x)− (As1 − Te1)− (As2 − Te2) = x+ T (e+ e1 + e2) ≡T x

The server now can learn e + e1 + e2, but as shown in [Lee et al.(2018), Bell et al.(2023b)] this preserves
semantic security (u is uniformly random below):

(As+ Te, e+ e1) ≈ (u, e+ e1)

10



Before continuing, we note that these properties are satisfied by other encryption schemes.6 However,
in our study, the scheme below instantiated with Ring Learning with Errors yielded the best practical
parameters.

4.2 Fully-Synchronous Semi-Honest Protocol (No dropouts)
We begin by showing how to securely realize the stateful secure aggregation functionality in the absence of
client dropouts. We will informally describe this protocol and give intuition for its security. The formal
description of the protocol can be found in Figure 2 and Figure 3. A formal security proof can be found in
Appendix B.

The high-level idea of our secure stateful aggregation protocol is relatively straightforward.

A persistent secret key. At the outset, clients in the first cohort, C1, locally and independently sample
uniformly random secret keys, s1,1, . . . , s1,n. This implicitly defines a global secret key s =

∑n
j=1 s1,j .

Throughout the protocol, we will maintain the invariant that the clients of any particular cohort are holding
an additive secret sharing of s.

To do this, we use a simple trick reminiscent of Chaum’s dining cryptographers [Chaum(1988)]. If the jth
client in cohort Ci is holding a share si,j , that client simply additively shares si,j into s1i,j , . . . , s

d
i,j such that

s1i,j , . . . , s
d
i,j are uniform conditioned on

∑d
k=1 s

k
i,j = si,j . Then Ci,j sends those shares to d randomly chosen

clients in the next cohort. Provided that every honest client sends a message to some other honest client
and receives at least one message from some other honest client, Ci,j ’s share si,j remains perfectly hidden.
Clients of the next cohort simply sum up the shares they receive to produce their own share. In particular,
if the kth client in cohort i+1, receives s̄1, . . . , s̄d

′
, then its share of the secret key will be si+1,k =

∑d′

j=1 s̄
j .

It is easy to verify that the invariant is maintained and so long as d is sufficiently large, no honest party’s
secret key share will be compromised.

We will use this persistent secret key to encrypt the state of the protocol, v = (vi)i≤r. In particular, the
server will hold an ever growing sequence of ciphertexts v = (v̂i)i≤r where the ith ciphertext is an encryption
of vi relative to a public matrix Ai and the global secret key s.

Writing to the secret state. Having established how to maintain private random keys that sum to the
same key s at any given time, we next describe a simple mechanism for updating an encrypted state held
by the server. Each client j in cohort Ci simply uses their secret key share si,j to encrypt their input xi,j .
The clients then send these ciphertexts to the server. The server, holding an encryption of the old state v,
uses the linearly holomorphic property of the encryption scheme to compute an encryption of ⟨λi,v⟩. The
server then simply sums the resulting correlated ciphertext with all ciphertext received from cohort Ci. The
result, an encryption of ⟨λi,v⟩+

∑n
j=1 xi,j , is then appended to its encrypted state.

Revealing parts of the secret state. If Modei−1 = Reveal, then we will use the distributed decryption
property to open the last part of the state. Namely, clients in cohort Ci send messages for distributed
decryption of the last part of the state. The server then uses these messages to reveal that part of the state.

Security intuition. Arguing security amounts to proving that these distributed decryptions of homomor-
phically evaluated ciphertexts preserve semantic security of the underlying ciphertexts sent by clients when
writing to the state, up to some linear constraints, even when this is done repeatedly.

We do this via a hybrid argument over the individual messages, but the step is in arguing that opening
linear functions of a sequence of ciphertexts is indistinguishable from uniform (up to the outputs of the

6For example, our framework can be instantiated with ElGamal (provided one sufficiently constrains the message space—
which suffices for our applications). However, this significantly degrades the complexity of communication relative to the
RLWE-based approach.
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linear functions). We argue this by reducing to a generalization of HintMLWE introduced by Kim et al. [Kim
et al.(2023)] (Def. 67 ) that allows for multiple leaks or hints on the noise:

(As+ Te, e+ f1, . . . ,f ℓ) ≈ (u, e+ f1, . . . , e+ f ℓ).

By a direct reduction (see Corollary 1 for precise statement and details), this implies that for λ1 . . .λℓ there
exist some noise distributions f1, . . . ,f ℓ such that(

A1, . . . ,Ar︸ ︷︷ ︸
public matrices

, A1s+ Te1 + x1, . . . ,Ars+ Ter + xr︸ ︷︷ ︸
server’s encrypted state (aggregated Store messages)

,

r∑
i=1

λ1
i (Tf

1 −Ais), . . . ,

r∑
i=1

λℓ
i(Tf

ℓ −Ais)︸ ︷︷ ︸
client’s distributed decryptions (aggregated Reveal messages)

)

≈
(

A1, . . . ,Ar︸ ︷︷ ︸
public matrices

,u1, . . . ,ur︸ ︷︷ ︸
uniform

,

r∑
i=1

λ1
i (Tf

1
i + Te1 − ui) + ⟨λ1,x⟩, . . . ,

r∑
i=1

λℓ
i(Tf

ℓ
i + Te1 − ui) + ⟨λℓ,x⟩︸ ︷︷ ︸

simulated decryption aggregation

)

The first r components are the public matrices in both distributions. The second r component can be thought
of as the server’s encrypted state (the sum of the Store messages). The third ℓ components are distributed
decryptions (the sum of the Reveal messages).

Critically note that if one considers the function

ϕi : (A1, . . . ,Ar, b1, . . . , br, c1, . . . , cℓ) 7→ ci +

r∑
j=1

λi
jbj ,

then ϕi applied to the either distribution yields

r∑
j=1

λi
jxj + T

 r∑
j=1

λi
j(f

i
j + ej)

 .

Thus, provided λi is appropriately bounded, the server can correctly recover
∑r

j=1 λ
i
jxj .

On the other hand, the indistinguishability of these two distributions means that (provided the client’s
messages are securely aggregated) nothing is leaked to the server about the state beyond precisely ⟨λ1,x⟩, . . . , ⟨λℓ,x⟩.
From there is simply a matter of arguing that the aggregation is secure using a hybrid argument (similar to
Bell at al. [Bell et al.(2023b)]).

This is summarized in the following theorem:

Theorem 1. Assuming that a semi-honest PPT adversary corrupts at most an γ-fraction of any user cohort,
in addition to the server, The protocol given in Figures 2, 3 securely implements the functionality in Figure
1.

Full proof of this theorem can be found in Appendix B.

Remark 1. We note that the communication complexity between clients, the biggest bottleneck, can be
improved beyond the naive implementation specified above. Recall that client-to-client communication is
comprised exclusively of additive secret sharing of the client’s secret. It can be advantageous to choose
parameters in the encryption scheme so that the secret key is quite large. However, the communication
complexity between parties will then grow accordingly as the size of each share is exactly the size of the secret
key, in the naive implementation described above.

To reduce communication costs, client i holding a secret key share si can, instead of additively sharing
si directly, sample a sequence of independent random seeds r1, . . . , rd that expand (using a PRG) to pseudo-
random strings y1, . . . ,yd. By setting y∗ = si −

∑d
j=1 yj, the client can then send the seeds r1, . . . , rd to

7Our definition is slightly different than that of Kim et al. [Kim et al.(2023)]: we consider a variant with uniformly random
secrets (as opposed to Gaussian) but do not reveal leakage on the secret.
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Server S
Public parameters:

• Clients’ public keys (via PKI)

• Vector length ℓ, input domain Fℓ.

• Key sharing parameter d

• Additive secret sharing scheme AShare, threshold secret sharing scheme TShare.

• The ith instruction, ti = (Modei, Ii, {λi
k}k<i), from the program P to be executed

• A means of generating public random matrices Ak indexed by corresponding round k

• Discrete Gaussian distribution Dσ for generating noise

For i > 1:

1. Send to Ci:

• Encrypted shares of the key from Ci−1

2. Receive from each client of Ci:

• Encrypted key resharings for Ci+1

• Receive wi
j from client j

3. Computation and Output:

• Aggregate wi =
∑

j∈[n] w
i
j

• If Modei−1 = Reveal, compute and output the remainder (wi−1 +
∑

k<i−1 λ
i−1
k wk) modulo T

Figure 2: Server: No dropout resilience

clients in the next cohort and y∗ to the server. The future client j receiving a batch of rk’s will then expand
them to yk’s and set their secret key sj =

∑
yk. The server can use y∗ to “correct” the output of reveal by

subtracting off Ay∗ from the result, for the appropriately computed A.
This results in client-to-client communication that is just dκ bits, where κ is the security parameter at

the cost of sending an additional |s| bits to the powerful and persistent server.

4.3 Adding Dropout Resilience
We now describe how to augment the simple protocol present above to be resilient to client dropouts.

Recall that security and correctness of the protocol above effectively reduces to maintaining the invariant
that at any point in time, the persistent secret key s is safely additively secret shared across the current
cohort of clients: clients are holding s̄1, . . . , s̄n that are uniformly random conditioned on s =

∑n
i=1 s̄i.

This is maintained by having each client re-share their share to some random subset of the next cohort:
client i holding s̄i samples uniformly random s̄1i , . . . , s̄

d
i subject to

∑d
j=1 s̄

j
i = s̄i and sends each share s̄ji to

a random client in the next cohort. Client i’s secret share s̄i was in turn the result of summing the shares
sent to it by clients in the previous cohort subject to s̄i =

∑d′

j=1 s̄
′
j .

We will augment this maintenance procedure with a simple mechanism to ensure that if any client drops
out, their share can be recovered to maintain the persistent global secret key. Some delicacy is required to
avoid compromising clients that send any sensitive information (even if they are not able to complete a full
protocol round).
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Client Ci,j

Public parameters:

• Clients’ public keys (via PKI)

• Vector length ℓ, input domain Fℓ.

• Key sharing parameter d

• Additive secret sharing scheme AShare, threshold secret sharing scheme TShare.

• The ith instruction, ti = (Modei, Ii, {λi
k}k<i), from the program P to be executed

• A means of generating public random matrices Ak indexed by corresponding round k

• Discrete Gaussian distribution Dσ for generating noise.

Private input: Possibly an input vector xi,j := Ii(Di,j) based on private data Di,j .

1. Receive messages from S:

• Unless i = 1, receive encrypted shares of key from Ci−1

2. Local computation:

• If i = 1, sample uniformly random s1,j from Fℓ.

• If i > 1, decrypt shares and compute si,j ←
∑

r s
r
i−1,j

• Compute (s1i,j , . . . , s
d
i,j)← AShare(si,j)

• If Modei = Store, generate and set Mi = Ai. Sample gi ← Dσ.

• If Modei = Reveal, set Mi = −
∑

k<i λ
i
kAk. Sample gi ←

∑
k<i λ

i
kDσ.

• Compute wi
j = Misi,j + Tgi.

3. Send to the server:

• Send encrypted (s1i,j , . . . , s
d
i,j) to d random clients in Ci+1 via server

• Upload wi
j to server

Figure 3: Client j in cohort i: No dropout resilience
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Server S
Public parameters:

• Clients’ public keys (via PKI).

• Input domain Fl.

• Key sharing parameter d.

• Additive secret sharing scheme AShare, threshold secret sharing scheme TShare.

• The ith instruction, ti = (Modei, Ii, {λi,r}r<i), from the program P to be executed

• A list of dropped clients Di indexed by the ith cohort

• A means of generating public random matrices Ai indexed by corresponding round i

• A pseudorandom generator PRG : Zq → Rℓ
q.

• A sate Z (initialized to 0) that aggregates missing secret shares.

• Discrete Gaussian distribution Dσ for generating noise.

For i = 2 to N :

1. Send to Ci:

• Encrypted additive shares of key from Ci−1

• [Dropout Recovery] Encrypted threshold shares from Ci−2 that recover the dropped clients
in Ci−1

• [Remove Mask] Encrypted threshold shares from non-dropped clients of Ci−1

2. Receive from each client in Ci:

• Register dropped clients from Ci in the global list Di.

• Encrypted key resharings for Ci+1

• Receive wi
j from client j for every j ∈ [n]\Di

• Encrypted threshold shares of each additive key share to Ci+2

• Encrypted threshold shares of self-mask secret to Ci+1

• The decryption of all received threshold that server requested

3. Computation and Output:

• Aggregate w̄i =
∑

j∈[n]\Di
wi

j

• Reconstruct missing key shares in Ci−1

– Recover shares s′k,j that client k sent to (dropped) client j for all k ∈ [n] \ Di−2, j ∈ Di−1

– Update Z ← Z +
∑

k,j s
′
k,j

• Reconstruct self-mask of Ci−1

– Recover bi−1,j for all non-dropped client j in the (i− 1)th cohort
– Compute MASKi−1

j ← PRG(bi−1,j)

• If Modei−1 = Store, set wi−1 ← w̄i−1 +Ai−1Z −
∑

j∈[n]\Di−1
MASKi−1

j

• If Modei−1 = Reveal, compute and output the remainder (w̄i−1+
∑

k<i−1 λi−1,k(w
k−AkZ)−∑

j∈[n]\Di−1
MASKi−1

j ) modulo T

Figure 4: Server: With dropout resilience
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Our approach is to associate with each client a random committee of chaperones in some future cohort.
The chaperones for client i will effectively hold threshold secret shares of client i’s secret key so that if client
i drops out, a quorum of the chaperones can help the server to reconstruct s̄i. The server can then use s̄i
to ensure Reveal outputs are computed correctly (by subtracting off from the result As̄i for the appropriate
matrix A).

To enable the chaperones to do this, every client j who sends a share s′j to client i (so that client i’s share

s̄i =
∑d′

j=1 s
′
j) will additionally send threshold secret shares of s′j to a randomly chosen set of chaperones in

the cohort after i’s.
If client i fails to send any message specified by the protocol (recall that we assume all traffic is visible,

but not its contents), then these chaperones will release their shares of s′j enabling the server to recover
s′j . Because this happens for all shares s′j sent to client i, the server can reconstruct s̄i. Provided that the
chaperone committees do not have too many corrupted members, client i’s share s̄i will remain perfectly
secret.

The problem with what we have sketched so far, is that client i may have sent an encryption of the input
xi under s̄i before dropping out. Therefore, if the procedure outlined above is followed, s̄i can be used to
decrypt client i’s private input xi!

To avoid this, we introduce one last simple mechanism: client i masks their encryption with a pseudo-
random mask yi. The short seed for this pseudorandom mask is then threshold secret shared with a random
committee of chaperones in the next cohort. If the client successfully sends all messages, i.e. does not drop
out, then the chaperones release their shares so the server can reconstruct the mask. If the client fails to
send all messages as protocol defined, i.e. the client is registered as having dropped out, the chaperones will
not release the shares of the mask. Thus, provided there are not too many corrupt chaperones, the mask
will remain pseudorandom and ensure the privacy of the client’s input xi.

Remark 2. An alternative approach is to associate a single publicly known committee of chaperones with
each client that will be used for all tasks above (instead of choosing a random committee for each underlying
message in the dropout-free protocol). This committee could even be the same for all clients if one has good
reason to believe that not too many will be corrupted. This may enable simpler implementation, albeit at the
cost of making any one such committee easier to corrupt (as the membership is known in advance).

Additionally, instead of automatically relying on the chaperones to release the mask for a client’s encryp-
tion of their input, xi. An alternate approach is to ask the client to send that directly in the next round,
after checking all their messages were delivered successfully. Only if the client does not stay online would
the chaperones need to reconstruct the mask. This way, clients who do not drop out will reduce the overall
communication cost.

5 Benchmarking
In this section we discuss concrete parameter selection and performance costs for our protocol. Given that
RLWE encryption and decryption very fast in practice using FFT friendly parameters we focus on ciphertext
expansion, and overall communication costs for clients.

5.1 Parameter Selection
We use the lattice estimator [Albrecht et al.(2015)] to estimate the hardness of RLWE problem used and set
parameters to have at least 128 bits of computational security. The secret distribution is a Gaussian with
standard deviation σs =

√
2σ, and the noise distribution used in fresh encryptions is Gaussian with standard

deviation σn = 2σ
√
r + 1, where σ = 3.2 is the stdev used to estimate RLWE security, and r is the number

of rounds/releases in the protocol. Since we only apply additive homomorphic operations on ciphertexts, we
can track the l∞ norm on the coefficient embedding of the error polynomial, as well as the plaintext.

Security of the our scheme relies on a variant of Kim et al. [Kim et al.(2023)] assumption which proves
that by using a uniformly random secret and Gaussian error with standard deviation σn as set above, the
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n ℓ N q packing factor client communication ciphertext expansion

103 103 2048 44 1 16.76 KB 8.38x
105 103 2048 54 1 20.57 KB 10.29x
107 103 4096 64 1 40.77 KB 20.38x
103 105 4096 96 3 449.16 KB 2.25x
105 105 4096 87 2 588.29 KB 2.94x
107 105 4096 103 2 696.49 KB 3.48x
103 107 16384 434 16 34.88 MB 1.74x
105 107 16384 413 12 43.87 MB 2.19x
107 107 16384 417 10 52.98 MB 2.65x

Table 1: Parameters for some common settings (number of rounds is 1000 in all cases, and input domain is
[216]ℓ).

resulting aggregation protocol is as secure as standalone HE scheme with σ = 3.2. Note that the specific
choice of σ = 3.2 as the error distribution for standalone homomorphic encryption schemes is suggested by
the Homomorphic Encryption Standard [Albrecht et al.(2018)], and is widely accepted and used in practice.

5.2 Communication costs
Table 5.2 shows some parameters for common settings of the protocol. We find parameters by minimizing
the dominant communication costs (bits sent to server) while doing a grid search over secure parameters. It
can be observed that as soon as vector length is > 1000 ciphertext packing pays off, and ciphextext expansion
stays within small single digits (2-5x). By ciphertext packing we mean encoding several entries of the vectors
to be encrypted in the same coefficient of a ciphertext. This gives flexibility when finding parameters as it
allows to use the plaintext domain optimally. This explain the large values of N and q in the table. An
important optimization well-known in practice is to drop unused coefficients of a ciphertext.

We now turn our attention to the prefix sum application. In Figure 6, we show how per-client com-
munication scales with input vector length, compared to a baseline insecure protocol where plaintexts are
submitted in the clear. As shown in the plot, the communication overhead is small even for small ϵ (privacy
parameter). The plaintext domain has to account for differentially private noise. As the corresponding dis-
tribution is a centered Gaussian, this is not a huge increase over the requirement that the plaintext domain
has to fit the sum of n clients’ contributions, i.e. n, as every input is a binary vector in this case.

We do not report the client-to-client communication cost as this is (a) comparatively much smaller and
(b) invariant regardless of how the encryption scheme is instantiated (see Remark 1).
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A Preliminaries

A.1 Cryptographic Building Blocks
A.1.1 Lattices, Rings, and RLWE Encryption

Definition 1 (Decisional LWE assumption). Given a prime q, a matrix A sampled uniformly from ZM×N
q ,

a vector s uniformly sampled from ZN
q , an error vector e ∈ ZN

q sampled from ϕ. We say that Decisional
LWE is hard if (A,As+ e) is computationally indistinguishable from the uniform.

Definition 2 (LWE encryption). Let A be sampled uniformly from ZM×N
q and ϕ be an error distribution in

which LWE is hard. LWE encryption scheme consists of the following three algorithms:

• LWEGen(1λ)→ (s): sample a random vector s from ZN
q , sample e← ϕ.

• LWEEnc(A, s, x)→ c: compute c = As+ Te+ x mod q, where x ∈ ZM
T , T is coprime to q.

• LWEDec(A, s, c)→ x: compute x = (c−As) mod T .

We say that LWE encryption is secure is secure if it has CPA security. Note that if Decisional LWE
assumption holds, then LWE encryption is secure.

A.1.2 Secret Sharing

Definition 3 (Additive secret sharing). An additive secret-sharing scheme consists of the following algo-
rithm:

• AShare(sk) → (x1, . . . , xn): take in a secret sk, generate randomness ρ, output n random messages
such that

∑n
i=1 xi = sk.

Definition 4 (Threshold secret sharing). A threshold secret-sharing scheme consists of the following algo-
rithm:

• TShare(sk) → (x1, . . . , xm): take in a secret sk, generate randomness ρ, output m random messages
to help with the reconstruction of sk.

• TRec({xj}j∈S,|S|≥t)→ sk: take in at least t threshold secret shares, output sk.

We say that the threshold secret sharing scheme is secure if the probability that, given less than t threshold
shares, an adversary can recover sk is negligible.

B Fully-Synchronous (no dropouts) semi-honest security
We use a variant case of the Hint-MLWE problem of Kim et al. [Kim et al.(2023)]. Kim et al. additionally
allow leakage on the MLWE secret, s, but we do allow the adversary this. On the other hand, we do assume
the secret key is uniformly random (in contrast to Gaussian). Additionally, our variant considers multiplying
the noise by a factor of T (where T is coprime to the modulus q).

Definition 5 (MLWE [Kim et al.(2023)]). Let d,m, q be positive integers, and χ be a distribution over
Rd+m. Then, the goal of the Module-LWE (MLWE) problem is to distinguish (A,u) from (A,As + e) for
A

u← Rm×d
q ,u← U(Rm

q ), e← χ, and s
u← Rd

q . We say that a PPT adversary A has advantage ε in solving
MLWER,d,m,q,χ if

Pr[A(A,As+ e) = 1]− Pr[A(A,u) = 1] ≥ ε.

Definition 6 (Hint-MLWE [Kim et al.(2023)]). Let d,m, ℓ be positive integers, χ, ξ be distributions over Rm,
χ a distribution over Rd. The Hint-MLWE problem, denoted by HintMLWEℓ,ξ

R,d,m,q,T,χ,χ′ asks an adversary
A to distinguish the following two cases:
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1. (A,As+ Te, e+ f1, . . . , e+ f ℓ),

2. (A,u, e+ f1, . . . , e+ f ℓ);

where in both distributions above A
u← Rm×d

q , s u← χ′, e← χ, f i ← ξ for all i ∈ [ℓ], and u
u← Rm

q .
We take HintMLWEℓ,σ2

R,d,m,q,T,σ1
to be the case where ξ is a spherical Gaussian distribution with width σ2

and χ is a spherical Gaussian distributions with width σ1, and χ′ is uniformly random.

We verify that Kim et al.’s proof of the hardness of Hint-MLWE can similarly be adapted to our variant
following the observations of Bell et al. for HintLWE [Bell et al.(2023b)] and noticing that if the secret isn’t
leaked then conditional sampling need not be invoked on the secret key.

Definition 7 (Smoothing parameter [Micciancio and Regev(2004)]). For an n-dimensional lattice Λ and
positive real ε > 0, the smoothing parameter ηε(Λ) is the smallest s such that ρ1/s(Λ∗\{0}) ≤ ε.

Theorem 2 ([Kim et al.(2023)]). Let d, k,m, q, ℓ be positive integers. For any T coprime to q, ℓ > 0, and
σ1, σ2, σ > 0 such that 1

σ2 ≥ 2
(

1
σ2
1
+ ℓ

σ2
2

)
. If σ ≥

√
2ηε(Zn) for 0 < ε ≤ 1/2, then there exists an efficient

reduction from MLWER,d,m,q,σ to HintMLWEℓ,σ2

R,d,m,q,T,σ1
.

From this we derive a sanity check for our security proof that says that the leakage of the reveal operations
does not reveal anything about the encrypted state held by the server. The full required for the proof amounts
to incorporating a hybrid argument with this observation. Note that here we give a general proof for the
high dimensional case. Our protocol actually works under Hint-RLWE assumption, where d is set to 1.

Corollary 1. Assuming the hardness of HintMLWEℓ,σ2

R,d,m,q,T,σ1
, for any λ(1), . . . ,λ(ℓ) ∈ Zm

q , the following
distributions are indistinguishable for any PPT adversary

1. (A1, . . . ,Ar,A1s+ Te1, . . . ,Ars+ Ter,
∑r

i=1 λ
(1)
i (Tf

(1)
i −Ais),

∑r
i=1 λ

(ℓ)
i (Tf

(ℓ)
i −Ais)),

2. (A1, . . . ,Ar,u1, . . . ,ur,
∑r

i=1 λ
(1)
i (Tf

(1)
i + Tei − ui),

∑r
i=1 λ

(ℓ)
i (Tf

(ℓ)
i − Tei − ui));

where in both distributions above Ai
u← Rm×d

q , s ← Dd,σ1
, e ← Dm,σ1

, f (j)
i ← Dσ2

, and ui
u← Rm

q for all
i ∈ [r], j ∈ [ℓ].

Proof. This follows by observing that each distribution is a linear function from the corresponding HintMLWE
distribution. Namely, if we take

A :=

 A1

· · ·
An

 & u :=

 u1

· · ·
un

 & e :=

 e1
· · ·
en

 & f (i) :=

 f
(i)
1

· · ·
f (i)
n


for all i ∈ [ℓ] and define the operator

M(λ) := [λ1I| · · ·λnI] = λ⊤ ⊗ I

then we can equivalently formulate the above distributions as

1.
(
A,As+ Te,M(λ(1))(Tf (1) −As), . . . ,M(λ(ℓ))(Tf (ℓ) −As)

)
,

2.
(
A,u,M(λ(1))(Tf (1) + Te− u), . . . ,M(λ(ℓ))(Tf (ℓ) + Te− u)

)
.

The corollary then follows from the simple reduction F that given (A, b,y(1), . . . ,y(ℓ)) and λ(1), . . . , λ(ℓ)

simply outputs
(A, b,M(λ(1))(Ty(1) − b), . . . ,M(λ(ℓ))(Ty(ℓ) − b)).

To see this suffices note that for y(i) = e+ f (i),

M(λ(i))(y(i) − b) =

{
M(λ(i))(Tf (i) −As) if b = As+ Te,

M(λ(i))(Tf (i) + Te− u) if b = u.
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However, as mentioned, this corollary alone is not quite enough for our proof. We need to show that
not only does the encrypted state remain secure under the Reveal operations but moreover that the Store
operations themselves remain secure given these releases: encrypting under correlated keys remain secure
under leakage.

Lemma 1. Assuming the hardness of HintMLWEℓ,σ2

R,d,m,q,T,σ1
, for any λ1, . . . ,λℓ ∈ Zm

q ,x1, . . . ,xt ∈ Rm
q the

following distributions are indistinguishable for any PPT adversary

1.
(
A1, . . . ,Ar,A1s+Te1 +x1, . . . ,Ars+Ter +xr,

∑r
i=1 λ

1
i (Tf

1
i −Ais−xi)+ y1, . . . ,

∑r
i=1 λ

ℓ
i(Tf

ℓ
i −

Ais− xi) + yℓ
)
,

2.
(
A1, . . . ,Ar,u1, . . . ,ur,

∑r
i=1 λ

1
i (Tf

1
i + Tei − ui) + y1, . . . ,

∑r
i=1 λ

ℓ
i(Tf

ℓ
i + Tei − ui) + yℓ

)
;

where in both distributions above Ai
u← Rm×d

q , s ← Dd,σ1
, ei ← Dm,σ1

, f (j)
i ← Dσ2

for all i ∈ [r], j ∈ [ℓ],
and u1, . . . ,ur

u← Rm
q and we define yk :=

∑r
i=1 λ

k
i xi for k ∈ [ℓ].

The proof of this lemma combines the simple transformation above with a hybrid argument.

Proof. We begin by defining the hybrids H0, . . . ,Hr. In particular, Hi is the distribution

(A1, . . . ,Ar,u1, . . . ,ui,Ai+1s+ xi+1 + Tei+1, . . . ,Ars+ xr + Ter, z1, . . . zℓ)

where for k ∈ [ℓ],

zk =

r∑
i=1

λ
(k)
i

− i∑
j=1

uj −
r∑

j=i+1

Ajs+ Tfk
i + T

i∑
j=1

ej −
r∑

j=i+1

xj

+ yk

and u1, . . . ,ur
u← Rm

q ,Ai
u← Rm×d

q , s← Dd,σ1
, ei ← Dm,σ1

,f
(j)
i ← Dσ2

for i ∈ [r], j ∈ [ℓ].
Notice that H0 coincides with distribution 1 and Hr coincides with distribution 2. Now, we argue that

for any i ∈ [r], Hi−1 ≈ Hi by the following reduction from HintMLWE (Definition 6).
We can build a reduction B that takes input (A, b,w(1), . . . ,w(ℓ)) from HintMLWE such that it outputs

(A1, . . . ,Ar,u1, . . . ,ui−1,vi,Ai+1s+ xi+1 + Tei+1, . . . ,Ars+ xr + Ter, ẑ1, . . . , ẑℓ) ,

where vi = b+ xi and

ẑk =

r∑
i=1

λk
i

−b+w(k) −
i−1∑
j=1

uj −
r∑

j=i+1

Ajs+ T

i−1∑
j=1

ej −
r∑

j=i

xj

+ yk

Consider that b = As + Te, w(i) = Te + Tf (i) for i ∈ [ℓ], e ← Dm,σ1 ,f
(i) ← Dσ2 . We rewrite using

fresh variable names Ai = A, ei = e,fk
i = f (i). As a result, we have vi = Ais+ xi + Tei and

ẑk =

r∑
i=1

λk
i

− i−1∑
j=1

uj −
r∑

j=i

Ajs+ Tfk
i + T

i−1∑
j=1

ej −
r∑

j=i

xj

+ yk

So the output of the reduction is the same as Hi−1.
On the other hand, consider that b = u,w(i) = Te + Tf (i) for i ∈ [ℓ], e ← Dm,σ1 ,f

(i) ← Dσ2 . We
rewrite using fresh variable names ui = u, ei = e,fk

i = f (i). As a result, we have vi = ui + xi and

ẑk =

r∑
i=1

λk
i

− i∑
j=1

uj −
r∑

j=i+1

Ajs+ Tfk
i + T

i∑
j=1

ej −
r∑

j=i

xj

+ yk
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Since b = u is uniformly random, ẑk follows exactly the distribution Hi. By the hardness assumption of
HintMLWE, for any i ∈ [r], Hi−1 and Hi are indistinguishable for any PPT adversary. In particular, H0 and
Hr are indistinguishable for any PPT adversary, which proves the lemma.

Theorem 3. Assuming that a semi-honest adversary corrupts at most an γ-fraction of any user cohort, in
addition to the server, The protocol given in Figures 2,3 securely implements the functionality in figure 1.

The proof follows more or less immediately from Lemma 1.

Sketch. For simplicity, we assume secure point-to-point channels between clients in successive cohorts. This
assumption is easily relaxed in usual manner by introducing key infrastructure. Also for simplicity we assume
the inputs are statically chosen, although the proof can easily be modified to securely simulate a reactive
version of the functionality.

The lazy protocol. In this proof we consider, without loss of generality, a lazy protocol where all
linear function evaluation is pushed to the time of reveal. The lazy server simply appends the sum of the
clients’ Store messages to it’s state, instead of also adding a linear combination of the prior states. Then,
when it is time to reveal the server and clients recursively compute the appropriate linear function, λ̄

i,
consistent with all real linear operations that were to have taken place up to this point, λ1, . . . ,λi−1. By
linearity, this too is just another linear function that can be computed by copying the state and performing
the sequence of necessary linear evaluations or, alternatively, simply evaluating the with λ̄

i where λ̄
i
j :=∑

j=k1<k2<···<kℓ=i λ
kℓ

kℓ−1
λ
kℓ−1

kℓ−2
· · ·λk3

k2
λk2

k1
for j < i and λ̄

i
i = 1.

For example if the sum of inputs at round i is xi, then the real server has state

v = ( x1︸︷︷︸
v1

, x2 + λ2
1v1︸ ︷︷ ︸

v2

, x3 + λ3
2v2 + λ3

1v1︸ ︷︷ ︸
v3

, . . .)

and when asked to reveal simply outputs vi.
In the lazy protocol, the state is simply

v̄ = (x1, x2, x3, . . .)

and when asked to reveal the output is computed as ⟨λ̄i
, v̄⟩ =

∑i
j=1 λ̄

i
jxj .

Simulating client-to-client communication. We begin by noting that if an adversary controls at
most an γ fraction of the next cohort, Ci+1, the probability that any specific client in cohort Ci who sends
messages to d i.i.d. randomly chosen clients in Ci+1 fails to send a message to an honest client is γd. If there
are a total of at most r cohorts, each containing n clients, then for d ≥ log(1/δ)+log(2nr)

1−γ every honest client
sends a message to some other honest client and receives at least one message from some other honest client
with probability at least 1− 2nred(γ−1) ≥ 1− δ.

In this case, because messages from honest clients to other clients are perfect additive secret shares as we
assume point-to-point channels between clients, the adversary’s view of such messages is uniformly random
and independent of all other communication in the protocol seen by the adversary. Thus, we can focus
exclusively on simulating messages to the corrupt server (which comprises all other messages from honest
clients seen by the server). Next, we describe how to simulate these messages.

Simulating messages to the adversarial server. Let v̂i denote the state of the idealized functionality
at round i if only adversarial inputs are incorporated. Let v̂i

′ denote the state of the idealized functionality
using only honest outputs at round i, then the state at round i (incorporating both honest and adversarial
inputs) is simply v̂i + v̂i

′ = vi. Recall, additionally, that if there is a Reveal operation at round i, then the
idealized functionality will output vi at the next round.

The simulator is as follows:

1. The messages sent by honest parties when Modei = Store are simply uniformly random.
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2. When Modei = Reveal, the simulator additionally sends random values (in the next round) such that
when summed with the contribution from server, yi = ⟨λ̄

i
, v̄⟩, where v̄ = (x1, x2, x3, . . .) is the server’s

state at time i, and the messages from the corrupt parties, the result is yi + T
∑t′i

j=1⟨λ̄
i
,f i,j⟩ where

f i,j are sampled according to Dσ1
+Dσ2

.

We now argue that this simulation is indistinguishable from the real protocol using a hybrid argument.
However before continuing, we set up some notation that will be consistent across the hybrid argument.
Suppose there are r instructions with Mode = Store and ℓ instructions with Mode = Reveal. We denote the
view of the adversarial server (rearranged) as

(A1, . . . ,Ar, α
1
1, . . . , α

1
t1 , . . . , α

r
1, . . . , α

r
tr , β

1
1 , . . . , β

1
t′1
, . . . , βℓ

1 . . . , β
ℓ
t′ℓ
)

where αi
j denotes the Store message sent by the jth honest client in round i (here the honest clients are

indexed from 1 to ti) and βi
j denotes the message sent by the jth honest client in round i if Modei−1 = Reveal

(here the honest clients are indexed from 1 to t′i). Caution: the distribution of these variables will depend
on the specific hybrid.

So the simulator sets all αi
j to be uniformly random and independent. Similarly, βi

j are uniformly random

conditioned on
∑t′i

j=1 β
i
j = yi + T

∑t′i
j=1⟨λ̄

i
,f i,j⟩ − ci, where ci is the message from the dishonest parties.

We now define the sequence of hybrids:
Hybrid 0. H0 is the adversary’s real view. We can rewrite how this is sampled as follows:

1. Sample Ai
u← Rm×d

q for all i ∈ [r].

2. Sample s
u← Rm

q .

3. Sample eij ← Dm,σ1
for all i ∈ [r], j ∈ [ti] and f i

k,j ← Dσ2
for all i ∈ [ℓ], j ∈ [t′i], k ∈ [r].

4. For all i ∈ [r], sij are uniformly random variables conditioned on
∑ti

j=1 s
i
j +

∑
k corrupt s

i
k = s, where

sik for corrupt k are computed according to the protocol.

5. For all j ∈ [ti], set αi
j = Ais

i
j +Teij +xi

j , where xi
j is the secret input of the jth honest party in round

i.

6. For all j ∈ [t′i], set βi
j =

∑r
k=1 λ̄

i
k(Tf

i
k,j −Aks

i
j), where λ̄

i ∈ Zm
q is the weights applied in round i.

7. α̂i
k, β̂

i
k for corrupt k are computed according to protocol and prior messages.

Hybrid 1. In this hybrid, we can equivalently sample this by first sampling uniformly random αi
j

u← Rm
q

for all i ∈ [r] and j ≥ 2. Then we set αi
1 =

∑ti
j=1 Ais

i
j + Teij + xi

j −
∑ti

j=2 α
i
j for all i ∈ [r].

Notice that all clients need to follow the protocol regardless of whether honest or not. So the invariant∑ti
j=1 Ais

i
j +

∑
k corrupt Ais

i
k = Ais always holds. So we can rewrite αi

1 as

Ais+ Tei + xi − ci −
ti∑

j=2

αi
j

where ei =
∑ti

j=1 e
i
j , xi =

∑ti
j=1 x

i
j , and ci =

∑
k corrupt Ais

i
k.

To show this hybrid is indistinguishable from Hybrid 0, we define the following partial hybrids H1
i , . . . ,H

ti
i

for each i ∈ [r]. In particular, Hj
i is the distribution:(

Ai,

j∑
k=1

Ais
i
k + xi

k + Teik −
j∑

k=2

uk,u2, . . . ,uj ,Ais
i
j+1 + xi

j+1 + Teij+1, . . . ,Ais
i
ti + xi

ti + Teiti

)
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where u2, . . . ,uti
u← Rm

q ,Ai
u← Rm×d

q , s
u← Rd

q , e
i
1, . . . , e

i
ti ← Dm,σ1 , and sij are uniformly random

variables conditioned on
∑ti

j=1 s
i
j +
∑

k corrupt s
i
k = s, where sik for corrupt k are computed according to the

protocol.
Notice that H1

i coincides with the partial view in Hybrid 0 and Hti
i coincides with the partial view in

Hybrid 1. Now, we argue that for any j ∈ {2, . . . , ti}, Hj−1
i ≈ Hj

i by the following reduction from MLWE
(Definition 5).

We can build a reduction B that takes input (A, b) from MLWE such that it outputs(
Ai, z,u2, . . . ,uj−1,vj ,Ais

i
j+1 + xi

j+1 + Teij+1, . . . ,Ais
i
ti + xi

ti + Teiti
)
,

where vj = b+ xi
j and

z =

j∑
k=1

Ais
i
k + xi

k + Teik −
j−1∑
k=2

uk − b− xi
j

Consider that b = As+ Te, e← Dm,σ1
. We rewrite using fresh variable names Ai = A, sij = s, eij = e.

As a result, we have vj = Ais
i
j + xi

j + Teij and

z =

j−1∑
k=1

Ais
i
k + xi

k + Teik −
j−1∑
k=2

uk

So the output of the reduction is the same as Hj−1
i .

On the other hand, consider that b = u. We rewrite using fresh variable names uj = u. As a result, we
have vj = uj + xi

j and

z =

j∑
k=1

Ais
i
k + xi

k + Teik −
j∑

k=2

uk − xi
j

Since b = u is uniformly random, z follows exactly the distribution Hj
i . By the hardness assumption of

MLWE, for any j ∈ {2, . . . , ti}, Hj−1
i and Hj

i are indistinguishable for any PPT adversary. In particular, H1
i

and Hti
i are indistinguishable for any PPT adversary.

Combining all the partial hybrids, we can show that any PPT adversary cannot distinguish between
Hybrid 0 and Hybrid 1.

Hybrid 2. In this hybrid, we set α1
i = Ais+Tei+xi−ci for all i ∈ [r]. This hybrid is indistinguishable

from Hybrid 1 by the pseudorandomness of MLWE samples.
Hybrid 3. In this hybrid, we can equivalently sample the distribution in the previous hybrid by first

sampling uniformly random βi
j,k

u← Rm
q for all i ∈ [ℓ], k ∈ [r] and j > 2. Then we set βi

j =
∑r

k=1 λ̄
i
kβ

i
j,k for

j > 2, and β1
i =

∑t′i
j=1

∑r
k=1 λ̄

i
k(Tf

i
k,j − Aks

i
j) −

∑t′j
j=2 β

i
j for all i ∈ [ℓ]. By the same invariant, we can

rewrite β1
i as

β1
i =

r∑
k=1

λ̄
i
k(Tf

i
k −Aks)− c′i −

t′j∑
j=2

βi
j

where f i
k =

∑t′i
j=1 f

i
k,j , and c′i =

∑r
j=1

∑
k corrupt−λ̄

i
jAjs

i
k = −

∑r
i=1 λ̄

i
jci.

We can apply the same partial hybrid technique to show that Hybrid 2 and Hybrid 3 are indistin-
guishable.

Hybrid 4. In this hybrid, we set β1
i =

∑r
k=1 λ̄

i
k(Tf

i
k − Aks) − c′i, and sample uniformly random

βi
j

u← Rm
q . This hybrid is indistinguishable from Hybrid 3 by the pseudorandomness of MLWE samples and

by the fact that λ̄
i ∈ Zm

q \ {0} and q is a prime.
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After Hybrid 4, the view becomes

(A1, . . . ,Ar, α
1
1 := A1s+ Te1 + x1 − c1, α

1
2, . . . , α

1
t1 , . . . , α

r
1 := Ars+ Ter + xr − cr, α

r
2, . . . , α

r
tr ,

β1
1 :=

r∑
i=1

λ̄
1
i (Tf

1
i −Ais+ ci), β

1
2 , . . . , β

1
t′r
, . . . , βℓ

1 :=

r∑
i=1

λ̄
ℓ
i(Tf

ℓ
i −Ais+ cℓ), β

ℓ
2, . . . , β

ℓ
t′r
)

where αi
j and βi

k are independent uniformly random variables over Rm
q for all j > 2 and k > 2.

Hybrid 5. In this hybrid, we sample uniformly random αi
1 for all i ∈ [r], and set βk

1 to
∑r

i=1 λ̄
k
i (Tf

k
i +

Tei − αi
1) + ⟨λ̄

i
,x⟩ for all k ∈ [ℓ]. Because all αi

1, β
k
1 are independent of other random variables. So by

Lemma 1, this hybrid is indistinguishable from Hybrid 4.
The last hybrid Hybrid 5 can be computed from the simulator’s input. Therefore, the security claim

follows.
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Client Ci,j

Public parameters:

• Clients’ public keys (via PKI)

• Input domain Fl

• Key sharing parameter d

• Additive secret sharing scheme AShare, threshold secret sharing scheme TShare.

• Chaperone parameter h

• The ith instruction, ti = (Modei, Ii, {λi,r}r<i), from the program P to be executed

• A list of dropped clients Di indexed by the ith cohort

• A means of generating public random matrices Ai indexed by corresponding round i

• A pseudorandom generator PRG : Zq → Rm
q .

• A sate Z (initialized to 0) that aggregates missing secret shares.

• Discrete Gaussian distribution Dσ for generating noise.

Private input: Possibly an input vector xi,j := Ii(Di,j) based on private data Di,j .

1. Receive messages from S:

• Unless i = 1, receive additive encrypted shares of key from Ci−1

• [Dropout Recovery] Encrypted threshold shares from Ci−2 that recover the dropped clients
in Ci−1

• [Remove Mask] Encrypted threshold shares from non-dropped clients of Ci−1

2. Local computation:

• If i = 1, sample uniformly random s1,j from Z∗
q .

• If i > 1, decrypt shares and compute si,j ←
∑

r s
r
i−1,j

• Compute (s1i,j , . . . , s
d
i,j)← AShare(si,j)

• For each ski,j , k ∈ [d], compute (tk,1i,j , . . . , t
k,h
i,j )← TShare(ski,j)

• Sample uniformly random secret bi,j from Zq and compute MASKi
j ← PRG(bi,j)

• Compute (u1
i,j , . . . , u

h
i,j)← TShare(bi,j)

• If Modei = Store, generate and set Mi = Ai. Sample gi ← Dσ.

• If Modei = Reveal, set Mi = −
∑

k<i λ
i
kAk. Sample gi ←

∑
k<i λ

i
kDσ.

• Compute wi
j = Misi,j + Tgi +MASKi

j .

3. Send to the server:

• Send encrypted (s1i,j , . . . , s
d
i,j) to d random clients in Ci+1 via server

• For each k ∈ [d], send encrypted (tk,1i,j , . . . , t
k,h
i,j ) to h random chaperones of client k in Ci+2 via

server.

• Send encrypted (u1
i,j , . . . , u

h
i,j) to h random chaperones of client j in Ci+1 via server.

• The decryption of all received threshold that server requested.

• Upload wi
j to server

Figure 5: Client j in cohort i: With dropout resilience28



Figure 6: Client communication to server for several vector lengths for our protocol (1000 rounds), compared
to the baseline where clients submit a vector in {0, 1}ℓ in the clear.
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