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Abstract. The theory of compressed Σ-protocols [AC20, ACF21] pro-
vides a standardized framework for creating efficient Σ-protocols. This
method involves two main phases: first, amortization, which combines
multiple instances that satisfy a homomorphic relation into a single in-
stance; and second, Bulletproofs compression [BBB+18], which mini-
mizes communication overhead to a logarithmic scale during the ver-
ification of the combined instance. For high-degree polynomial (non-
homomorphic) relations, a circuit-based linearization technique is used
to transform each instance into a linear relation, resulting in a protocol
with at least linear complexity.
In this paper, we provide a direct method to extend the compressed
Σ-protocol theory to polynomial relations, named Σ-Check. One ma-
jor contribution of Σ-Check is to eliminate the linear cost associated
with linearization in amortization. To achieve this, we employ a sum-
check during this phase to ensure a logarithmic communication cost.
To the best of our knowledge, Σ-Check is the first work to achieve a
logarithmic amortization for polynomial relations. Nevertheless, without
linearization, the amortized relation may not be linear, which hinders
us from using Bulletproofs compression. To overcome this problem, we
employ another sum-check during the compression phase to effectively
manage high-degree relations. Additionally, we propose several variants
of our techniques and adapt them for arithmetic circuit relations. We
also demonstrate the practicality of our compressed Σ-protocol theory
through applications such as binary proofs, range proofs, and partial
knowledge proofs. Our basic protocols are initially based on the Dis-
crete Logarithm (DL) assumption, and we have further extended these
to incorporate the Strong-RSA assumption and the Generalized Discrete
Logarithm Representation (GDLR) assumption. Our work expands the
scope of compressed Σ-protocol theory and provides a robust foundation
for real-world cryptographic applications.

Keywords: Σ-protocol, compressedΣ-protocol theory, sum-check protocol, arith-
metic circuit satisfiability.
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1 Introduction

The Σ-protocol is a fundamental cryptographic primitive with extensive applica-
tions in zero-knowledge proofs. Many efforts have been invested in reducing the
communication overhead of Σ-protocols. The most significant advancement in
this area is the compressed Σ-protocol theory introduced by Attema et al. [2,3],
which provides a general framework for constructing various Σ-protocols with a
logarithmic communication cost.

The compressed Σ-protocol theory contains two major phases: (i) the amor-
tization to fold multiple instances of a homomorphic relation into one, and (ii)
the compression based on Bulletproofs [9] to decrease the communication cost of
verifying a single instance to a logarithmic scale. In addition to the discrete log-
arithm assumption inherited from Bulletproofs, Attema et al. also describe the
compressed Σ-protocol theory under Strong-RSA [2], knowledge-of-exponent [2],
and module short integer solution [4] assumptions.

However, when dealing with high-degree polynomials, it is challenging to
fold multiple instances into one due to cross-terms. For example, consider two

instances f⃗1, f⃗2 such that f⃗i
2
= 0 for all i ∈ {1, 2}. During the amortization

phase, if we use a random challenge r to fold f⃗1 and f⃗2, we obtain f⃗ = f⃗1 + rf⃗2.
To ensure the verification relation holds for f⃗2, the prover must additionally send
the cross-term 2f⃗1f⃗2. Since the number of cross-terms increases linearly with the
polynomial degree and number of instances, a straightforward amortization be-
comes inefficient for multiple high-degree relations. To handle high-degree poly-
nomial (non-homomorphic) relations, Attema et al. [2] employs an arithmetic
circuit to represent them and subsequently converts them into a linear relation
through arithmetic secret-sharing techniques. After this “linearization” process,
the resulting relation takes the form of h(f⃗) = v for a public linear function h,

where f⃗ is the witness and v is a public scalar. It is important to note that this
indirect approach introduces (at least) a linear communication overhead when
processing multiple instances, since the prover is required to send the public
inputs for each instance. Besides, the linearization also requires the prover to
engage in polynomial arithmetic on high-degree polynomials using Fast Fourier
Transforms (FFTs), which prevents the prover from being implemented in log-
arithmic space [8]. Lastly, when the non-homomorphic function is expressed in
non-native groups, such as elliptic curve groups, the cost of encoding these non-
native operations into the circuit can be significant [26,30,36].

1.1 Our contributions

In this work, we adopt a more direct approach to avoid the linear overhead for
processing multiple polynomial relations. Specifically, we face two major chal-
lenges. First, any form of linearization is insufficient due to the inherent costs
of public inputs. This requires us to design an efficient amortization technique
that bypasses linearization. Second, without linearization, the amortized rela-
tion may include high-degree polynomials, which prevents a direct application
of Bulletproofs in the compression phase.

2



Table 1: Comparison between our approach with other methods. “Amortization”
indicates the costs of handling polynomial relations, including the cost of lin-
earization in AC20 [2] and ACF21 [3]. “size” states the proof size. In particular,
we consider handling k instances withm-size witnesses. The degree-related terms
are omitted for simplicity.

Relation
Amortization Compression

Prover Verifier Size Prover Verifier Size

AC20 [2] linear O(km) O(k) O(k) O(m) O(m) O(logm)

ACF21 [3] homomorphic O(km) O(k) O(k) O(m) O(m) O(logm)

Σ-Check polynomial O(k) O(k) O(log k) O(m) O(m) O(logm)

To address these challenges, we resort to the sum-check protocol [31], a pow-
erful tool that allows us to directly extend the compressed Σ-protocol theory
to polynomial relations. Sum-check protocols have previously been utilized in
certain contexts to manage high-degree polynomials effectively. This motivates
us to design an efficient amortization directly (without linearization) using a
sum-check protocol. To the best of our knowledge, Σ-Check is the first work to
achieve logarithmic communication overhead for the amortization of polynomial
relations.

Moreover, we observe that the two phases of amortization and compression
essentially address the same issue: reducing the size of the witness(es) while main-
taining a verifiable relation. This inspires us to substitute Bulletproofs with a
sum-check protocol in compression, which addresses the challenge of high-degree
polynomials in an amortized relation. We conclude our result as the compressed
Σ-protocol theory from sum-checks and compare its performance in Table 1. All
protocols in our design can be further converted into non-interactive forms using
the Fiat-Shamir transform [22].

Furthermore, we introduce several variants of our technique and describe an
important application of arithmetic circuit satisfiability, represented by a com-
mitted Customizable Constraint System (CCS) [34] relation. This enables the
application of our technique to non-polynomial relations (e.g., SHA256) and the
design of (Zero-Knowledge) Succinct Non-interactive Arguments of Knowledge
(zkSNARK) systems. Unlike existing sum-check based (zk)SNARKs [13,33], Σ-
Check does not require an additional polynomial commitment scheme (PCS).
Traditional methods rely on such commitments to verify that the evaluation
claim is derived from the initial witness. However, in our design, the Pedersen
vector commitment ensures a binding relation with the witness. When proving
committed relations, the final opening binds to the original witness through the
commitment claim, and thus, avoids additional PCS. As a result, our protocol
naturally has the commit-and-prove capability [12], which enables it to be mod-
ularly used in proof compositions for non-linear constraints or cryptographic
constraints, e.g., Discrete Logarithms (DL) relations.
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Finally, we showcase further applications ofΣ-Check, including binary proofs,
range proofs, and partial knowledge proofs. In this paper, we primarily introduce
our scheme based on Pedersen vector commitment under the DL assumption.
Besides, our approach can be adapted to the integer PCS [10, 19] under the
Strong-RSA assumption, as well as other Generalized Inner Product Argument
(GIPA) based commitment schemes, such as the LMR commitment based on
the Generalized Discrete Logarithm Representation (GDLR) assumption [28].
Experimental results indicate that our solution outperforms existing work [3]
without requiring any expensive pairing operations.

1.2 Related work

Compressed Σ-protocol theory. To enhance the efficiency of Σ-protocols,
Attema and Cramer [2] reconcile Bulletproofs with traditional Σ-protocol the-
ory. This integration, known as the compressed Σ-protocol theory, inherits the
flexibility and versatility of Σ-protocols while ensuring a logarithmic communi-
cation complexity. It involves two major phases in proving multiple instances of a
linear relation. First, an “amortization” technique is employed to randomly com-
bine all instances into a folded one, while preserving the linear relation within
the folded instance. Second, a “compression” technique based on Bulletproofs is
applied, which achieves a logarithmic communication overhead for verifing the
folded instance. Attema et al. further extend the compressed Σ-protocol the-
ory to homomorphic relations and demonstrate a practical application of partial
knowledge proof in [3]. However, for non-homomorphic relations, which are rep-
resented by arithmetic circuits, a linearization technique is proposed to transform
them into a linear form through arithmetic secret-sharing [2], which results in a
linear communication cost.

In an effort to reduce the verifier’s cost within the compressed Σ-protocol
framework, Dutta et al. integrate an inner-product argument [11,20] to achieve
logarithmic verification [21]. This approach requires a trusted setup, which in-
troduces new assumptions into the Σ-protocols and compromises the “plug-
and-play” property. Although all protocols proposed in this paper can adopt
this technique by delegating linear operations in verification to the prover, we
do not incorporate this method in our designs.

Sum-check argument. The sum-check protocol [31] offers an efficient method
for proving the summation of a function. It has been widely utilized in various
applications to transform claims involving high-degree polynomials into linear
ones without FFTs [6, 27]. The sum-check argument, proposed by Bootle et
al. [8], establishes a connection between the sum-check protocol [31] and Bullet-
proofs [9]. By extending the concept of multilinear extension to modules, they
demonstrate the versatility of sum-check arguments in a range of applications,
including generic scalar-product protocols, zkSNARKs, and PCS.

zkSNARKs from Sumcheck. In recent years, the cryptographic com-
munity has witnessed a significant increase in the development of zkSNARKs
based on both multivariate sum-checks like [13, 33, 34] and univariate sum-
checks [15, 29]. Since our design developed on inner-product arguments, we
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mainly compare with multivariate-based zkSNARKs in this paper. A key innova-
tion in these approaches is the adoption of the classical multivariate sum-check
protocol to construct a Polynomial Interactive Oracle Proof (PIOP) system,
which can avoid some costly operations such as FFT. Additionally, these ap-
proaches require evaluation proof from the PCS to verify that the responses of
the polynomial queries are indeed derived from the original witness.

2 Preliminary

2.1 Notations

Let G denote the elliptic curve group. We regard G as an additive group with the
infinity point denoted by O. The scalar field of G is referred to as F. We use F[X]
to denote the set of polynomials over the scalar field F, i.e., whose coefficients
are in F. For n ∈ N+, we denote [n] as the set {1, · · · , n}. Vectors are denoted

as f⃗ := (f1, · · · , fn) ∈ Fn. We use (f⃗ , g⃗) to denote appending vector g⃗ to f⃗ .

Furthermore, the Hadamard product is denoted as f⃗ ◦ g⃗ := (f1 · g1, · · · , fk · gk)
and ⃝k

i=1f⃗i := f⃗1 ◦ · · · ◦ f⃗k. a←$ F denotes random sampling a from the field F.
For a nondeterministic polynomial time (NP) relation R, we define it over

public statement x and witness w, i.e., (x;w) ∈ R.
Modules and module homomorphisms. Let R be any arbitrary ring.

A module M over R extends the notion of vector space over a field, where the
scalars are elements in R. Accordingly, M has an identity element 1 and for all
a, b ∈ R and X,Y ∈M, (i) a ·(X+Y ) = a ·X+a ·Y , (ii) (a+b) ·X = a ·X+b ·X,
(iii) (a · b) ·X = a · (b ·X), and (iv) 1 ·X = X. The elliptic curve group G is an
example of a module over its scalar field F.

A R-module homomorphism h : M → M′ between modules M and M′ is a
function that preserves the module structures. Precisely, for every X,Y ∈M and
a ∈ R, we have (i) h(X + Y ) = h(X) + h(Y ) and (ii) h(a ·X) = a · h(X).

2.2 Sum-checks and multilinear extension

The famous sum-check protocol [31] and the concept multilinear extension [17]
can be naturally extended to polynomials over modules [8]. In this paper, we
focus on a special case of [8] where the module M is over a field F. This ensures
that challenges can be directly sampled from F since all F elements are invertible.

Lemma 1 (Sum-check over modules [8]). Given a module M over F, let
f ∈M≤d[X1, · · · , Xµ] be a µ-variate nonzero polynomial with per-variable degree

at most d. The following protocol for proving s =
∑

b⃗∈{0,1}µ f (⃗b) has soundness

error µd
|F| .

1. In the i-th round (i ∈ [µ]):
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– Upon receiving the challenges r1, · · · , ri−1 from the previous rounds, P
sends the univariate polynomial

fi(X) :=
∑

b⃗∈{0,1}µ−i

f(r1, · · · , ri−1, X, b⃗) ∈M≤d[X].

– V checks fi(0)+fi(1) = fi−1(ri−1) and sends a random challenge ri ←$ F
(define f0(r0) := s).

2. V checks fµ(rµ) = f(r1, · · · , rµ).

Specifically, fi is sent in its evaluation form, i.e., (d+ 1) distinct evaluations
of fi. The prover can also send one less evaluation, for instance, omitting fi(0).
In such a scenario, the verifier calculates fi(0) with fi(0) := fi−1(ri−1) − fi(1)
and reconstructs fi(X) for the subsequent round.

In many applications, the final verification step is omitted, resulting in a
protocol producing a claim that fµ(rµ) = f(r1, · · · , rµ). The verifier will either
be able to efficiently check f(r1, · · · , rµ) independently or ask the prover to prove
this claim is correct via a PCS. In our applications, the verifier can compute the
Pedersen vector commitment (defined in Section 2.3) of f(r1, · · · , rµ) on its own.
Therefore, there is no need to apply an extra PCS like other SNARKs built on
the PIOP paradigm.

Definition 1 (Multilinear extension over modules [8]). For a module M
over F, given a function f : {0, 1}µ →M, the multilinear extension (MLE) of f
is defined as

f̃(X⃗) :=
∑

b⃗∈{0,1}µ

f (⃗b) · eq(⃗b, X⃗) ∈M≤1[X1, · · · , Xµ],

where eq(⃗b, X⃗) :=
∏µ

i=1

(
(1− bi)(1−Xi) + biXi

)
.

2.3 Pedersen vector commitment

Given a group G with scalar field F, the Pedersen vector commitment scheme [32]
is defined by the following KeyGen, Commit, and Open algorithms:

– KeyGen(1λ): On input security parameter λ, sample (G1, · · · , Gm) ←$ Gm

and G←$ G. Output commitment key ck := (G1, · · · , Gm, G).

– Commit(ck; f⃗ , r): On input commitment key ck, a message f⃗ ∈ Fm, and a
randomness r ∈ F, output the commitment F :=

∑m
i=1 fiGi + rG.

– Open(ck;F, f⃗ , r): On input opening (f⃗ , r) ∈ Fm+1 and a commitment F ∈ G,
output 1 if F =

∑m
i=1 fiGi + rG, otherwise 0.

For brevity, we regard the randomness r as an extra dimension of the message
and leave the r underlying the commitment implicit throughout this paper.

The Pedersen vector commitment scheme is computationally binding and
perfectly hiding under the discrete logarithm assumption, which are formally
defined in Appendix A.1.
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2.4 Interactive proofs and Σ-protocols

For an NP relation R := {(x;w)}, an interactive proof for R allows a prover P
to convince a verifier V that a statement x admits a witness w. If V generates and
sends all its messages uniformly at random and independently of the prover’s
messages, then the protocol is called a public coin protocol. Public coin protocols
can be transformed into non-interactive forms through the Fiat-Shamir heuris-
tic [22], which applies to all protocols presented in this paper. Concretely, we
consider public-coin interactive proofs (arguments) consisting of three PPT algo-
rithms (G,P,V) and define their security properties. Let G be a setup algorithm
that generates public parameters on input 1λ. The prover P and verifier V runs
an interactive protocol on inputs s and t and produce a transcript denoted as
tr ← ⟨P(s),V(t)⟩. We further denote ⟨P(s),V(t)⟩ = b depending on whether the
verifier rejects with b = 0 or accepts with b = 1. Typically, the triple (G,P,V)
satisfies perfect completeness and soundness properties as

– (G,P,V) = 1 for all (x;w) ∈ R (perfect completeness);
– (G,P∗,V) = 1 with negligible probability for all (x;w) /∈ R and every mali-

cious P∗ (soundness).

The standard Σ-protocol [18] is a 3-move interactive proof for proving the
knowledge of a witness w with respect to a statement x. The key difference is
that Σ-protocol provides computational knowledge soundness and zero knowl-
edge, yielding Σ-protocol as a more practical Argument of Knowledge with versa-
tile applications. Recently, Bootle et al. further generalized standard Σ-protocol
from 3-move to multiple moves for better efficiency [7]. Therefore, the rest of
this work refers to Σ-protocol as a generalized public-coin multiple-move proto-
col (e.g., (2µ + 1)) with security definitions adopted from [1] in Appendix A.2.
Typically, it is more common to require the Σ-protocol satisfying (k1, ..., kµ)-
special soundness for simplify security proofs [2,7]. According to the conclusion
given in [2], we can imply knowledge soundness from special soundness:

Lemma 2 ((k1, ..., kµ)-special soundness implies knowledge soundness
[2]). Let µ, k1, ..., kµ ∈ N, (G,P,V) be a (k1, ..., kµ)-special sound (2µ+1)-move
interactive protocol for relation R, where V samples each challenge uniformly at
random from F. Then (G,P,V) is knowledge sound with knowledge error

κ ≤
∑µ

i=1 ki − 1

|F|
.

2.5 Compressed Σ-protocol theory

Compressed Σ-protocol theory provides a general framework to build (multiple-
move) Σ-protocols for homomorphic relations with logarithmic communication
cost [2–4]. Generally, the framework consists of two phases. Given k homomor-
phic instances with m-size witnesses, the prover first conducts an amortization
to fold these k instances into one with a random linear combination. Then, by
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further adopting Bulletproofs compression, it only takes O(logm) communica-
tion cost to verify the folded instance (more details in Section 3.1). To deal
with a non-linear (non-homomorphic) relationship, Attema et al. [2] transforms
the relationship represented by an arithmetic circuit into a linear form using a
linearization technique.

Besides the Discrete Logarithm assumption (designed with Pedersen vector
commitments), the compressed Σ-protocol theory can be instantiated from dif-
ferent hardness assumptions such as Strong-RSA [2], and Module Short Integer
Solution [4].

2.6 Reduction of knowledge

Let R1 and R2 be two distinct relations. A reduction of knowledge protocol
Π [25] enables a prover to demonstrate to a verifier on input x1 to derive an
output x2, such that for anyone who has w2 where (x2;w2) ∈ R2, it is possible
to extract w1 such that (x1;w1) ∈ R1. Let G be a setup algorithm that gener-
ates public parameters pp for Π and (tr, x2;w2)← ⟨P(pp, x1;w1),V(pp, x1)⟩ be
the execution of Π (tr is the transcript). The protocol Π should satisfy three
properties: perfect completeness, knowledge soundness defined in Appendix A.3,
and public reducibility defined as follows:

Definition 2 (Public reducibility). There is a deterministic polynomial-time
algorithm f , such that for any PPT adversary A and a malicious expected
polynomial-time prover P∗

Pr

[
pp← G(1λ), (x1;w

∗
1)← A(pp),

(tr, x2;w2)← ⟨P∗(pp, x1;w
∗
1),V(pp, x1)⟩ : f(pp, x1, tr) = x2

]
= 1.

When considering two (or more) reduction of knowledge protocols Π1 and
Π2, they can be combined in two distinct manners as described in [25]: sequential
composition Π1 ⋄Π2 and parallel composition Π1 ×Π2.

Theorem 1 (Sequential composition [25]). Let R1,R2,R3 be three rela-
tions. Given two reduction of knowledge protocols, Π1 from R1 to R2 and Π2

from R2 to R3, the composed protocol Π1 ⋄Π2 is a reduction of knowledge from
R1 to R3.

Theorem 2 (Parallel composition [25]). Let R1,R2,R3,R4 be four rela-
tions. Given two reduction of knowledge protocols, Π1 from R1 to R2 and Π2

from R3 to R4, the composed protocol Π1×Π2 is a reduction of knowledge from
(R1 ×R3) to (R2 ×R4).
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3 Compressed Σ-Protocol Theory from Sum-check

3.1 Basic Σ-protocol

Σ-protocol for homomorphic relations. Our starting point is the homomor-
phic relation RHom in [3], which is defined as follows.

RHom :=

{
(F ∈ G, v⃗ ∈ Fm; f⃗ ∈ Fm) :∑m

i=1 fiGi = F, h(fi) = vi ∀i ∈ [m]

}
, (1)

where F is the commitment of the witness f⃗ using the Pedersen vector com-
mitment scheme and h : F → F is a fixed homomorphic function. In addition,
G⃗ and h serve as public parameters in our protocols. For the sake of simplic-
ity, we omit the public parameters in all relations discussed in this paper. The
randomness is ignored for brevity since it can be regarded as an additional di-
mension of the message, as with [2, 3]. We assume that the evaluations h(fi)
do not leak any information about the witness. This can be further ensured by
revealing viG ∈ G instead of vi, or adopting a hiding evaluation claim [37] (also
discussed in Section 3.5). Meanwhile, all techniques are applicable for general
module homomorphisms in Section 2.1, such as h : F→ G.

In a Σ-protocol, to prove k instances (Fj , v⃗j ; f⃗j) ∈ RHom for all j ∈ [k],

the prover initiates by sampling a masking vector f⃗0 ←$ Fm and sends F0 :=∑m
i=1 f0,iGi, v⃗0 :=

(
h(f0,1), · · · , h(f0,m)

)
. Upon receiving a challenge r from the

verifier, the prover responds by revealing the opening f⃗ :=
∑k

j=0 r
j f⃗j . The

verifier checks
∑m

i=1 fiGi =
∑k

j=0 r
jFi and h(fi) =

∑k
j=0 r

jvj,i for all i ∈ [m].

The above masking vector f⃗0 and the corresponding F0, v⃗0 can be regarded
as a masking instance (F0, v⃗0; f⃗0) ∈ RHom. Therefore, the Σ-protocol is essen-
tially the processes of folding (k + 1) instances with a random combination and
checking whether the folded instance is in RHom. With this abstraction in mind,
we reformulate the Σ-protocol ΠHom for RHom in Protocol 1.

Protocol 1 ΠHom: Prove (Fj , v⃗j ; f⃗j) ∈ RHom,∀j ∈ [k].

P
(
G⃗, (Fj , v⃗j , f⃗j)

k
j=1

)
,V

(
G⃗, (Fj , v⃗j)

k
j=1

)
1: P: Sample f⃗0 ←$ Fm. Compute F0, v⃗0 such that (F0, v⃗0; f⃗0) ∈ RHom.
2: P → V: F0, v⃗0.
3: V: Set F (X) :=

∑k
j=0 X

j · Fj and v⃗(X) :=
∑k

j=0 X
j · v⃗j .

4: P: Set f⃗(X) :=
∑k

j=0 X
j · f⃗j .

5: V → P: Sample r ←$ F.
6: P → V: f⃗(r).
7: V: Check

(
F (r), v⃗(r); f⃗(r)

)
∈ RHom.

Remarks. When considering f⃗(X) as a polynomial, steps 3 to 5 reduce the

original relations to an evaluation claim of f⃗(r). To ensure f⃗(r) at step 6 is com-
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Non-homomorphic
relation

Non-homomorphic
relation

Non-homomorphic
relation Linear relationLinear relationLinear relation

Linear relation Linear relation
holds

Linearization Standard amortization

CompressionAmortization

Bulletproofs compression

Fig. 1: The framework of compressed Σ-protocol theory [2]. The term “lineariza-
tion” is grayed out since it is only required when handling non-homomorphic
relations.

puted from the original witnesses, some approaches [13,33] employ an additional
PCS. However, in Protocol 1, this extra step is omitted since the folded Pedersen
vector commitment F (r) essentially binds f⃗(r) to the original witnesses. This
contrasts with the approaches in [13, 33], which focus on the polynomial claim
(h part) when designing PIOPs, whereas the Σ-protocols address committed re-
lations, which contains both commitment and polynomial claims. Based on this
observation, our design also avoids using PCS when applied to (zk)SNARKs.

Compressed Σ-protocol theory. The compressed Σ-protocol theory [2,
3] treats steps 3 and 4 in Protocol 1 — which fold (k + 1) instances — as
an amortization process. Additionally, the last two steps are substituted with
Bulletproofs compression [9], effectively folding f⃗(r) in to an F element with
O(logm) communication cost. We summarize the framework in Figure 1 and
conclude the compressed ΠHom as three major phases: (i) the prover computes
and sends the public statement of a masking instance to the verifier, (ii) the
prover interacts with the verifier to fold multiple instances into one (i.e., the
standard amortization in [2,3]), and (iii) the verifier efficiently checks the folded
instance with Bulletproofs compression [9]. Given that the folded witness leaks no
information about the original ones, we do not need to ensure the zero-knowledge
property in the last phase.

When dealing with homomorphic relations, phase (ii) does not introduce any
communication overhead (only the prover’s messages are counted). Accordingly,
most of the existing work [2, 3] focuses on optimizing phase (iii) to improve
efficiency. However, when h is a high-degree polynomial, folding multiple in-
stances directly incurs cross terms, which significantly increases the overhead
of the protocol as described in Section 1. Even though it is possible to convert
the high-degree relation into an arithmetic circuit relation with linearization [2],
the transformation itself incurs a non-trivial cost. More importantly, the cost of
the linearization scales linearly with the number of instances involved since the
prover is required to send at least a public input (e.g., the commitment of the
composed vector in [2]) for each linear relation. Additionally, even after efficiently
folding multiple polynomial instances into a single instance without lineariza-
tion, we cannot directly apply the Bulletproofs compression during phase (iii).
This is because h is a polynomial, whereas Bulletproofs is primarily designed for
inner-product relations (i.e., quadratic relations as noted in [38]).
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3.2 Technique overview: encoding k polynomial relations

We observe that the processes of amortization in phase (ii) and compression in
phase (iii) are essentially performing the same operation: folding a long witness
into a short one while maintaining a verifiable relation (i.e., reducing from Fk×m

to Fm in amortization, and Fm to F for compression). To illustrate, consider a
simple example with a per-element commitment scheme, i.e., Fj,i = fj,iG for all
j ∈ [k] and i ∈ [m]. In this case, both phases can be executed without incurring
any prover’s message for homomorphic relations. Consequently, the compression
technique in Bulletproofs can also be applied for amortizing quadratic relations.
Nonetheless, this approach is not general enough as it still requires transforma-
tions for high-degree polynomial relations.

In this paper, we introduce a new technique for both amortization and com-
pression. To address the challenge posed by high-degree polynomials in both
scenarios, we employ a pair of sum-check protocols. First, we defined a more
generalized polynomial relation RPoly as follows.

RPoly :=

{
(F ∈ G, v⃗ ∈ Fm; f⃗ ∈ Fm) :∑m

i=0 fiGi = F, h(fi) = vi ∀i ∈ [m]

}
, (2)

where h : F→ F is a high-degree polynomial (also generalized to h : F→ G).

When dealing with k instances (Fj , v⃗j , hj ; f⃗j) ∈ RPoly for all j ∈ [k], we
employ the sum-check protocol [31] to enhance efficiency. This requires us to
encode all instances into a polynomial form. We first write the commitment
claims

∑m
i=0 fj,iGi = Fj for all j ∈ [k] into a matrix form:

f1,1, f1,2, · · · , f1,m...
...

. . . · · ·
fk,1, fk,2, · · · , fk,m

 ·

G1

G2

...
Gm

 =

F1

...
Fk

 . (3)

Consider the left matrix of fj,i as a function f : {0, 1}log k × {0, 1}logm → F.
This allows us to reference any element fj,i using two log k-bit and logm-bit
identifiers. Similarly, we can regard (G1, · · · , Gm) as a function G : {0, 1}logm →
G and (F1, · · · , Fk) as F : {0, 1}log k → G. To prove the equation in Equation
(3), it suffices to show that the following equation holds:∑

y⃗∈{0,1}log m

f(x⃗, y⃗) ·G(y⃗) = F (x⃗), ∀x⃗ ∈ {0, 1}log k. (4)

Note that f,G, F are functions, not polynomials. Therefore, to enable the
sum-check protocol, we conduct MLEs on f,G, F , which derive the polynomials
f̃ : Flog k × Flogm → F, G̃ : Flogm → G, and F̃ : Flog k → G.∑

y⃗∈{0,1}log m

f̃(x⃗, y⃗) · G̃(y⃗) = F̃ (x⃗), ∀x⃗ ∈ {0, 1}log k. (5)
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Similarly, the polynomial claim can be encoded using the same approach.
Specifically, vj,i’s are encoded as a polynomial ṽ : Flog k × Flogm → F, such that

h
(
f̃(x⃗, y⃗)

)
= ṽ(x⃗, y⃗), ∀x⃗ ∈ {0, 1}log k, y⃗ ∈ {0, 1}logm. (6)

Therefore, to prove (Fj , v⃗j , hj ; f⃗j) ∈ RPoly for all j ∈ [k], we can employ two
sum-checks — one on x⃗ and another on y⃗ — to show Equation (5) and Equation
(6) hold. Different from a traditional sum-check protocol, which requires the
verifier to evaluate f̃(r⃗x, r⃗y) (r⃗x, r⃗y are challenges in the sum-checks), the final

output claim of f̃(r⃗x, r⃗y) effectively serves as opening in a Σ-protocol, akin to

f⃗(r) in step 6 of Protocol 1 (more explanations in Section 3.4 and Section 3.5).

3.3 Amortization with sum-check

Building sum-check polynomials. Recall Equation (5) and Equation (6),
which are in the form of g(x⃗) = 0 for all x⃗ ∈ {0, 1}log k. The sum-check protocol
enables us to prove

∑
x⃗∈{0,1}log k g(x⃗) = 0. However, this does not imply g(x⃗) = 0

for all x⃗ ∈ {0, 1}log k since g(x⃗)’s may cancel out each other. To address this issue,
we adopt a prior idea [12, 33] to combine each term with random challenges α⃗
and prove

∑
x⃗∈{0,1}log k eq(α⃗, x⃗) · g(x⃗) = 0. Accordingly, we can safely use the

sum-check protocol to prove the claim.

Upon receiving challenges α⃗ ←$ Flog k and β⃗ ←$ Flogm from the verifier, the
prover and verifier define two polynomials, g1 : Flog k → G, g2 : Flog k → F as

g1(X⃗) := eq(α⃗, X⃗) ·
(
F̃ (X⃗)−

∑
y⃗∈{0,1}log m

f̃(X⃗, y⃗) · G̃(y⃗)
)
,

g2(X⃗) := eq(α⃗, X⃗) ·
∑

y⃗∈{0,1}log m

(
eq(β⃗, y⃗) ·

(
h
(
f̃(X⃗, y⃗)

)
− ṽ(X⃗, y⃗)

))
.

(7)

Accordingly, we construct two sum-check claims:
∑

x⃗∈{0,1}log k g1(x⃗) = O and∑
x⃗∈{0,1}log k g2(x⃗) = 0.

Folding multiple instances with sum-check. To prove the two sum-check
claims, we can concurrently execute two sum-check protocols on x⃗. This results in
2 log k and (d+1) log k communication overhead in G and F respectively, where
d := deg(h) is the degree of h. Alternatively, one can compose the two claims
into one and run a single sum-check. However, this requires lifting Equation (6)
to G, leading to a communication cost of (d+1) log k in G, with all computations
being performed within G.

To achieve better efficiency, we observe that Equation (5) is linear with re-
spect to x⃗. This allows the verifier to derive the sum-check output directly with-
out actually running the protocol (similar to the amortization on linear/homo-
morphic relations [2,3]). For ease of understanding, we first present our protocol
with two sum-checks, and then describe the optimized version.
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The amortization protocol ΠAmor reduces k instances of RPoly to one amor-
tized polynomial relation RAmorPoly, which is defined as follows:

RAmorPoly :=

{
(F ∈ G, s ∈ F, v⃗ ∈ Fm, β⃗ ∈ Flogm; f⃗ ∈ Fm) :∑m

i=1 fiGi = F,
∑m

i=1 eq
(
β⃗,Bits(i)

)(
h(fi)− vi

)
= s

}
, (8)

where Bits(i) denotes the binary representation of i. We formally describe ΠAmor

in Protocol 2. The blue parts are omitted in the optimized version.

Protocol 2 ΠAmor: Reduce (RPoly)
k to RAmorPoly.

P
(
G⃗, (Fj , v⃗j , f⃗j)

k
j=1

)
,V

(
G⃗, (Fj , v⃗j)

k
j=1

)
1: V → P: α⃗←$ Flog k, β⃗ ←$ Flogm.
2: P and V: Compute f̃(X⃗, Y⃗ ) from f⃗j ’s and set g1(X⃗),g2(X⃗) as with Equation

(7). Then engage in two sum-checks in parallel with the same challenges for
two claims ∑

x⃗∈{0,1}log k

g1(x⃗) = O,
∑

x⃗∈{0,1}log k

g2(x⃗) = 0. (9)

The protocol reduces to two evaluation claims g1(r⃗x) = Fg and g2(r⃗x) = sg,
where r⃗x ←$ Flog k are the challenges of the sum-check.

3: P → V: F , s which are defined as

F :=
∑

y⃗∈{0,1}log m

f̃(r⃗x, y⃗) · G̃(y⃗),

s :=
∑

y⃗∈{0,1}log m

(
eq(β⃗, y⃗) ·

(
h
(
f̃(r⃗x, y⃗)

)
− ṽ(r⃗x, y⃗)

))
.

(10)

4: V: Compute ex := eq(α⃗, r⃗x) and Fx := F̃ (r⃗x). Check the following equations
// set F := Fx in the optimized version

Fg = ex · (Fx − F ), sg = ex · s. (11)

5: P: Output f⃗ :=
(
f̃(r⃗x, y⃗)

)
y⃗∈{0,1}log m .

6: V: Output F, s, v⃗ :=
(
ṽ(r⃗x, y⃗)

)
y⃗∈{0,1}log m , β⃗.

Efficiency . Let d := deg(h) be the degree of the polynomial h. The sum-
checks require 2 log k and (d+1) log k prover’s messages in G and F, respectively.
In addition, at step 3, the prover needs to send F ∈ G and s ∈ F. Regarding
the time complexity, the sum-checks incur O(kd log2 d) computational cost for
the prover and O(d log k) for the verifier. At step 4, computing Fx takes O(k)
G-operations and ex tasks O(log k) F-operations.

13



Theorem 3. ΠAmor is a reduction of knowledge from (RPoly)
k to RAmorPoly.

Proof Sketch. The completeness is trivial to prove. For the knowledge sound-
ness, we first build an extractor for special-soundness that can compute vectors
f⃗j , j ∈ [k] from k transcripts with different challenges by querying to P∗. Fur-
ther guaranteed by the soundness of sum-check protocols, the extractor has an
overwhelming probability to ensure the extracted f⃗j’s satisfying Equation (9). By

uniqueness of MLE and Schwartz-Zippel lemma, either f⃗j is a valid witness for
Rpoly for all j ∈ [k] or the extractor discovers a non-trivial DL relation between

G⃗. Then knowledge soundness is implied according to Lemma 2. For zero knowl-
edge, ΠAmor satisfies the special HVZK property, if the input instances include
at least one masking instance. The general idea is first to randomly sample wit-
ness f⃗j for all j ∈ [k]. Then assuming the k-th instance is the masking instance,
the simulator can elaborately choose proper Fk, vk conditioning on Equation (9).
After executing the remaining protocol on the chosen masking instance, the sim-
ulator finally obtains an indistinguishable transcript. The formal security proofs
of Theorem 3 are presented in Appendix A.4.

Optimization. Observe that the Pedersen vector commitment scheme is
a homomorphic relation, which allows V to directly output F by setting F :=
F̃ (r⃗x). The equation F =

∑m
i=1 fiGi still holds on the folded f⃗ . Consequently, we

can apply the traditional amortization technique [2,3] directly without the sum-
check on g1. This approach avoids sending any G element. The public reducibility
and completeness of the optimized protocol are straightforwardly maintained.
Regarding the knowledge soundness, denote ρj := eq

(
α⃗,Bits(j)

)
. We have

F =

m∑
i=1

fiGi =⇒
k∑

j=1

ρjFj =

m∑
i=1

( k∑
j=1

ρjfj,i

)
Gi =

k∑
j=1

ρj

m∑
i=1

fj,iGi. (12)

Since α⃗ are uniformly chosen, Fj =
∑m

i=1 fj,iGi for all j ∈ [k] holds with over-
whelming probability.

Efficiency . Without the sum-check on g1, ΠAmor requires only (d + 1) log k
prover’s messages in F. Besides, the prover sends one s ∈ F at step 3. Regarding
the time complexity, the sum-check process involves O(kd log2 d) and O(d log k)
F-operations for the prover and verifier, respectively. At step 4, computing Fx

requires O(k) G-operations (can be reduced to O(log k) when the verifier can

preprocess F̃ (X⃗)) and ex requires O(log k) F-operations.

3.4 Compression with sum-check

Recall RAmorPoly in Equation (8). By conducting MLEs on f⃗ , G⃗, v⃗, we can rewrite
the claims in RAmorPoly as∑

y⃗∈{0,1}log m

f̃(y⃗) · G̃(y⃗) = F,
∑

y⃗∈{0,1}log m

eq(β⃗, y⃗) ·
(
h
(
f̃(y⃗)− ṽ(y⃗)

)
= s. (13)
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Given that both claims take the form of summations, it is possible to employ
two sum-check protocols in parallel to prove the two claims. However, to enhance
efficiency, we lift the claim of s ∈ F to G and compose the two claims into one.
As a result, this approach only requires a single sum-check protocol.

Specifically, we define two polynomials p1 : Flogm → G and p2 : Flogm → F:

p1(Y⃗ ) := f̃(Y⃗ ) · G̃(Y⃗ ), p2(Y⃗ ) := eq(β⃗, Y⃗ ) ·
(
h
(
f̃(Y⃗ )

)
− ṽ(Y⃗ )

)
. (14)

Compose p1, p2 as p(y⃗) := p1(y⃗) + p2(y⃗) · H, where H ←$ G is an additional
generator sampled from the verifier with an unknown discrete logarithm relative
with G1, · · · , Gm. The prover and verifier can engage in a sum-check protocol to
show

∑
y⃗∈{0,1}log m p(y⃗) = F + s ·H.

The compression protocol ΠComp is formally described in Protocol 3, which
verifies a RAmorPoly instance with logarithmic communication overhead.

Protocol 3 ΠComp: Check RAmorPoly with compression.

P(G⃗, F, s, v⃗, β⃗, f⃗),V(G⃗, F, s, v⃗, β⃗)

1: V → P: H ←$ G.
2: P and V: Set p(y⃗) := p1(y⃗) + p2(y⃗) · H where p1(Y⃗ ), p2(Y⃗ ) are defined in

Equation (14) and engage in a sum-check for the claim∑
y⃗∈{0,1}log m

p(y⃗) = F + s ·H. (15)

The protocol reduces to two evaluation claims p1(r⃗y) = Fp and p2(r⃗y) = sp,
where r⃗y ←$ Flogm are the challenges of the sum-check.

3: P → V: f := f̃(r⃗y).

4: V: Compute ey := eq(β⃗, r⃗y), G := G̃(r⃗y), and v := ṽ(r⃗y). Check the following
equation

Fp + sp ·H = f ·G+ ey ·
(
h(f)− v

)
·H. (16)

Remarks. Our approach is different from PIOP-based schemes [13,33], which
require that the verifier perform an additional check of f̃(r⃗y) with a PCS. In our
design, this step is omitted because the commitment claim is already included
within the sum-check protocol in Equation (15). Thus, the Pedersen vector com-
mitment F binds f̃(r⃗y) at step 3 with the original witness, and f̃(r⃗y) itself serves
as its own proof to ensure it is derived from the original witness. Consequently,
our design does not require an additional query to f̃ within ΠComp, analogous to

how f⃗(r) functions at step 6 in Protocol 1.
Efficiency and optimization. Let d := deg(h) denote the degree of the poly-

nomial h. The sum-check requires (d+1) logm prover’s messages in G. Addition-
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ally, the prover needs to send one f ∈ F at step 3. Regarding the time complex-
ity, a straightforward implementation of the sum-check requires O(md log2 d)
G-operations for the prover. However, the prover can calculate the sums over
p1 and p2 separately and combine the results with a single scalar multiplica-
tion. Accordingly, the cost is reduced to O(m) G-operations and O(md log2 d)
F-operations. The verifier’s cost in the sum-check verifier remains unchanged,
which is O(d logm) G-operations. At step 4, computing ey, G, v takes O(logm)
F-operations, O(m) G-operations (can be reduced to O(logm) through prepro-

cessing to derive G̃(Y⃗ )), and O(m) F-operations, respectively.

Theorem 4. ΠComp satisfies completeness and knowledge soundness.

Proof Sketch. The completeness is trivial to prove. For the knowledge sound-
ness, an extractor for special soundnss can compute a vector f⃗ from m transcripts
with different challenges by querying to P∗. Further guaranteed by the soundness
of sum-check protocols, the extractor has an overwhelming probability to ensure
the extracted f⃗ satisfying Equation (15). Given that H is uniformly sampled from

the verifier, by the uniqueness of MLE and Schwartz-Zippel lemma, either f⃗ is
a valid witness for RAmorPoly or the extractor discovers a non-trivial DL relation

between G⃗ and H. Then knowledge soundness is implied according to Lemma 2.
The formal security proofs of Theorem 4 are presented in Appendix A.5.

3.5 Putting everything together

With ΠAmor and ΠComp, we can derive a compressed protocol ΠPoly for multiple
RPoly instances based on a standard Σ-protocol (Protocol 1). We first describe
ΠPoly in Protocol 4 and then demonstrate how to further improve efficiency.

Protocol 4 ΠPoly: Check k instances of RPoly with compression.

P
(
G⃗, (Fj , v⃗j , f⃗j)

k
j=1

)
,V

(
G⃗, (Fj , v⃗j)

k
j=1

)
1: P: Sample f⃗0 ←$ Fm. Compute F0, v⃗0 such that (F0, v⃗0; f⃗0) ∈ RPoly.
2: P → V: F0, v⃗0.

// we slightly abuse ΠAmor here to handle (k + 1) instances

3: P and V: Engage in ΠAmor, which reduces to (F, s, v⃗, β⃗; f⃗) ∈ RAmorPoly.

4: P and V: Engage in ΠComp for (F, s, v⃗, β⃗; f⃗).

We summarize the architecture of our design in Figure 2. The amortization
process is represented by steps ① and ②. We adopt the traditional amortization
technique [2,3] for step ①, while step ② is executed using a sum-check protocol.
For the compression phases ③ and ④, we employ a single sum-check protocol for
both steps.

In comparison, the work of Attema et al. [2,3] applies traditional amortization
to steps ① and ②, and employs Bulletproofs for the compression phases ③ and
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Fig. 2: The architecture of our design. ΠAmor utilizes a traditional amortization
in [2,3] for step ① and a sum-check for step ②. In ΠComp, the sum-check protocol
is applied to both steps ③ and ④.

④. Within PIOP-based frameworks [13, 33] — which focus on a single instance
and thus do not require ① and ② — the PIOP component is tailored for step ④,
whereas step ③ relies on a PCS.

Theorem 5. ΠPoly satisfies completeness, knowledge soundness, and special HVZK.

Proof. Based on Theorem 3 and Theorem 4, ΠPoly satisfies completeness and
knowledge soundness. For the special HVZK, the simulator invokes the simulator
of ΠAmor to simulate the transcripts at step 3 and (F, s, v⃗, β⃗, f⃗). It then continues
to simulate the transcript for step 4 by executing ΠComp with the previously

simulated (F, s, v⃗, β⃗, f⃗). Since (F, s, v⃗, β⃗; f⃗) ∈ RAmorPoly, V accepts. Additionally,
the simulated transcript is indistinguishable from a real one.

Efficiency . Let d := deg(h) be the degree of the polynomial h. The first step
requires O(m) G-operations and O(dm) F-operations. The second step incurs 1
G-message and m F-messages.

The cost of the last two steps includes: (d + 1) logm G-messages and ((d +
1) log k + 4) F-messages; proving time with O(m) G-operations and O((m +
k)d log2 d) F-operations; and verification time withO(d logm+m+k)G-operations
and O(d log k +m) F-operations.

Optimization. The cost of the first two steps is inherited from a standard
Σ-protocol (Protocol 1). We demonstrate that this cost can be further mitigated
by employing zero-knowledge adaptations of ΠAmor and ΠComp. Recall the two
protocols, which leak the witness information during the sum-checks and the
evaluation claims. To address this, we can replace them with zero-knowledge
sum-checks [35] and claims with the hiding property [37]. We provide a brief
overview of each approach here.

Zero-knowledge sum-check [35]. To prove the claim
∑

x⃗∈{0,1}log ℓ f(x⃗) = sf
where d := deg(f), the prover samples a0, ai,j ←$ F for each i ∈ [log ℓ] and j ∈ [d].

Subsequently, the prover computes a polynomial g(x⃗) = a0+
∑log ℓ

i=1 gi(xi), where

gi(xi) =
∑d

j=1 ai,jx
j
i . The prover sends sg :=

∑
x⃗∈{0,1}log ℓ g(x⃗) and engages a

sum-check on sf + ρ · sg =
∑

x⃗∈{0,1}log ℓ

(
f(x⃗) + ρ · g(x⃗)

)
with the verifier. In the
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final round, the prover sends g(r⃗). This whole process entails an additional cost
of O(d log ℓ) for the prover.

Hiding evaluation claim [37]. For µ evaluation claims s = f̃(r⃗) on the MLE

of f⃗ , the prover samples a vector f⃗ ′ ←$ Fµ and computes v′i := h(f ′
i) for

all i ∈ [µ]. The prover then sends F ′ :=
∑µ

i=1 f
′
iHi and v⃗′ to the verifier,

where H1, · · · , Hµ ∈ G are generators whose discrete logarithm relations with

G1, · · · , Gm are unknown. The prover regards f⃗∗ := (f⃗ , f⃗ ′) as the new witness.

Consequently, the evaluation claim on f⃗∗ become f̃∗(r⃗, r⃗′) = s + f̃ ′(r⃗′), which
is uniformly distributed in F. Since µ is a constant in our protocol, the hiding
evaluation claims only incur a constant additional cost.

Efficiency . Instead of sending F0, v⃗0 during step 2 of Protocol 4, the prover
sends sg ∈ F for the zero-knowledge sum-check at the first round, along with
F ′ ∈ G, v⃗∗ ∈ F2 for the hiding claims (noting that ΠPoly only has two evaluation
claims). After step 3, the prover additionally sends one G element for the second
zero-knowledge sum-check. The overall asymptotic computational cost of the
protocol remains unchanged.

4 Extensions

In this section, we describe some variants of our techniques to accommodate
a broader range of scenarios. Note that these variants are capable of function-
ing simultaneously, for instance, handing multiple polynomial claims over inner-
products. While it is straightforward to support the function h that maps to G,
we focus on these variants where h maps to F.

4.1 Polynomial over inner-products

We first consider a scenario where the polynomial claim is on multiple inner-
products of f⃗ . Denote the inner-product of two vectors a⃗, f⃗ ∈ Fm as ⟨⃗a, f⃗⟩ =∑m

i=1 aifi. The polynomial claim is defined as h
(
⟨⃗a1, f⃗⟩, · · · , ⟨⃗at, f⃗⟩

)
= v for

some public v ∈ F, a⃗1, · · · , a⃗t ∈ Fm. Accordingly, the relation RPolyIP is defined
in Equation (17).

RPolyIP :=

{
(F ∈ G, v ∈ F, a⃗1, · · · , a⃗t ∈ Fm; f⃗ ∈ Fm) :∑m

i=1 fiGi = F, h
(
⟨⃗a1, f⃗⟩, · · · , ⟨⃗at, f⃗⟩

)
= v

}
. (17)

Different from [2,3], we cannot perform an inner-product operation on the poly-
nomial claims within RPoly to obtain RPolyIP since h is non-homomorphic.

For k instances (Fj , vj , a⃗j,1, · · · , a⃗j,t; f⃗j) ∈ RPolyIP,∀j ∈ [k], after MLE, the
polynomial claims are equivalent to the following claim for all x⃗ ∈ {0, 1}log k:

h
( ∑
y⃗∈{0,1}log m

ã1(x⃗, y⃗) · f̃(x⃗, y⃗), · · · ,
∑

y⃗∈{0,1}log m

ãt(x⃗, y⃗) · f̃(x⃗, y⃗)
)
= ṽ(x⃗). (18)
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Therefore, in ΠAmor, we replace g2(X⃗) in Equation (7) with

g2(X⃗) := eq(α⃗, X⃗) ·
(
ṽ(X⃗)− h

( ∑
y⃗∈{0,1}log m

ã1(X⃗, y⃗) · f̃(X⃗, y⃗), · · · ,

∑
y⃗∈{0,1}log m

ãt(X⃗, y⃗) · f̃(X⃗, y⃗)
))

.
(19)

Accordingly, we have t claims in Equation (10) for each inner-product

si :=
∑

y⃗∈{0,1}log m

ãi(r⃗x, y⃗) · f̃(r⃗x, y⃗), ∀i ∈ [t], (20)

and the second check in Equation (11) becomes

sg = ex ·
(
vx − h(s1, · · · , st)

)
, (21)

where vx := ṽ(r⃗x) is computed by the verifier. The verifier additionally outputs

v := ṽ(r⃗x), a⃗1 :=
(
ã1(r⃗x, y⃗)

)
y⃗∈{0,1}log m , · · · , a⃗t :=

(
ãt(r⃗x, y⃗)

)
y⃗∈{0,1}log m (β⃗, v⃗ are

not required).
In ΠComp, the verifier can compose the t claims in Equation (20) with a

random challenge γ ←$ F as s :=
∑t

i=1 γ
isi =

∑
y⃗∈{0,1}log m(

∑t
i=1 γ

i·ãi(y⃗))·f̃(y⃗).
Accordingly, we adjust p2(Y⃗ ) in Equation (14) as

p2(Y⃗ ) :=
( t∑
i=1

γi · ãi(Y⃗ )
)
· f̃(Y⃗ ), (22)

and the final check in Equation (16) becomes

Fp + sp ·H = f ·G+ (

t∑
i=1

γiai) · f ·H, (23)

where ai := ãi(r⃗y) is computed by the verifier for each i ∈ [t].
Given that Equation (20) yields t separate claims, the cost will be escalated

by a factor of t. Nonetheless, as t is generally a predefined constant, the overall
asymptotic cost remains the same.

4.2 Relation with multiple polynomials

We consider the scenario in which a prover aims to prove multiple polynomial
claims on one witness. The relation RMultPoly is defined in Equation (24).

RMultPoly :=

{
(F ∈ G, v⃗ ∈ Fm; f⃗ ∈ Fm) :∑m

i=1 fiGi = F, h1(fi) = v1,i, · · · , hs(fi) = vs,i,∀i ∈ [m]

}
. (24)

In this case, the prover can efficiently combine s polynomials with a challenge
ζ ←$ F from the verifier, reducing to h(fi) = vi for all i ∈ [m], where h(X) :=∑s

j=1 ζ
jhj(X) and vi :=

∑s
j=1 ζ

jvj,i. This resultant relation falls in RPoly.
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This process is a reduction of knowledge from RMultPoly to RPoly. The public
reducibility and completeness trivially hold. For the knowledge soundness, the
witness f⃗ in RPoly is exactly the extracted witness. Since ζ is uniformly sampled
from F and h(fi) = vi holds for each i ∈ [m], with overwhelming probability,
hj(fi) = vj,i holds for all i ∈ [m] and j ∈ [k].

4.3 Relations with different polynomials

We further consider another relation RDiffPoly where the polynomial h is specified
as part of the public statement:

RDiffPoly :=

{
(F ∈ G, v⃗ ∈ Fm, h : F→ F; f⃗ ∈ Fm) :∑m

i=1 fiGi = F, h(fi) = vi ∀i ∈ [m]

}
. (25)

Consequently, for k instances (Fj , sj , v⃗j , hj ; f⃗j)
k
j=1, the polynomial hj varies

across the instances.

To utilize ΠAmor, it is also necessary to perform an MLE on the polynomials
hj . This can be achieved by regarding hj ’s as elements within a polynomial
ring. Thus, Definition 1 is directly applicable to hj ’s (the MLE over rings is also
given in [14]). For the sake of clarity, we describe the MLE over polynomials in
Definition 3.

Definition 3. (Multilinear extension over polynomials). Given µ-many

d-degree polynomial hi[Y⃗ ] : Fm → F for all i ∈ [µ], the MLE of hi’s is defined as

h̃(Y⃗ , X⃗) :=

µ∑
i=1

hi(Y⃗ ) · eq(Bits(i), X⃗) ∈ F≤d[X1, · · · , Xlog µ, Y1, · · · , Ym].

The individual degree of Y1, · · · , Ym remains d as we are merely summing
up each hi, while the individual degree of X1, · · · , Xlog µ is (at most) 1 as we
conduct an MLE. The existence and uniqueness of MLE are preserved [8, 14].
In the context of sum-check protocols for h̃-related claims, the challenges are
sampled from the field F (instead of the polynomial ring), ensuring that all
elements are invertible, which in turn maintains the validity of the sum-check
process.

Accordingly, g2 in Equation (7) and p2 in Equation (14) become

g2(X⃗) := eq(α⃗, X⃗) ·
∑

y⃗∈{0,1}log m

(
eq(β⃗, y⃗) ·

(
h̃
(
y⃗, f̃(X⃗, y⃗)

)
− ṽ(X⃗, y⃗)

))
,

p2(Y⃗ ) := eq(β⃗, Y⃗ ) ·
(
h̃
(
Y⃗ , f̃(Y⃗ )

)
− ṽ(Y⃗ )

)
.

(26)

The remaining steps are the same.
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5 Arithmetic Circuit Satisfiability

Our protocol can easily support arithmetic circuit relations, paving the way for
the construction of (zk)SNARKs. In this section, we demonstrate how to prove
the Customizable Constraint Systems (CCS) [34] relation, which is a generalized
arithmetization technique supporting Rank-1 Constraint System (R1CS) [24],
Plonkish [23], and Algebraic Intermediate Representation (AIR) circuits [5].

Our construction follows the commit and prove paradigm, i.e., the prover
commits to the witness and subsequently proves that it satisfies the required
committed relation. We begin by revisiting the CCS relation in [34]. Given the
following public integers: k (the number of constraints), m (the extended witness
size), and ℓ (the public input size), the public parameters include: (i) t matrices
M1, · · · ,Mt ∈ Fk×m; (ii) ms multisets S1, · · · ,Sms ⊂ [t]; and (iii) ms scalars
c1, · · · , cms ∈ F. The committed CCS relation RCCS is defined as

RCCS :=

{
(F ∈ G, x⃗ ∈ Fℓ; w⃗ ∈ Fm′

) :
∑m′

i=1 wiGi = F,

z⃗ := (w⃗, 1, x⃗) ∈ Fm,
∑ms

i=1 ci · ⃝j∈Si(Mj · z⃗) = 0⃗

}
, (27)

where m′ := m− ℓ− 1 and 0⃗ is a k-size zero vector.
Furthermore, we demonstrate the application of our technique to prove RCCS

relations. Consider each row of Mj as a vector m⃗j,u for all u ∈ [k]. The
∑ms

i=1 ci ·
⃝j∈Si(Mj · z⃗) = 0⃗ part in Equation (27) can be reformulated as follows:

ms∑
i=1

ci ·
∏
j∈Si

⟨m⃗j,u, z⃗⟩ = 0, ∀u ∈ [k], (28)

where ⟨⃗a · b⃗⟩ =
∑m

i=1 aibi. For each row, we define a new relation RrCCS:

RrCCS :=

{
(Z ∈ G, m⃗1, · · · , m⃗t ∈ Fm; z⃗ ∈ Fm) :∑m

i=1 ziGi = Z,
∑ms

i=1 ci ·
∏

j∈Si⟨m⃗j , z⃗⟩ = 0

}
, (29)

where Gm′+1, · · · , Gm are randomly sampled G elements from the verifier with
unknown discrete logarithm relations with G1, · · · , Gm′ . Therefore, RCCS is es-
sentially the case of simultaneously satisfying k-many RrCCS relations

RCCS :=

{
(F ∈ G, x⃗ ∈ Fℓ; w⃗ ∈ Fm′

) : Z := F +Gm′+1 +
∑ℓ

i=1 xiGm′+1+i,
z⃗ := (w⃗, 1, x⃗), (Z, m⃗1,u, · · · , m⃗t,u; z⃗) ∈ RrCCS ∀u ∈ [k]

}
.

The binding property of the commitment scheme ensures that the extracted z⃗

from the RrCCS extractor must satisfy
∑m′

i=1 ziGi = F .
Since RrCCS is a special case of RPolyIP where h

(
⟨m⃗1,u, z⃗⟩, · · · , ⟨m⃗t,u, z⃗⟩

)
:=∑ms

i=1 ci ·
∏

j∈Si⟨m⃗j,u, z⃗⟩ and v := 0, we can utilize ΠAmor to amortize k relations
and ΠComp to prove the amortized relation. The details of the protocol ΠCCS are
described in Protocol 5.

Remarks. Given that all k instances share the same witness z⃗, it is unnec-
essary to fold z⃗ during ΠAmor. Consequently, ΠAmor is essentially the process
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Protocol 5 ΠCCS: Check RCCS with compression.

P(G⃗, F, x⃗, w⃗),V(G⃗, F, x⃗)

1: V → P: Gm′+1, · · · , Gm ←$ G.
2: P: Set z⃗ := (w⃗, 1, x⃗).

3: V: Set Z := F + Gm′+1 +
∑ℓ+1

i=1 xiGm′+1+i. Obtain m⃗i,u for all i ∈ [t] and
u ∈ [k] from the public input.

4: P and V: Engage in ΠPoly to prove k instances in RrCCS with the same z⃗.

of folding k sets of vectors (m⃗1,u, · · · , m⃗t,u). The output witness of ΠAmor is z⃗.
Besides, as discussed in Section 3.5, since a single sum-check is utilized to prove
both the commitment and CCS claims in ΠComp, there is no additional need
for a PCS to validate z̃ in [13, 33]. This is attributed to the fact that ΠComp,
when proving the commitment claim, already binds the evaluation claim to the
original witness.

6 Applications

We demonstrate the application ofΣ-Check to construct compressedΣ-protocols
for various applications. It is important to note that in these contexts, the wit-
ness for the masking instance should be uniformly sampled from F. Thus, the
masking instance should belong to RPoly relation instead of the specific ones.

6.1 Binary proofs

A binary proof serves as a crucial component for numerous cryptographic ap-
plications, enabling a prover to demonstrate possession of a binary witness. The
relation is defined as follows:

RBin :=

{
(F ∈ G; f⃗ ∈ Fm) :∑m

i=1 fiGi = F, (1− fi)fi = 0 ∀i ∈ [m]

}
. (30)

This relation is a specific case of RPoly, where h(X) := (1 − X)X and vi := 0
for all i ∈ [m]. Consequently, we can directly apply ΠPoly to prove k instances of
RBin relation.

6.2 Range proofs

Range Proofs have been extensively adopted in many real-world applications
such as confidential transactions. In a range proof, a prover aims to demonstrate
that a witness v falls within a public range, say [0, · · · , 2m−1]. The corresponding
relation is defined as follows:

RRange :=

{
(V ∈ G; v ∈ F) : v ·G = F,∑m

i=1 2
i−1 · fi = v, (1− fi)fi = 0 ∀i ∈ [m]

}
, (31)
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where f⃗ can be regarded as the binary representation of v. We rewrite RRange

relation by regarding the f⃗ as the witness and V as a public value:

RRange :=

{
(V ∈ G; f⃗ ∈ Fm) :

(
∑m

i=1 2
i−1 · fi) ·G = V, (1− fi)fi = 0 ∀i ∈ [m]

}
. (32)

Denote a⃗ := (1, 2, · · · , 2m−1). We have a relation under two different polynomi-

als: one in the form of an inner-product h1

(
⟨⃗a, X⃗⟩

)
= ⟨⃗a, X⃗⟩ · G, and the other

in the form h2 = (1−X)X. Moreover, since the binary representation of a value

is unique, it implies that V is uniquely bound to f⃗ in RRange. Accordingly, by
regarding RRange as a binding commitment relation, we can apply Lemma 3 on
RRange. This enables us to execute ΠPoly for RMultPoly (one polynomial is over an

inner-product) without an additional commitment claim on f⃗ .

6.3 Partial knowledge proofs

The partial knowledge proof (k-out-of-m proof) is a basic anonymous technique
that has been extensively applied in ring signatures and anonymous cryptocur-
rencies. This method enables a prover to demonstrate the knowledge of k open-
ings within a set of m public commitments. The relation is defined as follows:

Rk/m :=

{
(P⃗ ∈ Gm, k ∈ [m];S ∈ [m], s⃗ ∈ Fm) :

|S| = k; Pi = siG,∀i ∈ S; si = 0,∀i /∈ S

}
. (33)

We introduce an additional vector b⃗ ∈ {0, 1}m where bi = 1 if i ∈ S and
bi = 0 otherwise. The last two equations in Rk/m can be equivalently expressed
as biPi = siG for all i ∈ [m]. Thus, given a random challenge γ ←$ F from the
verifier, we can rewrite Rk/m as follows:

Rk/m :=

{
(P⃗ ∈ Gm, k ∈ [m], γ ∈ F; f⃗ , b⃗ ∈ Fm) :

∑m
i=1 bi = k,∑m

i=1 γ
i−1biPi =

∑m
i=1 γ

i−1siG, (1− bi)bi = 0 ∀i ∈ [m].

}
, (34)

Denote G⃗γ := (G, γG, · · · , γm−1G) and P⃗γ := (P1, γP2, · · · , γm−1Pm). Rk/m

has three different polynomials, two of them take the form of inner-products,
h1

(
⟨⃗1, X⃗⟩

)
= ⟨⃗1, X⃗⟩ and h2

(
⟨G⃗γ , X⃗⟩, ⟨P⃗γ , Y⃗ ⟩

)
= ⟨P⃗γ , X⃗⟩ − ⟨G⃗γ , Y⃗ ⟩; while the

third polynomial is given by h3(X) = (1 −X)X. It is apparent that Rk/m is a
binding relation, and thus, Lemma 3 holds on Rk/m.

When dealing with multiple instances, the prover first computes b⃗j for each
instance. The verifier then sends a random challenge γ ←$ F and locally computes
G⃗γ and P⃗γ,j ’s for each instance. Finally, they engage in the ΠPoly for RMultPoly

(with two polynomials over inner-products).

7 Σ-Check from other assumptions

Till now, we have implemented our protocols using Pedersen vector commitment
based on the DL assumption. In this section, we will extend our techniques to
other assumptions, including the Strong-RSA and GDLR assumptions.
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7.1 Strong-RSA assumption

To generalize our techniques to the Strong-RSA assumption, we adopt a similar
approach in [2] by replacing the Pedersen vector commitment to an integer PCS
[10, 19]. The commitment space is a group G of unknown order (with an upper
bound B), which only requires two group elements G,H ∈ G that generate the
same subgroup of G.

Let Z denote the set of all integers, and Zp represent integers in [−p−1
2 , p−1

2 ].

Specifically, for a vector x⃗ ∈ Zn
p such that ||x⃗||∞ ≤ p−1

2 and a random γ ∈ Z cho-

sen uniformly from [0,B·2λ], where λ is the security parameter, the commitment
scheme is defined as follows:

F = G
∑n

i=1 xiq
i−1

Hγ , (35)

where q is a “large enough” integer, e.g., q
2 > (p+1

2 )log k+logm in our design.
Intuitively, since x⃗ 7→

∑n
i=1 xiq

i−1 is injective, and the prover does not know the
order of the group G, this commitment scheme is binding (following from the root
assumption [10, 19]). Additionally, since the distribution of Hγ is statistically
close to the uniform distribution of the subgroup, the scheme statistically hides
x⃗.

When applying the Strong-RSA assumption to our protocols, we only need
to replace all Pedersen commitment parts with the commitment in Equation
(35). Specifically, we update the original relations RPoly and RAmorPoly to RRSA

Poly

and RRSA
AmorPoly as follows:

RRSA
Poly :=

{
(F ∈ G, v⃗ ∈ Zm; f⃗ ∈ Zm

p , γ ∈ Z) :
G

∑m
i=1 fiq

i−1

Hγ = F, h(fi) = vi ∀i ∈ [m], ∥f⃗∥∞ ≤ p−1
2

}
,

RRSA
AmorPoly :=

{
(F ∈ G, s, b ∈ Z, v⃗ ∈ Zm, β⃗ ∈ Zlogm; f⃗ ∈ Zm

p , γ ∈ Z) :
G

∑m
i=1fiq

i−1

Hγ = F,
∑m

i=1 eq
(
β⃗,Bits(i)

)(
h(fi)−vi

)
= s, ∥f⃗∥∞ ≤ b

}
.

Since a norm constraint is included in the relation, the sum-check verifier should
also conduct a norm check in each round. Specifically, in Lemma 1, the verifier
additionally checks ∥fi∥∞ ≤ p+1

2 · ∥fi−1∥∞ < q
2 in each iteration, where ∥fi∥∞

is the infinity norm of fi’s coefficients (sum-check challenges are sampled from[
−p−1

2 , p−1
2

]
).

In the optimized version of ΠAmor (Protocol 2), since all commitment-related
parts (i.e., the blue parts) are removed, we only need to include γ̃(r⃗x) and the

norm bound b in the output as follows, where γ̃(X⃗) is the MLE of (γj)
k
i=1:

γ̃(X⃗) :=

k∑
j=1

eq(Bits(j), X⃗) · γj , b :=
(p+ 1

2

)log k

.

InΠComp (Protocol 3), both the prover and verifier set q̃(Y⃗ ) :=
∑m

i=1 eq(Bits(i), Y⃗ )·
qi−1. Additionally, we define the polynomial p1 as p1(Y⃗ ) := f̃(Y⃗ ) · q̃(Y⃗ ) and use
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a random challenge r ←$ Z to combine p(y⃗) := p1(y⃗) + r · p2(y⃗) in step 2.
Accordingly, the sum-check claim of Equation (15) becomes

G
∑

y⃗∈{0,1}log m p(y⃗)Hγ = F ·Gr·s.

We denote the resulting evaluation claim on p1 as Gp1(r⃗y) = Fp. The final veri-
fication in Equation (16) becomes

Fp ·Gr·sp = Gf+r·ey(h(f)−v)Hγ , |f | < b ·
(p+ 1

2

)logm

<
q

2
.

We formally design the amortization and compression protocols based on the
Strong-RSA assumption, with detailed information available in Appendix B.1.

7.2 GIPA-based commitments

In addition to the DL assumption and the Strong-RSA assumption, our protocols
can be applied to any GIPA-based commitment schemes [11].

GIPA is a generalization of inner-product commitment schemes, which sup-
ports Pedersen vector commitment (based on DL) and LMR commitment [28]

(based on GDLR). Let CM(c⃗k, f⃗) denote a commitment scheme based on GIPA

such that CM(c⃗k, f⃗) =
∑m

i=1 CM(cki, fi), where c⃗k is an m-size commitment

key and f⃗ is an m-size message. For Pedersen vector commitment and LMR
commitment, the CM(cki, fi) is defined as follows:

Pedersen: CM : G× F→ G, CM(cki, fi) = fi · cki;
LMR: CM : G1 ×G2 → GT , CM(cki, fi) = e(cki, fi),

where e : G1 ×G2 → GT is a bilinear pairing mapping.
We can apply arbitrary GIPA-based commitments to our protocols by re-

placing the commitment part using CM(c⃗k, f⃗). Specifically, we modify relation
RPoly and RAmorPoly to RGIPA

Poly and RGIPA
AmorPoly as follows:

RGIPA
Poly :=

{
(F, v⃗; f⃗) : CM(c⃗k, f⃗) = F, h(fi) = vi ∀i ∈ [m]

}
,

RGIPA
AmorPoly :=

{
(F, s, v⃗, β⃗; f⃗) : CM(c⃗k, f⃗) = F,

m∑
i=1

eq
(
β⃗,Bits(i)

)(
h(fi)−vi

)
= s

}
.

Since it is straightforward to generalize the Pedersen-related parts in our
protocols to a GIPA-based commitment, we leave the details in Appendix B.2.

8 Evaluations

8.1 Theoretical performance

We summarize the theoretical efficiency ofΠPoly in Table 2. The “non-optimized”
version refers to a direct application of our techniques to a Σ-protocol, i.e.,
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Table 2: Efficiency of ΠPoly. G and F in the context of proof size denote the
number of elements in G and F, respectively. Regarding the computation time
for the prover and verifier, G-op and F-op refer to the number of operations
performed in the groups G and F, respectively.

Non-optimized Optimized

Proof size
((d+ 1) logm+ 1) G

((d+ 1) log k +m+ 4) F
((d+ 1) logm+ 2) G
((d+ 1) log k + 7) F

Prover time O(m) G-op, O((m+ k)d log2 d) F-op
Verifier time O(d logm+m+ k) G-op, O(d log k +m) F-op

Table 3: Performance between Σ-Check and [2]. [2]-Amortization and [2]-
Compression represent the Amortization and Compression phase in [2], respec-
tively. Ours-Amortization and Ours-Compression represent the Amortization
and Compression phase in our work, respectively. |C| represents the size of the
arithmetic circuit in [2], which is of O(kd).

Proof Size Prover time Verifier time

[2]-
Amortization

3k + |C| F
k G

O(kd log d) F-op
O(kd) G-op

O(k) F-op

[2]-
Compression

2 F
2 log(m+kd)−2 G

O((m+kd) log(m+kd) G-op
O((m+kd) log(m+kd) F-op

O(m+ kd) F-op
O(m+ kd) G-op

Ours-
Amortization

(d+ 1) log k G O(kd log2 d) F-op O(d log k) F-op
O(k) G-op

Ours-
Compression

(d+ 1) logm G O(md log2 d) F-op
O(m) G-op

O(m) F-op
O(d logm+m) G-op

the efficiency of Protocol 4. On the other hand, the “optimized” version is the
optimized ΠPoly in Section 3.5. Notably, in the optimized version, the proof size
remains logarithmically to k and m, surpassing existing approaches that incur
costs linear to k with linearization. Additionally, the computationally intensive
G-operations in verification can further be reduced to a logarithmic scale with
preprocessing, as discussed in Section 3.3 and Section 3.4.

We also conducted a theoretical analysis and compared Σ-Check with [2].
Our study presents a performance evaluation of [2] in handling k instances,
where each instance comprises a witness of size m, and h represents a function
with a maximum degree of d. The outcomes are detailed in the table Table 3.

8.2 Implementation and experiments

We implement Σ-Check in RUST,3 with the core building block as a sum-check
protocol for polynomials with coefficients in group elements. This project is
built on the Arkworks [16] with adoptions of the finite field, elliptic curve, and

3 https://github.com/QMorning/Compressed-Sigma-Protocol-from-Sumcheck.
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Fig. 4: Performance vs. witness length m

multilinear polynomial libraries. It supports different elliptic curves and enables
non-interactive protocol by utilizing the Merlin transcript [39].

To evaluate the experimental performance, we benchmark Σ-Check on a
MacBook Pro (macOS Catalina, 2.064 GHz eight cores, M1, 16G memory). The
commitment scheme is instantiated with the curve secp256k1, and the multi-
threading feature is disabled. In the experiment, we consider two main factors,
(i) the number of instances k (related to ΠAmor) and (ii) the size of a witness
m (related to ΠComp). We measure the performance of our protocol by three
criteria, including the prover time, verifier time, and proof size. The experiment
results are presented in Figure 3 and Figure 4. Specifically, for analyzing the
first factor, we scale k from 21 to 210 and fix m = 2. Figure 3 depicts the prover
time, verifier time, and proof size increasing on k, indicating the asymptotic
performance of the amortization phase. For the second factor, we scale m from
21 to 210 and fix k = 2. Figure 4 indicates the asymptotic performance of the
compression phase. Cases with various degrees are marked with different colors
in the figures above. Note that the prover time in Figure 4a is dominated by
O(m) group operations in ΠComp, resulting in a significantly greater concrete
time compared to that shown in Figure 3a. Additionally, the prover’s perfor-
mance across different degrees exhibits minimal variation, as the O(m) group
operations are not influenced by the degree of the polynomial. For the proof size
in 3c and 4c, the field and group elements are computed with sizes of 256 bits
and 512 bits, respectively.
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In conclusion, the experimental results keep consistent with the theoretical
performance, demonstrating that Σ-Check can efficiently process multiple high-
degree polynomial relations. In our future work, we will implement the protocol
for more applications, including proof gadgets for binary proofs, partial knowl-
edge proofs, and general-purpose argument systems with arithmetic circuits.

Acknowledgement

This research has received partial support from HK RGC GRF under Grants
PolyU 15205624, 15202123, 15207522, and 15216721, NSFC Youth 62302418,
and Ethereum Foundation ESP FY24-1497. We thank Kurt Pan for coming up
with the Σ-Check name.

28



References

1. Attema, T.: CompressedΣ-protocol Theory. Ph.D. thesis, Leiden University (2023)

2. Attema, T., Cramer, R.: Compressed Σ-Protocol Theory and Practical Appli-
cation to Plug & Play Secure Algorithmics. In: Proc. of the Annual Interna-
tional Cryptology Conference (CRYPTO). pp. 513–543. Springer (2020), https:
//doi.org/10.1007/978-3-030-56877-1_18

3. Attema, T., Cramer, R., Fehr, S.: Compressing Proofs of k-out-of-n Partial Knowl-
edge. In: Proc. of the Annual International Cryptology Conference (CRYPTO). pp.
65–91. Springer (2021), https://doi.org/10.1007/978-3-030-84259-8_3

4. Attema, T., Cramer, R., Kohl, L.: A Compressed Σ-Protocol Theory for Lattices.
In: Proc. of the Annual International Cryptology Conference (CRYPTO). pp. 549–
579. Springer (2021), https://doi.org/10.1007/978-3-030-84245-1_19

5. Ben-Sasson, E., Bentov, I., Horesh, Y., Riabzev, M.: Scalable Zero Knowledge
with no Trusted Setup. In: Proc. of the Annual International Cryptology Con-
ference (CRYPTO). pp. 701–732. Springer (2019), https://doi.org/10.1007/

978-3-030-26954-8_23

6. Boneh, D., Chen, B.: LatticeFold: A Lattice-based Folding Scheme and its Ap-
plications to Succinct Proof Systems. Cryptology ePrint Archive, Paper 2024/257
(2024), https://eprint.iacr.org/2024/257

7. Bootle, J., Cerulli, A., Chaidos, P., Groth, J., Petit, C.: Efficient Zero-Knowledge
Arguments for Arithmetic Circuits in the Discrete Log Setting. In: Proc. of the
Annual International Conference on the Theory and Applications of Cryptographic
Techniques (EUROCRYPT). pp. 327–357. Springer (2016), https://doi.org/10.
1007/978-3-662-49896-5_12

8. Bootle, J., Chiesa, A., Sotiraki, K.: Sumcheck Arguments and Their Applications.
In: Proc. of the Annual International Cryptology Conference (CRYPTO). pp. 742–
773. Springer (2021), https://doi.org/10.1007/978-3-030-84242-0_26

9. Bünz, B., Bootle, J., Boneh, D., Poelstra, A., Wuille, P., Maxwell, G.: Bullet-
proofs: Short Proofs for Confidential Transactions and More. In: Proc. of the
IEEE Symposium on Security and Privacy (S&P). pp. 315–334. IEEE (2018),
https://doi.org/10.1109/SP.2018.00020

10. Bünz, B., Fisch, B., Szepieniec, A.: Transparent SNARKs from DARK compilers.
In: Proc. of the International Conference on the Theory and Application of Cryp-
tology and Information Security (EUROCRYPT). pp. 677–706. Springer (2020),
https://doi.org/10.1007/978-3-030-45721-1_24

11. Bünz, B., Maller, M., Mishra, P., Tyagi, N., Vesely, P.: Proofs for Inner Pairing
Products and Applications. In: Proc. of the Annual International Conference on the
Theory and Application of Cryptology and Information Security (ASIACRYPT).
pp. 65–97. Springer (2021), https://doi.org/10.1007/978-3-030-92078-4_3

12. Campanelli, M., Fiore, D., Querol, A.: LegoSNARK: Modular Design and Com-
position of Succinct Zero-Knowledge Proofs. In: Proc. of the ACM Conference
on Computer & Communications Security (CCS). pp. 2075–2092. ACM (2019),
https://doi.org/10.1145/3319535.3339820

13. Chen, B., Bünz, B., Boneh, D., Zhang, Z.: Hyperplonk: Plonk with Linear-
Time Prover and High-Degree Custom Gates. In: Proc. of the Annual Inter-
national Conference on the Theory and Applications of Cryptographic Tech-
niques (EUROCRYPT). pp. 499–530. Springer (2023), https://doi.org/10.

1007/978-3-031-30617-4_17

29

https://doi.org/10.1007/978-3-030-56877-1_18
https://doi.org/10.1007/978-3-030-56877-1_18
https://doi.org/10.1007/978-3-030-84259-8_3
https://doi.org/10.1007/978-3-030-84245-1_19
https://doi.org/10.1007/978-3-030-26954-8_23
https://doi.org/10.1007/978-3-030-26954-8_23
https://eprint.iacr.org/2024/257
https://doi.org/10.1007/978-3-662-49896-5_12
https://doi.org/10.1007/978-3-662-49896-5_12
https://doi.org/10.1007/978-3-030-84242-0_26
https://doi.org/10.1109/SP.2018.00020
https://doi.org/10.1007/978-3-030-45721-1_24
https://doi.org/10.1007/978-3-030-92078-4_3
https://doi.org/10.1145/3319535.3339820
https://doi.org/10.1007/978-3-031-30617-4_17
https://doi.org/10.1007/978-3-031-30617-4_17


14. Chen, S., Cheon, J.H., Kim, D., Park, D.: Verifiable Computing for Approxi-
mate Computation. Cryptology ePrint Archive, Paper 2019/762 (2019), https:
//eprint.iacr.org/2019/762

15. Chiesa, A., Hu, Y., Maller, M., Mishra, P., Vesely, N., Ward, N.: Marlin: Prepro-
cessing zksnarks with universal and updatable srs. In: Advances in Cryptology–
EUROCRYPT 2020: 39th Annual International Conference on the Theory and
Applications of Cryptographic Techniques, Zagreb, Croatia, May 10–14, 2020,
Proceedings, Part I 39. pp. 738–768. Springer (2020), https://doi.org/10.1007/
978-3-030-45721-1_26

16. arkworks contributors: arkworks zksnark ecosystem (2022), https://arkworks.rs
17. Cormode, G., Mitzenmacher, M., Thaler, J.: Practical Verified Computation with

Streaming Interactive Proofs. In: Proc. of the Innovations in Theoretical Com-
puter Science Conference (ITCS). pp. 90–112 (2012), https://doi.org/10.1145/
2090236.2090245

18. Cramer, R.: Modular Design of Secure yet Practical Cryptographic Protocols. Ph.
D.-thesis, CWI and U. of Amsterdam 2 (1996)

19. Damg̊ard, I., Fujisaki, E.: A statistically-hiding integer commitment scheme based
on groups with hidden order. In: Proc. of the International Conference on the
Theory and Application of Cryptology and Information Security (ASIACRYPT).
pp. 125–142. Springer (2002), https://doi.org/10.1007/3-540-36178-2_8
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A Detailed Definitions and Proofs

A.1 Definitions for Pedersen Commitments

Definition 4 (Computationally binding). A commitment scheme is com-
putationally binding if for all Probabilistic Polynomial Time (PPT) adversaries
A

Pr

[
ck← Setup(1λ), (f⃗0, f⃗1, r0, r1)← A(ck) :

Commit(ck; f⃗0, r0) = Commit(ck; f⃗1, r1), (f⃗0, r0) ̸= (f⃗1, r1)

]
≈ 0.
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Definition 5 (Perfectly hiding). A commitment scheme is perfectly hiding if
for all PPT adversaries A,

Pr

[
ck← Setup(1λ), (f⃗0, f⃗1)← A(ck), b←$ {0, 1},

F ← Commit(ck; f⃗b) : A(F ) = b.

]
=

1

2
.

A.2 Definitions for Σ-Protocol

Definition 6 (Perfect completeness). A Σ-protocol (G,P,V) for relation R
provides perfect completeness if for all PPT adversaries A

Pr
[
pp← G(1λ), (x;w)← A(pp) : ⟨P(pp, x, w),V(pp, x)⟩ = 1 ∨ (x;w) /∈ R

]
= 1.

Definition 7 (Computational Knowledge Soundness). A Σ-protocol (G,P,V)
for relation R provides soundness with soundness error σ if for all deterministic
polynomial time P∗ with success probability ϵ, there exists an expected polynomial
time extractor E such that for all PPT adversaries A

Pr

[
pp← G(1λ), (x;w)← A(pp), ⟨P( mathsfpp, x, w),V(pp, x)⟩ = 1,

w ← EP∗
(pp, x) : ∧(x;w) /∈ R

]
≥ ϵ− κ(|x|)

poly(|x|)
.

where κ(|x|) is negligible soundness error dependent on the statement length |x|.

For defining special soundness property, we first present a denotation of the
tree of transcript.

Definition 8 (Tree of transcript). Let µ ∈ N and (k1, ..., kµ) ∈ Nµ. A
(k1, ..., kµ)-tree of transcripts constitutes a set of

∏µ
i=1 ki transcripts of a tree-

like structure. The edges within this tree represent the challenges of the verifier,
while the vertices are the messages from the prover, which can be empty. Each
node at depth i has exactly ki child nodes, corresponding to ki distinct challenges.
Every transcript is uniquely represented by one path from the root node to a leaf
node.

Definition 9 ((k1, ..., kµ)-special soundness). Π provides (k1, ..., kµ)-special
soundness, if there is an effective PPT extraction algorithm E that is capable
of extracting the witness w given x and any (k1, · · · , kµ)-tree of accepting tran-
scripts T [2] (defined above). Specifically, for all PPT adversaries A

Pr
[
pp← G(1λ), (x, T )← A(pp), w ← E(pp, x, T ) : (x;w) ∈ R

]
≈ 1.

(k1, ..., kµ)-special soundness is a generalization to the standard notion of
special soundness. For example, a typicalΣ-protocol given in [18] is a special type
of the 3-move interactive proof satisfying k-special soundness, where P sends an
initial message a, V issues with a random challenge r ←$ F, and finally, P
provides with a response z. Compared to knowledge soundness property, special
soundness is typically easier to prove for an interactive proof. Although special
soundness should be regarded as a weaker notion of knowledge soundness, [2]
proves that (k1, ..., kµ)-special-soundness tightly implies knowledge soundness as
long as K =

∏µ
i=1 ki is constant. Therefore, the protocols in this work are all

arguments of knowledge under the DL assumption from the results of [4].
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Definition 10 (Special honest verifier zero-knowledge). A Σ-protocol (G,P,V)
for relation R provides special Honest Verifier Zero-Knowledge (special HVZK)
if there exists an efficient PPT simulator S capable of generating an accepting
transcript that is indistinguishable from real transcripts. Specifically, for all PPT
adversaries A1,A2

Pr

[
pp← G(1λ), (x,w, ρ)← A2(pp), tr ← ⟨P(pp, x, w),V(pp, x; ρ)⟩ :

(x;w) ∈ R ∧A1(tr) = 1

]
≈Pr

[
pp← G(1λ), (x,w, ρ)← A2(pp), tr ← S(pp, x, ρ) :

(x;w) ∈ R ∧A1(tr) = 1

]
.

A.3 Definitions for RoK

Definition 11 (Perfect completeness). Π has perfect completeness if for all
PPT adversaries A

Pr

[
pp← G(1λ), (x1;w1)← A(pp), (x1;w1) ∈ R1,

(tr, x2, w2)← ⟨P(pp, x1, w1),V(pp, x1)⟩ : (x2;w2) ∈ R2

]
= 1.

Definition 12 (Knowledge soundness). Π has knowledge soundness if for
every expected polynomial-time adversary A and malicious prover P∗, there is
an expected polynomial-time extractor E (tr is omitted)

Pr

[
pp← G(1λ), (x1, w

∗
1)← A(pp), ⟨P∗(pp, x1, w

∗
1),V(pp, x1)⟩ ∈ R2 :(

x1; E(pp, x1, w
∗
1)
)
∈ R1

]
≈ 1.

A.4 Proof of Theorem 3

Proof. Public reducibility. Given k public statements (Fj , v⃗j) for all j ∈ [k] and

a transcript that includes β⃗, r⃗x, F, s, one can compute v⃗ :=
(
ṽ(r⃗x, y⃗)

)
y⃗∈{0,1}log m .

If the final checks pass, (F, s, v⃗, β⃗) is an output.

Completness. Given k input instances (Fj , v⃗j ; f⃗j) ∈ RPoly for all j ∈ [k] that
are maliciously chosen by the adversary, P and V honestly run the protocol.
The sum-check protocols will not abort due to the completeness of sum-check.
Additionally, F =

∑m
i=1 fiGi and s =

∑m
i=1 eq

(
β⃗,Bits(i)

)(
h(fi)−vi

)
hold based

on the definitions of F and s in Equation (10) and the definitions of g1 and g2.

Therefore, (F, s, v⃗, β⃗; f⃗) ∈ RAmorPoly.
Knowledge soundness. Given k input public statements (Fj , v⃗j) for all j ∈ [k]

that are maliciously chosen by the adversary and a malicious prover P∗, the ex-

tractor E runs ΠAmor with P∗ as an honest V with different r⃗
(i)
x ’s for all i ∈ [k].

If V rejects, E aborts. Otherwise, denote the output as (F (i), s(i), v⃗(i), β⃗; f⃗ (i)) for

all i ∈ [k]. Since the matrix
(
eq(⃗0, r⃗

(i)
x ), · · · , eq(⃗1, r⃗(i)x )

)k
i=1

is invertible with over-

whelming probability, E can extract f⃗j ’s for all j ∈ [k] by solving the following
equations

k∑
j=1

eq(Bits(j), r⃗(i)x ) · f⃗j = f⃗ (i), ∀i ∈ [k]. (36)
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Now we argue that if E does not abort and (F, s, v⃗, β⃗; f⃗) ∈ RAmorPoly, then

(Fj , v⃗j ; f⃗j) ∈ RPoly for all j ∈ [k]. Conduct a MLE on the extracted f⃗j ’s to derive

f̃(X⃗, Y⃗ ). Since the checks on Equation (11) pass, by the soundness of the sum-
check, Equation (9) holds with overwhelming probability over the sum-check

challenges r⃗
(i)
x ’s. Define ĝ1 and ĝ2 as

ĝ1(X⃗) := F̃ (X⃗)−
∑

y⃗∈{0,1}log m

f̃(X⃗, y⃗) · G̃(y⃗),

ĝ2(X⃗, Y⃗ ) := h
(
f̃(X⃗, Y⃗ )

)
− ṽ(X⃗, Y⃗ ).

(37)

By the uniqueness of MLE, we have ĝ1(α⃗) =
∑

x⃗∈{0,1}log k g1(x⃗) and ĝ2(α⃗, β⃗) =∑
x⃗∈{0,1}log k,y⃗∈{0,1}log m g2(x⃗, y⃗). Based on the definitions of g1 and g2, we can

rewrite Equation (9) as∑
x⃗∈{0,1}log k

g1(x⃗) = ĝ1(α⃗) = O,
∑

x⃗∈{0,1}log k,

y⃗∈{0,1}log m

g2(x⃗, y⃗) = ĝ2(α⃗, β⃗) = 0.
(38)

Since α⃗, β⃗ are uniformly chosen from the challenge space, by the Schwartz-Zippel
lemma, we have ĝ1(X⃗) = O and ĝ2(X⃗, Y⃗ ) = 0 with overwhelming probability.
Accordingly, we have

F̃ (X⃗) =
∑

y⃗∈{0,1}log m

f̃(X⃗, y⃗) · G̃(y⃗) =⇒ Fj =

m∑
i=1

fj,iGi, ∀j ∈ [k],

h
(
f̃(X⃗, Y⃗ )

)
= ṽ(X⃗, Y⃗ ) =⇒ h(fj,i) = vj,i, ∀i ∈ [m], j ∈ [k].

(39)

Thus, (Fj , v⃗j ; f⃗j) ∈ RPoly for all j ∈ [k].

Denote the verification version of ΠAmor as ΠAmorV, which modifies the last
two steps of the protocol by having P send f⃗ and V check (F, s, v⃗, β⃗; f⃗) ∈
RAmorPoly. We have the following theory.

Theorem 6. ΠAmor satisfies the special HVZK property, if the input instances
include at least one masking instance (i.e., the public statement of the masking
instance can be simulated).

The proof follows the same logic as the result in [35], except we simulate with
RPoly instances instead of polynomials.

Proof. We build the simulator S that compute a satisfying instance (F, s, v⃗, β⃗; f⃗) ∈
RAmorPoly as follows. Without loss of generality, we regard (Fk, v⃗k; f⃗k) as the
masking instance.

– Receive α⃗, β⃗ from V.
– Sample f⃗j ←$ Fm for all j ∈ [k].
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– Compute v⃗k ∈ Fm based on the following equation. If there are multiple
solutions, choose one at random.∑

y⃗∈{0,1}log m

(
eq(β⃗, y⃗) ·

(
h(f̃(α⃗, y⃗))− ṽ(α⃗, y⃗)

))
= 0.

– Compute Fk based on the following equation.

F̃ (α⃗)−
∑

y⃗∈{0,1}log m

f̃(α⃗, y⃗) · G̃(y⃗) = O .

– Engage in two sum-checks in parallel with V to show Equation (9) holds.
– Compute F, s based on Equation (10) and step 6.
– Output the simulated public statement (Fk, vk), and the simulated transcript

including (α⃗, β⃗, F, s, f⃗) and the interactions of the sum-check.

Next, we argue V does not abort and accepts (F, s, v⃗, β⃗; f⃗) ∈ RAmorPoly. Since
Equation (A.4) and Equation (A.4) holds, by the uniqueness of MLE, Equation
(9) holds. Therefore, based on the completeness of sum-check, V does not abort
at step 2, and the check on Equation (11) passes. By the definitions of F, s in

Equation (10),
∑m

i=1 fiGi = F and
∑m

i=1 eq
(
β⃗,Bits(i)

)(
h(fi) − vi

)
= s hold.

Thus, (F, s, v⃗, β⃗; f⃗) ∈ RAmorPoly.
Finally, the distributions of challenges are identical to the real ones. The

simulated F0, v0, F, s, f⃗ are indistinguishable from the real ones.

A.5 Proof of Theorem 4

Proof. Completeness. Given a maliciously chosen input instance (F, s, v⃗, β⃗; f⃗) ∈
RAmorPoly, P and V honestly run the protocol. The sum-check protocols will not
abort due to the completeness of sum-check. Additionally, Fp =

∑m
i=1 fiGi and

sp =
∑m

i=1 eq
(
β⃗,Bits(i)

)(
h(fi) − vi

)
hold based on the definitions of Fp and sp

in Equation (13) and the definitions of p1 and p2 in Equation (14). Accordingly,
Equation (16) holds, and the check at step 4 passes.

Knowledge soundness. Given a maliciously chosen public statement (F, s, v⃗, β⃗)
and a malicious prover P∗. The extractor E runs ΠComp with P∗ as an honest V
with different r⃗

(i)
y ’s for all i ∈ [m] and the same H. If V rejects, E aborts. Oth-

erwise, denote F
(i)
p := p1(r⃗

(i)
y ), s

(i)
p := p2(r⃗

(i)
y ) at step 2, f (i) := f̃(r⃗(i)) at step 3,

and e
(i)
y := eq(β⃗, r⃗

(i)
y ), G(i) := G̃(r⃗

(i)
y ), v(i) := ṽ(r⃗

(i)
y ) at step 4. Since the matrix(

eq(⃗0, r⃗
(i)
y ), · · · , eq(⃗1, r⃗(i)y )

)m
i=1

is invertible with overwhelming probability, E can

extract f⃗ = (f1, ...fm) by solving the following equations

m∑
j=1

eq(Bits(j), r⃗(i)y ) · fj = f (i), ∀i ∈ [m]. (40)

Now we argue that if E does not abort, then (F, s, v⃗, β⃗; f⃗) ∈ RAmorPoly. First,
observe that RAmorPoly is a binding relation, then f at step 3 must be evaluated
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based on f̃ . This is formally proved in Lemma 3. Therefore, the whole sum-
check protocol is correct. Based on the soundness of the sum-check, Equation

(15) holds with overwhelming probability over the sum-check challenges r⃗
(i)
y ’s.

Furthermore, recall the definition of p. Given that H is uniformly sampled from
the verifier, by the Schwartz-Zippel lemma, it follows with an overwhelming
probability that: ∑

y⃗∈{0,1}log m

p1(y⃗) = F,
∑

y⃗∈{0,1}log m

p2(y⃗) = s. (41)

By the definitions of p1 and p2 in Equation (14), we have

F =
∑

y⃗∈{0,1}log m

f̃(y⃗) · G̃(y⃗) =

m∑
i=1

fiGi,

s =
∑

y⃗∈{0,1}log m

eq(β⃗, y⃗) ·
(
h
(
f̃(y⃗)− ṽ(y⃗)

)
=

m∑
i=1

eq
(
β⃗,Bits(i)

)(
h(fi)− vi

)
.

(42)

Therefore, (F, s, v⃗, β⃗; f⃗) ∈ RAmorPoly.

We present a lemma to ensure the binding of the evaluation claim within
a sum-check argument, which is similar to Theorem 3 in [8], but we focus on
the binding property. A sum-check friendly commitment satisfies the following
relation:

RSC :=
{
(S ∈ G; f⃗ ∈ Fm) :

∑
y⃗∈{0,1}log m

p
(
f̃(y⃗), G̃(y⃗)

)
= S

}
, (43)

where G⃗ ∈ Gm is the commitment key (G̃ is the MLE on G⃗) and p : F×G→ G is
a polynomial. Assuming thatRSC is a binding relation, let us denote a sum-check
argument for RSC as ΠSC (similar to ΠComp in Protocol 3, except the polynomial
p is in a generalized form). We have the following lemma.

Lemma 3. If the verifier accepts in ΠSC, then the final evaluation claim (anal-
ogous to f at step 3 in Protocol 3) must be evaluated based on the MLE of the
original witness.

Proof. Regard S as a binding commitment of the witness f⃗ under the commit-
ment key G⃗. Denote the sum-check challenges as r⃗ and the polynomials sent
during the sum-check protocol as pi for all i ∈ [logm]. Based on the definition
of p in Equation (43), we have

pi(Y ) =
∑

y⃗∈{0,1}log m−i

p
(
f̃(r1, · · · , ri−1, Y, y⃗), G̃(r1, · · · , ri−1, Y, y⃗)

)
. (44)

Let G⃗[r1, · · · , ri−1] ∈ Gm/2i−1

be the coefficients of G̃(r1, · · · , ri−1, Yi, · · · , Ylogm)

and f⃗ [r1, · · · , ri−1] ∈ Fm/2i−1

be the coefficients of f̃(r1, · · · , ri−1, Yi, · · · , Ylogm).
In each round, the verifier’s check implies that
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– If i > 1, then pi(0) + pi(1) = pi−1(ri−1). Thus, f⃗ [r1, · · · , ri−1] is an opening

to pi−1(ri−1) under commitment key G⃗[r1, · · · , ri−1].

– If i = 1, then p1(0)+p1(1) = S. Thus, f⃗ is an opening to S under commitment

key G⃗.

Therefore, based on the binding property of the relation, the evaluation claim
must be evaluated based on an MLE of the witness f⃗ , that is, f̃(r⃗).

B Protocols under Different Assumptions

We highlight the differences between DL-based protocols in red.

B.1 Integer polynomial commitment

The amortization protocol ΠRSA
Amor and compression protocol ΠRSA

Comp are depicted
in Protocol 6 and Protocol 7, respectively.

Protocol 6 ΠRSA
Amor: Reduce (RRSA

Poly)
k to RRSA

AmorPoly.

P
(
G,H, (Fj , v⃗j , f⃗j , γj)

k
j=1

)
,V

(
G,H, (Fj , v⃗j)

k
j=1

)
1: V → P: α⃗←$ Zlog k, β⃗ ←$ Zlogm.
2: P and V: Compute f̃(X⃗, Y⃗ ) with f⃗j ’s and set g2(X⃗). Then engage in a

bounded sum-check for the claim∑
x⃗∈{0,1}log k

g2(x⃗) = 0. (45)

The protocol reduces to an evaluation claim g2(r⃗x) = sg, where r⃗x ←$ Zlog k

are the challenges of the sum-check.
3: P → V: s which are defined as

s :=
∑

y⃗∈{0,1}log m

(
eq(β⃗, y⃗) ·

(
h
(
f̃(r⃗x, y⃗)

)
− ṽ(r⃗x, y⃗)

))
. (46)

4: V: Compute ex := eq(α⃗, r⃗x) and F := F̃ (r⃗x). Check the following equation

sg = ex · s. (47)

5: P: Output f⃗ :=
(
f̃(r⃗x, y⃗)

)
y⃗∈{0,1}log m , γ := γ̃(r⃗x).

6: V: Output F, s, b := (p+1
2 )log k, v⃗ :=

(
ṽ(r⃗x, y⃗)

)
y⃗∈{0,1}log m , β⃗.
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Protocol 7 ΠRSA
Comp: Check RRSA

AmorPoly with compression.

P(G,H,F, s, b, v⃗, β⃗, f⃗ , γ),V(G,H,F, s, b, v⃗, β⃗)

1: V → P: r ←$ Zp.

2: P and V: Set q̃(Y⃗ ) :=
∑m

i=1 eq(Bits(i), Y⃗ ) · qi−1, p(y⃗) := p1(y⃗) + r · p2(y⃗)
where p1(Y⃗ ) := f̃(Y⃗ ) · q̃(Y⃗ ) and p2(Y⃗ ) is defined in Equation (14). Engage
in a sum-check for the claim

G
∑

y⃗∈{0,1}log m p(y⃗)Hγ = F ·Gr·s. (48)

The protocol reduces to two evaluation claims Gp1(r⃗y) = Fp and p2(r⃗y) = sp,
where r⃗y ←$ Zlogm

p are the challenges of the sum-check.

3: P → V: f := f̃(r⃗y).

4: V: Compute ey := eq(β⃗, r⃗y) and v := ṽ(r⃗y). Check the following equation

Fp ·Gr·sp = Gf+r·ey(h(f)−v)Hγ , |f | < b ·
(p+ 1

2

)logm

<
q

2
. (49)

B.2 GIPA-based commitment

Let Mk and Mm denote the modules of the commitment key space and message
space, respectively, which share a same scalar ring R. The amortization protocol
ΠGIPA

Amor and compression protocol ΠGIPA
Comp are depicted in Protocol 8 and Protocol

9, respectively.
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Protocol 8 ΠGIPA
Amor: Reduce (RGIPA

Poly )
k to RGIPA

AmorPoly.

P
(
c⃗k, (Fj , v⃗j , f⃗j)

k
j=1

)
,V

(
c⃗k, (Fj , v⃗j)

k
j=1

)
1: V → P: α⃗←$ Rlog k, β⃗ ←$ Rlogm.
2: P and V: Compute f̃(X⃗, Y⃗ ) as with f⃗j ’s and set g2(X⃗) as with Equation (7).

Then engage in a sum-check with the same challenges for the claim∑
x⃗∈{0,1}log k

g2(x⃗) = 0. (50)

The protocol reduces to an evaluation claim g2(r⃗x) = sg, where r⃗x ←$ Rlog k

are the challenges of the sum-check.
3: P → V: s which are defined as

s :=
∑

y⃗∈{0,1}log m

(
eq(β⃗, y⃗) ·

(
h
(
f̃(r⃗x, y⃗)

)
− ṽ(r⃗x, y⃗)

))
. (51)

4: V: Compute ex := eq(α⃗, r⃗x) and F := F̃ (r⃗x). Check the following equations

sg = ex · s. (52)

5: P: Output f⃗ :=
(
f̃(r⃗x, y⃗)

)
y⃗∈{0,1}log m .

6: V: Output F, s, v⃗ :=
(
ṽ(r⃗x, y⃗)

)
y⃗∈{0,1}log m , β⃗.

Protocol 9 ΠGIPA
Comp: Check RGIPA

AmorPoly with compression.

P(c⃗k, F, s, v⃗, β⃗, f⃗),V(c⃗k, F, s, v⃗, β⃗)
1: V → P: ckH ←$ Mk.
2: P and V: Set p(y⃗) := p1(y⃗)+CM(ckH , p2(y⃗)) where p1(y⃗) := CM(c̃k(y⃗), f̃(y⃗))

and p2(Y⃗ ) is defined in Equation (14). Engage in a sum-check for the claim∑
y⃗∈{0,1}log m

p(y⃗) = F + CM(ckH , s). (53)

The protocol reduces to two evaluation claims p1(r⃗y) = Fp and p2(r⃗y) = sp,
where r⃗y ←$ Rlogm are the challenges of the sum-check.

3: P → V: f := f̃(r⃗y).

4: V: Compute ey := eq(β⃗, r⃗y), ck := c̃k(r⃗y), and v := ṽ(r⃗y). Check the following
equation

Fp + CM(ckH , sp) = CM
(
ck, f) + CM(ckH , ey · (h(f)− v)

)
. (54)
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