Curve Forests

Transparent Zero-Knowledge Set Membership with
Batching and Strong Security

Matteo Campanelli', Mathias Hall-Andersen?, and Simon Holmgaard Kamp?

! Offchain Labs
binarywhalesinternaryseas@gmail.com
2 7ZKSecurity
mathias@hall-andersen.dk
3 CISPA Helmholtz Center for Information Security
simon.kamp@cispa.de

Abstract. Zero-knowledge for set membership is a building block at the
core of several privacy-aware applications, such as anonymous payments,
credentials and whitelists. We propose a new efficient construction for the
batching variant of the problem, where a user intends to show knowledge
of several elements (a batch) in a set without any leakage on the elements.
Our construction is transparent—it does not requires a trusted setup—
and based on Curve Trees by Campanelli, Hall-Andersen and Kamp
(USENIX 2023). Our first technical contribution consists in techniques
to amortize Curve Trees costs in the batching setting for which we cru-
cially exploit its algebraic properties. Even for small batches we obtain
~ 2x speedups for proving, &~ 3x speedups for verification and =~ 60%
reduction in proof size. Our second contribution is a modifications of a
key technical requirement in Curve Trees (related to so called “permissi-
ble points”) which arguably simplifies its design and obtains a stronger
security property. In particular, our construction is secure even for the
case where the commitment to the set is provided by the adversary (in
contrast to the honest one required by the original Curve Trees).

1 Introduction

Zero-knowledge proofs are a cryptographic technique that enables someone to
prove they possess knowledge of a secret without disclosing the secret itself.
Various applications rely on these proofs being both short and computation-
ally efficient. A growing application of zero-knowledge proofs is to set member-
ship: given a compact digest of a set S (also called accumulator), the goal is to
later show knowledge of an element in S without revealing the element itself.
This is particularly useful in areas like privacy-preserving distributed ledgers,
anonymous broadcasting, financial identity management, and asset governance
(see [BCFT21]).

Batching: applications and challenges In this work we consider the batch-
ing variant of the set membership problem: where we want to show that several

elements are in a set (all at the same time). The batching setting is immedi-
ately applicable to scenarios we already mentioned: privacy-preserving ledgers
(proving multiple transactions at the same time) and to decentralized identities
(or DID, where a user may want to prove it possesses several identity-related
attributes to convince someone else they are eligible for a loan, voting, etc.).
Besides these concrete application settings, zero-knowledge for batch set mem-
bership can itself be used as a tool to obtain more complicated cryptographic
proofs. For example, they can be used to build lookup arguments as argued
in |[ZBK™22| (which in turn can be used to build zkVMs |[AST24, CFR24]).

The applications we mentioned so far assume a honestly generated accumula-
tor. This is the case for example in blockchains where updates are (in principle)
observed by all participants and agreed to through a consensus. If a proof system
for set-membership is secure even for the (harder) setting where the accumulator
may be provided by a malicious actor, then we can unlock even more applica-
tionsﬂ These includes, for example, zero-knowledge for machine learning: as
argued in |[CFFT24], it is possible to represent key features of a decision tree as
a set and then use zero-knowledge for set membership (referred to as a lookup in
that paper) to prove correct classification. We refer to the discussion in [CFK24]
Section 7] for other example applications of settings where a user provides a
hidden, but potentially malicious digest to a set of features.

Our goal In this paper we aim at providing an efficient solution to the batching
set membership problem and to extend its spectrum of applications as much as
possible, by achieving security for the malicious-accumulator setting. We now
discuss what features an acceptable solution should have.

A trivial solution to the batching problem is one that performs a set mem-
bership proof for each of the elements in the batch. This is not an interesting
solution since its proving and verification time, as well as the bandwidth re-
quired, are growing linearly with the batch size (which may be unacceptable in
several applications). We desire a solution where we can amortize the total costs
in these metrics when proving/verifying a batch.

Another aspect we will focus on in this work is the requirement for a trans-
parent setup. What this means is that the system should work securely and
efficiently without a one-time step run by a trusted entity (the setup)ﬂ

Our starting point: Curve Trees—background and limitations The
starting point for our work is the recent construction of Curve Trees by Cam-
panelli, Hall-Andersen and Kamp [CHAK23|. This construction is interesting for
three reasons: i) efficiency, it currently represents the current state of art for

4 One intuition for why this is harder problem is that the adversary may provide a
cleverly malformed accumulator on which it can cheat later. Hereby we refer to this
scenario as the malicious-accumulator setting.

® Trusted setups can be emulated by multi-party computations but this keeps being
complex, costly and risky. Trusted setups often defy the point of “removing as much
trust as possible” often pursued in distributed ledgers.

transparent zero-knowledge set membership in terms of number of constraint<’}
i1)impact, it may soon constitute the backbone for proofs in the privacy-preserving
cryptocurrency Monerdﬂ; ii1)techniques, since every node in a Curve Tree is a
point on an elliptic curve, this gives us a broad set of algebraic tricks we can
exploit for our problem.

Unfortunately, as of today, Curve Trees does not provide any form of batch-
ing besides the trivial one outlined above (we note that it allows to amortize
verification of several proofs through techniques from |[BBBT18| but it does not
improve bandwidth or proving time). Also, the construction relies on the accu-
mulator being provided honestly. As mentioned, this does match the require-
ments of settings like distributed ledgers, but at the same time prevents others
applications.

Our contributions In this work:

— We provide a non-trivial batching version of Curve Trees that trades a larger
accumulator for a more efficient prover and smaller proof. We dub the output
of this construction a Curve Forest because of the key idea at its core: an
accumulator is now encoding not a single tree, but several ones (each con-
structed in a particular way). At proving time we can exploit the redundant
representation of multiple trees and “merge” several opening proofs as much
as possible through (standard) techniques from the DLOG setting. Even for
small batches, our construction obtains = 2x speedups for proving, ~ 3x
speedups for verification and ~ 60% reduction in proof size compared to the
original [CHAK23].

— We show how to remove an idiosyncratic requirement during the building
process for Curve Trees and how this can lead to stronger security. The
specific requirement is that of having nodes being of a specific form, i.e. being
permissible points. Enforcing the requirements require additional steps while
computing the digest. While these steps are shown to be efficient on average
in [CHAK23|, they are not guaranteed to always be. We show how to build
a Curve Tree structure without permissible points. As a result we obtain
a modest efficiency improvement, but also stronger security, in particular
making the scheme applicable in the scenario where the accumulator may
be untrusted.

Related Work Given that this work and Curve Trees overlap significantly in
scope and approach, most of the work related to this paper is the same as

5 More than as a proof system, Curve Trees can be thought of as a way to reduce
set membership to an efficient relation on a cycle of elliptic curves with DLOG.
Other transparent solutions (e.g., ZCash Orchard) can achieve better concrete per-
formance than Curve Trees when applying a more sophisticated proof system, e.g.,
Halo2 rather than Bulletproofs [BBB™18]. Using Halo2 to prove the Curve Trees
relation would provide analogous speedups and potentially lead to the most efficient
approach.

" For the last year the Monero community has been actively developing a prototype
to which it may switch and that includes Curve Trees as a core tool. See https:
//www.getmonero.org/2024/04/27/fcmps . html.

https://www.getmonero.org/2024/04/27/fcmps.html
https://www.getmonero.org/2024/04/27/fcmps.html

the one in [CHAK23|, to which we refer the reader. The discussion points in
the full version [CHAK22| will generally also apply to this work. Among addi-
tional works related to the more specific setting in this paper, we cite works
on zero-knowledge lookups, such as the already mentioned Caulk |[ZBK™22],
cq+ |CFFT24], the segment-lookup argument in Sublonk [CGG™23] and the re-
cent zkLasso |CFR24EL With the exception of the last one, these are not transpar-
ent. Works such as [GOP™16| provide notions of hiding almost complementary
to ours: the set and its actual size remain hidden, while the elements of which
we are proving membership is revealed. In this work and in Curve Trees, the
set of commitments to the elements are not required to stay private; the com-
mitment(s) of which we are proving membership—and especially the respective
opening(s)—are always hidden. We also cite two state-of-the-art constructions
on zero-knowledge for batch set-membership [CFH™ 22| and [SKBP22|, which are
not transparent (|[CFH™22| is not transparent in its most efficient instantiation
based on RSA and LegoGrol6 |[CFQ19)|).

Outline After providing some background, we describe the problem of permissi-
ble points and our solution in Section[3] We then combine these ideas with others
specific to batching in Section] Section [p| provides an experimental evaluation.

2 Preliminaries

Basic building blocks We assume familiarity with elliptic curves. We denote
by E[F,] C F, x F, the set of points in (x,y) on the elliptic curve E [Mil86].
The curve points form an Abelian group (E[F,], +); we use “additive notation”.
We always assume that the order of E[F,] denoted by p := |E[F,]| is prime. We
call the prime field F,, = Z/(pZ) the scalar field of E[F,] and denote by [s] - G
the “scalar multiplication” operation. We denote by (5,G) = > [si] - Gi the
“inner product” between a vector of scalars § € F)) and a list of group elements
Ge E[F,]™. We will be using 2-cycles (or simply cycles) of elliptic curves. These
consist of two elliptic curves {E(evn), E(oaa)} and two prime fields {IF,,,[F,} such
that: p = |E(cvn)[Fq]| and ¢ = [E(oaq)[Fp]|- In other words: the base/scalar fields
of the two curves are complementary. A point on a curve is a pair; we denote by
x(G) and y(G) the coordinates of a point G. We sometimes abuse this notation
by extending it to a vector of points in the natural way (e.g., x(G)).

Recall Pedersen commitments: commit to a vector ¢ €]Ff; with randomness
r we compute C' = Com(¥;7) = (7,G) + [r] - H € E[F,] where G, + are random
group elements. We assume familiarity with the DLOG assumptions, on which

8 This is work is possibly one of the others with the strongest potential for efficiency
in this setting. The treatment in the original paper |[CFR24]| is of zkLasso as a the-
oretical tool for non-malleability of zkVMs. We leave a full comparison as future
work, but mention that several of the caveats for Hyrax [WTs" 18] already discussed
in [§1.1.5]|CHAK22| will probably apply to zkLasso (especially its “generalized” ver-
sion, which is the one required for our setting).

binding of Pedersen relies (see, e.g., Assumption 1 in [CHAK23]). We will cru-

rernd

cially exploit the rerandomization properties of Pedersen: C —— C’ through
C'+~ C+][f]-H.
Batch zero-knowledge for set membership on the back of a napkin
We briefly review syntax and properties for zero-knowledge set membership.
We directly provide a syntax for the batching setting (the standard setting is
a special case). Our presentation slightly deviates from the abstractions used
in [CHAK23]|, but it is equivalent.

We already outlined the goal of such a system in the introduction (to which we
hereby refer to as a BatchZKSet scheme). It consists of the following algorithms:

Setup(1?) — pp produces public parameters (NB: these are transparent).
Accum(pp, S = {C1,...,Cn},m) = A deterministically accumulates a set of
(Pedersen) commitments of size N (usable to prove batches of size m).

PrvBatch (pp, S, B = (C1,...,Cp)) — ((f = (C’h .. .,C’m> 77T) returns a proof
showing B C S together with “masked handles”
VfyBatch(pp, A,C,7) — 0/1 checks that handles in C refer to elements in set S.

The presentation above is for batches on the same set, but it can be directly
extended to batches with multiple sets Si,...,.S,,. The properties we require |E|
are a form of binding—no adversary can claim something is in the set if it was
not in the original S—and hiding—1I cannot learn anything from a membership
proof and its handle, except that the handle “opens” to some element in S.

Background on Curve Trees The design of a curve tree is simple and re-
lies on the hardness of discrete logarithm and the random oracle model (ROM)
for its security. A curve tree can be described as a shallow Merkle tree where
the leaves are points over an elliptic curve (and so are the internal nodes). Like
Merkle trees, Curve Trees uses a hash, but the hash at each level is a specific
Pedersen hash. There are three caveats to this: i) what one really uses is not
a straightforward Pedersen hash of the children (each child being a curve point
is a pair (x,y) but that is not exactly what we are hashing); i) in a sense the
hash function changes a little at each level (we have two curves, E(evn)s E(oda)
and we use them respectively for even and odd layers) and we alternate the
curve at each layer (we require the two curves to be on a cycle); iii) differently
from a standard Merkle tree we need zero-knowledge. To prove membership in
zero-knowledge we use commit-and-prove [CFQ19] capabilities of a proof system
like Bulletproofs [BBB™18| (or some other DLOG-based proof system), i.e., a
proof system where the verifier takes as input a commitment—a Pedersen com-
mitment, in our case—and can efficiently verify a relation on the opening of that
commitment.

Curve Trees from 5000 feet: The protocol is building a tree where the IV leaves are
the accumulated set and is parameterized by arity £ and depth D (s.t. N = (P).

9 These “handles” are rerandomized version of C4,...,Cpn that can be used for verifi-
cation without revealing which original accumulated commitments we are referring.
10 We will not formalize these properties here; see |CHAK23| for the non batching case.

— The parameters are two vectors of £ 4 1 generators é(evn) € Ef Hevn) €

evn)
E(evn) and G(odd) S Efodd)’ H(odd) S]E(odd)~ The groups]E(evn) and E(odd)
are related to elliptic curves on a 2-cycle.

— To accumulate a set S = {C1,...,Cy} we iteratively build a tree proceeding
as follows until we reach the root: the leaves are the elements of S; at each
level we group the elements into vectors Cf,...,C} of size £ and make an
inner (parent) node as the Pedersen commitment Cp,, = (x(C"), G), where
G are generators for the curve corresponding to the level. Notice we are
alternating curve each time, e.g., if elements C” are in E(eyp), then Cpar €
E(odd)B

— Zero-knowledge membership: in order to show membership of some leaf
C € E(ewn), we basically provide a hiding path on algebraic Merkle Tree
we obtained. First we give a hiding handle for the leaf C* <= C + [r] - Hcyn)
to the verifier; we then send analogous hiding handles Cp,, for all the parents
along the path to the root; for each level ¢ we then two prove two facts for
handles C} and C}_; (alleged child and parent respectively): a) C}_; can
be opened as (X, G) + [r] - H; b) for some X in X and some § it holds that

rernd

(%,§) —— C7. In other words, a) shows that C;_; is the (rerandomized)
parent of children with x coordinates X and b) shows that one of them (the
one with x being X) is rerandomized in C}.

We point out that the steps a) and b) above are grouped by curve (i.e., all the
even layers will be proved together and same for the odd ones). Each group of
constraints will be proved with a Bulletproofs execution on the related field.
Done this way, most “openings” of elliptic curve points in a) and b) will be
represented as inner products with native field arithmetic. This is a main reason
behind the scheme’s efficiency.

3 Removing Permissible Points and Stronger Security

In our presentation of Curve Trees accumulation we intentionally skipped an
important detail for sake of clarity. The reader may notice that an internal
node in the tree uses only the x coordinate of a point. Without introducing
extra nuances, the resulting approach would be insecure. Since there can be two
points on a curve with the same first coordinate ((x,y) and (x, —y)) either of
them could be used in the proof for step b) above (but only one of them has been
accumulated!). In order to ensure an efficient check, the authors of [CHAK23|
propose that, at accumulation time, points need to be made “permissible” by
being “shifted” several times until a simple test defined by a universal hash
function passes for y but not —y (see [CHAK23| Section 6.1]). This same test
will be carried out on y at step b) at proving time, with soundness being ensured

11 We are intentionally leaving out the requirements on permissibility, which we discuss
in the next section.

by —y not passing the test. It is possible to show that on average a constant
number of shifts will give a permissible point.

ISSUES WITH PERMISSIBILITY We have already discussed one issue earlier: per-
missibility provides a solution only for the case where the accumulator is com-
puted honestly. We now discuss additional limitations of requiring permissible
points. First, it does complicate the implementation of the Curve Trees approach.
Since it is using a universal hash function, this should be in principle sampled
independently of the leaf/node we are inserting into the tree. As honest inputs
to the function are random, the function can be fixed while keeping the permis-
sibility step efficient in expectation. But we cannot a priori dismiss it having an
extremely long running time for some inputs. It is not even clear that such points
would be hard to find. If possible, this may potentially lead to DoS attacks when
this construction is applied in distributed ledgers (an attacker could find many
of these points and release them all as transactions at the same time).

Our solution Instead of “making points permissible” and taking their x coor-
dinate, we propose that a child is shifted by a common known group element A
before we commit to the x coordinate in the parent. We elaborate below.

SETUP For each curve, in addition to the usual generators we also sample two
additional ones, A(cvn) € Eevn) and Agaq) € Eoaa)-

ACCUMULATING / COMPUTING PARENT Given children commitments é(evn) S
E(evn) compute the parent as follows

L

Cpar = <)?a é(odd)> S IE(0dd)7 where X = x (é(eVII) + A(evn)) €]F“E(odd)‘

That is, for each child C, we first add the A generator and take the x-coordinate
of the result. We then compute a commitment to the resulting list of x-coordinates.
If working in the other curve at any given layer, we adapt the above accordingly.

PROVING MEMBERSHIP We adopt the syntax from the preliminaries. We perform

steps a) and b) as above but with the minor differences:
— while the public input for the parent remains the same (the handle Cf),
for the child the public input will be C’;r = C} + A. That is, step b) is now

rernd

showing (X,9) — C;r (NB: this adds no extra constraints).
— we add constraints to check (%,§) is on the curve.
Finally, we explicitly require the prover to show knowledge of the DLOGs of the
leaf node handle C} (already ordinarily done in common applications).

Security argument (sketch) Consider an adversary A successfully claiming
two distinct v # v’ are “inside” the same leaﬂ Notice this is not something we
can immediately reduce to DLOG; it can be reduced, however, to A knowing
(r,1") s8.t. Clear = V]G + [r|H, Cl..s = V]G + [r'|H with x(C' + A) =x(C" + A).
But this implies also y(C 4+ A) = —y(C'"+A) = C+A=—-(C"+A4) =
C + C' = [-2]A, and the latter can be reduced to finding a non-trivial DLOG

12 This approach can easily be adapted, mutatis mutandis, to the more general case
where the adversary is not trying to cheat on the same leaf node.

relation. We observe it is crucial for this proof that A knows DLOGs for the leaves
which motivates the last extra proof we introduced above. While we do not frame
this security statement in a full formal framework, it is straightforward to do so
extending the one in [CA23| and incorporating it into the original security proof
for Curve Trees. We stress that our argument above does essentially argue that
the resulting accumulator (the root of the tree) has binding properties even if
generated by a malicious party.

Formalizing security We now discuss the flavor of security we aim at satisfying
in more detail. The reader can find a formal version of a similar treatment
in [Fis18] §A.4]. Our goal is to describe what an adversary providing a malicious
accumulator cannot do. Intuitively (as also hinted from the proof sketch above)
we want to prevent the adversary from being able to state anything inconsistent.
This inconsistency can refer to the leaves but it will refer more in general to a
more global property of the data structure. As an example, consider the more
familiar setting of an adversarial root rt of Merkle tree: although we may not
be able to retrieve the whole alleged set “behind” rt, we can still require that
no adversary should be able to provide two inconsistent paths. This notion of
inconsistency is at the hearth of what we need to define binding.

How does this concept of inconsistency translate into our setting? Since Curve
Trees / Forests are zero-knowledge in flavor, defining inconsistency will require
additional care (two proofs, i.e., two randomized paths will not reveal inconsis-
tency by themselves since they hide what path they refer to in the first place).
Since we cannot define the binding notion on the randomized proofs themselves
we define it on the material the proofs can depend on, which we dub generically
opening hints. For instance, in Merkle trees a opening hint is a path to a leaf. In
Curve Trees we define an opening hint as a path path to a leaf (i.e., the opening
material for each of the internal nodes—which are Pedersen commitments—on
the path), plus the opening (v,r) of the leaf. We say that two paths are incom-
patible if any of the following holds:

— they refer to the same leaf and v # v’ (the case we considered explicitly in
our proof sketch above);

— they refer to distinct leaves and there is some internal node they share for
which they claim different openings.

In order to properly define binding we need a way to go from a opening hint to
an actual proof, we call this algorithm ProveFromHint. This algorithm takes as
input public parameters and a hint and returns a proof 7. For us, ProveFromHint,
consists of the straightforward algorithm that, on input a path and leaf opening,
rerandomizes the commitments on the path and produces the appropriate zero-
knowledge proofs of opening. One can then define a binding notion as follows:

Definition 1 (Binding against adversarial accumulator). For any PPT
A the following probability is negligible:

pp + Setup(1*)

(A, hint, hint') < A(pp)

(C,) < ProveFromHint(pp, hint)
(C’, ") < ProveFromHint(pp, hint’)

hint and hint’ are incompatible
Pr| A ny(pp,fAl,C’7 m)=1 :
AVfy(pp, A,C", 7') = 1

The extension to batching is straightforward.

4 Batching Proofs of Set Membership

The first place to look for an optimization for Curve Trees batching is its reran-
domization check (in step b)): this is the only one with non-native operation
and typically the source of roughly half of the constraints in the circuit. Our so-
lution will try and eliminate as many rerandomization checks as possible when
proving a batch. For a warm up to our approach: recall that proving a batch in-
volves proving m paths in the tree. Could we show a “batched rerandomization”
by just summing all internal nodes on each level of the path and just showing
rerandomization of the resulting “multi-node”™ Pedersen commitments are ho-
momorphic, so the resulting “multi-path” hides the original nodes and the prover
can open the the nodes individually. An issue though is that the nodes are all
commitments created from the same set of generators. So, considering a set of
paths that all start by choosing the first branch of the root. If we let the first
branch of the root be committed to a value x, then in the sum of the root nodes
the first generator is multiplied by m - . This can be opened honestly to = for
all m paths, but it can also be “opened” to m values that sum to m - x.

We salvage the strawman idea above by applying it with a twist: we use m
independent curve trees constructed from independent sets of generators (the
blinding generators will instead, crucially, stay the same). That is for Eeyn)

we need m independent length ¢ generators é%evn), ceey (_}"(’elvn

) but only a single

common blinding generator H(©¥®) and likewise for E(odq)- Now the sum of nodes
on the same level across the m different paths can be viewed as a single Pedersen
commitment with ¢-m generators, and it is no longer possible to mix and match
entries. We describe the relation for opening an odd parent multi-node to a
rerandomized sum of its even children, for even parents the same relation is used
with odd and even reversed.

Jj=1
1 ‘m
R AL L8 m
IR, iy
X, y Xy (xijay) € IE(evn)
1 m Jj=1
Yo Y

Ne

However, note that at the leaf level all the trees contain the same set of
commitments and in particular those commitments use the same generators. So
at the leaf level the optimization would be unsound. We fix this by treating
the rerandomized sum of the parents of the selected leaves as a parent in the
regular select and rerandomize relation, except the i*" child must in the circuit
be selected from a the i*" set of generators. We give the relation for the
opening rerandomized leaf commitments.

C=> ([¥],Gl o) +] - Hoang)
it i =1
51y O, N
B_Kj LM : /\ J’y 6}E(evn)
1 m m -
y ,...,y ~ J y
/\ Cj + A(evn) = (X“,y]) + [5J]) H(evn)
=1

An inclusion in [CHAK23| requires selecting and rerandomizing D commit-
ments on the path towards a leaf and sending these points in addition to the
proof. Expressed as R1CS constraints: selecting requires £ while rerandomization
requires O(\). For m inclusions this gives O(m-D-(£+\)) constraints. The proof
consists of m paths of D rerandomized commitments and O(log(m -D - (¢ + \)))
points when the constraints are enforced with Bulletproofs. With the batching
trick presented above: (D—1)-(m—1) rerandomizations in the circuit are replaced
with curve additions which are enforced by O(1) constraints. Asymptotically the
number of constraints in the resulting circuit is O(m - (D-¢£4 X)) and only the m
selected leaves and a single path of D constraints need to be sent. In Section
we evaluate the concrete effects of this.

5 Implementation and Evaluation

We provide an implementation of Curve Trees with the improvements described
in this paper, namely removing the permissibility requirement as described in
Section [3] and allowing efficient batching of multiple proofs of inclusion as de-
scribed in Section[d] We then benchmarks proofs of m inclusions using m separate
select-and-rerandomize relations in a single circuit and using a single Curve Tree
against using proving/verifying a batch with m independent Curve Trees proofs.
In both cases we use curve trees without permissible points. The experiment was
run on a Macbook with an M2 Pro chip and 16 GB RAM and the results are
given in Table [I] The implementation is available in the Curve Trees repo at:

https://github.com/simonkamp/curve-trees!

13 Alternatively one could ensure at the application level that the commitments being
“selected and rerandomized” also have independent generators for each membership
in a batch.

10

https://github.com/simonkamp/curve-trees

Batch|Constraints||m| (bytes)|Prove|Vfy | Amortized Vfy
2 9,320 3,446 3,978 | 44 2.74
Curve Trees |[CHAK23|| 4 18,640 4,270 | 7,932 | 87 5.77
8 37,280 5,786 |15,417|169 12.54
2 6,620 2,927 2,014 | 24 1.59
Curve Forests 4 10,540 3,059 4,071 | 34 2.41
(this work) 8 18,380 3,323 8,151 | 60 4.35

Table 1: Comparison for costs of proving inclusion in the accumulator for various batch
sizes using either Curve Trees or our batching construction (Curve Forests) with D = 4
and £ = 256, i.e. with 232 commitments. All timings are in milliseconds. The last column
specifies the amortized cost of verifying 100 proofs using standard techniques(NB: this
is called “batch” verification in [CHAK23| but it not the full-blown batching that is the
focus of this work; it is simply amortized verification in Bulletproofs).

Acknowledgments

We thank Adam Gibson for pointing out a small mistake in our reduction to
DLOG and Luke Parker for bringing to our attention that approaches to remov-
ing permissibility had also been independently observed elsewherelzl

14 Seehttps://gist.github.com/kayabalNerve/0el1f7719e5797c826b87249f21ab6£ 867
permalink_comment_id=5046032#gistcomment-5046032

11

https://gist.github.com/kayabaNerve/0e1f7719e5797c826b87249f21ab6f86?permalink_comment_id=5046032#gistcomment-5046032
https://gist.github.com/kayabaNerve/0e1f7719e5797c826b87249f21ab6f86?permalink_comment_id=5046032#gistcomment-5046032

References

AST24.

BBB*18.

BCF*21.

CA23.

CFF*24.

CFH™22.

CFK24.

CFQ19.

CFR24.

CGG™23.

CHAK22.

CHAK23.

Fisl18.

GOP™16.

Arasu Arun, Srinath T. V. Setty, and Justin Thaler. Jolt: SNARKs for
virtual machines via lookups. LNCS, pages 3-33, June 2024.

Benedikt Biinz, Jonathan Bootle, Dan Boneh, Andrew Poelstra, Pieter
Waille, and Greg Maxwell. Bulletproofs: Short proofs for confidential trans-
actions and more. In 2018 IEEE Symposium on Security and Privacy, pages
315-334. IEEE Computer Society Press, May 2018.

Daniel Benarroch, Matteo Campanelli, Dario B Fiore, Kobi Gurkan, and
Dimitris Kolonelos. Zero-knowledge proofs for set membership: Efficient,
succinct, modular. In Financial Cryptography and Data Security: 25th In-
ternational Conference, FC 2021, Virtual Event, March 1-5, 2021, Revised
Selected Papers, Part I, volume 12674, page 393. Springer Nature, 2021.
Michele Campobasso and Luca Allodi. Know your cybercriminal: Evalu-
ating attacker preferences by measuring profile sales on an active, leading
criminal market for user impersonation at scale. pages 553-570. USENIX
Association, 2023.

Matteo Campanelli, Antonio Faonio, Dario Fiore, Tianyu Li, and Helger
Lipmaa. Lookup arguments: Improvements, extensions and applications to
zero-knowledge decision trees. In PKC' 2024, Part II, LNCS, pages 337-369,
May 2024.

Matteo Campanelli, Dario Fiore, Semin Han, Jihye Kim, Dimitris Kolonelos,
and Hyunok Oh. Succinct zero-knowledge batch proofs for set accumulators.
In Heng Yin, Angelos Stavrou, Cas Cremers, and Elaine Shi, editors, ACM
CCS 2022, pages 455-469. ACM Press, November 2022.

Matteo Campanelli, Dario Fiore, and Hamidreza Khoshakhlagh. Wit-
ness encryption for succinct functional commitments and applications. In
PKC 2024, Part II, LNCS, pages 132-167, May 2024.

Matteo Campanelli, Dario Fiore, and Anais Querol. LegoSNARK: Modu-
lar design and composition of succinct zero-knowledge proofs. In Lorenzo
Cavallaro, Johannes Kinder, XiaoFeng Wang, and Jonathan Katz, editors,
ACM CCS 2019, pages 2075-2092. ACM Press, November 2019.

Matteo Campanelli, Antonio Faonio, and Luigi Russo. SNARKSs for virtual
machines are non-malleable. Cryptology ePrint Archive, Paper 2024/1551,
2024.

Arka Rai Choudhuri, Sanjam Garg, Aarushi Goel, Sruthi Sekar, and Ro-
hit Sinha. SublonK: Sublinear prover PlonK. Cryptology ePrint Archive,
Report 2023/902, 2023.

Matteo Campanelli, Mathias Hall-Andersen, and Simon Holmgaard Kamp.
Curve trees: Practical and transparent zero-knowledge accumulators. Cryp-
tology ePrint Archive, Paper 2022/756, 2022.

Matteo Campanelli, Mathias Hall-Andersen, and Simon Holmgaard Kamp.
Curve trees: Practical and transparent zero-knowledge accumulators. pages
4391-4408. USENIX Association, 2023.

Ben Fisch. PoReps: Proofs of space on useful data. Cryptology ePrint
Archive, Report 2018/678, 2018.

Esha Ghosh, Olga Ohrimenko, Dimitrios Papadopoulos, Roberto Tamassia,
and Nikos Triandopoulos. Zero-knowledge accumulators and set algebra. In
Jung Hee Cheon and Tsuyoshi Takagi, editors, ASIACRYPT 2016, Part II,
volume 10032 of LNCS, pages 67-100, December 2016.

12

Mil86.

SKBP22.

WTsT18.

ZBK™'22.

Victor S. Miller. Use of elliptic curves in cryptography. In Hugh C. Williams,
editor, CRYPTO’85, volume 218 of LNCS, pages 417-426, August 1986.
Shravan Srinivasan, loanna Karantaidou, Foteini Baldimtsi, and Charalam-
pos Papamanthou. Batching, aggregation, and zero-knowledge proofs in
bilinear accumulators. In Heng Yin, Angelos Stavrou, Cas Cremers, and
Elaine Shi, editors, ACM CCS 2022, pages 2719-2733. ACM Press, Novem-
ber 2022.

Riad S. Wahby, Ioanna Tzialla, abhi shelat, Justin Thaler, and Michael
Walfish. Doubly-efficient zkSNARKSs without trusted setup. In 2018 IEEE
Symposium on Security and Privacy, pages 926-943. IEEE Computer Soci-
ety Press, May 2018.

Arantxa Zapico, Vitalik Buterin, Dmitry Khovratovich, Mary Maller, Anca
Nitulescu, and Mark Simkin. Caulk: Lookup arguments in sublinear time.
In Heng Yin, Angelos Stavrou, Cas Cremers, and Elaine Shi, editors, ACM
CCS 2022, pages 3121-3134. ACM Press, November 2022.

13

	Curve Forests
	Introduction
	Preliminaries
	Removing Permissible Points and Stronger Security
	Batching Proofs of Set Membership
	Implementation and Evaluation

