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Abstract. Blockchain-based auction markets offer stronger fairness and
transparency compared to their centralized counterparts. Deposits and
sealed bid formats are usually applied to enhance security and privacy.
However, to our best knowledge, the formal treatment of deposit-enabled
sealed-bid auctions remains lacking in the cryptographic literature. To
address this gap, we first propose a decentralized anonymous deposited-
bidding (DADB) scheme, providing formal syntax and security defini-
tions. Unlike existing approaches that rely on smart contracts, our con-
struction utilizes a mainchain-sidechain structure that is also compatible
with the extended UTXO model. This design further allows us to develop
a consensus mechanism on the sidechain dedicated to securely recording
bids for allocation. Specifically, we build atop an Algorand-style proto-
col and integrate a novel block qualification mechanism into the block
selection. Consequently, we prove, from a game-theoretical perspective,
that our design optimizes liveness latency for rational users who want to
join the auction, even without explicit incentives (e.g., fees) for includ-
ing bids. Finally, our implementation results demonstrate the potential
performance degradation without the block qualification mechanism.

Keywords: Deposit-Enabled Sealed-Bid Auctions · Blockchain-Based
Auctions · Algorand-Style Consensus Protocol · Rational Analysis

1 Introduction

Auction markets have been a long-standing topic in applied economics. Decen-
tralization enhances their fairness and transparency by eliminating the require-
ment for trusted auctioneers while ensuring security through the persistence and
liveness of consensus protocols. Blockchain, as an embodiment of these proto-
cols [2], is ideal for securely recording and verifying auction outcomes.

However, the direct application of blockchain to auction markets suffers from
the maximal extractable value (MEV) activities. Specifically, miners can manip-
ulate the inclusion of bids (similar to transactions in traditional cryptocurrency



blockchains) to maximize their profit (see [40, Section 2.2.2] for a precise defi-
nition). As demonstrated in [32], sealed-bid auctions address this issue by con-
cealing both bid content and bidder information, preventing miners from learn-
ing bids’ intent. Moreover, most existing implementations of blockchain-based
sealed-bid auctions [11, 17, 19, 23, 30–32, 34, 39, 41, 44] rely on the Ethereum-
type smart contracts [42], and some further assume a trusted execution environ-
ment [18,29]. These assumptions may increase execution costs in real life because
fees for including such smart contracts are much higher than those for including
normal transactions [26], even the extended UTXO-type ones [8].

In contrast, this work takes a more fundamental approach, building directly
on the consensus layer with a committee-based Algorand-style blockchain. This
enables us to incorporate a novel block qualification mechanism into block se-
lection. We prove that our enhancements to the Algorand protocol [10] preserve
its original security and, additionally, allow us to reduce liveness latency when
rational users operate the protocol, even without fees for including bids.

1.1 Our Approach and Contributions

We propose a blockchain-based sealed-bid auction protocol (named Aucrand)1,
which consists of the following two parts.

A decentralized anonymous deposited-bidding scheme. For auction mar-
kets, a reasonable requirement for bidders is an appropriate amount of deposits
before participation. This ensures bidders’ compliance with the bidding process2.
Moreover, for blockchain-based auctions, deposits are separated from bids to
conceal bidders’ information (hence to prevent MEV activities). This separation
and, hence, a deposit-enabled sealed-bid auction can be constructed using an
Ethereum-type smart contract that overlooks the state of deposits and bids [32].

Although we separate deposits from bids as in the protocol in loc. cit., we no-
tice that, to the best of our knowledge, there is no cryptographic formalization of
this separation. Following the spirit of the well-known Zerocoin [33] and decen-
tralized anonymous credential [21] frameworks, we formalize the deposit-enabled
sealed-bid auction into a decentralized anonymous deposited-bidding (DADB)
scheme, providing its syntax and security (see Appendix B). As for the security:
anonymity requires that no adversary can identify the owner of a given bid,
even when provided with a set of deposits containing this bid’s corresponding
deposit; and one-more bidding unforgeability requires that no user can issue a
bid without possessing an associated deposit transaction.

Assuming a secure ledger (i.e., with persistence and liveness), we give a
generic construction (see Section 3.1) for the DADB scheme based on a CCA-
secure timed commitment scheme [25] and signatures of knowledge [9]. The timed

1 Our protocol is also versatile enough to support various auction models, e.g., double
auctions and frequent batch auctions, as detailed in Appendix A.1.

2 As noted in [12, Footnote 2], an auction with deposits that mismatch the value of
bids may suffer from severe defaults.
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feature is used to automatically open bids so that the results of bid allocation are
publicly accessible. We prove, by reduction (in Lemma 1), that our construction
satisfies anonymity and one-more bidding unforgeability. In our construction,
we leverage the mainchain-sidechain structure, where the mainchain is solely
for recording deposits. The deposit mechanism on the mainchain can be imple-
mented using the extended UTXO model [8], offering more simplicity and lower
execution cost than relying on the Ethereum-type smart contract [42].

A committee-based Algorand-style sidechain protocol. Given the struc-
ture above, we design the consensus mechanism for the sidechain to establish an
agreement on the common set of (sealed) bids among all users. Our approach
leverages an Algorand-style protocol. Concretely, based on one-more bidding un-
forgeability, we adapt Algorand’s stake-based committee selection to our deposit
setting and introduce a block qualification mechanism.

For the block qualification mechanism (see Eq. 3.1), in an arbitrary honest
user’s view, a candidate block is admitted in her block selection only when this
candidate block contains ≥ h · y bids, where h ∈ (0, 1] is a prefixed threshold
and y denotes the number of bids in the largest candidate block received. Then,
among the admitted candidate blocks, this user determines the block based on
the hash values corresponding to the candidate block. We note that if each honest
user sets the largest candidate block as the block, then many candidate blocks
proposed by honest users may have zero chance of being the block. For instance,
the adversary may send its bids to some honest users only. Moreover, when an
honest user counts the bids in a received candidate block, she only counts those
bids appearing in both her mempool and the candidate block. This implies that
the malicious users “have to propagate” their bids.

By assuming the honest majority of deposits, i.e., > 2/3 of deposit transac-
tions, are submitted to the mainchain by honest users, we prove in Theorem 1
(Section 4.1) that our modifications do not compromise the security of the orig-
inal Algorand protocol [10]. On the other hand, our modification plays a critical
role in the game theoretical analysis. In Section 4.2, we define a game that sim-
ulates the candidate block proposal phase of our sidechain protocol. Based on
anonymity, this game replaces honest users with rational ones whose utility is
derived solely from having their bids included in the block. We also provide an
explicit attacker strategy in the game, which replicates the outcomes produced
by the adversary, thereby validating that our game accurately simulates the
block selection process. Our block qualification mechanism enables us to show
that the honest behavior (i.e., including all bids) constitutes an equilibrium,
even without incentives such as fees for including bids (Theorem 2). Addition-
ally, we present experimental results demonstrating the potential performance
degradation caused by the selfish behavior of rational users (Section 5).

1.2 Related Works

A comparison with blockchain-based sealed-bid auction protocols is given below.
Our literature review will focus on the committee-based consensus protocols
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Table 1: Comparison with related works.
Works Techniques Focus of Analysis

[11, 23,30,31,39,41,44] SC & Secure blockchain SC-based privacy and security

[18,29] SC & TEE TEE-based security

[17,19] SC SC programming

[34] SC & State channel SC-based dispute resolution

[32] SC Economical analysis

This work
EUTXO-based structure
& Block qualification

DADB provable security;
Consensus when honest/rational

that influenced our design. Protocols, e.g., Algorand [10], Ouroboros [14, 27],
and [13, 36, 37, 43] employ a small, randomly selected committee to make de-
cisions, enhancing scalability and efficiency compared to traditional consensus
models, e.g., [28]. Ouroboros, a Nakamoto-style blockchain [2] with longer fi-
nality times, introduced a probabilistic, stake-based committee selection mech-
anism using verifiable random functions. This mechanism was later refined in
the Byzantine agreement-based Algorand protocol [10]. By adapting Algorand’s
construction to our deposit setting, we inherit the resilience against adaptive
corruption from its frequent committee selection and the rapid finality from the
Byzantine agreement.

However, due to the lack of rational analysis, the impact of rational user be-
havior is uncertain in these protocols. Our approach addresses this gap by modi-
fying Algorand’s block proposal and selection. Through game-theoretic analysis,
we prove that our modifications can effectively mitigate the negative impacts of
rational behavior, maintaining protocol performance and security.

1.3 Organization

Section 2 defines the general protocol execution model and sketches the building
blocks. The rest sections present our main contributions: Section 3 is devoted to
our Aucrand protocol, consisting of a DADB construction and an Algorand-style
sidechain protocol; We then analyze, in Section 4, the security of our protocol
against the Byzantine adversary, and from a game theoretic perspective; Sec-
tion 5 presents the implementation results.

2 Preliminaries

Notations. This paper uses κ for the security parameter. For any integer a ≤ b,
let [a . . b] := {a, a+1, . . . , b}; and any integer n > 0, let [n] := [1 . . n] and [n]0 :=
[0 . . n]. a ← Alg denotes that a is assigned the output of the algorithm Alg on
fresh randomness. Denote a collision-free hash function by H : {0, 1}∗ → {0, 1}κ.
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2.1 Protocol Execution Model

We adopt the standard Interactive Turing Machines (ITM) model [7], in which a
protocol refers to algorithms for a set of nodes (users) to interact with each other.
Regarding the adversary model, for security analysis in Section 4.1, we consider
that all corrupted users are controlled by a rushing Byzantine adversary A who
can read inputs and set outputs for these users. For game-theoretic analysis in
Section 4.2, all users are modeled to be rational in a pre-defined game. Their
behaviors are described by strategy sets and utility functions. Our additional
protocol settings are as follows.
– Time and network: Round-based execution that is further divided into steps;

All users’ clocks proceed at the same speed, and the local computation is
instant; A semi-synchronous network with two known delay upper bounds: λ
for short messages; Λ for full blocks.

– Participation and corruption: A constrained permissionless setting: Permis-
sionless so that anybody can submit deposit transactions; and Permissioned
for the sidechain protocol, i.e., only users who have deposited can issue bids;
The adversary can corrupt honest users adaptively at any time.

2.2 Building Blocks

We treat the cryptographic primitives below as black-boxes. Detailed notations
and formal definitions can be found in Appendix A.2.
– A digital signature scheme DS := (KGen,Sign,SigVrfy) satisfying correctness

and EUF-CMA [22].
– A non-interactive timed commitment (NITC) scheme TC, in which commit-

ments can be forced opened after time tfo. Here,

TC := (PGen,Com,OpenVrfy,FOpen)

satisfies correctness, CCA-hiding and CCA-binding [25].
– A zero-knowledge proofs of knowledge (ZKPoK) protocol that satisfies com-

pleteness, (perfect) zero-knowledge, and knowledge-soundness [15].
Briefly, we denote the key pair of user i by (ski, pki). Additionally, we consider

the ephemeral keys model from [10], which supports forward security [3, 24], to
achieve resilience against adaptive corruption. The ephemeral key pair in round
r step s is denoted by (skr,si , pkr,si ). Let sigi(m) (esigi(m)) be the (ephemeral)
signature on message m. We write SIGi(m) := (m, sigi(m)) and ESIGi(m) := (m,
esigi(m)) for the message-signature pair in the rest of this paper.

For ZKPoK, we consider the protocols tailored to proofs of set membership
and range proofs [5]. We refer to the non-interactive proofs, obtained by Fiat-
Shamir heuristic [16], as signatures of knowledge as given in [9]. We adopt the no-
tations from [6]. For the commit algorithm Com of any commitment scheme and
a value x, let NIZKPoK {(c, r) : (c, ·)← Com(x; r) ∧ c ∈ C} denote a set member-
ship proof that proves the knowledge of witness r s.t. (c, ·)← Com(x; r)∧ c ∈ C.
We denote the signature of knowledge on message m w.r.t. this relation by
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SoK[m] {(c, r) : (c, ·)← Com(x; r) ∧ c ∈ C}. Moreover, for a range proof concern-
ing [a, b] where a, b ∈ R, we denote the proof of x s.t. (c, ·)← Com(x)∧x ∈ [a, b]
by NIZKPoK {(x) : (c, ·)← Com(x) ∧ x ∈ [a, b]}.

A secure public ledger. To simplify the design of our mainchain-sidechain
structure, we assume a secure public ledger protocol (ΠM,L) to be our “main-
chain” for recording deposit transactions. We consider it to satisfy 0-persistence
and u-liveness. This can be achieved by truncating the last k blocks from any
k-persistent and (k, u)-live ledger protocol (see Appendix A.2 for properties’
formal definitions). For notations, we omit ΠM and use L to refer to both the
protocol and the ledger. Let L[−1] denote the head (i.e., the latest block) of L.

3 Our Aucrand Protocol

To avoid defaults, we require users to submit deposit transactions to the main-
chain to participate in the auction market. Each deposit transaction recorded on
the mainchain allows its owner to issue exactly one bid in the sidechain proto-
col. All bids should be sealed for better privacy guarantees and to mitigate the
MEV activity. Our modified Algorand-style sidechain protocol is then executed
to achieve consensus on the sealed bids for all honest users, which is represented
by the resulting blockchain. We employ a timed-release cryptographic primitive,
allowing users to seal bids and reveal them in a timely manner. Then, the allo-
cation results will be automatically determined based on the revealed bids and
the predefined auction model.

This section presents our main contribution: the Aucrand protocol. It in-
cludes the construction of our proposed decentralized anonymous deposited-
bidding (DADB) scheme and a detailed explanation of the associated sidechain.

3.1 A Generic DADB Construction

Our DADB scheme (see Appendix B.1 for syntax) formalizes the deposit-enable
sealed-bid auction. We present its construction based on the mainchain-sidechain
structure. On the mainchain L, each user i with a key pair (ski, pki) from DS is
uniquely identified by her public key pki. A participant holding multiple key pairs
is regarded as multiple users. However, the total amount of deposit transactions
a participant can submit is upper bounded by her currency on the ledger L.

For simplicity, we regard the bidding string in DADB syntax to be a normal-
ized bidding price: P ∈ [−1, 0)∪(0, 1], where the sign of P indicates the direction
of bids, i.e., P > 0 for buy bids, P < 0 for sell bids, and the actual bidding price
is |P|. For each bid, a user is required to make a constant amount of deposit
d > 1 on L by submitting a transaction that embeds a commitment obtained
from a unique serial number. A time interval, counted by the number of blocks
on L, for submitting deposit transactions is called a deposit epoch, indexed by
e ≥ 0. Hereby, our construction is performed for each epoch and starts with
Setup(1κ)→ (L, e, d).
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A Deposit Epoch.

Let TC be an NITC scheme. In deposit epoch e ≥ 0 on L, a user i with
(ski, pki) performs (Deposit, dVrfy,ReadL).

– Deposit(e, d, ski) samples a serial number and a randomness with S, r
$←

{0, 1}κ. It outputs a deposit transaction di = SIGi(e, d, c) to L, where
(c, ·)← TC.Com(S; r) is the commitment w.r.t. (S, r).

– dVrfy(e, d, pkj , dj) parses dj = SIGj(e
′, d′, c). It outputs 1 if e′ = e ∧ d′ =

d ∧ SigVrfy(pkj , dj) = 1; or 0 otherwise.
– ReadL(L, e) is only executed after the livenessa delay u of L following the

end of the deposit epoch e. Let PKe denote the set of all public keys on
L in epoch e. ReadL outputs:
• For each j ∈ PKe, the set of valid deposit transactions issued by j:
De

j :=
{
dj | dVrfy(e, d, pkj , dj) = 1

}
;

• The set

Ce :=

{
c ∈ d

∣∣∣∣ d ∈ ⋃
j∈PKe

De
j

}
of all committed serial numbersb.

a For completeness, we provide the interface for reading the ledger in addition to
our DADB syntax. Moreover, the liveness of L guarantees that any d outputted
to L will be recorded after this delay.

b Due to the one-to-one correspondence between a deposit transaction and a
committed serial number, we will focus on using Ce in the following of this
paper for better explicitness.

Note that d serves only as a data structure for recording deposits. It must be
completed according to the accounting model of L, e.g., the (extended) UTXO [1,
8] or the account model [42]. We deliberately consider signed deposit transactions
to align with the transaction format of UXTO models, contrasting with the
unsigned deposit payloads proposed in the smart contract-based [32].

In parallel to a deposit epoch, a user can issue bids w.r.t. deposit transac-
tions submitted by herself. Each bid is sealed in the sense that: (1) the price
P is committed with an NITC scheme while guaranteed by an NIZKPoK range
proof πP showing |P| ∈ (0, 1]; (2) the bid is decoupled from its corresponding
deposit transaction (also the user’s public key) using an SoK scheme. Even if
a user only knows a subset C ′ ⊆ Ce when issuing bids, she can still hide her
deposit transactions by proving, in a zero-knowledge manner, that she knows
the randomness s.t. the committed serial number lies in C ′. The bidding process
is specified as follows.
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Bidding Process.

Let TC be an NITC scheme. To issue and verify bids, a user performs
(Bidding, bVrfy) as follows.
– Bidding(P,S, r, C ′) takes as input a bidding price P, a serial number S, a

randomness r, and a set of committed serial numbers C ′ ⊆ Ce chosen by
the user. It outputs a sealed bid b := (cP, πP,S, πSoK) where:
• (cP, ·)← TC.Com(P) is the commitment of P and can be forced opened
via TC.FOpen.
• πP = NIZKPoK {(P) : (cP, ·)← TC.Com(P) ∧ |P| ∈ (0, 1]} is a range
proof showing |P| ∈ (0, 1] w.r.t. cP.
• πSoK = SoK[(cP, πP)] {(c, r) : (c, ·)← TC.Com(S; r) ∧ c ∈ C ′} is a sig-
nature of knowledge on (cP, πP) where C ′ ⊆ Ce.

– bVrfy(b, C ′) takes as input a sealed bid b = (cP, πP,S, πSoK) and a set
of committed serial numbers C ′. It outputs 1 if πP is a valid proof of
cP indicating |P| ∈ (0, 1], and πSoK is a valid signature of knowledge on
(cP, πP) indicating that the commitment of S is in C ′; or 0 otherwise.
Specifically, we have bVrfy(b, Ce) = 1 if ∃C ′ ⊆ Ce s.t. bVrfy(b, C ′) = 1.

Moreover, we adapt the rigorous security model from [33] to our bidding
setting, and define three properties in Appendix B.2. Briefly:

– Correctness means that any output from Deposit passes dVrfy, and any bid
from Bidding corresponding to a valid deposit transaction passes bVrfy.

– Anonymity requires that no adversary can distinguish any pair of bids not
issued by her, given the deposit transactions corresponding to the bids.

– One-more bidding-unforgeability indicates that no adversary can produce m+
1 valid bids with no duplicated serial number when given a set of deposit
transactions and some of their corresponding bids, and allowed to submit m
deposit transactions.

We conclude with the following Lemma. See Appendix B.3 for a detailed proof.

Lemma 1. Assuming a secure signature DS and a secure public ledger L (with
u-liveness delay), our construction satisfies the following properties.

– Correctness (Definition 9).
– Anonymity (Definition 10) if the NITC scheme TC is CCA-hiding and the

signature of knowledge proof πSoK is at least computationally zero-knowledge.
– One-more bidding-unforgeability (Definition 11) if the NITC scheme TC is

CCA-binding, the signature of knowledge proof πSoK is at least computationally
zero-knowledge and is knowledge-sound.

3.2 The Sidechain Protocol

Based on the deposit transactions recorded on the mainchain L, users seek to
agree on a common set of sealed bids to determine bid allocation results. Un-
like existing smart contract-based solutions, we design a dedicated sidechain for
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the consensus of sealed bids. The sidechain is based on an Algorand-style (i.e.,
Byzantine agreement) protocol [10] with modified block proposal and selection.

For simplicity, the following considers a fixed epoch e and omits it in upper
indices, i.e., we use PK, Di, and C to denote respectively PKe, De

i , and Ce.

Initialization. When a deposit epoch is completely finished, i.e., ({Di}i∈PK,
C) ← ReadL(L, e) is known to all users after the liveness delay of L, users
initialize the sidechain protocol with an empty blockchain C = ∅ at round index
r = 0 and step index s = 1. Let pp be the parameter consisting of the tuple
(λ,Λ,L, e, d, {Di}i∈PK, C) and3:
– h ∈ [0, 1), the threshold for qualifying candidate blocks. See Eq. 3.1.
– L, analyzed in Section 4.1, is the lower bound for the number of serial numbers

in candidate blocks so that the block qualification mechanism is activated.
– pr,s is the fraction whose denominator is |C|, and the numerator is the ex-

pected number of votes for committee members4 in round r ≥ 0 step s ≥ 1.
– tH denotes the number of votes needed to certify a block.
We parameterize the protocol with pp and denote it by (Πpp, C = ∅). Thereafter,
pp is in the input of all algorithms and will be omitted for simplicity.

Moreover, when specified with a round index r ≥ 0, Cr := B0|| · · · ||Br denotes

the blockchain by the end of round r, where Br′ is the selected block of round
r′ for all r′ ∈ [r]0. The seed of round r is used to determine the committee
selection for the next round and is computed by Qr = H(SIGℓr(Q

r−1), r). We
allow r = −1, and put C−1 = B−1 := L[−1] and Q−1 := H(L[−1]). The user who
generates round r’s selected block is called the leader of round r, denoted by ℓr.
Thereafter, by leader selection, we mean the block selection (we use the former
to align with “committee selection” and “potential leader”).

Definition 2. A candidate block generated by user i in round r ≥ 0 of the
sidechain protocol (Πpp, Cr−1) is defined as

Br
i := (r,H(Br−1),SIGi(Q

r−1),Br
i ),

where Br
i is a set of bids collected by i. If the leader selection fails in round r,

Br = Br
ϵ := (r,H(Br−1),Qr−1, ∅); otherwise, Br = Br

ℓr for the leader ℓr.

Committee selection. Our committee selection adapts the stake-based mech-
anism [10, Section 6] to the set of deposits

⋃
i∈PK Di. Given pp, a user i is selected

with a weight proportional to ai := |Di|. See Appendix C.1 for details. Briefly:
– σr,s

i := SIGi(r, s,Q
r−1), i’s round r step s credential for committee selection.

– GetVotes(pr,s, ai, σ
r,s
i ) outputs the number of i’s votes (Algorithm 1).

– GetMinHash(ai, σ
r,1
i ) essentially outputs the “minimum hash” (Algorithm 2).

3 We can configure Λ for each round r s.t. it is lower bounded by the number of serial
numbers in C but not in the bids on Cr−2 (Cr−2 is known to all users).

4 A deposit transaction becomes one vote in committee selection with probability pr,s.
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– Let SVr,s denote the set of committees in round r ≥ 0 step s ≥ 1. Moreover,
(1) i ∈ SVr,s if and only if GetVotes(pr,s, ai, σ

r,s
i ) > 0. Particularly, we call

users in SVr,1 potential leaders, and those in SVr,s for s > 1 verifiers. (2) i’s
power as a committee member is proportional to the number of her votes.

Step-by-step execution. This section presents the step 1 and 2 in the sidechain
protocol Πpp, in which we make significant modifications to the original Algo-
rand. For completeness, the remaining steps are provided in Appendix C.3.

In any round r ≥ 0, each user i starts her (own) round r as soon as she is
sure about Br−1, i.e., gets CERTr−1 consisting of Qr−1 and ≥ tH signatures on
the same H(Br−1) from the same step (see step 5)5.

Step 1: Block Proposal.

Each user i starts her step 1 as soon as she starts round r. She waitsa time
t1 := Λ and performs as follows then.
1. i gets her mempool MPr

i by collecting bids b from the networkb s.t.:
(a) bVrfy(b, C) = 1;
(b) ∄ b′ ∈ MPr

i ∪
(⋃

r′∈[r−1]0 B
r′
)
satisfying b′ ̸= b and the serial number

S in both b and b′.
2. i runs GetVotes(pr,1, ai, σ

r,1
i ) = x. She ends her step 1 if x = 0 (i.e.,

i /∈ SVr,1); Otherwise, she performs as followsc.
i sets Br

i = MPr
i , computes her candidate block Br

i = (r,H(Br−1),
SIGi(Q

r−1),Br
i ), prepares mr,1

i := (Br
i , esigi(H(B

r
i )), σ

r,1
i ) with her

ephemeral key pair (skr,1i , pkr,1i ), destroys skr,1i , and propagates mr,1
i .

a The waiting period ensures that the user can receive Br−1. Moreover, we pro-
pose an alternative configuration in Appendix D that eliminates this waiting
procedure, provided we admit that a serial number appears at most twice.

b Some of these bids may come from candidate blocks in previous rounds.
c Unlike Algorand [10], each user in SVr,1 propagates the entire candidate block,
as our leader selection requires the qualification of candidate blocks.

We prepare VrfyMsg (Algorithm 3) for users to verify the validity of messages.
Specially for step 1, the algorithm also verifies candidate blocks, e.g., each bid
in the input candidate block should be valid and not duplicated concerning its
serial number. Let Mr,s

i denote the set of all valid messages collected by user i
from SVr,s. That is, VrfyMsg(pr,s, aj , Cr−1,mr,s

j ) = 1 for any mr,s
j ∈ Mr,s

i .
For each user i, the leader selection takes as input her mempool MPr

i and the
valid message set Mr,1

i collected by her. We outline SelectL(MPr
i ,M

r,1
i ) algorithm

for this purpose, which is specified in Algorithm 4.
On a high level, the algorithm first extracts all serial numbers from MPr

i to
a set of serial numbers, denoted by SPr

i . By one-more bidding-unforgeability, we

5 Some user may not know the full block Br−1 even she knows CERTr−1 which is a
short message.
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consider SPr
i instead of MPr

i . Hence, the adversary cannot take advantage by
issuing multiple bids under the same serial number. Next, from the candidate
block Br

j embedded in each message mr,1
j ∈ Mr,1

i , it extracts all serial numbers

to a set of serial numbers, denoted by Srj . It sets Vi := {Srj | m
r,1
j ∈ Mr,1

i },

y := max
Sr
j∈Vi

{|Srj ∩ SPr
i |}, Wi :=

{{
j
∣∣ |Srj ∩ SPr

i | ≥ hy, Srj ∈ Vi

}
y ≥ L;{

j
∣∣ Srj ∈ Vi

}
y < L.

(3.1)

The intersection defining y will be discussed in Remark 15. SelectL outputs the
leader in the view of i as ℓ← argminj∈Wi

GetMinHash(aj , σ
r,1
j ).

Step 2: Leader Selection.

In any round r ≥ 0, each user i starts her step 2 as soon as she finishes her
step 1. The user waits time λ + Λ in step 2. Hence, the total waiting time
is t2 := λ+ 2Λ. She performs as follows after the waiting period.
1. i collects Mr,1

i . If Mr,1
i = ∅, she sets vi :=⊥; Otherwise, she selects ℓ :=

SelectL(MPr
i ,M

r,1
i ) and sets vi := (H(Br

ℓ), ℓ).

2. i runs GetVotes(pr,2, ai, σ
r,2
i ) = x. She stops and propagates nothing if

x = 0 (i.e., i /∈ SVr,2); Otherwise, she preparesa a message mr,2
i :=

(ESIGi(vi), σ
r,2
i ,SIGℓ(Q

r−1)) with her ephemeral key pair (skr,2i , pkr,2i ),

destroys skr,2i , and propagates mr,2
i .

a SIGℓ(Q
r−1) is included in mr,2

i to propagate the seed in her view.

4 Security Analysis for Aucrand

In this section, we first show that Aucrand is secure under certain assumptions
(cf. those in [10, Section 5.2]). Then, we define a strategic game simulating
Aucrand step 1 and work out its equilibrium. Retain the notations in Section 3.2.

4.1 Security Against the Byzantine Adversary

We first model a user to be either honest or corrupted. The corrupted ones
(named malicious users) are controlled by a Byzantine adversary. We make the
honest majority of deposit (HMD) assumption, i.e., the fraction of the deposit
transactions submitted by honest users (in each round of the sidechain proto-
col) is always > 2/3 (although there might be corruption). By the one-more
bidding-unforgeability property (Lemma 1), HMD is equivalent to the honest
majority of serial number (HMS) assumption, i.e., the fraction of serial numbers
corresponding to deposit transactions submitted by the honest users is always
> 2/3. We list notations and assumptions below (cf. those in [10, Section 5]):
– h is a number s.t. the fraction of the deposit transactions submitted by honest

users is always > h.
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– HSVr,s and MSVr,s denotes respectively the subset of SVr,s of honest verifiers
and malicious verifiers. |HSVr,s| and |MSVr,s| denote respectively the number
of votes from verifiers in HSVr,s and MSVr,s: for xi := GetVotes(pr,s, ai, σ

r,s
i ),

|HSVr,s| :=
∑

i∈HSVr,s

xi and |MSVr,s| :=
∑

i∈MSVr,s

xi.

– The numbers pr,s and tH are chosen so that we have the following inequality
with overwhelming probability

|HSVr,s|/2 + |MSVr,s| < tH < |HSVr,s|. (4.1)

– Tr+1 denotes the time when the first honest user is sure about Br i.e., got
CERTr. Ir denotes the interval [Tr,Tr + λ].

– ℓ denote the r-leader who, if exists6, is the unique user s.t. the value (H(Br
ℓ), ℓ)

gets ≥ tH votes from HSVr,2. This uniqueness follows from that no other value
gets ≥ tH votes from SVr,2 (by Lemma 3(1) below).

Lemma 3 (Proved in Appendix E.1). (1) (cf. [10, Lemma 5.7]) Assume that7

all honest users are sure about the same Br−1. Let v denote the value in the
message signed by verifiers in SVr,s. If there is a value v getting ≥ tH votes
from verifiers in SVr,s, then there exists no other value v′ ̸= v s.t. v′ and v
have the same length and v′ gets ≥ tH votes from verifiers in SVr,s.

(2) Assume that all honest users are sure about the same Br−1 in the time in-
terval Ir and the same Br−2. Any honest user i receive the block Br−1 before
collecting her mempool MPr

i of round r.

Qualification in the leader selection. Admit that all honest users are sure
about the same Br−1. For a verifier i ∈ HSVr,2, given the set Wi in Eq. 3.1,
the leader in her view is the user in Wi who has the minimal hash. For an
honest potential leader i′ ∈ HSVr,1, we know Sri′ = SPr

i′ . However, HMS does
not necessarily imply that SPr

i′ is large enough8 so that it may happen that
i′ /∈Wi. In the leader selection of round r, one of the following cases happens:
– (bad case) ∃ i ∈ HSVr,2 and ∃ i′ ∈ HSVr,1 s.t. i′ /∈Wi.
– (good case) otherwise.
We propose basic properties concerning two cases (see Appendix E.1 for proofs).

Proposition 4. (1) If the good case happens and some honest potential leader
ℓ has the minimal hash, then ℓ is the r-leader.

(2) Put SPr
H :=

⋃
i∈HSVr,2 SP

r
i . If ≥ h of serial numbers in SPr

H belong to SPr
i′

for any verifier i′ ∈ HSVr,1 ∪HSVr,2, then the good case happens.

6 Even if no r-leader exists, the block may be nonempty and the leader for round r
may exist, i.e., Br ̸= Br

ϵ.
7 This assumption is the induction hypothesis for proving Theorem 1.
8 In fact, if malicious users do not send their bids to i′ before honest users collect
their mempools, then SPr

i′ may be too small so that the candidate block of i′ gets
disqualified by honest users who have received malicious users’ bids.
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(3) Admit h = 2/3. Assume that9 all honest users are sure about the same Br′−1

in Ir
′
for r′ ∈ [r, r+ 5]. If L ≥ |C| · 5%, where C denotes the set of all serial

numbers, then the bad case can not consecutively happen10 for r′ ∈ [r..r+5].

Remark 5. (1) Due to HMS, the good case could be easily realized if all honest
users issue their bids before the round 0 of the side chain.

(2) By the inverse of Proposition 4(2), to let the bad case happen, some malicious
users have to send a large enough number of their bids to a part of honest
users so that < h of serial numbers in SPr

H belong to SPr
i′ for some verifier

i′ ∈ HSVr,1 ∪HSVr,2. We use this to show Proposition 4(3).
(3) The occurrence of the bad case does not necessarily imply that the leader is

malicious. We may assume that the adversary intends to let some malicious
user’s candidate block get ≥ tH votes from SVr,2, because for otherwise, no
honest user in step s ≥ 3 regards a malicious user as the leader. Then, by the
intersection in Eq. 3.1, the malicious users need to compete with the hash
values of > 1/2 of honest potential leaders (see Remark 15).

The main theorem. We propose a sketch of the main theorem for the security
of Aucrand with HMD, whose details are postponed to Appendix E.2. This
theorem is similar to that of [10, Theorem 1] in Algorand. In fact, HMD plays a
similar role as the honest majority of money assumption in [10].

Theorem 1 (A sketch). The following properties hold with overwhelming prob-
ability for each round r ≥ 0 :
(1) All honest users agree on the same block Br. Each bid b in Br satisfies

bVrfy(b, C) = 1 and that any b′ in the chain Cr with b′ ̸= b corresponds to
a serial number different from that of b. Moreover, for the number z of bids
issued by honest users and not in the chain11, if Br is nonempty and z ≥ L,
then Br contains at least hz bids.

(2) If r-leader ℓ exists, then all honest users are sure about Br generated by ℓ in
the time interval Ir+1 and Tr+1 ≤ Tr + 5λ+ 2Λ.

(3) If r-leader does not exist, then all honest users are sure about Br in the time
interval Ir+1 and Tr+1 ≤ Tr +(6Lr +8)λ+2Λ. Here Lr denotes the random
variable representing the number of Bernoulli’s trials needed to see a 1.

(4) If the good case happens in rounds r− 1 and r, then the probability of some
honest user becoming r-leader is ≥ h2(1 + h− h2).

4.2 Security in Rational Settings

When the context is clear, we put Hs := HSVr,s and Ms := MSVr,s for s ≥ 2.

9 By Theorem 1, this assumption is fulfilled in our setting.
10 Admit a slightly lower h, e.g., h = 1/2. If L ≥ |C| · 1.1%, then the bad case can not

consecutively happen for r′ ∈ [r..r+ 5].
11 In fact, one may replace the number z of bids issued by honest users with the number

of serial numbers belonging to the serial number pool SPr
i for any honest user i.
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An extensive game. The goal is to define a game to simulate Aucrand step 1.
On a high level, we replace honest potential leaders with those rational users
who want to join the auction.

Recall that we assume a network with bounded delay and the adversary being
rushing, i.e., can see all candidate blocks of potential leaders beforehand. Hence,
it is reasonable to treat the Aucrand step 1 as an extensive game with perfect
information. For simplicity, we only present a strategic game below. One may
regard it as the strategic form of an extensive game given in Appendix E.3.

Definition 6 (r-Election as a strategy game). The strategic game r-election is
the tuple

(
SVr,1, (Si)i∈SVr,1 , (ui)i∈SVr,1

)
defined as follow:

(1) The set of players SVr,1 consists of potential leaders of Aucrand round r. A
player is said to be an r-candidate if she is an honest user before waiting time
Λ ends in round r. Let I denote the set of r-candidates. Put J := SVr,1 \ I. A
player j ∈ J is called an r-villain.

(2) For each r-candidate i ∈ I, her strategy set Si is the setMPr
i of all subsets of

MPr
i . Let j ∈ J be an r-villain. Let Aj denote the set consisting of functions

fj : PK \ {j} →MPr
j .

We may regard that ∃ i, i′ ∈ PK with i ̸= i′ such that fj(i) ̸= fj(i
′). The j’s

strategy set Sj consists of functions sj :
∏

i∈I Si → Aj .
(3) Regard si ∈ Si as the candidate block propagated by the r-candidate i.

Given (si)i∈I, for j ∈ J and sj ∈ Sj , regard fj(i
′) with fj = sj((si)i∈I) as the

candidate block that j sends to the user i′ ∈ PK \ {j}. Following Eq. 3.1,
each verifier i′′ in H2 can select a leader according to the received candidate
blocks.
• If an r-candidate î is the leader whose candidate block gets ≥ tH votes from
verifiers in H2 (we name î the r-leader12), we put ui = ni and uj = −|sî|
for i ∈ I and j ∈ J, where ni denotes the number of bids issued by i that
are included in the candidate block of î.

• Otherwise, put ui = −τ for i ∈ I and uj = 0 for j ∈ J, where τ > 0
reflects13 the time cost caused by empty blocks.

The rationale of ui: By anonymity (Lemma 1), bids’ information is hidden.
For an r-candidate, once there are some bids in the pool, her allocation result
depends on the price of her bids and whether or not these bids are included in the
block. Moreover, the r-candidate’s time cost for obtaining this result increases if
there are more empty blocks. So, within one epoch, in her view:
(1) whether a bid not issued by her is included in the chain does not affect her

allocation result;
(2) she earns nothing if her bids are not included;

12 The r-leader here is compatible with the one defined in Section 4.1. We restrict to
the case where an r-leader is an r-candidate (cf. utility function of an r-villain).

13 τ > 0 is a relative value for the time cost, which is the difference between the time
cost of empty blocks and that of the case where an r-leader exists.
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(3) the relative time cost of empty blocks should give her a negative utility.
Therefore, she is better off letting her own bids in the chain and avoiding the
empty block case.

The rationale of uj :
(1) By the utility function, r-villains’ goal is to prevent that some r-candidate

becomes the r-leader (cf. Corollary 21(1));
(2) As r-villains have the same utility, we may regard that they are controlled

by one player, denoted r-Villain. In particular, her strategy set is

(sj)j∈J :
∏
i∈I

Si →
∏
j∈J

Aj (4.2)

and r-Villain’s utility is uj for any j ∈ J.

Remark 7. By the equality ui = −τ , even if all of an r-candidate’s bids are
included in the chain, she is better off avoiding the empty block case.

Remark 8 (r-Villain behaves like adversary). Admit: (A.1) The r-villains are
controlled by the adversary in round r step s ≥ 2; (A.2) If not corrupted, r-
candidates behave the same as honest users after round r step 1. We show (see
Corollary 21) that the strategies of the r-villains may lead to the same conse-
quences as those caused by the adversary (cf. Theorem 1(3)) if Aucrand step 1
replaced with the r-election. This means that we make virtually no assumption
about r-villains’ behavior. Hence, we regard r-villains to behave the same as
malicious users and the r-Villain to resemble the Byzantine adversary.

On equilibrium of the r-election game. We work out an equilibrium under
certain assumptions. For a player k ∈ SVr,1, put −k := SVr,1 \ {k}. Retain the
notations in Definition 6. We admit, w.l.o.g.14, SPr

j = SPr
H :=

⋃
i∈H2 SP

r
i for

any j ∈ J. For i ∈ I and j ∈ J, the inclusion SPr
i ⊆ SPr

j holds as honest users
propagate their bids.

Consider a strategy profile (s∗k) = (s∗k)k∈SVr,1 ∈
∏

k∈SVr,1 Sk defined below.
– Each r-candidate i ∈ I behaves the same as an honest user, i.e., s∗i = MPr

i .
– For an r-villain j ∈ J, consider a constant function s∗j on

∏
i∈I Si s.t.

s∗j : PK \ {j} →MPr
j , s
∗
j (i) =

{
MPr

j i ∈ H2
+;

∅ i ∈ H2
−,

where H2
+ ⊊ H2 consists of players i ∈ H2 s.t. |H2

+| = a for |H2| − tH < a < tH
and H2

− := H2 \H2
+ hold. Here |H2

+| is calculated as in Section 4.1.

Theorem 2. Assume that ≥ h of series numbers in SPr
H belong to SPr

i for any
i ∈ I ∪ H2 and h · |SPr

H| ≥ L. Then the profile (s∗k) is an equilibrium for the
r-election. Moreover, this profile is an equilibrium even if we regard all r-villains
as one player – the r-Villain.

14 This assumption is natural. Indeed, it implies SPr
j = SPr

j′ for any j, j′ ∈ J, which is
compatible with that the r-Villain controls r-villains (Eq. 4.2). Moreover, by Eq. 3.1,
for an r-villain j, the case SPr

j ⊃ SPr
H and the case SPr

j = SPr
H are equivalent.
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The assumption of this theorem has appeared in Proposition 4(2). By Propo-
sition 4(3) (see also Remark 5(2)), the adversary can not take advantage of the
negation of this assumption consecutively, i.e., it can not let the bad case hap-
pen consecutively. In this theorem, when regarding all r-villains as the r-Villain,
the utility function is referred to the one defined in Eq. 4.2. The proof of this
theorem is postponed to Appendix E.4.

Remark 9. We sketch partial results concerning this theorem’s enhancements
below (see Lemmas 22, 23, and Proposition 24 for details):

(1) For an r-candidate i, the strategy MPr
i is a best response to any strategy of

−i if there exists another r-candidate chooses a strategy containing MPr
i .
15

(2) For i ∈ I, any strategy si⊊MPr
i is not a best response to certain −i’s strategy.

(3) Regard all r-villains as one player. Given certain behavior of the adversary
before the r-election, the strategy profile (s∗k) is not a subgame equilibrium.

Let h be a number such that ≥ h fraction of deposit transactions are issued
by honest users (hence candidates) in any round. Theorem 1(4) implies

Corollary 10. Assume that the setting and the equilibrium in the theorem hold
for rounds r′ ∈ [r − 1..r + k], k ≥ 1. Then if a serial number S belongs to SPr

i

for all r-candidates i, then the probability for a bid corresponding to S included
in the chain Cr+k is at least 1− (1− ph)

k with ph = h2(1 + h− h2).

Remark 11 (Fee-less liveness). The liveness of blockchain protocols [20] briefly
means that transactions known by all honest users are eventually inserted into
the chain before a certain amount of delay. The corollary may read: without
explicit reward, e.g., fees for including bids, the bids known by all rational users
who want to join the auction are eventually inserted into the sidechain before a
certain amount of delay under certain conditions.

5 Sidechain Implementation

The implementation16 is for the sidechain protocol without our block qualifica-
tion mechanism Eq. 3.1. Instead, we use the minimum hash-based block selection.
Each network node is either:

(1) an honest user who includes all bids received into their candidate block;
(2) a selfish rational user as in Remark 8(A.2), i.e., only cares if her own bids

are included in the chain (cf. Definition 6(3)).

Our experiment aims to exhibit the potential harm caused by selfish behavior
without the mechanism. We exclude malicious users from our experiment as they
can only cause a limited number of empty blocks (see Theorem 1 and Remark 8).

15 We tried to remove the condition “≥h of serial numbers in SPr
H belong to SPr

i for
any i ∈ I∪H2” to get a stronger result. This is difficult, but we give a partial result.

16 See https://anonymous.4open.science/r/aucrand for the code.
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5.1 Setup and Metrics

The experiment considers a single deposit epoch. We first set up 10 users based on
Python’s thread-based parallelism. Then, consider the case where they produce
5000 deposit transactions (hence 5000 serial numbers) within this deposit epoch.
The sidechain protocol is set to run for 100 rounds. Each user issues 5 bids per
round (hence 50 bids from 10 users) and receives bids from all other users in the
network. The rational user fraction, denoted by R, varies from 0 to 100%, i.e.,
from 0 to 10 rational users. For the set of bids Br in block Br of round r ∈ [99]0,
we define metric functions on r:
– The inclusion rate: IR =

∣∣Br
∣∣/(#bids issued in round r) =

∣∣Br
∣∣/50;

– The cumulative inclusion rate: CIR =
∑

r′∈[r]0

∣∣Br′
∣∣/(50 · (r+ 1));

– The mempool size: MS = 50 · (r+ 1)−
∑

r′∈[r]0

∣∣Br′
∣∣;

– The accumulated weights:
∑

IR2, the sum extends over blocks with IR > 1.17

5.2 Results and Analysis

Figure 1(a-c) (resp., (d)) illustrate the variation of IR,CIR,MS (resp.,
∑

IR2)
throughout protocol execution and under different R (resp., across R). The fig-
ures demonstrate the apparent inefficiencies introduced by selfish behavior in
block generation: If R = 0, i.e., all users are honest, the selected block should
include all issued bids in each round, resulting in IR = 1 and CIR = 1 (the blue
line). If R > 0, then due to the selfish behavior, blocks proposed by honest users
may include bids from previous rounds, leading to IR > 1; and bids may not
be included in time, leading to CIR < 1 and MS > 0. When R < 100%, as R
increases, the accumulated weight of big blocks

∑
IR2 increases (because

∑
IR2

is dominated by IR, which indicates the size of blocks). Overall, the inefficiency
becomes more severe as R increases.

In the case of R = 100%, IR and
∑

IR2 drop compared to the R = 90% case
due to the absence of honest users. In the red line of Figure 1a, IR > 1 indicates
some bids of a user have been waiting for at least 10 rounds.

Consequently, without our block qualification mechanism, these inefficiencies
would result in the performance degradation of the blockchain:
(1) leaving some bids unprocessed and not included by the blockchain in time;
(2) potentially causing delays and congestion as larger blocks take longer to

propagate through the network.

Implications for other protocols. Our experiments reconfirm the importance
of incentivizing honest behavior among rational users. Conventional solutions
rely on explicit rewards, such as transaction fees, to encourage honest behavior.
These rewards may impose additional costs on participants (e.g., for trading).
In contrast, by incorporating the novel block qualification mechanism, Aucrand
leverages the natural incentives provided by users’ own interests in sealed-bid

17 Such blocks are regarded as big blocks, taking longer to propagate in the network.
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Fig. 1: Results across rational user fractions.

auctions to incentivize honest behavior, hence requiring no extra fees on its
users.

6 Conclusion

In this work, we propose Aucrand, a novel blockchain-based sealed-bid auction
protocol. Our contributions include the formalization of a decentralized anony-
mous deposited-bidding (DADB) scheme and the development of an Algorand-
style sidechain. By integrating a novel block qualification mechanism into the
consensus process, we first prove that our protocol maintains Algorand’s orig-
inal security guarantees. Regarding rational users, our implementation results
show that their behavior can lead to performance degradation. However, through
game-theoretical analysis, we demonstrate that our block qualification mecha-
nism can incentivize honest behavior, effectively mitigating such degradation,
even without relying on explicit incentives.
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A Auxiliary Definitions

This section introduces definitions for auctions and cryptographic primitives.

A.1 Two Sealed-Bid Auction Models

In this section, rather than “users,” we use sellers and buyers in DA or traders
in FBA. By “a bid”, we mean a bid or an ask made by a seller, a buyer, or a
trader.

Auction model design (market design) is a significant topic in economics. A
successful auction design, e.g., the FCC spectrum auction (See [12]), allocates
the goods to the bidder who values the goods most and maximizes the sellers’
expected revenue.

Our motivation for this paper is to develop a protocol for realizing sealed-
bid blockchain auctions. For the sake of explicit and instrumental, we are to
concentrate on two prominent auction models: double auction (DA) and frequent
batch auction (FBA). This subsection is devoted to a brief review of two models.
In Section 3, we will propose a protocol, which realizes these two auction models.

Double auction. DA has been widely applied in blockchain-auctions [38, Sec-
tion E]. In the DA, buyers pay money for one type of goods, and sellers provide
goods in exchange for money. The DA consists of the following steps and is
executed iteratively:
(1) This step is executed during a chosen period.

– Buyers make bids, and sellers make asks. Each bid is a price-quantity pair
(p, q) which means “buy q goods with the price of each good being p”.
Each ask is similarly defined.

– The buyers and sellers submit their bids and asks to a trusted third party
(known as an auctioneer). All bids and asks are sealed, i.e., the submission
is made privately, and the information of a bid or an ask is only known to
the buyer or seller who submitted it.

(2) At the end of the chosen period, the trusted third party clears the mar-
ket by drawing the demand and supply functions, and setting the uniform
market-clearing price to the intersection point of the two functions. Then,
the auctioneer rations bids or asks at this price to enable market clearing.

Frequent batch auction. FBA is proposed in [4] to resolve the high-frequency
trading arms race18. In FBA, a trader may pay money for shares of stock and
may sell her shares of stock for money. FBA briefly consists of the following steps
and is executed iteratively:

18 High-frequency trading (HFT) is a type of algorithmic trading. One feature of HFT
is its very short-term investment horizon. As HFT is a continuous-time trading
method, the execution time of HFT orders can decrease arbitrarily. The trading
arms race between traders occurs as the trader who can execute her algorithms and
orders faster takes more advantage.
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(1) This step is executed within a round. Here, a round is a certain interval,
named batch interval in [4]. As FBA models high-frequency trading, the
length of batch intervals may be required to be short.
– A trader may make bids as a buyer or make asks as a seller. A bid or ask

might be a limit order or market order. A limit order is a price-quantity
pair. A market order is a quantity. It is executed with the price so that
this order can be executed immediately as a limit order.

– The traders submit their orders to the auctioneer. The submission is made
privately, and the information on an order is only known to the trader who
submitted it.

(2) At the end of this round, the auctioneer clears the market in the same way as
in Step (2) of DA. The orders that are not executed will remain and will be
available in the next round unless it is canceled by the trader who submitted
them.

A.2 Formal Definitions for Cryptographic Primitives

Digital signature schemes. A digital signature scheme is a tuple of algorithms
DS := (KGen,Sign,SigVrfy) s.t.:

– KGen(1κ) takes as input the security parameter κ and outputs a secret and
public key pair (sk, pk). A key pair specified to user i is denoted by (ski, pki).
We write the remaining algorithms specified to i.

– Sign(ski,m) outputs a signature sigi(m) on the message m under ski.
– SigVrfy(pki,m, sigi(m)) outputs 1 if sigi(m) is a valid signature on m concern-

ing pki; or 0 otherwise.

We require DS to satisfy correctness and EUF-CMA [22].

Definition 1 (Correctness). A signature scheme is correct if the following
property holds for any κ > 0 and (sk, pk)← KGen(1κ).

Pr [SigVrfy(pk,m,Sign(sk,m)) = 1] = 1.

Definition 2 (EUF-CMA). A signature scheme is EUF-CMA if for any ad-
versary A that can query a signing oracle OSign(sk, ·) for at most q ≤ poly(κ)
times s.t. the queried messages form a set Q, the following probability is negl(κ)
for any λ > 0 and (sk, pk)← KGen(1κ).

Pr
[
m∗ /∈ Q ∧ SigVrfy(pk,m∗, sig(m)∗) = 1

∣∣ (m∗, sig(m)∗)← AOSign(pk)
]

Similar notations and security definitions are applied to the ephemeral keys
model. As in Algorand, this model will be queried for all steps in a round. Specifi-
cally, a user i generates her ephemeral key pair with (skr,si , pkr,si )← KGen(1κ, r, s)
for round r and step s. She produces a signature esigi(m) ← Sign(skr,si ,m) s.t.
SigVrfy(pkr,si ,m, esigi(m)) = 1. The concept of forward security [3, 24] extends
the standard EUF-CMA security by ensuring that no PPT adversary can forge
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a valid message-signature pair for any previous ephemeral key pair, even if the
latest ephemeral key pair is compromised19.

Timed commitment schemes. Following the formalization in [25], a tfo-NITC
scheme consists of a tuple of algorithms TC := (PGen,Com,OpenVrfy,FOpen):

– PGen(1κ) takes as input the security parameter κ and outputs a common
reference string crs.

– Com(crs,m) takes as input a string crs and a message m. It outputs a com-
mitment c and an open o.

– OpenVrfy(crs, c,m, o) takes as input a string crs , a commitment c, a message
m, and an open o. It outputs 1 (accept) or 0 (reject).

– FOpen(crs, c) takes as input a string crs and a commitment c. After time at
least tfo, it outputs m or ⊥.

The security of NITC is enhanced to the CCA-model, in which the adversary
is given access to a forced-opening oracle OFOpen(crs, ·). Formally, the correctness,
CCA-hiding, and CCA-binding are defined as follows.

Definition 3 (Correctness). An NITC is correct if the following property
holds for any κ > 0, crs← PGen(1κ), and any m.

Pr

[
OpenVrfy(c,m, o) = 1∧
FOpen(c) = m

∣∣∣∣ (c, o)← Com(m)

]
= 1

Definition 4 (CCA-Hiding). An NITC is (t1, t2)-CCA-hiding if for any PPT
adversary A = (A1,A2) s.t. A1 can query a forced-opening oracle OFOpen(crs, ·)
for at most t1(κ) times, and A2 can query OFOpen(crs, ·) for at most t2(κ) times
without querying the challenged c, the following probability is negl(κ) for any
κ > 0 and crs← PGen(1κ).∣∣∣∣∣∣∣∣∣Pr

b′ = b

∣∣∣∣∣∣∣∣∣
(m0,m1, st)← A

OFOpen

1 (crs);

b
$← {0, 1};

(c, ·)← Com(mb);

b′ ← AOFOpen

2 (c, st)

− 1

2

∣∣∣∣∣∣∣∣∣
Definition 5 (CCA-binding). An NITC is t-CCA-binding if for any PPT
adversary A that can query a forced-opening oracle OFOpen(crs, ·) for at most t
times, the following probability is negl(κ) for any κ > 0 and crs← PGen(1κ).

Pr

 (c,m, o,m′, o′)
← AOFOpen(crs)

∣∣∣∣∣∣
(
m ̸= m′ ∧ OpenVrfy(c,m, o) = 1∧
OpenVrfy(c,m′, o′) = 1

)
∨(

OpenVrfy(c,m, o) = 1 ∧ FOpen(c) ̸= m
)


19 The ephemeral keys model is also referred to as the erasure model in cryptography
literature. Namely, an honest user can securely erase her ephemeral keys immedi-
ately after signing for a step. This ensures that: after the user signs a message with
ephemeral keys (sk, pk), even if the user is corrupted instantly, the adversary cannot
sign under sk.
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NIZKPoK and SoK. Recall a general ZKPoK protocol. Let LR = {x | ∃w s.t.
(x,w) ∈ R} ⊆ {0, 1}∗ be a formal language w.r.t. a binary, polynomial-time
(witness) relationR ⊆ {0, 1}∗×{0, 1}∗. Let |x| denote the length of x. Then when
given a polynomial-size (of |x|) witness w that certifies (x,w) ∈ R, x ∈ LR can be
decided in the polynomial time of |x|. Denote the interactive protocol between a
(potentially unbounded) prover P and a PPT verifier V by ⟨·, b⟩ ← ⟨P(·, ·),V(·)⟩
where b ∈ {0, 1}. Here, b = 1 indicates that V accepts the transcript of the
interaction with P; and b = 0 indicates V rejects. If an interactive protocol
satisfies completeness, (perfect) zero-knowledge, and knowledge-soundness [15],
we call it a ZKPoK protocol. It can be transferred into a non-interactive one by
applying the Fiat-Shamir heuristic [16].

Definition 6 (Completeness). An interactive protocol ⟨P,V⟩ for a relation
R satisfies completeness, if for any x ∈ LR and w s.t., (x,w) ∈ R:

Pr[⟨·, 1⟩ ← ⟨P(x,w),V(x)⟩] = 1.

Definition 7 ((Perfect) Zero-Knowledge). An interactive protocol ⟨P,V⟩
for a relation R is (perfect) zero-knowledge if for any PPT adversary A there
exists a PPT simulator S s.t. {SA(x)}x∈LR ≈ {⟨P(x,w),A(x)⟩}(x,w)∈R where
⟨P(·, ·),A(·)⟩ denotes the transcript of the interaction between P and A, and
“≈” denotes (perfect) indistinguishability.

Definition 8 (Knowledge-Soundness). An interactive protocol ⟨P,V⟩ is proofs
of knowledge (PoK) relative to an NP relation R, if for any potentially unbounded
adversarial prover A accepted by V on x, i.e., ⟨·, 1⟩ ← ⟨A(x),V(x)⟩, with prob-
ability greater than ϵ, there exists a PPT knowledge extractor KA(x) (denoting
that the extractor has rewinding black-box access to A) that can output a value
w satisfying (x,w) ∈ R with probability polynomial of ϵ.

Following [9, Definition 2.2], the completeness, simulatability, and extraction
properties of SoK are essentially reflected by the completeness, zero-knowledge,
and knowledge-soundness above. We refer to the SoK as (non-interactive) proofs.

A secure public ledger. The formal security definitions from [20] are as follows.

Definition 12 (Persistence and Liveness of (ΠM,L)). Parameterized by k, u ∈
N, a secure public ledger protocol satisfies:

– k-Persistence: If in a certain round, an honest user reports a ledger that con-
tains a message m in a block more than k blocks away from the end of the
ledger L (such messages will be called “stable”), then m will be reported by
any honest user in the same position on L, from this round on.

– (k, u)-Liveness: If a messagem is given as input to all honest users continuously
for u consecutive rounds, then all honest users will report this message more
than k blocks from the end of L, i.e., all report it as stable.
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B A Formal Treatment for DADB

This section presents syntax and security definitions of the DADB scheme. We
also prove that our construction in Section 3.1 satisfies the security properties.

B.1 DADB Syntax

A DADB scheme consists of algorithms (Setup,Deposit, dVrfy,Bidding, bVrfy).

– Setup(1κ) takes as input the security parameter κ and outputs a public pa-
rameter pp s.t. d ∈ pp where d is the amount of deposit for one bid.

– Deposit(pp, i) takes as input pp and a user index i. It outputs a deposit trans-
action di and a trapdoor tdi.

– dVrfy(pp, i, di) outputs 1 if di is valid; or 0 otherwise.
– Bidding(pp,P, d, td,D) takes as input pp, a bidding string P ∈ {0, 1}∗, a deposit

transaction d and its trapdoor td, and a set of deposits D. It outputs a sealed
bid b := (cP,S, π) where cP is the sealed bidding string; S and π are the serial
number and proof indicating d ∈ D.

– bVrfy(pp, b,D) outputs 1 if b is valid, i.e., cP is valid concerning P, and (S, π)
is valid concerning D; or 0 otherwise.

Note that each bid should be associated with exactly one deposit transaction.
Hence, we require S to be a unique value released during the issuance of a bid,
designed to prevent any user from consuming the same deposit transaction twice.

B.2 DADB Security Definitions

The correctness, anonymity, and one-more bidding unforgeability for DADB are
defined as follows.

Definition 9 (Correctness). A DADB scheme is perfectly correct if the fol-
lowing properties hold for any κ > 0, any user i, and (di, tdi)← Deposit(pp, i).

– Deposit transaction verifies, i.e., dVrfy(pp, i, di) = 1.
– For any b← Bidding(pp,P, d, td,D′) s.t. d ∈ D′, it verifies that bVrfy(pp, b,D′)

= 1. Moreover, for any D ⊇ D′, we have bVrfy(pp, b,D) = 1.

Definition 10 (Anonymity). A DADB scheme satisfies anonymity if for any
PPT adversary A = (A1,A2), given a user i ∈ {0, 1}, the following probability
is negl(κ) for any κ > 0 and (di, tdi)← Deposit(pp, i).∣∣∣∣∣∣∣∣Pr

b′ = b

∣∣∣∣∣∣∣∣
(P,D, st)← A1(d0, d1);

b
$← {0, 1};

bb ← Bidding(pp,P, db, td,D ∪ {d0, d1});
b′ ← A2(bb, st)

− 1

2

∣∣∣∣∣∣∣∣
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Definition 11 (One-More Bidding-Unforgeability). A DADB scheme sat-
isfies one-more bidding unforgeability if for any PPT adversary A that is given
n ≤ poly(κ) deposit transactions (di, ·) ← Deposit(pp, i). A can query, up to
q ≤ poly(κ) times, to a bidding oracle OBidding(·, ·, ·). The oracle works as fol-
lows: when queried (dj ,Pj ,D) where {di}i∈[n] ⊆ D,

– returns ⊥ if dj /∈ {di}i∈[n];
– otherwise, returns b← Bidding(pp,Pj , dj , tdj ,D) to A and records (cPj

,Sj) to
a queried (message-serial number) set Q.

The following probability is negl(κ) for any κ > 0.

Pr


∀b′ ∈ {b′i}i∈[m+1], {di}i∈[n] ∪{d′j}j∈[m]⊆D′ :
bVrfy(pp, b′,D′) = 1∧
∀(c′Pi

,S′i) ∈ b′i :
(c′Pi

,S′i) /∈ Q ∧ S′i is unique for each b′i

∣∣∣∣∣∣∣∣
(
{d′j}j∈[m], {b′i}i∈[m+1]

)
← AOBidding({di}i∈[n])


B.3 Proofs of Lemma 1

Lemma 1 (The Security of Deposit-and-Bid). Assuming a secure signature DS
and a secure public ledger L (with u-liveness delay), our deposit-and-bid approach
satisfies the following properties.

– Correctness (Definition 9).
– Anonymity (Definition 10) if the NITC scheme TC is CCA-hiding and the

signature of knowledge proof πSoK is at least computationally zero-knowledge.
– One-more bidding-unforgeability (Definition 11) if the NITC scheme TC is

CCA-binding, the signature of knowledge proof πSoK is at least computationally
zero-knowledge and is knowledge-sound.

The proof of correctness is straightforward. We show anonymity then.

Proof of Anonymity. Fix two users i = 0, 1. One first feeds the adversary with
two deposit transactions d0 = SIG0(e, d, c0)← Deposit(e, d, sk0) and d1 obtained
similarly. As e and d are parameters that correspond to the secure ledger and
are known to the public, we regard that the adversary knows c0, pk0 and c1, pk1
only. Due to the one-to-one correspondence between a deposit transaction and
a committed serial number, we use the set of committed serial numbers instead
of the set of deposit transactions. It is also sufficient for the adversary to distin-
guish committed serial numbers. Hence, public keys are omitted in the following
analysis. The adversary chooses a set C ′ of committed serial numbers and a price

P. On the uniformly randomly sampled b
$← {0, 1}, the adversary is offered with

a bid bb = (cP, πP,Sb, πb,SoK) ← Bidding(P,Sb, rb, C
′). The adversary is said to

win the anonymity game if it outputs b′ s.t. b′ = b.
Within the challenge bids b0, b1, the commitment of price and the proof of

the price range, cP and πP, are distributed identically. Hence, the adversary is
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to work out b using the knowledge of:

c0, c1, Sb s.t. (cb, ·)← TC.Com(Sb; rb), and

πi,SoK ← SoK[(cP , πP )]{(ci, ri) : (ci, ·)← TC.Com(Si; ri) ∧ ci ∈ C ′ ∪ {c0, c1}}.
(B.1)

By (at least) computational zero-knowledge, with all but negligible probabil-
ity, replacing the signature πb,SoK with the signature πb,S generated by the PPT
simulator S, which does not use rb, has the same distribution as the origin one.
Hence, except for a negligible probability, the adversary has an equal advantage
in the anonymity game after replacing πb,SoK with πb,S .

In Table 2, we show that if there exists A wins the anonymity game with
probability 1/2+ϵ, we can construct an algorithm B which wins the CCA-hiding
game with probability 1/2+ϵ/4. Notice that b, b′, s ∈ {0, 1}. There are eight cases

CCA-Hiding Challenger

b
$← {0, 1};

r0, r1
$← {0, 1}κ;

(cb, ·)
← TC.Com(Sb; rb);

Check if b′′′ = b.

B
S0, S1 ← BOFOpen (crs);

S′, r′ ← {0, 1}κ;
(c′1−b, ·)
← TC.Com(S′; r′);

b′, s
$← {0, 1};

If b′ = s,
πb′ ← S(Ss,
cb, C

′ ∪ {cb, c′1−b});
Else, \\b′ = 1− s

πb′ ← SoK(S′, r′,
c′1−b, C

′ ∪ {cb, c′1−b});

If b′′ = b′,
b′′′ = s;

Else, \\b′′ ̸= b′

b′′′ = 1− s;

A

(P,C′, ·)← A(cb, c
′
1−b);

b′′ ← A(πb′ ,Ss or S′,
cb, c

′
1−b);

S0, S1

cb

cb, c
′
1−b

(P, C′)

(πb′ ,Ss or S′)

b′′

b′′′

Table 2: CCA-hiding game

in all. We first analyze the case s = 0:
(1.1) If (b, b′) = (0, 0), then (cb, c

′
1−b) = (c0, c

′
1) and π0 ← S(S0, c0, C ′ ∪ {c0, c′1}).

As the signature π0 sent to A is valid, the adversary outputs b′′ = 0 with
probability 1/2 + ϵ. As b′′ = 0 = b′ leads to b′′′ = 0 = b, the algorithm B
wins with probability 1/2 + ϵ.

(1.2) If (b, b′) = (0, 1), then (cb, c
′
1−b) = (c0, c

′
1) and π1 ← SoK(S′, r′, c′1, C

′ ∪
{c0, c′1}). As the signature π1 sent to A is valid, the adversary outputs b′′ = 1
with probability 1/2 + ϵ. As b′′ = 1 = b′ leads to b′′′ = 0 = b, the algorithm
B wins with probability 1/2 + ϵ.
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(1.3) If (b, b′) = (1, 0), then (cb, c
′
1−b) = (c1, c

′
0) and π0 ← S(S0, c1, C ′ ∪ {c1, c′0})

which is an invalid signature. We will calculate the probability of B winning
the game later.

(1.4) If (b, b′) = (1, 1), then only when b′′ = 0 so that b′′′ = 1 can the algorithm B
win the game. Now (cb, c

′
1−b) = (c1, c

′
0) and π1 ← SoK(S′, r′, c′0, C

′∪{c1, c′0}).
As the signature π1 sent to A is valid, with probability 1/2−ϵ, the adversary
outputs b′′ = 0 and hence B wins.

Next, we sketch the analysis of the case s = 1:
(2.1) If (b, b′) = (0, 0), then (cb, c

′
1−b) = (c0, c

′
1) and π0 ← SoK(S′, r′, c′1, C

′ ∪
{c0, c′1}). Only when A outputs b′′ = 1 so that b′′′ = 0 can the algorithm B
win the game. As the signature sent to A is valid, with probability 1/2− ϵ,
the adversary outputs b′′ = 1, and hence B wins.

(2.2) If (b, b′) = (0, 1), then (cb, c
′
1−b) = (c0, c

′
1) and π1 ← S(S1, c0, C ′ ∪ {c0, c′1})

which is an invalid proof.
(2.3) If (b, b′) = (1, 0), then (cb, c

′
1−b) = (c1, c

′
0) and π0 ← SoK(S′, r′, c′0, C

′ ∪
{c1, c′0}). The algorithm B wins with probability 1/2 + ϵ.

(2.4) If (b, b′) = (1, 1), then (cb, c
′
1−b) = (c1, c

′
0) and π1 ← S(S1, c1, C ′ ∪ {c1, c′0}).

The algorithm B wins with probability 1/2 + ϵ.
As b, b′, and s are randomly obtained, the probability that each of the cases
(1.1), (1.2), (1.4), (2.1), (2.3), and (2.4) occurs with probability 1/8. In these
cases, the probabilities of the algorithm B winning the game are all known.

It suffices to work out B’s winning probability when an invalid signature is
sent to the adversary A. Our goal is to show that this probability equals 1/2.
As b′ is randomly obtained, it suffices to show that A can not judge b′ = 0 or
= 1 given an invalid signature. For this, we show that the (invalid) signatures
obtained when b′ = 0 or = 1 have the same distribution. If b′ = 0, then the
invalid signature is π0 ← S(S0, c1, C ′ ∪ {c1, c′0}) in the case (1.3). If b′ = 1, then
the invalid signature is π1 ← S(S1, c0, C ′ ∪ {c0, c′1}) in the case (2.2). As S0 and
S1 are obtained in the same way, their distributions are the same. Notice that c1
is obtained from TC.Com(S1; r1) and c0 is obtained from TC.Com(S0; r0). Here
r1 and r0 have the same distribution as they are obtained randomly. Hence c1
and c0 have the same distribution. These shows that π0 and π1 have the same
distribution.

Overall, B wins with probability

2 · 1
8
·
(
1

2
+ ϵ+

1

2
+ ϵ+

1

2
− ϵ

)
+

1

4
· 1
2
=

1

2
+

ϵ

4
.

Finally, we show one-more bidding-unforgeability and essentially follow [33,
Appendix A.B].

Proof of One-more bidding-unforgeability. Let A be the adversary that wins the
one-more bidding-unforgeability game. We construct an algorithm B that utilizes
A to win the CCA-binding game:
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– The input of the algorithm B is the common reference string crs of the
commitment scheme TC so that B can use crs to prepare the input for A.

– B samples Si, ri
$← {0, 1}κ for i ∈ [n]. Using crs, B obtains ci from (ci, ·)←

TC.Com(crs,Si; ri) for i ∈ [n].
– B feeds A with {ci}i∈[n]. Then, A can generate arbitrary deposit transactions

di for any i ∈ [n]. When A queries OBidding with (di, Pi, C) for i ∈ [n] and
C ⊇ {ci}i∈[n], the algorithm B runs Bidding to obtain bi = (mi,Si, πi,SoK)
and deliver it to A, where mi = (cPi

, πPi
). The algorithm B also records

{(mi,Si)}i∈Q queried by A.
– From A’s output20, the algorithm B obtains m commitments {c′j}j∈[m] and

m + 1 bids {b′j}j∈[m+1] with b′j = (m′j ,S
′
j , π
′
j,SoK). Here, the signature of

knowledge π′j,SoK shows that some tuple (r∗j , c
∗
j ) satisfies (c

∗
j , ·)← TC.Com(crs,

S′j ; r
∗
j ) and c∗j ∈ C ′ with C ′ := {ci}i∈[n] ∪ {c′j}j∈[m].

– For the PPT SoK extractor (by knowledge-soundness), the algorithm B ap-
plies the extractor to π′j,SoK for j ∈ [m+ 1] and obtains {(r∗j , c∗j )}j∈[m+1].

– The algorithm B analyzes (r∗j , c
∗
j ), j ∈ [m+ 1] as below:

(1) The extractor may fail21: (i) the extractor extracts nothing; (ii) (c∗j , ·) ̸=
TC.Com(crs,S′j ; r

∗
j ); (iii) c

∗
j /∈ C ′.

(2) Otherwise, we have c∗j ∈ C ′ for j ∈ [m + 1]. In this case, we may have
c∗j ∈ {ci}i∈[n]. Assume so.

(2.1) We may have (S′j , r
∗
j ) = (Si, ri) for some i and if i ∈ Q, m′j ̸= mi.

(2.2) We may have (S′j , r
∗
j ) = (Si, ri) for some i ∈ Q such that m′j = mi.

(2.3) We may have (S′j , r
∗
j ) ̸= (Si, ri) for all i. The algorithm B sets

(c,m, o,m′, o′) := (ci,Si, ri,S
′
j , r
∗
j ).

(3) In the remained case, we have c∗j ∈ {c′1, · · · , c′m} for all j ∈ [m+ 1]. We
have c∗i = c∗j for some i, j ∈ [m+ 1] with i ̸= j. The algorithm B sets

(c,m, o,m′, o′) := (c∗j ,S
′
i, r
∗
i ,S
′
j , r
∗
j ).

– In the cases (1), (2.1), and (2.2), B outputs ⊥. In the cases (2.3) and (3),
output (c,m, o,m′, o′).

Notice that the occurrence of cases (2.3) and (3) violates the CCA-binding prop-
erty22. It suffices to show that the probability of the case where (2.3) or (3) occurs
is non-negligible.

20 The adversary succeeding precisely means bVrfy(b′j , C
′) = 1, (m′

j ,S
′
j) not recorded,

and S′
j ̸= S′

i in b′j and b′i if j ̸= i.
21 The cases (ii) and (iii) mean that the obtained witness does not satisfy the set

membership relation, i.e. violates the completeness of the ZKPoK.
22 The occurrences of cases (2.3) or (3) violate the CCA-binding property. In the case

(2.3), the inequality (S′
j , r

∗
j ) ̸= (Si, ri) for any i implies that the adversary success-

fully commits a bid using the deposit transaction provided by B. In this case, the
algorithm B finds for the commitment ci two tuples (S′

j , r
∗
j ) and (Si, ri) of serial num-

bers and witnesses. This contradicts the CCA-binding property. If case (3) occurs,
then the adversary successfully finds for a commitment in {c′1, . . . , c′m} two tuples of
serial numbers and witnesses. This also contradicts the CCA-binding property.
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As for (1), the probability of the extractor for each j failing is ≤ negl(κ). We
need the case where the extractor succeeds for all j. The successful probability
is > (1− negl(κ))m+1 > 1− (m+ 1)negl(κ).

Let A′ denote the adversary induces the case (2.1). In this case, algorithm B
behaves as below:

(1) Obtain S̃i
$← {0, 1}κ such that S̃i ̸= Si.

(2) Rewind A′ and feed it with {c1, . . . , cn}.
(3) When A′ queries OBidding with (di,Pi, C), the algorithm B runs the simula-

tor S provided by computational zero-knowledge to obtain a proof πi,S ←
S(S̃i, ci, C). Then B delivers the bid b̃i = (mi, S̃i, πi,S) to A′.

(4) After receiving m commitments and m+1 bids, the algorithm B applies the
PPT SoK extractor to the proofs in all m+ 1 bids to obtain the witnesses.

Let r̃i denote the witness obtained from the extractor when it is applied to the bid
b′j = (m′j ,S

′
j , π
′
j,SoK) from A′ satisfying S

′
j = S̃i. Then the tuple (c,m, o,m′, o′) :=

(ci,Si, ri, S̃i, r̃i) violates the CCA-binding property.

In the case (2.2), we have (m′j ,S
′
j) = (mi,Si) which has been delivered to

the adversary. This implies that the adversary does not win in this case. This
contradicts the assumption. In summary, as cases (1), (2.1), and (2.2) either
occur with negligible probability or contradict the assumption, cases (2.3) and
(3) occur with non-negligible probability.

C Detailed Sidechain Protocol

C.1 Helper Functions

Committee selection. Given the hash function H(·), we denote the string
of “0.” concatenated with the hash value by .H(·) := (0.H(·))2. Let pp be the
aforementioned parameter. On a high level, our committee selection is realized
by applying the stake-based mechanism [10, Section 6] to the set of deposits⋃

i∈PKe D
e
i so that a user i is selected with a weight proportional to |De

i |. Fol-
lowing notations in loc. cit., the set of committees in round r ≥ 0 step s ≥ 1
is denoted by SVr,s. Particularly, we call users in SVr,1 potential leaders, and
those in SVr,s for s > 1 verifiers.

Let ai := |Di| be the number of deposit transactions issued by user i in
epoch e. To realize the committee selection, we propose two helper algorithms
GetVotes and GetMinHash (Algorithm 1 and 2). In the algorithms, each user i
essentially “gets a hash value as a lottery ticket” for each deposit transaction in
Di so that i has ai hash values in each committee selection. In Algorithm 1, a
deposit transaction becomes a vote if and only if the corresponding hash is small
enough, which happens with probability pr,s. In Algorithm 2, the minimal hash
value among ai hash values of a user’s deposit transaction is obtained.

We abstract two helper algorithms below. For each user i, her committee
credential of round r step s is σr,s

i := SIGi(r, s,Q
r−1).
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– GetVotes(pr,s, ai, σ
r,s
i ) outputs the number of i’s votes so that (1) i is a com-

mittee member if and only if GetVotes(pr,s, ai, σ
r,s
i ) > 0 and (2) i’s power as

a committee member is proportional to the number of her votes.
– GetMinHash(ai, σ

r,1
i ) essentially outputs the “minimum hash” value w.r.t. σr,s

i .

Algorithm 1: GetVotes outputs the number of copies of i in SVr,s.

1 function GetVotes(pr,s, ai, σ
r,s
i ) ;

2 Compute y = .H(σr,s
i ) ;

// Denote with p := pr,s, ai := ai in the following.

3 for x ∈ [ai]0 do
4 Compute px =

(
ai
x

)
px(1− p)ai−x ;

5 if y ∈ [0, p0] then
6 Return 0 ;
7 else

8 if y ∈
(∑

x′<x pi,x′ ,
∑

x′≤x pi,x′
]
then

9 Return x ;
10 end

11 end

12 end

Algorithm 2: GetMinHash outputs the “minimum hash” w.r.t. σr,s
i .

1 function GetMinHash(ai, σ
r,1
i ) ;

2 if GetVotes(pr,1, ai, σ
r,1
i ) = 0 then

3 Return 0 ;
4 end
5 Compute y = .H(σr,s

i ) ;
// Denote with ai := ai in the following.

6 for x ∈ [2κ]0 do

7 Compute pi,x =
(

2κ−x+1
2κ+1

)ai
−

(
2κ−x
2κ+1

)ai
;

8 if y ∈ [0, p0] then
9 Return 0 ;

10 else

11 if y ∈
(∑

x′<x pi,x′ ,
∑

x′≤x pi,x′

]
then

12 Return x ;
13 end

14 end

15 end

Message verification. VrfyMsg for verifying messages is in Algorithm 3.
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Algorithm 3: VrfyMsg verifies messages of step s ≥ 1.

1 function VrfyMsg(pr,s, ai, Cr−1,mr,s
i ) ;

2 Parse σr,s
i ∈ mr,s

i ;
3 if SigVrfy(pki, σ

r,s
i ) = 0 ∨ GetVotes(pr,s, ai, σ

r,s
i ) = 0 then

4 Return 0 ;
5 end
6 if s = 2 then

7 Parse mr,2
i = (ESIGi(vi), σ

r,2
i ,SIGℓ(Q

r−1)) ;

8 if SigVrfy(pkr,2i ,ESIGi(vi)) = 0 ∧ SigVrfy(pkℓ,SIGℓ(Q
r−1)) = 0 then

9 Return 0 ;
10 end

11 else if s = 3 then

12 Parse mr,3
i = (ESIGi(vi), σ

r,3
i ) ;

13 if SigVrfy(pkr,3i ,ESIGi(vi)) = 0 then
14 Return 0 ;
15 end

16 else if s > 4 ∧ s ∈ N then
17 Parse mr,s

i = (ESIGi(bi),ESIGi(vi), σ
r,s
i ) ;

18 if SigVrfy(pkr,si ,ESIGi(bi)) = 0 ∨ SigVrfy(pkr,si ,ESIGi(vi)) = 0 then
19 Return 0 ;
20 end

21 else if s = 1 then

22 Parse mr,1
i = (Br

i , esigi(H(B
r
i )), σ

r,1
i ) ;

23 if SigVrfy(pkr,1i ,H(Br
i ), esigi(H(B

r
i ))) = 0 then

24 Return 0 ;
25 end

26 Parse Cr−1 = B0|| . . . ||Br−1 and Br′ ∈ Br′ for all r′ ∈ [r− 1]0;

27 Parse Br
i = (ri,Hi,SIGi(Q

r−1
i ),Br

i ) ;

28 if ri ̸= r ∨Hi ̸= H(Br−1) ∨Qr−1
i ̸= H(SIGℓr−1(Qr−2), r)

∨ SigVrfy(pki,SIGi(Q
r−1
i )) = 0 then

29 Return 0 ;
30 end
31 for b ∈ Br

i do
32 if bVrfy(b, C) = 0 then
33 Return 0 ;
34 else
35 Parse b = (cP, πP,S, πSoK) ;

36 if ∃b′ ∈ Br
i ∪

(⋃
r′∈[r−1]0 B

r′
)
s.t. S ∈ b′ ∧ b′ ̸= b then

37 Return 0 ;
38 end

39 end

40 end

41 else
42 Return 0 ;
43 end
44 Return 1 ; 34



C.2 Our Leader Selection with Block Qualification

The specification of SelectL is presented in Algorithm 4.

Algorithm 4: SelectL outputs the selected leader index of round r.

1 function SelectL(MPr
i ,M

r,1
i ) ;

// Extract the set of serial numbers from the mempool.

2 SPr
i = ∅ ;

3 for b ∈ MPr
i do

4 Parse b = (cP, πP,S, πSoK) ;
5 SPr

j = SPr
j ∪ {S} ;

6 end
// Extract the set of serial numbers from each candidate block.

7 V = ∅ ;

8 for mr,1
j ∈ Mr,1

i do

9 Parse mr,1
j = (Br

j , esigj(H(Br
j)), σ

r,1
j ) with

Br
j = (r,H(Br−1),SIGj(Q

r−1),Br
j) ;

10 Sr
j = ∅ ;

11 for b ∈ Br
j do

12 Parse b = (cP, πP,S, πSoK) ;
13 Sr

j = Sr
j ∪ {S} ;

14 end
15 V = V ∪ {Sr

j} ;

16 end
17 Compute y = maxSrj∈V(|Sr

j ∩ SPr
i |) ;

// Leader selection with block qualification.

18 W = ∅ ;
19 if y ≥ L then
20 for Sr

j ∈ V do
21 if |Sr

j ∩ SPr
i | ≥ hy then

22 W = W ∪ {j} ;
23 end

24 end

25 else
26 W = {j | Sr

j ∈ V }
27 end

28 Return argminj∈W GetMinHash(aj , σ
r,1
j ) ;

C.3 Step s ≥ 3 in The Sidechain Protocol

These steps are almost identical to the Algorand protocol [10], with the com-
mittee selection modified to GetVotes, and the leader reelection modified to use
GetMinHash instead of normal hash functions.
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Step 3: The Second Step of GC

In any round r ≥ 0, each user i starts her step 3 as soon as she finishes her
step 2. The user waitsa a maximum amount of time 2λ. She performs as
follows during the waiting period.

1. If i has received ≥ tH votes embedding the same value v, i.e.,
∑

j∈W xj ≥
tH with

xj := GetVotes(pr,2, aj , σ
r,2
j ) and

W :=
{
j
∣∣∣ (ESIGj(v), σ

r,2
j ) ∈ Mr,2

i

}
,

she stops waiting and setsb vi := v. Otherwise, when t3 runs out, she sets
vi := ⊥.

2. She runs GetVotes(pr,3, ai, σ
r,3
i ) = x. She stops and propagates nothing if

x = 0; Otherwise, she prepares a message mr,3
i := (ESIGi(vi), σ

r,3
i ) with

her ephemeral key pair (skr,3i , pkr,3i ), destroys skr,3i , and propagates mr,3
i .

a Hence the maximal total waiting time since the user starts her round r is t3 :=
t2 + 2λ = 3λ+ 2Λ.

b If the user has received two valid messages from a user j, e.g., (ESIGj(v), σ
r,2
j )

and (ESIGj(v
′), σr,2

j ) s.t. v ̸= v′, they are counted for v and v′, respectively.
Though, this occurs only when j is malicious.

Step 4: The Output of GC and The First Step of BBA⋆

In any round r ≥ 0, each user i starts her step 4 as soon as she finishes her
step 3. The user waitsa a maximum amount of time 2λ. She performs as
follows during the waiting period.

1. The user computes the output of GC with:
– If i has received at least tH votes embedding the same v ̸=⊥, she stops

waiting and sets vi := v and gi := 2.
– If i has received at least tH votes embedding ⊥, she stops waiting and

sets vi := ⊥ and gi := 0.
– Otherwise, when 2λ time runs out:
• If there exists a value v ̸= ⊥ s.t. the user has received at least

⌈
tH
2

⌉
votes embedding v, then vi := v and gi := 1;
• Otherwise, she sets vi := ⊥ and gi := 0.

2. Once (vi, gi) is set, the user computes the input of BBA⋆ with: bi = 0 if
gi = 2, and bi = 1 otherwise.

3. She runs GetVotes(pr,4, ai, σ
r,4
i ) = x. She stops and propagates noth-

ing if x = 0; Otherwise, she prepares a message mr,4
i := (ESIGi(bi),

ESIGi(vi), σ
r,4
i ) with her ephemeral key pair (skr,4i , pkr,4i ), destroys skr,4i ,

and propagates mr,4
i .
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a Hence, the maximum total waiting time since the user starts her round r is
t4 := t3 + 2λ = 5λ+ 2Λ.

Step s ≥ 5, s− 2 ≡ 0 mod 3: Coin-Fixed-To-0 in BBA⋆

In any round r ≥ 0, each user i starts her step s as soon as she finishes her
step s − 1. The user waitsa a maximum amount of time 2λ. She performs
as follows during the waiting period.

– Ending Condition 0: If at any point there exists a string v ̸=⊥ and a step
s′ s.t.:
1. s′ ∈ [5 . . s] is a coin-fixed-to-0 step, i.e., s′ − 2 ≡ 0 mod 3;
2. i has received at least tH votes embedding the same (0, v);
3. Parse v = (Hℓ, ℓ), i has received a valid step 1 message mr,1

ℓ =

(Br
ℓ, esigℓ(H(B

r
ℓ)), σ

r,1
ℓ ), s.t. Hℓ = H(Br

ℓ).
Then, i stops waiting and ends her round r immediately. She setsb her

CERTr as the set of messages mr,s′−1
j together with SIGℓ(Q

r−1).
– Ending Condition 1: If at any point there exists a step s′ s.t.:

1. s′ ∈ [6 . . s] is a coin-fixed-to-1 step, i.e., s′ − 2 ≡ 1 mod 3;
2. i has received at least tH votes embedding 1, i.e.,

∑
j∈W xj ≥ tH with:c

xj := GetVotes(pr,s
′−1, aj , σ

r,s′−1
j ) and

W :=
{
j
∣∣∣ (ESIGj(1),ESIGj(vj), σ

r,s′−1
j ) ∈ Mr,s′−1

i

}
.

Then, i stops waiting and ends her round r immediately. She sets Br = Br
ϵ,

and sets CERTr as the set of messages mr,s′−1
j together with H(Qr−1, r).

– If at any point i has received at least tH votes embedding 1, she stops
waiting and sets bi := 1; Otherwise, when time runs out, i sets bi := 0,
i.e., coin fixed to 0.

– She runs GetVotes(pr,s, ai, σ
r,s
i ) = x. She propagates nothing if x = 0; Oth-

erwise, she prepares a message mr,s
i := (ESIGi(bi),ESIGi(vi), σ

r,s
i ), where

vi is computed from step 4, with her ephemeral key pair (skr,si , pkr,si ), de-
stroys skr,si , and propagates mr,s

i .

a Hence, the maximum total waiting time since the user starts her round r is
ts := ts−1 + 2λ = (2s − 3)λ + 2Λ. The equality ts = (2s − 3)λ + 2Λ holds for
s ≥ 5.

b Users only include SIGℓ(Q
r−1) in their CERTr instead of the block head in

Algorand [10].
c vj ’s are not required to be identical in this case.
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Step s ≥ 6, s− 2 ≡ 1 mod 3: Coin-Fixed-To-1 in BBA⋆

In any round r ≥ 0, each user i starts her step s as soon as she finishes her
step s− 1. The user waits a maximum amount of time 2λ. She performs as
follows during the waiting period.

– Ending Conditions 0 and 1: The same instructions as in coin-fixed-to-0
steps.

– If at any point i has received at least tH votes embedding 0, i.e.,∑
j∈W xj ≥ tH with

xj := GetVotes(pr,s−1, aj , σ
r,s−1
j ) and

W :=
{
j
∣∣∣ (ESIGj(0),ESIGj(vj), σ

r,s−1
j ) ∈ Mr,s−1

i

}
,

she stops waiting and sets bi := 0; Otherwise, when time runs out, i sets
bi := 1, i.e., coin fixed to 1.

– She runs GetVotes(pr,s, ai, σ
r,s
i ) = x. She propagates nothing if x = 0; Oth-

erwise, she prepares a message mr,s
i := (ESIGi(bi),ESIGi(vi), σ

r,s
i ), where

vi is computed from step 4, with her ephemeral key pair (skr,si , pkr,si ), de-
stroys skr,si , and propagates mr,s

i .

Step s ≥ 7, s− 2 ≡ 2 mod 3: Coin-Genuinely-Flipped in BBA⋆

In any round r ≥ 0, each user i starts her step s as soon as she finishes her
step s− 1. The user waits a maximum amount of time 2λ. She performs as
follows during the waiting period.

– Ending Conditions 0 and 1: The same instructions as in coin-fixed-to-0
steps.

– If at any point i has received at least tH votes embedding 0, she stops
waiting and sets bi := 0.

– If at any point i has received at least tH votes embedding 1, she stops
waiting and sets bi := 1.

– Otherwise, when time runs out, denote the committee from whom i has
received valid messages by SVr,s−1

i , i selects with:

ℓ = argmin
j∈SVr,s−1

i

GetMinHash(σr,s−1
j )

, and sets bi := lsb(H(σr,s−1
j , r)), i.e., if i has not received enough signa-

tures for 0 or 1, she flips the universally available coin (the hash function,
modeled as a random oracle) to decide her bi.

– She runs GetVotes(pr,s, ai, σ
r,s
i ) = x. She propagates nothing if x = 0; Oth-

erwise, she prepares a message mr,s
i := (ESIGi(bi),ESIGi(vi), σ

r,s
i ), where
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vi is computed from step 4, with her ephemeral key pair (skr,si , pkr,si ), de-
stroys skr,si , and propagates mr,s

i .

D Configuration Options and Potential Extension

In this subsection, we propose a protocol where waiting for Λ in step 1 is not
needed. The difference between the protocol in this section and the one in Sec-
tion 3.2 is mainly step 1 and the algorithm that is used in step 2 for verifying
messages. Moreover, we have ts = (2s− 3)λ+ Λ for s ≥ 2 for the maximal total
waiting time since a user starts her round r. We only list the alternative step 1
and the algorithm that used step 2.

Step 1: Block Proposal

In any round r ≥ 0 of Πpp, each user i starts her (own) step 1 as soon as
she starts her round r. The user performs as follows then.

1. i gets her mempool MPr
i by collecting bids b from the networka s.t.:

(1) bVrfy(b, C) = 1;
(2) ∄b′ ∈ MPr

i ∪
(⋃

r′∈[r−1]0 B
r′
)
satisfying b′ ̸= b and the serial number

S in both b and b′.
2. i runs GetVotes(pr,1, ai, σ

r,1
i ) = x. She ends her step 1 if x = 0 (i.e.,

i /∈ SVr,1); Otherwise, she performs as follows.
i sets Br

i = MPr
i , computes her candidate block Br

i = (r,H(Br−1),
SIGi(Q

r−1),Br
i ), prepares a message mr,1

i := (Br
i , esigi(H(B

r
i )), σ

r,1
i ) with

her ephemeral key pair (skr,1i , pkr,1i ), destroys skr,1i , and propagates mr,1
i .b

a Some of these bids may come from candidate blocks in previous rounds.
b Note that, unlike Algorand [10], users in our protocol only propagate one mes-
sage in step 1, as each verifier in step 2 must receive complete blocks to select
a leader in her view.

As for the alternated step 2, we need an alternated VrfyMsg in Algorithm 5
to verify messages from the alternated step 1. We only specified the part that is
different from Algorithm 3. Let Mr,1

i denote the set of all valid step 1 messages
collected by user i using the alternated VrfyMsg.

Finally, we list two lemmas for the alternated protocol that are noticeably
different from those for Aucrand. Further security analysis remains one of our
future goals.

Lemma 13. Assume that all honest users are sure about the same Br−2 and the
same Br−1 in respectively Ir−1 and Ir. All honest users receive the block Br−2

before start their round r.
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Algorithm 5: Alternative VrfyMsg for configuration.

1 function VrfyMsg(pr,s, ai, Cr−2,mr,s
i ) ;

2 · · · · · ·
3 else if s = 1 then

4 Parse mr,1
i = (Br

i , esigi(H(Br
i)), σ

r,1
i ) ;

5 if SigVrfy(pkr,1i ,H(Br
i), esigi(H(Br

i))) = 0 then
6 Return 0 ;
7 end

8 Parse Cr−2 = B0|| . . . ||Br−2 and Br′ ∈ Br′ for all r′ ∈ [r− 2]0;

9 Parse Br
i = (ri,Hi,SIGi(Q

r−1
i ),Br

i) ;

10 if ri ̸= r ∨Hi ̸= H(Br−1) ∨Qr−1
i ̸= H(SIGℓr−1(Qr−2), r)

∨ SigVrfy(pki,SIGi(Q
r−1
i )) = 0 then

11 Return 0 ;
12 end
13 for b ∈ Br

i do
14 if bVrfy(b, C) = 0 then
15 Return 0 ;
16 else
17 Parse b = (cP, πP,S, πSoK) ;

18 if ∃b′ ∈ Br
i ∪

(⋃
r′∈[r−2]0

Br′
)
s.t. S ∈ b′ ∧ b′ ̸= b then

19 Return 0 ;
20 end

21 end

22 end

23 else
24 Return 0 ;
25 end
26 Return 1 ;

Proposition 14. Assume that all honest users are sure about the same Br′−1

in the time interval Ir
′
for r′ ∈ [r, r + 10]. If L ≥ |C| · 5%, where C denotes

the set of all serial numbers, then the bad case can not consecutively happen for
r′ ∈ [r..r+ 10].23

In fact, following the proof of Proposition 4(3), one may show that: If the

bad case consecutively in rounds r′ ≥ r, then there is ≥
((

1
h

)⌊r′−r⌋/2−h
)
L serial

numbers in Br′ are owned by the adversary.

E Details on Security Analysis

This section is devoted to collecting the details of results in Section 4.

23 In this case, slightly reducing the value h could result in a prominent decrease of the
consecutive rounds length (similar to Footnote 10). For example, if h = 1/2, then
the bad case can not consecutively happen for r′ ∈ [r..r+ 6].
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E.1 Proof of Lemmas 3 and Proposition 4

Let αr,s
i and βr,s

i denote respectively the (local) time a user i starts and ends
her round r step s for integers r ≥ 0 and s ≥ 1.

Lemma 3. (1) Assume that all honest users are sure about the same Br−1. Let
v denote the value in the message signed by verifiers in SVr,s If there is a
value v getting ≥ tH votes from verifiers in SVr,s, then there exists no other
value v′ ̸= v such that v′ and v have the same length and v′ gets ≥ tH votes
from verifiers in SVr,s.

(2) Assume that all honest users are sure about the same Br−1 in the time in-
terval Ir and the same Br−2. Any honest user i receive the block Br−1 before
collecting her mempool MPr

i of round r.

Proof. (1) For each step s = 2, 3 of round r, the value v equals (H(Br
ℓ), ℓ). For

s ≥ 4, this value v may be equal to b,
(
H(Br

ℓ), ℓ
)
, or

(
b,H(Br

ℓ), ℓ
)
for b = 0, 1.

One can show this lemma using Eq. 4.1 following [10, Lemma 5.7] and the proof
is omitted.

(2) It suffices to show that all honest users receive the block Br−1 before
waiting time Λ ends in round r step 1. For the case where no value v from the
messages sent by SVr−1,2 gets ≥ tH votes, we know that v = ⊥ for all verifiers
in HSVr−1,s where s ≥ 3. Hence, b = 1 for all verifiers in HSVr−1,4. In step 5, as
|HSVr−1,4| > tH, all verifiers in HSVr−1,5 sets b = 1. By Lemma 3(1), the value
b = 0 gets < tH votes, and hence, no user is able to set up CERTr−1, i.e., no
user can trigger Ending Condition 0 and finish round r− 1 in step 5. In step 6,
as |HSVr−1,5| > tH, each honest user is able to collect ≥ tH votes for b = 1 and
set up CERTr−1. In this case, the block Br = Br

ϵ is empty and the result follows
immediately.

Let v = (H(Br−1
ℓ ), ℓ) be the value which gets ≥ tH votes from the messages of

SVr−1,2. As |MSVr−1,2| < tH (i.e., the malicious verifiers in MSVr−1,2 own < tH
votes), there exists a verifier i ∈ HSVr−1,2 who has propagated a valid message
embedding v. As i is honest, she has received and checked Br−1

ℓ . She also helps
propagate Br−1

ℓ regardless ℓ is honest or malicious. Her propagation reaches all
users no later than Λ after the end of round r − 1, i.e., no later than Λ + Tr.
Notice αr,1

i′ ≥ Tr for any honest user i′. The user i′ is able to receive Br−1
ℓ before

αr,1
i′ + Λ, as desired.

Proposition 4. (1) If the good case happens and some honest potential leader
ℓ has the minimal hash, then ℓ is the r-leader.

(2) Put SPr
H :=

⋃
i SP

r
i , where the union extends over verifiers in HSVr,2. If ≥ h

of serial numbers in SPr
H are known by verifiers in HSVr,1∪HSVr,2, i.e., ≥ h

of serial numbers in SPr
H belong to SPr

i′ for any verifier i′ ∈ HSVr,1∪HSVr,2,
then the good case happens.

(3) Admit h = 2/3. Assume that all honest users are sure about the same Br′−1

in the time interval Ir
′
for r′ ∈ [r, r + 5]. If L ≥ |C| · 5%, where C denotes

the set of all serial numbers, then the bad case can not consecutively happen
for r′ ∈ [r..r+ 5].
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Proof of Proposition 4(1). As the good case happens, the honest potential leader
ℓ belongs to Wi for each verifier i ∈ HSVr,2. As ℓ has the minimal hash value,
ℓ is the leader for each verifier i ∈ HSVr,2. Since |HSVr,2| > tH, the potential
leader ℓ is the r-leader.

Proof of Proposition 4(2). For i′ ∈ HSVr,1 and i ∈ HSVr,2, we need to show
i′ ∈Wi. The assumption implies that |SPr

i′ ∩ SP
r
i | ≥ h · |SPr

H|. As Sri′ = SPr
i′ , we

know |Sri′ ∩ SPr
i | ≥ h · |SPr

H|. For y = maxVi
{|Srj ∩ SPr

i |}, we know y < |SPr
i |. By

hypothesis, we have

|Sri′ ∩ SPr
i | ≥ h · |SPr

H| ≥ h · |SPr
i | > hy,

as desired.

Proof of Proposition 4(3). If i (the verifier i in the definition of the bad case)
disqualifies the candidate block of i′, she has received a message from SVr,1

embedding the set of bids Br that can be verified by VrfyMsg such that |Br| ≥ L
and ≥ (1−h)L serial numbers in Br are in SPr

i but not in SPr
i′ (cf. the inverse of

Proposition 4(2)). As honest users propagate their bids,≥ (1−h)L serial numbers
in Br are owned by the adversary due to the one-more bidding-unforgeability.
Note that the honest verifier i helps propagate Br in her round r step 2.24 Similar
to Lemma 3(2), each honest user i′ received the bids in Br before they start to
collect her serial number pool SPr+1

i′ .
In round r+1, SPr+1

i′ contains serial numbers in Br by the protocol. If the bad
case happens in round r+1, a verifier in HSVr+1,2, say i, has received a message
embedding Br+1 that can be verified by VrfyMsg such that |Br+1| ≥ 1

h |B
r| ≥ 1

hL

and ≥
(
1
h − h

)
L serial numbers in Br+1 are in SPr+1

i but not in SPr+1
i′ . Hence,

≥
(
1
h − h

)
L serial numbers in Br+1 are owned by the adversary.

By induction, if the bad case consecutively occurs in rounds r′ ≥ r, then

there are ≥
((

1
h

)r′−r − h
)
L serial numbers in Br′ are owned by the adversary.

With h = 2
3 , we have

((
3
2

)5− 2
3

)
L ≈ |C| · 34.6%. This is impossible by HMS.

Remark 15. If the adversary lets no malicious user become the leader in the
views of ≥ tH − |MSVr,2| verifiers in HSVr,2, then no malicious leader will be
regarded as the leader by any honest user in step s ≥ 3. Notice that the adversary
can not predict HSVr,s for s ≥ 2 and |HSVr,2|/2 + |MSVr,2| < tH (by Eq. 4.1).
By the intersection in Eq. 3.1 (see also Algorthim 4), to let some malicious user
become the leader for ≥ tH − |MSVr,2| verifiers in HSVr,2, the adversary must
send its bids to > (tH − |MSVr,2|)/|HSVr,2| > 1/2 of honest users before they
collect their serial number pool. If so, in the leader selection, malicious users
must compete with the hash values of > 1/2 honest potential leaders who know
the adversarial bids.

24 A verifier i in HSVr,2 not only helps propagate the block of the leader (in i’s view)
but also collects (as in step 1) and helps propagate those bids which are not in the
leader’s block but in the received candidate blocks.
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E.2 The Main Theorem for the Security of Aucrand

Recall the main theorem of Algorand [10, Theorem 1] is proved under the honest
majority of user assumption (HMU). After replacing HMU with the honest ma-
jority of money assumption (HMM), the main theorem of Algorand with HMM
can be proved by treating each unit of money as an individual user (See [10, Sec-
tion 6]). As the committee selection is based on the number of deposit transac-
tions ai = |Di| issued by each user i ∈ PK, HMD plays a similar role as HMM. It
turns out that the proof of the main theorem for Aucrand with HMD is similar
to that of the main theorem of Algorand. Table 3 exhibits the relations between
assumptions.

HMS~ww�
HMD +3 Main theorem with HMD for Aucrand

Similarly

HMM +3 Main theorem with HMM for Algorand

HMU +3 Main theorem with HMU for Algorand

Unit of money as one user

KS

Table 3: Assumptions

Theorem 1. The following properties hold with overwhelming probability for
each round r ≥ 0 :
(1) (a) All honest users agree on the same block Br;

(b) All honest users receive the block Br−1 before waiting time Λ ends in
round r step 1 so that each bid b in Br satisfies bVrfy(b, C) = 1 and
that any b′ in the chain Cr with b′ ̸= b corresponds to a serial number
different from that of b.

(c) Let z denote the number of bids issued by honest users that are not in
the chain.If z ≥ L and Br is nonempty, then Br contains at least hz
bids.

(2) If r-leader ℓ exists, then the following holds.
– The leader is ℓ and generates Br = Br

ℓ. All honest users are sure about Br

in the time interval Ir+1 and Tr+1 ≤ Tr + 5λ+ 2Λ;
– The block Br is nonempty. If ℓ is honest, then the set of bids in Br consists

of all bids in ℓ’s mempool MPr
ℓ.

(3) If r-leader does not exist, then all honest users are sure about Br in the time
interval Ir+1. Moreover, one of the following two cases happens.
– If every verifier i ∈ HSVr,4 has gi ≤ 1, then the Aucrand round r finishes

in step 6 with an empty block and Tr+1 ≤ Tr + 8λ+ 2Λ.
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– Otherwise, i.e., some verifier i ∈ HSVr,4 has gi = 2, then Aucrand round
r finishes before step 6 + 3 · Lr and Tr+1 ≤ Tr + (6Lr + 8)λ + 2Λ, given
that 6+ 3 ·Lr is smaller than the maximal number of steps allowed by the
protocol designer. Here Lr denotes the random variable representing the
number of Bernoulli’s trials needed to see a 1.

(4) Assume the good case happens in rounds r− 1 and r. The probability of some
honest user becoming r-leader is ≥ h2(1 + h− h2).

In the proof of this theorem, we use induction on rounds. The induction

hypothesis is that all honest users are sure about the same Br′−1 in the time

interval Ir
′
for r′ ∈ [r]0. We postpone the proof to Appendix E.2.

We are to show (2) and (a) under the assumption of (2). For this, we first
propose an analogue of [10, Lemma 5.6]. (3) and (a) in this case can be proved
following the same method as the one in the proof of Algorand’s soundness
lemma [10, Section 5.5]. This is because: (i) Algorand’s soundness lemma relies
on Algorand protocol for steps s ≥ 3; (ii) the difference between the sidechain
protocol and Algorand only comes from steps 1 and 2. By the hypothesis of
(4), (4) can be proved following the same method as the method in the proof
of [10, Lemma 5.5]. We omit the proof of (3) and (4). In the end, we show (b)
and (c).

Lemma 16 (cf. [10, Lemma 5.6]). Assume that all honest users are sure about

the same Br′−1 in the time interval Ir
′
for r′ ∈ [r]0. Then for round r step s ≥ 1,

the following properties hold.
(1) For any honest user i, it holds that αr,1

i ∈ Ir, αr,2
i = βr,1

i = αr,1
i + Λ,

αr,3
i = βr,2

i = αr,1
i + λ+ 2Λ and for s ≥ 2, βr,s

i ≤ αr,1
i + (2s− 3)λ+ 2Λ.

(2) For any two honest users i and i′, it holds that |βr,s
i − βr,s

i′ | ≤ λ.
(3) If an honest user i has waited for the maximal amount of time required

by Aucrand step s ≥ 2, then before finishing her step s, i has received all
messages sent by all honest verifiers in HSVr,s−1.

Proof. By the definition of Aucrand, the equalities and the inequality holds. By
the hypothesis, we have αr,1

i ∈ Ir. This shows (1).
We show (2) and (3) by induction. The base case consists of steps 1, 2. If i

is an honest user, then βr,1
i = αr,1

i + Λ. Hence, (2) for step 1 straightforwardly

follows from αr,1
i ∈ Ir for any honest user i. As for (2) for step 2, we note that

the verifiers in HSVr,2 has to wait λ+Λ so that she can select the leader. Hence,
βr,2
i = αr,2

i + λ + Λ for any i ∈ HSVr.2 and (2) for step 2 follows from (1). We

show (3) for step 2. For this, we show βr,2
i ≥ βr,1

i′ +Λ for any honest user i′. By

(1), we have βr,2
i = βr,1

i + λ + Λ. By (2) for step 1, we have |βr,1
i − βr,1

i′ | ≤ λ.

Hence, βr,1
i′ ≤ βr,1

i + λ and the desired inequality follows.
We show (2) and (3) for step s ≥ 3 assuming (2) and (3) for step s − 1. We

show (2). Let i′ be any honest user. As αr,s
j = βr,s−1

j for any honest user j, the
induction hypothesis implies |αr,s

i − αr,s
i′ | ≤ λ. Hence,

αr,s
i′ ≤ αr,s

i + λ. (E.1)
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We may assume βr,s
i ≤ βr,s

i′ . First, assume that i has waited for the maximal
amount of time required by step s. Hence,

βr,s
i′ ≤ αr,s

i′ + 2λ (by Aucrand step s)

≤ αr,s
i + λ+ 2λ (by Eq. E.1)

= βr,s
i + λ,

as desired.
It suffices to show the case where i ends step s before waiting for the maximal

amount of time. If s = 3, by Aucrand step 3, this happens when i has received
≥ tH votes on v = (H(Br

ℓ), ℓ) for some user ℓ. As i has helped propagate the
received messages corresponding to the ≥ tH votes. The user i′ receives all these
messages before βr,3

i +λ and hence finishes her step 3 before βr,3
i +λ. The desired

inequality hence follows.
If s = 4, by Aucrand step 4, one of the following cases happens{

gi = 2 i received ≥ tH votes on v = (H(Br
ℓ), ℓ) for some user ℓ;

gi = 0 i received ≥ tH votes on v = ⊥.
(E.2)

In both cases, i has helped propagate the messages corresponding to the ≥ tH
votes. The user i′ receives these messages before βr,4

i + λ and hence finishes her

step 4 before βr,4
i + λ. The desired inequality follows.

If s ≥ 5 and i has received ≥ tH votes for the same value v, then the value v
might be

v =


(0, (H(Bℓ), ℓ)) in step 5 mod 3, for some user ℓ;

1 in step 5, 6, or 7 mod 3;

0 in step 6 or 7 mod 3.

In all cases, i helped propagate the messages corresponding to the ≥ tH votes.
The user i′ receives these messages before βr,s

i + λ and hence finishes her step s
before βr,s

i + λ. The desired inequality follows.
Finally, we show (3) for step s. Now βr,s

i = αr,s
i + 2λ. For any verifier i′ ∈

HSVr,s−1, we have βr,s−1
i′ = αr,s

i′ , By Eq. E.1, we have

βr,s−1
i′ + λ = αr,s

i′ + λ ≤ αr,s
i + 2λ = βr,s

i ,

i.e., before the finish of i’s step s, i receives all messages from i′ if i waits for the
maximal amount of time 2λ required by Aucrand in step s, as desired.

Lemma 17 (Completeness Lemma, cf. [10, Lemma 5.3]). Assume all honest

users are sure about the same Br′−1 in the time interval Ir
′
for r′ ∈ [r]0. If

r-leader ℓ exists, then the properties (a) and (2) hold.

Proof. As r-leader ℓ exists, the messages propagated by verifiers in HSVr,2 con-
tains ≥ tH votes on (H(Br

ℓ), ℓ). By Lemma 16(1), for any i ∈ HSVr,2, we have

βr,2
i ≤ Tr + 2λ+ 2Λ.
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By Lemma 16 (3), before waiting the required maximal amount of time 2λ, each
verifier in HSVr,3 receives ≥ tH votes on (H(Br

ℓ), ℓ) from verifiers in HSVr,2.
Hence, all verifiers in HSVr,3 set v = (H(Br

ℓ), ℓ) and propagate messages embed-
ding v. As the propagation of short messages costs time λ, we have for i ∈ HSVr,3

βr,3
i ≤ Tr + 3λ+ 2Λ.

Before waiting the required maximal amount of time (Lemma 16 (3)), each
verifier in HSVr,4 receives |HSVr,3| votes on the value (H(Bℓ), ℓ) from verifiers
in HSVr,3. As tH < |HSVr,3|, there are ≥ tH votes on (H(Br

ℓ), ℓ). By Aucrand
step 4, each verifier i ∈ HSVr,4 sets gi = 2 and bi = 0. Then i propagates
messages embedding (0, (H(Br

ℓ), ℓ)) . We have

βr,4
i ≤ Tr + 4λ+ 2Λ.

Before waiting the required maximal amount of time, each verifier in HSVr,5

receives |HSVr,4| votes on (0, (H(Br
ℓ), ℓ)) from verifiers in HSVr,4. As tH <

|HSVr,4|, there are ≥ tH votes on (0, (H(Br
ℓ), ℓ)) . By Aucrand step 5, each ver-

ifier i ∈ HSVr,5 enters Ending Condition 0 and forms the set CERTr using
messages embedding (0, (H(Br

ℓ), ℓ)) . The verifier i is sure about Br = Br
ℓ before

Tr + 5λ+ 2Λ and propagates CERTr. Hence,

Tr+1 ≤ Tr + 5λ+ 2Λ

and all honest users end round r in the interval Ir+1.Hence, (b) and the first point
in (2) follow. The second point in (2) follows immediately from the protocol.

Lemma 18. Assume that all honest users are sure about the same Br′−1 in the
time interval Ir

′
for r′ ∈ [r]0. Then, the properties (b) and (c) hold.

Proof. Admit that the property (a) holds. First assume that r-leader ℓ exists.
Then, by the definition of r-leader, there is an verifier i in HSVr,2 (in fact,
≥ tH verifiers in HSVr,2) who has received and checked ℓ’s candidate block. By
Lemma 3(2), i has received Br−1 before finishing her step s. For each bid b in
Br, i has checked b satisfying the property (b) following VrfyMsg (Algorithm 3),

using the set of commitments C and the blocks Br′ for r′ ∈ [r− 1]0. Hence, (b)
follows. By Lemma 16(3), i has received all candidate blocks from honest poten-
tial leaders. For any honest potential leaders i′ and the honest verifier i, their
pools of serial numbers SPr

i′ and SPr
i contain all serial numbers corresponding

to all bids proposed by honest users that are not in the chain. Hence, i sets y
≥ |SPr

i′ ∩ SPr
i | ≥ z ≥ L (y defined before Lemma 4). As ℓ’s candidate block Br

ℓ

is qualified by i, this candidate block contains ≥ hz bids. Hence, (c) follows.
For the case where r-leader does not exist, if gi < 1 for all verifiers i ∈ HSVr,4,

then the block is empty by Theorem 1(3) and there is nothing to prove. We show
(b) and (c) for the case where gi = 2 with v = (H(Br

ℓ), ℓ) for some i ∈ HSVr,4. By
the previous paragraph, it suffices to show that there exists a verifier in HSVr,2

who propagated her message embedding v. As gi = 2, in i’s view, v has got
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≥ tH votes from SVr,3. As tH > |MSVr,3|, there exists a verifier i′ ∈ HSVr,3 who
propagated messages embedding v. In the view of i′, v has got ≥ tH votes from
SVr,2. As tH > |MSVr,2|, there exists a verifier in HSVr,2 who propagated her
message embedding v, as desired.

E.3 The r-Election

The r-election as an extensive game. We follow the notions in [35, Defini-
tion 89.1] to define the following extensive game with perfect information. Its
strategic form may be regarded as the strategic game in Definition 6. In fact,
there is a slight difference between the definition of r-candidates and r-villains.
However, after admitting (A.1) and (A.2), we regard that the strategic form of
the game below is the strategic game in Definition 6.

Definition 19 (r-Election). We first define the set of players SVr,1 and the
set of actions Ai available to each player i ∈ SVr,1. Then we define the set of
histories HIS, the player function P , and the utility function ui for each player i
in SVr,1. The tuple

(
SVr,1,HIS,P, (ui)i∈SVr,1

)
is an extensive game with perfect

information, named the r-election.
(1) The set of players SVr,1 is the set of potential leaders of Aucrand round r

who have collected the mempools.
(2) For each player i ∈ SVr,1, recall that MPr

i denotes i’s mempool defined in
Step 1 in Section 3.2. Then the set Ai of actions available to player i in this
game is a function fi : PK \ {i} → MPr

i , whereMP
r
i denotes the set of all

subsets of MPr
i . One may regard fi(j) as the candidate block that the player

i sends to the user j.
(3) To define the rest notions, we partition the players set SVr,1 into two subsets.

– A player i is an r-candidate if 25

for ∀ j, j′ ∈ PK \ {i}, we have fi(j) = fi(j
′) ∈MPr

i . (E.3)

For an r-candidate i, we let fi denote fi(j). Following Algorithm 4, each
verifier i′ in H2 is able to select a leader according to fj(i

′) for all j ∈ SVr,1.
If an r-candidate is the leader whose candidate block gets ≥ tH votes from
verifiers in H2, we call this r-candidate the r-leader.

– A player j is said to be an r-villain if j is not an r-candidate, i.e., ∃ i, i′ ∈
PK with i ̸= i′ such that fj(i) ̸= fj(i

′).

(4) Let I and J denote respectively the set of r-candidates and r-villains in SVr,1.
The set of histories HIS consists of ∅ and 2-tuples (a, b), where

– a ∈
∏

i∈I Ai, where
∏

i∈I Ai denotes the direct product of sets Ai.
– b = ∅ or b ∈

∏
j∈J Aj .

(5) The player function P is defined by P(∅) = I and P(a, ∅) = J, a ∈
∏

i∈I Ai.

25 Being the r-leader (defined below) guarantees that all bids issued by i can be included
in the round r block. By the utility function, an r-candidate is better off honestly
propagating her candidate block to all users to get ≥ tH votes from HSVr,2.
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(6) Finally, we are to define the utility functions of players. Let (a, b) be an
element in

∏
i∈I Ai ×

∏
j∈J Aj which is a terminal history.

– If some r-candidate i′ becomes the r-leader, then for each r-candidate i
(i = i′ or not), we let ni denote the number of bids issued by i that
are included in the r-leader’s candidate block. Then put ui = ni and
uj = −|fi′ | for the utility of i and an r-villain j respectively.

– Otherwise, put ui = 0 for all i ∈ I and uj = 0 for all j ∈ J.

Next, as the extensive game has perfect information, we work out its strategic
form [35, Definition 94.1] below. The proof of the lemma is straightforward.

Lemma 20 (cf. Definition 6). (1) The strategy set Si of each r-candidate i ∈ I
is the set Ai =MPr

i .
(2) The strategy set Sj of each r-villain j ∈ J consists of functions sj :

∏
i∈I Si →

Aj . In particular, the strategy set of the r-Villain consists of functions

(sj)j∈J :
∏
i∈I

Si →
∏
j∈J

Aj .

(3) The tuple
(
SVr,1, (Si)i∈SVr,1 , (ui)i∈SVr,1

)
is the strategic form of the r-election.

Aucrand step 1 replaced with the r-election. We propose explicit relations
between the r-election and Aucrand below. Specifically, we hope to consider the
r-election as step 1 of the Aucrand round r. We admit that

(A.1) The r-Villain is controlled by the adversary if not in the r-election.
(A.2) An r-candidate behaves as an honest user before waiting time Λ ends in

round r step 1. She also behaves as an honest user after round r step 1 if not
corrupted.

Corollary 21 (Cf. Theorem 1). With the verifiers in SVr,s for s ≥ 2 defined
in Section 4.1, one of the following cases happens with overwhelming probability
for each round r ≥ 0.
(1) If an r-candidate ℓ becomes an r-leader, then the following holds.

– The leader is ℓ and generates Br = Br
ℓ. All honest users are sure about the

same Br in the time interval Ir+1 and Tr+1 ≤ Tr + 5λ+ 2Λ;
– The block Br is nonempty. The set of bids in Br

ℓ consists of all bids in the
set fℓ propagated by i.

(2) Otherwise, all honest users are sure about the same Br in the time interval
Ir+1. Moreover, one of the following two cases happens.
– If every verifier i ∈ H4 has gi ≤ 1, then the Aucrand round r finishes in

step 6 with an empty block and Tr+1 ≤ Tr + 8λ+ 2Λ.
– Otherwise, i.e., some verifier i ∈ H4 has gi = 2, then Aucrand round r

finishes before step 6 + 3 · Lr and Tr+1 ≤ Tr + (6Lr + 8)λ + 2Λ, given
that 6+ 3 ·Lr is smaller than the maximal number of steps allowed by the
protocol designer.

Proof. (1) straightforwardly follows from Theorem 1(2) (See Lemma 17).
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We show (2). Note that an r-villain j’s behaviors are restricted to her strate-
gies in Sj . As the malicious users are Byzantine, there are the same or fewer
outcomes if malicious users are replaced with r-villains in round r step 1. We
are to construct the operations of r-villains and the adversary leading to the two
outcomes in (2). Here, we empower the adversary, in each step, to select honest
verifiers, e.g., who finish their previous steps early (then, the adversary let them
wait for the maximal amount of time required by the protocol). This is com-
patible with our rushing adversary setting. An adversary without this capability
only has fewer advantages in fulfilling the following attack operations.

We assume that some r-villain j has the smallest hash. Assume w.l.o.g., that
SPr

j ⊃ SPr
k for k ∈ SVr,1 \ {j}. Then we list the operations of the r-villains and

the adversary so that the second point in (2) can be achieved.

Step 1 The r-villain j chooses the strategy that
– j sends (the message embedding) Br

j = MPr
j to a2 verifiers in H2 for

tH − |M2| ≤ a2 ≤ tH − 1;26

– j sends Br
j = ∅ to the rest verifiers in H2.

Step 2 a2 verifiers inH2 propagate (the message embedding) the value v := (H(Br
j), j)

and the rest verifiers in H2 propagate values ̸= v. For M2,
– (the adversary let) all verifiers in M2 send v to a3 verifiers in H3 for

tH − |M3| ≤ a3 ≤ tH − 1;
– all verifiers in M2 send ⊥ to the rest verifiers in H3.
Some verifiers in H2 may finish their step 2 at Tr + 2λ+ 2Λ.

Step 3 a3 verifiers in H3 propagate the value v and the rest verifiers in H3 propagate
⊥. For M3,
– all verifiers in M3 send ⊥ to a4 verifiers in H4 with tH−|M4| ≤ a4 ≤ tH−1;
– all verifiers in M3 send v to the rest verifiers in H4;
The malicious verifiers in M2 may send their messages so that all verifiers
in H3 wait for 3λ + 2Λ. Some verifiers in H3 may finish their step 3 at
Tr + 4λ+ 2Λ.

Step 4 By Eq. 4.1, we know |H3|
2 < tH − |M3| ≤ a3. Hence, there are a4 verifiers in

H4 setting g = 1 and propagating (1, v), and the rest |H4| − a4 verifiers in
H4 set g = 2 and propagate (0, v). For M4,
– < tH− a4 verifiers in M4 send (1, v) to a5 verifiers in H5 with tH− |M5| ≤

a5 ≤ tH − 1;
– all verifiers in M4 send (1, v) to the rest |H5| − a5 verifiers in H5.
The malicious verifiers in M3 may send their messages so that all verifiers
in H4 wait for 2λ in step 4. Some verifiers in H4 may finish their step 4 at
Tr + 6λ+ 2Λ = Tr + λ+ (4 · 2− 3)λ+ 2Λ.

Step 5 As |H4| − a4 + |M4| ≤ |H4| − tH + 2|M4| < tH, no verifier in H5 ∪M5 is able
to enter Ending Condition 0. By Coin-Fix-To-0, a5 verifiers in H5 propagate
(0, v) and |H5| − a5 verifiers in H5 propagate (1, v). For M5,
– < tH− a5 verifiers in M5 send (0, v) to a6 verifiers in H6 with tH− |M6| ≤

a6 ≤ tH − 1;

26 The “a2 verifiers in H2” here should be “verifiers in H2 who own a2 votes”. We use
“a2 verifiers in H2” for simplicity.
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– all verifiers in M5 send (0, v) to |H6| − a6 verifiers in H6;

The malicious verifiers in M4 send their messages so that all verifiers in
H5 wait for 2λ in step 5. Some verifiers in H5 may finish their step 5 at
Tr + 8λ+ 2Λ = Tr + λ+ (5 · 2− 3)λ+ 2Λ.

Step 6 As |H5| − a5 + |M5| ≤ tH, no verifier in H6 or M6 is able to enter Ending
Condition 1. By Coin-Fix-To-1, a6 verifiers in H6 propagate (1, v) and there
are |H6| − a6 verifiers in H6 propagate (0, v). For M6,

– all verifiers in M6 send (1, v) to a7 verifiers in H7 with tH − |M7| ≤ a7 ≤
tH − 1;

– < tH − a6 verifiers in M6 send (1, v) to |H7| − a7 verifiers in H7;

The malicious verifiers in M5 may send their messages so that all verifiers
in H6 wait for 2λ in step 6. Some verifiers in H6 may finish their step 6 at
Tr + 10λ+ 2Λ = Tr + λ+ (6 · 2− 3)λ+ 2Λ.

Step 7 a7 verifiers in H7 propagate (1, v) and the rest verifiers in H7 flip coin and
decide either to propagate (0, v) all-together or (1, v) all-together (if the
leader for the coin flip is honest).

Assume that (1, v) are propagated by ≥ tH − a7 who flipped the coin. Then
round r will finish in step 9. Some verifier in H7 may wait 2λ before she
flips the coin. Each verifier in H8, H9 takes at most λ to finish step s for
s = 8 or 9. All verifiers in H9 may finish their step 9 before Tr +14λ+2Λ =
Tr + 4λ+ 10λ+ 2Λ.

Thereafter assume that (1, v) are propagated by < tH − a7 verifiers who
flipped the coin.

– all verifiers in M7 send nothing to a8 verifiers in H8 with tH−|M8| ≤ a8 ≤
tH − 1;

– all verifiers in M7 send (1, v) to the rest |H8| − a8 verifiers in H8.

The situation in step 7 and 8 is the same as that of step 4 and 5. Then
the adversary can take the same actions as in step 5 and 6. Hence, one may
assume that Coin-Genuinely-Flipped Step 10 is needed and so on.

We calculate an upper bound for Tr+1. Recall that Lr denotes the random
variable which is the number of Bernoulli’s trials needed to see a 1 (in our
case, this precisely means (1, v) are propagated by ≥ tH − as who flipped
the coin with s ≡ 7 mod 3). Some verifier in Hs may wait for 2λ in steps s
for 3 ≤ s ≤ 4 + 3Lr. Each verifier in Hs takes at most λ to finish steps s for
s = 5 + 3Lr, 6 + 3Lr. All verifiers in H6+3Lr

may finish their step 6 + 3Lr,
which is a Coin-Fix-To-1 step before Tr + (6Lr + 8)λ+ 2Λ = Tr + λ+ 2λ+
((3Lr + 4) · 2− 3)λ+ 2Λ.

Finally, to achieve the first point of (2), the r-villains and adversary follow
the above Step 1 and Step 2 as slowly as possible. Some verifier in H3 may finish
their step 3 at Tr + 4λ+ 2Λ. Note that the value (H(Br

j), j) gets a3 votes from

H2 with a3 > |H3|/2 > tH/2. Then by letting M3 send nothing, all verifiers in
H4 wait 2λ and finish their step 4 at or before Tr + 6λ+ 2Λ with g = 1. As all
verifiers in H4 agree on b = 1, Aucrand round r finishes in step 6. Also, each
honest user takes ≤ λ time to finish step 5 or 6. Hence, Tr+1 ≤ Tr+8λ+2Λ.
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E.4 Proof of the Equilibrium of the r-Election Game.

We admit SPr
j = SPr

H for any j ∈ J. Recall the strategy profile (s∗k) = (s∗k)k∈SVr,1 ∈∏
k∈SVr,1 Sk below.

– For an r-candidate i ∈ I, we have s∗i = MPr
i .

– For an r-villain j ∈ J, the function s∗j is constant on
∏

i∈I Si and is a function
satisfying

s∗j : PK \ {j} →MPr
j , s
∗
j (i) =

{
MPr

j i ∈ H2
+;

∅ i ∈ H2
−,

(E.4)

where H2
+ ⊊ H2 consists of players i ∈ H2 such that |H2| − tH < |H2

+| < tH
and H2

− := H2 \H2
+.

Theorem 2. Assume ≥ h of series numbers in SPr
H belong to SPr

i for any
i ∈ I ∪ H2 and h · |SPr

H| ≥ L. Then the profile (s∗k) is an equilibrium for the
r-election. Moreover, this profile is an equilibrium even if we regard that the
r-Villain controls all r-villains.

Proof. We first analyze the condition. Let i′ be a verifier in H2. For any k ∈ SVr,1,
let S∗k(i

′) denote the set of serial numbers corresponding to the bids in s∗k(i
′). To

select the leader, i′ sets (see Eq. 3.1)

y∗ = max
{
|S∗k(i′) ∩ SPr

i′ |
∣∣ k ∈ SVr,1

}
, (E.5)

W∗i′ =
{
k
∣∣ |S∗k(i′) ∩ SPr

i′ | ≥ hy
}
. (E.6)

For any k ∈ SVr,1 with S∗k(i
′) = MPr

k, we have by the hypothesis (cf. Proposi-
tion 4(2))

|S∗k(i′) ∩ SPr
i′ | = |SP

r
k ∩ SPr

i′ | ≥ h · |SPr
H| ≥ h · |SPr

i′ | ≥ hy∗

and hence k ∈W∗i′ . Hence, we have the following three claims:

(C.1) Given (s∗k), W
∗
i′ = SVr,1 if i′ ∈ H2

+ and W∗i′ = I if i′ ∈ H2
− (See Eq. E.4).

(C.2) If s∗k is replaced with sk ∈ Sk given s∗−k = (s∗l )l∈−k , we have W∗i′ = Wi′ ,

W∗i′ = Wi′ ∪ {k}, or W∗i′ = Wi′ \ {k} for any i′ ∈ H2, where Wi′ denotes the
set obtained in Eq. E.6 after the replacement.

(C.3) For any i ∈ I, given s∗i , we have i ∈Wi′ for any i′ ∈ H2 even if s∗−i is replaced
with (sk)k∈−i ∈

∏
k∈−i Sk.

We divide the remainder of the proof into two parts. Firstly, we show that s∗i
is a best response to s∗−i for any i ∈ I. Secondly, we show that the tuple (s∗j )j∈J,
regarded as a strategy of the r-Villain, is a best response to (s∗i )i∈I. In particular,
this implies that s∗j is a best response to s∗−j for any j ∈ J.

(1) We need to show that the utility ui does not increase for any si ∈ Si,
si ⊊ s∗i given s∗−i. Recall that ui = ni if r-leader exists, or ui = −τ otherwise.
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Here, ni denotes the number of bids committed by i added to the candidate
block of the r-leader.

Let Si be the set of serial numbers corresponding to bids in si and y the
number defined as in Eq. E.5 with S∗i replaced with Si. For any i′ ∈ H2, we have
Si ∩ SPr

i′ ⊊ S∗i ∩ SPr
i′ . If |Si ∩ SPr

i′ | ≥ hy, then by (C.2) we have i ∈Wi′ = W∗i′ .
Hence, the probability of i being the leader remains the same. Moreover, in this
case, the probability that the r-leader exists also remains the same. Overall,
replacing s∗i with si does not change i’s utility.

If |Si ∩ SPr
i′ | < hy, then by (C.2) we have Wi′ = W∗i′ \ {i} for any i′ ∈ H2

and i has no chance to be the leader in the view of i′. Hence, the probability
of i being the leader decreases. Moreover, in this case, the probability that the
r-leader exists decreases because the fraction of r-candidates in Wi′ is smaller
than that of W∗i′ . Overall, replacing s∗i with si leads to a decrease of i’s utility.

(2) Fix (s∗i )i∈I. By (C.3), after replacing (s∗j )j∈J with (sj)j∈J ∈
∏

j∈J Sj , we

have I ⊂ Wi′ for any i′ ∈ H2. If no j ∈ J has the smallest hash, then replacing
(s∗j )j∈J with (sj)j∈J will not change r-Villain’s utility. Hence, we may assume

that some j ∈ J has the minimal hash among all players in SVr,1. If the r-Villain
follows the strategy (s∗j )j∈J, then by (C.1) there are |H2

+| votes regarding j as

the leader and |H2| − |H2
+| votes from H2

− regarding other players as the leader.

As |H2| − tH < |H2
+| < tH, there is no r-leader (See Definition 19(3)) and uj = 0,

i.e., j’s utility attains the maximal. Therefore, (s∗j )j∈J is the best response to
(s∗i )i∈I.

E.5 Partial results in certain cases

Removing the condition “≥ h of serial numbers in SPr
H belong to SPr

i for any
i ∈ I ∪H2” turns out to be difficult. We are to show some partial results.

Lemma 22. Let i be an r-candidiate. For any strategy s−i = (sk)k∈−i ∈
∏

k∈−i Sk,
the strategy s∗i = MPr

i is a best response to s−i if there is i0 ∈ I \ {i} such that
S∗i ⊆ Si0 , where S∗i and Si0 denote respectively the sets of serial numbers corre-
sponding to bids in s∗i and si0 .

Proof. The goal is to show that the utility ui for an r-candidate i does not
increase for any si ∈ Si with si ⊊ s∗i = MPr

i given s−i = (sk)k∈−i . We first

analyze the condition. Let i′ be any verifier in H2. For k ∈ SVr,1, let Sk(i
′)

denote the serial numbers corresponding to the bids in sk(i
′). To select the

leader, i′ sets

y = max
{
|Sk(i′) ∩ SPr

i′ |
∣∣ k ∈ SVr,1

}
,

Wi′ =
{
k
∣∣ |Sk(i′) ∩ SPr

i′ | ≥ hy
}
.

Put y∗ := y and W∗i′ := Wi′ if si = s∗i . By the existence of i0, we know y∗ = y.
Hence, either W∗i′ = Wi′ or W

∗
i′ = Wi′ ∪{i}. This implies that replacing s∗i with

si will not lead to a modification of W∗i′ \ {i} for i′ ∈ H2.
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Similar to part (1) in the proof of Theorem 2, we show that for any i′ ∈ H2,
the strategy si of i does not increase: (1) the probability of i being the leader in
the view of i′; (2) the fraction of r-candidates in W∗i′ . In fact, by the existence
of i0, we have y = y∗ ≥ |s∗i | > |si| in the view of i′. Hence, |si| ≥ hy or |si| < hy
given |s∗i | ≥ hy. In both cases, (1) and (2) hold.

We are to give an example where if an r-candidate i does not choose s∗i = MPr
i ,

i.e., not behave the same as an honest potential leader, then her strategy may
not be a best response to s∗−i. By the committee selection process of Aucrand,
the adversary and the r-Villain may realize the strategy in Eq. E.4 as below
(we admit that the adversary controls the r-Villain except in the r-election as in
(A.1)):
1. Choose a subset HPK+ of HPK such that |HPK+| = |HPK| · a/|H2|, where

HPK denotes the set of honest users in PK. Send all committed bids to HPK+

and send no bid to HPK− := HPK \HPK+ before honest users collect SPr.
2. Each r-villain j ∈ J chooses the strategy

s∗j (i) =

{
MPr

j i ∈ HPK+;

∅ i ∈ HPK−.

By the behavior of the adversary, we have SPr
i = SPr

i′ if i, i′ both in HPK+

or both in HPK−. We admit H2
+ = HPK+ ∩ H2 and H2

− = HPK− ∩ H2. Put
I+ := HPK+ ∩ I and I− := HPK− ∩ I.

We may regard |I+| ≥ 2. Then by Lemma 22, for each i ∈ I, the strategy
s∗i = MP∗i is a best response to (sk)k∈−i ∈

∏
k∈−i Sk if sk = MPr

k for k ∈ I. Next,
we show that si ⊊ s∗i may not be a best response.

Proposition 23. Assume that the adversary behaves as above. For an r-candidate
i ∈ I− and the strategy profile s∗−i defined above, put c = |SPr

i |/|SP
r
j | for j ∈ J

and assume h ≤ c ≤ 1. Then the strategy si ⊊ MPr
i with |si| = c′ · |SPr

i | for
c′ < h/c is not a best response to s∗−i.

Proof. For a verifier i′ ∈ H2, retain the notations y, Wi′ , y
∗, and W∗i′ defined

in Lemma 22. If i chooses s∗i = MPr
i , then we have i ∈ W∗i′ for i

′ ∈ H2
+ because

y∗ = |SPr
j | and |SP

r
i ∩ SPr

i′ | = |SP
r
i | = c · |SPr

j | ≥ h · |SPr
j |. Also, we have i ∈W∗i′

for i′ ∈ H2
− as |SPr

i ∩ SPr
i′ | = |SP

r
i′ |. Consequently, i ∈W∗i′ for any i′ ∈ H2. The

r-candidate i is the leader in the view of i′ if she has the minimal hash.
Each verifier i′ ∈ H2

+ sets y = |SPr
j | as sj(i′) = MPr

j and SPr
i′ = SPr

j for j ∈ J.
Assume that i chooses the strategy si. As

|si| = c′ · |SPr
i | <

h

c
· |SPr

i | = h · |SPr
j | = hy,

we have i /∈ Wi′ . Moreover, for any i′′ ∈ I \ {i} and i′ ∈ H2
+, we have i′′ ∈ Wi′

and i′′ ∈ W∗i′ because y = y∗ = |SPr
j | and |s∗i′′ | = c · |SPr

j | ≥ h · |SPr
j | = hy.

Hence, Wi′ = W∗i′ \ {i} for i′ ∈ H2
+. Notice SPr

i′′ = SPr
i′ for i′ ∈ H2

−. We then

have i′′ ∈ Wi′ and i′′ ∈ W∗i′ . Hence, Wi′ = W∗i′ or Wi′ = W∗i′ \ {i} for i′ ∈ H2
−.
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As |H2| − tH < |H2
+| < tH, i can never be the r-leader, and the probability that

r-leader exists decreases.

Next, we work out a counter-example.

Proposition 24. Assume that the adversary behaves as above. The strategy pro-
file (s∗k) is an equilibrium for the r-election. If we regard that the r-Villain controls
all r-villains, this profile is an equilibrium but is not a subgame equilibrium.

Proof. Throughout the proof, we regard the r-Villain controls all r-villains. We
divide the proof into two parts. Firstly, we show that the profile (s∗k) is an
equilibrium.27 Secondly, we show that (s∗k) is not a subgame equilibrium.

(1) By Lemma 22, for an r-candidate i, we have that s∗i is a best response to
s∗−i.

For a verifier i′ ∈ H2, retain the notations y and Wi′ defined in Lemma 22.
Fix (s∗i )i∈I. We show that replacing (s∗j )j∈J with (sj)j∈J ∈

∏
j∈J Sj does not

increase the utility of an r-villain which equals the utility of the r-Villain. If
|SPr

i | ≥ h · |SPr
j | for j ∈ J and some i ∈ I− (Hence, for any i ∈ I, by assumption),

we have i ∈Wi′ for any i ∈ I and any i′ ∈ H2. If no r-villain in J has the smallest
hash value, then whatever strategies the r-Villain chooses will not change her
utility. Hence, we may assume that some j ∈ J has the minimal hash value
among all players in SVr,1. If each j ∈ J chooses s∗j in Eq. E.4, then verifiers in

H2
+ regard j as the leader and verifiers in H2

− regard other players as the leader.

As |H2| − tH < |H2
+| < tH, there is no r-leader (See Definition 19(3)). Hence,

uj = 0, i.e., j’s utility attains the maximal for all j ∈ J.
Otherwise, i.e., |SPr

i | < h · |SPr
j | for all i ∈ HPK−, we have i /∈Wi′ for i ∈ I−

and i′ ∈ H2
+. If some i ∈ I− has the smallest hash value and some r-villain

j ∈ J has the second smallest hash value, then following Eq. E.4 leads to uj = 0
and the utility of the r-Villain attains the maximal. For the case where an r-
candidate i′′ owns the second smallest hash, if i′′ ∈ I+, then i′′ ∈ Wi′ for any
i′ ∈ H2 and whatever strategies the r-Villain chooses will not change her utility.
On the other hand, if i′′ ∈ I− so that |SPr

i′′ | < h · |SPr
j |, then we essentially go

back to the situation above. Finally, it suffices to consider the case where none
of i ∈ I− has the smallest hash. For any i ∈ I+, i

′ ∈ H2, and j ∈ J, because
SPr

i = SPr
j ⊇ SPr

i′ , we know i, j ∈ Wi′ . Hence, this case is similar to the one in
the previous paragraph.

(2) Admit h = 2/3. We construct tuples (si)i∈I ∈
∏

i∈I Si and (sj)j∈J ∈∏
j∈J Sj so that given (si)i∈I, replacing (s∗j )j∈J with (sj)j∈J increases the prob-

ability of some j ∈ J being the leader. This means that (s∗j )j∈J is not a best

response to (si)i∈I ∈
∏

i∈I Si. Assume 2/3 · |SPr
j | = |SP

r
i | for i ∈ HPK−.

28 Let
P denote a subset of SPr

i such that |P | = 1/2 · |SPr
j ∩ SPr

i | for i ∈ HPK−. Put
Q := P ∪ (SPr

j \ SP
r
i ). Consider (si)i∈I where si is the subset of MPr

i such that

27 This implies that (s∗k) is an equilibrium for the r-election if we do not regard that
all r-villains controlled by the r-Villain.

28 This implies that the assumption in Theorem 2 holds.
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the set of serial numbers corresponding to bids in si equals Q (resp. P ) for all
i ∈ I+ (resp. i ∈ I−).

Thereafter, assume that r-candidates choose the strategy (si)i∈I . If the r-
Villain follows (s∗j )j∈J, we have i ∈ Wi′ for i ∈ I+ and i′ ∈ H2

+ because of
|Q ∩ SPr

i′ | = 2/3 · |SPr
i′ | and SPr

i′ = SPr
j for j ∈ J. We also have i ∈ Wi′ for

i′ ∈ H2
− because of Q ∩ SPr

i′ = P ∩ SPr
i′ and s∗j (i

′) = ∅ for j ∈ J. If some i ∈ I+
has the smallest hash value among all players in SVr,1, then i is the r-leader.

On the other hand, if each j ∈ J follows a strategy sj satisfying

sj : PK \ {j} →MPr
j , sj(i) =

{
∅ i ∈ HPK+;

MPr
j i ∈ HPK−,

then each i′ ∈ H2
− sets y = |SPr

j ∩SP
r
i′ | as H

2
− = HPK−∩H2. Notice |Q∩SPr

i′ | =
|P ∩SPr

i′ | = 1/2 · |SPr
j ∩SP

r
i′ | for i′ ∈ H2

−. We have i /∈Wi′ for i ∈ I and i′ ∈ H2
−.

As |H2| − tH < |H2| − |H2
−| < tH, there is no r-leader and uj = 0 for any j ∈ J

with probability 1.
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