
Fuzzy PSI via Oblivious Protocol Routing⋆

David Richardson, Mike Rosulek, and Jiayu Xu

Oregon State University, {richdavi,rosulekm,xujiay}@oregonstate.edu

Abstract. In private set intersection (PSI), two parties who each hold
sets of items can learn their intersection without revealing anything
about their other items. Fuzzy PSI corresponds to a relaxed variant that
reveals pairs of items which are “close enough,” with respect to some
distance metric. In this paper we propose a new protocol framework for
fuzzy PSI, compatible with arbitrary distance metrics. We then show
how to efficiently instantiate our framework for ℓ1, ℓ2, and ℓ∞ metrics,
in a way that uses exclusively cheap symmetric-key operations. One no-
table feature of our protocol is that it has only logarithmic dependency
on the distance threshold, whereas most other protocols have linear (or
higher) dependency. For many reasonable combinations of parameters,
our protocol has the lowest communication cost of existing fuzzy PSI
protocols.

1 Introduction

Private set intersection (PSI) is a special case of secure 2-party computation
where the function is the intersection function. In other words, each party has
a set of items, and the result of the computation is to reveal the intersection of
those sets, without revealing anything else about the private inputs. Since its
introduction by Freedman, Nissim, and Pinkas in 2004 [FNP04], PSI has been
the focus of significant optimization. Today, PSI is truly practical for real-world
privacy-preserving computations. The protocol and efficient implementation of
Raghuraman & Rindal [RR22] can compute the intersection of two sets of 1M
items each in less than a half second.

Some applications of PSI are hindered by the fact that the data is inherently
noisy. For example, a single person’s biometric information is not measured
precisely the same way every time. GPS coordinates, even of a fixed location,
are measured with an inherent error. What is needed for examples like these is
fuzzy PSI.

If Alice has input set A and Bob has input set B, then fuzzy PSI allows
them to learn about the pairs (a, b) ∈ A × B where a and b are not necessarily
identical, but are merely close. More precisely, a and b should satisfy d(a, b) ≤ δ,
where d is a distance metric and δ a publicly agreed similarity threshold.

⋆ First two authors partially supported by NSF award S2356A

Importance of Euclidean metric in ML. One common source of “noisy” data is
complex, high-dimensional, unstructured data. The case of human faces provides
a good example. ML autoencoders can encode photos of faces into vectors, such
that different images of the same person’s face have similar encodings. Fuzzy
PSI is a good fit for this kind of data.

The most common way to measure similarity in an autoencoding is the cosine
similarity measure — i.e., the cosine of the angle between the two vectors. Similar
vectors have cosine very close to 1.

For our purposes, it is important to understand that cosine similarity can be
expressed in terms of Euclidean distance:

Proposition 1. If all datapoints x, y are unit vectors, then cos(x, y) ≥ 1− δ if
and only if d(x, y) ≤ δ′, where d is the Euclidean (ℓ2) distance metric, and δ′ is
a function of δ alone.

Thus, for applications of fuzzy PSI to ML-driven, high-dimensional, unstruc-
tured data sets, Euclidean (ℓ2) distance is the most important distance metric.

Symmetric vs asymmetric cryptography. An important qualitative property of
practical MPC protocols is whether they rely on symmetric-key or public-key
primitives. For example, many PSI protocols (starting with [PSZ14] and in-
cluding many others [KKRT16,PRTY19,CM20,GRS22]) are based on oblivious
transfer (OT) extension [Bea96,IKNP03]. After performing λ (e.g, 128) base OT
instances, which require public-key operations, the remainder of the protocol
uses exclusively symmetric-key operations. In other words, the marginal cost
per item (in a PSI protocol) involves only symmetric-key primitives.

Other PSI approaches require a linear (in the size of the input sets) number
of public-key operations. Of course, just because protocol A uses symmetric-
key operations and protocol B uses public-key operations, it is no guarantee
that protocol A will be faster in practice. However, the incredible advancement
in (plain) PSI protocol performance over the last decade would not have been
possible without the ability to base them on fast symmetric-key operations.

1.1 State of the art

Structure-aware PSI (saPSI) refers to a special case of PSI where one party’s
input set has a publicly known structure. The cost of an saPSI protocol should
scale not with the cardinality of the structured set, but its description size. saPSI
can be used for fuzzy PSI by having one party expand their set of points S to the
set of nearby points S+ = {x | d(x, S) ≤ δ}. The resulting set is much larger,
but it is public knowledge that it is structured as the union of metric balls.
Thus, an saPSI protocol involving S+ produces the desired fuzzy PSI function-
ality. Several papers propose efficient saPSI protocols [GRS22,GRS23,GGM24].
These all are based on symmetric-key techniques, but the underlying results are
currently limited to the ℓ∞ metric and (with an penalty that is exponential in
the dimension) ℓ1 metric.

van Baarsen and Pu [vP24] propose a fuzzy PSI protocol for ℓp metrics. It uses
an additively homomorphic encryption scheme to perform comparisons under
this metric — i.e., it uses a linear amount of public-key operations. Furthermore,
it has (at least) linear dependence on the distance threshold δ. More precisely,
when identifying points within distance δ in the ℓp metric, the protocol has
communication Ω(δp).

In very recent work, Gao et al. [GQL+24] propose a new fuzzy PSI approach
based on a technique that they call fuzzy mapping. A common idea in fuzzy
PSI protocols (including our own) is to limit the necessary number of compar-
isons by first mapping items into bins, in a way that respects close pairs of items.
In most fuzzy PSI protocols, this mapping process is local/non-interactive, but
Gao et al. propose new interactive methods of doing this mapping. They provide
instantiations for ℓ∞, ℓp, and Hamming metrics. Both their mapping process and
their subsequent distance comparison subprotocols use (public-key) additively
homomorphic techniques. Their protocol cost also scales linearly with the dis-
tance threshold δ.

1.2 Our results & technical overview

Our main result is a new, efficient fuzzy PSI protocol framework, which can be
instantiated for a variety distance metrics.

Starting point: Our starting point is the PSI technique of Cho, Dachman-Soled,
and Jarecki [CDJ16], hereafter CDJ. Their protocol compiles a private equality
test (PEQT) protocol into a PSI protocol. A PEQT protocol takes an input x
from Alice and input y from Bob, and reveals (to one of the parties) whether
x = y, and nothing else about the inputs. One might interpret a PEQT protocol
as a PSI protocol for singleton sets. In the CDJ protocol, each party runs one
PEQT protocol for each of its items, using that item as input. When Alice and
Bob have a common item x, they each have a PEQT instance associated with
that item, and they would like these instances to “talk to each other.” The
challenge is that this must happen while still hiding the identity of each party’s
items.

The CDJ approach is for both parties to encode their PET protocol messages
in a polynomial. More precisely, Alice interpolates a polynomial P such that P (x)
equals the next protocol message in her PET protocol instance associated with
x, and sends P to Bob. For each of Bob’s inputs y, he interprets P (y) as a
protocol message in his PET protocol instance associated with y. Then, similar
to Alice, he encodes the set of PET responses into another polynomial Q, which
he sends to Alice.

Of course, if Alice and Bob have a common item x, then their corresponding
PET instances will be communicating on the “same frequency” of the polyno-
mials, and the PET instances will indicate a match. Furthermore, if the PET
protocol messages have a certain pseudorandomness property, then it can be
shown that the polynomials P and Q leak nothing about a party’s inputs.

Our modifications: We generalize the CDJ approach to the fuzzy PSI setting in
the following ways.

First, the parties will hash their items into bins according to some abstract
hashing scheme. Each item may be hashed into several bins, and the universe of
possible bins may be exponentially large. The hashing scheme should have the
property (which we call conditionally overlapping) that if Alice and Bob hold x
and y which are “close enough,” then some bin will contain both x and y.

For the sake of simplicity, suppose that each bin is guaranteed to have at
most one item per party. (Our general framework handles the more general case,
where bins may have many items.) For each non-empty bin, the parties run an
instance of a private proximity protocol, which takes private inputs x and y, and
outputs a bit indicating whether x and y are closer than a public threshold. The
parties encode their protocol messages into a polynomial P such that P (β) is
the next protocol message for the item in bin β. (Polynomial interpolation is
just one way of encoding a key-value map; our protocol is written abstractly in
terms of an oblivious key-value store.)

The correctness and privacy analysis of our protocol is similar to that of CDJ.
In fact, the CDJ protocol is obtained as a special case of our framework, where
the hashing function is the identity function and the proximity protocol is an
equality protocol. We present our protocol as a general framework that combines
any conditionally overlapping hashing schemes and any proximity-subprotocol
functionality. We prove security against semi-honest adversaries.

Instantiating our framework. For ℓp and ℓ∞ metrics, garbled circuits are the
most straightforward way to instantiate the proximity protocol. The result is
concretely efficient, with relatively low communciation.

Given two inputs, the garbled circuit can compute their distance and compare
it to a fixed threshold. We find that the arithmetic garbling scheme of [BMR16]
is more efficient than standard boolean garbling for ℓ2 comparisons, because it
supports extremely efficient squaring as well as allowing the garbler to easily
hard-code their point into the circuit. On the other hand, standard boolean
garbling is more efficient for ℓ1 and ℓ∞ metrics.

Efficiency. Among existing fuzzy PSI protocols, ours has the lowest communi-
cation when the threshold δ is moderately large (e.g., around and above 30). In
2 dimensions, with δ = 30 and 216 items, our protocol requires 455MB of com-
munication for ℓ1 distance, 1.1GB for ℓ2 distance, and 453MB for ℓ∞ distance.
These represent an improvement of 4.8×, 3.3×, and 4.7× over the next closest
competitor.

2 Preliminaries

We use “≡” to denote that two distributions are identical, and use “∼∼∼” to
denote that they are indistinguishable. For a functionality F , we use F1(A,B)
to indicate the output of party 1 from an execution of F where party 1’s input
is A and party 2’s input is B.

2.1 Oblivious Key-Value Stores

Given a set of distinct keys {k1, . . . , kn}, if one interpolates a polynomial P
through the points (ki, vi), and the vi values are chosen uniformly, then the
coefficients of P perfectly hide the ki values. Oblivious key-value stores (OKVS)
were introduced by Garimella et al. [GPR+21] as a generalization of this useful
property of polynomial interpolation.

Definition 1. For key space K and value space V, a key-value store (KVS)
is defined by a pair of algorithms:

– Encode(s ⊆ K × V) outputs an object S or an error symbol ⊥.
– Decode(S, k ∈ K) outputs a value v ∈ V.

A KVS is correct if for every key-value set s with distinct keys and every pair
(k, v) ∈ s, Decode(Encode(s), k) = v with overwhelming probability. Further, it
is oblivious if the following two oracles are indistinguishable:

okvs-left(K1,K2):

assert |K1| = |K2|
V ← V |K1|

s = {(K1[i], V [i])}|K1|
i=1

Output Encode(s)

∼∼∼

okvs-right(K1,K2):

assert |K1| = |K2|
V ← V |K2|

s = {(K2[i], V [i])}|K2|
i=1

Output Encode(s)

The previous property says, roughly: if one encodes an OKVS with entirely
random values, then the OKVS output hides the choice of keys. An even more
general property holds as well: OKVS output leaks only the identity of keys
whose corresponding values are not chosen randomly. More formally, the follow-
ing two oracles are indistinguishable. K1, V1 denote the non-random keys/values,
and the adversary is unable to distinguish whether random values were associ-
ated with keys K2 or K3:

okvs-partial-left(K1,K2,K3, V1):

assert |K2| = |K3| and |K1| = |V1|
and K1 ∩K2 = ∅ and K1 ∩K3 = ∅

V2 ← V |K2|

s = {(K1[i], V1[i])}|K1|
i=1 ∪ {(K2[j], V2[j])}|K2|

i=1

Output Encode(s)

∼∼∼

okvs-partial-right(K1,K2,K3, V1):

assert |K2| = |K3| and |K1| = |V1|
and K1 ∩K2 = ∅ and K1 ∩K3 = ∅

V3 ← V |K3|

s = {(K1[i], V1[i])}|K1|
i=1 ∪ {(K3[j], V3[j])}|K3|

i=1

Output Encode(s)

The previous definition is obtained as the special case where K1 = ∅.

Expand-then-encode. We overload the notation of Encode in the following way:
Encode(s, h) means: add dummy key-value pairs to s until |s| = h, and then
encode as usual. The dummy values are chosen uniformly, so the choice of dummy

keys is irrelevant.

Encode(s, h):

while |s| < h:
k ← {l ∈ K | ¬∃v : (l, v) ∈ s}
v ← V
add (k, v) to s

Output Encode(s)

Thus, the following two oracles are indistinguishable (note that it is no longer
necessary that |K1| = |K2|):

okvs-left(K1,K2, h):

assert |K1| ≤ h and |K2| ≤ h
V ← V |K1|

s = {(K1[i], V [i])}|K1|
i=1

Output Encode(s, h)

∼∼∼

okvs-right(K1,K2, h):

assert |K1| ≤ h and |K2| ≤ h
V ← V |K2|

s = {(K2[i], V [i])}|K2|
i=1

Output Encode(s, h)

Instantiations. The simplest (and size-optimal) OKVS is based on polynomials:
Encode is polynomial interpolation, and Decode is polynomial evaluation. How-
ever, the cost of encoding n key-value pairs is O(n log2 n). Other OKVS with
linear-time encoding are proposed in [GPR+21].

2.2 Conditionally Overlapping Hash Pairs

In our protocol, each party uses a hashing function to assign each of their items
to a set of bins. The hashing method must have the property that “similar items”
must be assigned to a common bin.

Definition 2. Let L be a set of items, K be a set of bin identifiers, and f be a
symmetric binary function f : L × L → {0, 1}. A conditionally overlapping
hash pair for f is a pair of hash functions H1,H2 : L → PowerSet(K), along
with positive integer constants h1 and h2, such that for any i, j ∈ L, |H1(i)| ≤ h1,
|H2(j)| ≤ h2, and f(i, j) = 1 =⇒ H1(i) ∩H2(j) ̸= ∅.

Each hash function assigns item x to the bins H(x). For a set S of inputs,
we use H(S) to denote the bins that are assigned at least one item from S —
i.e., H(S) = {β | ∃ s ∈ S : β ∈ H(s)} (where H is either H1 or H2). When S is
the input of a certain party, we will sometimes refer to the bins in H(S) as the
active bins of that party. We write H−1(β, S) to indicate the set of items in
S that hash to β, i.e., H−1(β, S) = {s ∈ S | β ∈ H(S)}. Finally, we sometimes
refer to the binary function f as a similarity function.

The above definition assumes the hash functions to be stateless — i.e., the
assignment of item x to bins does not depend on other items being hashed. This
is merely to simplify the notation surrounding hashing. However, one could also
consider methods of assigning items to bins, based on a global view of all the
items being hashed; our general results would still hold.

Finally, we sometimes use Fβ
1 (A,B) as a shorthand for F1

(
H−1

1 (β,A), H−1
2 (β,B)

)
.

Intuitively, Fβ
1 (A,B) is the output of party 1 from F in which party 1’s input

is the subset of points in A that hash to β and party 2’s input is the subset of
points in B that hash to β.1

2.3 Subprotocols

Our main construction encodes the protocol messages of certain subprotocols
into an OKVS. Thus, these protocol messages need to enjoy certain pseudoran-
domness properties. In this section we discuss the necessary properties of these
subprotocol in an abstract manner, without specifying their functionality; i.e.,
we consider subprotocols that realize some unspecified deterministic two-party
functionality F . For simplicity, we consider 1-round subprotocols, although our
results would generalize in a natural way to many-round subprotocols.

Subprotocol Interface We refer to a one-round protocol as a subprotocol if,
for input space I and message spacesM1,M2, it can be expressed as algorithms
with the following behavior:

– PROT1(a ∈ I) outputs (M1, σ) where M1 ∈M1;
– PROT2(M1 ∈M1, b ∈ I) outputs M2 ∈M2;
– PROT3(σ,M2 ∈M2) outputs party 1’s final output.

In a standard execution of a subprotocol, party 1 runs (M1, σ)← PROT1(a),
sends a message M1 to party 2, and keeps σ as its internal state. Then party 2,
upon receiving M1, runs M2 ← PROT2(M1, b) and sends a message M2 to party
1. Finally, party 1, upon receiving M2, outputs PROT3(σ,M2) (party 2 outputs
nothing).

Party 1 (input a) Party 2 (input b)

(M1, σ)← PROT1(a) M1

M2 M2 ← PROT2(M1, b)

Output PROT3(σ,M2)

Fig. 1. Execution of a subprotocol

Note that the interface above implicitly requires the functionality F to have
the same input space for the two parties, and one party should not receive any
output.

1 In our protocols, party 1 exclusively uses H1 and party 2 exclusively uses H2, so
which hash function is used for this is unambiguous.

Pseudorandomness We require subprotocol messages to appear pseudorandom
under various scenarios:

Definition 3. A subprotocol has a pseudorandom first message, or first
pseudorandomness, if the following oracles are indistinguishable:

prot1-real(a ∈ I):
(M1, σ)← PROT1(a)
Output M1

∼∼∼
prot1-random(a ∈ I):

M1 ←M1

Output M1

Definition 4. A subprotocol has a pseudorandom second message, or sec-
ond pseudorandomness, if the second message is indistinguishable from uni-
form, when responding to a uniformly random first message. That is,

prot2-real(b ∈ I):
M1 ←M1

M2 ← PROT2(M1, b)
Output (M1,M2)

∼∼∼

prot2-random(b ∈ I):
M1 ←M1

M2 ←M2

Output (M1,M2)

First and second pseudorandomness combined imply that for any inputs
a, b ∈ I, the joint distribution of the two protocol messagesM1 andM2 (i.e., from
the perspective of an eavesdropper) is indistinguishable from uniformly random.
We may use the term pseudorandomness to refer to the combined property.

We require a final property. Whenever the protocol inputs are far (with re-
spect to a similarity function f), we require that the second protocol messages
is pseudorandom, even from the perspective of an honest party 1.

Definition 5. For a similarity function f , a subprotocol with input elements in
the domain of f has f-disjoint pseudorandomness, if the second message
is indistinguishable from uniformly random, even given a real first message and
its internal state, when the two input sets are “disjoint” according to similarity
function f . That is,

prot2-real(a, b ∈ I):
assert f(a, b) = 0
(M1, σ)← PROT1(a)
M2 ← PROT2(M1, b)
Output (M1, σ,M2)

∼∼∼

prot2-random(a, b ∈ I):
assert f(a, b) = 0
(M1, σ)← PROT1(a)
M2 ←M2

Output (M1, σ,M2)

(We slightly abuse notations and write A,B ⊆ I instead of A,B ∈ I, i.e., I is
the universe of elements that might be in a party’s input set, rather than a set
of parties’ input sets.2)

2 We might also allow parties to have some auxiliary input aux ∈ auxspace apart from
the sets A,B, which is unrelated to f -disjoint pseudorandomness (and is thus not
shown in the definition). We view I as the input space, rather than PowerSet(I) ×
auxspace. Looking ahead, in our context the auxiliary input will be a bin.

A distinguisher can run PROT3(σ,M2) to check the output, so f -disjoint
pseudorandomness implies the following: for any A, PROT3(σ,M2) ran with an
internal state σ produced by A and a uniformly random M2, is indistinguishable
from F1(A,B) for any B that is f -disjoint from A. This in turn means that
for any A and any B1, B2 both f -disjoint from A, F1(A,B1) and F1(A,B2) are
indistinguishable.

3 Main Protocol

We motivate our main protocol with a concrete example. Suppose PROT is a
1-round protocol, that takes as input one item from each party and returns a
boolean indicating whether those items are “close” with respect to some similar-
ity function f . You might think of PROT as a fuzzy-PSI protocol for singleton
sets. Suppose we also have a conditionally-overlapping hash pair (H1,H2) such
that if f(a, b) = 1 then H1(a) ∩ H2(b) ̸= ∅ — i.e., similar items are mapped to
a common bin. Then our construction gives a full-fledged protocol for fuzzy PSI
on large sets.

We present the main construction as a generic compiler, which securely runs
a subprotocol on the contents of each bin and assembles the results — but
without revealing the identities of active bins, or the items assigned to the bins.
The functionality that we compute is described below:

FBins

Parameters:
• hash functions H1,H2 : I → PowerSet(Binspace);
• a deterministic two-party functionality F ,

where each party’s input is a subset of I.
• upper bounds nA and nB on parties’ input sets

Behavior:
await input A ⊆ I from party 1, where |A| ≤ nA

await input B ⊆ I from party 2, where |B| ≤ nB

output
⋃

β∈Binspace

F1

(
H−1

1 (β,A), H−1
2 (β,B)

)
× {β} to party 1

Examples. Suppose (H1,H2) are simply the identity maps: Hi(x) = {x}. And
suppose F(a, b) returns {a} if a = b and ∅ otherwise. Then FBins(A,B) reveals
A∩B to Alice. This corresponds to the special case of plain PSI, and the protocol
is extremely similar to the CDJ protocol [CDJ16].

Suppose (H1,H2) are conditionally overlapping with respect to a similarity
function f , which assign at most one item to each bin. And suppose F(a, b)
returns {a} if f(a, b) = 1 and ∅ otherwise. Then FBins(A,B) reveals to Alice

information that can be inferred from:

{β | ∃b ∈ B, a ∈ A : f(a, b) = 1 and a, b both assigned to bin β}.

Alice learning the identity of a bin is equivalent to her learning the identity of
her item, since each bin contains at most one of her items. She learns which of
her items was near to an item in B, but not its identity. In case her items are
assigned to several bins, she learns which of those bins contained the close item.

On the other hand, suppose F(a, b) returns {b} if f(a, b) = 1 and ∅ otherwise.
Then FBins(A,B) reveals to Alice information that can be inferred from:

{b ∈ B | ∃a ∈ A : f(a, b) = 1}.

Knowing the identities of items b ∈ B, it is possible for Alice to deduce in which
bins a match was found.

3.1 The Construction

Our protocol for the FBins functionality is given in Figure 3.1. It follows the
main ideas described in Section 1.2. Namely, the parties hash their items into bins
according to a suitable hash pair. They run an instance of a suitable subprotocol
for the contents of each bin, and encode the bin-to-protocol-message mapping
in an OKVS.

Party 1(A ⊆ I) Party 2(B ⊆ I)
S := ∅
for each β ∈ H1(A) :

(M [β], σ[β])← PROT1(H−1
1 (β,A))

add (β,M [β]) to S

P := Encode1(S, |A| · h1 + 1)

P

S′ := ∅
for each β′ ∈ H2(B) :

M1 := Decode1(P, β
′)

M ′[β′]← PROT2(M1,H−1
2 (β′, B))

add (β′,M ′[β′]) to S′

Q := Encode2(S
′, |B| · h2 + 1)

Q

O := ∅
for each β ∈ H1(A) :

M2 := Decode2(Q, β)

o := PROT3(σ[β],M2)

add o× {β} to O

Output O

Fig. 2. Main Protocol: Computes FBins

Theorem 1. Let F be a deterministic two-party functionality as described in the
parameters to FBins. Let f be a similarity function with input space I. Suppose
the protocol in section 3.1 uses the following building blocks:

1. H1,H2 : I → PowerSet(Binspace) are a conditionally-overlapping hash pair
for f (with size limits h1, h2), where Binspace is the space of potential bins.

2. PROT is a correct, pseudorandom, and f -disjoint pseudorandom protocol
realizing F in the semi-honest setting, with PROT1,PROT2 having messages
inM1,M2, respectively.

3. (Encode1,Decode1) and (Encode2,Decode2) are OKVSs with key space Binspace
and value spacesM1 andM2, respectively.

Then the protocol realizes FBins (with parameters H1, H2, and F) in the semi-
honest setting.

Functionalities

FBins The functionality that our protocol realizes. It is a two-party
functionality whose inputs are A,B ⊆ I and outputs the result
of the underlying functionality F run over A and B hashed
with H1 and H2.

F An arbitrary deterministic two-party functionality whose in-
puts are subsets of I.

Building blocks

(H1,H2) A conditionally-overlapping hash pair (section 2.2) for sim-
ilarity function f , consisting of hash functions from I to
PowerSet(Binspace).

(Encode1,Decode1),
(Encode2,Decode2)

OKVSs (section 2.1) over (Binspace,M1) and (Binspace,M2),
respectively.

PROT A correct and pseudorandom subprotocol (section 2.3) with
f -disjoint pseudorandomness that realizes F .

Spaces

I – The input space of the protocol.
– The input space of the subprotocol (excluding the auxilliary

information which is a bin).
– The input space of (H1,H2).

Binspace – The output space of (H1,H2).
– The key space of both OKVSs.

M1,M2 – The message space of PROT1 and PROT2, respectively.
– The value space of (Encode1,Decode1) and

(Encode2,Decode2), respectively.
Protocol parameters (section 3)

A,B Party 1 and Party 2’s input, respectively; a set of points in I.
a, b A point in A and B, respectively.

σ Party 1’s internal state.

FPSI parameters (section 4)

d The number of dimensions of I.
δ The distance threshold for d

u the bit length of integers for the subprotocol.

(Hn, Hn+1)|n ∈ {1, 3, 5} Conditionally-overlapping hash pairs for ℓp; section 4.1.

s The number of dimensions party 1 “searches over”; section 4.1.

Other parameters

f A similarity function (section 2.2) over I.
h1, h2 The maximum number of bins an item can hash to for H1 and

H2, respectively.

β A bin identifier in Binspace.

Notation

H(S) The set of bins that some item in a set S hashes to. Formally,
H(S) = {β | ∃ s ∈ S : β ∈ H(s)}

H−1(β, S) The set of items in a set S that hash to β. Formally,
H−1(β, S) = {s ∈ S | β ∈ H(S)}

F1(A,B) The output of party 1 with input A from F when party 2 has
input B.

Fβ
1 (A,B) The output of party 1 from F in which party 1’s input is the

subset of points in A that hash to β and party 2’s input is the
subset of points in B that hash to β. Formally, Fβ

1 (A,B) =

F1

(
H−1

1 (β,A), H−1
2 (β,B)

)
Table 1. Variables

For convenience, we include a glossary of variable names in table 1.
We give an abbreviated proof sketch here; a full proof can be found in ap-

pendix A.2.

Proof (sketch). The proof considers three cases: both parties are honest (i.e.,
correctness), party 1 is corrupted, and party 2 is corrupted.

Correctness. Party 1’s output is a set O consisting of the subprotocol outputs
for inputs H−1

1 (β,A) over all β ∈ H1(A). If β is an active bin for both parties,
then the subprotocol is run on “real” inputs, so by correctness of the subprotocol
(and correctness of the OKVS), the output is Fb

1(A,B)× {β} with overwhelm-
ing probability. Otherwise β is an active bin for party 1 but not party 2; in this
case the two parties’ inputs in the subprotocol, H−1

1 (β,A) and H−1
2 (β,B), are

f -disjoint, and Q encodes some random-looking values. By f -disjoint pseudoran-
domness of the subprotocol, party 1’s behavior is indistinguishable from a real
execution, so its output is again Fb

1(A,B)×{β} with overwhelming probability.

Corrupt party 1.

sim(A,F1(A,B), |B|):

for each βI ∈ H1(A):

if FβI

1 (A,B) ̸= ∅:
(M [βI],M

′[βI], σ[βI])← SIM1(H−1
1 (βI , A),FβI

1 (A,B))
add (βI ,M

′[βI]) to S′

else:
(M [βI], σ[βI])← PROT1(H−1

1 (βI , A))

Q := Encode(S′, |B| · h2 + 1)

output (Q, σ)

The simulator is shown above; we briefly argue for indistinguishability of party
1’s views between the real world and the ideal world. Party 1’s view consists
of Q and a list of internal states σ, which contains the randomness of party 1
in the subprotocol. We gradually move from the real world to the ideal world,
changing the game’s behavior on bins from real to simulated one by one. More
concretely, let (β1, ..., βM) be an arbitrary ordering of the bins in H1(A)∪H2(B).
We consider a series of hybrids indexed from 0 to M : in hybrid t, the behavior of
the subprotocol on the first t bins is simulated and the behavior for the remaining
bins is real (i.e., unchanged). As a result, hybrid 0 is identical to the real view,
and hybrid M is identical to the ideal view. Then we only need to show that
hybrid t and hybrid t+ 1 are indistinguishable.

For a particular bin β, there are four cases to consider:

1. If a bin β is an active bin of party 2 but not party 1, second pseudorandom-
ness of the subprotocol implies that party 2’s subprotocol message for that

bin is pseudorandom. This makes the point encoded over β indistinguishable
from a random point, so the simulator can ignore β and encode a random
point instead.

2. If β is an active bin of both parties, but Fb
1(A,B) = ∅, f -disjoint pseudo-

randomness implies that party 2’s subprotocol message for that bin is pseu-
dorandom. As above, the simulator can encode a random point. However, it
does need to run PROT1 to generate an internal state σ.

3. If β is an active bin of both parties, and Fb
1(A,B) ̸= ∅, the simulator can

learn Fb
1(A,B) from F1(A,B), and then use the subprotocol simulator for

corrupt party 1 to simulate party 2’s subprotocol message. This simulator
also provides the internal state.

4. If β is an active bin of party 1 but not party 2, Q is not encoded over β.
Because this bin does not affect Q, all that needs to be done is run PROT1

to generate an internal state σ.

A particular intricacy of these cases is that the simulator cannot differentiate
between the conditions in cases 2 and 4; however, this does not pose a problem
for us, as the simulator’s behavior is the same in these cases — in both cases,
all the simulator does is run PROT1 to generate an internal state.

Corrupt party 2. Party 2’s view only includes P and a random tape. Because
the adversary does not see party 1’s randomness, first pseudorandomness of the
protocol implies that party 1’s subprotocol messages are pseudorandom, so the
simulator can simply encode dummy points to simulate P .

4 Instantiating our Framework for Fuzzy PSI

In this section we describe how to instantiate our general protocol paradigm to
achieve a fuzzy PSI protocol for L1, L2, and L∞ distances. We first describe
hashing methods, and then describe a proximity subprotocol for Euclidean dis-
tances.

4.1 Hashing for Minkowski Distance

In this section, we introduce conditionally-overlapping hash pairs for Minkowski
(ℓp) distances. Our hashing scheme is based on the idea of placing each point
into “bins”, which form a grid over the input space.

Definition 6. Let Zm be the ring of integers mod m for some positive integer
m and d, δ be positive integers. Define the bin of a point i ∈ Zd

m as

B(i) = (⌊i[j]/2δ⌋)dj=1

The bins are d-dimensional hypercubes with sides of length 2δ. This specific
length is the smallest that ensures that a point can only be “close” to two bins
in any one dimension. Each bin is represented by a point in Zd

m, which is the

bin identifier. Roughly, the point representing a bin is the “location” of that bin,
divided by 2δ on each dimension.

Next, we present locality-sensitive hashes based on bins.

Definition 7. Let d be the distance function for an arbitrary Minkowski distance
ℓp, where p is a positive integer. Define H1 : Zd

m → PowerSet(Zd
m) and H2 :

Zd
m → PowerSet(Zd

m) as:

H1(i) = {B(j)|j ∈ Zd
m, d(i, j) ≤ δ}

H2(i) = {B(i)}

H1 outputs all bins that contain some point within δ of the input point. H2 only
outputs the bin its input point is in.

Claim. H1 and H2 are a conditionally-overlapping hash pair for the similarity
function defined by f(i, j) = d(i, j) ≤ δ.

Proof. H2 never outputs a set with more than 1 element. Because the cubes
have length 2δ, Only bins in two “rows” of each dimension can be within δ of a
particular item3. So, H2 can never output a set with more than 2d items. Finally,
if d(i, j) ≤ δ for points i and j, the bucket in H2(j) is in H1(i) by definition.

It is also possible to divide responsibility for searching the dimensions between
each party, rather than having one party be responsible for searching over every
dimension. This will be useful for balancing message costs.

Definition 8. Let Zm be the ring of integers mod m for some positive integer m,
d, δ, s be positive integers such that s < d, and d be the Euclidean distance between
two points. Define H3 : Zd

m → PowerSet(Zd
m) and H4 : Zd

m → PowerSet(Zd
m) as

the following:

H3(i) = {j ∈ H1(i)| ∀k ∈ {l}sl=1, j[k] = B(i)[k]}
H4(i) = {j ∈ H1(i)| ∀k ∈ {l}dl=s+1, j[k] = B(i)[k]}

H3 includes bins close to the input that are in the same “row” as the input’s
bucket for the first s dimensions, and H4 includes bins close to the input that
are in the same “row” as the input’s bucket for the last d − s dimensions.

Claim. H3 and H4 are a conditionally-overlapping hash pair over the function
defined by f(i, j) = [d(i, j) ≤ δ].

Proof. Let i, j ∈ Zd
m such that d(i, j) ≤ d. Consider the point k = (i[1], ..., i[s], j[s+

1], ..., j[d]) = (i[l]sl=1, j[l]
d
l=s+1). Note that k ∈ Zd

m.

d(i, k) = (

d∑
l=1

(i[l]− k[l])p)
1
p = (

d∑
l=s+1

(i[l]− k[l])p)
1
p

3 If an item is in the exact middle of a bucket in some dimension, items on the edge
of the bucket on both sides in this dimension can be δ away from the item. In this
case, however, the smaller item is in the same bucket as the initial item.

= (

d∑
l=s+1

(i[l]− j[l])p)
1
p ≤ (

d∑
l=1

(i[l]− j[l])p)
1
p = d(i, j),

so k is close to i and B(k) ∈ H1(i). Similarly,

d(j, k) = (

d∑
l=1

(j[l]− k[l])p)
1
p = (

s∑
l=1

(j[l]− k[l])p)
1
p

= (

s∑
l=1

(j[l]− i[l])p)
1
p ≤ (

d∑
l=1

(j[l]− i[l])p)
1
p = d(j, i),

so k is close to j and B(k) ∈ H1(j). B(k) is the same as B(i) for the first
s dimensions, and B(k) is the same as B(j) for the last d − s dimensions, so
B(k) ∈ H3(i) and B(k) ∈ H4(j). Therefore, H3(i) ∩H4(j) ̸= ∅.

H3 can include bins in two rows for each “included” dimension, but is limited
to including bins in one row for each non-included dimension, so H3 outputs a
set of no more than 2s bins. Similarly, H4 outputs a set of no more than 2d−s

bins.

4.2 Yao’s protocol

Our suggested instantiation of the proximity subprotocol is based on Yao’s pro-
tocol. We formalize the necessary conditions for Yao’s protocol to satisfy our
pseudorandomness ssecurity properties. We use the garbling scheme abstraction
of Bellare, Hoang, and Rogaway [BHR12], with some small modifications to both
the syntax and security definitions, which we describe below:

Definition 9. A garbling scheme for boolean output consists of the follow-
ing algorithms:

– Gb: on input a circuit description f (with a single output wire), produces
(F, e, d), where F is a garbled circuit, e is encoding information, d is
decoding information.

– En: on input encoding information e and circuit input x, produces garbled
input X. When the scheme is projective, e is structured as a 2× n matrix
(where n is the input length of the circuit), and En is defined as:

En(e, x) =
(
e[1, x[1]], . . . , e[n, x[n]]

)
.

– Ev: on input a garbled circuit F and garbled input X, produces garbled
output Y .

Unlike the standard definitions, we do not have a separate decoding algorithm.
Instead, we demand the following correctness property: For all (F, e, d) generated
by Gb(f), and all x, we have

Ev(F,En(e, x)) = d if and only if f(x) = 1.

The reader may wish to think of d as the label that encodes true on the
output wire. The evaluator can check whether the circuit outputs true by com-
paring its garbled output to d. We require such a scheme to satisfy the following
requirement:

Definition 10. A garbling scheme for boolean output is secure with respect to
a class G of circuits if the following oracles are indistinguishable:

real-view(f, x):

assert f ∈ G
(F, e, d)← Gb(f)
X ← En(e, x)
return (F,X, d)

∼∼∼

sim-view(f, x):

assert f ∈ G
(F,X)← {0, 1}m
if f(x) = 1: d := Ev(F,X)
else: d← {0, 1}n
return (F,X, d)

In other words, (1) the garbled circuit and garbled input are pseudorandom,
and (2) if the circuit outputs 0 then the decoding information is pseudorandom
too. This definition captures several standard qualitative security properties of
garbling schemes: Privacy: (F,X, d) reveal no more than the circuit output (and
nothing about the choice of f within the class G); (One-sided) Authenticity:
When the circuit output is false, it is hard for an evaluator to guess the garbled
output that encodes true (i.e., d). This authenticity property is expressed in
the real-vs-random style (adversary cannot distinguish d from a uniform value).
Importantly, this security property implies that an adversary cannot distinguish
between a correct garbling that happens to output false, and random junk.

The protocol. When combined with a 2-message oblivious transfer (OT) protocol
in the natural way, we get the variant of Yao’s protocol shown in Figure 3.

Party 1 (input x) Party 2 (input y)

for each i ∈ {1, . . . , |x|} :
M1[i], σ[i]← OT1(x[i])

M1

(F, e, d)← Gb(fy)

for each i ∈ {1, . . . , |x|} :
T [i]← OT2

(
M1[i], (e[i, 0], e[i, 1])

)
T, F, d

for each i ∈ {1, . . . , |x|} :
X[i] := OT3(T [i], σ[i])

if Ev(F,X) == d :

output {x}
else: output ∅

Fig. 3. Yao’s protocol in our abstraction. The receiver has x and sender has y; the
receiver will output {x} if fy(x) = 1 and ∅ otherwise.

Lemma 1. Let G = {fy}y be a class of boolean-output circuits and define

f(x, y) =

{
{x} if fy(x) = true

∅ if fy(x) = false
.

The protocol in figure 3 is a pseudorandom and f -disjoint pseudorandom sub-
protocol for functionality f if:

– (Gb,En,Ev) is a secure (with respect to G), projective garbling scheme for
boolean output,

– (OT1,OT2,OT3) is a secure pseudorandom protocol for 1-out-of-2 OT with
the additional property that its 2nd protocol messages are pseudorandom
when the OT sender’s input is random — i.e., the following oracles are
indistinguishable:

ot2-real():

M1 ←M1

v ← I
// OT sender’s input is a pair of strings

M2 ← OT2(M1, (v, v))
return (M1,M2)

∼∼∼

ot2-rand():

M1 ←M1

M2 ←M2

return (M1,M2)

Proof (sketch). The first protocol message is a collection of OT messages, so it
is pseudorandom if the OT protocol is. The more interesting property is whether

second protocol messages are pseudorandom: (1) when the first message is uni-
form, and (2) when the first message is honestly generated but f(x, y) = ∅.

In the first case (first protocol message is uniform), we can use the following
sequence of hybrids:

– Hybrid 0: The first protocol message is uniform, and second protocol message
computed honestly in response. T are OT responses, F is a garbled circuit,
and d is the decoding information.

– Hybrid 1: Same as above, but T is replaced with random messages. The
change is indistinguishable by the psuedorandomness of the OT subprotocol.

– Hybrid 2: Same as above, but replace F and d with random messages. The
change is indistinguishable by the security of the garbling scheme. More
precisely, we consider a reduction algorithm in the garbling security game
who chooses fy and x such that fy(x) = 0. Then F and d (and indeed X,
which this reduction can ignore) are pseudorandom.

For the other case, we can use the following sequence of hybrids. We assume
that x and y are such that fy(x) = 0.

– Hybrid 0: The first protocol message is computed using x, and second pro-
tocol message computed honestly in response. T are OT responses, F is a
garbled circuit, and d is the decoding information.

– Hybrid 1: Same as above, except the OT responses T are computed using
(e[i, xi], e[i, xi]) rather than (e[i, 0], e[i, 1]) as the sender’s input. The change
is indistinguishable by the standard semi-honest security of the OT subpro-
tocol, since the receiver’s ideal OT output is e[i, xi] in both cases.

– Hybrid 2: Same as above, except F , d, and each of the e[i, xi] values is
sampled uniformly. The change is indistinguishable by the security of the
garbling scheme. The e[i, xi] values comprise the garbled input X in the
garbling security game.

– Hybrid 3: Same as above, except that the OT responses are replaced with
random messages. This change is indistinguishable by the special property
of the OT protocol, since the OT sender’s inputs are of the form (v, v) where
v is uniform.

4.3 Instantiating Yao’s protocol for distance comparison

We would like a suitable subprotocol for testing whether two private points are
within distance δ.

The main idea is to garble a circuit that has the garbler’s point y and dis-
tance threshold δ hard-coded. The circuit tests whether the input point is within
distance δ of y and outputs a boolean. In the terminology of the previous section,
what we want is a garbling scheme supporting the following class of circuits:

Definition 11. Fix a dimension d, and let dp denote the ℓp distance function
over Zd. Define fy,p,d,δ : Zd → {0, 1} to be the distance threshold function
fy,p,d,δ(x) = [dp(x, y) ≤ δ]. Let Gp,d,δ be the class of functions

Gp,d,δ = {fy,p,d,δ | y ∈ Zd}

We require a garbling scheme that can support this class of circuits. Impor-
tantly, the garbled circuit must hide the choice of circuit from the class Gp,d,δ
— i.e., it must hide the choice of y. We consider different choices of distance
metrics below:

Lemma 2. The garbling scheme of Ball, Malkin, Rosulek [BMR16] satisfies our
desired security definition with respect to G2,d,δ above — i.e, ℓ2 distance. If the
length (in bits) of each coordinate of the points is u bits, then the size of the
garbled circuit and garbled input is O((ud + u3)λ).

Proof. The BHR garbling scheme expresses bounded integers in terms of their
residues mod 2, mod 3, mod 5, and so on, using the Chinese remainder theorem.
The scheme supports free addition mod p and arbitrary unary operations on
mod-p values at a cost of O(pλ). Importantly, the garbled circuit hides the truth
table of the unary function. We can compute the necessary distance threshold
using these fundamental operations in the following way:

Given input x = (x1, . . . , xd), with each xi represented in the residue system,
we first compute (xi − yi)

2 for each i. Since this operation is algebraic, we can
compute this expression in each prime modulus independently. The cost is a
single unary gate (with y obliviously hard-coded) in each modulus. After this,
computing

∑
i(xi − yi)

2 is free. What remains is to compute the comparison
between this sum and δ2; this is supported in the BHR scheme at a cost of
O(u3λ).

The fact that the BHR scheme satisfies our slightly modified security defini-
tion is implicit in their proof. First, the garbled circuit and garbled inputs are
explicitly sampled uniformly in their simulator. Second, their proof of authen-
ticity involves a hybrid in which output labels other than the ones expected to
be seen by the evaluator are sampled uniformly. This implies the property that
is needed in our setting; namely, the true output label is indistinguishable from
a random value, given a garbled input that evaluates to false.

For ℓ1 and ℓ∞ distance, traditional boolean garbling is a better choice:

Lemma 3. The half-gates garbling scheme of Zahur, Rosulek, Evans [ZRE15]
satisfies our security definition with respect to G1,d,δ and G∞,d,δ, and has a garbled
circuit and input size of O(udλ) for both circuit classes, where u is the length of
each coordinate of each point.

Proof. The security justification for half-gates garbling is exactly the same as
the justification for the arithmetic garbling construction in the previous proof.
Namely, their security proof explicitly generates the garbled circuit and encoding
information uniformly, and their proof of authenticity implicitly establishes that
the inactive (true) output label is pseudorandom when the evaluator is entitled
to learn the false output label.

The ℓ1 distance comparison circuit checks

d∑
i=1

|x[i]− y[i]| ≤ δ.

This circuit requires an addition (subtraction) and absolute value for each di-
mension, and one comparison. An addition circuit costs 1 AND gate per bit of
integer. An absolute value circuit costs 2 AND gates per bit, while a comparison
costs the same as an addition circuit.

The ℓ∞ distance circuit computes:

d∧
i=1

[
|x[i]− y[i]| ≤ δ

]
The cost is 4 AND gates per bit (1 for the subtraction, 2 for the absolute value,
1 for the comparison), plus 1 AND gate per dimension (for the disjunction).

A garbled AND gate costs O(λ) bits, giving the stated communication costs.

4.4 Garbling Cost

δ Maximum Value. The arithmetic garbling we use for ℓ2 distance supports
integer arithmetic with a fixed upper bound. Thus, it is necessary to bound the
maximum value of the expression

∑d

i=1(A[i]−B[i])2. For any A, B in the same
bin, we have |A[i] − B[i]| ≤ 4δ. Thus, the sum is at most d(4δ)2. The garbling
of scheme of [BMR16] supports integers bounded between ±⌊(Z − 1)/2⌋. For a
given choice of Z, we can therefore support δ such that d(4δ)2 ≤ ⌊(Z − 1)/2⌋.
Solving for δ gives an approximate maximum of δ ≤

√
2u−5/d.

Table 2. Approximate maximum of δ for ℓ2

d integer bitlength (u)

16 32 64

2 32 8192 536870912

5 20 5181 339546978

10 14 3663 240095970

Because ℓ1 and ℓ∞ do not require squaring, the maximum size of intermediate
values is roughly as large as the input values. As a result, the subprotocols
for ℓ1 and ℓ∞ support much higher values of δ than the subprotocol for ℓ2
using the same number of bits. The threshold for ℓ∞, specifically, also does
not depend on d, because the results of each per-dimension subtraction are not
summed together. For a garbled circuit using u bits to express integers in two’s
complement form, input integers can only be u−1 bits long 4. Input integers are
no greater than 4δ, so the maximum value of δ for ℓ∞ is simply δ ≤ 2u−3. The
ℓ1 circuit does sum each per-dimension result together. Otherwise, the analysis

is the same as for ℓ1, so the maximum value of δ is δ ≤ 2u−3

d
.

4 Input integers are exclusively positive, but a negative bit must be used to hold
possible negative intermediate integers before the absolute value calculation

Table 3. Approximate maximum of δ for ℓ1

d integer bitlength (u)

16 32 64

2 4096 268435456 ≈ 1018

5 1638 107374182 ≈ 1017

10 819 53687091 ≈ 1017

Communication costs. The cost for a single execution for the subprotocol can
be calculated based on figure 3 in [BMR16] as the sum of ciphertexts needed for
OTs, squaring gates, and the comparison gate. Party 1’s message cost is only
the OT costs, which are the same for all distance metrics.

Table 4. Cost per subprotocol execution (in # of ciphertexts)

Integer bitlength (u)
16 32 64

Party 1 22d 37d 72d

Party 2, ℓ1 96d 192d 384d

Party 2, ℓ2 73d + 804 156d + 2541 437d + 11979

Party 2, ℓ∞ 97d − 1 193d − 1 385d − 1

Assuming the parties use a polynomial OKVS, the total size of a party’s
message in the main protocol is simply the size of that party’s subprotocol
message5, multiplied by the number of terms in the polynomial, the later being
h1 · |A|+ 1 for party 1 and h2 · |B|+ 1 for party 2. The following tables assume
the ciphertexts are 128 bits long.

Table 5. FPSI Message Size, ℓ1

Integer bitlength(u)

d Input set size 16 32 64

Party 1 Party 2 Party 1 Party 2 Party 1 Party 2 Party 1 Party 2

2 220 211 772 MB 34 MB 1.24 GB 67 MB 2.4 GB 134 MB

2 216 216 185 MB 268 MB 310 MB 537 MB 604 MB 1.07 GB

10 211 211 461 MB 671 MB 778 MB 1.3 GB 1.5 GB 2.7 GB

5 The polynomial has to be large enough to fit encodings of protocol messages and
bin descriptions. Unless the protocol is run with extraordinarily large integers, the
protocol messages will be larger.

Table 6. FPSI Message Size, ℓ2

Integer bitlength(u)

d Input set size 16 32 64

Party 1 Party 2 Party 1 Party 2 Party 1 Party 2 Party 1 Party 2

2 220 211 738 MB 125 MB 1.2 GB 374 MB 2.4 GB 1.7 GB

2 216 216 185 MB 996 MB 310 MB 3 GB 604 MB 13.5 GB

10 211 211 923 MB 402 MB 1.6 GB 1.1 GB 3 GB 4.3 GB

The costs for ℓ∞ are very close to the costs for ℓ1, so the table for ℓ∞ is
omitted. In these tables, the costs are roughly balanced by changing how many
dimensions each party searches over. For example, in the last row for ℓ2, party 1
searches over 6 dimensions and party 2 searches over 4, so h1 = 26 and h2 = 24.

These concrete values show that our protocol can support very high values
of δ in low dimensions efficiently. For example, for ℓ1, we get a total concrete
communication cost of 386 MB with |A| = |B| = 216, d = 2, and δ = 4096, and
a total concrete communication cost of 847 MB with |A| = |B| = 216, d = 2,
and δ = 268435456.

Comparison. Finally, we provide a comparison of our concrete communication
costs with those of other FPSI schemes. Costs for Gao, Qi, Liu, et al. [GQL+24]
and Baarsen, Pu [vP24] are taken from table 4 of [GQL+24]. We show costs for
the low-dimensional protocol of [vP24].

Table 7. Concrete Communication Cost Comparison (in MB)

Norm Set size Protocol
(d, δ)

(2, 10) (6, 10) (10, 10) (2, 30) (6, 30) (10, 30)

ℓ1

28
BP24 [vP24] 2.85 132 3520 8.51 396 > 104

GQL+24 [GQL+24] 7.5 21.8 36.4 21.3 63.2 105

ours 1.78 21.3 142 1.78 21.3 142

212
BP24 45.6 2113 > 104 136 > 6000 > 105

GQL+24 120 351 589 340 1024 1703

ours 28.4 341 2274 28.4 341 2274

216
BP24 730 > 104 > 105 2179 > 104 > 106

GQL+24 1919 5685 9427 5513 16382 27253

ours 455 5457 36390 455 5457 36390

ℓ2

28
BP24 3.55 132 3521 15.3 403 > 104

GQL+24 7.59 22 36.9 21.4 63.3 107

ours 4.63 27.5 158 4.63 27.5 158

212
BP24 56.9 2124 > 104 245 > 6000 > 105

GQL+24 122 357 591 347 1026 1706

ours 73.8 440 2531 73.8 440 2531

216
BP24 911 > 104 > 105 3919 > 104 > 106

GQL+24 1964 5707 9449 5549 16419 27289

ours 1181 7034 40500 1181 7034 40500

ℓ∞

28
BP24 2.77 132 3520 8.27 396 > 104

GQL+24 7.52 22.1 36.8 21.4 63.9 106

ours 1.77 21.2 142 1.77 21.2 142

212
BP24 44.3 2112 > 104 132 > 6000 > 105

GQL+24 120 354 588 343 1022 1702

ours 28.3 340 2265 28.3 340 2265

216
BP24 708 > 104 > 105 2116 > 104 > 106

GQL+24 1924 5665 9408 5488 16358 27228

ours 453 5436 36239 453 5436 36239

Asymptotic Complexity. The communication complexity of each party is the
complexity of its subprotocol multiplied by the maximum active bins of that
party. The complexity of the arithmetic and garbled circuit subprotocols is dis-
cussed in section 4.3, and includes an input integer bitlength parameter u. Here,
u is described based on how it scales with d and δ, as discussed earlier in this
section. Specifically, u = O(log(dδ)) for ℓ1 and ℓ2, and u = O(log(δ)) for ℓ∞.

Table 8. Asymptotic Complexity Comparison. s is an integer of the parties’ choice
between 0 and d.

Norm Assumption Protocol Communication

ℓ1

min > 2δ(d + 1) BP24 [vP24] O(δ2dd|A|+ δ|B|)
LSH BP24 O(δd|A|2 + δ|A||B|log(|A|))

disj. proj GQL+24 [GQL+24] O((δd + log(δ))|B|+ δd|A|)
disj. hash ours O(dlog(dδ)(|A|2s + |B|2d−s))

ℓ2

min > 2δ(
√
d + 1) BP24 O(δ2dd|A|+ δ2|B|)

LSH BP24 O(δd|A|3 + δ2|A||B|2log(|A|))
disj. proj GQL+24 O((δd + log(δ))|B|+ δd|A|)
disj. hash ours O(|A|d2slog(dδ) + |B|2d−s(log(dδ)d + log(dδ)3))

ℓ∞

GGM24 [GGM24] O(d|A|log(δ) + |B|log(δ)d)
min > 2δ BP24 O(δd|A|+ 2d|B|)
disj. proj BP24 O((δd)2|A|+ |B|)
disj. proj GQL+24 O(δd(|A|+ |B|))
disj. hash ours O(dlog(δ)(|A|2s + |B|2d−s))

5 Optimizations

5.1 Stateful Hashing

A stateful hashing scheme can be used to allow party 2 to have multiple items
which hash to the same bin, without incurring extra costs.

Definition 12. Let Zm be the ring of integers mod m for some positive integer
m, d and l2 be positive integers, and H3, H4 be the hash pair defined in section 4.1
(with d as the dimension and aribtrary other parameters). Define H5 : Zd

m →
PowerSet(Zd

m)× Zl2 as the following:

H5(i) = H3(i)× Zl2

H6 is defined as a stateful function from Zd
m to PowerSet(Zd

m)×Z that does the
following:

H6(i):

S := ∅
for each b ∈ H4(i)

Add (b, n[b] + 1) to S
Output S

Where n[b] is the number of times H6 has previously hashed an item to a sub-bin6

of b.

6 A sub-bin of b is a bin b′ such that b′ = (b, z) for some z ∈ Z.

Claim. if H4 never hashes more than l2 items in a set B to the same bin, and
H6 only hashes the items in B, H5 and H6 are a conditionally-overlapping hash
pair over the similarity function of (H3, H4)

Proof. Because H4 only hashes up to l2 items to a single bin, H6 will never hash
an item to a sub-bin with an index larger than l2. Because H5 hashes each item
to the sub-bin at each index, H5 and H6 will hash an item to a common bin if
H3 and H4 do.

When using the (H5, H6) hash pair, party 1 can reuse the same OT message for
each sub-bin of an item and bin. This makes party 1’s communication cost the
same as when using (H3, H4), and party 2’s cost is the same regardless. This idea
of ”sub-bins” can also be extended to allow party 1 to have multiple items in the
same bin, although party 2 will have increased communication costs. When used
for FPSI, this hash pair leaks more information than (H3, H4). Party 2 can hide
some information about its items by randomly permuting which item it puts in
each sub-bin.

5.2 Subprotocols with shared state (OT extension)

Our main protocol invokes many completely indepedent instances of its subproto-
cols, one for each bin. Our suggested subprotocol is the variant of Yao’s protocol
described in Section 4.2. Each instance of Yao’s protocol requires many instances
of oblivious transfer (OT).

Given that many OTs are needed, suppose we would like to use the technique
of OT extension [Bea96,IKNP03]. In OT extension, the parties perform λ
“expensive” base instances of OT; after this initial step, they can then obtain
any number of effective OT instances which require only “cheap” symmetric-key
operations. Within our current framework, each instance of Yao’s protocol is
independent, and must perform its own “expensive” base OTs.

A preferable solution would involve one global set of base OTs, which all of
the Yao subprotocol instances could leverage. In the remainder of this section,
we describe how to incorporate this optimization into our fuzzy PSI framework.

Shared state between subprotocols. The base OTs represent global shared state
between subprotocol instances. Thus, we require subprotocols which are safe to
use with such state. We abstract the shared state via a randomized function Setup
which deals correlated randomness to the parties. Concretely, Setup represents
an ideal functionality that performs λ base OTs. In the final protocol, Setup
would be replaced by a (plain) secure protocol; the composition needed here is
standard and trivial.

We next modify the syntax and security of the subprotocols. Suprotocols
must take as input the party’s shared state, along with a nonce/tag (which will
be the identity of the bin in our construction). The security properties that we
introduced in section 2.3 must now hold for many instances of the subprotocol,
with globally shared state, provided that each nonce/tag is used only once. We

obtain modified security definitions defined by the following pairs of (stateful)
oracles:

(A,B)← Setup()

prot1-real(a, β):

assert β never used before
(M1, σ)← PROT1(A, β;a)
Output (B,M1)

∼∼∼

(A,B)← Setup()

prot1-random(a, β):

assert β never used before
M1 ←M1

Output (B,M1)

(A,B)← Setup()

prot2-real(b, β):

assert β never used before
M1 ←M1

M2 ← PROT2(B, β;M1, b)
Output (A,M1,M2)

∼∼∼

(A,B)← Setup()

prot2-random(b, β):

assert β never used before
M1 ←M1

M2 ←M2

Output (A,M1,M2)

(A,B)← Setup()

prot2-real(a, b, β):

assert β never used before
assert f(a, b) = ∅
(M1, σ)← PROT1(A, β;a)
M2 ← PROT2(B, β;M1, b)
Output (A,M1, σ,M2)

∼∼∼

(A,B)← Setup()

prot2-random(a, b, β):

assert β never used before
assert f(a, b) = ∅
(M1, σ)← PROT1(A, β;a)
M2 ←M2

Output (A,M1, σ,M2)

In each security game, the adversary also is allowed to see its own shared state
(either A or B depending on who the security property applies to).

Incorporating OT extension into Yao’s protocol. In our setting, parties require
potential OT instances designated for each bin, of which there may be expo-
nentially many. Thus, we need an OT extension method with random access to
specific extended OTs. This can be achieved by modifying the standard IKNP
[IKNP03] protocol in a natural way.

In IKNP, parties exchange short seed values using base OTs. They then use
a PRG to expand these seed values into a tall matrix, where each row of the
matrix gives rise to a single instance of OT. All of their communication involves
matrices of the same dimension, and the information needed for the ith extended
OT is always contained in the ith row of these matrices.

So instead of expanding seed values using a PRG, we can expand using a
PRF. The information corresponding to the ith OT instance is derived from
PRF(seed, i). Suppose that for a certain bin β, we require OT instances that
have been labeled β∥1, . . . , β∥n. Then given the base OT seeds (these are the
output of Setup), we expand the n rows of the IKNP matrix corresponding to

rows β∥1, . . . , β∥n, and run the usual IKNP protocol, exchanging only these
rows of any matrices. It is not hard to see that the IKNP protocol messages are
pseudorandom, as is needed in our setting. We defer the formal analysis of this
optimization to the full version.

Henecka and Schneider previously proposed using a PRF to expand the IKNP
matrix, for performance reasons [HS13]. Our overall method is similar to the
sparse OT method of Pinkas et al [PRTY19] — like us, they encode an OKVS
(interpolate a polynomial) over certain rows of the IKNP matrix.

References

[Bea96] Donald Beaver. Correlated pseudorandomness and the complexity of private
computations. In 28th ACM STOC, pages 479–488. ACM Press, May 1996.

[BHR12] Mihir Bellare, Viet Tung Hoang, and Phillip Rogaway. Foundations of gar-
bled circuits. In Ting Yu, George Danezis, and Virgil D. Gligor, editors,
ACM CCS 2012, pages 784–796. ACM Press, October 2012.

[BMR16] Marshall Ball, Tal Malkin, and Mike Rosulek. Garbling gadgets for Boolean
and arithmetic circuits. In Edgar R. Weippl, Stefan Katzenbeisser, Christo-
pher Kruegel, Andrew C. Myers, and Shai Halevi, editors, ACM CCS 2016,
pages 565–577. ACM Press, October 2016.

[CDJ16] Chongwon Cho, Dana Dachman-Soled, and Stanislaw Jarecki. Efficient con-
current covert computation of string equality and set intersection. In Kazue
Sako, editor, CT-RSA 2016, volume 9610 of LNCS, pages 164–179. Springer,
Cham, February / March 2016.

[CM20] Melissa Chase and Peihan Miao. Private set intersection in the internet
setting from lightweight oblivious PRF. In Daniele Micciancio and Thomas
Ristenpart, editors, CRYPTO 2020, Part III, volume 12172 of LNCS, pages
34–63. Springer, Cham, August 2020.

[FNP04] Michael J. Freedman, Kobbi Nissim, and Benny Pinkas. Efficient private
matching and set intersection. In Christian Cachin and Jan Camenisch,
editors, EUROCRYPT 2004, volume 3027 of LNCS, pages 1–19. Springer,
Berlin, Heidelberg, May 2004.

[GGM24] Gayathri Garimella, Benjamin Goff, and Peihan Miao. Computation ef-
ficient structure-aware PSI from incremental function secret sharing. In
Leonid Reyzin and Douglas Stebila, editors, Advances in Cryptology -
CRYPTO 2024 - 44th Annual International Cryptology Conference, Santa
Barbara, CA, USA, August 18-22, 2024, Proceedings, Part VIII, volume
14927 of Lecture Notes in Computer Science, pages 309–345. Springer, 2024.

[GPR+21] Gayathri Garimella, Benny Pinkas, Mike Rosulek, Ni Trieu, and Avishay
Yanai. Oblivious key-value stores and amplification for private set intersec-
tion. In Tal Malkin and Chris Peikert, editors, CRYPTO 2021, Part II, vol-
ume 12826 of LNCS, pages 395–425, Virtual Event, August 2021. Springer,
Cham.

[GQL+24] Ying Gao, Lin Qi, Xiang Liu, Yuanchao Luo, and Longxin Wang. Effi-
cient fuzzy private set intersection from fuzzy mapping. Cryptology ePrint
Archive, Paper 2024/1462, 2024.

[GRS22] Gayathri Garimella, Mike Rosulek, and Jaspal Singh. Structure-aware pri-
vate set intersection, with applications to fuzzy matching. In Yevgeniy Dodis

and Thomas Shrimpton, editors, CRYPTO 2022, Part I, volume 13507 of
LNCS, pages 323–352. Springer, Cham, August 2022.

[GRS23] Gayathri Garimella, Mike Rosulek, and Jaspal Singh. Malicious secure,
structure-aware private set intersection. In Helena Handschuh and Anna
Lysyanskaya, editors, CRYPTO 2023, Part I, volume 14081 of LNCS, pages
577–610. Springer, Cham, August 2023.

[HS13] Wilko Henecka and Thomas Schneider. Faster secure two-party computation
with less memory. In Kefei Chen, Qi Xie, Weidong Qiu, Ninghui Li, and
Wen-Guey Tzeng, editors, ASIACCS 13, pages 437–446. ACM Press, May
2013.

[IKNP03] Yuval Ishai, Joe Kilian, Kobbi Nissim, and Erez Petrank. Extending oblivi-
ous transfers efficiently. In Dan Boneh, editor, CRYPTO 2003, volume 2729
of LNCS, pages 145–161. Springer, Berlin, Heidelberg, August 2003.

[KKRT16] Vladimir Kolesnikov, Ranjit Kumaresan, Mike Rosulek, and Ni Trieu. Ef-
ficient batched oblivious PRF with applications to private set intersection.
In Edgar R. Weippl, Stefan Katzenbeisser, Christopher Kruegel, Andrew C.
Myers, and Shai Halevi, editors, ACM CCS 2016, pages 818–829. ACM
Press, October 2016.

[PRTY19] Benny Pinkas, Mike Rosulek, Ni Trieu, and Avishay Yanai. SpOT-light:
Lightweight private set intersection from sparse OT extension. In Alexandra
Boldyreva and Daniele Micciancio, editors, CRYPTO 2019, Part III, volume
11694 of LNCS, pages 401–431. Springer, Cham, August 2019.

[PSZ14] Benny Pinkas, Thomas Schneider, and Michael Zohner. Faster private set
intersection based on OT extension. In Kevin Fu and Jaeyeon Jung, editors,
USENIX Security 2014, pages 797–812. USENIX Association, August 2014.

[RR22] Srinivasan Raghuraman and Peter Rindal. Blazing fast PSI from improved
OKVS and subfield VOLE. In Heng Yin, Angelos Stavrou, Cas Cremers,
and Elaine Shi, editors, ACM CCS 2022, pages 2505–2517. ACM Press,
November 2022.

[vP24] Aron van Baarsen and Sihang Pu. Fuzzy private set intersection with large
hyperballs. In Marc Joye and Gregor Leander, editors, EUROCRYPT 2024,
Part V, volume 14655 of LNCS, pages 340–369. Springer, Cham, May 2024.

[ZRE15] Samee Zahur, Mike Rosulek, and David Evans. Two halves make a whole
- reducing data transfer in garbled circuits using half gates. In Elisabeth
Oswald and Marc Fischlin, editors, EUROCRYPT 2015, Part II, volume
9057 of LNCS, pages 220–250. Springer, Berlin, Heidelberg, April 2015.

A Appendix

A.1 Polynomial OKVS partial hiding

Section 2.1 states that our protocol requires an OKVS that hides random points,
even if encoded over non-random points. We provide a proof that the polynomial
OKVS has this property.

Proof. Let n = |K2| = |K3|. For any V2 ∈ Vn, define P as the polynomial
interpolated over the union of the key-value pairs of K1 and V1 with the key-

value pairs of K2 and V2. OKVS-PARTIAL-LEFT outputs P if7 and only if8

V2 is sampled, which occurs with probability 1
|V|n . Define V3 = {P (K3[i])}ni=1.

OKVS-PARTIAL-RIGHT outputs P if and only if V3 is sampled, which occurs
with probability 1

|V|n . So, the distributions are identical.

A.2 Full Proof of Theorem 1

Correctness. Party 1’s output is a set O consisting of the subprotocol outputs for
inputs H−1

1 (β,A) over all β ∈ H1(A). First, suppose β ∈ H1(A)∩H2(B), i.e., β
is an active bin for both parties. Then P is encoded over (β,M [β]) where M [β]
is the real subprotocol message generated by PROT1, and Q is encoded over
(β,M ′[β]) where M ′[β] is the real subprotocol message generated by PROT2;
furthermore, due to correctness of the OKVS, the subprotocol message PROT2

is run on, M1, is the same as what it would receive in a real execution of the
subprotocol with inputs H−1

1 (β,A) and H−1
2 (β,B). Then by correctness of the

subprotocol, the output for β in PROT3 must be (PROT3(σ[β],M2), β) with
overwhelming probability.

Next, suppose β ∈ H1(A)\H2(B), i.e., β is an active bin only for party 1. Note
that becauseH−1

2 (β,B) = ∅,H−1
2 (β,A) andH−1

2 (β,B) have no similar elements.
In this case, Q is encoded over some dummy elements that are pseudorandom, so
M2 = Decode(Q, β) is also pseudorandom. Then f -disjoint pseudorandomness
implies that with overwhelming probability, PROT3 on M2 will output whatever
a real execution of the subprotocol with non-similar input sets would output,
so the output matches a real execution of the subprotocol with H−1

2 (β,A) and
H−1

2 (β,B) as inputs, that is, (PROT3(σ[β],M2), β).

7 There is only one minimal-degree polynomial that fits over the points, so interpola-
tion always produces the same polynomial.

8 If OKVS-PARTIAL-LEFT samples some vector with an item V ′
2 [i] ̸= V2[i], then its

output P ′ satisfies P ′(K2[i]) = V ′
2 [i] ̸= V2[i] whereas P (K2[i]) = V2[i], so P ′ cannot

be P .

Corrupt party 1. We begin with describing party 1’s view in the real execution,
which we denote as real(A,B).

real(A,B):

for each βi ∈ H1(A):
(M [βi], σ[βi])← PROT1(H−1

1 (βi, A))
add (βi,M [βi]) to S

P := Encode(S, |A| · h1 + 1)

for each βi ∈ H2(B):
M ′[βi]← PROT2(Decode(P, βi),H−1

2 (βi, B))
add (βi,M

′[βi]) to S′

Q := Encode(S′, |B| · h2 + 1)

output (Q, σ)

We also recall the simulator below.

sim(A,F1(A,B), |B|):

for each βI ∈ H1(A):

if FβI

1 (A,B) ̸= ∅:
(M [βI],M

′[βI], σ[βI])← SIM1(H−1
1 (βI , A),FβI

1 (A,B))
add (βI ,M

′[βI]) to S′

else:
(M [βI], σ[βI])← PROT1(H−1

1 (βI , A))

Q := Encode(S′, |B| · h2 + 1)

output (Q, σ)

We now introduce a sequence of hybrids, indexed by t = 0, . . . ,M , that starts
from the real view and ends at the simulated view. Below we use SIM1 to denote
the simulator for the subprotocol when party 1 is corrupt; its output includes a
simulated first message, a simulated second message, and a simulated internal

state of party 1.

hybridt(A,B):

for each βi ∈ H1(A):

if i ≤ t and Fβi

1 (A,B) ̸= 0:

(M [βi],M
′[βi], σ[βi])← SIM1(H−1

1 (βi, A),Fβi

1 (A,B))
add (βi,M

′[βi]) to S′

else:
(M [βi], σ[βi])← PROT1(H−1

1 (βi, A))
add (βi,M [βi]) to S

P := Encode(S, |A| · h1 + 1)

for each βi ∈ H2(B):
if i > t:
M ′[βi]← PROT2(Decode(P, βi),H−1

2 (βi, B))
add (βi,M

′[βi]) to S′

Q := Encode(S′, |B| · h2 + 1)

output (Q, σ)

If t = 0 then we always enter the else-clause of the first if-statement, and always
enter the second if-statement, so hybrid0(A,B) ≡ real(A,B).

Claim.
hybridt(A,B) ∼∼∼ hybridt+1(A,B).

We prove the lemma via a sequence of intermediate sub-hybrids.

hybrid1
t (A,B): If βt+1 ̸∈ H1(A), i.e., βt+1 is not an active bin for party 1,

add a dummy point (βt+1,M
∗
1) (where M∗

1 ← M1) to S. By the definition of
expand-then-encode in OKVS, the adversary’s view remains identical. Note that
there are at most |A| · h1 active bins, so |S| ≤ |A| · h1 + 1 even after adding the
point.

hybrid2
t (A,B): If βt+1 ∈ H2(B) \H1(A) (case 1 in the proof sketch),replace

the real second subprotocol message M ′[βt+1] with a random M ′[βt+1] ←M2.
This is indistinguishable from the previous hybrid due to the second pseudoran-
domness of the subprotocol.

hybrid3
t (A,B): Again if βt+1 ∈ H2(B) \ H1(A), remove (βt+1,M

∗
1) from S

and remove (βt+1,M
′[βt+1]) from S′. Since M∗

1 and M ′[βt+1] are both random,
it does not make a difference to remove these two dummy points.

Note that hybrid3
t (A,B) is identical to hybridt(A,B), except that (βt+1,M

′[βt+1])
is not added to S′ if βt+1 ∈ H2(B) \ H1(A).

hybrid4
t (A,B): In this hybrid we deal with the case that βt+1 ∈ H1(A) ∩

H2(B), i.e., βt+1 is an active bin for both parties. In this case, move the code
for i = t + 1 in the second for-loop to the first for-loop. The resulting code is
shown below.

hybrid4
t (A,B):

for each βi ∈ H1(A):

if i ≤ t and Fβi

1 (A,B) ̸= ∅:
(M [βi],M

′[βi], σ[βi])← SIM1((H−1
1 (βi, A), βi),Fβi

1 (A,B))
add (βi,M

′[βi]) to S′

else if i = t+ 1 and βi ∈ H2(B):
(M [βi], σ[βi])← PROT1(H−1

1 (βi, A))
M ′[βi]← PROT2(M [βi],H−1

2 (βi, B))
add (βi,M

′[βi]) to S′

else:
(M [βi], σ[βi])← PROT1(H−1

1 (βi, A))
add (βi,M [βi]) to S

P := Encode(S, |A| · h1 + 1)

for each βi ∈ H2(B):
if i > t+ 1:
M ′[βi]← PROT2(Decode(P, βi),H−1

2 (βi, B))
add (βi,M

′[βi]) to S′

Q := Encode(S′, |B| · h2 + 1)

output (Q, σ)

Since βt+1 is in H2(B), in the previous hybrid the code

M ′[βt+1]← PROT2(Decode(P, βt+1),H−1
2 (βt+1, B)); add (βi,M

′[βi]) to S′

is run in the second for-loop, whereas now it is run in the first for-loop instead.
The only difference is when the code is executed, so the two hybrids are identical.

hybrid5
t (A,B): Again if βt+1 ∈ H1(A)∩H2(B), replace the real (M [βt+1],M

′[βt+1], σ[βt+1])
generated by PROT1 and PROT2 with the simulated (M [βt+1],M

′[βt+1], σ[βt+1])←
SIM1((H−1

1 (βt+1, A), βt+1), f
βt+1

1 (A,B)). This is indistinguishable due to the se-
curity of the subprotocol.

hybrid6
t (A,B): If βt+1 ∈ H1(A) ∩ H2(B) and Fβi

1 (A,B) = 0 (case 2 in
the proof sketch), replace the simulated (M [βt+1],M

′[βt+1], σ[βt+1]) ← SIM1

((H−1
1 (βt+1, A), βt+1),Fβt+1

1 (A,B)) with a random M ′[βt+1] ← M2. (M [βt+1]
and σ[βt+1] are still generated by SIM1.) This is indistinguishable from the pre-
vious hybrid due to the f -disjoint pseudorandomness of the subprotocol.

hybrid7
t (A,B): Again if βt+1 ∈ H1(A) ∩H2(B) and Fβi

1 (A,B) = 0, remove
(βt+1,M

′[βt+1]) from S′. Since M ′[βt+1] is random, it does not make a difference
to remove this dummy point. Note that M ′[βt+1] is not used anywhere in the
game now.

hybrid8
t (A,B): Again if βt+1 ∈ H1(A) ∩H2(B) and Fβi

1 (A,B) = 0, replace

the simulated (M [βt+1], ⋆, σ[βt+1]) ← SIM1((H−1
1 (βt+1, A), βt+1),Fβt+1

1 (A,B))
with the real (M [βt+1], σ[βt+1])← PROT1(H−1

1 (βt+1, A)). This is indistinguish-
able from the previous hybrid due to the first pseudorandomness of the subpro-
tocol.

The code for hybrid8
t (A,B) is shown below.

hybrid8
t (A,B):

for each βi ∈ H1(A):

if i ≤ t and Fβi

1 (A,B) ̸= ∅:
(M [βi],M

′[βi], σ[βi])← SIM1((H−1
1 (βi, A), βi),Fβi

1 (A,B))
add (βi,M

′[βi]) to S′

else if i = t+ 1 and βt+1 ∈ H2(B) and Fβi

1 (A,B) ̸= ∅:
(M [βi],M

′[βi], σ[βi])← SIM1((H−1
1 (βi, A), βi),Fβi

1 (A,B))
add (βi,M

′[βi]) to S′

else:
(M [βi], σ[βi])← PROT1(H−1

1 (βi, A))
add (βi,M [βi]) to S

P := Encode(S, |A| · h1 + 1)

for each βi ∈ H2(B):
if i > t+ 1:
M ′[βi]← PROT2(Decode(P, βi),H−1

2 (βi, B))
add (βi,M

′[βi]) to S′

Q := Encode(S′, |B| · h2 + 1)

output (Q, σ)

hybridt+1(A,B): We make two changes to the code of the game: first, the
behaviors in the first two if-clauses of the first for-loop are identical, so these
cases can be merged; second, because Fβi

1 (A,B) ̸= 0 implies βi ∈ H2(B), the
βi ∈ H2(B) requirement can be removed from the second if-clause. The resulting
game is exactly hybridt+1(A,B). This completes the proof of the claim.

Finally, we consider the last hybrid hybridM (A,B). In the first for-loop,

(M [βi], σ[βi]) is simulated if Fβt+1

1 (A,B) ̸= 0 and real otherwise, and the second
for-loop is useless as the condition i > M is never met. This is exactly what the
ideal world does; we conclude that hybridM (A,B) ≡ ideal(A,B). Since M is

the number of bins that can be in H1(A) ∪ H2(B), which is polynomial in the
security parameter, the total number of hybrids is polynomial.

In sum, we have shown that real(A,B) ∼∼∼ ideal(A,B), completing the
proof.

Corrupt party 2. The simulation in this case is trivial; see proof sketch.

