
Sparrow: Space-Efficient zkSNARK for Data-Parallel Circuits and

Applications to Zero-Knowledge Decision Trees

Christodoulos Pappas∗ Dimitrios Papadopoulos∗

Abstract

Space-efficient SNARKs aim to reduce the prover’s space overhead which is one the main
obstacles for deploying SNARKs in practice, as it can be prohibitively large (e.g., orders of
magnitude larger than natively performing the computation). In this work, we propose Sparrow,
a novel space-efficient zero-knowledge SNARK for data-parallel arithmetic circuits with two
attractive features: (i) it is the first space-efficient scheme where, for a given field, the prover
overhead increases with a multiplicative sublogarithmic factor as the circuit size increases, and
(ii) compared to prior space-efficient SNARKs that work for arbitrary arithmetic circuits, it
achieves prover space asymptotically smaller than the circuit size itself. Our key building block is a
novel space-efficient sumcheck argument with improved prover time which may be of independent
interest. Our experimental results for three use cases (arbitrary data parallel circuits,multiplication
trees, batch SHA256 hashing) indicate Sparrow outperforms the prior state-of-the-art space-
efficient SNARK for arithmetic circuits Gemini (Bootle et al., EUROCRYPT’22) by 3.2-28.7× in
total prover space and 3.1-11.3× in prover time. We then use Sparrow to build zero-knowledge
proofs of tree training and prediction, relying on its space efficiency to scale to large datasets and
forests of multiple trees. Compared to a (non-space-efficient) optimal-time SNARK based on the
GKR protocol, we observe prover space reduction of 16-240× for tree training while maintaining
essentially the same prover and verifier times and proof size. Even more interestingly, our prover
requires comparable space to natively performing the underlying computation. E.g., for a 400MB
dataset, our prover only needs 1.4× more space than the native computation.

1 Introduction

Zero-Knowledge Succinct Non-Interactive Arguments of Knowledge [1, 2, 3] (zkSNARKs) enable
a prover to convince a verifier about the validity of an NP statement by only sending a small &
easy-to-verify proof, and without revealing additional information. Over the past years, zkSNARKs
evolved from a theoretical concept to integral parts of securing several applications such as anonymous
cryptocurrencies [4], scaling and bridging blockchains [5, 6], and ensuring the integrity of machine
learning tasks [7, 8]. A long series of works have significantly improved the (considerable) prover’s
runtime both asymptotically and concretely [3, 9, 10, 11, 12, 13, 14], however, modern zkSNARKs
share a common bottleneck: excessive prover space utilization. Simply put, the space (typically
memory) needed to prove computations scales to orders of magnitude more than natively running
the computation, often making it impossible to run for realistically large problem instances. To
put numbers in perspective, proving the prediction of a VGG16 model using the highly efficient
zkSNARK of [8] takes 24GB of memory, while the plaintext computation needs < 200MB—two
orders of magnitude less. Likewise, proving SHA256 for a pre-image of 16KB with Plonk [9] and
Groth16 [3] takes space of 128GB and 40GB, respectively [15].

∗Hong Kong University of Science and Technology, cpappas@connect.ust.hk, dipapado@cse.ust.hk

1

Scheme Model Prove Verify |π| |Buffer| |Streams| |pp| Total Space
Block et al. [19] RAM T · polylog T T log T log T S· polylog T S· polylog T 1 S· polylog T
Block et al. [21] RAM T · polylog T |x|· polylog T log T S· polylog T S· polylog T 1 S· polylog T
Ligetron [22] Arithm.

Circ.
|C| log |C| |C|

√
|C|

√
|C| Seval 1

√
|C|+ Seval

Gemini [26] Arithm.
Circ.

|C| log2 |C| |x|+ log |C| log |C| log |C| Seval |C| |C|

Sparrow LDP
Arithm.
Circ.

|C| log log |C| |x|+ log |C| log |C|
√
|C| |C ′|+|inp(C)|

√
|C|

√
|C|+ |inp(C)|

Table 1: Asymptotic comparison of works on space-efficient arguments. For a RAM program, T
is the number of execution steps, and S is the memory size. For an arithmetic circuit C, inp(C) is
its input, and Seval denotes the space needed for its evaluation (O(|C|) for arbitrary circuits). x is
the statement being proven by the argument. A layered data-parallel arithmetic (LDP) circuit C
consists of parallel copies of a circuit C′ with |C′| ≪ |C|. The provers of Gemini and Sparrow also
require MSM of size O(|C|) for their PC schemes. The schemes of [19, 22] are not succinct.

Space-efficient arguments try to address this issue by ensuring the prover’s time and space
asymptotically remain as close as possible to those of the actual computation. Early works in this
area study the problem in more relaxed settings, e.g., designated verifier arguments [16, 17] or schemes
with multiple non-colluding provers [18]. The first publicly verifiable space-efficient argument was
proposed by Block et al. [19], working in the RAM model of computation. As with most modern
arguments of knowledge, the authors of [19] first develop a polynomial interactive oracle proof
(PIOP) [20] (inspired by [18]) that proves the correct execution of each RAM instruction and then
compile it into an argument of knowledge using a polynomial commitment (PC) scheme. Contrary
to prior work, however, they develop both schemes in the streaming setting in which the prover
uses only a small working buffer space and has streaming (read-only) access to the necessary data
required to generate a proof. In this setting, that was adopted in subsequent works [19, 21, 22, 23],
including ours, space complexity is measured by the space required for (1) the working buffer space
of the prover (2) instantiating access to the streaming oracles and (3) storing public parameters
(e.g., for the PC scheme). Assuming a RAM program running in T steps and using space S, [19]
achieves space complexities of O(S · polylogT), O(S · polylogT) and O(1) respectively for (1)-(3),
leading to a total space complexity of O(S · polylogT). However, that scheme is not succinct as their
PC scheme relies on Bulletproofs [24] and has quasi-linear verification time. In subsequent work,
Block et al. [21] improved this, introducing the first space-efficient zkSNARK for RAM computations,
based on a novel space-efficient PC scheme on hidden-order groups.

Subsequent works moved from the RAM model to arithmetic circuits, thus avoiding the necessary
overhead of “translating” RAM computations to circuits. Very recently, Wang et. al. [22] proposed
Ligetron, an MPCitH-based [25] space-efficient argument of knowledge which relies on the ideas
of [23]. For an arithmetic circuit C with optimal-evaluation space Seval, Ligetron achieves proving
complexity of O(|C| log |C|) and space complexity of O(Seval +

√
|C|). The latter derives from the

fact that Ligetron needs O(
√
|C|) working buffer space, O(Seval) space to instantiate access to the

streaming oracles and O(1) space to store cryptographic parameters. Unfortunately, it is also not
succinct since the proof size and verification time are O(

√
|C|) and O(|C|), respectively.

Bootle et al. [26] focus on a slightly different setting with external streaming oracles via which
the prover accesses the necessary data and public parameters. Considering, for instance, an external
party with enough space to store or generate these streams, they ignore the space requirements

2

of (2),(3) and focus on minimizing the working buffer space (1). Indeed, they achieve O(log |C|)
working buffer space as follows. First, they introduce a space-efficient PIOP for the satisfiability of
the R1CS constraint system to encode C. Then, they compile this into a space-efficient zkSNARK
called Gemini, by designing space-efficient variants of the commit and evaluation algorithms of the
KZG PC scheme [27] operating with small buffer space. However, when measuring the total space
complexity including space to instantiate streams and store public parameters, as in [19, 21, 22, 23]
and our work, Gemini has total space complexity O(|C|). That is because it uses the KZG scheme,
which needs public parameters of size O(|C|). Furthermore, the space needed to instantiate the
streams is O(Seval) space; for arbitrary arithmetic circuits, this can also be O(|C|). Finally, Gemini
is elastic, i.e., it allows the user to increase the working buffer space (beyond O(log |C|)) to improve
the prover time, as a trade-off between space and time.

Table 1 shows the asymptotic performance of these works and offers two observations. (1) All
constructions achieve prover complexity that scales quasi-linearly with respect to the circuit size
(for succinct schemes, that is no less than O(|C| log2 |C|)). This is in contrast to non-space efficient
SNARKs, e.g., [10, 11, 12] that achieve prover complexity scaling linearly to |C|. (2) An inherent
limitation when working with arbitrary circuits is that optimal evaluation space–and hence proving
space–takes O(|C|). These lead to the following question: “Can we have a space-efficient zkSNARK
that, for a “rich” class of arithmetic circuits, achieves (almost) optimal prover time, and prover
space asymptotically smaller than |C|?”
Sparrow: Space-Efficient zkSNARK for Data-Parallel Circuits. In this work, we answer
the above question by presenting Sparrow, a space-efficient zkSNARK that works for layered
data-parallel arithmetic circuits (LDP). This class of circuits can model a wide variety of real-
world computational tasks and has been widely used in the literature to build (non-space efficient)
zkSNARKs, with applications ranging from SQL database queries [28], blockchain L2 rollups and
blockchain bridges [5, 6], training and prediction of machine learning models [7, 29, 8] and verifiable
symmetric key encryption [30]. Sparrow has a prover that requires only O(|C| log log |C|) field
operations, (and multi-scalar multiplications (MSM) of size O(|C|), for the PC) and verification
complexity and proof size of O(log |C|). The prover’s space is only O(

√
|C|+ |inp(C)|) where inp(·) is

the input of the circuit.
Our main building block is a novel space-efficient sumcheck argument which, given streaming

access to the coefficients of multi-linear polynomials f, g : Fn → F, proves the instance K =∑
x∈{0,1}n f(x)g(x). Prior works [21, 26] use a similar protocol [18] but it has O(N logN) proving

time, where N = 2n, since for every round (for i = 1, . . . , logN), it must scan the entire polynomials.
We adopt a different approach, “reducing” the number of variables of f, g by replacing them with
equivalent multi-variate polynomials of higher degree. In that sense, our space-efficient sumcheck can
be considered as a hybrid between the multi-linear [31] and the univariate sumcheck protocol [32].
Our protocol requires O(N log logN) field operations and O(

√
N) buffer space. Concurrent work by

Chiesa et al. [33] proposed a sumcheck with the same space as ours and linear prover time. However,
it only supports instances of the form K =

∑
x∈{0,1}n f(x), but not the products-of-polynomials that

are needed for PIOPs (like the one in Sparrow).
Armed with our novel sumcheck, we build a space-efficient PIOP and compile it into the Sparrow

zkSNARK via a space-efficient PC scheme (similar to [21, 26]). For the first, we propose a space-
efficient variant of the GKR [34] protocol. Besides replacing the standard sumcheck protocol with
our space-efficient one, we also (i) efficiently instantiate streaming access to the evaluation circuit
layers, and (ii) “flatten” the circuit [10, 18], if it is deep, to avoid increasing overheads with its depth,
while keeping its data-parallel structure. Finally, we adapt the optimal-time space-efficient variant
of the “Dory-like” [35] PC, Kopis [36], to work with O(

√
N) buffer and public parameters size (in

contrast to O(N) of [26]).

3

Zero-knowledge Proofs of Forest Training. With the widespread adoption of machine learning
(ML) algorithms in domains like business decision-making and healthcare, there is an increasing
demand to boost the public’s confidence in them [37, 38]. A crucial requirement to achieve this is
integrity, e.g., the ability to prove that model training and predictions have performed honestly.
Recent works propose using zero-knowledge proofs to ensure such integrity guarantees e.g., for ML
prediction of neural networks and decision tress [8, 39, 40, 41]. On the other hand, zero-knowledge
proofs for ML training have been studied much less and only for neural networks [7] and linear
regression [42]. Especially training is an inherently space-demanding task, as it works on potentially
massive datasets (as opposed to prediction that works on the model).

In this work, we specifically focus on decision tree-based models [43, 44], which remain one of the
most widely used ML tools in practice [45, 46], and introduce the first scheme for zero-knowledge
proofs of forest training and predictions (zkFTP). It allows a prover to commit to a dataset D and a
forest F and provide zkSNARK proofs that (committed) F was correctly trained over (committed)
D and that y is the correct prediction for a test point x. To make our zkFTP scalable to large
instance sizes, we use our space-efficient zkSNARK Sparrow as its back-end for proofs of training.

To further improve the performance of the latter, instead of encoding the training into an
arithmetic circuit, we propose a certification algorithm (Section 4.1) that validates the correctness
of a model for a dataset asymptotically faster than training it. We apply further optimizations
when encoding our certification algorithm into a data-parallel circuit, exploiting the homomorphic
properties of node histograms and offline memory-checking techniques [11]. For predictions (a
naturally more “lightweight” task since they operate on the trees and not the massive dataset), we
rely on the previous efficient schemes of [39, 40], making our zkFTP compatible with them to achieve
“end-to-end” security for the ML pipeline.

Experimental Evaluation. We implemented Sparrow and zkFTP in C++ and experimentally
evaluated their performance. As with Gemini, our implementation is also elastic. The user can
configure the working buffer space by selecting a threshold instance size. When instances become
smaller than that threshold, the prover automatically changes from space-efficient to time-efficient,
running the standard GKR-based zkSNARK of [10]. We evaluated three different use cases: (a)
arbitrary data-parallel circuits, (b) multiplication trees, and (c) batch SHA256 hashing.

Our experimental results (Section 5) show that Sparrow achieves significantly lower space usage
and faster prover than prior succinct space-efficient SNARKs for arithmetic circuits. In particular,
Sparrow outperforms Gemini in prover time by 3.4-9.5×. When comparing the schemes, we assign
the same threshold instance size 220 (the largest instance we ran is 236), to ensure fair comparison.
Although we could set Gemini’s threshold much lower (close to log |C|), thereby reducing its buffer
space, this would make its prover significantly slower. As for total space usage, Sparrow achieves
14.5-28.7× space reduction. Putting numbers into perspective, to prove 2048 SHA hashes Sparrow
takes only 700MB and 13min vs. 10.5GB and 46min for Gemini; for 230-sized LDP circuits, the
corresponding numbers are 2.7GB and 78min for Sparrow and 80GB and 744min for Gemini (see
section 5.1 for more details).

The only drawback of Sparrow is its slightly larger proofs and verification times which, however,
remain concretely practical: our maximum proof size and verification time in all use cases were
< 90KB and < 15ms. We also compared Sparrow with a non-space-efficient variant based on
GKR and the PC of [36] to demonstrate its scalability. Overall, Sparrow achieves 27.5-119× space
reduction. Interestingly, while scaling to much larger instance sizes (for large instances the non-space-
efficient SNARK ran out of memory on our machine with 131GB RAM), Sparrow achieves at most
a 2.7× slowdown in prover time vs. the non-space-efficient zkSNARK.

We used datasets generated via make classification from scikit-learn library to benchmark
our zkFTP , with variable number of points n between 214-222, and number of features d between

4

8-64. We quantized our datasets (bin size 128) and considered forest sizes K between 1-128 trees. In
this setting, again, our results are very promising. Compared to the non-space-efficient zkSNARK
described above, our Sparrow-based zkFTP achieves 16-240× space reduction. Moreover, even
for medium-sized datasets, we were not able to run the non-space-efficient zkSNARK for training
forests. In contrast Sparrow’s space scales strictly linearly to the dataset. For instance, for the
largest instance (n = 220, d = 16, K = 1) for which we could run the non-space-efficient zkSNARK,
Sparrow takes 0.42GB (vs. 90GB for the non-space-efficient one), and maintains almost the same
prover and verification times and proof size. Finally, for large enough instances, Sparrow’s prover
requires space concretely comparable to that of directly running forest certification! E.g., to train a
single tree using a dataset with n = 222, d = 16 (totaling to 400MB), running our certification takes
676MB, whereas Sparrow takes 950MB to produce a proof—just a 1.4× increase.

Other related works. A different line of works builds zkSNARKs [47, 48, 7, 49, 50, 51, 52, 53]
via recursive proof composition with applications to incremental/streaming computation and proof-
carrying data. While not their main goal, a side-effect of breaking down a computation into steps
and recursively proving them is that prover’s memory usage can, in principle, be made as small
as one computation step. However, this approach has some crucial limitations. Performance-wise,
recursion leads to significant overheads [7, 54] (e.g., to embed the verifier logic in the circuit), or to
non-succinct schemes [49, 51, 52]. Furthermore, works that do not have straight-line extraction [55]
cannot be shown secure for more than a constant number of recursions. Finally, most efficient schemes
rely on a hash function that must be modeled as a random oracle. During recursion, this “random
oracle” must be encoded to the circuit and used in a non-black-box way by the recursive verifier,
which makes it impossible to formally argue about security.

Prior works on zero-knowledge for ML can be split into two categories. Proofs of training, for neural
networks [7] and linear regeression [42], and proofs of prediction, e.g., for neural networks [56, 57, 58, 8],
for linear and logistic regression [59], for SVM [60], and for decision trees [39, 40]. For prediction,
our zkFTP uses the approach of [39] and the matrix-lookup argument of [40]. To the best of our
knowledge, no prior work tries to prove the training of a tree or random forest. Finally, non-zero-
knowledge approaches for proving model training based on spot random checks [59, 61] or partial
re-execution [62] do not achieve the strong security guarantees we aim for (in fact the latter has
been shown insecure [63]).

2 Preliminaries

We denote [n] = {1, ..., n}. Let F be a field of prime order p. We use x = (x1, ..., xn) ∈ Fn to
represent a vector and xi or x[i] its i-th element. We can encode any vector x : {0, 1}logn → F
as a multi-linear polynomial fx : Flogn → F, s.t fx(z) =

∑
i∈{0,1}logn β(z, i)xi, where β(z, i) =∏

k∈[logn]
(
ikzk + (1− zk)(1− ik)

)
. We say that fx(z) is the multi-linear extension of x. We denote

with H, a multiplicative sub-group of F, and by Li(x), where ωi ∈ H, the Lagrange polynomial such
that Li(ω

i) = 1 and Li(ω
j) = 0,∀j ∈ [|H|]\i. Finally, ⊗ denotes the tensor product of two vectors

a,b ∈ Fn defined as a⊗ b = (a1b1, . . . ,a1bn, . . . ,anb1, . . . ,anbn) ∈ Fn2
.

2.1 Interactive Proofs

An interactive proof system [64, 34, 65, 31] is run between a prover and a verifier, on shared input x
and language L, to establish x ∈ L. We say it is sound if the verifier rejects any claim where x /∈ L
with high probability and complete if the verifier accepts when x ∈ L. More formally:

Definition 2.1 (Interactive Proofs) An interactive proof system for a language L with soundness
ϵ, is a protocol between a computationally unbounded prover P and a probabilistic polynomial time

5

verifier V in which both parties share a common input x. Assuming that t =
〈
P,V

〉
(x) is the

communication transcript produced by the interaction between P and V, an interactive proof system
satisfies the following:

• Completeness. For every x ∈ L, Pr(V (x, t) = accept) = 1.

• Soundness. For every x /∈ L, Pr(V (x, t) = accept) ≤ ϵ

Throughout the paper, we will rely on the following interactive proofs:

Sumcheck Protocol. The sumcheck protocol of Lund et al. [31] is an interactive proof where,
given an n-variable polynomial of degree d defined over a finite field F, f : Fn → F, the prover
wishes to convince the verifier that K =

∑
x1,x2,...,xn∈{0,1} f(x1, x2, . . . , xn). At a high level, the

prover and verifier follow n rounds of interaction. For each round the prover computes the univariate
polynomial pi(x) =

∑
b∈{0,1}n−i f(r1, . . . , ri−1, x,b) and sends it to the verifier. The latter checks if

pi−1(ri−1) = pi(0) + pi(1) (in the first round, this is p0(0) + p1(1) = K), picks a random point ri
and sends it to the prover. Finally, the verifier ends up with a claimed evaluation of f at (r1, ..., rn),
the validity of which is checked by an evaluation oracle of f . The sumcheck protocol has proving
complexity of O(2n), proof size of O(dn), and soundness error of dn

|F| . Throughout this paper, we

consider the more general sumcheck instance of K =
∑

x∈{0,1}n f(x)g(x).

Sumcheck Protocol. Let f, g : Fn → F be multi-linear polynomials of size N = 2n. Assume a prover P
having access to f, g and a verifier V having access to the evaluation oracles of f, g. Both P and V share
a claimed value K ∈ F. P wants to prove that K =

∑
x∈{0,1}n f(x)g(x).

1. P computes and sends to V, p1(z) =
∑

{x2,...,xn}∈{0,1}n−1 f(z, x2, ..., xn)g(z, x2, ..., xn)

2. V ensures that p1(0) + p1(1) = K, selects a random point r1 ∈ F and sends it to P. Finally set
K ← p1(r1).

3. For all i ∈ {2, ..., n}:

(a) P computes and sends to V the polynomial pi(z) =
∑

{xi+1,...,xn}∈{0,1}n−i f(r, z,x)g(r, z,x), with

r = (r1, ...ri−1) and x = (xi+1, ..., xn).

(b) V ensures that pi(0) + pi(1) = K, selects a random point ri ∈ F and sends it to P. Finally set
K ← pi(ri).

4. P: Computes yg = g(r1, . . . , rn), yf = f(r1, . . . , rn) and sends them to V.

5. V: Check if K = yg · yf . Query the evaluation oracles to validate the correctness of yg and yf and
return 1 if all checks passed and 0 otherwise.

GKR Protocol. Initially proposed by Goldwasser et al. [34], GKR is an interactive proof system
for evaluating a layered arithmetic circuit C of depth d. For each layer i ∈ [d], let Si (and si = logSi)
be the number of gates, where Sd is the input size and S0 output size. Similarly, we denote with
Vi ∈ FSi the vector that consists of the outputs of each gate of the i-th level and fi : Fsi → F its
multi-linear extension. Finally, we can describe the wiring pattern of every layer i using the functions
addi,muli : {0, 1}si+2si+1 → {0, 1} such that addi(z, x, y) = 1 (muli(z, x, y) = 1 resp.) if the addition
(multiplication resp.) gate of the circuit with label z takes as input the output of the gates with
labels x and y in the (i+ 1)-th layer.

Given (C,V0,Vd), the verifier selects a random point r0 ∈ Fs0 , computes f0(r0), and sends r0 to
the prover. The prover and the verifier interact over the sumcheck instance:

f0(r0) =
∑

(x,y)∈{0,1}2s1

(
fadd0(r0, x, y)(f1(x) + f1(y)) + fmul0(r0, x, y)f1(x)f1(y)

)

6

At the end of this sumcheck instance, verifier receives f1(r
′
1), f1(r

′′
1), fadd0(r0, r

′
1, r

′′
1), fmul0(r0, r

′
1, r

′′
1).

For the last two values, it locally checks their validity. However, this is not possible for f1(r
′
1), f1(r

′′
1)

as it needs to evaluate the circuit. To overcome that issue, the verifier reduces these claims into one,
denoted with f1(r1), and interacts over a similar sumcheck instance but for the next layer.

We repeat the same process until the d-th layer. At the end, the verifier receives fd(r
′
d), fd(r

′′
d),

faddd(rd−1, r
′
d, r

′′
d), fmuld(rd−1, r

′
d, r

′′
d), and can verify their validity. The resulting interactive proof

has proof size O(d log |C|), and optimal prover complexity of O(|C|) [10, 66]. Additionally, if C has a
sufficiently “regular” wiring pattern [67, 68, 28, 8, 69], it has verification cost of O(poly(d, log |C|) +
|V0|+ |Vd|).

The GKR Protocol. Let C be a d-layered data-parallel arithmetic circuit. We denote with Vd ∈ FSd

the input values of C, V0 ∈ FS0 its output values (held by both the prover and verifier) and Vi ∈ FSi the
output values of the i-th layer of C. Furthermore, we denote with fi : Fsi → F the multi-linear extension
of Vi. P proves that C(Vd) = V0 by interacting with V over the following protocol:

1. V: Select a random point r(0) ∈ Fs0 and send it to P.

2. P: Evaluates f0(r
(0)) and sends f0(r

(0)) to V.

3. P-V: Interact following the sumcheck protocol for proving the correctness of the output layer:

fd(r
(0)) =

∑
x,y∈{0,1}2s1

f i
add(r

(0), x, y)(f1(x) + f1(y)) + f i
mul(r

(0), x, y)(f1(x)f1(y))

4. P: At the end of the protocol, send f1(r
(1)
1), f1(r

(1)
2) to V.

5. V: Evaluate uadd = f i
add(r

(0), r
(1)
1 , r

(1)
2) umul = f i

mul(r
(0), r

(1)
1 , r

(1)
2), and check if the last round of

sumcheck equals to uadd ·
(
f1(r

(1)
1) + f1(r

(1)
2)

)
+umul · f1(r(1)1) · f1(r(1)2).

6. For i = 2, ..., d do:

(a) V: Randomly selects a, b ∈ F and sends them to P.
(b) P-V: Interact following the sumcheck protocol for proving the correctness of the (i − 1)-th

layer:

afi−1(r
(i−1)
1) + bfi−1(r

(i−1)
2) =

∑
x∈{0,1}si

Fadd(x, y)(fi(x) + fi(y)) + Fmul(x, y)(fi(x)fi(y))

Where Fadd(x, y) = a·faddi(r
(i−1)
1 , x, y)+b·faddi(r

(i−1)
2 , x, y), Fmul(x, y) = a·fmuli(r

(i−1)
1 , x, y)+

b · fmuli(r
i
2, x, y)

(c) P: At the end of the protocol, send fi(r
(i)
1), fi(r

(i)
2) to the verifier.

(d) V: Compute the evaluations of the wiring predicates and validate the last round of the sumcheck
as in step (5).

7. V: Use f0, fd to validate the correctness of fd(r
(d)
1),fd(r

(d)
2),fd(r

(0)
0).

2.2 Polynomial Commitments

A polynomial commitment scheme (PC) enables a prover to commit to an n-variate polynomial
of degree d and later generate a proof that it correctly evaluated the committed polynomial at a
random point. A (binding) PC scheme consists of four probabilistic polynomial time algorithms
(Gen,Commit, Eval, V erify). At a high level, Gen, generates some public parameters, Commit,
takes as input the public parameters, a polynomial f , and generates a succinct commitment Cf of

7

the polynomial. Finally, Eval takes as input the committed polynomial f , an evaluation point x,
and outputs the evaluation y and an evaluation proof π. The verifier invokes V erify using π, x and
y to validate that y = f(x). A PC is knowledge sound if, for any Probabilistic Polynomial Time
(PPT) adversary that generates an accepting evaluation proof, there exists a PPT extractor that
extracts the committed polynomial f , such that the probability that f(x) ̸= y is negligible with
respect to the security parameter λ. A PC scheme is complete if the verifier always accepts the proof
for a correctly evaluated point. Finally, a PC scheme is zero-knowledge if a verifier, given a valid
proof, a point, and the evaluation of the committed polynomial at that point, learns nothing more
other than the validity of the proof. We give a formal definition of a PC scheme in Appendix 2.2.

Definition 2.2 (Polynomial Commitment) A polynomial commitment (PC) scheme is a tuple
of four algorithms (Gen, Commit, Eval, Verify) defined as follows:

• pk, vk← PC.Gen(1λ, l, d). Given the security parameter λ, number of variables l and degree
d, generates the public parameters pk, vk.

• Cf ← PC.Commit(pk, f, r). Given pk and a l-variate polynomial f of degree d and randomness
r ∈ F, returns a polynomial commitment Cf .

• y, π ← PC.Eval(pk, f,x). Given pk, Cf , f and a point x ∈ Fl, returns y = f(x) and a proof
π that f(x) = y.

• 0, 1 ← PC.V erify(vk, π, Cf ,x, y). Given vk, the commitment Cf , the proof π, the y and x,
returns 1 if f(x) = y, 0 otherwise.

For a PC scheme the following must hold:

• Completeness. A polynomial commitment scheme is complete, if for any λ, and number of
variables l, we have:

Pr


pk, vk← PC.Gen(1λ, l, d),
Cf ← PC.Commit(pk, f, r)
y, π ← PC.Eval(pk, f,x);

PC.V erify(vk, C, π, y,x) = 1

 = 1

• Knowledge Soundness. A polynomial commitment scheme is knowledge sound, if for any
λ, l, d and any probabilistic polynomial time adversaries APC there exists an extractor EPC

that has access to the random tape of APC such that:

Pr


pk, vk← PC.Gen(1λ, l, d),
Cf , y, π,x← A(pk, vk) :
f, r ← EPC(pk, vk)∧

PC.V erify(vk, Cf , π, y,x) = 1∧(
f(x) ̸= y ∨ Cf ̸= PC.Commit(pk, f, r)

)

 ≤ negl(λ)

• Zero-Knowledge. An additional property that some polynomial commitments carry is the
hiding property [27]. Although this property is not always necessary, we use it to make our
SNARK zero-knowledge. Having established that, a polynomial commitment scheme is Zero
Knowledge if for any λ, l, d, adversary A and simulator S we have:

Pr
(
RealA,f (1

λ) = 1
)
≈ Pr

(
IdealA,S(1

λ) = 1
)

8

RealA,f (1
λ):

1. pk, vk← PC.Gen(1λ, l, d)

2. Cf ← PC.Commit(pk, f, rf)

3. n← A(1λ,pk, vk, Cf)

4. For each step j ∈ {2, 3, ..., n} :
(a) xi ← A(1λ, Cf , y1, ..., yj−1, π1, ..., πj−1, pp)

(b) yj , πj ← PC.Eval(pp, f,xi)

5. Output b← A(1λ, Cf , y1, ..., yn, π1, ..., πn, pp).

IdealA,S(1
λ):

1. (Cf ,pk, vk, t)← S(1λ, l)
2. n← A(1λ, pp, Cf)

3. For each step j ∈ {2, 3, ..., n} :
(a) xi ← A(1λ, Cf , y1, ..., yj−1, π1, ..., πj−1, pp)

(b) yj , πj ← S(pp, f,xi)
4. Output b← A(1λ, Cf , y1, ..., yn, π1, ..., πn, pp).

2.3 Argument Systems

Argument Systems. Argument systems [1] are similar to interactive proofs but their soundness
only holds against computationally-bounded PPT adversaries. An interactive argument system for
an NP language L is a protocol between a verifier and a prover, in which given common input x, the
prover tries to convince the verifier that exists a witness w, such that (x;w) ∈ RL. Such a system is
knowledge sound if, whenever a verifier accepts for a statement x, there exists an efficient extractor
program that can produce a valid witness with overwhelming (in the security parameter) probability.
An argument system is zero-knowledge if the verifier learns nothing from interacting with the prover
besides x ∈ L. This is captured by requiring the existence of an efficient simulator that interacts
with the verifier without having w in an indistinguishable manner. When proof size and verification
time are poly-logarithmically bounded to the witness length, the argument is succinct and if there is
no (two-way) interaction between prover and verifier, it is non-interactive. When both are satisfied
the construction is a zkSNARK (e.g., [70, 3, 28, 71]). Formally:

Definition 2.3 (Zero-Knowledge Arguments of Knowledge) For any NP relation R, a tuple
of probabilistic polynomial time (PPT) algorithms (G,P,V) is a Zero-Knowledge Argument of
Knowledge if it satisfies the following:

• Completeness. For any security parameter λ, (pk, vk)← G(1λ) and (x,w) ∈ R, Pr(V(vk, x, t) =
accept) = 1, where t =

〈
P(pk,w),V(vk)

〉
(x).

• Knowledge Soundness. For every PPT prover P∗ there exists a PPT extractor E that have
access to P∗’s random tape, such that for any security parameter λ,(pk, vk)← G(1λ) and x it
holds that:

Pr


t =

〈
P∗(pk),V(vk)

〉
(x),

V(vk, t, x) = accept∧
w ← E(pk, x)∧
(x,w) /∈ R

 ≤ negl(λ)

• Zero-Knowledge There exists a PPT simulator S such that for any PPT adversary A,
(x,w) ∈ R and auxiliary input z ∈ {0, 1}∗, it holds that:

V iew(t) ≈ V iew(t∗)

Where t =
〈
P(pk,w),A(vk)

〉
(x) and t∗ =

〈
S(pk, z),A(vk)

〉
(x) are accepting transcripts and

View(·) denotes the distribution of the transcript.

9

We can construct a zero-knowledge argument of knowledge from the GKR protocol using PC
schemes [28], by (i) committing to the multi-linear extension of the witness fw, (ii) using the GKR
protocol to prove that C(x,w) = 1, where C is a layered arithmetic circuit, and (iii) opening fw at
the challenge point derived at the last round of the protocol. Moreover, following the observations
of [67, 68, 28, 8, 69], if the circuit C is log-space uniform, then the previous scheme is also succinct
with proof size O(d log |C|) and verification time polylog|C|+ |x|.

2.4 Decision Tree and Random Forest Training

Without loss of generality, we focus on training binary decision trees. Let D ∈ Rn×d be a dataset
that consists of n data points with d features, and y ∈ {0, 1}n be the class assigned to each point. We
consider the standard training algorithm [72, 73, 74] that relies on the following divide-and-conquer
algorithm. First, we scan D and find the feature i and value s that split the dataset into DL, DR, in
such a way that each partitioned dataset is as “pure” as possible (i.e.,—almost—all its instances
have the same label), where ∀p ∈ DL, pi < s and ∀p ∈ DR, pi ≥ s. Then, create a node storing i, s,
and continue recursively the same process for its left child, using DL, and its right child, using DR

(without considering the i-th feature). The process ends if DL and DR contain a single point, or all
of their points have the same label or a maximum depth is reached.

What remains is to compute the best split. In this work, we consider a histogram-based strategy [75,
76, 77, 78], in which we bucket every value of the dataset into B bins (e.g., B = 128), and use the
“discretized” dataset D′ ∈ [B]n×d to compute a histogram Hi,c ∈ NB, for each feature i ∈ [d] and
class c ∈ {0, 1}, defined as Hi,c[j] =

∑
k∈[n] I(pk,j = j ∧ yk = c). Then, for every attribute i ∈ [d] and

each bin j ∈ [B], we compute its split quality ϵi,j by using an impurity function. Here, we use the
Gini [72] function defined as Gini(P0, P1) = 1−

∑
c∈{0,1} P

2
c where Pc is the probability a point in D

belongs to the c-th class. Based on that, we compute the probabilities Pc =
1
n1

∑
k∈{0,...,j−1}Hi,c[k]

and P ′
c =

1
n2

∑
k∈{j,...,B}Hi,c[k], where n1 is the number of points of the left partition and n2 of the

right one, and set ϵi,j =
n1
n Gini(P0, P1) +

n2
n Gini(P ′

0, P
′
1). Finally, select feature i and value j with

the smallest ϵij .
A random forest classifier [44], consists of K decision trees. To train a random forest we first

perform a Bagging Step to generate K new datasets Di ∈ Rn×d by picking n random points from D
with replacement. Next, we invoke a slightly different version of the training algorithm for each Di,
which performs feature bagging, e.g., split a node using a random subset of features. We provide the
training and inference algorithms in Appedix C.1, denoted as Train and Predict respectively.

3 Sparrow: A Space-Efficient zkSNARK

Here we present our space-efficient zkSNARK Sparrow for layered data-parallel arithmetic circuits.
In Section 3.1, we introduce a space-efficient sumcheck with improved prover time and in Section 3.2
we introduce our zkSNARK based on a novel space-efficient variant of GKR and a space-efficient PC
scheme.

3.1 Our Space-Efficient Sumcheck

In this section, we develop a new space-efficient sumcheck protocol for the instanceK =
∑

x∈{0,1}n f(x)g(x),

where N = 2n and f, g : Fn → F, are the multi-linear extensions of the vectors Af ,Ag ∈ FN . Our
construction operates in the streaming model [19, 26], in which the prover accesses vectors Af ,Ag

via corresponding read-only streaming oracles S(Af), S(Ag), and only maintains a smaller “buffer”

10

workspace for storage. We consider these oracles as routines that internally keep some state (e.g.,
the latest accessed position i), and upon invocation return the next element or vector of elements.

The “straightforward” extension of the standard sumcheck protocol in this streaming model
has already been explored in prior works [26, 19, 21]; at a high level, it can be described as follows.
In the i-th sumcheck round (for i = 1, . . . , logN), the prover must compute the univariate polyno-
mial pi(x) (see section 2.1). This requires first computing polynomials f(r1, ..., ri−1, x, bi+1, ..., bn),
g(r1, ..., ri−1, x, bi+1, ..., bn), ∀{bi+1, ..., bn} ∈ {0, 1}n−i, “on-the-fly”, given access to the streaming
oracles S(Af), S(Ag). Computing these two polynomials for each round requires O(logN) space,
thus the overall space-efficiency of this protocol is also O(logN). However, since the prover does
not have sufficient buffer space, for each of the logN rounds, it needs to scan the entire vectors
Af ,Ag, hence its overall time is O(N logN). In fact, it is easy to see that this approach will result
in O(N logN) field operations, even if we relax the prover’s space to o(N)! For instance, increasing
the buffer size to O(

√
N) the prover still needs to scan the vectors logN/2 times and perform O(N)

stream accesses and field operations on every scan until can store the “reduced” polynomials in its
buffer and run the rest of the protocol with the standard sumcheck.

In contrast, our proposed sumcheck achieves O(N log logN) field operations, at the cost of
relaxing space efficiency to O(

√
N), which we consider a reasonable trade-off for practical purposes.

Main Idea of our Protocol. Based on the above, we observe that to have any hope of improving
the proving time, we must reduce the number of times we scan the vectors. In turn, this will lead to
a reduction in the number of rounds. We achieve this by reducing the number of variables of the
polynomials, i.e., instead of using the multi-linear polynomials f, g directly, we replace them with
“equivalent” polynomials f̂ , ĝ with fewer higher-degree variables.

The main challenge is to carefully select the number of variables and their degrees to achieve
the desired asymptotics. We base our design on the following observations. First, because we set
the buffer size of the prover to O(

√
N), we only need to replace the first (logN)/2 variables of

f, g. That is because in the last (logN)/2 rounds of the sumcheck protocol, we can directly fit the
reduced multi-linear polynomials in our buffer. Second, the number of high-degree variables must be
asymptotically smaller than logN . Otherwise, the prover would have to scan the oracles O(logN)
times, resulting in O(N logN) proving time. Finally, when choosing the variables in f̂ , ĝ we note
that we should order them from smaller to larger degree (excluding the last (logN)/2 variables of
degree 1). The intuition behind this comes from the fact that: (i) to compute the polynomial pi, for a
d-degree variable xi, we need to multiply polynomials of degree d and (ii) the number of polynomial
multiplications significantly decreases in every round as we reduce the total size of f̂ , ĝ. Naturally,
we wish to perform more multiplications for polynomials of smaller degrees and vice-versa.

These observations lead us to the following strategy. Replace the first (logN)/2 variables with a
constant number of high-degree ones, and assign their degrees in increasing order (note that the
product of their degrees must be

√
N). Furthermore, we select the degrees such that only the first

round dominates the proving time. In practice, we replace the first logN/2 variables with only two
variables, of degree logN and

√
N/ logN , respectively. Thus, in the first round, we need to multiply

N/ logN polynomials of degree logN . Since polynomial multiplication requires O(logN log logN)
field operations and we need to perform N/ logN such multiplications, the total complexity of the
first round will be O(N log logN). In the second round, we multiply

√
N polynomials of degree√

N/ logN , leading to O(log
√
N · (

√
N/ logN) ·

√
N) = O(N) field operations.

Formally, we replace f : Fn → F with the polynomial f̂ : F2+n/2 → F, defined as f̂(x0, x1,x2)
equal to ∑

i∈H0,j∈H1,k∈{0,1}n/2

L
(0)
i (x0)L

(1)
j (x1)β(x2,k)Af [2

n−logni+ 2n/2j + k]

11

where H0 and H1 are multiplicative sub-groups of F of size n and 2n−logn, respectively, L
(0)
i (x) and

L
(1)
j (x) their Lagrange polynomials, and k is the bit-decomposition of k. Observe that there is

a one-to-one mapping between all points in x ∈ H0 × H1 × {0, 1}n/2 and z ∈ {0, 1}n, such that
f̂(x) = f(z). Likewise, we define ĝ for g.

Having established that, we partition our protocol into two phases. In the first phase, we replace
the original claim with proving that K =

∑
x0,x1,x2∈H0×H1×{0,1}n/2 f̂(x0, x1,x2)ĝ(x0, x1,x2). In the

second phase, we “reduce” the evaluation claims of f̂ , ĝ, derived from the first phase, into evaluation
claims of f, g. Protocol 1 gives a detailed description of our sumcheck protocol.

Protocol 1: Let f, g : Fn → F be the multi-linear extensions of Af ,Ag and S(Af), S(Ag) their streaming
oracles. We want to prove that K =

∑
x∈{0,1}n f(x)g(x). Our protocol takes as input S(Af), S(Ag), n

and public parameters of a PC scheme.

• Initialization: Set Ãf ← {0}2
n/2

, Ãg ← {0}2
n/2

,p0(x)← 0,p1(x)← 0,F← {0}2n/2

,G← {0}2n/2

.

• Phase 1: For f̂ , ĝ the equivalent polynomials of f, g, prove that K =
∑

x0,x1,x2
∈H0×H1×{0,1}n/2

f̂(x0, x1,x2)ĝ(x0, x1,x2).

– First round (over the n-degree variable x0):

1. P: For i = 1, ..., 2n−logn: Read the next n elements of S(Af), S(Ag) and store them in Ãf , Ãg. Set

pf (x) =
∑

j∈[n] L
(0)
j (x)Ãf [j] (and likewise pg(x) using Ãg) and compute p0(x)← p0(x)+pf (x)pg(x)

(via FFT).

2. V: Receive p0(x), check if K =
∑

i∈[2n] p0(ω
i
1), pick a random point r0, compute p0(r0) and send r0

to P.
– Second round (over the 2n−logn-degree variable x1):

1. P: For i = 1, ..., 2n/2: Read the next 2n/2 elements of S(Af), S(Ag), store them in Ãf , Ãgand compute

the polynomial pf (x) = f̂(r0, x1, i) defined as
∑

j∈[2n−log n] L
1
j (x)cj , where cj =

∑
k∈[n] y0[k]Ãf [jn+k]

and y0 = (L0
1(r0), ..., L

0
n(r0)). Likewise compute pg(x) using Ãg. Finally compute p1(x)← p1(x) +

pf (x)pg(x) (via FFT).

2. V: Delegates its checks to P with the following protocol:

(a) P: Parse p1(x) as
∑

i∈[2n/2−log n+1] ciL̃i(x), set l← n/2− log n, c = (c1, ..., c2l+1) and commit

to p1(x) by committing to fc using the PC scheme. Send Cp1
to V and receive r1.

(b) P: interacts with V following the standard sumcheck protocol to prove that p0(r0) =
∑

i∈[2l] p1(ω
i),

using the instance p0(r0) =
∑

x∈{0,1}l fc(x). P proves the validity of the claimed evaluation y
(1)
p1

using the PC scheme.

(c) P: Compute w1 = (1, ω, . . . , ω2l+1−1),w2 = (r−1
1 , (r1 − ω)−1, . . . , (r1 − ω2l+1−1)−1), w3 = w−1

2 ,
commit to fw2

using the PC scheme, send Cw2
to V and receive a random challenge r′. Note

that L̃i(r1) = Kw1[i]w2[i], where K = (r2
l+1

1 − 1)/2l+1.

(d) P interacts with V following the standard sumcheck protocol to prove the correct computation
of p1 at r1, using the instance p1(r1) = K

∑
x∈{0,1}l+1 p1(x)fw1

(x)fw2
(x). P proves the validity

of the claimed evaluation y
(2)
p1 , y

(1)
w2 using the PC scheme. V locally validates yw1

.

(e) P interacts with V with the sumcheck protocol to prove “well-formedness” of w2, using the

instance 1 =
∑

x∈{0,1}l+1 β(x, r′)fw2
(x)fw3

(x). P proves the validity of the evaluation y
(2)
w2 via

the PC scheme. V locally checks yw3
.

– Remaining rounds (over the 1-degree variables x2, ..., xn/2+2):

12

1. P: For i = 1, ..., 2n/2: Read the next 2n/2 elements of S(Af), S(Ag), store them in Ãf , Ãg and

compute F[i] = f̂(r0, r1, i) =
∑

j∈[2n/2](y0 ⊗ y1)[j]Ãf [j] (and similarly compute G[i] using Ãg),

where y1 = (L1
1(r1), ..., L

1
2l(r1)).

2. P: interacts with V following the standard sumcheck protocol to prove that p1(r1) equals to∑
x∈{0,1}n/2 f̂(r0, r1, x)ĝ(r0, r1, x). Finally, V ends up with claimed evaluations yf̂ , yĝ at (r0, r1, r2).

• Phase 2: Reduce the evaluation claims of f̂ , ĝ into claims of f, g.

1. P: For i = 1, ..., 2n/2: Read 2n/2 elements from S(Af), S(Ag) and store then in Ãf , Ãg. Update F
(and similarly G) by computing F[j] = F[j] + β(i, r2)Af [j] for each j ∈ [2n/2]. At the end of the
iteration, P holds f(x, r2), g(x, r2).

2. P receives a1, a2 ∈ F from V and interacts with it following the sumcheck protocol for the instance
a1yf̂ + a2yĝ =

∑
x∈{0,1}n/2 fy(x)(a1f(x, r2)+ a2g(x, r2)). P sends yy0 , yy1 , yf , yg and V validates the

last round of the sumcheck protocol.

3. V checks the correctness of yy0 locally and for yy1 , interacts with P following steps 2.c-2.e (but in
step 2.d replaces p1(x) with the multi-linear polynomial s.t l(x) = β(x, ry1)).

Phase 1: Sumcheck over f̂ , ĝ. After initializing the necessary data-structures in the buffer space,
we proceed as follows.
First round: In this round, we compute and send the univariate polynomial p0(x) of the n-degree
variable (step 1 of First round). Specifically, we make a streaming pass over the vectors reading
n elements at a time, form the polynomials pf (x) = f̂(x, h2,b), h2 ∈ H1,b ∈ {0, 1}n/2 and pg(x)
respectively, which we multiply (via FFT1), to update the polynomial p0(x) by setting p0(x) ←
p0(x) + pf (x)pg(x). Finally, send p0(x) to the verifier, which checks if K =

∑
ω∈H0

p0(ω) and replies
with a random point r0 ∈ F (step 2 of First round).
Second round: Similarly with the previous round, we make a streaming pass over the vectors.
This time we read chunks of 2n/2 elements and use them to evaluate the reduced polynomials
pf (x) = f̂(r0, x,b), pg(x) = ĝ(r0, x,b) for b ∈ {0, 1}n/2 which we multiply to compute p1(x) (step 1
of Second round). At this point, recall that after receiving p1(x), the verifier has to (i) evaluate p1(x)
at a random point r1 and (ii) check if p0(r0) =

∑
ω∈H1

p1(ω). Unfortunately, p1(x) is a 2n/2−logn+1-
degree polynomial. Therefore, to preserve the succinctness of our protocol, we delegate these checks
to the prover (step 2 of Second round).

Because p1(x) is univariate, we could directly apply the univariate sumcheck protocol [79, 32] to
prove (i) and (ii). However, this would either increase the overall proof size by a logarithmic factor [32],
or require additional trusted public parameters for univariate polynomial commitments [79]. (We also
note that using [79, 32] would give a multiplicative logarithmic overhead for the proving time of this
step, whereas our approach achieves linear time.) Instead, we propose an approach that solely relies
on multi-linear polynomials and, thus, is directly compatible with the remaining of our protocol. At
a high level, we first commit multi-linear extension of the coefficients of p1(x) using a multi-variate
PC [80], map the checks (i),(ii) as sumcheck instances, and invoke the standard sumcheck protocol
to prove their correctness.

More precisely, we first commit to the polynomial p1(x) =
∑

i∈[2l+1] ciL̃
1
i (x), where l = n/2− log n,

by committing to the multi-linear extension fc : Fl+1 → F of c = (c1, . . . , c2l+1), using a multi-variate
PC scheme [80] (line 14). Then, the prover sends the commitment to the verifier and receives r1
(step 2.a).

1In fact, since pf , pg are Lagrange polynomials, we first perform IFFT to compute their coefficients and then their
product using the FFT-based algorithm. Every such operation requires O(n logn) field operations and O(1) field
inversions. Because the elements we invert are the same for all multiplications, we do not need to perform inversions
on every multiplication but only once (e.g., when doing the first multiplication). See Appendix A.1 for more details.

13

For (i), we must prove that the sum of fc(x) at all elements of H1 equals p0(r0). Without
loss of generality, we assume there is a one-to-one mapping between x ∈ {0, 1}l and i ∈ [2l], s.t.
fc(x) = p1(ω

i). Thus, we use the standard sumcheck protocol to prove that p0(r0) =
∑

x∈{0,1}l fc(x)
(line 14). Finally, we end up with a claim for the evaluation of fc at a random point and prove its
validity via the PC scheme (step 2.b).

For (ii) (steps 2.c-2.e), we observe that p1(r1) =
∑

i∈[2l+1] L̃
(1)
i (r1)ci = K

∑
i∈[2l+1] ω

i(r1−ωi)−1ci,

for K = (r2
l+1

1 − 1)2−(l+1) constant. By setting w1 = (1, ω, . . . , ω2l+1−1) and w2 = (r−1
1 , . . . , (r1 −

ω2l+1−1)−1), we can express p1(r1) as p1(r1) = K
∑

x∈{0,1}l+1 fw1(x)fw2(x)fc(x). To prove this
sumcheck instance, we first commit to the polynomial fw2 and invoke the standard sumcheck
protocol. Finally, we end up with three claims yw1 , yw2 and yc at a random point. We prove the
validity of yw2 and yc with the PC scheme. For yw1 , we observe that fw1 was a multiplicative structure;
so we can verify the validity of yw1 in O(l) time. What remains is to prove the “well-formedness” of
fw2 , namely, for all i ∈ [2l+1], w2[i](r1 − ωi) = 1. We do so by translating this check to a sumcheck
instance 1 =

∑
x∈{0,1}l+1 β(x, r′)fw3(x)fw2(x), for a randomly selected point r′ and fw3 the multi-

linear extension of w3 = (r1, . . . , (r1 − ω2l+1−1)). Because fw3 has a multiplicative structure, the
prover does not need to compute its commitment.

Rest of the rounds: At this point, we have the multi-linear polynomials f̂(r0, r1,x2), ĝ(r0, r1,x2),
where r0, r1 are the random challenges of the first two rounds. Because the size of these polynomials
is O(

√
N), we can compute and store locally all their boolean hypercube evaluations, via a single

pass over Ag,Af (step 1 of Remaining rounds). We then invoke the standard sumcheck over

the stored evaluations F,G to complete the sumcheck protocol over the polynomials f̂ , ĝ (step 2 of
Remaining rounds).

Phase 2: Reducing evaluations of f̂ , ĝ to f, g. After the completion of the first phase, we end
up with yf̂ , yĝ, the evaluations of f̂ , ĝ at (r0, r1, r2). Unfortunately, the verifier can only validate
evaluations of the multi-linear polynomials f, g. To reduce these claims into evaluations of f, g at a
random point, we observe that yf̂ (resp. yĝ), can be re-written as yf̂ =

∑
x∈{0,1}n/2 fy(x)f(x, r2), where

fy is the the multi-linear extension of the vector y0⊗y1, and for i ∈ {0, 1}, yi = ((Li
1(ri), ..., L

i
|Hi|(ri)))

is the vector of evaluations of all Lagrange coefficients of Hi at ri. Because the polynomials involved
have size

√
N , we can prove the latter sums, again using the standard sumcheck. In more detail,

we first perform a single pass over Af ,Ag via the streaming oracles, computing the hypercube
evaluations of f(x, r2), g(x, r2) and storing them into our buffer space (step 1). Then, the prover
receives two challenge points a1, a2, batches the two sumchecks using the standard technique of [81],
and uses the stored evaluations to generate a sumcheck proof for the batched instance (step 2). Thus,
the verifier gets claims of f, g for the same evaluation point.

It remains to prove the correct evaluation of fy at point r3. As fy(x) = fy1
(x1)fy2

(x2), where
x = (x1, x2), it is enough to check yy0⊗y1

= fy1
(r3,1)fy2

(r3,2) = yy0
yy1

. Although the correctness of

yy0
can be checked in time O(n), for yy1

this takes O(2n/2−logn). To avoid this, we use the techniques
of the delegation step of Phase 1, to establish the correctness and well-formedness of fy1

(step 3).
The following is proven in Appendix A where we also show how it can be made zero-knowledge

adapting the techniques of [10].

Theorem 1 Let f, g : Fn → F be multi-linear polynomials. Our construction is a space-efficient
argument of knowledge for the sumcheck instance K =

∑
x∈{0,1}n f(x)g(x). The prover requires space

of O(
√
2n) field elements, and has proving complexity of O(2n log n). Proof size and verification

complexity are O(n).

14

3.2 Our Space-Efficient Argument of Knowledge

In this section, we construct our space-efficient argument of knowledge for data-parallel arithmetic
circuits. For our purposes, we consider a d-layered arithmetic circuit C to be data-parallel if, for every
layer i ∈ [d], its corresponding circuit denoted with Ci, consists of multiple copies of sub-circuits
running on different inputs [67, 68, 82, 28, 8, 69]. Similar to prior works, we assume each layer
consists of multiple copies of a single sub-circuit, denoted with C′i, but we can directly extend this
for different sub-circuits [82].

An arithmetic circuit C can be evaluated naturally in optimal time Θ(|C|). For arbitrary circuits,
in order to achieve this optimal evaluation time one may need O(|C|) space to store the circuit
topology and partial gate evaluations. Indeed, prior works for space-efficient arguments that support
arbitrary circuits [26] require this much storage. In contrast, by focusing on data-parallel arithmetic
circuits, we achieve prover space O(spS(x) +

∑
i∈[d] |C′i|) +

√
|C| where spS(x) is the space required

to instantiate the streaming oracle S(x) for the input x.2 That is, we achieve the first space-efficient
SNARK for arithmetic circuits with prover space asymptotically smaller than the optimal circuit
evaluation time—albeit for data-parallel circuits.

To build our space-efficient SNARK, we first construct a space-efficient variant of the GKR
protocol that is given a “short” description of C (e.g., the description of the sub-circuits and the
number of copies per layer), streaming access to x, and proves the correct computation of the circuit.
As a first step, we construct a space-efficient protocol for the correct computation of a single layer
of the circuit (see Section 3.2.1), which we later use to realize a space-efficient variant of the GKR
protocol (Section 3.2.2). Finally, in Section 3.2.3 we compile the latter into an argument of knowledge.

3.2.1 Proving the correct computation of a single layer.

Recall from Section 2 that the GKR protocol, starting from the output, successively proves the
correct computation of every layer until reaching the input. Hence, to build a space-efficient variant
of GKR, we first need to construct a space-efficient protocol for proving the correct computation of
a single layer. More precisely, assuming that Si (and S′

i resp.) is the number of input gates of Ci
(and C′i resp.), si = logSi, s

′
i = logS′

i, Vi the input of Ci (with x = Vd corresponding to the input of
the C) and fi its multi-linear extension, we want to prove the following sumcheck instance:

fi−1(r) =
∑

(x,y)∈{0,1}2si

(
f i
add(r, x, y)(fi(x) + fi(y)) + f i

mul(r, x, y)fi(x)fi(y)
)

Where r ∈ Fsi−1 is a randomly selected point and i ∈ [d] a layer of C. At first glance, this
instance seems incompatible with the protocol we introduced in the previous section, as it contains
multiplications of more than two polynomials. Fortunately, by relying on the techniques introduced
in [10], we can divide our protocol into two phases, where in every phase, we generate a proof for
a sumcheck of the form

∑
x∈{0,1}n f(x)g(x). Then, we invoke our space-efficient protocol to prove

that instance. Due to space limitations, we will only present how to deal with the multiplication
part of the sumcheck, e.g., generating a proof for K =

∑
(x,y)∈{0,1}2n f

i
mul(r, x, y)fi(x)fi(y), but we

emphasize that we can trivially handle additions in a likely manner.

Phase 1. In this phase, we need to generate a proof for K =
∑

x∈{0,1}si fi(x)h(x), where h(x) =∑
y∈{0,1}si f

i
mul(r, x, y)fi(y) (see Section 3.3 of [10]). Assuming that h is the multi-linear extension

of the vector Ah, we can prove the latter instance by directly invoking our space efficient sumcheck

2Note that spS(x) is always upper-bounded by |x|. Looking ahead, we will see cases in which spS(x) is sub-linear
to |x|.

15

protocol with input the streaming oracles S(Vi), S(Ah). What remains is to show how to instantiate
these oracles in practice.

Instantiating S(Vi). To instantiate streaming access toVi, we need to construct a routine which, upon
the j-th invocation, outputs the vector Vi[(j− 1)S′

i : jS
′
i]. To achieve that, we will invoke S(Vi+1) to

receive the next sub-array of Vi+1, Ṽi+1 ∈ FS′
i+1 . Then evaluate the sub-circuit C′i+1(Ṽi+1), storing

the output values into the buffer. If the output size is less than S′
i, we repeat the same process until

copying S′
i elements. Note that the base step of this recursion is i = d, where in the j-th invocation

we output Vd[jS
′
d : (j + 1)jS′

d].

Instantiating S(Ah). Upon the j-th invocation, S(Ah) outputs the evaluations of h(j, x2) in the

hypercube with j ∈ {0, 1}si−s′i . Because our circuit is data-parallel, we can re-write h as:

h(j, x2) = β(r1, j) ·
∑

z2,y2∈{0,1}s
′
i−1+s′i

β(r2, z2)f
′i
mul(z2, x2, y2)fi(j, y2)

where r = (r1, r2) ∈ Fsi−1−s′i−1 × Fs′i−1 and f ′i
mul the multi-linear extension of the multiplication

wiring predicate of C′i. We can efficiently evaluate the latter using S(Vi) and computing “on the fly”
the necessary evaluations of β(·).
Phase 2. After the first phase, we have evaluations of fi and h at a random point r′ ∈ Fsi . In the
second phase, we must generate a proof for h(r′) =

∑
y∈{0,1}si g(y)fi(y), where g(y) = f i

mul(r, r
′, y),

is the multi-linear extension of array Ag. As before, we generate this proof using our space-efficient
protocol given oracles S(Ag), S(Vi). Since we discussed how to construct S(Vi), we will solely focus
on instantiating streaming access to Ag.

Instantiating S(Ag). To establish streaming access to Ag, we need to construct a routine which

on the j-th invocation outputs Ag[(j − 1)2s
′
i : j2s

′
i]. This translates to efficiently computing the

polynomial g(j, y2) in all y2 ∈ {0, 1}s
′
i . Due to the parallel nature of our circuit we can re-write g as:

g(j, y2) = β(r1, j)β(r
′
1, j)

∑
z2,x2∈{0,1}

s′
i−1

+s′
i

β(r2, z2)β(r
′
2, x2)f

′i
mul(z2, x2, y2)

Note that we can efficiently compute all evaluations of this polynomial “on the fly”.
Regarding space efficiency, observe that to instantiate S(Vi), we need space of spS(x) field

elements (because for the baseline step of the recursion, we need to have access to Vd) and an
additional space of

∑
j∈[i,d−1](|C′j+1|+ |C′j |) (to compute the output of every recursive invocation).

We follow a similar argument for S(Ah), S(Ag). Moreover, from Theorem 1, we know that the
space required to generate a proof for the sumcheck protocol is O(

√
Si), leading to an overall space

complexity of O(spS(x)+
√
Si+

∑
j∈[i,d] |C′j |). As for the proving complexity, we invoke our sumcheck

protocol twice and for each invocation, we need to scan S(Vi), S(Ag), S(Ah) a constant number
of times. A single scan over S(Vi) (and consequently S(Ah)) requires

∑
j∈[d,i] Sj field operations

as we need to evaluate C until layer i, while for S(Hg) we only need O(Si). Thus the total proving
complexity is O(Si log logSi +

∑
j∈[d,i] Sj).

3.2.2 Proving the correct computation of C.

We can now directly instantiate a space-efficient variant of GKR replacing its per-layer sub-protocol
(see Section 3.3 of [10]) with the one described above. Protocol 2 gives a detailed description of our
space-efficient variant of the GKR protocol. Observe that in the main previous section, we described
how to prove a sumcheck instance only for step 3. However, this instance accounts only for the
output layer. In practice, because we need to reduce two evaluation points into one, for all other
layers we end up with a sumcheck instance as presented in step 6.b.

16

Protocol 2 : Space-Efficient Variant of GKR. Let C be a d-layered data-parallel arithmetic circuit.
We denote with Vd ∈ FSd the input values of C, V0 ∈ FS0 its output values and Vi ∈ FSi the output
values of the i-th layer of C. Furthermore, we denote with fi : Fsi → F the multi-linear extension of Vi.
Assume a prover P having streaming access to Vd and verifier V having oracle access to fd, f0. P proves
that C(Vd) = V0 by interacting with V over the following protocol:

1. V: Select a random point r(0) ∈ Fs0 and send it to P.

2. P: Evaluates f0(r
(0)) using access to the streaming oracle S(V0) and sends f0(r

(0)) to V.

3. P-V: Interact following the space-efficient protocol (as described in Section 3.2.1) for proving the
correctness of the output layer:

fd(r
(0)) =

∑
x,y∈{0,1}2s1

f i
add(r

(0), x, y)(f1(x) + f1(y)) + f i
mul(r

(0), x, y)(f1(x)f1(y))

4. P: At the end of the protocol, send f1(r
(1)
1), f1(r

(1)
2) to V.

5. V: Evaluate uadd = f i
add(r

(0), r
(1)
1 , r

(1)
2) umul = f i

mul(r
(0), r

(1)
1 , r

(1)
2), and check if the last round of

sumcheck equals to uadd ·
(
f1(r

(1)
1) + f1(r

(1)
2)

)
+umul · f1(r(1)1) · f1(r(1)2).

6. For i = 2, ..., d do:

(a) V: Randomly selects a, b ∈ F and sends them to P.
(b) P-V: Interact following the space-efficient protocol (as described in Section 3.2.1) for proving

the correctness of the (i− 1)-th layer:

afi−1(r
(i−1)
1) + bfi−1(r

(i−1)
2) =

∑
x∈{0,1}si

Fadd(x, y)(fi(x) + fi(y)) + Fmul(x, y)(fi(x)fi(y))

Where Fadd(x, y) = a·faddi
(r

(i−1)
1 , x, y)+b·faddi

(r
(i−1)
2 , x, y), Fmul(x, y) = a·fmuli(r

(i−1)
1 , x, y)+

b · fmuli(r
i
2, x, y)

(c) P: At the end of the protocol, send fi(r
(i)
1), fi(r

(i)
2) to the verifier.

(d) V: Compute the evaluations of the wiring predicates and validate the last round of the sumcheck
as in step (5).

7. V: Picks a1, a2 ∈ F at random and sends it to the P.

8. P-V: Interact following the space-efficient sumcheck protocol (Protocol 1 of Section 3.1) Protocol
1 for the instance:

a1fd(r
(d)
1) + a2fd(r

(d)
2) =

∑
x∈{0,1}sd

(a1β(x, r
(d)
1) + a2β(x, r

(d)
2))fd(x))

Using as input the streaming oracles S(Vd) and S(G) where G stores the evaluations of the

polynomial a1β(x, r
(d)
1) + a2β(x, r

(d)
2) at all x ∈ {0, 1}sd . Finally, send fd(rd) to V.

9. V: Validates the last sumcheck round by evaluating β(rd, r
(d)
1), β(rd, r

(d)
2). Finally, it queries the

oracles of the polynomials f0, fd at r(0) and rd respectively to validate the correctness of f0(r
(0))

and fd(rd).

Although this is almost identical with the one of step 3, we need to perform some additional
work when instantiating streaming access to the hypercube evaluations of h(x) and g(x) (denoted

17

with Ah and Ag). Starting from h(x) observe that:

h(x) =
∑

y∈{0,1}si
(afmul(r

(i)
1 , x, y) + bfmul(r

(i)
2 , x, y))fi(y) =

a
∑

y∈{0,1}si
fmul(r

(i)
1 , x, y)fi(y) + b

∑
y∈{0,1}si

fmul(r
(i)
2 , x, y)fi(y) =

ah1(x) + bh2(x)

So, to instantiate streaming access to Ah, we create a routine which on the j-th invocation calls
the streaming oracles of Ah1 and Ah2 , as we described in section 3.2.1, and uses a, b to aggregate
the results. Similarly, we generate the streaming access to Ag.

Finally, note that at the end of the step 6 of Protocol 2, the verifier ends up with two evaluations

of the fd, at r
(d)
1 ,r

(d)
2 . We can reduce these claims into one by applying an additional space-efficient

sumcheck (step 8). For that sumcheck we need streaming access to the vector B that contains all

evaluations of (a1β(x, r
(d)
1)+a2β(x, r

(d)
2) at x ∈ {0, 1}sd . To efficiently instantiate such access, we can

precompute the tables B1,1 = (β(1, r
(d)
1,1), ..., β(

√
2sd/2, r

(d)
1,1)), B1,2 = (β(1, r

(d)
1,2), ..., β(

√
2sd/2, r

(d)
1,2))

(and B2,1,B2,2 resp.), where r
(d)
1,2 = (r

(d)
1,1, r

(d)
1,2) ∈ Fsd/2 × Fsd/2 and compute each evaluation on the

fly using only two multiplications.
The overall space complexity is the maximum space required for a single layer, i.e., O(spS(x) +∑

i∈[d] |C′i| +
√
S) (where S = max({S}i∈[d])), which is the space needed to evaluate C plus an

additional
√
S. Also, the proving complexity is

∑
i∈[d]

(
Si log logSi +

∑
j∈[i] Sj

)
≈ O(|C| log log |C|+

d|C|). Unfortunately, this grows with the circuit depth, which could lead to increased proving
times [8, 28]. To circumvent that, we use the following lemma which we prove in Appendix B:

Lemma 1 We can convert a d-layered data-parallel arithmetic circuit C into a d̃-layered one C̃
of size O(|C|) and d̃ < log log |C|, consisting of multiple copies of d distinct sub-circuits such that
|C̃′i| ≤ 2|C′i|, i ∈ [d]. Moreover, we can perform a pass over S(x̃) in time |C| and space spS(x̃) =
spS(x) +

∑
j∈[i,d] |C′j |. Finally, if C is log-space uniform then C̃ is also log-space uniform.

This allows us to generate a proof for the correct computation of C by invoking the space-efficient
GKR protocol over the “squashed” circuit C̃ reducing the proving complexity. Indeed, since C̃ is
data-parallel, we can evaluate it in space spS(x̃) +

∑
i∈[d] |C̃′i|, and thus we can prove its correct

computation with O(spS(x̃) +
∑

i∈[d] |C̃′i| +
√
|C|) space complexity, and O(|C| log log |C|) proving

complexity.

3.2.3 Our Space-Efficient Argument of Knowledge

Next, we present our space-efficient argument of knowledge. Given a data-parallel circuit C, instance
x and streaming access to witness w, we want to generate a proof for the relation R = {(C,x;w) :
C(x,w) = 1}. Our protocol, presented in Construction 1, follows the same strategy as prior (space-
inefficient) GKR-based zkSNARKs [83, 10, 28, 84]. First, we compute the polynomial commitment
of the multi-linear extension of w, fw, using our space-efficient PC scheme with input the streaming
oracle S(w) (step 1). Then, in step 2 we prove the correct computation of C by invoking our space-
efficient GKR protocol (as presented in Protocol 2) using streaming access to its input Vd = (x,w).
Finally, step 3 we must prove the correctness of claimed evaluations yx, yw of fx, fw at a random
point. The verifier validates yx locally, and yw using a PC evaluation proof generated by the prover.

18

Construction 1 : Sparrow. Let λ be a security parameter, F be a finite field and N be an upper bound
of circuit input size. The following construction presents the interactive version of our space-efficient
argument of knowledge.

• Gen(1λ, N): Invoke (pk, vk)← PC.Gen(1λ, log n, 1) and send pk to P and vk to V.

•
〈
P(pk,w),V(vk)

〉
(x): Let C be a d-layered data-parallel arithmetic circuit, x be a statement and w be a

witness such that C(x,w) = 1 and |(x,w)| ≤ N . Without loss of generality, we assume that |w|/|x| = 2m.

1. P: Computes and sends to V, Cw ← PC.Commit(pp, S(Vd)), using the space-efficient PC scheme,
where Vd = (x,w).

2. P interacts with V following the Space-Efficient Variant of the GKR protocol to prove that
C(x,w) = 1. At the end of the GKR protocol, both parties end up with a claimed evaluation y of fd
over r.

3. P Invokes π, yw ← PC.Eval(pp,S(x), rw), where rw = (r1, ..., rlog |w|,0
log(|x|+|w|)−log |w|) and sends

π, yw to V.
4. V: Evaluates yx = fx(rx), on rx = (r1, ..., rlog |x|), checks if PC.V erify(vk, π, Cw, rw) = 1 and

validates y using yw, yx.

What remains, is to find a PC scheme that satisfies our space requirements. Note that we cannot
use multi-linear KZG, as Gemini does, since its public parameters scale linearly to the witness size
(or even to C if depth reduction is used). To overcome that issue, we need a scheme with public
parameters sub-linear to the polynomial size. Fortunately, such schemes already exist [85, 35, 86].
For Sparrow, we will use Kopis [85], a scheme based on inner-pairing products [86] and KZG,
that has public parameters of size O(

√
N) group elements, commitment complexity of

√
N MSM

of size
√
N and

√
N pairings, evaluation complexity of O(N) field operations and O(

√
N) pairing

operations, and O(logN) proof size and verification complexity. Furthermore, we can instantiate a
space-efficient variant for the commit and evaluation algorithms straightforwardly, using O(

√
N)

buffer space and maintaining the same performance characteristics.
In particular, assuming that f : FlogN → F is the multi-linear extension of Af ∈ FN for

which we have streaming access, we can instantiate a space efficient variant of the commit and
evaluation algorithms of Kopis in the following way. To generate the commitment Cf , we first
scan S(Af), reading the next

√
N elements, use them to compute the polynomial fi : FlogN/2 → F

and its KZG commitment Ci which we store in a buffer. After reading all elements, we compute
Cf =

∏
i∈[

√
N] e(Ci, vi). To generate an evaluation proof at the point r = (r1, r2) ∈ FlogN/2×FlogN/2,

we use the inner-pairing product introduced in [86] to prove that C∗ =
∏

i∈[
√
N]C

β(i,r1)
i . Finally, we

scan Af one more time, to evaluate the aggregated polynomial f∗(x) =
∑

i∈{0,1}logN/2 β(i, r1)fi(x)
and generate an evaluation proof for f∗ at r2, using the KZG evaluation algorithm.

Note that we can make the argument zero-knowledge with the standard technique of [10],
combined with the zero-knowledge version of our sumcheck 3.1, and Kopis [85]. Also observe that by
applying the Fiat-Shamir heuristic, our protocol becomes non-interactive. Finally, we can state the
following result which we prove in Appendix B.

Theorem 2 For a d-layered data-parallel arithmetic circuit C, Sparrow is a zero-knowledge ar-
gument of knowledge for relation R = {(C,x;w) : C(x,w) = 1}, with proving complexity of
O(|C| log log |C|) field operations and MSM of size O(|C|), O(|x| + spS(w) +

∑
i∈[d] |C′i| +

√
|C|)

space, and O(log(|C|)) proof size. For a log-space uniform C, the verification time is O(|x|+ log |C|).

19

4 Zero-Knowledge Proofs of Forest Training and Predictions

In this section, we introduce our scheme for Zero-Knowledge proofs of forest training and predictions
(zkFTP), which enables a prover to commit to a dataset D and a forest F and prove in zero-
knowledge that F has been trained correctly on D. Later, given test point x it can be proved in
zero-knowledge that y is the corresponding prediction with respect to F . We define zkFTP as a tuple
of the probabilistic algorithms (KeyGen, ComData, ComForest, ProveTrain, VerifyTrain, ProvePred,
VerifyPred). At a high level, KeyGen takes as input the dimensions of the dataset, maximum height
h, and number of trees K, and generates proving and verification public parameters. ComData takes
as input D ∈ [B]n×d and computes the commitment CD. Likewise, we define ComForest. Given D
and F , ProveTrain generates a proof that F = Train(D). VerifyTrain uses this proof along with
CD, CF to validate its correctness. Similarly, ProveForest takes as input F , a test point x and returns
y along with a prediction proof. Finally, VerifyPred uses the latter proof along with CF to check
whether y = Predict(F ,x). zkFTP must satisfy forest and data extractability, meaning that if a
prover generates an accepting proof then it must know a forest F trained on data D and seed, and
both F , D are the pre-images of CF and CD, respectively. It also achieves training zero-knowledge,
i.e., proof πT reveals no additional information about F and D other than the dimensions of D,
maximum height, total number of nodes and trees in F . It achieves similar properties for prediction,
for which we follow the formulation of [40]. Formally, our zkFTP is described by the following
algorithms:

• pk,vk← KeyGen(1λ, n, d, h,K): Given a security parameter λ, maximum number of points n,
number of features d, maximum tree height h and number of trees K in forest, generate public
parameters pk (for the prover) and vk (for the verifier).

• CD ←ComData(pk, D, rD): Given a dataset D ∈ [B]n×d and randomness rD, return a dataset
commitment CD.

• CF ←ComForest(pk,F , rF): Given forest F of K trees {T1, . . . , TK} and randomness rF , return
dataset commitment CF .

• πT ←ProveTrain(pk, D,F , rD, rF , seed): Return a proof πT showing that F ← Train(D, seed),
where seed bootstraps the training randomness.

• 0, 1 ←VerifyTrain(vk, CD, CF , πT , seed): Return 1 if πT is valid proof of forest training with
respect to the pre-images of CD, CF and seed.

• y, πP ←ProvePred(pk,F , rF ,x): Return a proof πP showing that y = Predict(F ,x).

• 0, 1←VerifyPred(vk, CF , πP , y,x): Validate the prediction y on x using πP and CF .

Regarding the training phase, our scheme must satisfy training completeness, meaning that the
prover always generates a valid proof for a correctly trained forest F . In addition, it must satisfy
forest and data extractability in the sense that whenever a prover generates an accepting proof
of forest training then it has to know the pre-images of CF and CD, F and D respectively, such
that F = Train(D, seed) with overwhelming probability. Finally, our scheme must satisfy training
zero-knowledge, meaning that the proof πT reveals nothing about the forest and the dataset other
than the information the verifier already knows (namely, the dataset size, number of features, number
of trees, and maximum depth of the trees). More formally:

20

• Training Completeness. For any pk,vk generated by KeyGen, dataset D ∈ [B]n×d, seed,
CD ← ComData(D, rD) it holds that:

Pr

πT , CF ← ProveTrain(pk, D,F , rD, rF ,K, seed)∧
F = Train(D, seed) :

1← V erifyTrain(vk, CD, CF , πT)

 = 1

• Forest and Data Extractability. For any PPT adversary A, there exist a PPT extractor E
such that:

Pr


CD, CF , πT , seed← A(pk,vk)∧
F , D, rD, rF ← E(pk,vk)∧

1← V erifyTrain(vk, CD, CF , πT , seed)∧(
F ̸= Train(D, seed)∨

CD ̸= ComData(D, rD) ̸= ComForest(F , rF)
)

 ≤ negl(λ)

• Training Zero-Knowledge. For any number of instances n, features d, trees K with maximum
depth h, pk,vk produced by KeyGen, and adversary A, there exists a simulator S such that
for the experiments RealA,D,F (pk,vk), IdealA,n,K,h,seed(pk,vk) (as defined bellow) we have:

P (RealA,D,F (pk,vk) = 1) ≈ P (IdealA,n,K,h,seed(pk,vk) = 1)

RealA,D,F (pk,vk)

1. seed← A(pk,vk)

2. CD ← ComData(pk, D, rD)

3. CF ← ComForest(pk,F , rF)

4. πT ← ProveTrain(pk, D,F , rD, rF ,K, seed)

5. b← A(vk, CD, CF , πT)

6. Return b

IdealA,n,d,K,h(pk,vk, trap)

1. seed, n, d, h,K ← A(pk,vk)

2. CD ← S1(pk, trap, n, d)

3. CF ← S2(pk, trap,K, h, seed)

4. πT ← S3(pk, trap, CD, CF , seed)

5. b← A(vk, CD, CF , πT)

6. Return b

As for the prediction phase, we want zkFTP to satisfy prediction completeness in which the
prover will always generate an accepting proof for a correct prediction. Moreover, we require forest
extractability, meaning that whenever a prover generates an accepting prediction proof, it must know
a forest F such that y = Predict(F ,x) with overwhelming probability. Lastly, zkFTP needs to
satisfy prediction zero-knowledge in the sense that πP reveals nothing about F other than what
the verifier already knows, which is the number of trees K, the maximum height of trees h and the
prediction of F at x. Specifically, we have:

• Prediction Completeness. For any pk,vk, forest F , CF ← ComForest(D, rD) and test
point x it holds that:

Pr

πP , y ← ProvePred(pk,F , rF ,x)∧
F = Predict(F ,x)∧

1← V erifyPred(vk, CF , πP , y,x)

 = 1

21

• Forest Extractability. For any adversary A, there exist an extractor E such that:

Pr


CF , πP ,x, y ← A(pk,vk)∧

F , rF ← E(pk,vk, CD, CF , πT)∧
1← V erifyPred(vk, CF , πP , y,x)∧(

y ̸= Predict(F ,x) ∨ CF ̸= ComData(F , rF)
)
 ≤ negl(λ)

• Prediction Zero-Knowledge. For any number of trees K with maximum depth h, pk,vk,
adversary A, there exists a simulator S such that for the experiments RealA,F(pk,vk),
IdealA,K,h(pk,vk) (as defined bellow) we have:

Pr(RealA,F (pk,vk) = 1) ≈ Pr(IdealA,K,h(pk,vk) = 1)

RealA,F (pk,vk)

1. CF ← ComForest(pk,F , rF)

2. x← A(vk, CF , h,K)

3. πP , y ← ProvePred(pk,F , rF ,x)

4. b← A(vk, CF , πP ,x, y, h,K)

5. Return b

IdealA,n,d,K,h,seed(pk,vk, trap)

1. CF ← S1(pk, trap, h,K)

2. x← A(vk, CF , h,K)

3. πP , y ← S2(pk, trap, CF ,x, h,K)

4. b← A(vk, CF , πP ,x, y, h,K)

5. Return b

Now we have everything we need to present zkFTP . First, in section 4.1 we introduce a certification
algorithm for checking the correctness of training of decision trees and forests which is asymptotically
faster than training the model from scratch. In subsequent sections, we present our algorithms with
emphasis on efficiently proving the correct training of a forest by utilizing our certification algorithm.
To simplify the presentation, in section 4.2, we focus on zkFTP for a single tree T (i.e., K = 1).
Next, in section 4.3, we show how to generalize our construction for forests (K > 1).

4.1 Certifying Correctness of Decision Trees

Tree training requires building the tree by repeated splits of the dataset per tree node. Asymptotically,
this takes O(h|D|). Moreover, it entails mostly comparisons, as well as other components like recursive
tree traversal and random memory accesses, all of which are “costly” to compile inside a circuit-based
zkSNARK. Motivated by this, we propose a lightweight certification algorithm which, given as input
a tree T and a dataset D, validates the correctness of the training of the first without having to redo
it. At a high level, it computes the histograms of the tree leaves and, based on their homomorphic
properties, calculates the histograms of the remaining nodes. Then, it uses the latter to validate
the correctness of node splits. In more detail, our certification algorithm initially checks that T is a
well-formed tree, and then carries out the following steps:

1. First, we assign each element to its corresponding leaf. Namely, let P : N→ [L] be an assignment
function, where L the number of leaves, then for every point pj ∈ D, perform an inference step
and, depending on which leaf it lies in, we update P [j] accordingly (e.g., if pj ∈ D lies in the i-th
leaf of the tree, then P [j] = i).

22

2. In the second step, and using P , we compute the histograms for each leaf, feature j ∈ [d] and
label. In the end, for every partition, we computed 2d histograms of size B each.

3. In the third step, we compute the histograms of the non-leaf nodes. We observe that histograms
are homomorphic, in the sense that if Hvl and Hvr are the histograms of the children of a node v,
then Hv = Hvl +Hvr . Thus, starting from leaves, we aggregate the histograms until reaching the
root.

4. Starting from the root, use each node’s histograms to compute the best-split value and its feature
and compare them with the corresponding node in T . If they are not the same, reject, otherwise
proceed to its children. When checking a leaf, additionally check if the stopping criteria are met
(see Section 2).

Algorithm 1 gives a detailed description of our tree certification algorithm, denoted as CertifyTree.
It should be noted that CertifyTree takes as input the tree T , dataset D, and a vector FB ∈ Nn

(referred to as a frequency vector), which will be utilized later during forest training certification.
Initially, we assume that FB is an n-sized vector consisting of ones.

Having established that, the algorithm starts by initializing the partition assignment array P , the
leaf histograms H leaf , and a listN containing all the tree T ’s leaves (line 12). It then progresses to the
first step (lines 13-15), where it iterates over the dataset once, invoking the TreePredict algorithm
for each data point to obtain the predicted leaf’s ID i and updating P accordingly. Subsequently,
using the vector P , the algorithm advances to the second phase by computing the leaf histograms
(lines 16-17). After this computation, it calculates histograms for the remaining nodes (lines 18-24)
as follows: Initially, it sets up a dictionary H that maps tree nodes to their respective histograms
(lines 18-19). It then retrieves the sibling of the first node in N (line 21), removes both nodes from
N and adds their parent (line 23), updating the dictionary by mapping the parent node to the sum
of the children’s histograms (line 24). Finally, the algorithm transitions to the last phase, where it
verifies the correctness of splits by employing ValidateSplit. Broadly speaking, ValidateSplit
follows a structure akin to FindSplit from training algorithm 3, but it leverages the previously
computed histograms and focuses solely on assessing the optimal split.

The proof of the correctness of our certification algorithm is in Appendix C.1. At a high level, if
T is invalid, the algorithm will always reject. For instance, if the root of T is incorrect (e.g., wrong
split-value or feature), our algorithm will detect this with probability one. That derives from the
fact that the root histograms we computed at step (3) are identical to the histograms the training
algorithm computes to perform the first split. Consequently, our algorithm computes the same root
node as the “honest” training algorithm. Next, if the split is valid, we know that the histograms of
the root’s children are correct. That holds because, at step (1), data assignment to leaves depends
on the correctly computed root. The same argument applies recursively for the rest of the nodes. We
note our certification assumes a deterministic Train; in practice, this is not a limitation since a
randomized training algorithm can be “de-randomized” by explicitly providing the random seed as
input.

Regarding performance, the computation of assignments and leaf histograms requires one scan of
the dataset and O(|D|) steps (“on the fly” without having to store P). Afterwards, steps 3-4 take
O(2d|T |B). For all practical purposes, 2d|T |B < |D| [78, 75], leading to an overall complexity of
O(|D|). This is a big improvement over the O(h|D|) required by the training algorithm! Besides, the
certification algorithm needs space |D| (for the dataset), |T | (for the tree), and 2 · d · |T | ·B (for the
histograms), totaling to O(|D|+ d|T |B).

Extending to Forests. Using the tree certification algorithm, we can construct an algorithm
that certifies the correctness of the training of a forest. We provide a detailed description of the

23

Algorithm 1 Tree Certification Algorithm

1: procedure ValidateSplit(T , H, node,A)
2: if IsLeaf(T , node) = 1 then return 1
3: g ← 0|A|

4: for all j ∈ A do
5: ϵ← ϵ ∪ (j,BestSplitScore(Histnode,j,0, Histnode,j,1)

6: v, j = min(ϵ)
7: if v ̸= node.v ∧ j ̸= node.a then return 0
8: s1 ← ValidateSplit(T , H, node.left,A− {j})
9: s2 ← ValidateSplit(T , H, node.right,A− {j})

10: return s1 ∧ s2
11: procedure CertifyTree(T , D,FB)

12: Set P = 0n, H leaf
i,j,k ← 0B, ∀(i, j, k) ∈ (L, [d], [2]),N ← L

13: for all j ∈ [n] do
14: i, ← TreePredict(T , Dj)
15: P [j] = i

16: for all i ∈ [n], j ∈ [d] do

17: H leaf
P [i],j,Di.label

[Di[j]] = H leaf
P [i],j,Di.label

[Di[j]]+FB[i]

18: for all i ∈ N do
19: H[i]← H leaf

i

20: while |N | ̸= 1 do
21: i1, i2 ← GetSiblings(N)
22: i← GetParent(T , i1, i2)
23: N ← N ∪ {i} − {i1, i2}
24: H[i]← {Hi1,·,· +Hi2,·,·}
25: return ValidateSplit(T , H, T .root, [d])

certification process in Algorithm 2. More precisely, given as input the forest F , dataset D, the
number of trees K and a seed needed to generate randomness, CertifyForest iterates over every
tree Ti of F , computes the frequency of each data point in the bagged dataset (used to train Ti) by
invoking the GetFrequencies algorithm and runs the Algorithm 1 with input the tree Ti, dataset
D and frequency vector Fi.

Note that correctness stems directly from the correctness of the certification algorithm for a
single tree. As for complexity, line 4 requires O(n) steps and line 5 O(|D|) steps. So the total
computational complexity of algorithm 2 is O(K|D|). Finally, space complexity equals to the space
needed to execute one invocation of the tree certification algorithm plus |F|.

4.2 Our zkFTP Construction for Trees

Here we present our construction for zero-knowledge forest training and prediction for a single tree,
with an emphasis on tree training. In the next section we will show how to generalize our techniques
for forests.

Key Generation & Commitment. Given the dataset dimensions n, d, KeyGen invokes the key
generation algorithm of our space-efficient PC scheme for polynomials of size nd. As we will explain
below, the prediction phase requires encoding the tree as a univariate polynomial, hence we also

24

Algorithm 2 Forest Certification Algorithm

1: procedure CertifyForest(F , D,K, seed)
2: b← 1
3: for i ∈ [K] do
4: Fi, seed← GetFrequencies(D, seed)
5: b← b ∧CertifyTree(Ti, D,Fi)

6: return b

Figure 1: Detailed description of the main data structures for training with max bin size B = 5. Leaf
histograms for Age are in green tables, and non-leaf histograms in blue ones. The purple table shows
the path from the root to the second leaf of the tree.

generate parameters for the univariate KZG PC [27]. ComData commits to the multi-linear extension
of D again using our space-efficient PC. For ComForest, we first encode T as a matrix T ∈ FL×p,
where each row, corresponds to a leaf, containing its id, coordinates (height and relative position)
and path to the root (see Figure 1). We commit to T by computing the polynomial commitment of
the multi-linear extension of T via our PC scheme.

Proving Training. For dataset D and tree T , our ProveTrain generates a zero-knowledge proof
of training by showing that “the certification algorithm on input D and T accepts”. We follow a
modular approach, proving each step of the certification algorithm independently by first translating
it into a data-parallel arithmetic circuit that performs the corresponding checks, instantiating the
streaming oracle for its input, and then invoking Sparrow. In this way, we can also utilize specialized
protocols that solely rely on the sumcheck (e.g., multiplication trees of [67] or the range proofs
of [7]) and result in concretely faster proving times. In addition, following this approach, we can also
pre-process parts of the proof that do not explicitly depend on the training process (e.g., proving
the correctness of bagging), leading to faster “online” proving times. Here, we provide a high-level
description of the circuit and leave correctness proofs and details on how to express permutation
and multi-set checks into arithmetic circuits in Appendix C.3.

(1) Checking Correctness of Assignments. Let T ′ ∈ Fn×p be an auxiliary matrix which, for every
data point, contains its path in the tree (e.g., inference of point pi ∈ D, will follow the T ′

i path).
Because every path encodes the leaf index (leftmost entry of purple table of Figure 1), to prove the
correct assignment of every point in a leaf, it is enough to prove T ′ is “well-formed” by showing that

25

(i) ∀pi ∈ D, T ′
i is the correct path of pi (ii) all paths from T ′ are rows of T .

Check (i) is done with a data-parallel circuit (denoted with C̃1) where each sub-circuit takes as
input a point pi and path T ′

i and validates the correctness of inference. For this we use the circuit
of [39]. For check (ii), we need to prove that {T ′

i}i∈[n] ⊆ {Ti}i∈[L] using the “standard” multi-set
check [28, 39], realized via two multiplication tree circuits of size O(D) and O(|T |) (denoted with
C̃2 and C̃3 respectively). Since this last circuit has size O(|T |) we can directly invoke the standard
GKR-based zkSNARK [10] for it. The first two have size O(|D|) but since they are data-parallel, we
can directly use Sparrow for them.

At this point, recall that to use Sparrow, we need to instantiate streaming access to the input
of the corresponding circuit. To achieve that, we first instantiate streaming access to T ′ by creating a
routine which, on the j-th invocation, uses S(D) to get the next point pj and performs an inference
step to compute and output T ′

j . Using S(T ′
j), we can construct the streaming oracles for the inputs

of the circuits C̃1 and C̃2. For the first circuit, observe that in the j-th invocation, we need to output
the tuple (pj , T

′
j , auxj), where auxj is auxiliary information required for the prediction circuit (e.g.,

bit-decomposition values). We do so by first invoking S(D) to get pj , S(T
′
j) to get T ′

j , generate auxj
and output (pj , T

′
j , auxj). As for the second circuit, we only need to use S(T ′).

(2) Checking Leaf Histograms. Let us first focus on a single histogram. To check its correctness, we

create a data-parallel arithmetic circuit that takes h ∈ [B]N and outputs a histogram H ∈ FB,
such that H[i] =

∑
j∈[N] I(hj = i). The “straightforward” way, as proposed in [87], is to represent

each element hi, via its one-hot encoding ρhi
∈ {0, 1}B, and aggregate all encodings to compute

H. Unfortunately, this results in a circuit of size O(BN). We significantly reduce this to O(N), by
treating the histogram H as a random access memory, with address space all values in [B]. Thus,
we can compute H by scanning h, updating H[hi] to H[hi] + 1 for every i ∈ [N]. This can now
be proven efficiently via offline memory consistency checks [88, 11, 89]. In particular, given h, the
initialized histogram Hb = {(i, 0), ∀i ∈ [B]}, the computed histogram H = {(i,H[i]), ∀i ∈ [B]} and a
memory read/write transcript Hr = {(hi, vi)}i∈[N], Hw = {(hi, vi + 1)}i∈[N], we must ensure that (i)
every i-th pair in Hr, Hw has the correct address and updated value, and (ii) Hr is a permutation of
a consistent read transcript in which a pair (i, vi) exists if and only if the pair (i, vi) already belongs
to Hw.For (i) we use a data-parallel circuit (denoted with C̃4) that takes as input Hr, Hw,h, and for
each i ∈ [N] checks if Hr[i][0] = Hw[i][0] = hi and Hr[i][1] + 1 = Hw[i][1]. For (ii), we rely on the
observations of [88], showing that the read/write transcripts are consistent if H ∪Hr = Hb ∪Hw.
Using the standard techniques of [11, 39, 28], we prove that H ∪Hr = Hb ∪Hw using a single circuit
(denoted with C̃5) that encodes four multiplication trees.

To apply this to the histograms of all leaves we extend the address space from a single value
to the tuple (j, vj , i, {0, 1}) where j ∈ [d] is the feature, vj ∈ [B] is the value of a data point at j,
i ∈ [L] the leaf index and {0, 1} the label of the data point. Because both circuits are data-parallel
we can use Sparrow to prove their correct computation.

What remains is to show how to instantiate streaming access to C̃4 and C̃5. To begin with,
given streaming access to the dataset D and T ′, we can instantiate S(h) in the following way. On
the j-th invocation, we invoke S(D), S(T ′), receive pj , yj = pj .label, T

′
j and output {hi,j}i∈[d] =

{(i, pj,i, T ′
j [0], yj)}i∈[d], where T ′

j [0] stores the leaf index of pj . For S(Hr), S(Hw), we use S(h) and an

auxiliary buffer H ∈ NB . Specifically, upon the j-th invocation of Hr (and Hw resp.) we invoke S(h)
to get {hi,j}i∈[d] return {hi,j , B[hi,j]}i∈[d] (and {(hi,j , B[hi,j] + 1)}i∈[d] resp.) and increment B[hi,j]

by one. Similarly, we can also compute the final histograms HL, which we store locally. Having
established that, we can use S(Hw),(Hr) and S(h) to instantiate streaming access to the input of C̃4
and S(Hw),(Hr), H

L we can instantiate streaming access to the input of C̃5.
(3) Checking Non-Leaf Histograms. For the third step, we must prove the correctness of non-leaf

26

histograms. More generally, we can prove computations over trees. Formally, we want to create
a circuit that, given as input the leaves, their data (in our case, the histograms), and a function
G : F|Dvr |+|Dvl

| → F|Dv | applied to the data, outputs the data of all non-leaf nodes of the tree. A
direct approach would be to “hardwire” the tree topology in the circuit. Unfortunately, the topology
not only is unknown a priori but may also need to remain hidden from the verifier. Alternatively, we
can enforce all leaves to have the same height (i.e., by adding padding nodes/leaves), but the circuit
would be of size at least O(2hmax), where hmax is the maximum tree depth, leading to considerable
overhead, e.g., when the tree is unbalanced. Next, we present a circuit whose size is only linear to
the number of nodes, at the cost of revealing to the verifier an upper bound on the number of nodes.

First, let L be the set of pairs containing leaf coordinates denoted as coord(v) = (h, p) (h
is height and p is relative position in the tree) and their data Dv. Furthermore, let S be the
computation transcript of the tree, i.e., a set containing the coordinates of all sibling nodes of the
tree and their corresponding data (if Si = {(coord(vi,l), Dvi,l), (coord(vi,r), Dvi,r)} is such a pair
then S =

⋃
i∈[|T |] Si). Given these sets, we generate a circuit that first checks that every element

Si encodes two siblings (e.g., pl = pr + 1, hl = hr) and then outputs the coefficients and data of
their parent as (hl − 1, pr/2,G(D1, D2)). Let N be the set containing all output pairs. Note that,
if S corresponds to a correct transcript of a tree computation, then N is the set containing the
coordinates of every non-leaf node and its data. Thus, we test whether N ∪L = S ∪ (0, 0, Dr), again
using a multi-set check, were (0, 0, Dr) corresponds to the coordinates and data of the root.

To prove the correctness of histogramsHN , we use this circuit with leaf data being their histograms
and function G vector addition. It also receives the tree to retrieve leaf coordinates. The circuit has
O(dLB) size so we again use the standard GKR-based zkSNARK.

(4) Checking Node Splits. This uses a circuit (denoted with C̃6) that validates the correctness of the
splits by computing the Gini index [72] for each entry of all histograms (checked in the previous
step), comparing them with the optimal ones. Even though this circuit has size O(dLB), it entails a
large multiplicative overhead, as it needs multiple comparisons (e.g., using range proofs). Hence, we
prove its correct evaluation circuit using Sparrow to reduce space complexity.

(5) Checking Tree Well-Formedness. Finally, we need to ensure that T corresponds to a tree graph
and there are no inconsistencies between paths, i.e., all sibling leaves/nodes follow the same path
to the root. We can check this with a circuit (denoted with C̃7) for computations over trees where
function G takes the paths of two sibling nodes and checks if their paths to the root are the same.
This circuit has size O(|T |) and we use the standard GKR-based zkSNARK.

Verifying Training. Finally, the verifier receives five proofs and corresponding commitments,
referring to steps (1)-(5) above, and checks them with the verification algorithms of the standard
GKR-based SNARK or Sparrow, accordingly. Note that these proofs refer to computations performed
over have to share some common inputs, i.e., steps (1),(2) share T ′, (2),(3) the leaf histograms, and
(3),(4) the non-leaf histograms. The verifier “glues” the verification process together by utilizing the
same corresponding commitments for these inputs when validating them.

Proving & Verifying Predictions. Having established the correctness of the model, the generation
of zero-knowledge proof of prediction for a given test point works as follows. First, it commits to the
path p ∈ Fp the prediction algorithm follows. Next, it uses the matrix lookup argument of [40] to
prove that p is a row of T . Finally, to validate the correctness of p for the test point, it invokes the
prover for the prediction circuit of [39] for p,x and label y. Due to the performance guarantees of
matrix lookup arguments, the proving time will be independent of the forest size.

Unfortunately, this has a caveat. All existing matrix lookup arguments [40, 90] assume the data
was committed with a univariate PC scheme, while our scheme relies on multi-variate polynomial
encodings. To overcome this, in ComForest, the prover uses a univariate PC scheme [27] to commit

27

to p(x) =
∑

i,j∈[L]×[p] Li(x)Ti,j , which is univariate polynomial encoding of T . It then proves that
the coefficients of p and fT (where the latter is the multi-linear extension of T that we previously
committed to) are the same by choosing a random point s, generating an evaluation proof for p(s),
and proving the sumcheck instance p(s) =

∑
x∈{0,1}logLp fy(x)fT (x), where y = (L1(s), . . . , LLp(s)).

4.3 Extending to Random Forests

Given the baseline case where K = 1, we can extend our zkFTP scheme to support forests (i.e.,
when K > 1). In this section, we will outline the necessary modifications required in all algorithms.

Adapting Key Generation & Commitment: KeyGen takes as an additional input the maximum
number of trees in the forest K and invokes the key generation algorithm of our space-efficient PC
scheme for polynomials of size ndK. For ComForest, observe that a forest F , is a set of K trees
{T1, . . . , TK}. Based on this, we encode F using a matrix F ∈ FKL×p, consisting of the concatenation
of the tree matrixes Ti as defined in section 4.2. Furthermore, we slightly update Ti ∈ FL×p by
inserting an additional entry on every row containing the index of the tree (i.e., i). We will use the
latter entry to validate that the prover selected one row from every tree. Similarly, we commit the
univariate polynomial representation of F . Finally, ComData remains unchanged.

Adapting Proving Training: As in the single tree case, we prove the training of a random forest
by following a modular approach, i.e., independently proving each step of the certification algorithm.
Recall that the forest certification algorithm consists of K invocations of the tree certification
algorithm with an additional step of computing the frequency vector for each tree. Consequently, to
prove the correctness of forest training, it is enough to adapt steps (1)-(5) to work over K trees and
incorporate a new step for proving the bagging process for each tree.

(0) Checking Bagging Correctness. In this step, instead of proving the correct computation of the
bagged dataset Di, we compute the frequency of every data point on Di. Because we sample points
uniformly at random and with replacement, the frequency of a data point at any Di follows a binomial
distribution. More precisely, assuming that FB ∈ NK×n be the matrix that contains the frequency
of every data point on every tree, we need to prove that every element of FB follows a binomial
distribution with n number of trials and 1/n probability of success.

To achieve that, at a high level, we need to prove the correct computation of a circuit that
takes as input a seed (selected by a verifier), a small pre-agreed table Tr (e.g., of size 216 elements
and following binomial distribution) and for each i ∈ [Kn], (i) generates a number gi uniformly at
random (ii) outputs FB[i] = Tr[gi]. For the first part, we use the Linear congruential generator [91],
which generates gi by computing gi = (Agi−1 + B)mod|Tr|, for A,B public parameters. So, to
prove (i), we will create a circuit (denoted with CB,1) that takes as input all gi’s and validates their
correctness. Note this circuit is data parallel with constant depth as it consists of kN sub-circuits
which contain two range proofs (for the modulo operation), two additions, and one differentiation (to
ensure that the input of gi is the output of the i− 1-th invocation). For (ii), we need to show that
{(gi,FB[i])}i∈[Kn] is a multi-set of {(i, Tr[i])}, which is done by using a circuit (denoted with CB,2)
that computes a multiplication tree. Because both circuits are data-parallel, we can use Sparrow
to prove their correct computation.

What remains is to show how to instantiate streaming access to the input of both circuits. We
begin by showing how to instantiate S(g), S(FB), where g ∈ FnK is the randomness vector and
FB ∈ FnK is the frequencies vector. For the first one, observe that gi = (Agi +B)mod|Tr|. Due to
the incremental nature of the computation, we can naturally instantiate streaming access to g with
minimal space overhead. Specifically, to instantiate S(g), we only need to maintain the element of
the previous invocation and A,B, |Tr|. Given S(g), we can construct S(FB) by invoking S(g) to get
the next randomness gi and outputting Tr[gi].

28

To generate streaming access to the input of CB,1, on the j-th invocation, we invoke S(g) to get
gj , and compute the auxiliary information (e.g., bit values) to perform the modulo operation. For
CB,2, we first use S(g), S(FB) to compute and locally store w3. We can access the rest of the input
elements using S(g), S(FB).

(1) Checking Correctness of Assignments.We modify this step by proving the correct computation of

the circuits C1,C2,C3 consisting ofK identical copies of the sub-circuits C̃1,C̃2,C̃3. Because |C3| = O(|F|),
we can prove its correct computation by invoking the standard GKR-based zkSNARK. For C1 and C2
we use Sparrow. Likewise, we modify the streaming oracles of the inputs of C1,C2 by constructing a
wrapper that invokes K streaming oracles, one for each tree, in sequential order, in the sense that
we invoke the i-th oracle after scanning all the data of the i− 1-th oracle. For instance, in the j-th

invocation, S(T ′) (where T ′ = T ′1| . . . |T ′K), will invoke S(T ′j/(n·p)) and output T
′j/(n·p)
[j](n·p)

.

(2) Checking Leaf Histograms. Similarly to the previous step, we prove the correct computation of

the circuits C4, C5 consisting of K identical copies of the sub-circuits C̃4,C̃5. Note, however, that we
need to slightly modify C̃4 in the following way. The i-th copy C̃4 takes as an additional input the
vector FB[i · n : (i+ 1)n] and instead of incrementing each bin by one (when accesses it), updates it
based on the input frequency. Because C4, C5 are data-parallel circuits, we use Sparrow to prove
their correct computation. Similarly, with the streaming oracles of Step 2, we can use the same
compiler to instantiate S(h), S(Hr), S(Hw). In addition, since C4 takes as input FB, we also need to
use S(FB).

(3) Checking Non-Leaf Histograms & (4) Proving Splits. We adapt these steps by using the circuits

C6 and C7 respectively, consisting of K copies of the sub-circuits C̃6 and C̃7. To prove the correct
computation of both circuits, we use Sparrow. Like in the previous steps, we can instantiate
streaming access to their inputs.

Adapting Training Verification. Training verification remains almost unchanged, with the only
exception that the verifier needs to validate the correctness of the proof generated in step (0).
Furthermore, it has to link the commitment of FB with step (2).

Adapting Proving & Verifying Predictions: We can extend the protocol of Section 4.2 for
a random forest by selecting the correct paths for x, one for each tree in the forest, denoted with
P ∈ FK×p. Then, invoke the matrix lookup argument to prove that every row of P belongs to F .
Finally, prove the correct computation of the prediction circuit but extended for forests (see [39]) for
more details. As for the protocol that links the pre-image of the univariate with the multi-variate
commitment of F , it remains unchanged.

Construction 2 gives a detailed description of our zkFTP scheme. For the matrix lookup
arguments, we make black-box use of the definition provided by [40]. Specifically, the matrix
lookup argument consists of four algorithms (Derive,Preproc,Prove,Verify). At a high level, Derive
takes as input univariate KZG parameters and outputs specialized public parameters necessary for
proving the matrix lookup argument. Preproc, is used by the prover to generate some auxiliary
information used to improve the complexity, Prove generates a zero-knowledge proof πlkp for
Rlkp = {(CF , CP,K, L, p); (P ∈ FK×p,F ∈ FKL×p) : P ⊆ F} and Verify validates it. Note that
ProveTrain invokes Construction 3 in which we present our proof of training protocol for forests.
Finally, we can claim the following, which we prove in Appendix C:

Theorem 3 Our construction is a zkFTP with proving complexity of O(|D|K log logK|D|), O(|D|+
|F|+LBd+

√
|D|K) space complexity, and O(logK|D|) proof size and verification time for training.

For prediction, it has O(hK log hK) prover time, O(d) verification and O(1) proof size.

29

Construction 2 (Zero-Knowledge proofs of Forest Training and Predictions): Let λ be the a security
parameter, n be the maximum number of points, d their dimension, h the maximum depth of the trees, K the
maximum number of trees and seed a random element used to bootstrap randomness.

• KeyGen(1λ, n, d, h,K): Invoke pkT , vkT ← PC.KeyGen(1λ, log(ndK), 1) to generate the public parameters
for committing the data, proving and verifying the forest training. Invoke the univariate KZG key generation
pkkzg, vkkzg ← KZG.KeyGen(1λ, κ(d, h,K)), pkP , vkP ← MLookup.Derive(srs,K2h, p,K) to generate the
public parameters for proving and verifying prediction (for more details on MLookup, see Figure 2, in Section 5
of [40]). Finally return (pk = {pkT ,pkkzg,pkP }, vk = {vkT ,pkkzg, vkP }).

• ComData(pk, D, rD): Invoke CD ← PC.Commit(pkT , fD, rD) and return CD.

• ComForest(pk,F , rF): Encode F to a matrix F = ((T1)
T | . . . |(TK)T)T ∈ FLK×p, as defined in Section 4.3,

where L is the maximum number of leaf nodes of the trees and Ti ∈ FL×p is a matrix representation of a
tree as explained in Section 4.2. Moreover, let gF be the multi-linear extension of F and pF the univariate
polynomial defined as pF (x) =

∑
i,j∈[KL]×[p] Lpi+j(x)Fi,j . Invoke CT

F ← PC.Commit(pkT , gF , r
(1)
F) and CP

F ←
KZG.Commit(pkkzg, pF (x), r

(2)
F). Return CF = {CT

F , CP
F }.

• ProveTrain(pk, D,F , rD, rF , seed):

1. Prove the correctness of training: Invoke Construction 3, and generate ten proofs (π1, . . . , π10) and
the commitments CFB , CT ′ , CHL , CH .

2. Return πT = {{CFB , CT ′ , CHL , CH}, {π1, ..., π10}}

• VerifyTrain(vk, CD, CF , πT , seed):

1. Verify bagging using π1, π2, CFB , seed and Tr.

2. Verify the correct partitioning of data using π3, π4, π5, CT ′ , CD and CF .

3. Verify the correct computation of histograms using π6, π7, CT ′ , CFB and CHL .

4. Verify the correct computation of non-leaf histograms using π8, CHL , CH and CF .

5. Verify the correctness of splits using π9, CH and CF .

6. Verify tree well-formedness using π10 and CF .

• ProvePred(pk,F , rF , x):

1. If P invokes this method for the first time it must compute the following additional proofs:

(a) Call aux←MLookup.Preproc((pkkzg, vkkzg), F) and locally store aux.

(b) Prove that the pre-images of CT
F and CP

F are the same: Pick a random point s ∈ F. Generate a
KZG evaluation proof for pF at s. Next, assuming that y = (L1(s), . . . , LKLp(s)), prove the sumcheck
instance pF (s) =

∑
x∈{0,1}log KLp fy(x)gF (x). Finally, generate an evaluation proof for the claim of

gF derived by the sumcheck protocol and prove the correct computation of fy(s) (using the same
techniques as with our space-efficient sumcheck). Set πlink the proof, that internally contains all the
PC evaluation proofs and sumcheck proofs.

2. Let P ∈ FK×p, be a matrix containing K paths (one for each tree) x follows when making a pre-
diction. Let p ∈ FKp be the vectorization of P. Compute and send to V the commitment Cp ←
KZG.Commit(pkkzg, pp(x), rp), where pp =

∑
i∈[Kp] Li(x)pi.

3. Invoke MLookup.Prove(pkP , (C
P
F , Cp),P, aux) and generate a proof πlkp, proving that every row in P

is a row in FT .

4. Let Rpred = {(Cp, x, y);p,w : Cpred(p,w, y) = 1 ∧Cp = KZG.Commit(pkkzg, pp(x))}, be the relation for
prediction where Cpred is the prediction circuit as described in C.4. Generate a proof πR for the relation
Rpred using a plonk-based CP-SNARK.

5. Return y, πP = {Cp, πlkp, πR, πlink}.

• VerifyPred(vk, CF , πP , y, x):

30

1. (Only once): Verify the equivalence of pre-images of CT
F , CP

F using πlink and CF .

2. Verify that all paths on the pre-image matrix of CP belong to the forest, using πlkp, CF , CP.

3. Verify the correctness of predictions, by validating the correctness of the paths using πR, CP, x and y.

Construction 3: Proof of Forest Training P is given public parameters pp, a dataset D for which instantiates
a streaming oracle S(D), a forest F = {T1, ..., TK}, commitment randomness rD, rF , and the seed element. Having
that, P invokes the following protocols:

1. Prove Bagging: If K > 1, P takes as public input the table Tr and proves the correct computation of the

frequencies table F ∈ FnK .

(a) Commit: P invokes the space-efficient PC scheme to compute and send to V,CFB ← PC.Commit(pk, S(FB)).

(b) Prove: P receives a random point s ∈ F from V and generates the proofs π1, π2 in the following way:

i. Let CB,1 be an arithmetic circuit that takes as input g and checks if gi = (Agi−1 + B)mod|Tr|. Invoke
Sparrow to prove that CB,1(x,w) = 1 where x = (A,B, seed) and w = (w1 = g,w2), with w2 auxiliary
data required to validate modulo operation.

ii. Let CB,2 be an arithmetic circuit that takes as input g,FB and proves that a1 =
∏

i∈[nK](gi+sFB [i]+s2) =∏
i∈[|Tr|](i + sTr[i] + s2)

∑
i∈[nK] I(FB [i]=Tr [i]). Invoke Sparrow to prove that CB,1(x, (w1,w2,w3)) = 1

where x = (Tr, s, s
2) and w1 = g,w2 = FB and w3 auxiliary data to compute the powers.

2. Prove the Correct Partitioning of Data: Given S(D) and F , prove the correct assignment of every point
in D and every tree in F .

(a) Commit: Let T ′ = {T ′1, ..., T ′K} be a set of auxiliary matrixes as defined in Section 4.2. P invokes the
space-efficient PC scheme to compute and send to V the commitment CT ′ ← PC.Commit(pp, S(T ′)).

(b) Prove: P Receives a random point s ∈ F from V and generates the proofs π3, π4, π5 in the following way:

i. Let C1 = C̃11 |...|C̃K1 be an arithmetic circuit such that C̃i1 takes as input T ′
i and computes ai =

∏
j∈[n](s

p+1+∑
k∈[p] s

kT ′i
jk). Invoke Sparrow to prove that a = C1(x,w), where w = T ′, x = (1, s, ..., sp+1), but without

committing T ′ again.

ii. Let C′2 = C̃′12 |...|C̃′K2 be an arithmetic circuit such that C̃i2 takes as input the i-th tree T i and computes ai =∏
j∈[L] (s

p+1 +
∑

k∈[p] s
kT i

jk)
|Pij |. Invoke a GKR-based zkSNARK to prove a = C′2(x,w1,w2) (without

committing to w1), where w1 = F , w2 information required to compute the powers, and x = (1, s, ..., sp+1).
Observe that we require a to be equal with (a). This is satisfied by committing to fa = (a1, ..., aK) at the
beginning of step (a).

iii. Let C3 = C̃13 |...|C̃K3 be an arithmetic such that C̃i3 validates the correctness of the matrix T ′i for the i-th tree
as described in Section 4.2. Invoke Sparrow to prove that C3(w1,w2,w3) = 1 where w1 = D,w2 = T ′

and w3, the auxiliary information required for by the inference circuit for every j-th point of D and i-th
tree.

3. Prove Leaf Histograms: If K > 1, P takes as input S(F). Moreover let h = (h1, ...,hK) be the set addresses

such that hi
j,k = (j, pk,j , T

′i
k [0], pk,j .label) for j ∈ [d], k ∈ [n]. P can have access to S(h) using S(D), S(T ′), so

does not commit h.

(a) Commit: Let HL = (HL,1, ..., HL,K) be the set of leaf histograms, Hr = (H1
r , ..., H

K
r) (and Hw resp.) be

the read write transcripts as defined in Section 4.2. P invokes the space-efficient PC scheme to compute and
send to V the commitments CHL ← PC.Commit(pp, S(HL), rHL), CHr ← PC.Commit(pp, S(Hr), rHr),
CHw ← PC.Commit(pp, S(Hw), rHr).

(b) Prove: P receives a random point s ∈ F and generates the proof π6, π7 in the following way:

i. Let C4 = C̃14 |...|C̃K4 be an arithmetic circuit such that C̃i4 takes as input hi,Hi
w,H

i
r,F

i
B and checks if

hi
j = Hi

w[j][0] = Hi
r[j][0] and Hi

w[j][1] = Hi
r[j][1] + Fi

B [j], ∀j ∈ [nd]. Invoke Sparrow to prove that
C4(w1,w2,w3,w4) = 1 where w1 = h, w2 = Hr,w3 = Hw,w4 = FB.

ii. Let C5 = C̃15 |...|C̃K5 be an arithmetic circuit such that C̃i5 takes as input hi,Hi
w,H

i
r, H

L and returns 1 if
a1a2 = a3a4 where a1 =

∏
j,k,l,m∈[d],[B],[L],[2](⟨(1, s, s

2, s3), (j, k, l,m)⟩ + s4HL,i[(j, k, l,m)] + s5), a2 =∏
j∈[nd](⟨(1, s, s

2, s3),Hi
r[j][0]⟩+ s4Hi

r[j][1] + s5), a3 =
∏

i,j,k,l∈[d],[B],[L],[2](⟨(1, s, s
2, s3), (i, j, k, l)⟩+ s5)

31

and a4 =
∏

j∈[nd](⟨(1, s, s
2, s3),Hi

w[j][0]⟩+ s4Hi
w[j][1] + s5). Invoke Sparrow in a similar fashion with

(a) to prove that C5(x,w = (h,Hr,Hw, H
L)) = 1, where x = (1, s, s2, s3, s4, s5).

4. Prove Non-Leaf Histograms: Given F and streaming access to the leaf histograms S(HL), P proves the
correct computation of the histograms of the non-leaf nodes H.

(a) Commit: Let H = (H1, ..., HK) be the set of non-leaf histograms where Hi corresponds to the non-leaf
histograms of the i-th tree. P commits and sends to V the commitment CH ← PC.Commit(pp, S(H), rH).

(b) Prove: Receive a random point s ∈ F from V and generates π8 as follows. Let C6 = C̃16 |...|C̃K6 be an
arithmetic circuit such that C̃i6 takes as input HL,i, Hi and some auxiliary information (e.g., computation
transcript as defined in Section 4.2), and outputs 1 if Hi is the correct set of non-leaf histograms for the
i-th tree. Invoke Sparrow to prove that C6(w) = 1, but only committing to the additional auxiliary data
and not HL or H.

5. Prove Correctness of Splits: Given F and streaming access to the histograms H, generate a proof π9 in
the following way:

(a) Prove: Let C7 = C̃17 |...|C̃K7 be an arithmetic circuit such that C̃i7 takes as input Hi, the i-th tree and some
auxiliary information auxi (e.g., bit-representations of gini values for comparisons) and outputs 0 if the
split values and features are the same in Ti with the ones computed from Hi. Invoke Sparrow to prove
that C7(w) = 1, where wi = (Hi, Ti, aux

i), i ∈ [K] (accessed in a streaming fashion by invoking S(H),
computing on the fly auxi and using Ti). When using Sparrow we only have to commit to aux.

6. Prove Forest Well-Formedness: Given the forest F , P shows that it is well-formed by invoking a GKR-based
zkSNARK on the concatenation of K arithmetic circuits as described in Section 4.2. We set π10 be such a
proof.

5 Experimental Evaluation

We implemented and experimentally evaluated Sparrow and our zkFTP and in this section we
report our findings.

Software. Our implementation takes 9000 lines of C++ code, available in [92]. For the necessary field,
elliptic curve, and pairing operations we used the mcl library [93] implementation of the BN SNARK1
curve over a 254-bit prime. For forest training [44], we implemented training and certification
algorithms and we generated the datasets for classification using the make classification function
of scikit-learn library [94]. For the parts of the prover that use the standard GKR-based SNARK
and to generate our arithmetic circuits we rely on the publicly available implementation of Virgo [95],
but we replaced the field size and the underlying PC commitment with the ones of Sparrow. To
instantiate our streaming oracles we used the circuit evaluation functionality of [95] and modified
it to compute the evaluations of each layer in a streaming manner. Finally, as mentioned in the
introduction, our implementation is also elastic. Following the same design choices with Gemini, we
let the user specify a parameter indicating a threshold instance size. This threshold mainly affects
the space-efficient variant of the GKR. Specifically, if the number of gates of one or more consecutive
layers lie beyond that threshold, Sparrow proves their correct computation using the time-efficient
prover of Libra [10]. Furthermore, increasing that threshold leads to an increase in the working
buffer space of the space-efficient sumcheck, resulting in faster proving times (see first experiment
of section 5.1). We note that our prover implementation only uses memory storage (not disk). To
measure memory usage, we used a shell script that periodically invokes the Unix free command to
obtain memory usage and we report the maximum observed value.

Hardware. We use a dedicated machine running Linux Ubuntu 20.04.6 LTS with 131GB of RAM
and Intel(R) Xeon(R) E-2174G CPU, with 8 cores at 3.80GHz, running in isolation with no other
operations. For our experiments, we utilized only a single thread.

32

5.1 Sparrow Benchmarks

We benchmark Sparrow in three different use cases: (a) Arbitrary data-parallel circuits consisting
of same-width sub-circuits (i.e., rectangular shape). Such circuits can capture applications such
as validating SNARK-friendly algebraic functions [96] or performing batch inference or training
of neural networks [8, 7]. We varied the total circuit size between 225-230 gates. We set its depth
d = 16 and we also test Sparrow with our depth-reduction technique for d = 8, and d = 1. (b)
Multiplication tree circuits that compute the product of the input wires in a tree-like structure,
bottom-up. We vary the number of leaves between 224-228. (c) Batch SHA256 computations for
variable number of hash inputs 29-213. To reduce the circuit size, we implemented the XOR and inner
product gates optimization of [8] for Sparrow. We also report on the prover performance of our
space-efficient sumcheck as a stand-alone tool, for polynomial degree 223-229 and also measure the
impact of elasticity using variable buffer size 4MB-4GB, (which correspond to threshold instance
sizes of 217-227).

Comparison with Prior Works. We compare Sparrow with the state-of-the-art space-efficient zk-
SNARK Gemini [26]. We also benchmark it against the non-space-efficient (“monolithic”) standard
GKR-based SNARK [10], using the optimized code of [95], We replaced the KZG PC with our space-
efficient variant that also makes the prover faster. We refer to this instantiation as GKR+Kopis.
For Gemini, we use its publicly available code [97]. Since we focus on data-parallel circuits, we
used the variant without pre-processing, which is roughly ×11 faster than the original one (that
works for arbitrary circuits). Finally, we compared our sumcheck as a stand-alone with the “direct”
space-efficient sumcheck of [98], and with the standard (non-space-efficient) sumcheck.

Measuring Space Usage. In Sparrow, aside from the working buffer, we also implement the stream-
ing oracles and store the public parameters in memory (which we measure using free). In contrast,
Gemini’s implementation allocates space only for the working buffer and generates “dummy” stream-
ing data and public parameters “on the fly”. Because in our work we measure the total prover space
and not only the working buffer space, we have to accurately measure the total prover space usage
for Gemini. We do so by calculating the space required to store the computation transcript (i.e.,
evaluations of intermediate circuit gates) and public parameter size for each different application and
configuration. In addition, since the implementations of Gemini and Sparrow are elastic, we fix
the same working buffer space on both schemes supporting a threshold instance size of 220. That is
done for fairness purposes because, configuring the buffer space to the minimum (e.g., O(log |C|) for
Gemini and O(

√
|C|) for Sparrow), would make Gemini’s prover significantly slower—at least ×10

according to our calculation, based on the costs of the O(1)-space KZG evaluation and commitment
algorithms of [26].

(1) Benchmarking our Space-Efficient Sumcheck. Figure 2 (left) shows the prover time for
the three different sumchecks and buffer size 4MB. (For our sumcheck, we also need space for the
public PC parameters; this is < 32KB.) First, between the two space-efficient approaches, ours
consistently outperforms [18], more so as the polynomial size N increases (e.g., for N = 229 ours
takes 404.5 seconds while [18] takes 846.5). This agrees with the asymptotic analysis as our prover
takes O(N log logN) while [18] takes O(N logN). Indeed, our prover’s time increases virtually in
parallel with the non-space efficient, linear-time sumcheck. We stress that the latter is included here
only for benchmarking purposes as it would not be possible to run it for less than “linear” buffer
size (roughly 256MB-16GB for varying N). Figure 2 (right) reports the prover time as we vary the
buffer space, for fixed polynomial size N = 227. We omit the non-space-efficient sumcheck from this
plot as it would need 8GB buffer to run. Hence, we want to show how the performance of the two
space-efficient schemes benefits from a larger buffer. We note the difference in behavior between
the two schemes. For [18] the prover time continuously decreases each time the buffer is doubled.

33

Figure 2: Sumcheck proving time vs. variable polynomial size with buffer 4MB (left), and variable
buffer size with polynomial of size 227 (right).

In practice, following our discussion in Section 3.1, its bottleneck is the repeated passes over the
data, and each buffer increase results in fewer passes. On the other hand, our prover’s overhead is
unaffected until buffer size becomes 220 (from 96 to 73 seconds) as the log logN factor decreases
from 4 to 3. In practice, ours will be consistently faster, until the buffer size is large enough so that
both schemes “degenerate” into the non-space-efficient sumcheck.

As a final takeaway, our space-efficient sumcheck is only ×2.6 slower than the standard non-
space-efficient one (Figure 2 (left)), while being able to run with much less space (Figure 2 (right)).

(2) Benchmarking Sparrow. Figure 3 shows the proving time (left) and space (right) of Sparrow,
Gemini, and the standard GKR+Kopis for the three above applications, as computation size grows.
First, we observe that Sparrow significantly outperforms Gemini both in terms of prover time
and space. For arbitrary data-parallel circuits (top row), Sparrow is 9.4-11.3× faster and takes
3.2-28.7× less space. E.g., for circuit size 230, Sparrow takes 79 minutes and 2.7GB space (vs. 744
minutes and 80GB for Gemini). On the other hand, Sparrow is roughly 2.2-2.9× slower than the
standard GKR+Kopis (which is “inherited” from the difference in the performance of sumcheck we
reported above)—however, it takes far less space. E.g., for circuit size 227 Sparrow needs 1GB vs.
119.5GB for the standard GKR+Kopis e could not run the latter for circuits size > 227 as we ran
out of memory.

The comparison trends for the other two applications are generally similar,modulo some interesting
observations. For batch SHA256, the improvement of Sparrow over Gemini is somewhat smaller
(roughly 3× faster prover). This is because Sparrow uses a circuit of 217 gates and seven layers,
whereas Gemini can benefit from the R1CS encoding of SHA that takes roughly 215 gates. This
gap is inherent as our scheme works for layered arithmetic circuits, which tend to be larger due to
padding. In the future, we plan to extend Sparrow to non-layered data-parallel circuits using [84].
For SHA256, the space usage of Sparrow appears virtually constant. This is an artifact of us having
“fixed” the buffer and public parameter space (which in this case is larger than necessary) and the
fact that the streamed input per circuit is relatively tiny. For multiplication trees, the “gap” between
Sparrow and GKR+Kopis is smaller than above (1.3-1.6× prover slowdown), due to the large
input size (compared to the circuit size), thus the commitment-related times become a common

34

Figure 3: Proving time and space complexity of Sparrow, Gemini and GKR+Kopis, for arbitrary
data-parallel circuits (top), SHA hashes (middle) and multiplication trees (bottom).

bottleneck for both.

Profiling space usage. For the same instance size threshold, Sparrow requires 128MB of working
buffer space, while Gemini 190MB. That mainly stems from implementation differences and from
the fact that Gemini invokes a batch sumcheck protocol involving more than two polynomials which
require their own buffer. This means that if we set Gemini’s buffer size to be 128MB, its prover
would be slower as we would need to make its threshold size roughly two times smaller. Regarding

35

public parameters, for all our experiments on Sparrow, we fix their size to 200MB, allowing us
to support polynomials of size up to 236. On the other hand, Gemini uses the KZG PC scheme,
and to store its public parameters, it needs 1-48GB. That is the main bottleneck in Gemini’s space
utilization as the public parameters scale linearly to the circuit size. In contrast, the main bottleneck
of Sparrow eventually becomes the space needed to instantiate the streaming oracles, which is
the space required to optimally evaluate the circuit. Interestingly, for arbitrary data-parallel circuits
and Multiplication trees, that space eventually occupies 83% and 96% of the total proving space! In
other words, for large enough instance sizes, the space required to generate a proof is almost the
same as the one needed for evaluation.

Proof size & verification. Although our main focus is on prover time and space, we also report on
the proof size and verification time of Sparrow. For arbitrary data-parallel circuits with depth
d = 16, our scheme produces proofs of size 72-78KB as the circuit size ranges from 225 − 230. For the
other two applications, the proof sizes range from 62-94KB for multiplication trees and 42-58KB for
SHA256. Verification times are also exceptionally low: the largest observed verification overhead
across all experiments was 15ms. This shows that Sparrow yields practically small proofs and very
fast verification. It also demonstrates that, as with standard GKR+Kopis, the proof size grows only
logarithmically with the proof size (for fixed depth). Overall, compared to GKR+Kopis, Sparrow
has almost identical verification time and < 1.7× larger proof due to our version of sumcheck. Finally,
Gemini achieves shorter proofs (in practice, an order of magnitude) which follows directly from
the fact its proof is independent of the depth d, whereas Sparrow follows the GKR methodology.
However, after applying our depth-reduction technique (see below) the gap between them is just
≈ 2×. While [26] does not measure verification times, we expect Gemini will also be somewhat
faster as it relies on a univariate PC.

Impact of depth reduction. We also evaluated the effect of our depth reduction technique from
Section 3.2. Using the circuit of the first experiment on arbitrary circuits with d = 16, we applied
depth reduction and tested Sparrow and GKR+Kopis on “flattened” versions of the circuit with
d = 8 and d = 1. Asymptotically, d = 1 achieves the best prover time but, in practice, it is roughly
2× slower (e.g., to prove a circuit of size 230 it takes 2.49 hours while for d = 8, 16 it takes 1.17
and 1.31 hours respectively). This is because by increasing the input size of the circuit, we must
commit and evaluate polynomials of larger sizes, which eventually becomes the main bottleneck of
the computation. Interestingly, in this case, Sparrow’s prover time becomes almost the same as
GKR+Kopis (on the same depth) while using much less space! What we lose however in proving
time, we gain in proof size as it is ≈ ×1.7 smaller compared to circuits of depth 8 and 16 (e.g., for
size 230 it generates proofs of size of 42.76KB versus 73KB and 75.8KB).

5.2 Performance of zkFTP

Next, we report on the performance of our zkFTP . For benchmarking we again use the “space-
inefficient” version of our prover with GKR+Kopis. For training parameters, we follow the standard
of [78]. We set the max bin size to B = 128, maximum tree height for forests to h = 5, and vary the
number of points n, features d, and trees K.

(1) Single-tree training. First, we focus on training a single tree for variable n between 216-222

for fixed d = 16 features (Table 5.2 (top)), and variable d between 8-64 for fixed points n = 220.
(Table 5.2 (bottom)), for Sparrow and GKR+Kopis. The immediate observation is that Sparrow
reduces space usage by up to 240× as the instances grow ! At the same time, it has effectively the
same proof size and verification time, while exhibiting a prover slow-down by just 1.1-1.3×. We also
observe that the prover time does not increase strictly linearly with n, as one might expect. That is
because, for fewer points, the proving time is dominated by proving node splits (e.g., for n = 216,

36

Points Prove (min) Space (GB) Verify (sec) |π| (KB)
n=216 1 0.91 0.37 5.9 0.17 0.17 284 282
n=218 2.5 2.25 0.39 23.1 0.18 0.18 340 333
n=220 10.1 7.7 0.42 90 0.19 0.18 389 374
n=222 44.1 x 0.95 x 0.20 x 449 x

Features Prove (min) Space (GB) Verify (sec) |π| (KB)
d=8 6.7 5.3 0.32 47.5 0.18 0.18 366 351
d=16 10.1 7.7 0.42 90 0.19 0.18 389 374
d=32 17 13 0.5 120 0.19 0.18 437 406
d=64 32 x 0.96 x 0.20 x 484 x

Table 2: Performance of our zkFTP (□ cells) and GKR+Kopis (■ cells) for training a decision tree
with variable points n and d = 16 features (top), and variable d and n = 220 (bottom). “x” indicates
the experiment failed due to memory exhaustion.

this accounts for roughly 40% of the total time). As n increases, this is no longer the main overhead
as time scales with the number of points (e.g., we see a 4× increase from n = 220 to n = 222, as
expected). Similar behavior is seen as d grows as parts of the certification algorithm (e.g., proving
the correctness of assignments) depend on the maximum depth of the tree and not on the features
themselves. We do not report experiments for prediction as our scheme directly uses [84] with the
optimized lookup of [40], so we inherit the performance of these works. For instance, [84] achieves
prediction prover time of less than 1sec for h = 5. Clearly, proving predictions is a much “lighter”
task.

Points Prove (min) Space (GB) Verify (sec) |π| (KB)
n = 214 25.2 15.9 0.4 51.5 0.21 0.21 607 584
n = 216 64.3 40.8 0.43 124.1 0.25 0.24 686 650
n = 218 221.7 x 0.5 x 0.28 x 790 x
n = 220 873 x 0.6 x 0.3 x 903 x

Trees Prove (min) Space (GB) Verify (sec) |π| (KB)
K=16 52.7 35.8 0.5 107.6 0.25 0.23 631 612
K=32 108.6 x 0.5 x 0.26 x 735 x
K=64 221.7 x 0.5 x 0.28 x 790 x
K=128 454.7 x 0.5 x 0.29 x 888 x

Table 3: Performance of our zkFTP (□ cells) and GKR+Kopis (■ cells) for training a random
forest with variable points n and K = 64 trees (top), and variable K and n = 218 (bottom). “x”
indicates memory exhaustion. In both experiments we set d = 16 to be the number of features.

(2) Random Forest training. Table 3 shows the proving time, verification time, proof size, and
space for generating proofs of training for random forests with d = 16 features. We first (top) fix
the number of trees to K = 64 and vary n, and then (bottom) we fix points to n = 218 and vary
K. Overall, Sparrow again shows tremendous improvement over GKR+Kopis in prover space
(up to 288×)—also note that we were not even able to run GKR+Kopis for several instance sizes
on our machine with 131GB RAM. An interesting point is that, although the prover time scales
linearly with K (as expected, since the certification circuit for a forest consists of K parallel copies
of that for a single tree), the space usage is unaffected! This follows from two observations. First,
the same buffer space (which, recall, is fixed in our experiments) is used when proving each tree in
the forest. Second, all trees in the forest operate on a common dataset, the size of which is fixed.
Finally, we note that when proving for a random forest, enforcing the correctness of bagging takes a

37

significant part of the prover time (between 20% and 38%), as it entails modular operations that
need range proofs over large domains. Since in our construction proving bagging depends only on
the random seed and d but not on the dataset itself, it can be proven separately in an “offline”
pre-processing phase. This optimization (not used in our implementation) would make our proof of
training significantly faster.

(3) Space usage vs. plaintext training. In our configuration, Sparrow requires a fixed ≈ 328MB
for buffer space and public parameters, independently of the dataset. The space-efficient property
of Sparrow means that eventually for large enough dataset sizes, its space usage becomes almost
identical to that of simply certifying the tree or forest locally ! For instance, for K = 1, n = 222, d = 16,
the size of the quantized dataset is 400MB and the space required for our certification algorithm
was measured as 676MB. At the same time, our prover needs roughly 950MB, which includes the
space required to certify the computation locally and the space Sparrow utilized to generate the
proof—proving the computation takes only 1.4× the space needed to compute it directly!

6 Acknowledgments

We thank the anonymous reviewers for their feedback. This work was supported in part by the Hong
Kong Research Grants Council under grant GRF-16200721.

References

[1] Joe Kilian. A note on efficient zero-knowledge proofs and arguments (extended abstract). In
ACM STOC, pages 723–732, 1992.

[2] Bryan Parno, Jon Howell, Craig Gentry, and Mariana Raykova. Pinocchio: Nearly practical
verifiable computation. In IEEE SP, pages 238–252, 2013.

[3] Jens Groth. On the size of pairing-based non-interactive arguments. In EUROCRYPT, pages
305–326, 2016.

[4] Eli Ben-Sasson, Alessandro Chiesa, Christina Garman, Matthew Green, Ian Miers, Eran Tromer,
and Madars Virza. Zerocash: Decentralized anonymous payments from bitcoin. In IEEE SP,
pages 459–474, 2014.

[5] Tiancheng Xie, Jiaheng Zhang, Zerui Cheng, Fan Zhang, Yupeng Zhang, Yongzheng Jia, Dan
Boneh, and Dawn Song. zkbridge: Trustless cross-chain bridges made practical. In ACM CCS,
pages 3003–3017, 2022.

[6] Tianyi Liu, Tiancheng Xie, Jiaheng Zhang, Dawn Song, and Yupeng Zhang. Pianist: Scalable
zkrollups via fully distributed zero-knowledge proofs. IACR Cryptol. ePrint Arch., 2023.

[7] Kasra Abbaszadeh, Christodoulos Pappas, Dimitrios Papadopoulos, and Jonathan Katz. Zero-
knowledge proofs of training for deep neural networks. IACR Cryptol. ePrint Arch.

[8] Tianyi Liu, Xiang Xie, and Yupeng Zhang. zkcnn: Zero knowledge proofs for convolutional
neural network predictions and accuracy. In CCS, pages 2968–2985. ACM, 2021.

[9] Ariel Gabizon, Zachary J Williamson, and Oana Ciobotaru. Plonk: Permutations over lagrange-
bases for oecumenical noninteractive arguments of knowledge. Cryptology ePrint Archive,
2019.

38

[10] Tiancheng Xie, Jiaheng Zhang, Yupeng Zhang, Charalampos Papamanthou, and Dawn Song.
Libra: Succinct zero-knowledge proofs with optimal prover computation. In CRYPTO, pages
733–764, 2019.

[11] Srinath T. V. Setty. Spartan: Efficient and general-purpose zksnarks without trusted setup. In
CRYPTO, pages 704–737, 2020.

[12] Tiancheng Xie, Yupeng Zhang, and Dawn Song. Orion: Zero knowledge proof with linear prover
time. In CRYPTO, pages 299–328, 2022.

[13] Binyi Chen, Benedikt Bünz, Dan Boneh, and Zhenfei Zhang. Hyperplonk: Plonk with linear-time
prover and high-degree custom gates. In EUROCRYPT, pages 499–530, 2023.

[14] Jiaheng Zhang, Tiancheng Xie, Yupeng Zhang, and Dawn Song. Transparent polynomial
delegation and its applications to zero knowledge proof. In 2020 IEEE Symposium on Security
and Privacy (SP), pages 859–876. IEEE, 2020.

[15] Jens Ernstberger, Stefanos Chaliasos, George Kadianakis, Sebastian Steinhorst, Philipp Jovanovic,
Arthur Gervais, Benjamin Livshits, and Michele Orrù. zk-bench: A toolset for comparative
evaluation and performance benchmarking of snarks. IACR Cryptol. ePrint Arch., 2023.

[16] Nir Bitansky and Alessandro Chiesa. Succinct arguments from multi-prover interactive proofs
and their efficiency benefits. In CRYPTO, pages 255–272, 2012.

[17] Justin Holmgren and Ron Rothblum. Delegating computations with (almost) minimal time
and space overhead. In IEEE FOCS, pages 124–135, 2018.

[18] Andrew J Blumberg, Justin Thaler, Victor Vu, and Michael Walfish. Verifiable computation
using multiple provers. Cryptology ePrint Archive, 2014.

[19] Alexander R. Block, Justin Holmgren, Alon Rosen, Ron D. Rothblum, and Pratik Soni. Public-
coin zero-knowledge arguments with (almost) minimal time and space overheads. In TCC, pages
168–197, 2020.

[20] Benedikt Bünz, Ben Fisch, and Alan Szepieniec. Transparent snarks from DARK compilers.
In Anne Canteaut and Yuval Ishai, editors, Advances in Cryptology - EUROCRYPT 2020
- 39th Annual International Conference on the Theory and Applications of Cryptographic
Techniques, Zagreb, Croatia, May 10-14, 2020, Proceedings, Part I, volume 12105 of Lecture
Notes in Computer Science, pages 677–706. Springer, 2020.

[21] Alexander R. Block, Justin Holmgren, Alon Rosen, Ron D. Rothblum, and Pratik Soni. Time-
and space-efficient arguments from groups of unknown order. In CRYPTO, pages 123–152,
2021.

[22] Muthuramakrishnan Venkitasubramaniam. Ligetron: Lightweight scalable end-to-end zero-
knowledge proofs. post-quantum zk-snarks on a browser. In IEEE SP, pages 86–86, 2023.

[23] Laasya Bangalore, Rishabh Bhadauria, Carmit Hazay, and Muthuramakrishnan Venkitasub-
ramaniam. On black-box constructions of time and space efficient sublinear arguments from
symmetric-key primitives. In TCC, pages 417–446, 2022.

[24] Benedikt Bünz, Jonathan Bootle, Dan Boneh, Andrew Poelstra, Pieter Wuille, and Greg Maxwell.
Bulletproofs: Short proofs for confidential transactions and more. In 2018 IEEE symposium on
security and privacy (SP), pages 315–334. IEEE, 2018.

39

[25] Scott Ames, Carmit Hazay, Yuval Ishai, and Muthuramakrishnan Venkitasubramaniam. Ligero:
lightweight sublinear arguments without a trusted setup. Des. Codes Cryptogr., pages 3379–3424,
2023.

[26] Jonathan Bootle, Alessandro Chiesa, Yuncong Hu, and Michele Orrù. Gemini: Elastic snarks
for diverse environments. In EUROCRYPT, pages 427–457, 2022.

[27] Aniket Kate, Gregory M. Zaverucha, and Ian Goldberg. Constant-size commitments to polyno-
mials and their applications. In ASIACRYPT 2010, pages 177–194, 2010.

[28] Yupeng Zhang, Daniel Genkin, Jonathan Katz, Dimitrios Papadopoulos, and Charalampos
Papamanthou. vsql: Verifying arbitrary SQL queries over dynamic outsourced databases. In
IEEE SP, pages 863–880, 2017.

[29] Rishabh Bhadauria, Zhiyong Fang, Carmit Hazay, Muthuramakrishnan Venkitasubramaniam,
Tiancheng Xie, and Yupeng Zhang. Ligero++: A new optimized sublinear IOP. In CCS, pages
2025–2038. ACM, 2020.

[30] Changchang Ding and Yan Huang. Dubhe: Succinct zero-knowledge proofs for standard AES
and related applications. In USENIX Sec, pages 4373–4390, 2023.

[31] Carsten Lund, Lance Fortnow, Howard J. Karloff, and Noam Nisan. Algebraic methods for
interactive proof systems. J. ACM, pages 859–868, 1992.

[32] Eli Ben-Sasson, Alessandro Chiesa, Michael Riabzev, Nicholas Spooner, Madars Virza, and
Nicholas P. Ward. Aurora: Transparent succinct arguments for R1CS. In EUROCRYPT, pages
103–128, 2019.

[33] Alessandro Chiesa, Elisabetta Fedele, Giacomo Fenzi, and Andrew Zitek-Estrada. A time-space
tradeoff for the sumcheck prover. Cryptology ePrint Archive, 2024.

[34] Shafi Goldwasser, Yael Tauman Kalai, and Guy N. Rothblum. Delegating computation: interac-
tive proofs for muggles. In Cynthia Dwork, editor, ACM STOC, pages 113–122, 2008.

[35] Jonathan Lee. Dory: Efficient, transparent arguments for generalised inner products and
polynomial commitments. In TCC, pages 1–34, 2021.

[36] Srinath T. V. Setty and Jonathan Lee. Quarks: Quadruple-efficient transparent zksnarks. IACR
Cryptol. ePrint Arch., 2020.

[37] Propub. www.propublica.org/article/machine-bias-risk-assessments-in-criminal-sentencing.

[38] Cortnie Abercrombie. www.techtarget.com/searchenterpriseai/tip/What-is-trustworthy-AI-and-
why-is-it-important.

[39] Jiaheng Zhang, Zhiyong Fang, Yupeng Zhang, and Dawn Song. Zero knowledge proofs for
decision tree predictions and accuracy. In Proceedings of the 2020 ACM SIGSAC Conference
on Computer and Communications Security, pages 2039–2053, 2020.

[40] Matteo Campanelli, Antonio Faonio, Dario Fiore, Tianyu Li, and Helger Lipmaa. Lookup
arguments: Improvements, extensions and applications to zero-knowledge decision trees. ePrint,
2023/1518.

40

[41] Seunghwa Lee, Hankyung Ko, Jihye Kim, and Hyunok Oh. vcnn: Verifiable convolutional neural
network. IACR Cryptol. ePrint Arch., 2020.

[42] Sanjam Garg, Aarushi Goel, Somesh Jha, Saeed Mahloujifar, Mohammad Mahmoody, Guru-
Vamsi Policharla, and Mingyuan Wang. Experimenting with zero-knowledge proofs of training.
In ACM CCS, pages 1880–1894, 2023.

[43] Steven Salzberg. Book review: C4.5: programs for machine learning by j. ross quinlan. morgan
kaufmann publishers, inc., 1993. Mach. Learn., pages 235–240, 1994.

[44] Leo Breiman. Random forests. Mach. Learn., 45(1):5–32, 2001.

[45] Bob Hayes. https://businessoverbroadway.com/2021/02/14/machine-learning-algorithms-and-
the-data-pros-who-use-them.

[46] Amit Raja Naik. Solving Machine Learning Problems On Kaggle Vs Real Life.
https://analyticsindiamag.com/solving-machine-learning-problems-on-kaggle-vs-real-life.

[47] Nir Bitansky, Ran Canetti, Alessandro Chiesa, and Eran Tromer. Recursive composition and
bootstrapping for SNARKS and proof-carrying data. In STOC, pages 111–120. ACM, 2013.

[48] Eli Ben-Sasson, Alessandro Chiesa, Eran Tromer, and Madars Virza. Scalable zero knowledge
via cycles of elliptic curves. In CRYPTO, pages 276–294, 2014.

[49] Abhiram Kothapalli, Srinath T. V. Setty, and Ioanna Tzialla. Nova: Recursive zero-knowledge
arguments from folding schemes. In CRYPTO, pages 359–388, 2022.

[50] Benedikt Bünz, Alessandro Chiesa, William Lin, Pratyush Mishra, and Nicholas Spooner. Proof-
carrying data without succinct arguments. In CRYPTO, pages 681–710, 2021.

[51] Sean Bowe, Jack Grigg, and Daira Hopwood. Halo: Recursive proof composition without a
trusted setup. IACR Cryptol. ePrint Arch., page 1021, 2019.

[52] Wilson D. Nguyen, Trisha Datta, Binyi Chen, Nirvan Tyagi, and Dan Boneh. Mangrove: A
scalable framework for folding-based snarks. IACR Cryptol. ePrint Arch., page 416, 2024.

[53] Benedikt Bünz and Jessica Chen. Proofs for deep thought: Accumulation for large memories
and deterministic computations. IACR Cryptol. ePrint Arch., page 325, 2024.

[54] Alessandro Chiesa, Dev Ojha, and Nicholas Spooner. Fractal: Post-quantum and transparent
recursive proofs from holography. In EUROCRYPT, pages 769–793, 2020.

[55] Alessandro Chiesa, Ziyi Guan, Shahar Samocha, and Eylon Yogev. Security bounds for proof-
carrying data from straightline extractors. IACR Cryptol. ePrint Arch., page 1646, 2023.

[56] Seunghwa Lee, Hankyung Ko, Jihye Kim, and Hyunok Oh. vCNN: Verifiable convolutional
neural network based on zk-snarks. Cryptology ePrint Archive, 2020.

[57] Boyuan Feng, Lianke Qin, Zhenfei Zhang, Yufei Ding, and Shumo Chu. Zen: An optimizing
compiler for verifiable, zero-knowledge neural network inferences. Cryptology ePrint Archive,
2021.

[58] Chenkai Weng, Kang Yang, Xiang Xie, Jonathan Katz, and Xiao Wang. Mystique: Efficient
conversions for Zero-Knowledge proofs with applications to machine learning. In USENIX Sec.
2021, pp. 501–518.

41

[59] Lingchen Zhao, Qian Wang, Cong Wang, Qi Li, Chao Shen, and Bo Feng. Veriml: Enabling
integrity assurances and fair payments for machine learning as a service. IEEE Transactions on
Parallel and Distributed Systems, pages 2524–2540, 2021.

[60] Haodi Wang and Thang Hoang. ezdps: An efficient and zero-knowledge machine learning
inference pipeline. arXiv preprint arXiv:2212.05428, 2022.

[61] Chenyu Huang, Jianzong Wang, Huangxun Chen, Shijing Si, Zhangcheng Huang, and Jing Xiao.
zkmlaas: a verifiable scheme for machine learning as a service. In IEEE GLOBECOM 2022,
pages 5475–5480.

[62] Hengrui Jia, Mohammad Yaghini, Christopher A. Choquette-Choo, Natalie Dullerud, Anvith
Thudi, Varun Chandrasekaran, and Nicolas Papernot. Proof-of-learning: Definitions and practice.
In IEEE SP, pages 1039–1056, 2021.

[63] Congyu Fang, Hengrui Jia, Anvith Thudi, Mohammad Yaghini, Christopher A. Choquette-Choo,
Natalie Dullerud, Varun Chandrasekaran, and Nicolas Papernot. On the fundamental limits of
formally (dis)proving robustness in proof-of-learning. CoRR, abs/2208.03567, 2022.

[64] Shafi Goldwasser, Silvio Micali, and Charles Rackoff. The knowledge complexity of interactive
proof-systems (extended abstract). In ACM STOC, pages 291–304, 1985.

[65] Uriel Feige, Shafi Goldwasser, László Lovász, Shmuel Safra, and Mario Szegedy. Interactive
proofs and the hardness of approximating cliques. J. ACM, pages 268–292, 1996.

[66] Jiaheng Zhang, Tianyi Liu, Weijie Wang, Yinuo Zhang, Dawn Song, Xiang Xie, and Yupeng
Zhang. Doubly efficient interactive proofs for general arithmetic circuits with linear prover time.
In CCS, pages 159–177. ACM, 2021.

[67] Justin Thaler. Time-optimal interactive proofs for circuit evaluation. In CRYPTO, pages 71–89,
2013.

[68] Riad S Wahby, Ye Ji, Andrew J Blumberg, Abhi Shelat, Justin Thaler, Michael Walfish, and
Thomas Wies. Full accounting for verifiable outsourcing. In Proceedings of the 2017 ACM
SIGSAC Conference on Computer and Communications Security, pages 2071–2086, 2017.

[69] Graham Cormode, Michael Mitzenmacher, and Justin Thaler. Practical verified computation
with streaming interactive proofs. In Proceedings of the 3rd Innovations in Theoretical Computer
Science Conference, pages 90–112, 2012.

[70] Bryan Parno, Jon Howell, Craig Gentry, and Mariana Raykova. Pinocchio: nearly practical
verifiable computation. Commun. ACM, pages 103–112, 2016.

[71] Ariel Gabizon, Zachary J. Williamson, and Oana Ciobotaru. PLONK: permutations over
lagrange-bases for oecumenical noninteractive arguments of knowledge. IACR Cryptol. ePrint
Arch., page 953, 2019.

[72] Leo Breiman, J. H. Friedman, Richard A. Olshen, and C. J. Stone. Classification and Regression
Trees. Wadsworth, 1984.

[73] J. Ross Quinlan. Induction of decision trees. Mach. Learn., pages 81–106, 1986.

[74] J. Ross Quinlan. C4.5: Programs for Machine Learning. Morgan Kaufmann, 1993.

42

[75] Khaled Alsabti, Sanjay Ranka, and Vineet Singh. CLOUDS: A decision tree classifier for large
datasets. In Rakesh Agrawal, Paul E. Stolorz, and Gregory Piatetsky-Shapiro, editors, KDD,
pages 2–8. AAAI Press, 1998.

[76] Ruoming Jin and Gagan Agrawal. Communication and memory efficient parallel decision tree
construction. In SIAM International Conference on Data Mining, pages 119–129. SIAM, 2003.

[77] Ping Li, Christopher J. C. Burges, and Qiang Wu. Mcrank: Learning to rank using multiple
classification and gradient boosting. In Annual Conference on Neural Information Processing
Systems, pages 897–904, 2007.

[78] Guolin Ke, Qi Meng, Thomas Finley, Taifeng Wang, Wei Chen, Weidong Ma, Qiwei Ye, and
Tie-Yan Liu. Lightgbm: A highly efficient gradient boosting decision tree. In Annual Conference
on Neural Information Processing Systems, pages 3146–3154, 2017.

[79] Alessandro Chiesa, Yuncong Hu, Mary Maller, Pratyush Mishra, Psi Vesely, and Nicholas P.
Ward. Marlin: Preprocessing zksnarks with universal and updatable SRS. In EUROCRYPT,
pages 738–768, 2020.

[80] Charalampos Papamanthou, Elaine Shi, and Roberto Tamassia. Signatures of correct computa-
tion. In Amit Sahai, editor, Theory of Cryptography - 10th Theory of Cryptography Conference,
TCC 2013, Tokyo, Japan, March 3-6, 2013. Proceedings, volume 7785 of Lecture Notes in
Computer Science, pages 222–242. Springer, 2013.

[81] Alessandro Chiesa, Michael A. Forbes, and Nicholas Spooner. A zero knowledge sumcheck and
its applications. CoRR, 2017.

[82] Yupeng Zhang, Daniel Genkin, Jonathan Katz, Dimitrios Papadopoulos, and Charalampos
Papamanthou. vram: Faster verifiable ram with program-independent preprocessing. In SP,
pages 908–925. IEEE, 2018.

[83] Riad S. Wahby, Ioanna Tzialla, Abhi Shelat, Justin Thaler, and Michael Walfish. Doubly-efficient
zksnarks without trusted setup. In IEEE SP, pages 926–943, 2018.

[84] Jiaheng Zhang, Tiancheng Xie, Yupeng Zhang, and Dawn Song. Transparent polynomial
delegation and its applications to zero knowledge proof. In IEEE SP, pages 859–876, 2020.

[85] Srinath Setty and Jonathan Lee. Quarks: Quadruple-efficient transparent zksnarks. Cryptology
ePrint Archive, 2020.

[86] Benedikt Bünz, Mary Maller, Pratyush Mishra, Nirvan Tyagi, and Psi Vesely. Proofs for
inner pairing products and applications. In Advances in Cryptology–ASIACRYPT 2021: 27th
International Conference on the Theory and Application of Cryptology and Information Security,
Singapore, December 6–10, 2021, Proceedings, Part III 27, pages 65–97. Springer, 2021.

[87] Ian Chang, Katerina Sotiraki, Weikeng Chen, Murat Kantarcioglu, and Raluca A. Popa.
HOLMES: efficient distribution testing for secure collaborative learning. In USENIX Sec,
pages 4823–4840, 2023.

[88] Manuel Blum, William S. Evans, Peter Gemmell, Sampath Kannan, and Moni Naor. Checking
the correctness of memories. Algorithmica, pages 225–244, 1994.

43

[89] Srinath T. V. Setty, Justin Thaler, and Riad S. Wahby. Unlocking the lookup singularity with
lasso. IACR Cryptol. ePrint Arch., page 1216, 2023.

[90] Arka Rai Choudhuri, Sanjam Garg, Aarushi Goel, Sruthi Sekar, and Rohit Sinha. Sublonk:
Sublinear prover plonk. IACR Cryptol. ePrint Arch., page 902, 2023.

[91] W. E. Thomson. A modified congruence method of generating pseudo-random numbers. Comput.
J., page 83, 1958.

[92] https://github.com/anonymousg3bz6q2/sparrow.

[93] https://github.com/herumi/mcl.

[94] https://scikit-learn.org/stable/.

[95] https://github.com/tamucrypto/virgo-plus.

[96] Martin R. Albrecht, Lorenzo Grassi, Christian Rechberger, Arnab Roy, and Tyge Tiessen. Mimc:
Efficient encryption and cryptographic hashing with minimal multiplicative complexity. In
ASIACRYPT, pages 191–219, 2016.

[97] https://github.com/arkworks-rs/gemini.

[98] Andrew J. Blumberg, Justin Thaler, Victor Vu, and Michael Walfish. Verifiable computation
using multiple provers. IACR Cryptol. ePrint Arch.

A Proofs for our Space-Efficient Sumcheck

A.1 Complexity Analysis

Regarding space complexity, we argue as follows. First, the buffer space required in initialization is
O(
√
2n) field elements. In the first pass, we perform FFT for polynomials of size n, which requires

space O(n log n). Similarly, in the second pass, we need to perform FFTs for polynomials of size
2n/2−logn, which requires space O(2n/2), since (n/2 − log n)2n/2−logn < n

22
n/2/n = 2n/2−1 < 2n/2.

For the delegation protocol, we require that the underlying PC scheme has linear space complexity
with respect to the degree of the polynomial [80, 10]. Observe that throughout the protocol, we only
need to commit and evaluate to polynomials of degree at most 2n/2−logn+1. Likewise, we argue about
the sumchecks we need to prove, resulting in space complexity of O(2n/2−logn+1). The remaining
steps use the standard sumcheck for instances of size O(

√
2n), leading to overall space of O(

√
2n).

Next, we give a detailed analysis of the prover’s complexity. Starting from the First round
of Phase 1, the prover performs 2n

n polynomial multiplications and additions over polynomials of
degree n. To efficiently multiply two polynomials, the prover first performs an IFFTs over pf and
pg, to convert them in the form pf (x) =

∑
i∈[n] cix

i (likewise for pg(x)) and an FFT over pf and
pg to evaluate them in 2n. To compute their product, the prover performs 2n multiplications over
these evaluations. Finally it updates p0(x) by adding the 2n evaluations (note that p0(x) is also
represented as a vector of 2n evaluations at the same evaluation points with pf (x)·pg(x)). To compute
the FFTs, the product and updated p0(x), it takes O(n log n) field multiplications/additions, O(n)
field multiplications and O(n) field additions respectively, hence, O(n log n) field operations. For
computing the IFFTs, the prover needs to perform O(n log n) field operations and O(1) inversions,
since it has to compute ω−1

0 and n−1. Because these inversions are the same for all IFFTs, we can
pre-compute once for all multiplications. Consequently, multiplying two n-degree polynomials takes

44

O(n log n) field operations, so Phase 1 requires O(n log n · 2nn) = O(2n log n) field operations and
O(1) inversions.

In the first step of Second round, the prover starts by computing the vector y0 = (L0
1(r0), . . . , L

0
n(r0)),

which requires O(n) inversions using the Barycentric formula. Then, using y0, computes pf (x), pg(x)

which requires 2n/2

n inner products of size n totaling to O(2n/2) field operations. Finally, given
pf (x), pg(x), the prover computes their product in the same way as in the First round, taking

O(2n/2

n log(2
n/2

n)) ≤ O(2n/2) field operations. Since the prover needs to compute, multiply and add

2n/2 such polynomials, the total complexity of the first step of Second round is O(2n/2 ·2n/2) = O(2n)
field operations andO(n) inversions. For the second step (the delegation protocol), the prover commits
and evaluates polynomials (steps 2.a-2.e) of size O(2n/2−logn+1) using a PC scheme for multi-linear
polynomials. By utilizing the KZG scheme for multi-linear polynomials, the prover complexity for
committing and generating evaluation proofs is O(2n/2−logn+1) group operations (and in particular
Multi-Scalar Multiplications (MSMs)). Furthermore, in steps 2.b,2.d,2.e, the prover invokes the stan-
dard sumcheck protocol over instances of size 2n/2−logn+1, requiring O(2n/2−logn+1) field operations,
while in step 2.c performs O(2n/2−logn+1) inversions and field operations. Consequently step 2 of
Second round takes O(2n/2−logn+1) ≤ ∈\/∈ group,field operations and inversions. Thus, Second
round requires O(2n) field operations and O(2n/2−logn+1) MSMs and inversions.

In the first step of Remaining rounds, the prover starts by computing the vector y1 =
(L1

1(r1), . . . , L
1
2n/2/n

(r1)) using O(2n/2−logn) field operations and inversions. Then, computes y =

y0⊗y1 which requires O(2n/2) field operations. Having y, it computes F,G, with 2n/2 inner products
of size 2n/2, leading to O(2n) field operations. Finally, step 2 of Remaining rounds requires
the prover to generate a sumcheck proof for instances of size 2n/2, taking O(2n/2) field operations.
Consequently, Remaining rounds require O(2n) field operations and O(2n/2−logn) field inversions.

What remains is to argue about the complexity of Phase 2. In the first step, the prover has to
compute β(i, r2), ∀i ∈ {0, 1}n/2 which takes O(2n/2) field operations [10]. Next, it computes F,G
with O(2n/2) inner products of size O(2n/2) each, totalling to O(2n) field operations. In step 2, the
prover invokes the sumcheck protocol over instances of size O(2n/2), which requires O(2n/2) field
operations. Finally, similarly to step 2 of Second phase, step 3 is dominated by O(2n/2) inversions
and MSMs. So, Phase 2 requires O(2n) field operations and O(2n/2) MSMs and inversions.

Observe that the main bottleneck of the prover is in First round of Phase 1, which requires
O(2n log n) field operations. All other steps require O(2n) field operations. Other than that, the
prover performs O(2n/2) MSMs and inversions—sub-linear to the size of the polynomials and thus
can be considered negligible compared to the number of field operations. Hence, the total prover’s
complexity is O(2n log n) field operations.

As for proof size, at the first round, the prover needs to send a polynomial of size O(n), while the
delegation protocol of the second round requires the prover to invoke sumcheck three instances and
two evaluation proofs which have size O(n). Finally, the prover invokes three sumcheck instances
resulting in an overall proof size of O(n). We make a similar argument for verification time.

A.2 Completeness

Let f, g : Fn → F, be the multi-linear polynomials such that K =
∑

x∈{0,1}n f(x)g(x), and

f̂ , ĝ : F2+n/2 → F, their equivalent multi-variate polynomials. Because for each x ∈ H0 × H1 ×
{0, 1}n/2, exists one y ∈ {0, 1}n, such that f̂(x) = f(y) and ĝ(x) = g(y), we have that K =∑

x∈H0×H1×{0,1}n/2 f̂(x)ĝ(x). Next, let p0 : F→ F be the n-degree polynomial sent in the first round.

Because p1(z) =
∑

(x2,...,x2+n/2)
f̂(z, x2, ..., x2+n/2)ĝ(z, x2, ..., x2+n/2), then K =

∑
ω∈H0

p1(ω). We

follow a similar argument for p1(z). Note that the completeness of the delegation protocol comes from

45

the completeness of the standard sumcheck and PC scheme. Likewise we state, for the remaining
rounds of Phase 1 and 2.

A.3 Soundness

First we will prove soundness for the (non-succinct) information theoretic protocol, where the prover
does not invoke any delegation protocol (e.g., Step 2 of Second round, Phase 1 and step 3 of
Phase 2). Having established that, let f, g : Fn → F be multi-linear polynomials, f̂ , ĝ : F2+n/2 → F
the equivalent multi-variate polynomials and K ∈ F. We will prove that if K ̸=

∑
x∈{0,1}n] f(x)g(x),

then the verifier accepts the proof only with negligible probability for any unbounded adversary.
Because f̂ , ĝ are the equivalent polynomials of f, g, it will hold that:∑

x∈{0,1}n
f(x)g(x) =

∑
x0,x1,x2

f̂(x0, x1,x2)ĝ(x0, x1,x2)

With that in mind, we will follow a non-inductive soundness proof. Specifically, in the first round of
phase 1, the adversary wins if it sends a n+1-degree polynomial p0(x) (s.t K =

∑
z∈H0

p0(z)), that is

not equal to p′0(x) =
∑

x∈H1×{0,1}n/2} f̂(x,x)ĝ(x,x) but p
′
0(r0) = p0(r0), where x = (x2, ..., xn/2+2).

This happens however with probability n+1
|F| due to Schwartz-Zippel lemma. Similarly in the second

round of phase 1, the adversary wins it sends a 2n/2−logn+1-degree polynomial p1(x) s.t p1(x) ̸=∑
y∈{0,1}n/2 f̂(r1, x,y)ĝ(r1, x,y) but p

′
1(r1) = p1(r1), where y = (x3, ..., xn/2+2). Due to the Schwartz-

Zippel lemma this happens with probability 2n/2−logn+1

|F| . For the remaining rounds of phase 1, the

adversary must send a 2-degree polynomial pi(x), s.t p1(x) ̸=
∑

x∈{0,1}n/2−i+2 f̂(r, z,x)ĝ(r, z,x) but

p′i(ri) = pi(ri), where x = (xi, ..., xn/2+2). The latter happens only with 2
|F| probability.

At the end of phase 1, the verifier holds the evaluations ỹf̂ , ỹĝ, derived by the last round of the
sumcheck protocol. Observe that the events ỹĝ = yĝ and ỹf̂ = yf̂ happen only with probability

2n+2n/2−logn

|F| due to Schwartz-Zippel lemma. In any other case, the adversary must convince the

verifier for the sumcheck instances ˜̂yf ≠
∑

x∈{0,1}n/2 fy(x)f(x, r2) or ˜̂yg ̸=
∑

x∈{0,1}n/2 fy(x)g(x, r2),
which happens with probability n

2|F| , due to the soundness of the standard sumcheck protocol.
By taking the union bound over all probabilities, we conclude that the probability convincing

the verifier is at most n2n/2−logn

|F| .

Proof Sketch for Knowledge Soundness. Because we wish to achieve succinctness, the verifier of
our final sumcheck protocol delegates some of its computations of the information theoretic protocol
to the prover. Because we use sumcheck-based SNARKs to prove these computations, we need to
prove that the Protocol 1 is knowledge sound.

To achieve that we to prove that for any PPT adversary Asc, there exists an extractor Esc
which given an accepting proof transcript, extracts the polynomials fy, fc, such that

∑
ω∈H1

p1(ω) =
K0, p1(r1) = K1 and fy(r3) = yY. We build our extractor as follows. First creates adversaries APC

against the extractability game of the PC scheme. Specifically it gives them the public parameters
pp, they invoke Asc, and return the corresponding polynomial commitments along with accepting
evaluation proofs. Then uses the extractors EPC to extract the valid fc, fy with overwhelming
probability and parses fc as pi(x) =

∑
i∈[2n/2−logn] cix

i. What remains to show that Esc fails only
with negligible probability. This comes directly from the soundness of our sumcheck protocol.

A.4 Zero-knowledge

46

Protocol 2: Let f, g : Fn → F be the multi-linear extensions of Af ,Ag and S(Af), S(Ag) their streaming
oracles. We want to prove that K =

∑
x∈{0,1}n f(x)g(x). Our protocol takes as input S(Af), S(Ag), n

and public parameters of a PC scheme.

• Initialization: Set Ãf ← {0}2
n/2

, Ãg ← {0}2
n/2

,p0(x)← 0,p1(x)← 0,F← {0}2n/2

,G← {0}2n/2

.

• Commit: P: Sample random polynomials h1, h2 : F2+n/2 → F, Rf (ω, rn/2+2), Rg(ω, rn/2+2) commit
them using zkPC scheme and send Ch1

, Ch2
, CRf

, CRg
and Kh =

∑
h1(x)h2(x) to V. Next, V sends a

random point r ∈ F at P, and sets K0 = K + rKh

• Phase 1: For f̂ , ĝ the equivalent polynomials of f, g, and f̂ ′, ĝ′ their masks such that f̂ ′(x0, x1,x2) =

f̂(x0, x1,x2)+z(x0, x1,x2)
∑

ω∈{0,1} Rf (ω, xn/2+1), and ĝ′(x0, x1,x2) = ĝ(x0, x1,x2)+ z(x0, x1,x2) ·∑
ω∈{0,1} Rg(ω, xn/2+1), prove that K =

∑
x∈H0×H1×{0,1}n/2 f̂ ′(x)ĝ′(x)

– First round (over the n-degree variable x0):

1. P: For i = 1, ..., 2n−logn: Read the next n elements of S(Af), S(Ag) and store them in Ãf , Ãg.

Set pf (x) =
∑

j∈[n] L
(0)
j (x)Ãf [j] (and likewise pg(x) using Ãg) and compute p0(x) ← p0(x) +

pf (x)pg(x)+rh1(x1, i)h2(x1, i), where i ∈ [2n/2−logn]× {0, 1}n/2.
2. V: Receive p0(x), check if K =

∑
i∈[2n] p0(ω

i
1), pick a random point r0, compute p0(r0) and send

r0 to P.
– Second round (over the 2n−logn-degree variable x1):

1. P: For i = 1, ..., 2n/2: Read the next 2n/2 elements of S(Af), S(Ag), store them in Ãf , Ãgand

compute the polynomial pf (x) = f̂(r0, x1, i) defined as
∑

j∈[2n−log n] L
1
j(x)cj, where cj equals to∑

k∈[n] y0[k]Ãf [jn+ k] and y0 = (L0
1(r0), ..., L

0
n(r0)). Likewise compute pg(x) using Ãg. Finally

compute p1(x)← p1(x) + pf (x)pg(x)+rh1(r1, x2, i)h2(r1, x2, i) where i ∈ {0, 1}n/2.
2. V: Delegates its checks to P following the same protocol as non-zero-knowledge version.

– Remaining rounds (over the 1-degree variables x2, ..., xn/2+2):

1. P: For i = 1, ..., 2n/2: Read the next 2n/2 elements of S(Af), S(Ag), store them in Ãf , Ãg and

compute F[i] = f̂(r0, r1, i) =
∑

j∈[2n/2](y0 ⊗ y1)[j]Ãf [j] (and similarly compute G[i] using Ãg),

where y1 = (L1
1(r1), ..., L

1
2l(r1)).

2. P: interacts with V following the zero-knowledge version of the sumcheck protocol using as
mask the multi-linear polynomials h1(r1, r2, x), h2(r1, r2, x) to prove that p1(r1) is equal to∑

x∈{0,1}n/2 f̂ ′(r0, r1, x)ĝ
′(r0, r1, x). Finally, V ends up with claimed evaluations yf̂ ′ = yf̂ +

z(r0, r1, r2)
∑

ω Rf (ω, rn/2+1), yĝ′ = yĝ + z(r0, r1, r2)
∑

ω Rg(ω, rn/2+1) at (r0, r1, r2). Further-
more, P generates an evaluation proof of h1, h2 at the same point. Using these points, V validates
the last round of the zero-knowledge sumcheck.

• Phase 2: Reduce the evaluation claims of f̂ , ĝ into claims of f, g.

1. P: For i = 1, ..., 2n/2: Read 2n/2 elements from S(Af), S(Ag) and store then in Ãf , Ãg. Update F
(and similarly G) by computing F[j] = F[j] + β(i, r2)Af [j] for each j ∈ [2n/2]. At the end of the
iteration, P holds f(x, r2), g(x, r2).

2. P receives a1, a2 ∈ F from V and interacts with it following the zero-knowledge sumcheck protocol for

the instance a1yf̂ ′ + a2yĝ′ =
∑

x∈{0,1}n/2,ω∈{0,1}

(
fy(x)

(
a1f(x, r2) + a2g(x, r2)

)
+

z(r0, r1, r2)(a1Rf (ω, rn/2+1) + a2Rg(ω, rn/2+1))
)
.

3. P sends yy0 , yy1 , yf , yg, generates an evaluation proof forRg(rω, rn/2+1), Rf (rω, rn/2+1) and V validates
the last round of the sumcheck protocol.

4. V checks the correctness of yy0 locally and for yy1 , interacts with P following steps 2.c-2.e (but in
step 2.d replaces p1(x) with the multi-linear polynomial s.t l(x) = β(x, ry1)).

47

At a high level, to make our succinct scheme zero-knowledge, we rely on ideas from [10, 81]. I.e., we
use randomly sampled polynomials h1, h2 to “blind” the polynomials the prover sends and generate
a batched sumcheck proof. Following the optimizations of [10], it suffices to represent h1, h2 as
h(x1, ..., xn/2+2) = c1 +h(1)(x1)+ ...+h(n/2+2)(xn/2+2), where h

(1)(x1) is a n-degree polynomial and

h(2)(x2) a 2n/2−logn-degree polynomial, while the remaining partial polynomials have degree 1. Hence,
h1, h2 add only a negligible overhead to the proving time and, most importantly for our space-efficient
construction, they do not violate our space requirements. Next, to avoid sending evaluations of the
polynomials f̂ , ĝ, which would leak additional information about f, g, we mask these using the random
polynomials Rf , Rg. Since for each polynomial the verifier receives only one evaluation, we can heavily
reduce the size of Rf , Rg to two variables of degree 1 (e.g., Rf (x1, ω) = a1 + a2x1 + a3ω + a4x1ω),
again minimizing the overhead to the proving time and space.

Protocol 2 gives a detailed description of the zero-knowledge version of our space-efficient
sumcheck, and we highlight with blue color the necessary changes. This protocol has an additional
Commit phase in which the prover first samples the blinding polynomials h1, h2, the masking
polynomials Rf , Rg and commits them using the zkPC scheme. Finally computes the sum Kh =∑

x∈H0×H1×{0,1}n/2 h1(x)h2(x) and sends Kh along with the commitments to the verifier. Then
receives a random point r ∈ F from the verifier and, in the first phase, interacts with it to prove that

K + rKh =
∑

x∈H0×H1×{0,1}n/2

(
f̂ ′(x)ĝ′(x) + rh1(x)h2(x)

)
, where:

f̂ ′(x0, x1,x2) = f̂(x0, x1,x2) + z(x0, x1,x2)
∑

ω∈{0,1}

Rf (ω, xn/2+1)

Recall that the polynomials h1(x) (and h2(x) resp.) have the form h1(x) =
∑

i∈[n/2] h
(i)
1 (xi),

where h
(1)
1 has degree n, h

(2)
2 has degree 2n/2−logn, while the rest polynomials have degree 1. Moreover,

and for reasons that will be clear later, it is enough for Rf , Rg to be multi-linear polynomials. At
the end of Phase 1, the prover gives the evaluations of the masked multi-linear polynomials to the
verifier along with opening proofs for the evaluations of h1, h2. The verifier validates the last step of
the sumcheck and proceeds to Phase 2 in which it interacts with the prover over the zero-knowledge
version of the sumcheck protocol [10] over the instance:

a1yf̂ ′ + a2yĝ′ =
∑

x∈{0,1}n/2,ω∈{0,1}

I(0, ω)fy(x)
(
a1fF(x, r2) + a2g(x, r2)

)
+

I((x, 0))z(r0, r1, r2)
(
a1Rf (ω, rn/2+1) + a2Rg(ω, rn/2+1)

)
Where I(·) is the identity function as defined in [10] (Section 4.2). At the end of the protocol,

the prover sends yf , yg along with the evaluations of Rf , Rg, and their evaluation proofs. The verifier
uses them to validate the last round of the sumcheck protocol.

Completeness derives from the completeness of our sumcheck protocol and the zkPC scheme,
while soundness, from the soundness of the “plaintext” sumcheck (see previous the section) and the
random linear combination as proven in [81]. For the rest of this section we will give a proof for the
zero-knowledge.

Proof Sketch. To prove zero-knowledge we will create a simulator S, that given the sum K =∑
x∈{0,1}n f(x)g(x), is able to simulate the view of V for all the rounds of our protocol. In more

detail, S works as follows:

1. Randomly select the polynomials h∗1(x), h
∗
2(x), Rf (xn/2+1, ω), Rg(xn/2+1, ω), commit them

using a zkPC scheme and send the commitments and Kh =
∑

x h1(x)h2(x) to V.

48

2. Receive r from V.

3. Select the polynomials f∗, g∗ : Fn → F such that K =
∑

x∈{0,1}n f
∗(x)g∗(x), and follow all

steps of Phase 1. More precisely:

(a) Compute and send the polynomial p0(x1) as in First round of Phase 1 and receive r0
from V.

(b) Compute the polynomial p1(x2) as in Second round of Phase 1 and delegate its
evaluation as described in Protocol 1.

(c) For the remaining rounds follow step 3 of Construction 1 of [10].

4. Send y∗
f̂ ′ , y

∗
ĝ′ , h

∗
1(r0, r1, r2), h

∗
2(r0, r1, r2) to V.

5. Open the evaluations of h∗1, h
∗
2 using the zkPC scheme.

6. Receive from V, a1, a2.

7. Use the simulator of the zero-knowledge sumcheck protocol of [10] (Section 4.1) to prove Step
2 of Phase 2.

8. Samples yf , yg such that the final sumcheck round will be true and sends yf , yg, andR
∗
f (r1, c), R

∗
g(r1, c)

to V.

9. Opens R∗
g(r1, c), R

∗
f (r1, c) using the zkPC scheme.

Steps 2, 6 are indistinguishable from the real world. Moreover, because we assume the existence
of a zero-knowledge polynomial commitment scheme, and because the polynomials h∗1, h

∗
2, R

∗
f , R

∗
g

uniformly sampled, steps 1, 5, 9 are indistinguishable from the real world. Indistinguishability of
steps 3 and 7 derive from Theorem 3 of [10]. What remains is to prove that steps 4 and 8 are
indistinguishable from the real world. Because in both worlds, h1, h2, h

∗
1, h

∗
2 are sampled uniformly

at random, their evaluations will be indistinguishable between the two worlds. Thus we will focus on
showing indistinguishability between the evaluations of R∗

f , R
∗
g, f̂

′∗, ĝ′∗ and Rf , Rg, f̂
′, ĝ′. Focusing on

a single polynomial, we observe that we only have two evaluations of Rf , at
∑

ω∈{0,1}Rf (rn/2+1, ω)
at the end of the protocol at Rf (rn/2+1, rω). Following the same logic with [10] and assuming that
Rf = a1+a2x1ω+a3x1+a4ω, we have two evaluations (

∑
ω∈{0,1}Rf (rn/2+1, ω) and Rf (rn/2+1, rω)),

which can arrange them into a matrix that has full rank. Because the matrix has full rank and the
points ai are uniformly sampled, the two evaluations are linearly independent. Moreover, since yf is
sampled uniformly at random with respect to a linear constraint and that R∗

f (rn/2+1, rω) independent
and uniformly distributed, y∗

f̂ ′ , yf , R
∗
f (rn/2+1, rω)will be indistinguishable from the real world. We

follow the same process for the polynomial ĝ′∗.

B Proofs for Sparrow

B.1 Proof of Lemma 1

Data-Parallel Arithmetic Circuits. First, recall that an arithmetic circuit C, is d-layered, if it
consists of d, depth-one circuits Ci, one for each layer i ∈ [d]. Furthermore, Ci takes as input the
output of Ci−1. C is data-parallel if every Ci : FSi → FSi−1 , consists of Ki copies of a sub-circuit
C′i : FS′

i → Fouti (note that KiS
′
i = Si and Kiouti = Si−1) and each copy works over a different input.

49

Figure 4: Evaluations tree TV (left) and circuit tree TC (right) of a data-parallel arithmetic circuit
with depth d = 3. Note that V0 corresponds to the output of the circuit and V3 corresponds to the
input. Moreover, Vi[j], for i ∈ [3], corresponds to the input of the j-th node, in the i-the level of TC .

As for the gate evaluations, we define with Vi ∈ FSi , the input of Ci and with Vi[j] ∈ FS′
i , the input

of the j-th sub-circuit of Ci.
We can consider C as a d-level tree (not necessarily binary) denoted with TC , where all Ki nodes

of the i-th level correspond to one sub-circuit C′i. A child node connects with its parent if the output
of the first belongs to the input of the latter. Similarly, we can arrange the evaluations of C in a tree
denoted with TV, where the j-th node of the i-th level corresponds to Vi[j]. Figure 4 depicts these
trees for a data-parallel circuit of depth d.

Space-Efficient Evaluation of Data-Parallel circuits. A crucial property of data-parallel circuits
that will enable us to achieve the desired asymptotics is that we can evaluate them using |C| field
operations and space |x|+

∑
i∈[d] |C′i|. Such an evaluation algorithm traverses the tree TV in post

order, computes and stores the next non-leaf node, and deletes its children. Because we compute
every node only once, the computing time will be |C| field operations. Moreover, because we delete
all the children of a newly computed node, for every evaluation step, we need to store data of size
equal to the input size of all different sub-circuits C′i. Thus, by also considering the space required to
store the input x, we get an overall space of x+

∑
i∈[d] |C′i|.

Main transformation. Having established that, we will show how to convert C into a data-parallel
circuit C̃ of depth one that takes as input x̃ consisting of x, the computation transcript of C (e.g., all
intermediate evaluations) and validates its correctness.

First, we set C̃ to be the concatenation of nodes (namely sub-circuits) in a post-order traversal
of TC . For instance, we can transform the circuit of Figure 4 to the 1-layered circuit C̃ = (C ′

3||C ′
3||C ′

2

||C ′
3||C ′

3||C ′
2||C ′

1). Similarly, x̃, will be the concatenation of all nodes in TV in post-order traversal
(e.g., x̃ = V3[0]||V3[1]||V2[0]||V3[2]
||V3[3]||V2[1]||V1[0]||V0[0]). If x̃ corresponds to a correct computation transcript of C, then any
sub-vector of x̃ (excluding the sub-vectors of Vd) will correspond to one sub-vector of the output of
C̃. To enforce that, we will immediately subtract every value of x̃ with its corresponding output (in
a similar fashion with [18, 19, 21]). In this way, the input x̃ corresponds to a correct computation
transcript of C if and only if C̃ outputs a zero vector. What remains is to ensure that the prover uses
the correct input Vd. We can enforce the latter by appending Vd in x̃ and adding copy constraints.
Finally we can naturally extend the same ideas for creating circuits of larger depth. For ease of
exposition, we omit the details.

Proof of Lemma 1. We will prove Lemma 1 based on the above transformation. Observe that
C̃ contains all sub-circuits of C, and for every element of x̃, one additional gate. So |C̃| = 2|C|. C̃ is
data-parallel as it consists of multiple copies of d distinct 1-layered circuits that work on different
inputs.

To argue about the space requirements of x̃, we need to show how to instantiate access to S(x̃).

50

Observe that x̃ places the nodes of TV (i.e., sub-vectors) in post-order, which is the same order we
follow when evaluating the circuit! Consequently, S(x̃) will be a routine that follows the evaluation
algorithm of C and, on the j-th invocation, returns the newly computed node of T̃V. Because S(x̃)
follows the evaluation algorithm, the time required for a complete scan over x̃ is |C| field operations
and spS(x̃) = |x|+

∑
i∈[d] |C′i|.

Finally, we need to prove that if C is log-space uniform, then C̃ is also log-space uniform. Recall
that a circuit family is a log-space uniform if there exists a Turing Machine that on input 1n and
working space of O(log n) outputs the description of the circuit [34]. Having that, we will show that
if C is log-space uniform, then we can create such a Turing machine M that uses the Turing machine
for C, M ′, and outputs the description of C̃. M uses the topological information of C, namely the
constant depth d, and Ki,∀i ∈ [d], invokes M ′ (possibly multiple times) and outputs the necessary
information following a post-order traversal of TC . Because d is constant and M ′ uses logarithmic
space, it follows that M runs on logarithmic space too. So C̃ is log-space uniform.

B.2 Proof of Theorem 2

Complexity. Let C be an d-layered data parallel arithmetic circuit where d is a small constant (in case
d is significantly larger than log log |C| we apply the transformation of Appendix B.1 to reduce the
circuit’s depth). Regarding prover complexity, Step 1 of Construction 1 is dominated by |w| MSMs,
step 2 needs O(|C|(log log |C|+ d)) ≈ O(|C| log log |C|) field operations and step 3 requires O(|w|)
field operations and O(

√
|w|) MSMs/pairing operations. Overall, Sparrow requires O(|C| log log |C|)

field operations and O(|w|) MSMs.
Regarding space-complexity, steps 1 and 3 need space O(spS(w) +

√
w) and step (2) needs space

of O(|x|+ spS(w) +
∑

i∈[d] |C′i|+
√
|C|). So, the overall space is O(|x|+ spS(w) +

∑
i∈[d] |C′i|+

√
|C|).

Observe that this space remains the same regardless of whether we apply the depth reduction.
As for the proof size, step 2 generates proofs of size O(d log |C|) and step 3 produces an evaluation

proof of size O(log |w|), so the overall proof size is O(d log |C|). If we apply depth reduction, the
proof size becomes at most O(log |C|). In case C is log-space uniform, verification time will be
O(|x|+ log |C|).
Completeness. Derives from the completeness of our sumceck protocol, space-efficient PC scheme, and
the GKR protocol. Observe that replacing the standard sumcheck with our space-efficient sumcheck
does not create any complications because, at the end of our sumcheck, the verifier ends up with
two evaluations of the multi-linear polynomials fi, as GKR requires.

Knowledge-Soundness. First, the soundness of the space-efficient variant of GKR comes directly from
the soundness of our (information theoretic) sumcheck protocol A.3 and the soundness of the GKR
protocol [34]. For knowledge-soundness, we can directly use the proof of [10] so we omit the details.

Zero-Knowledge. Derives from the zero-knowledge of our sumcheck protocol, GKR protocol, and
PC scheme. To prove zero-knowledge, we use the same techniques as in [10], but with the difference
that when proving zero-knowledge for the GKR protocol (Section 4.2 of [10]), the simulator makes a
black-box invocation of the simulator of our sumcheck protocol.

C More details for our zkFTP Scheme

C.1 Training and Prediction Algorithms for Trees and Forests

Algorithm 3 gives a high-level description of the training forest training algorithm. More precisely,
Train (lines 18-24) takes as input the dataset D ∈ [B]n×d, the number of trees the forest consists of,

51

the number of features D contains, the maximum depth h of every tree in the forest, a random element
seed needed to generate training randomness and returns the random forest F . After initializing
the necessary sets (line 19), we call Bagging method that takes as input the dataset D and for
every i ∈ [K], sets Di ← {} and randomly picks n points in D using seed. Then for each i ∈ [K], we
invoke the TrainTree method on input the dataset Di and the attribute set A, get the trained tree
Ti and update F (lines 21-23). What remains is to explain TrainTree— the training algorithm of
a decision tree (lines 9-17).

First TrainTree, tests if stopping criteria are met, e.g., whether the tree has depth h or the
vast majority of elements in D have the same label (line 10). If these criteria hold, the algorithm
stops a further split of the current node, computes its label (usually the most common label of its
data), and assigns it as a leaf. Otherwise, we invoke FindSplit (lines 1-8), which first computes the
histograms for every feature and every class and then, using the histograms, finds and returns the
best split. Having such a split, we split the dataset D in DL and DR (lines 12-14), remove the best
feature from the set A, create a new node (line 15), and recursively repeat the process for the left
and right child of the node using DL and DR respectively (lines 16-17).

Algorithm 3 Forest Training Algorithm

1: procedure FindSplit(D,A)
2: Set Hi,j ← 0B,∀i ∈ [|A|], j ∈ {0, 1}, ϵ← {}
3: for all p ∈ D and all i ∈ A do
4: if p.label = 1 then Hi,1[p[i]]++ else Hi,0[p[i]]++

5: for all i ∈ A do
6: ϵ← ϵ ∪ (i,BestSplitScore(Hi,0, Hi,1))

7: (j, ϵj)← min(ϵ)
8: return (j, ϵj)

9: procedure TrainTree(T , D, h,A)
10: if StoppingCriteria(D,h) then return
11: a, v ← FindSplit(D,A)
12: DL = {}, DR = {}
13: for all p ∈ D do
14: if p[a] ≤ v then DL = DL ∪ p else DR = DR ∪ p

15: AddNode(T , (a, v))
16: Train(T , DL,A− {a})
17: Train(T , DR,A− {a})
18: procedure Train(D,K, d, h, seed)
19: F ← {}, {Ti ← {}}i∈[K], A← {1, ..., d}
20: if K > 1 then {Di}i∈[K] ← Bagging(D, seed)
21: for all i ∈ [K] do
22: TrainTree(Ti, Di,A)
23: F ← F ∪ Ti
24: return F

Algorithm 4 provides a detailed description of the prediction process. Specifically, Predict (lines
9-14), takes as input the forest F , a test point x and for each tree in F (lines 11-13), invokes the
TreePredict method (lines 1-8) and receives a prediction from every tree. Finally, return the
majority of predictions Y. Regarding TreePredict, given a tree T and a point x, we start from
the root and check if the root’s split value is larger than the point’s value at the split attribute. If

52

this is true, move to the left child. Otherwise, move to the right child. Repeat the same process until
reaching a leaf, and return its id (i.e., relative position among other leaves) and the label (i.e., the
prediction).

Algorithm 4 Forest Prediction Algorithm

1: procedure TreePredict(T ,x)
2: node← T .root
3: while IsLeaf(T , n) = 0 do
4: if x[node.a] < node.v then
5: node← node.left
6: else
7: node← node.right

8: return node.leafID, node.label

9: procedure Predict(F = {Ti}i∈[K],x)
10: Y ← {}
11: for all i ∈ [K] do
12: , y ← TreePredict(Ti,x)
13: Y ← Y ∪ y

14: return Majority(Y)

C.2 Correctness Proof of our Certification Algorithm

Figure 5: Example of a tree and the corresponding datasets for each node.

Claim 1 Let D ∈ [B]n×d be a dataset, T a decision tree, and h its maximum depth. If T ̸=
TrainTree(D), then CertifyTree(T , D) will always reject T .

Proof. First, we denote with Di (where i ∈ [L]) the set of all points such that P [j] = i,∀j ∈ [n]
(computed following lines 13-15 of Algorithm 1). Figure 5 provides an example of a tree and its
corresponding sets Di. In addition, for every non-leaf node v, we represent with Dv all the points in
D that pass through v when performing an inference step.

Next, from the properties of decision trees, it is not hard to see that (i) D =
⋃

i∈[L]Di (ii)
Di ∩ Dj = ∅,∀i, j ∈ [L] and i ̸= j, (iii) Dv =

⋃
i∈Lv

Di, where Lv is the set of leaves that have

53

v as ancestor and (iv) from the homomorphic properties of the histograms and observation (iii),
H = Hist(Dv) = Hist(

⋃
i∈Lv

Di) =
∑

i∈Lv
Hist(Di).

Having established that, assume that T is not well-formed. We will prove that CertifyTree
will always reject it (return 0). As a starting point, we will show that if the root node is incorrect,
then Algorithm 1 will always detect the inconsistency. Let Hroot, be the histograms computed
by Algorithm 1, from lines 18-23. We can re-write Hroot as

∑
i∈[L]H

leaf
i,·,· and from observation

(iv), we know that
∑

i∈[L]H
leaf
i,·,· = Hist(

⋃
i∈[L]Di). Moreover, from observation (iii), we have

Hist(
⋃

i∈[L]Di) = Hist(D). Consequently, the first invocation of FindSplit method of TrainTree
algorithm (Algorithm 3) and ValidateSplit of Algorithm 1 must compute the same split value
and feature. Thus, if T has a different split value or feature, then it is incorrect and will be rejected
according to ValidateSplit method.

Now, assuming that the root is consistent, we need will show that the histograms of its children
computed in Algorithm 3 are the same as the ones computed in Algorithm 1. Let DL, DR be the
data that correspond to the left and right children of the root as computed at line 14 of Algorithm 3.
Furthermore, assume that D′

L =
⋃

i∈[s]Di (and D′
R =

⋃
i∈{s+1,...,L}Di) be the set points that pass

through the left (and right resp.) child of the root node of the tree (for instance in Figure 5,
D′

L = D1 ∪D2 and D′
R = D3 ∪D4 ∪D5). We first need to prove that D′

L = DL (and D′
R = DR

resp.). Because the root node is correct, for all points p ∈ D′
L, we will have that p[root.a] ≤ root.v.

In addition, due to the fact that D′
L ∪D′

R = D (from (i)) and D′
L ∩D′

R = ∅ (from (ii)), we conclude
that D′

L = DL.

Finally, from (iv) we know that
∑

i∈[s]H
leaf
i,·,· = Hist(D′

L) = Hist(DL) (and resp. for DR). Having
established the correctness of the histograms of the children, we can follow the same argument as we
did for the root recursively until reaching the leaves.

C.3 Correctness Proofs of Histogram and Tree Computations Circuits

Permutation check Consider the sets A,B, and let ai ∈ Fn denote an element of A (and bi
resp. for B). To prove that A is a permutation of B, the we need to show that for a randomly
selected point s ∈ F,

∏
i∈[|A|] (⟨(1, s, ..., sn), ai⟩+ rn+1) =

∏
i∈[|A|] (⟨(1, s, ..., sn), bi⟩+ rn+1). Due to

Schwartz–Zippel lemma, the probability that the above equality holds but A ̸= B is |A|n
|F| . To

compile this check into an arithmetic circuit, we use two multiplication trees that take as input
1, s, ..., sn, sn+1, A,B and outputs the product difference.

Claim 2 Given a vector of addresses h ∈ [B]N , read/write transcripts Hr, Hw ∈ ([B],N)N such that
∀i ∈ [N], (i) Hr[i][1] + 1 = Hw[i][1] and (ii) Hr[i][0] = Hw[i][0] = hi, then H ∈ [N]B is a histogram
of h (i.e., ∀i ∈ [B], H[i] =

∑
j∈[N] I(hj = i)) if and only if Hw ∪ {(i, 0)}i∈[B] = Hr ∪H.

Proof. We denote with H i
r (and H i

w resp.) the set that contains all pairs of the form {(i, vj)}j∈[u]
(and {(i, v′j)}j∈[u] resp.), where u =

∑
j∈[N] I(hj = i). Note that due to conditions (i)-(ii), it will

always hold that |H i
r| = |H i

w| = u and vj + 1 = v′j , ∀j ∈ [u].
Having established that, assume that exists an address i ∈ [B], such that H[i] = u′ ̸= u but still

Hb ∪Hw = Hr ∪H. We will reach a contradiction. First, because i is distinct and from condition
(ii), it must also hold that H i

w ∪ (i, 0) = H i
r ∪ (i, u′), so it is enough to focus on this subset. We now

consider two cases. Assume that u′ > u. Then (i, u′) must belong to H i
w and thus due to condition

(i), (i, u′ − 1) must belong to H i
r. We continue recursively the same argument for (i, u′ − 1), until

reaching (i, u′−u). At this point (i, u′−u) (where u′−u > 0), must belong to H i
w. However |H i

w| = u
meaning that either (i, u′ − u) or a pair between (i, u′) and (i, u′ − u) does not belong to H i

w, so
H i

w ∪ (i, 0) ̸= H i
r ∪ (i, u′), or |H i

w| > u which contradicts condition (ii).

54

In the case where u′ < u, we follow a similar argument. To begin with, observe that if there exists
a pair (i, u′′) in H i

w, such that u′′ > u′, then due to condition (i), (i, u′′) will not exist in H i
r ∪ (i, u′),

so H i
w ∪ (i, 0) ̸= Hr ∪ (i, u′′). Moreover, if H i

r has some negative values, then due to condition (i),
there will be a pair (i, u′′) ∈ H i

r, s.t u
′′ < 0 and (i, u′′) ̸= H i

w (i.e., u′′ is the minimum value of H i
r) so

H i
w ∪ (i, 0) ̸= H i

r ∪ (i, u′). Consequently, we limit the proof in the case that all positive values u′′ ≤ u′.
Due to the pigeonhole principle there must be in H i

r at least two pairs of the form (i, vj), (i, vj′) where
vj = vj′ . If there is a smaller number of (i, vj) pairs in H i

w, then H i
w ∪ (i, 0) ̸= H i

r ∪ (i, u′). Otherwise,
there must be the same number of pairs in H i

r of the form (i, vj − 1). We follow the same argument
recursively until having multiple pairs of the form (i, 0). In this case, H i

w ∪ (i, 0) ̸= H i
r ∪ (i, u′), as

the left side set must contain only one pair of the form (i, 0).

Claim 3 Given L, a set containing the coordinates of the leaves along with their data and S the
tree computation transcript and N the set such that ∀i ∈ [|S|/2], Ni = (h2i − 1, p2i/2,G(D2i, D2i+1))
(where h2i = h2i+1 and p2i = p2i+1 + 1), then S is consistent if and only if N ∪ L = S ∪ (0, 0, Dr).

Proof. To begin with, we say that S is inconsistent if (i) vl, vr are siblings but their parent (if it is
not a root) is not encoded in S, (ii) there exists a leaf, not included in S. If these conditions do not
hold, then S is a valid transcript of a computation over a tree. To see why this is the case let S1 be
a set containing all pairs of leaves and their siblings. Because (ii) does not hold, then S1 ⊂ S. Let S2
be the pairs of parent nodes (along with their siblings) computed by S1. Because (i) does not hold,
we know that S2 ⊂ S. We apply the same argument recursively until reaching the root. In this way,
S contains all nodes of the tree and their correctly computed data, so it is a consistent computation
transcript.

What remains is to show that if (i) or (ii) hold then, N ∪ L ̸= S ∪ (0, 0, Dr). If (ii) holds, then
there is a tuple l ∈ L but not in S, so N ∪ L ≠ S ∪ (0, 0, Dr). If (i) holds, then there will be a pair
(h, p,Dv) ∈ N that does not belong to S so N ∪ L ≠ S ∪ (0, 0, Dr).

Claim 4 Given a vector of addresses h ∈ [B]N , frequencies FB ∈ NN , read/write transcripts
Hr, Hw ∈ ([B],N)N such that ∀i ∈ [N], (i) Hr[i][1]+FB[i] = Hw[i][1] and (ii) Hr[i][0] = Hw[i][0] = hi,
then H ∈ [N]B is a histogram of h (i.e., ∀i ∈ [B], H[i] =

∑
j∈[N]FB[j]I(hj = i)) if and only if

Hw ∪ {(i, 0)}i∈[B] = Hr ∪H.

Proof. Our proof follows a similar argument with Claim 2. Focusing on a single address i ∈ [B], let
(k1, ..., k|Hi

w|), be the set of indexes such that I(hkj = i) = 1 and let H[i] = u′ ̸= u =
∑

j∈|Hi
w|FB [kj],

but still H i
w∪ (i, 0) = H i

r∪ (i, u′). We will reach a contradiction. First observe that (i, u′) must belong
to H i

w and thus due to condition (i), (i, u′−FB [k1]) must belong to H i
r. Similarly, (i, u′−FB[k1]) must

belong toH i
w. We repeat the same argument, |Hw| times, concluding that (i, u′−

∑
i∈|Hw|FB[ki]) must

belong to Hr. Because u
′−

∑
i∈|Hw|FB[ki]) = u′−u ̸= 0, then clearly (i, u′−

∑
i∈|Hw|FB[ki])) ̸= (i, 0),

so H i
w ∪ (i, 0) ̸= H i

r ∪ (i, u′).

C.4 Circuit that Validates Correctness of Inference [39]

Let T , be a tree path that consists of the leaf index, its relative position in the tree and a list of triples,
one for each node of the tree from the leaf to the root, containing the feature id fi ∈ [d], the split
value vi ∈ [B] and the direction di ∈ {0, 1} (e.g., 0 if we move to the left child or 1 otherwise). Note
that we pad the list of triples to have the maximum depth of the tree. Overall we represent the path
as T = ((f1, v1, d1), ..., (fmax, vmax, dmax), (Li, posi)). Having established that, we construct a circuit
that takes as input T , the test point x = ((1, x1), (2, x2), ..., (d, xd)), represented by the attribute id and

55

its corresponding value, and a permuted test point for x̃ = ((a[1], xa[1]), (a[2], xa[2]), ..., (a[d], xa[d])),
where a : [d] → [d] is a permutation s.t ∀i ∈ [max], a[i] = fi. Next the circuit checks (i) if the
attributes in the permuted point are consistent with that of T , (e.g., x̃[i][0]−T [i][0] = 0) and (ii) x̃ is
a permutation of x. The last check is achieved by the permutation circuit (see Checking set equality)
of C.3. Finally, the circuit needs to check that the split was performed correctly. To achieve that, it
computes the difference of the values firstmax values of x̃ and T (e.g., x̃[i][1]−T [i][1] = 0, ∀i ∈ [max]).
If the difference is negative and the direction is zero, or vice-versa, reject. Otherwise output 1.

C.5 Space Complexity of Streaming Oracles

In this section we analyze the space required to instantiate streaming access to the input of every
circuit of the proving training algorithm.

(0) Checking Bagging Correctness. To instantiate S(g) we need to store a single element gi−1 used to

compute gi, and also A,B, seed, leading to spS(g) = 4. For S(FB) we have spS(FB) = |Tr|+ spS(g).
Because the input streams of the circuits use S(g), S(FB), their required space will be the same but
with some additive constant overhead.

(1) Checking Correctness of Assignments. Starting with the simple case where K = 1, it is not hard

to see that the space required to instantiate both oracles is spS(·) = |D|+ |T |+O(d) as they only
require access to S(D), the forest, and some buffer space of size O(d) to compute the auxiliary
information. For the general case where K > 1, the space needed to instantiate access to these
oracles is identical to the case where K = 1—independent of K!

(2) Checking Leaf Histograms. For K = 1, note that spS(h) = |D| + spS(T ′) = |D| + |T | + O(d)
while spS(Hw,r) = spS(h) + dLB = |D|+ |T |+ dLB +O(d). Finally, spS(HL) = |D|+ dLB + |T |.
Likewise with step (1), the space needed for K > 1 is independent of K.

(3) Checking Non-Leaf Histograms. In the simple case where K = 1, we do not have to instantiate
any streaming oracle. When K > 1, we need to construct S(H), which on j-th invocation, calls
S(HL) to get HL,j and uses it to compute and output Hj . So the required space is spS(H) =
dLB + spS(HL) = |D|+ 2dLB + |T |.
(4) Checking Non-Leaf Histograms. We can directly prove the correctness of splits by using spS(H)
and generating “on the fly” all the data we need (e.g., gini indexes, bit-decomposition values from
comparisons, etc.). In practice, the overall space required is no more than spS(H) + dLB.

C.6 Proof of Theorem 3

Training Complexity. Regarding proving time, observe that the largest circuit size is O(|D|K)
(Circuit C3 of Construction 1). Because we invoke Sparrow prover only a constant number of
times, the total proving complexity will be O(|D|K log log(|D|K)). As for proof size, because we have
a constant number of proofs, due to Theorem 2, we will have a proof size of O(logK|D|). Similarly,
with verification time, we also observe that all circuits are data-parallel with sub-circuits of small
constant size (e.g., circuits C3,△) or multiplication trees (e.g., C1, C5) which are inherently log-space
uniform. So, from Theorem 2, we have verification time of O(logK|D|).

To argue about space complexity, note that every invocation of Sparrow has different space
requirements that depend on the structure of the circuit and the space necessary to instantiate
the streaming oracles. We will give an upper bound by measuring the largest space required for
streaming oracles, for evaluating a circuit, and the maximum circuit size. From Section C.5, the we
get a maximum space of spS(·) = |D|+ |F|+ 2dLB, for evaluation we get dLB and for the circuit

56

size we have |C3| = c|D|K, where c ∈ N is a large multiplicative constant. Thus, the concrete space
complexity of the prover will be |D|+ |F|+ 3dLB +

√
c|D|K field elements.

Training Completeness. Training completeness comes directly from the completeness of Sparrow,
standard GKR-based SNARK [10] and Claims 1,2,4,3.

Proof Sketch of Forest and Data Extractability. Suppose that an adversary A against the
forest and data extractability game convinces a verifier with non-negligible probability. We will
create an extractor E , which having access to the random tape of A and the public parameters,
extracts a dataset D and a correctly trained forest (over the dataset and a seed).

To do so, we will construct ten adversaries A1, . . . ,A10 (one for every proof) against the knowledge
soundness game of GKR-based SNARKs (both standard and space-efficient). All adversaries are
given the public parameters, have access to the random tape of A, and output the following:
- A1: Returns the proof π1 of step 1.b.i, including the PC commitment Cg.

- A2: Returns the proof π2 of step 1.b.ii including C
(2)
g , CFB

.
- A3: Returns the proof π3 of step 2.b.i including CT ′ .
- A4: Returns the proof π4 of step 2.b.ii including CF .

- A5: Returns the proof π5 of step 2.b.iii which includes CD, C
(2)
T ′ .

- A6: Returns the proof π6 of 3.b.i including Ch, CHr , CHw , C
(2)
FB

.

- A7: Returns the proof π7 of step 3.b.ii including CHL , C
(2)
Hr

, C
(2)
Hw

.

- A8: Returns the proof π8 of step 4.b including C
(2)
F , C

(2)

HL , CH .

- A9: Returns the proof π9 of step 5.a including C
(3)
F , C ′

H .

- A10: Returns the proof π10 of step 6 including C
(4)
F .

Then, we invoke the ten extractors Ei, one for every adversary, that take the same input as Ai

and output the following:

- E1: Outputs w = (w1 = g,w2) such that CB,1(x,w) = 1 and g is the pre-image of Cg with
overwhelming probability due to Theorem 2.

- E2: Outputs w = (w1 = g(2),w2 = FB,w3) such that CB,2(x,w) = 1, g is the pre-image of C
(2)
g

and FB is the pre-image of CFB
with overwhelming probability due to Theorem 2.

- E3: Outputs w = T ′ such that C1(x,w) = 1 and T ′ is the pre-image of CT ′ with overwhelming
probability due to Theorem 2.

- E4: Outputs w = F such that C2(x,w) = 1 and F is the pre-image of CF with overwhelming
probability due to Theorem 6 of [10].

- E5: Outputs w = (w1 = D,w2 = T ′(2),w3) such that C3(x,w) = 1, D,T ′(2) are the pre-images of

CD, C
(2)
T ′ respectively, with overwhelming probability due to Theorem 2.

- E6: Outputs w = (w1 = h,w2 = Hr,w3 = Hw,w4 = F
(2)
B)) such that C4(x,w) = 1, h, Hr, Hw,

F
(2)
B are the pre-images of Ch, CHr , CHw and C

(2)
FB

respectively, with overwhelming probability due
to Theorem 2.

- E7: Outputs w = (w1 = h(2),w2 = H
(2)
r ,w3 = H

(2)
w ,w4 = HL) such that C5(x,w) = 1, H

(2)
r , H

(2)
w ,

HL are the pre-images of C
(2)
Hr

, C
(2)
Hw

and CHL , with overwhelming probability due to Theorem 2.

- E8: Outputs w = (w1 = HL,(2),w2 = H,w3 = F(2),w4) such that C6(x,w) = 1, HL,(2), H, F(2) are

the pre-images of C
(2)

HL , CH and C
(2)
F respectively, with overwhelming probability due to Theorem 2.

- E9: Outputs w = (w1 = H,w2 = F(3),w3) such that C6(x,w) = 1, H(2), F(3) is the pre-image of

C
(2)
H and C

(3)
F respectively, with overwhelming probability due to Theorem 2.

57

- E10: Outputs w = (w1 = F (4),w2) such that C8(x,w) = 1, and F (4) is the pre-image of C
(4)
F with

overwhelming probability due to Theorem 6 of [10].

At this point, observe that Cg = C
(2)
g , CFB

= C
(2)
FB

, CT ′ = C
(2)
T ′ , Ch = C

(2)
h , CHr = C

(2)
Hr

,

CHw = C
(2)
Hw

, CHL = C
(2)

HL , CH = C
(2)
H , CF = C

(2)
F = C

(3)
F = C

(4)
F — otherwise the verification

algorithm would reject. Consequently, due to the binding properties of PC schemes, we have

g = g(2), FB = F
(2)
B , T ′ = T ′(2), h = h(2), Hr = H

(2)
r , Hw = H

(2)
w , HL = HL,(2), H = H(2),

F = F(2) = F(3) = F(4). Finally E , returns D,F.
What remains, is to show that F = Train(D, seed) (F the matrix encoding of F) with overwhelm-

ing probability. Due to the soundness of GKR protocol, we know that g is a vector containing values
following a uniform-like distribution generated by a Linear congruential generator. Furthermore,
from [89] and the soundness of GKR, we know that FB[i] = Tr[gi] with overwhelming probability.
Next, C1 and C2 guarantee that the rows of T ′ belong to FT with overwhelming probability and C3
guarantees that that T ′ is well formed—namely for every pi, every j-th tree j ∈ [K], T ′j

i is the correct
path of pi in tree j. Next, C4 guarantees with overwhelming probability thatHj

r[i] = Hj
w[i][0] = hj [i][0]

and Hj
r[i][1] + Fj

B[i] = Hj
w[i][1]. Moreover, C5 guarantess that Hw ∪ Hinit = Hr ∪ HL with over-

whelming probability, thus from Claim 4 we know that HL contains correctly computed histograms.
For non-leaf histograms, we first parse the witness of C6 to get the computation transcript S. Because
C6 validates that HL∗ ∪H∗ = S ∪ (0, 0, Hr) with overwhelming probability, from Claim 3 we know
that H is the correctly computed set of non-leaf histograms and from Step 5, these histograms will
result in the correct splits. Finally, from Step 6 we know that F represents a valid forest.

Note that these checks, correspond to the computations the certification algorithm (see Algo-
rithm 1) needs to apply. Because the algorithm accepts the forest, then from Claim 1, this forest
must be correctly trained.

Last but not least, because E invokes the extractors E1, . . . , E10, the probability that E fails
is bounded by the probabilities the GKR-based extractors fail, which is negligible. Furthermore,
because all Ei run in polynomial time, E will run in polynomial time too.

Proof Sketch for Training Zero-Knowledge. To prove zero-knowledge, we will construct a
simulator S = (S1,S2,S3), that takes the public parameters pk,vk and trapdoor information trap
which will be used by the simulator of the PC scheme to generate accepting evaluation proofs.
At a high level, our Simulator receives training parameters from the adversary and interacts with
it following the same procedure as in Construction 1, but instead of invoking the commit and
generating Sparrow or standard GKR-based proofs, calls their corresponding simulators. In more
detail, S works as follows:

1. Receive n, d, h,K, seed from A.

2. CD ← S1(pk, trap, n, d): Invokes the simulator of the PC scheme (SPC) providing him with
the public parameters, and the trapdoor information and returns the output of SPC .

3. CF ← S2(pk, trap,K, h, seed): S2 works in a similar fashion as with S1.

4. πT ← S3(pk, trap, CD, CF , seed): In the Commit phase of Construction 3, S3, invokes
SPC , and receives the necessary commitments. Next, it invokes ten simulators S(i)SNARK , of the
GKR-based zkSNARK scheme, one for every step of Construction 3. Finally, S3 outputs
{{C∗

FB
, C∗

T ′ , C∗
HL , C

∗
H},

{π∗
i }i∈[10]} providing them the necessary trapdoor information so that they can generate a

valid evaluation proof.

58

What remains is to prove that π∗
T , the proof S outputs, is indistinguishable from the proof πT

generated by an honest PPT prover. Because (i) the commitments received by the adversary are
indistinguishable due to the hiding properties of the PC scheme and (ii) the proofs {πi}i∈[10] are
indistinguishable with the proofs {π∗

i }i∈[10] due to the zero-knowledge property of the GKR-based
SNARK [10] and Sparrow3, it follows that π∗

T will be indistinguishable to π∗
T for any PPT adversary

A.
Formally, we can use the standard hybrid argument, consisting of three hybrids. The first

hybrid (H0) outputs the proof in which the prover behaves honestly following Construction 2 and
Construction 3. The second hybrid (H1) replaces all the invocations of the zkSNARK provers with
their Simulators, while the third hybrid follows the same steps with the simulator S. Observe that
due to the zero-knowledge properties of the underlying zkSNARK protocols, a PPT adversary cannot
distinguish H0 and H1. Moreover, due to the hiding properties of the PC scheme, an adversary
cannot distinguish H1 and H2. So, any PPT adversary fails to distinguish between H0 and H2.

Proof Sketch of Forest Extractability. Consider a PPT adversary A that wins the forest
extractability game with non-negligible probability. We will create a PPT extractor E that has access
to the random tape of A, the public parameters and extracts a forest F such that on input the test
point x, predicts y with overwhelming probability.

First we construct the adversaries Alink,Alkp,Apred, against the knowledge soundness of the
linking, matrix lookup (e.g., the relation Rlkp) and CP-SNARK (e.g., the relation Rpred) protocols
respectively. All adversaries have access to the random tape of A and output the following:

- Alink: Returns the proof πlink of step 1.b, in ProvePred,Construction 2 consisting of two sumcheck
proofs (one to prove pF(s) =

∑
x∈{0,1}logKLp fy(x)gF(x) and one to prove the well-formedness of

fy(x)), the PC commitment CT
F the KZG commitment CP

F and their corresponding evaluation proofs.

- Alkp: Returns the proof πlkp of step 3, in ProvePred, Construction 2 which also includes the

commitments CP, C
P,(2)
F .

- Apred: Returns the proof πpred of step 4, in ProvePred, Construction 2 which also includes the

commitment C
(2)
P .

Then, we invoke the extractors Elink, Elkp, Epred which take the same input as their corresponding
adversaries and output the following:

- Elink: Internally invokes the extractors of the PC scheme and returns the univariate polynomial
p(x) and the multivariate one gF(x) such that pF(s) =

∑
x∈{0,1}logKLp fy(x)gF(x) with overwhelming

probability.

- Alkp: Outputs the univariate polynomial p(2)(x), the path P and auxiliary witness information,
satisfying the relation Rlkp.

- Apred: Outputs the path P(2) and auxiliary information, satisfying the relation Rpred.

For any accepting proof A generates, it must hold that CP
F = C

P,(2)
F and Cp = C

(2)
p . Thus,

due to the binding properties of the underlying commitments, it should hold that p(x) = p(2)(x),

gF(x) = g
(2)
F (x) and P(2) = P. Furthermore, due to the knowledge soundness of matrix-lookup

argument [40] it holds that P which is the pre-image of CP and that every row of P belongs to
F with overwhelming probability. In addition, due to the knowledge soundness properties of the
underlying CP-SNARK scheme [9], we know that each row of P belongs to a different tree in the
forest, and that it is a valid prediction path with overwhelming probability. What remains is to show
that p(s) ̸=

∑
x∈{0,1}logKLp fy(x)gF(x) with negligible probability. This derives naturally from the

3Note that some proofs share common commitments, we appropriately increase the degree of the masking polynomial
applied to the zero-knowledge PC scheme so that the evaluation proofs will be indistinguishable.

59

soundness of the sumcheck protocol and the polynomial commitment scheme. Finally, the coefficients
of p(x) and gF(x) are the same, corresponding to an encoding F of a tree F with probability 1− KLp

|F|
due to the Schwartz-Zippel Lemma.

Finally, the probability E fails, is bounded by the probability extractors Elink, Elkp, Epred fail
which is negligible. In addition the running time of our extractor is the sum of the running times
of Elink, Elkp, Epred. Because the latter is polynomial time, E will run in polynomial time. We thus
conclude that the extractor returns a forest F that predicts y on x with overwhelming probability.

Proof Sketch for Prediction Zero-Knowledge. Zero-Knowledge comes directly from the zero-
knowledge of our sumcheck based zkSNARK for the linking protocol, the zero-knowledge of the matrix
lookup argument and the zero-knowledge of the underlying CP-SNARK scheme. More precisely,
we create a simulator S that takes as input a maximum height h, number of trees K and uses the
simulator of the PC scheme SPC , the linking protocol Slink, lookup argument Slkp, the CP-SNARK
Spred and works as follows:

1. Invokes the simulator SPC giving providing him with the public parameters and returns its
output which is the commitment C∗

F = {CT
F , C

P
F }.

2. Receives x from the adversary.

3. Invoke the simulator for the sumcheck based SNARK for the linking protocol Slink giving him
the public parameters, the forest commitments and trapdoor information.

4. Invoke the simulator SPC (for univariate KZG scheme) and return C∗
P.

5. Invoke the simulator Slkp on input the public parameters and the commitments C∗
P, C

P
F .

6. Invoke the simulator Spred on input the public parameters and the commitment C∗
P.

Clearly, step (2) is indistinguishable from the real world. Furthermore due to the zero-knowledge
properties of the PC scheme steps (1),(4) are indistinguishable from the real world. From the
zero-knowledge of the sumcheck-based zkSNARK schemes, step (3) is also indistinguishable. Finally
from [40, 9] we know that steps 5,6 are indistinguishable from the real world.

60

	Introduction
	Preliminaries
	Interactive Proofs
	Polynomial Commitments
	Argument Systems
	Decision Tree and Random Forest Training

	Sparrow: A Space-Efficient zkSNARK
	Our Space-Efficient Sumcheck
	Our Space-Efficient Argument of Knowledge
	Proving the correct computation of a single layer.
	Proving the correct computation of C.
	Our Space-Efficient Argument of Knowledge

	Zero-Knowledge Proofs of Forest Training and Predictions
	Certifying Correctness of Decision Trees
	Our zkFTP Construction for Trees
	Extending to Random Forests

	Experimental Evaluation
	Sparrow Benchmarks
	Performance of zkFTP

	Acknowledgments
	Proofs for our Space-Efficient Sumcheck
	Complexity Analysis
	Completeness
	Soundness
	Zero-knowledge

	Proofs for Sparrow
	Proof of Lemma 1
	Proof of Theorem 2

	More details for our zkFTP Scheme
	Training and Prediction Algorithms for Trees and Forests
	Correctness Proof of our Certification Algorithm
	Correctness Proofs of Histogram and Tree Computations Circuits
	Circuit that Validates Correctness of Inference zhang2020zero
	Space Complexity of Streaming Oracles
	Proof of Theorem 3

