
Glacius: Threshold Schnorr Signatures from DDH with Full
Adaptive Security

Renas Bacho1,2, Sourav Das3, Julian Loss1 and Ling Ren3

1CISPA Helmholtz Center for Information Security, Saarbrücken, Germany
2Saarland University, Saarbrücken, Germany
3University of Illinois at Urbana Champaign

{renas.bacho, loss}@cispa.de, {souravd2, renling}@illinois.edu

Abstract. Threshold signatures are one of the most important cryptographic primitives in distributed
systems. The threshold Schnorr signature scheme, an efficient and pairing-free scheme, is a popular
choice and is included in NIST’s standards and recent call for threshold cryptography. Despite its
importance, most threshold Schnorr signature schemes assume a static adversary in their security proof.
A recent scheme proposed by Katsumata et al. (Crypto 2024) addresses this issue. However, it requires
linear-sized signing keys and lacks the identifiable abort property, which makes it vulnerable to denial-
of-service attacks. Other schemes with adaptive security either have reduced corruption thresholds or
rely on non-standard assumptions such as the algebraic group model (AGM) or hardness of the algebraic
one-more discrete logarithm (AOMDL) problem.
In this work, we present Glacius, the first threshold Schnorr signature scheme that overcomes all these
issues. Glacius is adaptively secure based on the hardness of decisional Diffie-Hellman (DDH) in the
random oracle model (ROM), and it supports a full corruption threshold t < n, where n is the total
number of signers and t is the signing threshold. Additionally, Glacius provides constant-sized signing
keys and identifiable abort, meaning signers can detect misbehavior. We also give a formal game-based
definition of identifiable abort, addressing certain subtle issues present in existing definitions, which
may be of independent interest.

1 Introduction

Threshold signatures [Des88, DF89] are an interactive type of digital signature scheme where the signing
key is shared among a group of n signers, any t + 1 of which can jointly issue signatures. In this manner,
signatures remain unforgeable with respect to an adversary that can corrupt at most t < n of these signers.
The increasing demand for decentralized applications has resulted in large-scale adoptions of threshold signa-
tures [dra23, ic23]. Many state-of-the-art BFT protocols also use threshold signatures to lower communication
and computation costs [MXC+16, YMR+19].

A popular choice for a threshold signature are threshold Schnorr signatures, because they do not rely
on pairings, and their signature verification is more than 10× faster than pairing-based schemes [ZWHZ19].
The Schnorr signature scheme has been standardized by NIST as the EdDSA signature, and the threshold
Schnorr signature is sought by NIST’s recent call for threshold cryptography [BP23]. Moreover, popular
cryptocurrencies such as Bitcoin [Nak08] also support Schnorr signatures.

Static and adaptive security. Despite its popularity, until very recently, all efficient schemes for threshold
Schnorr signatures have been proven secure only against a static adversary. A static adversary must declare
the set of signers it will corrupt at the beginning of the protocol before the public key is set up. In contrast,
an adaptive adversary can decide which signers to corrupt at any time during the execution of the protocol.
Clearly, an adaptive adversary is a safer and more realistic assumption for the decentralized setting.

A large body of work has focused on designing threshold schemes that remain secure against such a
powerful attacker [CGJ+99, KRT24, CKM23, BLSW24]. Despite significant progress in this direction, exist-
ing adaptively secure threshold Schnorr variants come with an array of limitations or aggressive modeling
assumptions that make them difficult to use in practical applications. These include the ability of signers to
erase their internal states [CGJ+99, BLSW24], reliance on strong number theoretic hardness assumptions

Table 1: Comparison of adaptively secure threshold Schnorr signature schemes. We do not consider schemes that
assume a broadcast channel. We compare: number of signing rounds, supported corruption threshold, size of signing
keys given as number of field elements, support for identifiable abort, reliance on the AGM, security loss of the
reduction (for an adversary with advantage ϵ against the scheme, making at most q random oracle and signing
queries) and computational assumption. All schemes assume the random oracle model (ROM).

S
ch

em
e

R
o
u

n
d

s

C
o
rr

u
p

ti
o
n

th
re

sh
o
ld

S
ig

n
in

g
k
ey

si
ze

(i
n

#
Z p

)

Id
en

ti
fi

a
b

le
a
b

o
rt

?

N
o

A
G

M
?

S
ec

u
ri

ty
lo

ss

C
o
m

p
u

ta
ti

o
n

a
l

a
ss

u
m

p
ti

o
n

ZeroS [Mak22]‡ 3 t n + 1 ✓ ✓ Θ(q/ϵ) DL
Sparkle [CKM23] 3 t/2 1 ✓ ✓ Θ(q/ϵ) AOMDL
Sparkle [CKM23] 3 t 1 ✓ ✗ Θ(q/ϵ) AOMDL
KRT [KRT24] 5 t n + 2 ✗ ✓ Θ(q3/ϵ) DL

Glacius (ours) 5 t 3 ✓ ✓ Θ(q/ϵ) DDH

‡ The scheme assumes private channels and relies on secure erasures.

such as the (algebraic) one-more discrete logarithm assumption (AOMDL) and the algebraic group model
(AGM) [CKM23, BLSW24], or sub-optimal corruptions thresholds [CKM23]. Most recently, Katsumata et
al. [KRT24] presented a scheme that bypasses all of the above problems. However, their approach requires
keys that grow linearly in the number of signers and inherently does not allow the detection of a cheating
party in case of an abort of their signing protocol. This property, also known as identifiable abort (IA) [KG21],
has proven instrumental in the design of robust threshold Schnorr protocols such as ROAST [RRJ+22].

Our contribution. Motivated by the above discussion, we present Glacius, a new threshold Schnorr signa-
ture scheme that overcomes all of these limitations. Concretely, Glacius has the following properties:

– Glacius supports t < n adaptive corruptions under a well-studied and non-interactive assumption, namely,
the DDH assumption. This is in contrast to the scheme by Crites et al. [CKM23], which can only support
a sub-optimal corruption threshold of t/2 and relies on the hardness of AOMDL.

– Glacius supports identifiable abort, which allows signers to detect misbehaving signers after a signing
session fails. This is in contrast to the scheme by Katsumata et al. [KRT24], where even one malicious
signer can make any signing session fail without ever being detected.

– Glacius has signing keys consisting of three field elements per party, compared to n+ 2 field elements in
Katsumata et al.’s protocol [KRT24].∗

One of our major technical innovations over the works of both Crites et al. [CKM23], and Katsumata
et al. [KRT24] is to be able to tolerate t < n corruptions without increasing the sizes of signing keys when
the reduction rewinds. Of independent interest, our work also identifies (and fixes) some subtle issues in
the game-based definition of identifiable abort for threshold signatures put forth by Ruffing et al. [RRJ+22].
Informally, we observe that their definition does not capture some contrived scenarios in which more than one
signer is honest but obtains differing views in the signing protocol. We discuss this in detail in Appendix B.

1.1 Technical Overview

We begin by giving a brief recap of the Schnorr signature scheme [Sch90], which will be useful for the ensuing
discussion. Let (G, p, g) ← GGen(1λ), where G is a cyclic group of prime order p and g ∈ G is a generator.
Let Hsig : G2 ×M→ Zp be a hash function modeled as a random oracle, whereM is a message space. The
signing key sk ←$ Zp is a random field element, and pk := gsk ∈ G is the corresponding public verification

∗We note that n of these keys are symmetric keys between pairs of parties.

2

key. A signature σ on a message m is then (Â, z) ∈ G×Zp. To validate a signature σ = (Â, z) on a message

m, a validator first computes c := Hsig(Â, pk,m) and then checks that gz = Â · pkc. The security of the
Schnorr signature scheme relies on the hardness of discrete logarithm (DL) in the ROM.

Das-Ren threshold BLS construction. Our starting point is the recent work by Das and Ren [DR24].
In their paper, they design a new threshold BLS signature scheme and prove its adaptive security under the
DDH and CDH assumptions in the ROM. More precisely, in [DR24], the public parameters consist of three
uniformly random generators (g, h, v) ∈ G3. The signing key ski of each signer i is ski = (s(i), r(i), u(i)) ∈ Z3

p,
where s(x), r(x), and u(x) are three uniformly random degree-t polynomials with the constraint that r(0) =
u(0) = 0, and its verification key is pki = gs(i)hr(i)vu(i). The public key of the scheme is then pk = gs(0),
which is identical to the standard (i.e., non-threshold) BLS signature scheme [BLS01].

To prove adaptive security, [DR24] employs the following strategy. First, the reduction algorithm B uses
the additional public parameter h to embed one component of the given CDH instance. This crucial change
lets B locally sample the secret key polynomials. Second, B uses rigged keys during its interaction during
reduction. Specifically, B during its interaction with A samples the polynomial r(x) and u(x) with non-
zero r(0) and uniformly random u(0). These two crucial changes, along with additional techniques such as
correlated programming of random oracles, allow them to prove the adaptive security of their BLS threshold
signature scheme from standard assumptions.

Our approach: from BLS to Schnorr. We now explain the challenges we run into when we adapt the
ideas of Das and Ren [DR24] to the Schnorr threshold signature scheme and how we overcome them.

In Glacius, the signing key of signer i is ski := (s(i), r(i), u(i)) ∈ Z3
p, where s(x), r(x), u(x) ←$ Zp[x]

are three uniformly random degree-t polynomials such that r(0) = u(0) = 0. The public key is then pk :=
gs(0)hr(0)vu(0) = gs(0), where g, h, v ∈ G are three uniformly random and independent generators of G.

Let Adl be the reduction algorithm that, given a discrete logarithm tuple (g, h = gαh), seeks to compute
αh. Adl interacts with the forger A as follows. First, Adl computes v := gαv for some known αv ←$ Zp and
uses (g, h, v) as the public parameters. Next, Adl samples the signing key polynomials s(x), r(x), and u(x),
so that r(0) ̸= 0 and u(0) ←$ Zp. This ensures that the signing keys are rigged. Specifically, if s(0) = s,
r(0) = 1, and u(0) = u, the rigged public key is pk = gs(0)hr(0)vu(0) = gshvu. During this interaction,
whenever A corrupts a new signer, Adl reveals the corresponding signing keys using its knowledge of s(x),
r(x), and u(x). Finally, when A produces a forgery σ with respect to the rigged public key, Adl uses (s, u, αv)
and σ to get the discrete logarithm αh.

The changes we describe so far are directly from [DR24]. However, these changes are not immediately
compatible with the Schnorr signature scheme.

Challenge I: verification under rigged keys. The main issue is that honestly generated signatures no
longer verify against the rigged public key. Specifically, let α := αh + αvu ∈ Zp, so that the rigged public

key is pk = gshvu = gs+α. Then, the signature σ = (Â = ga, z = a + c · s) does not satisfy the Schnorr
verification equation with respect to pk, because

gz = ga+s·c ̸= ga · (gs+α)c = Â · pkc, where c := Hsig(Â, pk,m).

One possible solution is to modify the signature structure or verification algorithm to make it compatible
with the rigged key, but this would break the compatibility with the (non-threshold) Schnorr verification.
Instead, we resolve this by modifying how signers compute the nonce Â. Specifically, in our scheme, signers
compute Â := ga · H0(x)

r(0) · H1(x)
u(0), where H0 and H1 are random oracles mapping to G, and x is a

common input we specify later. Note that in the real protocol, since r(0) = u(0) = 0, this modification does
not affect the final signature or its verification.

We now briefly describe how this modification resolves the abovementioned issue. Note that when the
keys are rigged (i.e., r(0) = 1 and u(0) = u), we have that Â = ga · H0(x) · H1(x)

u = ga · gγ · guβ where
H0(x) = gγ and H1(x) = gβ for some β, γ ∈ Zp. Now, during simulation, if Adl chooses c such that

γ + β · u+ c · α = 0, (1)

3

and programs the hash function Hsig on input Â to output c, i.e., Hsig(Â, pk,m) := c, then we get

Â · pkc = ga · H0(x) · H1(x)
u · (gs+α)c = ga · gγ · gβu · g(s+α)c = ga · gsc = gz. (2)

Therefore, by appropriately sampling (β, γ, c) and correlating the programming of the random oracles H0,
H1, and Hsig, Adl can ensure that the final signature satisfies the Schnorr signature verification equation,
even with the rigged public key.

For the security proof to go through, it is critical that A must not detect these changes. We will prove this
is indeed the case, assuming the hardness of DDH in G. More precisely, in each signing session, we sample
c, β ←$ Zp, and then program the random oracles as

H0(x) := g−(βu+cα), H1(x) := gβ ,

where x is a carefully computed input, which we elaborate on in the next paragraph. We prove that such
correlated programming is indistinguishable from uniform random programming of the random oracles. Com-
pared to the work of Das and Ren, whose proof contains a similar step, our protocol has a significantly larger
number of random variables and induces a more involved probability distribution. To tame the complexity
of this step in our proof, we rely on Patarin’s H-coefficient method [Pat08].

Challenge II: choosing the input. Now we specify how the important input x to the random oracles H0

and H1 is chosen. Note that for successful simulation of the signature scheme, equation (1) must hold for
every signing session. Now, since Â and hence c := Hsig(Â, pk,m) change with each signing session, the tuple
(β, γ) must also change. This is because, for any fixed (β, γ), only one value of c can satisfy equation (1).
Now, since (β, γ) depends on x, x must change in every signing session as well. Using a different x in every
session allows Adl to sample a new (β, γ, c) tuple to satisfy equation (1) for that session.

The challenge, however, is to ensure that x changes every session without compromising security. One
option is to use a monotonic session identifier as x, but this is undesirable as it requires signers to maintain
a consistent state across sessions (see [NRSW20] for a detailed discussion of why this can be problematic).
Additionally, using the message to be signed or the set of signers as x is also not viable, as an adversary
could reuse these values across different sessions, preventing Adl from generating a new (β, γ, c) tuple.

In Glacius, we ensure a unique x in each signing session by requiring every signer i to send a fresh random
value ρi ←$ Zp to the other signers as the first message of the protocol. The value of x is then chosen as
ρ⃗ := [ρi]i∈SS, where SS is the set of signers participating in that signing session. Note that ρ⃗ is unique with
high probability as each session consists of at least one honest signer.

Final challenge: programming the random oracles. Although the approach we describe above ensures
a unique x for each signing session, it introduces a subtle yet critical issue. In any given signing session, let
(β, c) denote the tuple such that H0(x) = g−(βu+cα) and H1(x) = gβ . According to equation (2), for the
simulation to succeed, we need to program Hsig(Â) := c for the combined nonce Â. The problem is that the

combined nonce Â depends on the second-round messages that A sends to the honest signers. This allows an
A to simultaneously pick multiple combined nonces by sending different second-round messages to different
honest signers. In such cases, Adl would need to program Hsig to return the same c for all these different
nonces – an event highly improbable with an untampered random oracle. In Glacius, we address this issue by
requiring the signers to exchange the cryptographic hash of their view during the third round of the protocol
to ensure that that protocol aborts in case A sends different messages to different honest signers.

1.2 Related Work

We discuss further related work, including other adaptively secure threshold signatures and multi-party
signatures.

Threshold Schnorr signatures. Initial works [GJKR07, AF04, SS01, CGJ+99] mostly consider robust
schemes for threshold Schnorr, where a signing session will always result in a valid signature output despite
the presence of misbehaving signers. To achieve this, for each signing request, parties run a protocol similar

4

to a distributed key generation (DKG) protocol. However, this assumes a broadcast channel and introduces
inefficiency. The schemes [GJKR07, CGJ+99] achieve adaptive security but rely on secure erasures. The
scheme of Abe-Fehr [AF04] achieves adaptive security without relying on secure erasures but needs to reduce
the threshold to t < n/2.

Initiated by Komlo and Goldberg [KG21], many works have proposed efficient threshold Schnorr sig-
natures in recent years [BCK+22, CKM21, CGRS23, RRJ+22, BTZ22, Lin22, Mak22, CKM23, KRT24].
Some of these schemes [Mak22, CKM23, KRT24] achieve adaptive security, but each comes with its own
limitations. Table 1 gives a comparison between them and our scheme. Recently, there have also been many
works that focus on robustness in asynchronous networks [RRJ+22, GS24, BHK+24, BLSW24]. Among
these, HARTS [BLSW24] achieves adaptive security but assumes a broadcast channel and relies on the AGM
and AOMDL.

Adaptively secure threshold signatures. The first adaptively secure threshold signatures were indepen-
dently described by Canetti et al. [CGJ+99] and Frankel et al. [FMY99a, FMY99b]. Both works get adaptive
security by introducing the “single-inconsistent player” (SIP) technique, and both rely on secure erasures.
Jarecki-Lysyanskaya [JL00] extended the SIP technique to remove the need for secure erasures. Similar
techniques were employed by Lysyanskaya-Peikert [LP01] and Abe-Fehr [AF04] to design adaptively secure
threshold signatures without relying on erasures. Notably, the latter [AF04] is a threshold Schnorr signature.
Later works [ADN06, WQL09] also apply the SIP technique to Rabin’s threshold RSA signature [Rab98]
and the Waters signature [Wat05].

Libert et al. [LJY14] presented a pairing-based, non-interactive, adaptively secure threshold signature
scheme under DDH and the double-pairing assumption. Bacho and Loss in [BL22] proved adaptive security
of Bolyreva’s threshold BLS signature scheme [Bol03] under OMDL in the AGM. Very recently, Das and
Ren [DR24] proposed an adaptively secure threshold BLS signature under DDH and CDH in asymmetric
pairing groups. A recent pairing-free scheme, Twinkle [BLT+24], achieves full corruption threshold with
adaptive security under DDH. Another recent pairing-based scheme [MMS+24] also achieves full corruption
threshold with adaptive security under the bilinear DDH assumption in asymmetric groups.

Other related multi-party signatures. Lattice-based threshold signatures have recently gained increased
attention [EKT24, dPKM+24, BGG+18, CATZ24, GKS24]. There is also an extensive amount of works on
multi-signatures [BCJ08, BN06, PW23, TZ23], some of which focus on Schnorr multi-signatures [NRS21,
NRSW20, MPSW19, KAB21]. Finally, there are also many other threshold signatures [CKP+23, GJKR96,
GG20, CGG+20].

2 Preliminaries

Notation. Let λ denote the security parameter. We assume all algorithms get λ in unary as input. For
a finite set S, we write s ←$ S to denote that s is sampled uniformly at random from S, and we write
|S| to denote the size of S. For an integer a ∈ N, we use [a] to denote the ordered set {1, . . . , a}. Further,
we write “←” for probabilistic assignment and “:=” for deterministic assignment. We use the terms party
(resp. parties) and signer (resp. signers) interchangeably. We use bold fonts with arrows such as ρ⃗ to denote
vectors. For any i ∈ [n] and SS ⊆ [n], we use Li,SS :=

∏
k∈SS\{i} k/(k − i) for the i-th Lagrange coefficient.

Threat model. We consider a set of n signers denoted by {1, 2, . . . , n}. We consider a probabilistic
polynomial-time (PPT) adversary A who can corrupt up to t < n signers adaptively. Corrupted signers
can deviate arbitrarily from the protocol specification. We assume an asynchronous network with authenti-
cated channels. We do not assume broadcast channels or secure erasures.

However, we make the following important note. For identifiable abort, we require a public key infras-
tructure (PKI). Concretely, each signer i ∈ [n] has a public-secret key pair (eki, dki) from a secure standard
digital signature scheme DS = (KeyGen,Sign,Verify) that is used to sign each signing protocol message before
sending it to the other signers. For instance, we can instantiate DS with either EdDSA or standard Schnorr.
But we emphasize that our protocol remains unforgeable even without PKI.

5

2.1 Secret Sharing and Computational Assumptions

Shamir secret sharing. The Shamir secret sharing [Sha79] embeds the secret s ∈ Zp in the constant term
of a polynomial f(x) = s + a1x + a2x

2 + · · · + adx
d, where other coefficients a1, . . . , ad ←$ Zp are chosen

uniformly randomly. The i-th share of the secret s is then f(i), i.e., the polynomial f evaluated at x = i.
Given d+1 distinct shares, one can efficiently reconstruct the polynomial f and the secret s using Lagrange
interpolation. Also, s is information theoretically hidden from an adversary that knows d or fewer shares.

Computational assumptions. Our protocol assumes the hardness of the discrete logarithm and decisional
Diffie-Hellman problems. Let GGen be a group generation algorithm that, on input 1λ, outputs the description
of a prime order group G. The description contains the prime order p, a generator g ∈ G, and a description
of the group operation. In our protocols, we assume that the discrete logarithm (DL) and decisional Diffie-
Hellman (DDH) assumptions hold in the group G, which we formally define in Appendix A.

2.2 Threshold Signatures

In this section, we introduce the syntax and security definitions for an R-round threshold signature scheme
with identifiable abort (IA).

We define threshold signatures following [KRT24]. Let t < n and R be natural numbers. Then, an R-
round threshold signature scheme with IA is a tuple of PPT algorithms TS = (Setup,KGen,Sig,Ver,Detect)
with the following specification. Intuitively, the Setup algorithm outputs public system parameters that all
remaining algorithm takes as input. The KGen generates the signing and public keys of all signers. The
Sig algorithm specifies the steps a signer should take in each round of the R round protocol to sign any
given message, and the Ver algorithm specifies the final signature verification. Finally, signers use the Detect
algorithm to identify misbehaving signers if a signing session fails, i.e., if any honest signer outputs ⊥ instead
of a valid signature. We provide formal descriptions of these algorithms next.

Definition 1 (Threshold Signatures with Identifiable Abort). Let n be the total number of signers
and t < n be the threshold. Also, let SS ⊆ [n] be a set of signers with |SS|≥ t + 1. Each signer i maintains
a state sti to retain short-lived session-specific information. An R-round threshold signature scheme with
identifiable abort TS for message spaceM is a tuple of PPT algorithms TS = (Setup,KGen,Sig,Ver,Detect)
defined as follows:

- Setup(1λ, n, t)→ par : The setup algorithm takes as input the security parameter 1λ, the number n of total
signers, and a threshold t < n, and outputs public parameters par. We assume that all other algorithms
implicitly take par as input.

- KGen(par) → (pk, {pki, ski}i∈[n]) : The key generation algorithm takes as input the public parameters par
and outputs a public key pk, an ordered set of threshold public keys {pk1, . . . , pkn}, and an ordered set of
secret signing keys {sk1, . . . , skn}. Each signer j ∈ [n] receives the tuple (pk, {pki}i∈[n], skj).

- Sig = (Sig1, . . . ,SigR,Comb) : The signing protocol is split into R+ 1 algorithms:

- Sigk(SS,m, i, (pmk−1,j)j∈SS , ski, sti)→ (pmk,i, sti) : The k-th round signing algorithm for k ∈ [R] takes
as input a signer set SS, a message m, an index i ∈ [n], a tuple of protocol messages of the (k − 1)-th
round (pmk−1,j)j∈SS, a secret signing key ski, and a state sti. It outputs a protocol message pmk,i for
the k-th round and the updated state sti. Here, we define pm0,j := ⊥ for all j ∈ SS.

- Comb(SS,m, (pmk,i)k∈[R],i∈SS) → σ : The deterministic combine algorithm takes as input a signer set
SS, a message m, and a tuple of protocol messages (pmk,i)k∈[R],i∈SS, and outputs a signature σ.

- Ver(pk,m, σ)→ b : The deterministic verification algorithm takes as input a public key pk, a message m,
and a signature σ, and outputs a bit b ∈ {0, 1}.

- Detect(SS,m, (trxj)j∈SS)→ J : The detection algorithm takes as input a signer set SS, a message m, and a

list (trxj)j∈SS of transcripts, where each transcript trxj := (pmj
k,i)k∈[R],i∈SS is a tuple of protocol messages,

and outputs a set J ⊆ [n] of signers.

6

GamecorTS(1λ, n, t,SS,m):

1: for i ∈ SS : sti := ∅
2: par← Setup(1λ, n, t)
3: (pk, {pki, ski}i∈[n])← KGen(par)
4: for i ∈ SS : pm0,i := ⊥
5: for k ∈ [R] :
6: for i ∈ SS :
7: (pmk,i, sti)← Sigk(SS,m, i, (pmk−1,j)j∈SS, ski, sti)

8: σ := Comb(SS,m, (pmk,i)k∈[R],i∈SS)
9: return Ver(pk,m, σ)

Fig. 1: The game GamecorTS for an R-round threshold signature scheme TS.

We require TS to satisfy the correctness, unforgeability, and the identifiable abort properties. Correctness
ensures that the protocol behaves as expected when everyone is honest. Unforgeability ensures that the
adversary cannot forge signatures, even after engaging in previous signing sessions and corrupting up to
t signers adaptively. Finally, the identifiable abort property allows parties after a failed signing session to
identify at least one misbehaving party that made the session fail.

Definition 2 (Correctness). Consider the game GamecorTS defined in Figure 1. Then, an R-round threshold
signature scheme TS is correct, if for all λ ∈ N, n, t ∈ poly(λ) with t < n, messages m ∈ M, and SS ⊆ [n]
with |SS|≥ t+ 1, the following holds:

Pr
[
GamecorTS(1

λ, n, t, SS,m)⇒ 1
]
≥ 1− negl(λ).

Unforgeability. Our unforgeability requirement is standard, which we formalize using the game UF-CMAATS
defined in Figure 2. Let A be the adversary in this game. Initially, A gets the public parameters par, an
honestly generated public key pk, and threshold public keys {pki}i∈[n] of all signers as input. At any point
in time, A can start a new signing session with identifier sid for signer set SS and message m by calling the
oracle Next(sid,SS,m). As such, we allow A to start and participate in any number of concurrent signing
sessions. Additionally, A can corrupt up to t signers throughout the protocol using the oracle Corr. Upon
corrupting signer i ∈ [n], A learns its secret signing key ski and internal state sti across all signing sessions.
Further, A can interact with honest signers using the signing oracles Sigk for k ∈ [R]. A can query each
of these oracles for an individual honest signer i and a session identifier sid. When querying Sigk, A can
freely choose the protocol messages pmk−1 of the (k−1)-th round. Importantly, we do not assume broadcast
channels for the signing protocol, and the adversary could send different messages to different honest signers.
However, we do assume authenticated channels, and our unforgeability game captures this via the Allowed
algorithm. The Allowed algorithm also enforces that A’s queries for each session are consistent. Finally, when
A outputs a forgery (m∗, σ∗), we say that A wins if it has not initiated a signing session for the message m∗.

Our definition is inspired by [BLT+24] and adapted to the setting with authenticated channels. Essentially,
it models an interactive version of the TS-UF-0 [BTZ22, BCK+22] unforgeability notion. However, we note
that we work with TS-UF-0 for simplicity and believe that a similar analysis will also hold for the stronger
notion of TS-UF-i for i > 0 [BCK+22].

Remark. Our threshold signature scheme has the special property that the internal state used in all com-
pleted signing sessions can be efficiently computed given only the secret signing key ski and the public
protocol messages sent by parties. This allows us in the security proof to focus on revealing the internal
states of incomplete signing sessions along with the secret signing key upon corruption. Importantly, our
scheme does not rely on secure erasures for its security proof.

Definition 3 (Unforgeability Under Chosen-Message Attacks). Let TS be an R-round threshold
signature scheme, and consider the game UF-CMAATS defined in Figure 2. Then, we say that TS is UF-CMAATS
secure, if for all λ ∈ N, n, t ∈ poly(λ) with t < n, PPT adversaries A, the following advantage is negligible:

εσ := AdvUF-CMA
A,TS (1λ, n, t) := Pr

[
UF-CMAATS(1

λ, n, t)⇒ 1
]
.

7

Game UF-CMAA
TS(1λ, n, t):

1: par← Setup(1λ, n, t)
2: (pk, {pki, ski}i∈[n])← KGen(par)
3: C := ∅, H := [n]
4: Queried := ∅, pmsg := ∅
5: Sig := (Next, (Sigk)k∈[R])
6: (m∗, σ∗)← ACorr,Sig(pk, {pki}i∈[n])
7: if m∗ ∈ Queried : return 0

8: return Ver(pk,m∗, σ∗)

// Oracle to corrupt signers
Oracle Corr(i):

9: if (|C|≥ t) ∨ (i ∈ C) : return ⊥
10: C := C ∪ {i}, H := H \ {i}
11: return (ski, sti)

// Oracle to start a new signing session
Oracle Next(sid, SS,m):

12: if (|SS|< t + 1) ∨ (SS ̸⊆ [n]) :
13: return ⊥
14: if sid ∈ Sessions : return ⊥
15: Sessions := Sessions ∪ {sid}
16: Queried := Queried ∪ {m}
17: message[sid] := m
18: signers[sid] := SS
19: for i ∈ SS : round[sid, i] := 1

// Check if the input to Sigk is valid
Allowed(sid, k,SS,m, i, (pmk−1,j)j∈SS)):

// assert returns 0 if the check fails
20: assert sid ∈ Sessions
21: assert SS = signers[sid]
22: assert i ∈ (SS ∩H)
23: assert k = round[sid, i]
24: assert m = message[sid]
25: if k = 0 : return 1
26: for j ∈ (SS ∩H) :
27: if pmk−1,j ̸= pmsg[sid, k − 1, j] :
28: return 0
29: return 1

// Oracle for the k-th signing round
Oracle Sigk(sid,SS,m, i, (pmk−1,j)j∈SS):

30: input := (SS,m, i, (pmk−1,j)j∈SS)
31: if Allowed(sid, k, input) = 0 :
32: return ⊥
33: (pmk,i, sti)← Sigk(input, ski, sti)
34: pmsg[sid, k, i] := pmk,i

35: round[sid, i] := k + 1

36: view[sid, k, i] := (pmk−1,j)j∈SS

37: if ((sid, i) ̸∈ failed) ∧ (pmk,i = ⊥) :
38: failed := failed ∪ {(sid, i)}
39: return pmk,i

Game IA-CMAA
TS(1λ, n, t):

40: par← Setup(1λ, n, t)
41: (pk, {pki, ski}i∈[n])← KGen(par)
42: C := ∅, H := [n]
43: pmsg := ∅, failed := ∅
44: Sig := (Next, (Sigk)k∈[R],Comb)
45: pk′ := (pk, {pki}i∈[n])
46: (sid∗, i∗, (trxj)j∈SS)← ACorr,Sig(pk′)
47: SS∗ := Sessions[sid∗]
48: m∗ := message[sid∗]
49: assert SS ̸= (SS∗ ∩ C)
50: assert (i∗ ∈ H) ∧ ((sid∗, i∗) ∈ failed)
51: for i ∈ (SS∗ ∩H) :
52: trxi := (view[sid∗, k + 1, i])k∈[R]

53: J ← Detect(SS∗,m∗, (trxj)j∈SS∗)
54: if (J ∩H ̸= ∅) ∨ (J ∩ SS = ∅) :
55: return 1
56: return 0

Oracle Comb(sid, i, (pmR,j)j∈SS):

57: if sid ̸∈ Sessions : return ⊥
58: SS := Sessions[sid],m := message[sid]
59: input := (SS,m, i, (pmR,j)j∈SS)
60: if Allowed(sid, R + 1, input) = 0 :
61: return ⊥
62: view[sid, R + 1, i] := (pmR,j)j∈SS

63: Ti := (view[sid, k + 1, i])k∈[R]

64: σ := Comb(SS,m, Ti)
65: if (sid, i) ̸∈ failed ∧ Ver(pk, σ,m) = 0 :
66: failed := failed ∪ {(sid, i)}

Fig. 2: The games UF-CMAATS and IA-CMAATS for an R-round threshold signature scheme TS. We highlight

the part needed for IA-CMAATS in pink .

Identifiable abort. The Identifiable Abort (IA) property allows the identification of misbehaving signers
when a signing session fails for an honest signer (i.e., the output is⊥). Our IA property builds on the definition
in [RRJ+22], but we introduce key modifications to support (partially) interactive threshold signatures. We
provide a detailed discussion on the reasons for our modifications in Appendix B. We formalize our IA
property using the game IA-CMAATS defined in Figure 2 and describe it next.

8

Let A be the adversary in this game. During the game, A outputs a tuple (sid∗, i∗, (trxj)j∈SS) for a
signing session in which at least one honest signer output ⊥. We capture this by maintaining the set failed.
Concretely, we add the tuple (sid, i) to failed if (i) any honest signer i received invalid messages that resulted
in signer i having output ⊥ or (ii) the combined signature does not verify at some honest signer. Assuming
A outputs (sid∗, i∗, (trxj)j∈SS) such that (i∗, sid∗) ∈ failed and i∗ ∈ H, we run the Detect algorithm on the
views of all the signers, where we let A arbitrarily choose the views of all corrupt signers in that session
SS := SS ∩ C. The Detect algorithm outputs a subset of signers J ⊆ [n]. Finally, we say that A wins the
game if at least one of the following conditions is satisfied: (i) the Detect algorithm fails to identify any
misbehaving signer, or (ii) the Detect algorithm identifies an honest signer as malicious. Otherwise, A loses
the game.

Definition 4 (Identifiable Abort Under Chosen-Message Attacks). Let TS be an R-round threshold
signature scheme, and consider the game IA-CMAATS defined in Figure 2. Then, we say that TS is IA-CMAATS
secure, if for all λ ∈ N, n, t ∈ poly(λ) with t < n, PPT adversaries A, the following advantage is negligible:

εia := AdvIA-CMA
A,TS (1λ, n, t) := Pr

[
IA-CMAATS(1

λ, n, t)⇒ 1
]
.

Remark. We note that our IA property differs from the IA property in the secure multiparty computa-
tion (MPC) literature. In the MPC literature, the IA property must also detect parties who fail to send
required protocol messages. In contrast, our IA property focuses solely on detecting explicit misbehavior,
not crash failures. The IA in MPC literature is stronger, but achieving this property requires broadcast
channels and, consequently, imposes constraints on failure bounds and network conditions. Contrary to this,
our IA definition is agnostic to network conditions and fault-tolerance levels.

3 Our Design

In this section, we present our five-round threshold Schnorr signature scheme Glacius, assuming a trusted key
generation. For our construction, we useM to denote the message space, and we use Zp[x](t) to denote the
set of all polynomials in Zp[x] of degree t. Further, we let GGen denote a group generation algorithm that
on input 1λ outputs the description of a prime order group G. The description contains the prime order p,
a generator g ∈ G, and a description of the group operation. We formally define our scheme as pseudocode
in Figure 3 and give a verbal description next.

Setup. The setup algorithm Setup runs (G, g, p) ← GGen(1λ), and then samples two uniformly random
generators h, v ←$ G. Further, it selects five random oracles Hcom : {0, 1}λ × G → R, H0,H1 : {0, 1}∗ → G,
Hsig : G2 ×M→ Zp, and Hview : {0, 1}∗ → Y. Here, R,Y ⊆ {0, 1}∗ are two sets such that |R|, |Y|≥ 2λ. The
public parameters of the scheme are then par := (n, t,G, g, h, v, p,Hcom,H0,H1,Hsig,Hview), which are public
and known to all signers.

As we discussed earlier, we assume that all the algorithms below implicitly take par as input.

Key generation. The KGen algorithm takes as input the public parameters and samples three uniformly
random polynomials s(x), r(x), u(x) ←$ Zp[x](t) of degree t each such that r(0) = u(0) = 0. The secret

signing key of signer i is then ski := (s(i), r(i), u(i)), and its public key share is pki := gs(i)hr(i)vu(i). Further,
the public key of the system is pk := gs(0)hr(0)vu(0) = gs(0).

Signing protocol. We assume an external mechanism that specifies the signer set SS ⊆ [n] with |SS|≥ t+1
and a message m to be signed. In particular, we assume that all signers know and agree on (SS,m). For
the identifiable abort property, we further require signers i ∈ [n] to sign each protocol message before
sending it to the other signers, using any secure digital signature scheme DS = (Key,Sign,Verify) such as
EdDSA. An honest signer accepts protocol messages from other signers only if they are accompanied by a
valid signature. We reiterate that we do not need this for unforgeability but only for identifiable abort. Our
scheme still remains unforgeable even without an underlying signature scheme or a public-key infrastructure.
For the sake of clarity, we omit these signatures in our subsequent description.

The signers in SS run the following protocol to compute a signature on m.

9

Setup(1λ, n, t):

1: (G, g, p)← GGen(1λ), h, v ←$ G
2: R,Y ⊆ {0, 1}∗ s.t. |R|, |Y|≥ 2λ

// Select hash functions
3: Hcom : {0, 1}λ ×G→R
4: H0,H1 : {0, 1}∗ → G
5: Hsig : G2 ×M→ Zp

6: Hview : {0, 1}∗ → Y
7: Hall := (Hcom,H0,H1,Hsig,Hview)
8: return par := (n, t,G, g, h, v, p,Hall)

// All algorithms take par as input
KGen(par):

9: s(x), r(x), u(x)←$ Zp[x](t)
s.t. r(0) = u(0) = 0

10: for i ∈ [n] :
11: ski := (s(i), r(i), u(i))
12: pki := gs(i)hr(i)vu(i)

13: pk := gs(0)hr(0)vu(0) = gs(0)

14: return (pk, {pki, ski}i∈[n])

// All signers are aware of SS and m
Sig1(SS,m, i, ski):

15: ρi ←$ {0, 1}λ
16: pm1,i := ρi
17: sti := (i, ρi)
18: return (pm1,i, sti)

Sig2(SS,m, i, (pm1,j)j∈SS, ski, sti):

19: parse (i, ρi) := sti
20: if pm1,i ̸= ρi : return ⊥
21: parse (ρj)j∈SS := (pm1,j)j∈SS

22: ρ⃗ := ((j, ρj))j∈SS

23: ai ←$ Zp

24: Ai := (gai · H0(ρ⃗)r(i) · H1(ρ⃗)u(i))Li,SS

25: µi := Hcom(i, Ai)
26: pm2,i := µi,
27: sti := (ρ⃗, ai, Ai, µi, sti)
28: return (pm2,i, sti)

// Verification algorithm
Ver(pk,m, σ = (Â, z)):

29: c := Hsig(Â, pk,m)
30: if gz = Â · pkc :
31: return 1
32: return 0

Sig3(SS,m, i, (pm2,j)j∈SS, ski, sti):

33: parse (ρ⃗, ai, Ai, µi, i, ρi) := sti
34: if pm2,i ̸= µi : return ⊥
35: parse µ⃗ := (µj)j∈SS := (pm2,j)j∈SS

36: yi := Hview(ρ⃗, µ⃗)
37: pm3,i := yi
38: sti := (µ⃗, yi, sti)
39: return (pm3,i, sti)

Sig4(SS,m, i, (pm3,j)j∈SS, ski, sti):

40: parse (µ⃗, yi, ρ⃗, ai, Ai, µi, i, ρi) := sti
41: if pm3,i ̸= yi : return ⊥
42: parse (yj)j∈SS := (pm3,j)j∈SS

43: if ∃j ∈ SS s.t. yj ̸= yi :
44: return ⊥
45: pm4,i := Ai,
46: sti := (µ⃗, ρ⃗, ai, Ai, µi, i, ρi)
47: return (pm4,i, sti)

Sig5(SS,m, i, (pm4,j)j∈SS, ski, sti):

48: parse (µ⃗, ρ⃗, ai, Ai, µi, i, ρi) := sti
49: if pm4,i ̸= Ai : return ⊥
50: parse (Aj)j∈SS := (pm4,j)j∈SS

51: if ∃j ∈ SS s.t. µj ̸= Hcom(j, Aj) :
52: return ⊥
53: Â :=

∏
j∈SS Aj

54: c := Hsig(Â, pk,m)
55: zi := Li,SS · (ai + cs(i))

// See Figure 9 for SigProve

56: πi := SigProve(pki, Ai, ρ⃗, c, z; a, ski)

57: pm5,i := (zi, πi)
58: return (pm5,i, sti)

// Combine algorithm
Comb(SS,m, (pmk,j)k∈[5],j∈SS):

59: parse (Aj)j∈SS := (pm4,j)j∈SS

60: parse (zj , ·)j∈SS := (pm5,j)j∈SS

61: Â :=
∏

j∈SS Aj

62: z :=
∑

j∈SS zj

63: return σ := (Â, z)

Fig. 3: Our threshold Schnorr signature scheme Glacius. We describe the Detect algorithm in Figure 8, and
describe the notations in §3.

1. Randomness sampling (Sig1): Each signer i samples a uniformly random string ρi ←$ {0, 1}λ, and sends
the random string ρi to all other signers.

2. Commitment phase (Sig2): Upon receiving all random strings ρ⃗ := ((j, ρj))j∈SS from signers, each signer
i proceeds as follows. It samples a random ai ←$ Zp and computes the nonce

Ai :=
(
gai · H0(ρ⃗)

r(i) · H1(ρ⃗)
u(i)
)Li,SS

,

10

where Li,SS denotes the i-th Lagrange coefficient for the set SS. Signer i then sends its commitment
µi := Hcom(i, Ai) to all other signers.

3. View exchange (Sig3): Upon receiving all commitments µ⃗ := (µj)j∈SS from signers, each signer i proceeds
as follows. It takes its current view of the protocol messages (ρ⃗, µ⃗) and computes the hash yi := Hview(ρ⃗, µ⃗).
Then, it sends the hash yi to all other signers.

4. Opening phase (Sig4): Upon receiving all (compressed) views y⃗ := (yj)j∈SS from signers, each signer i
proceeds as follows. For all j ∈ SS, it checks whether yj = yi holds, i.e., checks whether its view matches
with the views of all other honest signers. If one of these checks fails, the signer outputs ⊥ and aborts.
Otherwise, it sends the opening Ai to all other signers.

5. Signing phase (Sig5): Upon receiving all openings (Aj)j∈SS from signers, each signer i proceeds as follows.
First, it retrieves the commitments µ⃗ := (µj)j∈SS from the second round. Then, for all j ∈ SS, it checks
whether µj = Hcom(j, Aj) holds. If either of these checks fails, signer i outputs ⊥ and aborts. Otherwise,

it computes the combined nonce Â, challenge c, and its signature share zi, as follows:

Â :=
∏
j∈SS

Aj , c := Hsig(Â, pk,m), zi := Li,SS · (ai + c · s(i)).

Additionally, signer i also computes a proof of correctness πi := SigProve(pki, Ai, c, zi; ai, ski) for its
signature share zi as defined in Figure 9. Finally, it sends its signature share (zi, πi) to the other signers.
We note that Glacius uses the correctness proof πi only in the Detect protocol.

Combine algorithm. The combine algorithm gets all the protocol messages (ρj , µj , yj , Aj , (zj , πj))j∈SS
for a signing session and computes Â :=

∏
j∈SS Aj and z :=

∑
j∈SS zj . It outputs σ := (Â, z) as the final

signature.

Verification algorithm. The verifier gets a public key pk, a message m ∈ M, and a signature σ = (Â, z).
Then, it computes c := Hsig(Â, pk,m) and accepts the signature (i.e., outputs b = 1) if and only if gz = Â·pkc.
Detection algorithm (Figure 8). The Detect algorithm takes as input the signer set SS, message m, and
the protocol messages received by all signers in SS, where trxj = (pmj

k,i)k∈[R],i∈SS is the protocol message
received by signer j. The algorithm classifies a signer i as misbehaving, i.e., adds i to J , only if:

(1) Signer i provably equivocated during the signing session, i.e., sent different messages to different honest
signers. To detect equivocation, the algorithm uses the digital signatures (from the underlying signature
scheme DS) attached to the protocol messages (step 3-6 in Figure 8).

(2) Signer i sent an invalid signature share zi, i.e., the proof πi sent by i does not verify (step 7-17 in Figure 8).
Note that we check the validity of zi with respect to the local view of signer i.

4 Security Analysis

In this section, we give an adaptive security proof for Glacius. For our security analysis, we rely on the
discrete logarithm (DL) assumption and the decisional Diffie-Hellman (DDH) assumption, which are defined
in Appendix A.

4.1 Correctness

The correctness of our scheme is straightforward. For this, consider a signing session among (at least) t+ 1
signers SS ⊆ [n] with the message m to be signed. In the first round, each signer receives a common
randomness vector ρ⃗ = (ρi)i∈SS. In the second round, each signer i computes its nonce Ai := gai ·H0(ρ⃗)

r(i) ·
H1(ρ⃗)

u(i), and sends a commitment µi to the other signers. Since all signers behave honestly, they will all

11

obtain the same vectors (ρ⃗, µ⃗) and thus have the same compressed hash view from the third round. In the
fourth round, nonces (Ai)i∈SS are revealed and each signer computes the combined nonce:

Â =
∏
i∈SS

Ai = g
∑

i∈SS ai·Li,SS · H0(ρ⃗)
r(0) · H1(ρ⃗)

u(0) = g
∑

i∈SS ai·Li,SS ,

where we use r(0) = u(0) = 0. Next, the challenge is derived c := Hsig(Â, pk,m), and each signer i computes its
signature share zi := Li,SS ·(ai+c·s(i)). Thus, the combined signature is z :=

∑
i∈SS zi = c·s+

∑
i∈SS Li,SS ·ai,

where s := s(0). As a result, the Schnorr verification equation gz = Â · pkc holds.

4.2 Helper Lemmas

Our unforgeability proof relies on the following two lemmas.

Lemma 1 ([NR04]). For any q ∈ poly(λ), assuming hardness of the DDH assumption in the group G, the
following two distributions are indistinguishable:

D0 :=
{
(g, gα, (gβi , gγi)i∈[q])

∣∣ α←$ Zp, (βi, γi)←$ Z2
p ∀i ∈ [q]

}
,

D1 :=
{
(g, gα, (gβi , gα·βi)i∈[q])

∣∣ α←$ Zp, βi ←$ Zp ∀i ∈ [q]
}
.

More precisely, if an adversary A can distinguish between a sample from D0 and D1 with probability ε, then
we can break the DDH assumption in the group G with probability at least ε−1/p. This implies ε ≤ εddh+1/p
in time poly(q, λ) and running time of A.

Lemma 2 ([DR24], Lemma 4). Let (X0, Y0) and (X1, Y1) be two tuples of discrete random variables,
where X0 is independent of Y0 and X1 is independent of Y1. Then, for every function f(Xθ, Yθ) for either
θ ∈ {0, 1}, if X0 ≡ X1 and Y0 ≡ Y1, where ≡ indicates that the two random variables are identically
distributed, then (X0, Y0, f(X0, Y0)) ≡ (X1, Y1, f(X1, Y1)).

4.3 Unforgeability Proof

We will show unforgeability assuming hardness of discrete logarithm (DL) and decisional Diffie-Hellman (DDH)
in the group G. Note that the hardness of DDH implies the hardness of DL. Nevertheless, we will keep this
separation in our discussion for the modularity of the proof.

We achieve this via a sequence of games G0-G11, where G0 is the real protocol execution and G11 is the
interaction of a PPT adversary A with a reduction algorithm Adl. Here on, for any game Gi, we will use
“Gi ⇒ 1” as a shorthand notation for the event that the adversary A forges a signature in Gi.

Game G0: This game is the security game UF-CMAATS for our threshold signature scheme, where the game
follows the honest protocol. Here, the game provides A access to any random oracle using standard lazy
sampling. Let h := gαh and v := gαv for some αh, αv ∈ Z∗p. Recall that h, v ∈ G are uniformly random
generators (along with g ∈ G) sampled by the setup algorithm Setup.

We also make some purely conceptual changes to the game. Assuming the game outputs 1, let (m∗, σ∗ =
(Â, ẑ)) denote the forgery output by A. First, we assume that A always queries Hsig(Â, pk,m∗) before
outputting the forgery. Second, we assume that A makes exactly t (distinct) corruption queries. These
changes are without loss of generality and do not change the advantage of A. To see this, we can always
build a wrapper adversary that internally runsA, but makes a query Hsig(Â, pk,m∗) and corrupts the required
number of signers (i.e., in total t signers) before terminating. Clearly, we have

AdvUF-CMA
A,TS (λ) = Pr[G0 ⇒ 1] = εσ.

Game G1: In this game, we rule out collisions for H0,H1, Hcom, and Hview. Specifically, the game aborts if
one of the following events occurs:

12

(i) There are ρ⃗ ̸= ρ⃗′ such that either H0(ρ⃗) = H0(ρ⃗
′) or H1(ρ⃗) = H1(ρ⃗

′). Recall that H0,H1 : {0, 1}∗ → G
are the random oracles we use in the second round to compute the nonces Aj .

(ii) There are (j, Aj) ̸= (j′, A′j) such that Hcom(j, Aj) = Hcom(j
′, A′j). Recall that Hcom : {0, 1}λ ×G→ R is

the random oracle we use in the second round to commit to nonces Aj .
(iii) There are (ρ⃗, µ⃗) ̸= (ρ⃗′, µ⃗′) such that Hview(ρ⃗, µ⃗) = Hview(ρ⃗

′, µ⃗′). Recall that Hview : {0, 1}∗ → Y is the
random oracle used in the third round to exchange compressed views (of the first two rounds).

Using standard collision probability analysis, we find that (i) happens with probability at most q2H/p, (ii)
happens with probability at most q2com/|R|, and (iii) happens with probability at most q2view/|Y|. Here, qH
is an upper bound on the number of total queries A can make to H0 and H1 combined. Similarly, qcom and
qview are an upper bound on the total number of queries A can make to Hcom and Hview, respectively. Thus,
we get

|Pr[G0 ⇒ 1]− Pr[G1 ⇒ 1]|≤ (qH)
2

p
+

(qcom)
2

|R|
+

(qview)
2

|Y|
.

Game G2: In this game, we rule out the event that upon receiving a first-round signing request from the
adversary for honest signer i, we sample the same ρi twice. To do so, we maintain a list PastRho to keep track
of previously sampled first-round messages sampled by honest signers. We populate PastRho upon each Sig1

oracle query. More specifically, upon each Sig1 on input of the form (·, i, ·), the game samples ρi ←$ {0, 1}λ.
Next, if (i, ρi) ∈ PastRho, the game aborts. Otherwise, the updates PastRho := PastRho ∪ {(i, ρi)}.

Looking ahead, this game, combined with our use of authenticated channels ensure that the first-round
messages an honest signer receives in each signing session are unique. This is because the ρ⃗ vector includes
contributions from at least one honest signer. Since honest signers do not sample the same first-round message
twice, the ρ⃗ vector will be unique for every signing session.

We now bound the probability of aborting in this game. For each signing query, since ρi is uniformly
random, the game aborts with probability at most qs/2

λ (where qs is an upper bound on the number of
signing queries A can make). As a result, by a union bound over all signing queries, we get

|Pr[G1 ⇒ 1]− Pr[G2 ⇒ 1]|≤ (qs)
2

2λ
.

Game G3: In this game, we change the signing oracle, specifically the commitment and opening phases of
the signing protocol (i.e., Sig2 and Sig4). Recall that until now, during the commitment phase (i.e., Sig2), an
honest signer i ∈ SS computes Ai := gai ·H0(ρ⃗)

r(i) ·H1(ρ⃗)
u(i) for ai ←$ Zp and then sends µi := Hcom(i, Ai)

to the other signers. Let µ⃗ := (µj)j∈SS be the vector of commitments sent by signers. Note that G1 ensures
(due to collision resistance property of Hview) that all honest signers proceed to Sig4 step of a signing session
only if all honest signers receive the same vectors ρ⃗ and µ⃗ at the end of round 2 of that session. Next, during
the opening phase (i.e., Sig4), signer i reveals its nonce Ai.

In this game, we change this as follows. During Sig2 with session identifier sid, the game samples a random
commitment µi ←$ R and sends it on behalf of each honest signer i. The game also inserts an entry (sid, i, µi)
into a list Pending-Hcom. If there is already an entry (·, ·, µi) ∈ Pending-Hcom, then the game aborts.

There are two situations where we need to reveal the preimage of the commitment µi to A. Namely, (i)
in the opening phase Sig4, we need to reveal Ai, after signer i receives all Sig3 messages for that respective
session, and (ii) when A corrupts signer i, we further need to reveal ai (which also gives Ai). To handle this,
we consider two cases:

1. Signer i gets corrupted before or during the opening phase: In this case, we sample a random ai ←$ Zp,

compute Ai :=
(
gai · H0(ρ⃗)

r(i) · H1(ρ⃗)
u(i)
)Li,SS

, where ρ⃗ is the Sig1 vector signer i obtains,† and then
check if Hcom(i, Ai) is already defined. If so, we abort the game. Otherwise, we program Hcom(i, Ai) := µi

and remove the entry (·, ·, µi) from Pending-Hcom. In particular, we can reveal Ai in the opening phase,
and in case the corruption happens before that, we can reveal both ai and Ai for that session.

†Note that if signer i gets corrupted before it receives the first-round vector ρ⃗, then there is nothing to reveal for
that particular session, as the ρi are public anyway.

13

2. Signer i reaches the opening phase or gets corrupted after the opening phase: In this case, we proceed
as above and do the following in the opening phase: sample a random ai ←$ Zp, compute Ai honestly,
program Hcom(i, Ai) := µi (after a check as above), and reveal Ai. In particular, ai is already defined if
i gets corrupted after the opening phase, and we can reveal it upon corruption.

With this change, we emphasize the following: For honest signers i that reach the opening phase without
being corrupted (the second case above), the element ai ∈ Zp is sampled only after signer i receives all the
third-round Sig3 messages.

Clearly, the view of A is only affected by these changes if (i) the game samples the same µi twice, or (ii)
if Ai matches a previous Hcom query. Using standard collision probabilities, we find that (i) happens with
probability at most q2s/|R|. Further, since Ai is uniformly random in Zp, it will match a previous Hcom with
probability at most qcom/p. Thus, using a union bound over all signing queries, we find that (ii) happens
with probability at most qs · qcom/p. We get

|Pr[G2 ⇒ 1]− Pr[G3 ⇒ 1]|≤ (qs)
2

|R|
+

qs · qcom
p

.

Game G4: In this game, we abort if A breaks the observability of the random oracle Hcom. More precisely,
the game aborts if for any signing session and j ∈ C, A manages to output an element Aj in round 4 for its
round 2 message µj such that µj = Hcom(j, Aj), without having queried the random oracle Hcom on (j, Aj).

Note that for each j ∈ C, unless Hcom(j, ·) ̸= ⊥, the game outputs Hcom(j, ·) with uniformly random values
in R. Moreover, after A corrupts the signer j, the game populates Hcom for inputs of the form (j, ·) only
when A explicitly queries Hcom on the input (j, ·). Therefore, the probability of Hcom(j, Aj) = µj for each
(j, Aj) is 1/|R|. Hence, by taking union bound over all signing sessions, we get:

|Pr[G3 ⇒ 1]− Pr[G4 ⇒ 1]|≤ qs
|R|

.

Game G5: In this game, we introduce a map X , initially empty, and maintain it as follows. For every random
oracle query to Hb on input ρ⃗ℓ for either b ∈ {0, 1}, we do: if Hb(ρ⃗ℓ) = ⊥, then we sample three random
values βℓ, γℓ, cℓ ←$ Zp and program the random oracles as

H0(ρ⃗ℓ) := gγℓ , H1(ρ⃗ℓ) := gβℓ , (3)

and we also update the map X as X [ρ⃗ℓ] := cℓ. Otherwise, we output the already defined values Hb(ρ⃗ℓ). Note
that we always do simultaneous programming of both the random oracles H0 and H1 upon receiving a query
Hb(ρ⃗ℓ). We reiterate that the vectors ρ⃗ℓ generated in a signing session are always unique (guaranteed by
game G2) since they have contributions from at least one honest signer.

Additionally, we change the game as follows: Consider a signing session with signer set SS and message
m. The game waits until it receives the second-round messages for honest signers from A. Then, it programs
the random oracle Hsig as follows, considering two cases:

1. If the game receives different Sig1 and Sig2 messages from A for different honest signers i, j in that
session (i.e., (ρ⃗(i), µ⃗(i)) ̸= (ρ⃗(j), µ⃗(j))), then the game continues as before. In this case, we know that
honest signers will not reach the opening phase anyway because of different compressed view hashes
Hview(ρ⃗(i), µ⃗(i)) ̸= Hview(ρ⃗(j), µ⃗(j)) in the third round (note that collisions for random oracle Hview are
ruled out by G1).

2. Otherwise, let ρ⃗ and µ⃗ be the common vectors of first- and second-round messages received by honest
signers, respectively, who did not abort after the third round. Then, the game proceeds as follows to the
opening phase. Let (µj)j∈SS := µ⃗ and µj = Hcom(j, Aj) for j ∈ (C ∩ SS). By the changes in game G4,
we know that the preimage of µj from corrupt signers j exists and can be extracted via observability of
Hcom. As such, the game extracts (j, Aj) for j ∈ (C ∩ SS), and then computes its own Ai for i ∈ (C ∩ SS)

14

as in game G3 (i.e., after it has received the third-round messages and did not abort). With that, the
game computes the combined nonce Â as

Â :=
∏

j∈(H∩SS)

Aj ·
∏

j∈(C∩SS)

Aj =
∏
j∈SS

Aj , (4)

and programs Hsig(Â,m, pk) := X [ρ⃗] in case Hsig(Â,m, pk) = ⊥. In case the random oracle Hsig(Â,m, pk)
is already defined, the game aborts.

We now bound the probability of aborting in this game. Recall from game G2 that the vectors ρ⃗ℓ

generated in a signing session ℓ are always unique, and that the value X [ρ⃗ℓ] = cℓ is sampled uniformly at
random and independent for each ρ⃗ℓ. Additionally, since we know that there is at most one ρ⃗ and µ⃗ vector
for honest signers that did not abort after the third round (see the second case above), it implies that (i) we
extract at most one Â, and (ii) we program Hsig at most once with a uniformly random X [ρ⃗].

With this observation, we can now easily bound the probability of aborting. As mentioned above, we
sample the Ai for honest signers (due to game G3) after we have extracted the nonces Aj from corrupt
signers j ∈ (C ∩ SS) via observability of Hcom. Since the nonces Ai for honest signers are sampled uniformly
random, we know that the combined nonce Â will also be uniformly random and hidden from A at the time
when we program Hsig. Therefore, for a fixed signing session, the game aborts with probability at most qsig/p
(where qsig is an upper bound on the number of queries to Hsig).

Thus, by a union bound over all signing queries, we get

|Pr[G4 ⇒ 1]− Pr[G5 ⇒ 1]|≤ qs · qsig
p

. (5)

Game G6: In this game, we change how we program the random oracles H0 and H1. Namely, we first sample
a uniformly random α ←$ Zp at the beginning of the game. Then, for every new query Hb(ρ⃗ℓ) for either
b ∈ {0, 1}, we sample three random values βℓ, γℓ, cℓ ←$ Zp, and then program the random oracles as

H0(ρ⃗ℓ) := g(−γℓ−αh·βℓ)·α−1
v −α·cℓ , H1(ρ⃗ℓ) := gβℓ . (6)

Recall that h := gαh and v := gαv by definition (see notation in G0). Again, we update the map X as
X [ρ⃗ℓ] := cℓ, and program Hsig as in the previous game. Here, we reiterate that one of the following two
cases happens: First, the game cannot extract a unique combined nonce because of conflicting views among
honest signers, in which case none of the honest signers will reach the opening phase. Or second, the game
can extract a unique combined nonce on which it programs Hsig as X [ρ⃗ℓ]. Regarding our game change here,
observe that each γℓ is uniformly random and independently sampled of α, βℓ and cℓ. Further, αv ̸= 0, so
that (−γℓ − αh · βℓ) · α−1v − cℓ · α is also uniformly random and independent of α, βℓ and cℓ. Therefore, A’s
view in game G6 is identically distributed as its view in game G5, and we get Pr[G5 ⇒ 1] = Pr[G6 ⇒ 1].

Game G7: So far, we have programmed H0 and H1 with uniformly random and independent values in G. In
this game, we change this using correlated values. More specifically, for each query Hb(ρ⃗ℓ) for either b ∈ {0, 1}
(if not already defined), we program both random oracles H0 and H1 as before except that we set γℓ := α ·βℓ

instead of a uniformly random γℓ. That is, we sample βℓ, cℓ ←$ Zp and then program

H0(ρ⃗ℓ) := g(−α·βℓ−αh·βℓ)·α−1
v · (g−α)cℓ , H1(ρ⃗ℓ) := gβℓ .

The indistinguishability between games G6 and G7 is a crucial step in our proof, and we prove this assuming
the hardness of DDH in the group G. We also rely on the following corollary of Lemma 1.

15

Corollary 1. For any n, q ∈ poly(λ), and for any αh, αv ∈ Z∗p, assuming hardness of the DDH assumption
in the group G, the following two distributions are indistinguishable:

D′0 :=
(
g, αh, αv, {(gβi , g−γi , ci)}i∈[q]}

)
where


α←$ Zp,

βi, ci, γ̃i ←$ Zp,

γi := (γ̃i + αh · βi) · α−1v + ci · α.

D′1 :=
(
g, αh, αv, {(gβi , g−γi , ci)}i∈[q]

)
where


α←$ Zp,

βi, ci ←$ Zp,

γi := (α · βi + αh · βi) · α−1v + ci · α.

Proof. Fix αh, αv ∈ Z∗p. Given a sample (g, gα, {(gβi , gγi)}i∈[q]) from Db for either b ∈ {0, 1} as defined in
Lemma 1, we can get a sample from D′b as follows:

1. For all i ∈ [q], sample ci ←$ Zp, define gβ
′
i := gβi , and compute

gγ
′
i := (gγi)α

−1
v · (gβi)αh·α−1

v · (gα)ci . (7)

2. Output the tuple (g, αh, αv, {(gβ
′
i , g−γ

′
i , ci)}i∈[q]).

We now analyze the distribution from which the tuple in step (2) above is sampled. When b = 0, then for
all i ∈ [q], g−γ

′
i is uniformly random. Thus, the tuple in step (2) above is a sample from D′0. Similarly,

when b = 1, then gγi = gα·βi for all i ∈ [q]. Thus, g−γ
′
i in equation (7) is correctly distributed as in D′1.

Consequently, if a PPT adversary A can distinguish between a sample from D′0 and D′1 with probability
ε, then A can distinguish between D1 and D2 also with probability ε. Thus, from Lemma 1, we then get
ε ≤ εddh + 1/p. ⊓⊔

It is easy to see that in game G6 we use a sample from the distribution D′0 to program the random oracles
H0 and H1, whereas in game G7 we use a sample from the distribution D′1. Therefore, the advantage of A
in distinguishing between these two games G6 and G7 is at most εddh + 1/p, and we get

|Pr[G6 ⇒ 1]− Pr[G7 ⇒ 1]|≤ εddh +
1

p
.

Game G8: This game is identical to gameG7, except we now use simulated NIZK proofs π̄i for honest signers.
For each NIZK simulation, the game programs the random oracle HFS on input stm := (Xpk, XA, Xz, pk, A, c,
z, g0, g1) at its choice of a challenge and aborts if HFS(stm) is already defined.‡ Clearly, since the elements
Xpk, XA ←$ G, Xz ←$ Zp are sampled uniformly random and hidden from A (before we output the NIZK
proof), the probability that the game aborts is at most qFS/p

3. By a union bound over all signing queries,
we get

|Pr[G7 ⇒ 1]− Pr[G8 ⇒ 1]|≤ qs · qFS
p3

.

Game G9: In this game, we change how we sample α (which we introduce in game G6). More precisely, we
use α := αh+αvu for some u←$ Zp. Since αv ̸= 0 and u are uniformly random and independent, α in game
G9 is also uniformly random and independent. Thus, we get Pr[G8 ⇒ 1] = Pr[G9 ⇒ 1].

Game G10: In this game, we change how we sample the signing keys. To illustrate our modification, we will
distinguish between the signing key polynomials of gamesG9 andG10. More precisely, let (s9(x), r9(x), u9(x))
and (s10(x), r10(x), u10(x)) be the signing key polynomials in game G9 and game G10, respectively. Then,
in game G9 we sample the signing key polynomial s10(x) := s9(x) +α for α we define in the previous game.
The other two signing key polynomials remain unchanged, i.e., r10(x) := r9(x) and u10(x) := u9(x).

‡Note that our NIZK protocol has perfect honest-verifier zero-knowledge (HVZK).

16

Observe that for any fixed α, since s9(x) is a random degree-t polynomial, s10(x) := s9(x) + α is also a
random degree-t polynomial. Hence, A’s view in game G9 is identically distributed to its view in game G10.
As a result, we get Pr[G9 ⇒ 1] = Pr[G10 ⇒ 1].

Game G11: In this game, we change how we sample the signing keys again. More precisely, we sample signing
key polynomials such that s11(x) := s9(x), r11(x) := r9(x) + 1, and u11(x) := u9(x) + u, for the uniformly
random u ∈ Zp (we introduce in game G9) we used to define α = αh + αvu.

The indistinguishability between A’s view in these two games G10 and G11 is another crucial step of our
proof. To prove this, we will use Lemma 2 and Patarin’s H-coefficient technique [Pat08, HT16].

Lemma 3. Pr[G10 ⇒ 1] = Pr[G11 ⇒ 1].

Proof. We prove this lemma using the H-coefficient technique [Pat08, CS14]. Let T0 and T1 be the random
variables denoting the transcripts of A’s interaction in games G10 and G11, respectively. Then, for any
potential value τ of Tθ for θ ∈ {0, 1}, let p0(τ) and p1(τ) be the interpolation probabilities, i.e., the prob-
abilities of choosing randomness in the respective game that would lead to transcript τ , if the corruption
set, the signing queries, and the random oracle queries are fixed in advance. These probabilities depend
solely on τ and the game’s randomness, and are independent of A. The H-coefficient technique [Pat08] now
tells us that, to argue indistinguishability between games G10 and G11, it it sufficient to show that for all
possible transcripts τ , p0(τ) = p1(τ). We reiterate that we fix A’s queries when computing the interpolation
probabilities.

Since the interpolation probabilities are independent of A, instead of working with the random variables
T0 and T1, we can work with the marginal transcript random variables we get after fixing A’s queries. Let
W0 = (X0, Y0, f(X0, Y0)) and W1 = (X1, Y1, f(X1, Y1)) be the marginal transcript random variables of game
G10 and G11, respectively, where:

X0 := (αh, αv, s8(0), u, {s10(i), r10(i), u10(i)}i∈C , {(cj , βj , {Ai,j , zi,j}i∈SSj∩H)}j∈[qs]),
X1 := (αh, αv, s8(0), u, {s11(i), r11(i), u11(i)}i∈C , {(cj , βj , {Ai,j , zi,j}i∈SSj∩H)}j∈[qs]).

Y0 (resp. Y1) denotes the random variable for: (i) the Sig1, Sig2, and Sig3 messages of honest signers; (ii) the
outputs of the random oracle Hb for both b ∈ {0, 1} for all inputs except for the Sig1 messages of any
signing session; (iii) all outputs of Hview; (iv) the outputs of Hsig on all inputs except for the inputs the game

programs Hsig on by extracting Â during any signing session; (v) all {ai,j}i,j values for i ∈ SSj ∩ C that
the game samples for the j-th signing session (with signer set SSj) before A corrupts the signer i; (vi) the
simulated NIZK proofs of all honest signers. It is easy to see that Y0 (resp. Y1) is independent of X0 (resp.
X1). Also, by design of games G10 and G11, Y0 is identically distributed as Y1.

We now argue that for any fixed queries of A, given (Xθ, Yθ) for either θ ∈ {0, 1}, the rest of the transcript
is a deterministic function of (Xθ, Yθ). We also argue that in both games G10 and G11, this (deterministic)
function is the same, and we use f(·, ·) to denote it, as we describe below:

– Let α := αh + u · αv. Then, the H0 outputs on the first-round messages of all signing sessions are a
deterministic function of (αh, αv, α, {βj , cj}j∈[qs], Yθ).

– The discrete logarithm of the public key in both games G10 and G11 is the same and is equal to
s8(0) + α. More precisely, pkG10

= gs8(0)+α by definition. Also, recall that we have r11(0) = 1 and
u11(0) = u. Therefore,

pkG11
= gs11(0)hr11(0)vu11(0) = gs8(0)hvu = gs8(0)+αh+αvu = gs8(0)+α.

Since |C|= t, given s8(0) +α and the signing keys of signers in C, the threshold public keys of all signers
are fixed and a deterministic function of these values.

– The combined nonces and final signatures are deterministic function of {cj , {(Ai,j , zi,j)}i∈SSj∩H}j∈[qs],
the signing keys of the corrupt signers, A’s internal state, and Yθ.

– The random oracle outputs of Hcom are also deterministic function of (Xθ, Yθ).

17

Given Lemma 2, to prove that games G10 and G11 are identically distributed, it remains to show that X0

and X1 are identically distributed, i.e., X0 ≡ X1. Concretely, for any potential value τ of Xθ for θ ∈ {0, 1},
that we denote as

τ =
(
¯
αh,

¯
αv,

¯
s,
¯
u, {

¯
si,

¯
ri,

¯
ui}i∈C ,

{(̄
cj ,

¯
βj , {

¯
Ai,j ,

¯
zi,j}i∈SSj∩H

)}
j∈[qs]

)
,

let pθ(τ) = Pr[Xθ = τ] for either θ ∈ {0, 1}. For p0(τ), note that the randomness consists of αh, αv ←$ Z∗p
and s8(0), u←$ Zp. To generate a particular transcript τ , we therefore need the identities:

αh =
¯
αh, αv =

¯
αv, u =

¯
u, s8(0) =

¯
s.

Since (αh, αv, s8(0), u) are chosen independently, this is true with probability

1

p− 1
· 1

p− 1
· 1
p
· 1
p
=

1

p2(p− 1)2
. (8)

Further, we need to ensure that {(s8(i), r8(i), u8(i))}i∈C = {(
¯
si,

¯
ri,

¯
ui)}i∈C . Since |C|= t, conditioned on

(αh, αv, s8(0), u) = (
¯
αh,

¯
αv,

¯
s,
¯
u), there exists a unique set of three polynomials of degree at most t each,

with constant terms being equal to (
¯
s+

¯
α, 0, 0) for

¯
α :=

¯
αh+

¯
u ·

¯
αv, such that the above equality holds. Since

in game G10, we sample the t additional coefficients of each of these polynomials uniformly at random, the
equality holds with probability 1/p3t.

For all j ∈ [qs], the values cj and βj are uniformly random. Thus, the probability of obtaining a particular
sequence of tuples (

¯
cj ,

¯
βj)j∈[qs] is 1/p

2qs . Next, consider the tuples {(Ai,j , zi,j)}i∈H∩SSj ,j∈[qs]. For each (i, j),
we have:

Ai,j =
(
gai,jH0(ρ⃗j)

r10(i)H1(ρ⃗j)
u10(i)

)Li,SSj

=
(
gai,jH0(ρ⃗j)

r8(i)H1(ρ⃗j)
u8(i)

)Li,SSj

,

zi,j = Li,SSj · (ai,j + cj · s10(i)) = Li,SSj · (ai,j + cj · (s8(i) + α)),

where ai,j ←$ Zp is the randomness of honest signer i in the j-th signing session (with signer set SSj), and
ρ⃗j and cj are the Sig1 message and the challenge of the j-th signing session, respectively. Now, given that
everything else is fixed, the tuple (Ai,j , zi,j) is a function of ai,j . Thus, the probability that (Ai,j , zi,j) =
(
¯
Ai,j ,

¯
zi,j) holds is equal to the probability that

ai,j =
¯
ai,j for

¯
ai,j ∈ Zp. (9)

Since ai,j is chosen uniformly at random, the probability of ai,j =
¯
ai,j is 1/p. As each honest signer i

samples its value ai,j independently, the probability of {(Ai,j , zi,j) = (
¯
Ai,j ,

¯
zi,j)}j∈[qs],i∈SSj∩H is then 1/pk,

where k is the total number of honest signers across all signing sessions.
Combining all of the above, for all transcripts τ ∈W0 with p0(τ) > 0, we get the following interpolation

probability:

p0(τ) =
1

p2(p− 1)2
· 1

p3t
· 1

p2qs
· 1
pk

.

We now turn to the analysis of p1(τ). First, by a similar argument as for the calculation of p0(τ), we
need the identities

αh =
¯
αh, αv =

¯
αv, u =

¯
u, s8(0) =

¯
s,

which again are true with probability

1

p− 1
· 1

p− 1
· 1
p
· 1
p
=

1

p2(p− 1)2
. (10)

Again, for the required identity {(s11(i), r11(i), u11(i))}i∈C = {(
¯
si,

¯
ri,

¯
ui)}i∈C , conditioned on (αh, αv, s8(0), u) =

(
¯
αh,

¯
αv,

¯
s,
¯
u), there is a unique set of three degree-t polynomials with constant terms (

¯
s, 1,

¯
u) for

¯
α :=

¯
αh+

¯
u·
¯
αv

such that this identity holds. Since in game G11, we sample the t additional coefficients of each of these

18

polynomials uniformly at random, the equality holds with probability 1/p3t. Further, for all j ∈ [qs], the
values cj and βj are uniformly random. Thus, we get a particular tuple (

¯
cj ,

¯
βj)j∈[qs] with probability 1/p2qs .

Lastly, consider the tuples {(Ai,j , zi,j)}i∈H∩SSj ,j∈[qs]. For each (i, j), for uniformly random ai,j , we have

zi,j = Li,SSj (ai,j+cj ·s11(i)) = Li,SSj (ai,j+cj ·s8(i)). Further, using H0(ρ⃗j) = g−u·βj−cj ·α and H1(ρ⃗j) = gβj ,
we get

Ai,j =
(
gai,j · H0(ρ⃗j)

r11(i) · H1(ρ⃗j)
u11(i)

)Li,SSj

=
(
gai,j · H0(ρ⃗j)

1+r8(i) · H1(ρ⃗j)
u+u8(i)

)Li,SSj

=
(
gai,jg−u·βj−cjαgu·βj · H0(ρ⃗j)

r8(i) · H1(ρ⃗j)
u8(i)

)Li,SSj

=
(
gai,j−cj ·α · H0(ρ⃗j)

r8(i) · H1(ρ⃗j)
u8(i)

)Li,SSj

,

where ai,j ←$ Zp is the randomness of honest signer i in the j-th signing session (with signer set SSj), and ρ⃗j

and cj are the Sig1 message and the challenge of the j-th signing session, respectively. Let ãi,j := ai,j− cj ·α,
then

Ai,j =
(
gãi,j · H0(ρ⃗j)

r8(i) · H1(ρ⃗j)
u8(i)

)Li,SSj

, (11)

zi,j = Li,SSj · (ãi,j + cj · (s8(i) + α)). (12)

Now, given that everything else is fixed, both Ai,j and zi,j are a function of ãi,j := ai,j− cj ·
¯
α. Therefore,

we get (Ai,j , zi,j) = (
¯
Ai,j ,

¯
zi,j) only if ai,j −

¯
cj ·α =

¯
ai,j for the same

¯
ai,j ∈ Zp we used in equation (9). Since

ai,j is chosen uniformly at random, the probability of ai,j −
¯
cj ·

¯
α =

¯
ai,j is also 1/p. As each signer i selects

its ai,j independently, the probability of {(Ai,j , zi,j) = (
¯
Ai,j ,

¯
zi,j)}j∈[qs],i∈SSj∩H is 1/pk, where k is the total

number of honest signers across all signing sessions.

Combining all of the above, for all transcripts τ ∈W1 with p1(τ) > 0, we get the following interpolation
probability:

p1(τ) =
1

p2(p− 1)2
· 1

p3t
· 1

p2qs
· 1
pk

.

Since the above holds for any (possible) transcripts, we get p0(τ) = p1(τ) for all transcripts. This implies
that X0 ≡ X1. Finally, by Lemma 2, we get that the view of A in the games G10 and G11 is identically
distributed. ⊓⊔

From the above sequence of games, we finally get

εG11
:= Pr[G11 ⇒ 1] ≥ εσ −

(
q2H
p

+
q2com
|R|

+
q2view
|Y|

+
q2s
2λ

+
q2s
|R|

+
qs · qcom

p

+
qs
|R|

+
qs · qsig

p
+

qs · qFS
p3

+ εddh +
1

p

)
. (13)

Combining all the above, we get our following main theorem.

Theorem 1 (Adaptively Secure Threshold Schnorr Signature). For any n ∈ poly(λ) and t < n,
assuming hardness of DDH and DL in the group G, and assuming the random oracle model (ROM), any PPT
adversary making at most qH random oracle queries to H0 and H1 combined, at most qview random oracle
queries Hview, at most qcom random oracle queries to Hcom, at most qsig random oracle queries to Hsig, and at

most qs signing queries, wins the UF-CMAATS game Figure 2 for our scheme in Figure 3 with probability at

19

most εσ where:

εσ ≤
qsig
p

+
√
qsig · εdl +

q2H
p

+
q2com
|R|

+
q2view
|Y|

+
q2s
2λ

+
q2s
|R|

+
qs · qcom

p

+
qs
|R|

+
qs · qsig

p
+

qs · qFS
p3

+ εddh +
1

p
.

Here, εdl and εddh are the advantages of an adversary running in T · poly(λ, qH, n) time in breaking the DL
and DDH assumption in G, respectively. This implies that εσ is negligible, and hence, our threshold signature
scheme in §3 is unforgeable.

Proof. To prove Theorem 1, we rely on the generalized forking lemma [PS96, BN06]. More specifically, given
an adversary A that forges a signature in game G11, we build a “wrapping” algorithm B (see Figure 4)
which runs A and returns information regarding the forgery. We then use B to construct an algorithm Adl

(see Figure 6) that first runs the forking algorithm ForkB (see Figure 5) which forks B with respect to a Hsig

query. Algorithm Adl then uses the output of the ForkB algorithm to solve for discrete logarithm in G. In
this proof, for notational simplicity, we will use q := qsig.

Input: Generators (g, h, v) ∈ G3, secret key polynomials s(·), r(·), u(·), randomness for random oracle program-
ming {h1, h2, . . . , hq} ←$ Zp.

KGen simulation
1. Use (g, h, v) as the generators and s(·), r(·), u(·) as the secret key polynomials.

Corruption simulation:
2. When A corrupts a signer i ∈ H if |C|< t:

(a) Update H := H \ {i} and C := C ∪ {i}.
(b) Faithfully reveals the internal state of signer i to A.

Simulating random oracle queries:
3. Simulate random oracles Hcom,H0,H1 as per game G11.
4. For all inputs in which game G11 programs Hsig after extracting the combined nonce as we describe in game

G5, program Hsig as in game G11.
5. For all other Hsig queries, use the input {h1, . . . , hq} for programming the random oracle output.

Simulating signing protocol for any signing session
6. Follow the strategy of game G11 until A outputs a forgery (m,σ = (Â, z)).
7. Identify the random oracle query to Hsig with input (Â, pk,m∗) such that c = Hsig(Â, pk,m). Let idx be the

index, i.e., c = hidx.
8. If no such idx exists, return (0,⊥). Otherwise, return (idx, z)

Fig. 4: Description of Algorithm B that simulates game G11 to the adversary A.

Description of algorithm B (Figure 4). B takes as input the public parameters (g, h, v), the signing
keys (s(·), r(·), u(·)), and a vector {h1, h2, . . . , hq} of uniformly random field elements. B then interacts with
A with these inputs. During this interaction, B uses {h1, h2, . . . , hq} to program the random oracle Hsig on
inputs where the game does not explicitly program Hsig after extracting the combined nonce as we show in
game G5. Simultaneously, B also locally checks for forgery (step 6 in Figure 10).

When A forges a signature, B identifies the Hsig query associated with the forgery. Let (m,σ = (Â, z))

be the forgery. B finds the index idx such that B programmed the Hsig query on input (Â, pk,m) with c, for
some c = hidx. B then returns the tuple (idx, z) as its output. If no such idx exists, B returns (0,⊥).
Analysis of B. The game programs Hsig with values other than {h1, . . . , hq} only when A makes a signature

query on the message. Therefore, given (m,σ = (Â, z)) is a valid forgery, B programs Hsig on the forged input

(Â, pk,m) using a value from {h1, . . . , hq}. This implies that when A outputs a valid forgery, B will always
find such an index hidx.

20

Algorithm ForkB(x = (g, h, v, s(·), r(·), u(·))):

1: Sample randomness tape ζ for B
2: Sample h1, h2, . . . , hq ←$ Zp

3: Let (idx, z) := B(g, h, v, s(·), r(·), u(·), {h1, h2, . . . , hq}; ζ)
4: if idx = 0 : return (0,⊥,⊥)

5: Sample h′
idx, . . . , h

′
q ←$ Zp

6: Let (idx′, z) := B(g, h, v, s(·), r(·), u(·), {h1, h2, hidx−1, h
′
idx, . . . , h

′
q}; ζ)

7: if idx = idx′ ∨ hidx ̸= h′
idx : return (0,⊥,⊥)

8: Let out := (hidx, z); out′ := (h′
idx, z

′)
9: return (1, out, out′)

Fig. 5: Description of Algorithm ForkB.

Description of algorithm ForkB (Figure 5). ForkB takes as input the generators (g, h, v) and the secret
signing keys (s(·), r(·), u(·)). ForkB samples the randomness tape ζ for B and the random oracle outputs
{h1, . . . , hq}. Next, ForkB runs B on these inputs. Let (idx, z) be the output of B. If idx = 0, then ForkB

returns (0,⊥,⊥). Otherwise, ForkB samples {h′idx, . . . , h′q} ←$ Zp uniformly at random. ForkB then runs
the second execution of B by changing the random oracle programming starting at the index idx with
{h′idx, . . . , h′q}.

Let (idx′, z′) be the output of B from the second execution. ForkB then checks whether idx = idx′ and
hidx ̸= h′idx. If both of these conditions hold, then ForkB returns (1, out, out′) where out := (hidx, z) and

out′ := (h′idx, z
′). Otherwise, ForkB returns (0,⊥,⊥).

Algorithm Adl(G, p, g, y):

1: Sample αv ←$ Z∗
p. Let (g, h, v) := (g, y, gαv).

2: Sample s(x), r(x), u(x)←$ Zp[x](t) s.t. r(0) = 1 and u(0)←$ Zp

3: Let (val, out, out′)← ForkB(g, h, v, s(·), r(·), u(·))
4: if val = 0 : return ⊥
5: parse (c, z) := out and (c′, z′) := out′.
6: return αh = (z − z′) · (c− c′)−1 − s(0)− u(0) · αv

Fig. 6: Description of Algorithm Adl solves discrete logarithm in G

Description of algorithm Adl (Figure 6). Adl takes as input (G, p, g, y): the description of the group
G of order p, a generator g and a uniformly random element y ∈ G. Adl then samples uniformly random
αv ←$ Zp and sets the public parameters (g, h, v) := (g, y, gαv). Next,Adl samples the signing key polynomials

s(·), r(·), u(·) as per game G11. Adl then runs ForkB with (g, h, v, s(·), r(·), u(·)) as input. Let (val, out, out′)
be the output of ForkB. If val = 0, then Adl returns ⊥. Otherwise, let out = (c, z) and out′ = (c′, z′).

Then, Adl outputs αh as the discrete logarithm solution where

αh :=

(
z − z′

c− c′

)
− (s(0) + u(0) · αv) . (14)

Analysis of Adl. Let ε be the probability that ForkB outputs (1, out, out′). Also, let εG11
be the probability

that A forges a signature in game G11. Then, using the generalized forking lemma (see Lemma 4), we get
the identity

ε ≥ εG11
·
(
εG11

q
− 1

p

)
.

Now, note that ForkB outputting (1, out, out′) implies that A forges a signature for the first time during
B’s interaction with A for the idx-th Hsig query for both executions of B. Since A’s view in both executions

21

is identical until the idx-th query to Hsig, the input to the idx-th Hsig is the same in both executions. Let

(Â, pk,m) be that (identical) idx-th Hsig input. Then, the outputs out := (c, z) and out′ = (c′, z′) of ForkB

satisfy:

gz = Â · pkc and gz
′
= Â · pkc

′
.

Therefore, we get:(
g(z−z

′)(c−c′)−1

= pk = gs(0)hvu(0)
)

=⇒
(
h = g(z−z

′)(c−c′)−1−(s(0)+u(0)·αv)
)
,

which implies that αh := (z− z′)(c− c′)−1 − (s(0) + u(0) ·αv) is the discrete logarithm of y. Further, it also
implies that whenever ForkB outputs (1, ·, ·), Adl can output αh. Therefore, we get:

εdl ≥ εG11

(
εG11

q
− 1

p

)
=⇒ εG11

≤ q

p
+
√
q · εdl. (15)

Combining equation (13) with equation (15), we get the desired bound. ⊓⊔

Acknowledgments

This work is funded by the National Science Foundation award #2240976, Deutsche Forschungsgemeinschaft
(DFG, German Research Foundation) – 507237585, and by the European Union, ERC-2023-StG-101116713.
Views and opinions expressed are those of the author(s) only and do not necessarily reflect those of the
European Union. Neither the European Union nor the granting authority can be held responsible for them.

References

ADN06. Jesús F Almansa, Ivan Damg̊ard, and Jesper Buus Nielsen. Simplified threshold rsa with adaptive and
proactive security. In Advances in Cryptology-EUROCRYPT 2006: 24th Annual International Conference
on the Theory and Applications of Cryptographic Techniques. Springer, 2006.

AF04. Masayuki Abe and Serge Fehr. Adaptively secure feldman vss and applications to universally-composable
threshold cryptography. In Annual International Cryptology Conference, pages 317–334. Springer, 2004.

BCJ08. Ali Bagherzandi, Jung-Hee Cheon, and Stanislaw Jarecki. Multisignatures secure under the discrete
logarithm assumption and a generalized forking lemma. In Proceedings of the 15th ACM conference on
Computer and communications security, pages 449–458, 2008.

BCK+22. Mihir Bellare, Elizabeth Crites, Chelsea Komlo, Mary Maller, Stefano Tessaro, and Chenzhi Zhu. Better
than advertised security for non-interactive threshold signatures. In Annual International Cryptology
Conference, pages 517–550. Springer, 2022.

BGG+18. Dan Boneh, Rosario Gennaro, Steven Goldfeder, Aayush Jain, Sam Kim, Peter M. R. Rasmussen, and
Amit Sahai. Threshold cryptosystems from threshold fully homomorphic encryption. In Hovav Shacham
and Alexandra Boldyreva, editors, Advances in Cryptology – CRYPTO 2018, pages 565–596, Cham, 2018.
Springer International Publishing.

BHK+24. Fabrice Benhamouda, Shai Halevi, Hugo Krawczyk, Yiping Ma, and Tal Rabin. Sprint: High-throughput
robust distributed schnorr signatures. In Annual International Conference on the Theory and Applications
of Cryptographic Techniques, pages 62–91. Springer, 2024.

BL22. Renas Bacho and Julian Loss. On the adaptive security of the threshold bls signature scheme. In
Proceedings of the 2022 ACM SIGSAC Conference on Computer and Communications Security, pages
193–207, 2022.

BLS01. Dan Boneh, Ben Lynn, and Hovav Shacham. Short signatures from the weil pairing. In Advances in
Cryptology—ASIACRYPT 2001: 7th International Conference on the Theory and Application of Cryptol-
ogy and Information Security Gold Coast, Australia, December 9–13, 2001 Proceedings 7, pages 514–532.
Springer, 2001.

BLSW24. Renas Bacho, Julian Loss, Gilad Stern, and Benedikt Wagner. Harts: High-threshold, adaptively secure,
and robust threshold schnorr signatures. Cryptology ePrint Archive, 2024.

22

BLT+24. Renas Bacho, Julian Loss, Stefano Tessaro, Benedikt Wagner, and Chenzhi Zhu. Twinkle: Threshold
signatures from ddh with full adaptive security. In Advances in Cryptology-EUROCRYPT 2024: 43th
Annual International Conference on the Theory and Applications of Cryptographic Techniques., 2024.

BN06. Mihir Bellare and Gregory Neven. Multi-signatures in the plain public-key model and a general forking
lemma. In Proceedings of the 13th ACM conference on Computer and communications security, pages
390–399, 2006.

Bol03. Alexandra Boldyreva. Threshold signatures, multisignatures and blind signatures based on the gap-
diffie-hellman-group signature scheme. In Public Key Cryptography, volume 2567, pages 31–46. Springer,
2003.

BP23. Lúıs T. A. N. Brandão and Rene Peralta. Nist ir 8214c: First call for multi-party threshold schemes.
https://csrc.nist.gov/pubs/ir/8214/c/ipd, 2023.

BTZ22. Mihir Bellare, Stefano Tessaro, and Chenzhi Zhu. Stronger security for non-interactive threshold signa-
tures: Bls and frost. Cryptology ePrint Archive, 2022.

CATZ24. Rutchathon Chairattana-Apirom, Stefano Tessaro, and Chenzhi Zhu. Partially non-interactive two-round
lattice-based threshold signatures. Cryptology ePrint Archive, Paper 2024/467, 2024.

CGG+20. Ran Canetti, Rosario Gennaro, Steven Goldfeder, Nikolaos Makriyannis, and Udi Peled. Uc non-
interactive, proactive, threshold ecdsa with identifiable aborts. In Proceedings of the 2020 ACM SIGSAC
Conference on Computer and Communications Security, CCS ’20, New York, NY, USA, 2020. Association
for Computing Machinery.

CGJ+99. Ran Canetti, Rosario Gennaro, Stanis law Jarecki, Hugo Krawczyk, and Tal Rabin. Adaptive security
for threshold cryptosystems. In Advances in Cryptology—CRYPTO’99: 19th Annual International Cryp-
tology Conference Santa Barbara, California, USA, August 15–19, 1999 Proceedings 19, pages 98–116.
Springer, 1999.

CGRS23. Hien Chu, Paul Gerhart, Tim Ruffing, and Dominique Schröder. Practical schnorr threshold signatures
without the algebraic group model. In Annual International Cryptology Conference, pages 743–773.
Springer, 2023.

CKM21. Elizabeth Crites, Chelsea Komlo, and Mary Maller. How to prove schnorr assuming schnorr: security of
multi-and threshold signatures. Cryptology ePrint Archive, 2021.

CKM23. Elizabeth Crites, Chelsea Komlo, and Mary Maller. Fully adaptive schnorr threshold signatures. In
Annual International Cryptology Conference. Springer, 2023.

CKP+23. Elizabeth Crites, Markulf Kohlweiss, Bart Preneel, Mahdi Sedaghat, and Daniel Slamanig. Threshold
structure-preserving signatures. Berlin, Heidelberg, 2023. Springer-Verlag.

CS14. Shan Chen and John Steinberger. Tight security bounds for key-alternating ciphers. In Annual Interna-
tional Conference on the Theory and Applications of Cryptographic Techniques, pages 327–350. Springer,
2014.

Dam02. Ivan Damg̊ard. On σ-protocols. Lecture Notes, University of Aarhus, Department for Computer Science,
page 84, 2002.

Des88. Yvo Desmedt. Society and group oriented cryptography: A new concept. In Advances in Cryptol-
ogy—CRYPTO’87: Proceedings 7, pages 120–127. Springer, 1988.

DF89. Yvo Desmedt and Yair Frankel. Threshold cryptosystems. In Advances in Cryptology - CRYPTO ’89,
9th Annual International Cryptology Conference, Santa Barbara, California, USA, August 20-24, 1989,
Proceedings. Springer, 1989.

dPKM+24. Rafael del Pino, Shuichi Katsumata, Mary Maller, Fabrice Mouhartem, Thomas Prest, and Markku-
Juhani Saarinen. Threshold raccoon: Practical threshold signatures from standard lattice assumptions.
In Marc Joye and Gregor Leander, editors, Advances in Cryptology – EUROCRYPT 2024, pages 219–248,
Cham, 2024. Springer Nature Switzerland.

DR24. Sourav Das and Ling Ren. Adaptively secure bls threshold signatures from ddh and co-cdh. In Advances
in Cryptology–CRYPTO 2024: 44nd Annual International Cryptology Conference, CRYPTO 2024, Santa
Barbara, CA, USA. Springer, 2024.

dra23. Distributed randomness beacon: Verifiable, unpredictable and unbiased random numbers as a service.
https://drand.love/docs/overview/, 2023.

EKT24. Thomas Espitau, Shuichi Katsumata, and Kaoru Takemure. Two-round threshold signature from alge-
braic one-more learning with errors. In Advances in Cryptology – CRYPTO 2024: 44th Annual Inter-
national Cryptology Conference, Santa Barbara, CA, USA, August 18–22, 2024, Proceedings, Part VII,
page 387–424, Berlin, Heidelberg, 2024. Springer-Verlag.

FMY99a. Yair Frankel, Philip MacKenzie, and Moti Yung. Adaptively-secure distributed public-key systems. In
European Symposium on Algorithms, pages 4–27. Springer, 1999.

23

https://csrc.nist.gov/pubs/ir/8214/c/ipd
https://drand.love/docs/overview/

FMY99b. Yair Frankel, Philip MacKenzie, and Moti Yung. Adaptively-secure optimal-resilience proactive rsa. In
International Conference on the Theory and Application of Cryptology and Information Security, pages
180–194. Springer, 1999.

GG20. Rosario Gennaro and Steven Goldfeder. One round threshold ecdsa with identifiable abort. Cryptology
ePrint Archive, 2020.

GJKR96. Rosario Gennaro, Stanis law Jarecki, Hugo Krawczyk, and Tal Rabin. Robust threshold dss signatures. In
Advances in Cryptology—EUROCRYPT’96: International Conference on the Theory and Application of
Cryptographic Techniques Saragossa, Spain, May 12–16, 1996 Proceedings 15, pages 354–371. Springer,
1996.

GJKR07. Rosario Gennaro, Stanislaw Jarecki, Hugo Krawczyk, and Tal Rabin. Secure distributed key generation
for discrete-log based cryptosystems. Journal of Cryptology, 2007.

GKS24. Kamil Doruk Gur, Jonathan Katz, and Tjerand Silde. Two-round threshold lattice-based signatures
from threshold homomorphic encryption. In Post-Quantum Cryptography: 15th International Workshop,
PQCrypto 2024, Oxford, UK, June 12–14, 2024, Proceedings, Part II, page 266–300, Berlin, Heidelberg,
2024. Springer-Verlag.

GS24. Jens Groth and Victor Shoup. Fast batched asynchronous distributed key generation. In Annual Interna-
tional Conference on the Theory and Applications of Cryptographic Techniques, pages 370–400. Springer,
2024.

HT16. Viet Tung Hoang and Stefano Tessaro. Key-alternating ciphers and key-length extension: Exact bounds
and multi-user security. In Matthew Robshaw and Jonathan Katz, editors, Advances in Cryptology –
CRYPTO 2016, pages 3–32, Berlin, Heidelberg, 2016. Springer Berlin Heidelberg.

ic23. Internet computer: Chain-key cryptography. https://internetcomputer.org/how-it-works/

chain-key-technology/, 2023.
JL00. Stanis law Jarecki and Anna Lysyanskaya. Adaptively secure threshold cryptography: Introducing concur-

rency, removing erasures. In Advances in Cryptology—EUROCRYPT 2000: International Conference on
the Theory and Application of Cryptographic Techniques Bruges, Belgium, May 14–18, 2000 Proceedings
19, pages 221–242. Springer, 2000.

KAB21. Handan Kılınç Alper and Jeffrey Burdges. Two-round trip schnorr multi-signatures via delinearized
witnesses. In Tal Malkin and Chris Peikert, editors, Advances in Cryptology – CRYPTO 2021, pages
157–188, Cham, 2021. Springer International Publishing.

KG21. Chelsea Komlo and Ian Goldberg. Frost: flexible round-optimized schnorr threshold signatures. In
Selected Areas in Cryptography. Springer, 2021.

KRT24. Shuichi Katsumata, Michael Reichle, and Kaoru Takemure. Adaptively secure 5 round threshold sig-
natures from mlwe/msis and dl with rewinding. In Annual International Cryptology Conference, pages
459–491. Springer, 2024.

Lin22. Yehuda Lindell. Simple three-round multiparty schnorr signing with full simulatability. Cryptology ePrint
Archive, 2022.

LJY14. Benôıt Libert, Marc Joye, and Moti Yung. Born and raised distributively: Fully distributed non-
interactive adaptively-secure threshold signatures with short shares. In Proceedings of the ACM sympo-
sium on Principles of distributed computing, 2014.

LP01. Anna Lysyanskaya and Chris Peikert. Adaptive security in the threshold setting: From cryptosystems to
signature schemes. In Advances in Cryptology—ASIACRYPT 2001: 7th International Conference on the
Theory and Application of Cryptology and Information Security Gold Coast, Australia, December 9–13,
2001 Proceedings 7, pages 331–350. Springer, 2001.

Mak22. Nikolaos Makriyannis. On the classic protocol for MPC schnorr signatures. Cryptology ePrint Archive,
Paper 2022/1332, 2022.

MMS+24. Aikaterini Mitrokotsa, Sayantan Mukherjee, Mahdi Sedaghat, Daniel Slamanig, and Jenit Tomy. Thresh-
old structure-preserving signatures: Strong and adaptive security under standard assumptions. In IACR
International Conference on Public-Key Cryptography, 2024.

MPSW19. Gregory Maxwell, Andrew Poelstra, Yannick Seurin, and Pieter Wuille. Simple schnorr multi-signatures
with applications to bitcoin. Designs, Codes and Cryptography, 87(9):2139–2164, 2019.

MXC+16. Andrew Miller, Yu Xia, Kyle Croman, Elaine Shi, and Dawn Song. The honey badger of bft protocols.
In Proceedings of the 2016 ACM SIGSAC conference on computer and communications security, pages
31–42, 2016.

Nak08. Satoshi Nakamoto. Bitcoin: A peer-to-peer electronic cash system. 2008.
NR04. Moni Naor and Omer Reingold. Number-theoretic constructions of efficient pseudo-random functions.

Journal of the ACM (JACM), 51(2):231–262, 2004.

24

https://internetcomputer.org/how-it-works/chain-key-technology/
https://internetcomputer.org/how-it-works/chain-key-technology/

NRS21. Jonas Nick, Tim Ruffing, and Yannick Seurin. Musig2: simple two-round schnorr multi-signatures. In
Annual International Cryptology Conference, pages 189–221. Springer, 2021.

NRSW20. Jonas Nick, Tim Ruffing, Yannick Seurin, and Pieter Wuille. Musig-dn: Schnorr multi-signatures with
verifiably deterministic nonces. In Proceedings of the 2020 ACM SIGSAC Conference on Computer and
Communications Security, pages 1717–1731, 2020.

Pat08. Jacques Patarin. The “coefficients h” technique. In International Workshop on Selected Areas in Cryp-
tography, pages 328–345. Springer, 2008.

PS96. David Pointcheval and Jacques Stern. Security proofs for signature schemes. In International Conference
on the Theory and Applications of Cryptographic Techniques, pages 387–398. Springer, 1996.

PW23. Jiaxin Pan and Benedikt Wagner. Chopsticks: Fork-free two-round multi-signatures from non-interactive
assumptions. In Annual International Conference on the Theory and Applications of Cryptographic
Techniques, pages 597–627. Springer, 2023.

Rab98. Tal Rabin. A simplified approach to threshold and proactive rsa. In Advances in Cryptol-
ogy—CRYPTO’98: 18th Annual International Cryptology Conference Santa Barbara, California, USA
August 23–27, 1998 Proceedings 18, pages 89–104. Springer, 1998.

RRJ+22. Tim Ruffing, Viktoria Ronge, Elliott Jin, Jonas Schneider-Bensch, and Dominique Schröder. Roast:
Robust asynchronous schnorr threshold signatures. In Proceedings of the 2022 ACM SIGSAC Conference
on Computer and Communications Security, 2022.

Sch90. Claus-Peter Schnorr. Efficient identification and signatures for smart cards. In Advances in Cryptol-
ogy—CRYPTO’89 Proceedings 9, pages 239–252. Springer, 1990.

Sha79. Adi Shamir. How to share a secret. Communications of the ACM, 1979.
SS01. Douglas R. Stinson and Reto Strobl. Provably secure distributed schnorr signatures and a (t, n) threshold

scheme for implicit certificates. In Vijay Varadharajan and Yi Mu, editors, Information Security and
Privacy, pages 417–434, Berlin, Heidelberg, 2001. Springer Berlin Heidelberg.

TZ23. Stefano Tessaro and Chenzhi Zhu. Threshold and multi-signature schemes from linear hash functions.
In Annual International Conference on the Theory and Applications of Cryptographic Techniques, pages
628–658. Springer, 2023.

Wat05. Brent Waters. Efficient identity-based encryption without random oracles. In Advances in Cryptology–
EUROCRYPT 2005: 24th Annual International Conference on the Theory and Applications of Crypto-
graphic Techniques, Aarhus, Denmark, May 22-26, 2005. Proceedings 24, pages 114–127. Springer, 2005.

WQL09. Zecheng Wang, Haifeng Qian, and Zhibin Li. Adaptively secure threshold signature scheme in the
standard model. Informatica, 20(4):591–612, 2009.

YMR+19. Maofan Yin, Dahlia Malkhi, Michael K Reiter, Guy Golan Gueta, and Ittai Abraham. Hotstuff: Bft
consensus with linearity and responsiveness. In Proceedings of the 2019 ACM Symposium on Principles
of Distributed Computing, pages 347–356. ACM, 2019.

ZWHZ19. Michael Zochowski, Peng Wang, Carl Hua, and Michael Zochowski. Benchmarking hash and signature
algorithms. Logos Network, Mar 2019.

25

Algorithm ForkA(x):

1: Pick the random coins ρ of A at random
2: {h1, . . . , hq} ←$ Hq

3: (k, aux)← A(x, h1, . . . , hq)
4: if k = 0 : return ⊥
5: {h′

k, . . . , h
′
q} ←$ Hq

6: (k′, aux′)← A(x, h1, . . . , hk−1, h
′
k, . . . , h

′
q)

7: if k ̸= k′ : return ⊥
8: return (k, aux, aux′)

Fig. 7: The generalized forking algorithm.

A Additional Preliminaries

We cover additional preliminaries. More precisely, we define the computational assumptions used in our
security proof and the generalized forking lemma.

A.1 Computational Assumptions

Assumption 2 (DL) We say that the discrete logarithm (DL) assumption holds, if for all PPT adversaries
A, the following advantage is negligible:

AdvDL
A,GGen(λ) := Pr

[
A(g, gα) = α

∣∣ (G, p, g)← GGen(1λ), α←$ Zp

]
= εdl.

Assumption 3 (DDH) We say that the decisional Diffie-Hellman (DDH) assumption holds, if for all PPT
adversaries A, the following advantage is negligible:

AdvDDH
A,GGen(λ) :=

∣∣∣∣∣Pr
[
A(g, gα, gβ , gαβ) = 1

∣∣∣∣∣ (G, p, g)← GGen(1λ),

α, β ←$ Zp

]

− Pr

[
A(g, gα, gβ , gγ) = 1

∣∣∣∣∣ (G, p, g)← GGen(1λ),

α, β, γ ←$ Zp

]∣∣∣∣∣ = εddh.

A.2 Generalized Forking Lemma

We recall the generalized forking lemma [PS96, BN06].

Lemma 4. Let q ≥ 1 be an integer, and H be a set. Let A be a randomized algorithm that on input
x, h1, h2, . . . , hq outputs a pair (k, aux), where k ∈ [0, q] and aux is a side output. Let IG be a randomized
algorithm that generates x. The accepting probability of A is defined as:

acc = Pr
x←IG,h1,h2,...,hq←$H

[(k, aux)← A(x, h1, . . . , hq) : k ̸= 0].

Consider algorithm ForkA described in Figure 7. The accepting probability of ForkA is defined as:

frk := Pr
x←IG

[ν ← ForkA(x) : ν ̸= ⊥].

Then, we have:

frk ≥ acc

(
acc

q
− 1

|H|

)
=⇒ acc ≥ q

|H|
+
√

q · frk.

26

B Identifiable Abort for Threshold Signatures

In this section, we explain why the identifiable abort (IA) definition in [RRJ+22] is insufficient to capture
some important scenarios that may occur when running an interactive threshold signatures scheme. These
scenarios, in particular, include partially non-interactive schemes, to which Ruffing et al.’s definition is
supposed to apply. In particular, their IA definition does not cover scenarios in which an adversary, A, sends
different messages to different honest signers. This allows A to falsely frame an honest signer as malicious
to other honest signers. We illustrate this more clearly using the example of the Frost3 threshold signature,
a slightly simplified version of Frost [KG21], described by Ruffing et al. [RRJ+22].

Short recap of Frost3. To illustrate this issue, we recall the necessary details Frost3 scheme. Let SS ⊆ [n]
denote a set of t+1 signers that seeks to compute a signature on m. In the first round of Frost3, each signer
i ∈ SS samples two uniformly random secret nonces di, ei ←$ Zp and then sends the commitments (Di, Ei) :=
(gdi , gei) ∈ G2 to the other signers. Upon receiving commitments from all signers B := ((Dj , Ej))j∈SS, each
signer computes its signature share zi := c · ski + (di + ρei). Here, ρ is the aggregation coefficient and c
is the challenge, both of which are derived deterministically from (pk,SS, B,m) by two independent hash
functions. The validity of zi can be checked via equation

gzi
?
= pkci · (DiE

ρ
i), (16)

given signer i’s public key pki.

At first glance, this (signature) share validation check should suffice to detect misbehaving signers in a
signing protocol. This is also the reason why we believe the authors in [RRJ+22] introduce the additional
“share validation” algorithm ShareVal for general (partially non-interactive, two-round) threshold signature
schemes such as Frost3. In essence, this algorithm would take as input (pk,SS, B,m), all signers’ public keys
(pk1, . . . , pkn), and a signer’s signature share zi, and then output the result of the check in equation 16.

Concrete attack. The authors [RRJ+22] define IA via a security game IA-CMAATS (page 6, Figure 2) with
an adversary A. There, the adversary A controls all but one signer i∗ and wins the game if at least one of the
two following events happens in some signing session. (1) It sends presignatures (i.e., first-round messages)
and signature shares that verify via ShareVal but result in an invalid combined signature for honest signer
i∗. (2) The honest signer i∗ outputs a presignature and signature shares that does not verify via ShareVal.

The authors state that their IA property guarantees that ShareVal reliably identifies disruptive malicious
signers who send wrong shares. We argue that their definition does not satisfy this notion of IA. The problem
stems from their security game assuming only one honest signer. Instead, imagine a scenario in which there
are two honest signers P1 and P2, and a malicious signer PA. Again, for our illustration, we use the Frost3
scheme.

Upon receiving the presignatures R1 and R2 from honest signers P1 and P2, respectively, PA sends dif-
ferent presignatures R3 ̸= R′3 to P1 and P2, respectively. As such, signer P1 receives the presignature vector
B1 := (R1, R2, R3), whereas signer P2 receives the presignature vector B2 := (R1, R2, R

′
3). As described

before, from these presignatures (more concrete, from (pk,SS, Bi,m)), each signer locally and determinis-
tically derives an aggregation coefficient ρi and a challenge ci. Note that, with overwhelming probability,
these values will be different for the both the honest signers, i.e., ρ1 ̸= ρ2 and thus c1 ̸= c2. Then, each
signer Pi will compute its signature share zi := ci · ski + (di + ρiei) using these values and send it to the
other signers. Now, upon receiving the share z2 from signer P2, the signer P1 will run the share validation
algorithm ShareVal by checking the equation

gz2
?
= pkc12 · (D2E

ρ1

2),

where z2 was honestly computed as z2 = c2 · sk2 + (d2 + ρ2e2) and thus by default satisfies the equation

gz2 = pkc22 · (D2E
ρ2

2).

27

Note that each signer computes and verifies the signature shares with respect to its local view. Now, with
overwhelming probability, we will have

pkc12 · (D2E
ρ1

2) ̸= pkc22 · (D2E
ρ2

2),

which implies that the honestly computed signature share z2 will not verify at honest signer P1. The converse
is also true: the honestly computed signature share z1 will not verify at honest signer P2. As a consequence,
each honest signer would blame the other honest signer for misbehaving. On the other hand, the actual
malicious signer PA could even send correct shares z3 and z′3 to signer P1 and P2, respectively, and would
not be blamed by either. Since the security game by Ruffing et al. considers the limited case where there is
only one honest signer, this type of malicious behavior is not covered by their security definition.

Our solution. We find this unsatisfactory and therefore propose a (slightly adjusted) security game that
captures this type of scenario. In our security game of IA, we want to be able to detect misbehaving signers,
given the views of all the signers, where we let the adversary arbitrarily choose the views of malicious
signers. This is different from the previous definition that only considers the view of one honest signer, which
as explained above, does not suffice to detect misbehaving signers and could even result in blaming honest
signers.

For this purpose, we introduce a detection algorithm Detect which takes as input the transcripts (trxj)j∈SS
(i.e., all received protocol messages) for a signing session and outputs a potentially empty set J ⊂ [n] of
signers. In our security game, we then consider a signing session that failed for at least one honest signer i∗

(i.e., the signer aborted) and allow A to specify all transcripts from corrupt signers. Then, A wins the game
if the detect algorithm (i) identifies an honest signers as cheating (i.e., J ∩H ̸= ∅), or (ii) does not identify
any malicious signer (i.e., J ∩ C = ∅).

Intuitively, with our definition we capture two types of adversarial behaviour. First, when the adversary
equivocates, i.e., send different messages to different signers. This can be identified from the views of all
honest signers. Second, when the adversary sends consistent (not equivocating) but invalid messages, e.g.,
signature shares that do not verify via some share validation algorithm. To implement such an algorithm in
our construction, we use a public-key infrastructure (PKI) and let each signer sign its protocol messages.
This allows the identification of cheating signers after a failed session, given all transcripts. We give our
security game in Figure 2.

Final note on ROAST [RRJ+22]. Despite what we have said above, we emphasize that their notion
of IA suffices to build their ROAST protocol. The reason for this is that all communication goes through
coordinator nodes, which are the signers themselves. And for an honest coordinator, the above issue does
not arise, since PA cannot send him two different presignatures without being detected. Thus, equivocation
cannot happen, and the only possibility for A to make a signing session fail is to send invalid signature
shares, which can also directly be checked by the (honest) coordinator via equation 16.

C Analysis of the Identifiable Abort Property

C.1 Analysis of Σ-protocol

To prove unforgeability of Glacius we require the Σ-protocol to satisfy the standard honest-verifier zero-
knowledge property (HVZK) property. Informally, the zero-knowledge property ensures that the proof reveals
no information other than the statement’s truth. For IA, we additionally require it to satisfy completeness
and soundness in the concurrent setting. Briefly, the completeness property guarantees that an honest prover
will always be able to convince an honest verifier about true statements. The soundness property prevents
malicious prover from convincing a verifier about wrong statements. We refer the reader to [Dam02] for
formal definitions of these properties.

The completeness of the Σ-protocol is straightforward. Similarly, the HVZK property also follows us-
ing standard techniques. Let S be the simulator. S samples uniformly random (e, βa, βs, βr, βu) ∈ Z5

p and
computes (XA, Xpk, Xz) as

Xpk := gβshβrvβu · pk−e; XA =: gβagβs

0 gβr

1 ·A−e/L; Xz =: βa + e · βs −
ez

L
.

28

Detect(SS,m, (trxj)j∈SS) :

1: ∀j ∈ SS : parse (pmj
k,i)k∈[R],i∈SS := trxj

2: J := ∅
// Detect all equivocating signers
3: for k ∈ [R], i, j, j′ ∈ SS :

4: if (pmj
k,i ̸= pmj′

k,i) ∧ (both pmj
k,i, pm

j′

k,i have valid DS signatures from i) :
5: J := J ∪ {i} // caught i as equivocating
6: continue // update i with next signer in SS

// Detect signers who sent invalid signature shares
7: NE := SS \ J // set of non-equivocating signers
8: for i ∈ NE :
9: parse (zi, πi) := pmi

5,i // Sig5 message signer i sent to itself

10: parse ρ⃗(i) := (pmi
1,j)j∈SS, (Aj)j∈SS := (pmi

3,j)j∈SS

11: Â(i) :=
∏

j∈SS Aj , c(i) := Hsig(Â(i), pk,m)

12: if SigVer(pki, ρ⃗(i), Li,SS, Ai, c(i), zi, πi) = 0 :
13: J := J ∪ {i}
14: return J

Fig. 8: The Detect algorithm for our scheme Glacius.

Input: g, h, v, pk ∈ G, (g0, g1) = (H0(ρ⃗),H1(ρ⃗)) for some ρ⃗, A ∈ G, c, z ∈ Zp, and some public L. Here, L is a
Lagrange coefficient.

Witness: (a, s, r, u) ∈ Z4
p

The prover P wants to convince the verifier V that it knows s, r, u ∈ Zp such that pk = gshrvu and A = (gags0g
r
1)L,

and z = (a + c · s) · L.

// We assume that both algorithms implicitly take g, h, v,H0,H1 as input

SigProve(pk, A, ρ⃗, (c, z); (a, s, r, u)):

1: Let g0 := H0(ρ⃗) and g1 := H1(ρ⃗)
2: Sample αa, αs, αr, αu ←$ Zp. Let Xpk := gαshαrvαu , and XA := gαagαr

0 gαu
1 , and Xz = αa + c · αs.

3: Let e := HFS(Xpk, XA, Xz, pk, A, c, z, g0, g1), for hash function HFS : {0, 1}∗ → Zp modeled as a random oracle.
4: Let βa := αa + a · e, βs := αs + s · e, βr := αr + r · e and βu := αu + u · e.
5: return π := (Xpk, XA, Xz, βa, βs, βr, βu).

SigVer(pk, ρ⃗, L,A, (c, z), π = (Xpk, XA, Xz, βa, βs, βr, βu)):

6: Let g0 := H0(ρ⃗) and g1 := H1(ρ⃗)
7: Let e := HFS(Xpk, XA, Xz, pk, A, c, z, g0, g1)
8: if gβshβrvβu = Xpk · pke ∧ gβagβr

0 gβu
1 = XA ·Ae/L ∧ βa + cβs = Xz + ez/L :

9: return 1
10: return 0

Fig. 9: Σ-protocol for computing and verifying the correctness proof for partial signatures we use in the
Detect algorithm.

S then programs HFS as HFS(Xpk, XA, Xz, pk, A, c, z, g0, g1) = e and outputs π = (e, βa, βs, βr, βu) as
the proof. Clearly, the simulated transcript is identically distributed to the real-protocol transcript. We will
prove the soundness in the concurrent setting directly when we prove the IA property of Glacius in §C.2.

C.2 Identifiable Abort

Recall from §2, for identifiable abort, the Detect algorithm must identify at least one misbehaving signer
and must never blame honest signers. Honest signers never equivocate. Therefore, due to the security of DS
no honest signer will be added to J . Now, note that zi is a deterministic function of the ai, and all the

29

Input: Generators (g, h, v) ∈ G3, secret key polynomials s(·), r(·), u(·), randomness for random oracle programming
{h1, h2, . . . , hq} ←$ Zp.

KGen simulation
1. Use (g, h, v) as generators and s(·), r(·), u(·) as the secret key polynomials.

Corruption simulation:
2. When A corrupts a signer i ∈ H if |C|< t:

(a) Update H := H \ {i} and C := C ∪ {i}.
(b) Faithfully reveals the internal state of signer i to A.

Simulating random oracle queries: For each query to HFS on some input x, use the next unused random value
from the input {h1, h2, . . . , hq} to program HFS.

Simulating signing protocol for any signing session
3. Follow the honest protocol for all honest signers. Simultaneously, also check for the Neq as follows.
4. Let Aj and zj be the Sig4 and Sig5 messages, respectively, sent by signer j ∈ C ∩ SS during a signing session

with session-id sid with signer set SS. Let Â be the combined nonce for that session and c = Hsig(Â, pk,m). Let
πj = (Xpk, XA, Xz, βa, βs, βr, βu) be the proof output by signer j that successfully verifies. Compute Zj as:

Zj := Aj · H0(ρ⃗)−r(j)·Lj,SS · H1(ρ⃗)−u(j)·Lj,SS (17)

Here, ρ⃗ is the Sig1 message of the corresponding signing session.

Then, if Zj ̸= gzj−c·s(j)·Lj,SS , find the index idx ∈ [q] where B programmed HFS on input
(Xpk, XA, Xz, pkj , c, zj , g0, g1) with hidx. return (idx, j, πj).

5. If the event Neq does not occur during the interaction with A, return (0, ε).

Fig. 10: Description of Algorithm B that simulates Glacius to an adversary A.

messages signer i receives. Therefore, by the perfect completeness property of the Σ-protocol, πi will always
verify. Hence, signer i will not be added to J .

Next, we argue that if an honest signer aborts (i.e., outputs ⊥), then the Detect algorithm will identify at
least one malicious signer. For simplicity, let us assume that A can not break the collision resistance property
of Hview. From the correctness property §4.1, when all signers send correct messages during a signing session,
no honest signer will output ⊥ during that session. Therefore, since signer i initiated the Detect protocol,
then at least one signer in SS must have misbehaved. Clearly, if any malicious signer j ∈ SS equivocates or
sends a proof πj that does not verify, then j will be added to J , and we are done. The interesting case is
when πj successfully verifies, but zj is computed incorrectly. In Lemma 5, argue that assuming the hardness
of discrete logarithm in G, computing such a proof πj for invalid zj is infeasible. Therefore, if πj successfully
verifies for any j ∈ SS, then zj is valid; hence, due to the correctness property of Glacius implies that honest
signer i will not output ⊥. Thus, we get a contradiction.

Lemma 5. Let Neq be the event that A outputs an incorrect zj for any j ∈ SS with an proof πj that verifies.
Then, assuming the hardness of discrete logarithm (DL) in G, Pr[Neq] is negligible.

Proof. To prove this lemma, we will rely on the generalized forking lemma [PS96, BN06]. More specifically,
given an adversary A that can cause the event Neq to happen, we will build a “wrapping” algorithm B (see
Figure 10) which runs A and returns information regarding the bad event Neq. Algorithm B simulates all the
random oracles with uniformly random outputs. We then use B to construct an algorithm Bdl (see Figure 11)
that first runs the forking algorithm ForkB (identical to Figure 5) which forks B with respect to HFS query.
Algorithm Bdl then uses the output of the ForkB algorithm to solve for discrete logarithm in G.

Description of Algorithm B (Figure 10). B takes as input the generators (g, h, v), the signing keys
(s(·), r(·), u(·)), and a vector {h1, h2, . . . , hqFS} of uniformly random field elements. B then interacts with
A with these inputs. During this interaction, B uses {h1, h2, . . . , hqFS} to program the random oracle HFS.
Simultaneously, B also locally checks for the event Neq (step 5 in Figure 10).

When the event Neq occurs, B identifies the HFS query associated with the event Neq. Let j be the
signer associated with the event Neq. Also, let πj = (Xpk, XA, Xz, βa, βs, βr, βu) and (pkj , Aj , (c, zj), g0, g1)

30

Algorithm Bdl(G, p, g, y):

1: Sample α←$ Z∗
p and θ ←$ {0, 1}

2: if θ = 0 : (h, v) := (y, gα); otherwise (h, v) := (gα, y)

3: Sample the signing keys polynomials s(·), r(·), u(·) as per the protocol specification.
4: Let (val, out, out′)← ForkB(g, h, v, s(·), r(·), u(·))
5: if val = 0 : return ⊥
6: parse (e, (j, βs, βr, βu)) := out and (e′, (j′, β′

s, β
′
r, β

′
u)) := out′.

7: Compute sj , rj and uj as:

sj :=
βs − β′

s

e− e′
; rj :=

βr − β′
r

e− e′
; uj :=

βu − β′
u

e− e′
(18)

8: Let δs := s(j)− sj , δr := r(j)− rj , and δu := u(j)− uj .
// Let h = gαh and v = gαv

9: if θ = 0 ∧ δr ̸= 0 :
10: return (−δs − αvδu) · δ−1

r as the DL solution
11: else if θ = 1 ∧ δu ̸= 0 :
12: return (−δs − αhδr) · δ−1

u as the DL solution

13: return ⊥

Fig. 11: Description of Algorithm Bdl solves discrete logarithm in G

be the NIZK proof and the statement associated with the event Neq. Then, B finds the index idx such
that B programmed the HFS query on input (Xpk, XA, Xz, pkj , c, zj , g0, g1) with hidx, and returns the tuple
(idx, (j, βa, βs, βr, βu)) as its output.

Description of Algorithm ForkB. The ForkB algorithm Bdl runs is identical to Figure 5.

Description of Algorithm Bdl (Figure 11). Bdl takes as input (G, p, g, y): the description of the group
G of order p, a generator g and a uniformly random element y ∈ G. Bdl then samples uniformly random
α ←$ Zp and a bit θ ← {0, 1}. Next, depending upon the value of θ, Bdl sets the public parameters
(g, h, v) in two different manner. More precisely, if θ = 0, Bdl sets (g, h, v) := (g, y, gα), otherwise Bdl sets
(g, h, v) := (g, gα, y).

Next, Bdl honestly samples the signing key polynomials s(·), r(·), u(·), and runs ForkB with (g, h, v, s(·), r(·), u(·))
as input. Let (val, out, out′) be the output of ForkB. If val = 0, Bdl returns ⊥. Otherwise, let out =
(e, (j, βs, βr, βu)) and out′ = (e′, (j′, β′s, β

′
r, β
′
u)). Bdl computes (sj , rj , uj) as:

sj :=
βs − β′s
e− e′

; rj :=
βr − β′r
e− e′

; uj :=
βu − β′u
e− e′

(19)

Let δs := s(j) − sj , δr := r(j) − rj , and δu := u(j) − uj . Also, let h = gαh and v = gαv for some
αh, αv ∈ Z∗p. Then, if θ = 0 and δr ̸= 0, Bdl outputs (−δs − αvδu) · δ−1u as the DL solution. Alternatively, if
θ = 1 and δu ̸= 0, Bdl outputs (−δs − αhδr) · δ−1u as the DL solution.

Analysis of Bdl. Let ε be the probability that ForkB outputs (1, out, out′). Also, let εdl be the probability
that Bdl outputs the discrete logarithm of y. Next, we prove that εdl ≥ ε/2. Also, let εneq be the probability
of the event Neq. Then, from the generalized forking lemma, we get that:

ε ≥
ε2neq
qFS
− εneq

p

Therefore, by combining all the above, we get:

εdl ≥
1

2
·

(
ε2neq
qFS
− εneq

p

)
=⇒ εneq ≤

qFS
p

+
√
2 · qFS · εdl (20)

Note that ForkB outputting (1, out, out′) implies that the event Neq happens for the first time during
B’s interaction with A for the idx-th HFS query for both execution of B. Since, A’s view in both execution

31

is identical until the idx-th query, it implies that the input to the idx-th HFS is identical in both execution.
Moreover, A outputs valid NIZK proof πj and π′j for the same statement in both the execution.

Let (Xpk, XA, Xz, pkj , c, zj , g0, g1) be the input of the idx-th HFS query. Then, out := (e, (j, βs, βr, βu))
and out′ = (e′, (j′, β′s, β

′
r, β
′
u)) satisfy that:

gβshβrvβu = Xpk · pkej ; and gβ
′
shβ′

rvβ
′
u = Xpk · pke

′

j .

Therefore,
gsjhrjvuj = pkj = gs(j)hr(j)vu(j)

here (sj , rj , uj) are the values Bdl computes in equation (19), and (s(j), r(j), u(j)) are the signing keys of
party j as per the protocol specification. This implies that:

gsj−s(j)hrj−r(j)vuj−u(j) = 1G = gδshδrvδu (21)

Proving (δr, δu) ̸= (0, 0) whenever the event Neq occurs. Next, we argue that (δr, δu) ̸= (0, 0). For
the sake of contradiction, assume that (δr, δu) = (0, 0). Also, let πj = (Xpk, XA, Xz, , βa, βs, βr, βu) and
π′j = (Xpk, XA, Xz, β

′
a, β
′
s, β
′
r, β
′
u) be the NIZK proofs A outputs in its two execution, respectively. Then, for

(βa, βr, βu) and (β′a, β
′
r, β
′
u) it holds that:

gβa · gβr

0 · g
βu

1 = XA ·A
e/Lj,SS

j and gβ
′
a · gβ

′
r

0 · g
β′
u

1 = XA ·A
e′/Lj,SS

j

βa + cβs = Xz +
e · z
Lj,SS

and β′a + cβ′s = Xz +
e′ · z
Lj,SS

Let a′ := Lj,SS · (βa − β′a)/(e− e′). Then, from equation (18) we have:

ga
′
· grj ·Lj,SS

0 · guj ·Lj,SS

1 = Aj and a′ + c · s′ · Lj,SS = z (22)

However, since by our assumption (δr, δu) = 0, we have (rj , uj) = (r(j), u(j)), and hence

ga
′
· gr(j)0 · gu(j)1 = Aj =⇒ ga

′
= Aj · g

−r(j)·Lj,SS

0 · g−u(j)·Lj,SS

0 = Zj (23)

Now we have two cases to analyze: first, δs = s(j) − s′ = 0; and second, δs ̸= 0. Next, we argue that in
both cases, we get a contradiction.

1. When δs = 0, then from equation (22), we get that a′ = z− c · s(j) ·Lj,SS, and hence Zj = gz−c·s(j)·Lj,SS .
This implies that the event Neq does not occur for the idx-th HFS query. Hence, we get a contradiction.

2. When δs ̸= 0, then since (δr, δu) = (0, 0), then from equation (21), we have that gδs = 1G, which is a
contradiction.

Computing the success probability. Say h = gαh and v = gαv for some αh, αv ∈ Zp. Then, equation (21),
implies that δs+ δrαh+ δuαv = 0. If either δr or δu is non-zero, then Bdl computes αh or αv, respectively, as:

δr ̸= 0⇒ αh = (−δs − αvδu) · δ−1r ; δu ̸= 0⇒ αv = (−δs − αhδr) · δ−1u

Now, note that Bdl will be able to compute the discrete logarithm of y if either of the following happens:
(i) θ = 0 and δr ̸= 0; and (ii) θ = 0 and δu ̸= 0. This implies that:

εdl ≥ Pr[θ = 0 ∧ δr ̸= 0] + Pr[θ = 1 ∧ δu ̸= 0] (24)

Note that the view of ForkB is identically distributed for both θ = 0 and θ = 1, and hence the value of
(δr, δu) is independent of θ. Therefore we get:

εdl ≥ Pr[θ = 0] · Pr[δr ̸= 0] + Pr[θ = 1] · Pr[δu ̸= 0]

=
1

2
· (Pr[δr ̸= 0] + Pr[δu ̸= 0]) ≥ 1

2
· Pr[δr ̸= 0 ∨ δu ̸= 0] =

1

2
· ε (25)

Now, combining equation (25) with equation (20), we get that:

εneq ≤
qFS
p

+
√
2 · qFS · εdl. ⊓⊔

32

	Glacius: Threshold Schnorr Signatures from DDH with Full Adaptive Security

