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Abstract

Much work has been done recently on developing password-authenticated
key exchange (PAKE) mechanisms with post-quantum security. However,
modern guidance recommends the use of hybrid schemes—schemes which
rely on the combined hardness of a post-quantum assumption, e.g., Learn-
ing with Errors (LWE), and a more traditional assumption, e.g., decisional
Diffie-Hellman. To date, there is no known hybrid PAKE construction, let
alone a general method for achieving such.

In this paper, we present two efficient PAKE combiners—algorithms
that take two PAKEs satisfying mild assumptions, and output a third
PAKE with combined security properties—and prove these combiners se-
cure in the Universal Composability (UC) model. Our sequential combiner,
instantiated with efficient existing PAKEs such as CPace (built on Diffie-
Hellman-type assumptions) and CAKE (built on lattice assumptions),
yields the first known hybrid PAKE.

Keywords: key agreement, password-based cryptography, post-quantum
cryptography

1 Introduction

Memorable passwords are the one of most commonly used forms of authentication
today, and exist across a wide variety of applications. While some applications,
such as website login, have users send their plaintext password, many large-
scale applications utilize password-authenticated key exchange (PAKE) and its
variants to limit the amount of information that can be intercepted. These include
iCloud Keychain escrow, 1Password user authentication, Facebook Messenger

∗The author was supported by the Swiss National Science Foundation (SNSF) under the
AMBIZIONE grant “Cryptographic Protocols for Human Authentication and the IoT”.

†Version 1.0 of this paper was researched concurrently with and independently of [LL24],
whose combiners are identical to ours.
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chat history sharing, WhatsApp backup encryption, and passport chip access
control [fan24].

As a result of the widespread push from industry and government to move
towards post-quantum cryptography, many efficient lattice- and isogeny-based
PAKEs have been developed in recent years [DAL+17, BCP+23, ABJS24,
AEK+22, IY23, LLH24]. However, these constructions are not necessarily the
end goal of the post-quantum efforts. The largest rollout of a post-quantum
protocol to date is that of TLS 1.3 with hybrid key exchange [ABBO24], i.e., key
exchange which enjoys the protection of both newer post-quantum constructions
and classical constructions. The purpose of the hybrid in this application is
two-fold. Firstly, the newer, less tested post-quantum hardness assumptions may
turn out to be easier than expected. Secondly, the newer implementations of the
post-quantum algorithms may turn out to have exploitable bugs. Perhaps unin-
tuitively, the second is considered by some as the more likely scenario [Wes24],
and in fact already has occurred [GJN20, GHJ+22, HSC+23, BBB+24]. For
these reasons, some governments recommend the use of hybrid constructions
for secure protocols [Fre22, Ger24]. Unfortunately, no hybrid PAKE currently
exists.

1.1 Non-solutions

The most common way to develop a primitive from a hybrid assumption is
to simply combine two copies of the primitive, with each copy relying on a
different assumption. However, the obvious combiners from other cryptographic
primitives do not work for PAKEs.

Concatenation combiner. Hybrid KEMs and hybrid digital signature schemes
can be constructed from the concatenation combiner : separately execute two
copies of the primitive, and output the hash or concatenation of the outputs,
respectively [BCD+24, BH23]. Let us attempt this for PAKE: let P be the PAKE
given by running some PAKE P1 and another PAKE P2 in parallel using the
same password pw and then outputting the hash H(K1,K2), where Ki is the
session key computed in Pi. In general, this straightforward combiner is only
guaranteed to be as strong as the weaker of P1,P2. Intuitively, the reason is
that we made the situation worse by trusting two PAKEs with protecting the
password. For a concrete example, consider P1 to be KC-SPAKE2 [Sho20] and P2

to be MLWE-PAKE [RG22]. In the design of KC-SPAKE2, the responder sends
a MAC tag derived from their password-dependent Diffie-Hellman shared secret.
An attacker with a discrete-logarithm oracle (e.g., from a quantum computer)
can break P by merely observing one transcript of the KC-SPAKE2 subprotocol,
and mount an offline attack where guesses are confirmed against the MAC tag.
MLWE-PAKE, on the other hand, sends samples from the Module Learning with
Errors (MLWE) distribution, blinded with the hashed password. An attacker
with a decision-MLWE oracle who wishes to break P can observe one transcript
of the MLWE-PAKE subprotocol to mount an offline attack, because the MLWE
oracle will reject with overwhelming probability when the password guess is
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wrong. Hence, both assumptions have to hold in order for the concatenation
combiner to protect the password.

KEM-based PAKEs. Another potential method to develop a hybrid PAKE is
to use an existing KEM-based PAKE construction, e.g., CAKE [BCP+23], and
instantiate it with a hybrid KEM. Similar to the above, this does not necessarily
have the combined security of the two underlying KEMs. This is because CAKE
requires its KEM to have anonymity and fuzziness (essentially, public keys and
ciphertexts must look uniform), and it is not clear how to construct a KEM with
hybrid anonymity and fuzziness.

Consider the case where the hybrid KEM is a concatenated KEM, as many
of the existing hybrids are. In the first communication round, CAKE encrypts
the KEM public key, i.e., a concatenation of KEM1 and KEM2 public keys, under
pw. Thus, if either of the underlying public keys has structure that makes it
distinguishable from uniform, then trial decryption on the CAKE encrypted
public key yields an offline attack. Concretely, take KEM1 to be a DH KEM
over the Ristretto prime order group [LHT16] with points represented using the
Elligator2 encoding [BHKL13], and KEM2 to be FrodoKEM [BCD+16]. While
the DH public keys are statistically indistinguishable from a uniform 32-byte
string, FrodoKEM public keys are only computationally indistinguishable from
uniform under the LWE assumption.1 If a passive attacker possesses an LWE
oracle, they may trial-decrypt the encrypted concatenated public key, ignore
the DH public key, and check if the decrypted value is an LWE sample. Thus,
CAKE with this hybrid KEM is at most as secure as LWE. A similar argument
shows that the same is true for other recent KEM-based PAKEs such as OCAKE,
CHIC, and NoIC [BCP+23, ABJS24, ABJ25].

1.2 Contributions

In this paper we give a generalizable method for constructing hybrid PAKEs
and demonstrate efficient instantiations. We present two PAKE combiners:
ParComb, a parallel combiner, executing both PAKEs in parallel and hashing
the results; and SeqComb, a sequential combiner, executing the first PAKE and
feeding the resulting session key into the second PAKE. We prove the combiners’
security in the universal composability (UC) model with random oracles and
static corruptions.

ParComb. For our ParComb combiner, which follows the blueprint of the usual
concatenation combiner, we need to circumvent the above issues. To this end,
we formalize a property of a PAKE that is sufficient to prove ParComb secure.
Intuitively, we demand that the password protection of both PAKEs used in
ParComb not fatally break if any of the underlying computational assumptions
break, i.e., their transcripts information-theoretically hide the password. This
ensures that none of the PAKEs leak information about the input password.
We identify a handful of PAKE protocols from the literature that satisfy this

1This is not particular to FrodoKEM. It appears that all standards-track lattice- and
code-based KEMs achieve, at best, computational public key uniformity.
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unconditional hiding property. Unfortunately, none of these are post-quantum
PAKEs. So ParComb, while having zero round complexity overhead over its
building blocks, does not yet yield hybrid PAKE. We conclude by pointing to
concurrent work which shows that ParComb realizes an incomparable notion of
PAKE when instantiated with a specific isogeny-based PAKE.

SeqComb. These limitations motivate looking into sequential combiner designs.
Our combiner SeqComb derives a shared key from a password through the first
PAKE, and then uses this shared key as a password in the second PAKE to
derive another shared key. The final key is, again, the hashed concatenation of
both PAKE keys. As in ParComb, the first PAKE consumes the plain password
and hence must enjoy the same unconditional hiding property as both PAKEs
in ParComb. For the second PAKE, however, we can get away with a weaker
hiding property. This is because we used the first PAKE as an entropy amplifier
to derive unguessable preshared keys from the passwords, and hence we do not
rely on offline guess protection from the second PAKE to protect these keys. We
formalize a more mild unconditional hiding property, namely that the second
PAKE’s transcript does not reveal whether the first PAKE run was successful,
that is sufficient to prove the security of SeqComb. We identify KEM-based
PAKEs with this property, namely CAKE and EKE-PRF [BCP+23, JRX24].
Thus, we get a hybrid PAKE with a round complexity that is the sum of the
underlying PAKEs’, and computational overhead of only two hashes. To the
authors’ knowledge, this is the first (concurrent with [LL24]) description of a
hybrid PAKE.

Beyond PAKE. Finally, we remark that hybrid PAKE implies hybrid instances
of other flavors of PAKE. [GMR06] and [LLH25] describe combiners which
construct an augmented PAKE (aPAKE) from PAKE, authenticated encryption,
and either a signature scheme or KEM, respectively. Similarly, the LATKE
identity-binding PAKE (iPAKE) framework [KR24] takes a generic PAKE and
identity-based key exchange (IBKE) protocol. Since hybrid signatures [BH23],
KEMs [BCD+24], and IBKEs [KR24] are known, hybrid PAKE implies hybrid
aPAKE and iPAKE.

2 Preliminaries

2.1 Notation

We write probabilistic algorithms as Alg(x; r) where x denotes the input and r
denotes the random coins. We write y ← Alg(x) to denote sampling uniform r
and setting y := Alg(x; r), and x←$ S to denote sampling a uniform value from
a set S. For our security proofs we will consider probabilistic polynomial time
(PPT) adversaries, and denote them with calligraphic letters A. We use λ to
denote the security parameter.

In our pseudocode for ideal functionalities, assert checks the given condition,
and early-returns with “assertion failed” on failure. retrieve denotes retrieval
of a record with a specific marking; if no such record is present, this early-
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returns with “no record.” We mark new variables introduced into the scope by a

retrieve using square brackets. We write Psid to denote execution of a PAKE
protocol P with session identifier sid.

2.2 Universal composability

The Universal Composability (UC) model [Can01] provides an alternative to
game-based security definitions. The model frames cryptographic protocols as
idealized functionalities, which can be thought of as black boxes with a tightly
constrained interface to the outside world. In the security game showing Π
UC-realizes the functionality F, the goal of an interactive Turing machine called
the environment Z is to distinguish between the ideal world and the real world,
which are defined as follows.

Real / ideal. In the real world all the parties participate in Π, Z may view
parties’ outputs, and is permitted to give arbitrary instructions to a separate
interactive Turing machine, called the adversary A. The environment can
arbitrarily ask the adversary to view/modify/delay/drop messages between
parties, corrupt parties, and interact with any ideal functionalities F ′

i used to
instantiate Π. In the ideal world all the parties are dummies, speaking directly
to F. In addition, the adversary may also only interact with F, though it is still
permitted to corrupt parties.

Π UC-realizes F if for any A, there exists a simulator S of A such that any
Z has at most negligible advantage in distinguishing between A and S. That is,

IdealFS,Z
c≈ ExecA,Z

where the LHS refers to the probability ensemble consisting of the view of the
environment in the ideal world, and the RHS in the real world.

By [Can01, Theorem 11], it suffices to imagine that the adversary A is the
dummy adversary AD, which simply delivers backdoor messages generated by
the environment to the specified recipients, and delivers to the environment
all backdoor messages generated by the protocol parties, as well as the sender
machine’s identity.

Corruption. There are two models in which the environment can corrupt
parties. In the static corruption model, the adversary may not corrupt any parties
during protocol execution. In the adaptive corruption model, the adversary may
corrupt parties at any time. In this work, we will consider adversaries who are
allowed static corruptions. We note that, since PAKE sessions are so short lived,
and static corruptions permit corruptions in between executions, this security
model is still quite strong.

Sufficiency of single-session functionality. The ideal functionalities we
consider in this work are single-session, i.e., they permit at most one key exchange
for a single pair of parties, after which they cease to function. It is known that
a single-session protocol can be lifted to a multi-session (i.e., multiple pairs of
parties, multiple key exchanges per pair) protocol with joint state as long as
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the multi-session extensions of the helper (formally, hybrid) functionalities exist
[CR03, Hes20]. Since our reductions only use the random oracle functionality,
which has a known multi-session extension, we get these theorems for free.

Session identifiers. To represent different instances of the same scheme, the
UC model uses session identifiers. Each party is given a session identifier sid on
activation and will only interact with other parties with the same sid. For clarity
of presentation, we will assume in our protocol definitions that session identifier
establishment has already occurred. Further, we will assume that every pair
of parties, and hence every execution in the single-session model, has a unique
sid (this can be done, e.g., by exchanging random nonces or appending unique
personal identifiers to the existing sid).

We note that single-session functionalities do not usually make use of the
session identifier sid, since it does not serve to disambiguate sessions. Regardless,
we include sid as a random oracle input and ideal cipher domain separator in our
pseudocode. We do this so that an implementor who does not read this section
will be more likely to implement the protocols securely, i.e., in a way that yields
more than single-session security.

2.3 PAKE

A (balanced) password authenticated key-exchange protocol (PAKE) is a two-party
key-exchange protocol where parties use mutual knowledge of a low-entropy
password pw to establish a high-entropy session key K.

2.3.1 PAKE protocols

We define a rudimentary notion of a PAKE protocol by specifying its intput-
output behavior and correctness. Looking ahead, the following definition captures
the minimal guarantees that we can expect from a single PAKE building block
of our combiners, even when its security breaks.

Definition 1 (PAKE protocol). Let P be an interactive protocol between two
parties, P and P ′, producing keys of bit length λ. We say P is a PAKE protocol
if it satisfies the following properties.

1. P takes input pw from P and pw′ from P ′

2. P produces output K for P and K ′ for P ′

3. If pw = pw′ then K = K ′ except with probability negligible in λ

For any interactive protocol, a protocol round is the set of all messages that
can be sent in parallel from any point in the protocol [Gon93]. Thus, in a
one-round protocol, no message depends on another. We require a minimal
syntax P = (Start,Finish) for one-round PAKEs, where minimal means that the
PAKE may consist of more algorithms (e.g., for computing a setup), and the
algorithms may take more inputs. The minimal requirements are as follows:
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• Start takes as input a security parameter 1λ, the session identifier sid, and
a password pw and outputs a message x and a state st; and

• Finish takes as input st and a message y and outputs a key.

2.3.2 Ideal PAKE functionality

The security goals for a PAKE are (1) to establish a high-entropy shared session
key when both parties are honest, (2) to prevent passive adversaries from learning
anything about the password, and (3) to limit active adversaries to one (or another
small constant) password guess(es) per protocol instance, even if given access
to session keys. These guarantees can be captured by the ideal functionality
FPAKE [CHK+05]. Some widely used protocols use a slight weakening of this
functionality, called lazy extraction PAKE (FlePAKE) [ABB+20], which permits
adversaries complete active attacks even after a session is already finished. In
this work we also make use of a novel functionality, a relaxed version of lazy
extraction PAKE (FrlePAKE), where the adversary additionally learns whether
the active attack was successful. We state all functionalities in Figure 1, and
include the small modifications from [AHH21] regarding adversary-controlled
keys.

Isolated parties. We introduce another small modification to our PAKE ideal
functionality. In the original definition, it is possible for a party to output a
session key before the counterparty has even started its session. In our definition,
we prevent these isolated parties from getting their session key. This modification
is crucial to using FPAKE in a combiner, since we rely on timely extraction from
a particular sub-PAKE, and cannot deal with output keys that were produced
without any interaction.

This new functionality is slightly stronger than the original, but this is not
a problem: any PAKE which UC-realizes the original FPAKE UC-realizes the
new one as well. Consider a UC simulator for a such a PAKE. We will show
that NewKey is never called on an isolated party. First, note if the simulator
calls NewKey on an isolated party, it is because the environment Z has triggered
the end to the protocol (this is because NewKey gives Z the session key, so Z
knows precisely when NewKey is called). Further, if NewSession has not been
called for the counterparty, it is because Z has not activated that party. So the
only case in which NewKey can be called on an isolated party is if only that
party was activated and the protocol has finished, i.e., the protocol is at most a
one-message PAKE. Since such PAKEs are impossible in the UC model,2 this
scenario never occurs.

2More specifically, PAKEs with negligible correctness error and at most one message are
impossible. An efficient offline attack is as follows. Let P be the initiator in the execution of a
one-message PAKE, sending message m to P ′. If Z permits P to send m, then P ′ immediately
outputs its session key K. This K is the output of a function f(pw, sid,m) (w.l.o.g., this is
deterministic, otherwise we have noticeable correctness error). Since Z knows sid and m, it
can test various pw until it receives an output that matches K.
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Session management

On (NewSession, sid,Pj , pwi) from Pi

send (NewSession, sid,Pi,Pj) to A
if ∄(Session, sid,Pi, ·, ·) ∧ ¬NoMoreSessions :

// After two NewSessions stop accepting more

if ∃(Session, · · · ) : record NoMoreSessions

record (Session, sid,Pi,Pj , pwi)

and mark it fresh

Key generation and authentication

On (NewKey, sid,Pi,K
′) from A

retrieve (Session, sid,Pi, [Pj ], [pwi])

with mark m ̸= completed

if m = fresh : assert ∃(Session, sid,Pj ,Pi, ·)

if m = compromised : Ki := K′

elif m = fresh and

∃(Key, sid, [Pj ], [pwj ], [Kj ], fresh) s.t. pwi = pwj :

Ki := Kj

else : Ki ←$ {0, 1}λ

record (Key, sid,Pi, pwi,Ki,m)

Mark the session completed

send (sid,Ki) to Pi

Active session attack

On (TestPwd, sid,Pi, pw
′) from A

retrieve (Session, sid,Pi, [Pj ], [pwi]) marked fresh

if pwi = pw′ :

Mark session compromised

send “correct” to A
else

Mark session interrupted

send “wrong” to A

Completed session attack

On (RegisterTest, sid,P) from A
retrieve (Session, sid,P, ·, ·) marked fresh

Mark the record interrupted and flag it tested

On (LateTestPwd, sid,P, pw′) from A
retrieve (Session, sid,P, . . .) flagged tested

Remove the flag

retrieve (Key, sid,P, [pw], [K], ·)
if pw = pw′ : set K′ := K

else :

Set K′ ←$ {0, 1}λ

Set K′ := ⊥
send (sid,K′) to A

Figure 1: The FPAKE, FlePAKE, and FrlePAKE ideal functionalities. The original

FPAKE functionality excludes all gray and dashed parts. Adding the dashed
interfaces without the line in dark gray yields the lazy password extraction
functionality FlePAKE. Adding the line in dark gray yields the relaxed lazy

extraction functionality FrlePAKE. In this paper, we include the line in light gray
in all functionalities, to prevent isolated parties from outputting a key.

2.3.3 Hiding properties of PAKEs

For our combiner constructions, we will require two specific security properties
from the underlying PAKEs.

Statistical password hiding. The first property we require is that of statis-
tical password hiding—that PAKE execution transcripts unconditionally hide
the password (as opposed to relying on a computational indistinguishability
assumption). Crucially, we demand this property from PAKE protocols even in
situations where its security breaks, e.g., through the discovery of an algorithm
that solves the underlying computational assumption in polynomial time. Hence,
we define a standalone property rather than modifying the ideal PAKE function-
ality. We restrict the definition to one-round PAKEs for simplicity and because
the popular PAKEs satisfying this property are all one-round anyway.3

We formally define statistical password hiding through the existence of a

3In fact, we do not know of a PAKE with this property that is not one round. The failure
modes were discussed briefly in the introduction, using KC-SPAKE2 and CAKE as examples.
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simulator that produces nearly identically distributed protocol messages without
access to the password, but is still able to compute keys from simulated messages
and passwords, using a simulation trapdoor. We note that the existence of a
simulator for producing computationally indistinguishable transcripts follows
from the fact that a PAKE protocol UC-realizes FPAKE or FlePAKE. Essentially,
statistical password hiding demands that this part of the PAKE never breaks.

Definition 2 (Statistically password-hiding one-round PAKE). Let P = (Start,Finish)
be a one-round PAKE protocol. We call P statistically password-hiding iff there
exist PPT algorithms Sim = (Start,ComputeKey) such that:

• Sim.Start is a probabilistic algorithm that takes as input a security parameter
1λ and session identifier sid, and outputs a tuple (x, τ).

• Sim.ComputeKey is an algorithm that takes as input (sid, x, τx, y, pw) and
outputs a session key.

• Password hiding. The simulator’s messages are indistinguishable from
those of the real protocol with any password. Formally, for any sid and pw,

P.Start(1λ, sid, pw)|1
s≈ Sim.Start(1λ, sid)|1,

where |1 denotes the first component of the output. As a consequence, a
message created by the real protocol is equally explained by any password.

• Trapdoor correctness. The simulator’s session key matches the real proto-
col’s session key when the transcript and passwords are the same. Formally,
pick any sid, pw, (x, τx) ← Sim.Start(1λ, sid), and (possibly malicious)
message y. Then for all (x′, st′)← P.Start(1λ, sid, pw), it is the case that

x = x′ =⇒ Sim.ComputeKey(sid, x, τx, y, pw) = P.Finish(st′, y)

When the statistical difference in the password hiding relation the above
relations is 0, we say the PAKE is perfectly password-hiding. For brevity, we
will avoid writing sid in the inputs of the above procedures when it is otherwise
clear.

EKE, CPace, and SPAKE2 (Figure 2) are perfectly password-hiding one-
round PAKEs.4 This property follows immediately from the fact they have UC
proofs and their messages (Diffie-Hellman key shares) are uniformly distributed
for any fixed password, i.e., any password equally explains any message. To
demonstrate, we provide the proof for CPace below.

CPace is perfectly password-hiding. We will assume the group has prime
order for simplicity, though this also holds for groups with nontrivial cofactor.

4We note that a SPAKE2 initiator uses a different basepoint from the responder, but our
definition of password hiding requires both initiator and responder to behave identically. For
simplicity we keep our definition symmetric, since its extension is clear and the difference has
no effect on our analysis.
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Alice(sid, pw) Bob(sid, pw)

G := H0(sid, pw) G := H0(sid, pw)

r ←$ F s←$ F
R := rG R S := sG

SZ := rS Z := sR

K := H1(sid, R, S, Z) K := H1(sid, R, S, Z)

return K return K

(a) The CPace PAKE [HL19]. The random oracle
H0 outputs values in a prime-order group.

Alice(sid, pw) Bob(sid, pw)

r ←$ F s←$ F
R := Esid

pw(rG) R S := Esid
pw(sG)

SZ := r · Dsid
pw(S) Z := s · Dsid

pw(R)

K := H1(sid, R, S, Z) K := H1(sid, R, S, Z)

return K return K

(b) The EKE PAKE [BM92, JRX24]. G is a group
generator, and (E,D) are the encryption and de-
cryption algorithms of an ideal cipher.

Alice(sid, pw) Bob(sid, pw)

r ←$ F s←$ F
R := rG+ pw ·M R S := sG+ pw ·N

SZ := r · (S − pw ·N) Z := s · (R− pw ·M)

K := H1(sid, pw, R, S, Z) K := H1(sid, pw, R, S, Z)

return K return K

(c) The SPAKE2 PAKE [AP05]. G, M , and N are unrelated
generators of a prime-order group. pw is interpreted as an
integer (perhaps via hashing).

Figure 2: Three perfectly password-hiding PAKEs.

We define Sim as follows. First, we let the simulator respond to H0 queries by
selecting a scalar u, recording u, and returning uB where B is a fixed generator.
Sim.Start picks a uniform scalar r and computes R := rB. The output is
(x = R, τ = r).

Sim.ComputeKey takes r,R, S, pw. Let ũ be the recorded discrete log of
H0(sid, pw). The procedure computes r̃ := r/ũ, and Z := r̃S. The output is
H1(sid, R, S, Z).

This satisfies the trapdoor correctness requirement. Suppose (R′, r′) ←
P.Start(1λ, sid, pw) such that R = R′ = r′H0(sid, pw). This implies rB = r′ũB,
and thus r′ = r̃, since basepoint scalar multiplication is injective. Thus,

Sim.ComputeKey(r,R, S, pw) = Z = r̃S = r′S = P.Finish(r′, S)

This is also perfectly hiding, since both Sim.Start and P.Start output a uniformly
random group element.

PSK equality hiding. The second property we require is that of statistical
PSK equality hiding—that a PAKE, when executed by two parties using high-
entropy passwords (a.k.a., a preshared key, or PSK), does not leak whether the
passwords match. As before, we require this property even when the PAKE is
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Game GPEH
b,P (A)

psk0 ←$ {0, 1}λ
if b = 0 : psk1 ←$ {0, 1}λ
else: psk1 := psk0
i := 0 //wlog the initiator is participant 0
(st0, st1) := (P0.Start(psk0),P1.Start(psk1))
stA := ∅
m := ∅

while (done0, done1) ̸= (true, true):
(st′i, done

′
i,m

′) := Pi.Next(sti,m)
(st′A,m) := A(stA,m′)
sti := st′i
stA := st′A
donei := done′i
i := i⊕ 1

b′ := A(stA, final)
return b = b′

Figure 3: The PSK equality hiding (PEH) security game for the PAKE P. A
may read and modify any messages, and has access to any ideal functionality,
e.g., a random oracle, that P has access to.

otherwise insecure. Note that this is a strictly weaker property than statistical
password hiding. We provide a proper definition below. Unlike with password
hiding, we define this property to include multi-round PAKEs.

Definition 3 (PSK Equality Hiding). Let P be a PAKE protocol. We say
that P is PSK equality hiding iff an active adversary observing two honest
parties interacting cannot distinguish between the case where the parties share
a high-entropy password and the case where they have distinct high-entropy
passwords.

Formally, we define the advantage of an adversary A as

AdvPEHP (A) =
∣∣2 · Pr[GPEH

b,P (A) = b | b←$ {0, 1}]− 1
∣∣ ,

where GPEH is the PSK equality hiding game defined in Figure 3. Note we permit
the adversary to read and modify messages, but not see the final protocol output.

We say that P is statistically PSK equality hiding if AdvPEHP (A) = negl(λ)
for any unbounded A.

As with password hiding, the computational version of PSK equality hid-
ing is guaranteed by the fact that the PAKE UC-realizes one of the PAKE
functionalities, but the statistical version is not.5

Fortunately, some recent efficient universally composable PAKEs such as
CAKE [BCP+23] and EKE-PRF [JRX24] (Figure 4) achieve this property. When
instantiated with an appropriate post-quantum KEM and post-quantum key
agreement protocol, respectively, these constructions yield post-quantum PAKEs.
At a high level, this property holds because both protocols are two rounds, and in
each round, both messages are encrypted under the password using independent

5In fact, this is a strict separation. Take any secure PAKE and add (pk,Encpk(pw)) to
both the initiator’s and responder’s first messages, where pk is a public key in some public
key encryption scheme. Then it is clear that this new PAKE is secure, but at best has
PSK equality hiding that depends on the computational hardness of decrypting a ciphertext
in the asymmetric encryption scheme. This sort of construction occurs in existing PAKEs.
The one-round PAKE from smooth projective hash functions presented in [KV11] is neither
statistically password hiding nor statistically PSK equality hiding for precisely this reason.
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Alice(sid, pw) Bob(sid, pw)

(pk, sk) := Keygen(1λ)

epk := Esid∥1
pw (pk) epk pk := Dsid∥1

pw (epk)

(c, Z) := Encap(pk)

c := Dsid∥2
pw (ec) ec ec := Esid∥2

pw (c)

Z := Decapsk(c)

K := H(sid, epk, ec, Z) K := H(sid, epk, ec, Z)

return K return K

(a) The CAKE KEM-based PAKE [BCP+23]. (E,D) are the encryption and decryption
algorithms of an ideal cipher.

Blindi(sid, pw, v)

r ←$ {0, 1}3λ

h := HMi
0 (sid, i, pw, r); t := v ⊙ h−1

h′ := H1(sid, i, pw, t); s := r ⊕ h′

return (s, t)

Unblindi(sid, pw, (s, t))

h′ := H1(sid, i, pw, t); r := s⊕ h′

h := HMi
0 (sid, i, pw, r); v := h⊙ t

return v

Alice(sid, pw) Bob(sid, pw)

a←$R b←$R
A := KA.msg1(a)

ϕ← Blind1(sid, pw, A) ϕ A := Unblind1(sid, pw, ϕ)

B := KA.msg2(b, A)

B := Unblind2(sid, pw, ϕ′) ϕ′
ϕ′ ← Blind2(sid, pw, B)

K := KA.key1(a,B) K := KA.key2(b, A)

return PRFK(ϕ′) return PRFK(ϕ′)

(b) The EKE-PRF PAKE [JRX24]. KA is a two-round key agreement protocol with
randomness space R, message spacesM1,M2 (first and second messages, respectively),
both of which are abelian groups (e.g., the module lattice used in ML-KEM, with
addition) with group operation denoted ⊙. The random oracle HMi

0 takes on values in
Mi and H1 takes on values in {0, 1}3λ. PRF is a pseudorandom function.

Figure 4: Two post-quantum statistically PSK-equality-hiding PAKEs.
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ideal ciphers or random oracles. In other words, the parties in these protocols
are communicating over a confidential channel.

We provide the formal statistical PSK equality hiding argument for CAKE
below, as well as a sketch for EKE-PRF. We remark that proving statistical PSK
equality hiding for OEKE-style PAKEs such as OEKE-PRF, OCAKE, CHIC,
and NoIC [JRX24, BCP+23, ABJS24, ABJ25], is more subtle and would require
a careful analysis of whether the unencrypted second message reveals statistical
differences in uniform versus honestly generated KEM public keys.6 We thus
leave this to future work.

CAKE is statistically PSK-equality-hiding. Let game 0 be the PEH game
with b = 0, i.e., the passwords are different. In game 1, rather than sending

ec := E
sid∥1
pwA

(pk), Bob sends a uniformly chosen ciphertext. Since the ideal cipher
is a family of uniformly chosen permutations, and both ideal cipher instances
are independent, the advantage of this hop is bounded by the ability of the
adversary to guess pwB , which is 2−λ times the number of ideal cipher queries.

In game 2, replace Bob’s copy of pk with a uniformly chosen public key. Since
the ciphertext c is discarded anyway, this hop is perfect.

In game 3, replace Alice’s copy of epk with a uniformly random public key.
This does not affect Bob’s computations, since epk is discarded. Further, since
the ideal cipher is a family of uniformly chosen permutations and the instances
are independent the advantage of this hop is bounded by the ability of the
adversary to guess pwA, which is 2−λ times the number of ideal cipher queries.

In game 4, we set b = 1, i.e., we make Alice and Bob’s passwords equal. This
does not affect the transcript or any computations.

In games 5, 6, and 7, we undo games 3, 2, and 1, respectively, and we are
done.

EKE-PRF is statistically PSK-equality-hiding. This argument operates
nearly identically. Since EKE-PRF includes many more intermediate variables,
we present a sketch.

We may replace ϕ′ with randomness, since both components are perfectly
blinded with independent outputs of a random oracle (namely, h and h′), whose
input includes pwB, which is high-entropy. We may then replace Bob’s copy
of A with randomness, since no function of Bob’s A appears in the transcript
anymore. We then replace ϕ with randomness, since it does not affect Bob’s
computation, and both components are perfectly blinded with independent
outputs of a random oracle whose input includes pwA, which is high-entropy.
We then set the passwords equal, which does not affect anything, and then we

6There are KEMs for which these constructions are provably not statistically PSK-equality-
hiding. Consider Regev’s public key encryption scheme [Reg05] as an IND-CPA-secure KEM.
In all the aforementioned protocols, an encapsulated key is sent in the clear. Consider the case
where the (high-entropy) passwords are equal, i.e., encapsulation is to an honestly generated
public key. In Regev’s scheme, every encrypted 0 bit is an LWE sample, and every encrypted 1
bit is not. So an adversary with an LWE oracle will observe 50% LWE samples. However, in
the case where the passwords are unequal, encapsulation is to a random element in the space
of public keys. With overwhelming probability none of the encrypted bits are LWE samples.
Thus, an adversary can win the PEH game if given an LWE oracle.

13



undo all the above steps in reverse order.

3 Constructions

In this section we present our two PAKE combiners, ParComb (parallel combiner)
and SeqComb (sequential combiner). Unlike the failed attempt at a combiner
in our introduction, these combiners will require specific hiding properties of
their underlying PAKEs. With these assumptions, we show that both combiners
achieve security in the UC model.

3.1 The ParComb combiner

We return to the insecure parallel combiner of our introduction. Recall the reason
it fails is, if the underlying security assumption were broken, the transcripts
of the underlying PAKEs would contain enough auxiliary information to check
password guesses. For KC-SPAKE2, this auxiliary information is a MAC whose
key is derived from the Diffie-Hellman shared secret, and for CAKE, this is the
fact that KEM ciphertexts are LWE samples.

However, not every PAKE has this auxiliary information. In fact, some widely
deployed, well-standardized PAKEs such as SPAKE2 or CPace [Lad23, AHH24]
do not. The lack of such auxiliary information is what we formalize in Definition 2
(statistical password hiding). As it turns out, this property is necessary and
sufficient in order to make our parallel combiner work. At a high level, ParComb
executes two statistically password-hiding one-round PAKEs P1 and P2 in parallel,
and hashes the resulting keys. This combiner is highly efficient, requiring only
one extra hash, and has round complexity bounded by the maximum round
complexity of the underlying PAKEs. We give the full construction in Figure 5.

3.1.1 Security

Before presenting the security theorem, we provide intuition for each assumption
and design decision.

Statistical password hiding. We know from our broken combiner example
why statistical password hiding is necessary for P1 and P2. We provide intuition
now for why it is sufficient. Consider what happens when P1 is broken and P2

remains secure. An active adversary can engage in P1 with Bob and be able to
efficiently compute the guessing function pw 7→ K ′

1 (in EKE, for example, this
requires solving computational Diffie-Hellman). However, since the messages
are statistically password-hiding, the only way to check a guess is to compare it
to the output key K := H(sid, tr,K1,K2). So the adversary is in the scenario
where it can make guesses of pw and see (a hash of) K2. This is precisely the
UC PAKE game for P2, which is assumed to be secure.

The same argument shows that P is secure when P2 is broken and P1 remains
secure.
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Alice(sid, pw) Bob(sid, pw)

pw pw

K1 tr1
P
sid∥1
1 K1 tr1

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . In parallel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

pw pw

K2 tr2
P
sid∥2
2 K2 tr2

K := H(sid,K1,K2, tr1, tr2) K := H(sid,K1,K2, tr1, tr2)

return K return K

Figure 5: The ParComb combiner for statistically password-hiding one-round
PAKEs P1 and P2. tri is the protocol transcript of the execution of Pi. The
random oracle H outputs values in {0, 1}λ. sid is unique to every execution.

Hashing the transcript. We include the full protocol transcript in the final
key computation so that the session key can be simulated when messages are
mauled. Suppose P1 is broken, and the adversary has modified one of the P1

messages. If a simulator does not know either party’s password, then it cannot
decide whether P1 should succeed or fail. And since P1 is broken, the simulator
cannot rely on the PAKE UC-realizing FPAKE. Hashing the transcript resolves
the ambiguity, since any mauled messages will cause the protocol to fail (i.e.,
return different keys) with overwhelming probability.

We now state the security theorem for ParComb. The arguments of the proof
are sketched above, and the full proof can be found in Appendix A.1.

Theorem 1. Let P1 and P2 be statistically password-hiding one-round PAKE
protocols, and let P := ParComb[P1,P2]. Then the following hold in the static-
corruptions setting:

1. If P1 UC-realizes FPAKE, then so does P (in the FRO-hybrid model)

2. If P2 UC-realizes FPAKE, then so does P (in the FRO-hybrid model).

In other words, ParComb[P1,P2] is at least as strong as the strongest of P1,P2,
and is hence a good combiner.

3.1.2 Instantiations

We now discuss the PAKEs that can be used to instantiate ParComb with hybrid
security.

(Not) Achieving FPAKE. It is not currently possible to instantiate ParComb to
achieve hybrid security and realize FPAKE. One of the underlying PAKEs can be
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straightforwardly instantiated with EKE [BM92], since it is one-round, perfectly
password hiding, and UC-realizes FPAKE [JRX24]. The other underlying PAKE
remains a question, though, as there is no known post-quantum, one-round,
statistically password-hiding PAKE protocol that UC-realizes FPAKE.

One line of work includes the EKE-NIKE construction from [BGHJ24], using
the lattice-based NIKE, Swoosh [GdKQ+24]. However, this does not have
statistical password hiding, since messages are of the form Epw(t), where t is an
LWE sample and E is an ideal cipher. This has the same problem as the CAKE
construction in the introduction.7 Thus, we do not yet have a one-round hybrid
construction UC-realizing FPAKE.

Achieving FblePAKE. A concurrent work [LL24] shows that ParComb can be a
bare lazy-extraction PAKE (blePAKE), i.e., a lazy-extraction PAKE that does
not need a unique sid. Specifically, the authors show that, when ParComb is
instantiated with an lePAKE and a blePAKE (both with statistical password
hiding), then it UC-realizes FblePAKE. They also show that X-GA-PAKE (isogeny-
based), SPAKE2 (ECDH-based), and TBPEKE (ECDH-based) [AEK+22, AP05,
PW17], are blePAKEs with statistical password hiding. Thus, ParComb can be
instantiated as a one-round hybrid construction UC-realizing FblePAKE.

3.2 The SeqComb combiner

To arrive at the SeqComb combiner, we again consider the minimum possible
amount of security necessary for a combined PAKE. Beginning our protocol
with a one-round statistically password-hiding PAKE cannot hurt, since even
when it is broken, it is difficult to exploit for a password guess. To handle the
case that this PAKE P1 is broken, we may pass pw along with the P1’s session
key to a second PAKE P2, receive a second session key, and output the hash of
everything. If P2 is secure, then including its session key in the final hash will
be sufficient to ensure that the overall protocol is secure. If the P2 is broken
then including P1’s session key in the final hash will be sufficient, so long as P2

is not so broken as to reveal pw outright.
This is almost exactly the definition of SeqComb. That is, SeqComb executes

a statistically password-hiding PAKE P1, feeds its output into a statistically PSK
equality hiding PAKE P2, and hashes everything at the end. Like ParComb, this
combiner is highly efficient, requiring only two extra hashes. Unlike ParComb, its
round complexity is the sum of the number of rounds of the underlying PAKEs,
rather than the maximum. We give the full construction in Figure 6.

3.2.1 Security

Again, before presenting the security theorem, we provide intuition for why each
component of the protocol is necessary.

P1 statistical password hiding. We require P1 to be statistically password-
hiding for the same reason as in ParComb: it directly deals with pw, and so any

7While it appears no post-quantum PAKE has this property, we do not believe it is inherent.
See Section 4 for potential new directions.
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Alice(sid, pw) Bob(sid, pw)

pw pw

K1,1 K1,2 tr1
P
sid∥1
1 K1,1 K1,2 tr1

Z := H0(sid, pw,K1,1) Z := H0(sid, pw,K1,1)

Z Z

K2 tr2
P
sid∥2
2 K2 tr2

K := H1(sid,K1,2,K2, tr1, tr2) K := H1(sid,K1,2,K2, tr1, tr2)

return K return K

Figure 6: The SeqComb combiner for PAKEs P1,P2, where P1 is one round and
statistically password-hiding, and P2 is statistically PSK equality-hiding. tri
is the protocol transcript of the execution of Pi. Both random oracles H0,H1

output values in {0, 1}λ. sid is unique to every execution. We assume P1 outputs
two keys, each of bitlength λ (if not, it suffices to apply a PRG to stretch its
output).

leakage here yields a leakage in the combined protocol. More rigorously, if P1

is broken, an active adversary can efficiently compute the mapping pw 7→ Z ′,
but not receive any extra information on whether its guess was correct. So the
adversary is in the scenario where it has guesses for Z and can see (a hash of)
K2. This is precisely the UC PAKE game for P2.

P2 statistical PSK equality hiding. We require P2 to be statistically PSK
equality-hiding in order to permit its transcript to be simulated when P2 is
broken. In the case where both SeqComb parties are honest, and have completed
P1, a simulator must simulate P2 without knowing whether P1 succeeded, i.e.,
without knowing whether the parties agree on the input to P2. Since this input
is high-entropy by assumption (P1 is a secure PAKE), then the PSK equality
hiding property is sufficient to permit the simulator to simulate one case and
have it be indistinguishable from the other.

Hashing K1,1. We include K1,1 in the hash Z because pw alone is insufficient
in the case that P2 is broken. If P2 were so broken as to leak its password Z in
its entirety (technically prevented by PSK equality hiding, but we may assume),
then pw would be trivially revealed. We therefore hash K1,1, which we assume
is high entropy, into Z. Thus, even if Z leaks in its entirety, pw is unaffected.

Hashing pw. We include pw in the computation of Z because K1,1 is not suffi-
cient in the case that P1 is broken. If P1 is broken, then we must pessimistically
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assume that both K1,1 and K1,2 are fully controlled by the adversary. Thus,
simply feeding one of these values into P2 yields no security. Instead, we hash
pw with K1,1 and feed that into P2.

Hashing K1,2. We include K1,2 in the final session key computation because
K2 is not sufficient in the case that P2 is broken. It suffices to include some
yet-unused entropy from the session key of P1.

We now state the security theorem for SeqComb. The arguments of the proof
are sketched above, and the full proof can be found in Appendix A.2.

Theorem 2. Let P1 be a one-round statistically password-hiding PAKE pro-
tocol, let P2 be a statistically PSK equality hiding PAKE protocol, and let
P := SeqComb[P1,P2]. Then the following hold in the static-corruptions setting:

1. If P1 UC-realizes FPAKE, then so does P (in the FRO-hybrid model).

2. If P2 UC-realizes FPAKE, then so does P (in the FRO-hybrid model).

In other words, SeqComb[P1,P2] is at least as strong as the strongest of P1,P2,
and is hence a good combiner.

3.2.2 Using weaker P1

Some of the most widely deployed PAKEs such as the Diffie-Hellman-based
CPace and SPAKE2 do not enjoy full UC PAKE security but are so-called lazy
extraction PAKEs (lePAKEs). These PAKEs allow adversaries to successfully
complete an active attack even after the attacked party finished the protocol.
Such prolonged attack completions do not seem to pose any real-world threat, and
lazy extraction PAKEs are in widespread use (e.g., for Facebook Messenger chat
history transfer [Fac23]). Hence, to make SeqComb more applicable, we would
like to make it work when P1 UC-realizes FlePAKE. This functionality is depicted
in Figure 1 and is strictly weaker than FPAKE due to the additional password
test interface on completed sessions. This interface allows the “lazy” attacker to
provide a password guess even after an actively attacked party output a session
key, and it provides the attacker with that key or a random one depending on
whether the guess was correct.

Perhaps surprisingly, SeqComb is not as tolerant of a lazy-extraction P1 as
one would hope for: SeqComb[FlePAKE,P2] does not UC-realize FlePAKE. This
can be made more intuitive by looking at SeqComb’s design. In the case where
P2 cannot be trusted to protect K2, security is based solely on the output keys
K1,1,K1,2 of P1. When these values are revealed to the environment through a
correct late password guess on FlePAKE, the simulator has to explain how they
lead to the actual Z and output key K of the honest party. On the other hand,
if the guess was wrong, no connection should exist between K1,1,K1,2 and Z,K.
Since FlePAKE does not leak the information of whether the guess was correct or
not, the simulator is trapped. We formalize this intuition in Appendix B with a
formal distinguisher between SeqComb with a lazy extraction P1 and FlePAKE.

This intuition implies a fix. It would suffice to let the simulator know
whether a late password guess succeeded. A PAKE that allows one late password
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guess with responses of the form “correct” or “wrong” is called a relaxed PAKE
[ABB+20]. Combining this property with the lazy extraction property yields what
we call relaxed lazy extraction PAKE, or rlePAKE. We depict the functionality
in Figure 1. It has the same guarantees as FlePAKE, but additionally leaks the
information whether or not the late password guess was correct—a weakening
that does not seem to rule out any applications of PAKE protocols. We prove
the following result in Appendix A.3.

Lemma 1. Let P1 be a statistically password-hiding one-round PAKE pro-
tocols, let P2 be a statistically PSK equality-hiding PAKE protocol, and let
P := SeqComb[P1,P2]. If P1 UC-realizes FlePAKE, then P UC-realizes FrlePAKE

(in the FRO-hybrid model) in the static-corruptions setting.

If P2 UC-realizes FPAKE, which is stronger than FrlePAKE, we can use Theorem 2
to conclude that this is a good combiner which achieves at least FrlePAKE. This
implies that SeqComb is safe to use when P1 is instantiated with a perfectly
password-hiding lazy extraction PAKE such as CPace or SPAKE2.

3.2.3 Concrete instantiations yielding hybrid PAKE

SeqComb can be instantiated with existing efficient protocols to produce a hybrid
(rle)PAKE. For P1, it is possible to use the Diffie-Hellman-based CPace, SPAKE2,
or EKE. For P2, any statistically PSK equality-hiding PAKE will do, e.g., any
plausibly post-quantum EKE-style protocols such as CAKE and EKE-PRF. We
discuss the open problem of proving statistical PSK equality hiding for more
PAKEs in Section 4.

3.2.4 Achieving security in the QROM

We note that our combiners require random oracles to function, and our instan-
tiations include post-quantum PAKEs that rely on an ideal-cipher or random
oracle. Since our goal is (hybrid) post-quantum security, it is important to
consider models which more accurately depict the capabilities of a quantum
adversary.

SeqComb was analyzed in the Quantum Random Oracle Model (QROM)
in concurrent work [LL24]. The authors show that when P1 (a statistically
password-hiding PAKE) and P2 UC-realize FPAKE, SeqComb nearly UC-realizes
FPAKE in the FQRO-hybrid model. We say nearly to indicate that the simulation
proof is made with respect to a restricted set of environments, namely those
that never start the protocol with mismatching passwords. While this does not
yield full UC emulation and hence does not allow one to apply, e.g., the UC
composition theorem to their construction, it does relax the requirements on
the underlying PAKE. For this theorem to hold, P2 can be an arbitrary PAKE,
not just one with statistical PSK equality hiding. Thus, with this notion of
security, SeqComb can be instantiated with a classical PAKE like EKE, and
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Combiner P1 P2 Combined Model

ParComb
FPAKE FPAKE FPAKE ROM Theorem 1

FblePAKE FlePAKE FblePAKE ROM [LL24, Thm. 2]

SeqComb

FPAKE+PH FPAKE+PEH FPAKE ROM Theorem 2

FlePAKE+PH FPAKE+PEH FrlePAKE ROM Lemma 1

FPAKE+PH FPAKE (FPAKE) QROM [LL24, Thm. 4]

Table 1: A summary of combiner results from this work and concurrent work
[LL24]. The +PH marker indicates the PAKE must be statistically password-
hiding. The +PEH marker indicates the PAKE must be statistically PSK
equality hiding. (F) indicates the analysis was done w.r.t. a restricted set of
UC environments.

a post-quantum PAKE proven in the QROM, such as PAKEQRO
lwe [LLH24].8 In

that sense, our work shows that the gap between standalone and universally
composable security of SeqComb is upper bounded by the PSK equality hiding
of the second PAKE.

For ease of reference, we provide a breakdown of all our results along with
those of concurrent work in Table 1.

4 Future work

We identify some interesting problems which we do not address in this work.

Adaptive security. So far, we have only defined hybrid PAKE in the static
corruptions setting. This may be inherent to the combiner construction. No
one-round PAKE can achieve security in the UC model with adaptive corruptions.
A simple attack is as follows. The environment Z initiates a session between
an honest Alice and Bob. Z forwards Alice’s message to Bob, allowing Bob to
finish the protocol and output K, and withholds Bob’s message to Alice. Now,
Z corrupts Alice. There is no way for a simulator to respond to this corruption.
This is because the simulator must have used FPAKE.NewKey to key Bob, since
both parties were honest at the time. Thus, the simulator does not know K,
and so cannot choose an appropriate response to Z’s corruption query. We
conclude that any combiner which yields one-round PAKEs is limited to static
corruptions.

We thus ask whether there exists a method for constructing adaptively secure
PAKEs and, if so, whether it can be done generically.

8This PAKE is not statistically PSK equality hiding. If the underlying extractable lossy
public key encryption (eLPKE) scheme is broken, then the responder’s message can be
decrypted to reveal pw. This can be checked for equality against the initiator’s password by
adding pw to the initiator’s public key and using an LWE oracle to check if it is an LWE
sample.
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PSK equality hiding for more PAKEs. We show statistical PSK equality
hiding for two EKE-style PAKEs, i.e., two-round PAKEs wherein both messages
are encrypted. We do not know, however, how to show this property for
OEKE-style PAKEs, i.e., two-round PAKEs with only one encrypted message
[MRR20, PZ23, BCJ+19, SGJ23, ABJS24, JRX24, ABJ25]. Since this is a large
class of protocols, it would be useful to establish the properties necessary of
the underlying cryptographic primitive (e.g., the structure of an MLWE-based
KEM) to achieve statistical hiding.

One-round hybrid PAKE. In our assessment of ParComb, we concluded that
the combiner cannot achieve FPAKE using a post-quantum PAKE, since none
has statistical password hiding, to the authors’ knowledge. This does not seem
inherent, though. We conjecture that it is possible to modify EKE-NIKE[Swoosh]
[BGHJ24, GdKQ+24] to statistically hide the password. This would involve
sending two pairs of public keys, replacing public keys of the form As+ e with
ones of the form As for A, s, e of appropriate dimension. Effectively, this undoes
the size improvements of [LP11] in exchange for statistically uniform public keys.
Further, since the uniformity result relies on the leftover hash lemma [HILL99],
which is not known to apply in the cyclotomic rings of typical module lattice
constructions, the NIKE must use unstructured LWE. We estimate public key
sizes in the resulting scheme to be 1GB at the 128-bit security level.

We leave as an open question whether such a scheme could be instantiated
and improved on to be more practical.

Analysis against quantum adversaries. While our combiners can, in
principle, use PAKEs that are secure against quantum adversaries, our reductions
are classical and exist in the ROM. As mentioned earlier, concurrent work [LL24]
analyzes SeqComb in the QROM and proves a theorem with respect to a restricted
set of environments. We believe that this difference is small enough that the
analysis may transfer immediately to our unrestricted environment setting,
yielding a proof of Theorem 2 in the FQRO-hybrid model. We leave this for future
work.

Combiners for strong PAKE variants. As mentioned earlier, hybrid PAKE
implies hybrid aPAKE and iPAKE via the Ω-method [GMR06, LLH25] and
LATKE [KR24]. However, it is not clear how to achieve the strong variants of
these constructions (called saPAKE and siPAKE, respectively). A strong aPAKE
is an aPAKE which is resistant to precomputation attacks—an adversary must
compromise a server before they are able to begin brute-forcing the password.
Existing constructions such as OPAQUE [JKX18] use an oblivious pseuodrandom
function (OPRF) to achieve strongness. However, no hybrid OPRF construction
is currently known, and so it is not clear how to hybridize OPAQUE. More
generally, it would be interesting to understand how much strongness relies on an
OPRF-like construction, and how much can be achieved using generic combiners.
For (s)aPAKE and (s)iPAKE in general, such black-box combiners would further
be desirable in order to give developers the option to plug post-quantum protocols
into their existing deployments.
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A Proofs

A.1 Proof of Theorem 1

We show the theorem for an intact P1 PAKE protocol, i.e., for the protocol

ParComb[F (1)
PAKE,P2]. Because the UC framework follows a sequential model

of execution where only one machine is active at any given point in time, we

cannot execute both F (1)
PAKE and P2 in parallel. We hence analyze a protocol

version where parties first receive their output from F (1)
PAKE and only then send

the first message in P2. Because the execution of P2 does not depend on F (1)
PAKE,

when instantiating F (1)
PAKE with an interactive protocol, its messages can be sent

together with the P2 messages.

Proof. Game G0: The real execution. This is the real execution as in

Figure 9, with a dummy adversary A. W.l.o.g. we replace P
sid||1
1 by a

hybrid functionality F (1)
PAKE.

Game G1: Change layout. We change the previous game as follows:

• We move the whole execution into a single machine and call it the
simulator Sim.

• We add all the record-keeping of the simulator as in Figures 7 and 8.
• In between Z and Sim we add one dummy party for each real party.
• In between the dummy parties and Sim, we add the ideal functionality
FPAKE as in Figure 1, but relaying passwords of honest parties to Sim
and relaying outputs keys provided by Sim to the dummy parties. We
call that functionality F.

The changes are only syntactical since the real execution runs on same
inputs and produces outputs the same way as in the previous game. We
hence have

Pr[G0] = Pr[G1].

Game G2: Simulate the P2 message of honest parties. In this game we
change the simulation to compute P2 messages using (x, τx) := Sim(2).Start(),

and compute the P2 output keys as Sim(2).ComputeKey(x, τx, y, pw) for
incoming message y. Because P2 has password hiding and trapdoor cor-
rectness, the output distribution is statistically close to the previous game.
We hence have

|Pr[G2]− Pr[G1]| ≤ η

for a function η that is negligible in λ.

Game G3: Functionality aligns keys in honest sessions. We change
the functionality to ignore the simulator’s output key for honest parties
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On (NewSession, sid,P,P ′) from FPAKE

• (G10) Record (P1Session,P,P ′,⊥) and mark it fresh

• (G10) Send (NewSession, sid||1,P,P ′) to Z from F (1)
PAKE

On (NewSession, sid||1,P,P ′, pw) from corrupt P to F (1)
PAKE

• (G1) Record (P1Session, sid,P,P ′, pw) and mark it fresh

On (TestPwd, sid||1,P, pw) from Z to F (1)
PAKE or as internal call // w.l.o.g. P is honest

• (G6) Retrieve (P1Session, sid,P, ·,⊥) marked fresh

• (G6) Send (TestPwd, sid,P, pw) to FPAKE

• (G6)Upon response “correct”:
– (G6) Mark P1Session as compromised
– (G6) Record (CorrectTestPwd, sid,P, pw)
– (G6) Return “correct”

• (G6) Upon response “wrong”:
– (G6) Mark P1Session as interrupted
– (G6) Return “wrong”

On (NewKey, sid∥1,P,K ′
1) from Z to F (1)

PAKE

• (G1) Retrieve (P1Session, sid,P, [P ′], [pw]) marked m ̸= completed

• (G1) If m = compromised: K1 := K ′
1

• (G1) Elif m = fresh and ∃(P1Key, sid,P ′, [K ′′
1 ], fresh): // P finishes last

– (G7) If ∃(TestedPwd, sid,P ′, pw, correct): K1 := K ′′
1 // Z ̸= ⊥ ⇒ P corrupt ⇒

w.l.o.g, P ′ is honest, and we already ran TestPwd when P ′ finished.
– (G10) Elif P and P ′ are honest: K1 := ⊥ // FPAKE controls the final K anyway
– (G1) Else: K1 ←$ {0, 1}λ // P corrupt, wrong password

• (G1) Elif ∃(P1Session, sid,P ′,P, ·) then set K1 ←$ {0, 1}λ // P finishes first or inter-
rupted, or P ′ finished non-fresh.

• (G1) Else ignore the query // Isolated P does not output a key
• (G7) If m = fresh:

– (G7) If P is honest and P ′ is corrupt: // Now that TestPwd can no longer be called
on this session, we can finally call it

∗ (G7) Retrieve (P1Session, sid,P ′,P, [pw′])
∗ (G7) Run code of (TestPwd, sid∥1,P, pw′)

• (G1) Record (P1Key, sid,P,K1,m)
• (G1) Mark P1Session as completed
• (G1) If P is corrupt:

– (G1) Send (sid,K1) to P
– (G1) Return

• (G2) Compute x, τx ← Sim(2).Start(1λ)
• (G2) Record (P2State, sid,P, x, τx)
• (G1) Record (Sent, sid,P,P ′, x)
• (G1) Send (P → P ′, sid, x) to Z

Figure 7: Simulator for ParComb[F (1)
PAKE,P2] realizing FPAKE. Sim

(2) represents
the simulator for the statistically password-hiding property of PAKE P2. Random
oracle H is simulated as in the real execution. Label (G1) indicates that the line
of code is activated in game G1.
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On (P → P ′, sid, y) from Z // P2 message delivered to P ′

• (G1) Record (Recvd, sid,P,P ′, y)
• (G1) If P is corrupted: record (Sent, sid,P,P ′, y)
• (G9) If P ′ is honest AND ∃(CorrectTestPwd, sid,P ′, [pw]):// Compute K2 for attacked
P ′

– (G9) Retrieve (P2State, sid,P ′, [x], [τ ])

– (G9) Let K2 := Sim(2).ComputeKey(sid, x, y, τ, pw)
– (G9) Record (P2Key, sid,P ′,K2)
– (G2) Call FinalizeHonest(sid,P ′)

• (G2) If P ′ is honest AND ∃(P1Session, sid,P ′,P, ·) marked completed:// P1 is done and
the P2 message was received - P ′ outputs a key now.

– (G2) Call FinalizeHonest(sid,P ′)

// This procedure calls NewKey on an honest party. For an honest party finishing, it holds
that (1) there is always a P1Key record, and (2) there is a P2Key record if the party is actively
attacked. The final key is generated from these records if both exist.
Procedure FinalizeHonest(sid,P)

• (G10) Set K := ⊥
• (G1) If ∃(P1Key, sid,P,K1, fresh) and (P2Key, sid,P,K2): // P is running a session
with the adversary

– (G1) Retrieve (Sent, sid, [P ′],P, [x]) and (Recvd, sid,P ′,P, [y])
– (G1) Set K := H(sid,K1,K2, x, y)

• (G5) Else: // P is running a session with an honest party
– (G5) Retrieve (Sent, sid, [P ′],P, [x′]), (Sent, sid,P,P ′, [y]), (Recvd, sid,P ′,P, [x])

and (Recvd, sid,P ′,P, [y′])
– (G5) If x ̸= x′ or y ̸= y′ send (TestPwd, sid,P,⊥) to FPAKE: // If the transcripts of

two honest parties aren’t equal, tank the session
• (G1) Send (NewKey, sid,P,K) to FPAKE

Figure 8: Simulator (cont.)

Alice(sid, pw) Bob(sid, pw′)

pw pw′

K1
F (1)

PAKE K′
1

st, x := P2.Start(pw)
x st′, y := P2.Start(pw

′)
y

K2 := P2.Finish(st, y) K′
2 := P2.Finish(st

′, x)

K := H(sid,K1,K2, x, y) K := H(sid,K′
1,K

′
2, x, y)

return K return K

Figure 9: UC execution of the ParComb combiner with a hybrid functionality

F (1)
PAKE and P2 being a statistically password-hiding one-round PAKE. When

instantiating F (1)
PAKE, messages can be sent in parallel with x, y. The random

oracle H outputs values in {0, 1}λ.
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finishing last in honest sessions, with matching passwords, and where both
records were fresh at the time of output generation (i.e., no TestPwd was
queried by the simulator on any of the two parties). In this case, the
functionality also outputs the session key of the first party to the second
party.

This and the previous game are not distinguishable by the (trivial) cor-
rectness of the protocol, and hence we have

Pr[G2] = Pr[G3].

Game G4: Randomize output key of parties in an honest interaction.
We change the functionality F to ignore the output keys from the simulation
in case an honest party finishes in an unattacked session, and instead uses
the output key from its internal Key record.

Note that the change (a) randomizes the output key of the honest user
who finish first in an unattacked session, (b) randomizes the output key
of the honest user who finish last in an unattacked session, and (c) aligns
keys of the honest session in case of matching passwords. In this game,
parties with tampered P2 transcripts still receive their output key from
the simulation, which is uncorrelated to their honest partner’s key (which
is randomized in this game) due to the P2 transcript that is included in
the hash.

Because F (1)
PAKE draws K1 uniformly at random and the adversary does not

query F (1)
PAKE in any way that it generates output to the adversary that

depends on K1, Z only sees a difference in this and the previous game if it
queries the random oracle with H(sid, x, y,K1,K2). We hence have

|Pr[G4]− Pr[G3]| ≤
qH
2λ

.

Game G5: Randomize output key upon message tampering. We change
the simulator to send (TestPwd, sid,P,⊥) to F (guaranteeing the session
is interrupted) when Z tampers with the P2 message sent to P in an
otherwise honest interaction (in particular, when there are no TestPwd

queries against P to F (1)
PAKE). At the same time, we let the functionality

ignore the output keys from the simulator of the session of P in case such
a TestPwd happened, and instead output the key from its Key record.

The argument is very similar to G4: Z can only notice a difference it it
queries the final hash of P to the random oracle. We again have

|Pr[G5]− Pr[G4]| ≤
qH
2λ

.

As of this game, all fresh records in F produce output keys.
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Game G6: Relay TestPwd against P1. We change the code of the simulator

upon Z sending (TestPwd, sid,P, pw) to F (1)
PAKE for an honest P. Sim now

also sends this query to F and uses that response as its own response to Z.
Because both functionality instances work on the same inputs and com-
promised or interrupted markings in F do not yet affect the outputs, the
changes are only syntactical and we have

Pr[G5] = Pr[G6].

Game G7: Extract a password from a corrupt party. We change the
simulator to send (TestPwd, sid,P, pw) to F upon (NewKey, sid,P, ·) from
Z for an honest P that is in a session with a corrupt P ′ that had previously

send input (NewSession, sid,P ′,P, pw) to F (1)
PAKE. The simulator then sends

the output key of P to F via NewKey, and F uses that key for compromised
sessions.

While in G6 F just outputted all keys from the simulation, in this game it
still does the same but receives the ones for compromised sessions through
the simulator’s NewKey queries. Hence, the changes are only syntactical
and we have

Pr[G6] = Pr[G7].

Game G8: Randomize output keys of attacked users with wrong
password guess. We change the functionality to ignore the simulator’s
key for parties who finish on interrupted sessions, and instead use the
output key from the Key record.

Again, the argument is very similar to the one in G4: in G7, upon a wrong

password guess, F (1)
PAKE issues a random K1 to P of which Z only sees

the output H(sid,K1,K2, x, y) of P. We can now randomize this output
unnoticed by Z except with the negligible probability that Z guesses K1,
i.e.,

|Pr[G8]− Pr[G7]| ≤
qH
2λ

.

As of this game, all interrupted records in F produce output keys.

Game G9: Simulate compromised parties using TestPwd guesses. We
change the simulator upon sending (TestPwd, sid,P, pw) to F for an honest
P, as detailed in G6 and G7. If F replies with “correct”, we now let the
simulator use pw in the computation of Sim(2).ComputeKey.

The change is only syntactical because the passwords used in ComputeKey
are identical in this and the previous game. We have

Pr[G8] = Pr[G9].
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Game G10: Remove the passwords from the simulation. We modify the
simulator to use ⊥ as password in all NewSession inputs to the internally

simulated F (1)
PAKE for honest parties. At the same time, we change the

functionality not to forward input passwords of honest parties to the
simulator, but relay (NewSession, sid,P,P ′) from F to Z as coming from

F (1)
PAKE.

We need to argue that outputs of F (1)
PAKE that depend on input passwords

of honest parties, i.e., any K1 that was output to an honest party and

chosen by F (1)
PAKE, are not relevant to the execution anymore. This concerns

fresh and interrupted records (compromised records get an adversarially

chosen key instead of a secure one picked by F (1)
PAKE). This is immediate

to see in G9: F computes all output keys as of G9, and the P2 execution
does not depend on K1.

Because forwarding of input passwords and relaying of simulator output
keys was the only difference when we introduced F in G1, the functionality
F in G10 is equal to FPAKE and we have

Pr[G9] = Pr[G10].

The theorem thus follows with the simulator depicted in Figures 7 and 8.

A.2 Proof of Theorem 2

The proof of this theorem is split into two cases, namely analyzing P relying on
the UC security of P1, and P relying on the UC security of P2. The corresponding
protocol relying on a secure P1 is depicted in Figure 13. The protocol relying on a
secure P1 is depicted in Figure 10, relying on a P2 with arbitrary communication
pattern.

Theorem 2 then follows from Lemmas 2 and 3. Since the proofs each require
the transcript of either the first or the second PAKE to be included in the final
hash, for the combiner to be secure, the full protocol transcript needs to be
included in the final hash.

Lemma 2. Let P1 be a one-round statistically password-hiding PAKE proto-

col. Then protocol SeqComb[P1,F (2)
PAKE] (Figure 10) UC-realizes FPAKE in the

(FRO,FPAKE)-hybrid model, where H0,H1 are modeled as random oracles (i.e.,

as calls to FRO), and F (2)
PAKE = FPAKE (i.e., the superscript is only added to

differentiate between the two instances of FPAKE in the statement).

For proving the lemma we make the following simplifying assumptions.

1. Z corrupts at most one party in a session

2. Z never issues a TestPwd query against a corrupt party
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Alice(sid, pw) Bob(sid, pw)

st, x := P1.Start(pw)
x st′, y := P1.Start(pw

′)
yK1,1∥K1,2 := P1.Finish(st, y) K1,1∥K1,2 := P1.Finish(st

′, x)

Z := H0(sid, pw,K1,1) Z := H0(sid, pw,K1,1)

Z Z

K2
F (2)

PAKE K2

K := H1(sid,K1,2,K2, x, y) K := H1(sid,K1,2,K2, x, y)

return K return K

Figure 10: Protocol SeqComb[P1,F (2)
PAKE] relying on an intact second PAKE

protocol.

3. Z never issues a TestPwd query against an honest party if the other party
is corrupt

These simplifications are without loss of generality, i.e., our proof still implies
that there is no distinguishing environment Z. This is because (1) in the fully
corrupt setting the simulator knows all secrets and hence the simulation is
straightforward, (2) a TestPwd query against a corrupt party compares two
passwords that were both given by Z, and (3) the password guess can be issued
via a corrupt NewSession instead of TestPwd.

Game G0: The real execution. This is the real execution as in Figure 10,

with a dummy adversary A and a hybrid functionality F (2)
PAKE in place of

P2.

Game G1: Change layout. We change the previous game as follows:

• We move the whole execution into a single machine and call it the
simulator Sim.

• We add all the record-keeping of the simulator as in Figures 11 and 12.
• In between Z and Sim we add one dummy party for each real party.
• In between the dummy parties and Sim, we add the ideal functionality
FPAKE as in Figure 1, but relaying passwords of honest parties to Sim
and relaying outputs keys provided by Sim to the dummy parties. We
call that functionality F.

The changes are only syntactical since the real execution runs on same
inputs and produces outputs the same way as in the previous game. We
hence have

Pr[G0] = Pr[G1].
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On (NewSession, sid,P,P ′) from FPAKE // Simulate the P1 message

• (G2) Compute x, τx ← Sim(1)

• (G1) Record (P1State, sid,P, x, τx)
• (G1) Record (Sent, sid,P,P ′, x)
• (G1) Send (P → P ′, sid, x) to Z

On (P → P ′, sid, y) from Z // P1 message delivery
• (G1) If ∃(Recvd, sid,P,P ′, ·): ignore this query
• (G1) Record (Recvd, sid,P,P ′, y)
• If P is corrupted: // Record the sent message because it’s adversarially generated

– (G1) Record (Sent, sid,P,P ′, y)
• If P ′ is honest:// If the receiver is honest, use this as the time to start its P2 session

– (G8) Record (P2Session, sid,P,P ′,⊥) marked fresh

– (G1) Send (NewSession, sid∥2,P,P ′) to Z

On (NewSession, sid||2,P ′, Z) from corrupt P to F (2)
PAKE

• (G1) Record (P2Session, sid,P,P ′, Z)
• (G1) Send (NewSession, sid∥2,P,P ′) to Z //Wait with TestPwd until other party
received input

On (TestPwd, sid||2,P, Z) from Z to F (2)
PAKE or as internal call // w.l.o.g., P is honest

• (G1) Retrieve (P2Session, sid,P, ·,⊥) marked fresh

• // Z is the correct password iff it is what P would have computed. This is the case
iff both the pw and K1,1 used in the computation of Z are correct. So we test those.

• (G4) Retrieve (H0, sid, [pw], [K
∗
1 ], Z) or GOTO wrong

• (G4) Retrieve (P1State, sid,P, [x], [τx]), (Recvd, sid, ·,P, [y])
• (G4) Let [K1,1]∥[K1,2] := Sim(1).ComputeKey(sid, x, y, τx, pw)
• (G4) Record (P1Key,P,K1,1,K1,2)
• (G4) If K

∗
1 ̸= K1,1 GOTO wrong // Early-fail if the P1 key disagrees

• (G4) Send (TestPwd, sid||2,P, pw) to FPAKE

• (G1) If “correct”: GOTO correct

• (G1) If “wrong”: GOTO wrong

• (G1) Label wrong:
– (G1) Mark retrieved P2Session interrupted

– (G1) Record (TestedPwd, sid,P, pw, wrong)
– (G1) Return “wrong”

• (G1) Label correct:
– (G1) Mark retrieved P2Session compromised

– (G1) Record (TestedPwd, sid,P, pw, correct)
– (G1) Return “correct”

Figure 11: Simulator for SeqComb[P1,F (2)
PAKE] realizing FPAKE, Lemma 2. Random

oracles H0,H1 are simulated as in the real execution. Label (G4) indicates that
the line of code is activated in game G4.
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On (NewKey, sid∥2,P,K∗
2 ) from Z to F (2)

PAKE

• (G1) Retrieve (P2Session, sid,P,P ′, [Z]) with marking m ̸= completed

• // Pick K2 the same way a normal PAKE functionality would pick the key
• (G1) If m = compromised: K2 := K∗

2

• (G1) Else if m = fresh AND ∃(P2Key, sid,P ′, [K ′
2], fresh): // P finishes last

– (G5) If ∃(TestedPwd, sid,P ′, Z, correct): K2 := K ′
2 // Z ̸= ⊥ ⇒ P corrupt ⇒

w.l.o.g, P ′ is honest, and we already ran TestPwd when P ′ finished.
– (G8) Elif P and P ′ are honest: K2 := ⊥ // FPAKE controls the final K anyway
– (G1) Else: K2 ←$ {0, 1}λ // P corrupt, wrong password

• (G1) Elif ∃(P2Session, sid,P ′,P, ·) then set K2 ←$ {0, 1}λ // P finishes first or inter-
rupted, or P ′ finished non-fresh.

• (G1) Else ignore the query // Isolated P does not output a key
• // Same as PAKE functionality, record the key and return it to the party (if corrupt)
• (G1) Record (P2Key, sid,P,K2,m)
• (G1) Mark P2Session completed

• (G1) If P is corrupt:
– (G1) Send (sid,K2) to P // No need to call FPAKE.NewKey on a corrupt party

• // Now we compute the final key H2(sid,K1,2,K2, tr) for honest P if we can find K1.
• (G4) If P ′ is corrupt AND P2Session is fresh: // Attacked P finishes. Opportunistically
run TestPwd in the honest-corrupt setting.

– (G4) Retrieve (P2Session, sid,P ′,P, [Z ′])
– (G4) Run code of (TestPwd, sid||2,P, Z ′) // Ensure P1Key is set in attacked session

• (G4) If P ′ is corrupt OR ∃(TestedPwd, sid,P, ·, correct):
– (G4) Retrieve (P1Key, sid,P, ·, [K1,1,K1,2]) // Must exist in a non-tanked session

because, above, Sim always calls TestPwd on an honest-corrupt setting
– (G4) K := H2(sid,K1,2,K2, tr)

• Else:
– (G8) K := ⊥ // Honest-honest setting: FPAKE decides
– (G3) Retrieve (Sent, sid, [P ′],P, [x′]), (Sent, sid,P,P ′, [y]), (Recvd, sid,P ′,P, [x])

and (Recvd, sid,P ′,P, [y′])
– (G3) If x ̸= x′ or y ̸= y′ send (TestPwd, sid,P,⊥) to FPAKE: // DoS attack on P1

• Send (NewKey, sid,P,K) to FPAKE

Figure 12: Cont. simulator.

Game G2: Simulate the P1 message of honest parties. In this game we
change the simulation to compute P1 messages using (x, τx) := Sim(1).Start(),

and compute the P1 output keys as Sim(1).ComputeKey(x, τx, y, pw) for
incoming message y. Because P1 has password hiding and trapdoor cor-
rectness, the output distribution is statistically close to the previous game.
We hence have

|Pr[G2]− Pr[G1]| ≤ η

for a function η that is negligible in λ.

Game G3: Randomize outputs keys in case of DoS attack in P1. We
modify the simulator to send (TestPwd, sid,P,⊥) for an honest party P in
case P ′ is also honest, and there was no TestPwd query against P by Z,
and Z did not deliver both x, y untampered. This can only be decided
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once Z sends NewKey for P to F (2)
PAKE, and hence the simulator performs

this check at the very end of the NewKey interface.

Because interrupted markings in F do no yet affect output keys, the
changes do not affect the output distribution and we have

Pr[G2] = Pr[G3].

Game G4: Extract password from corrupt party. We change the simula-
tor for an honest P , either upon (TestPwd, sid,P, Z) from Z where w.l.o.g.
P ′ is honest, or upon a corrupt P ′ receiving input (NewSession, sid,P, Z),
where Z = H0(sid, [pw], [K

∗
1,1]). The simulator computes [K1,1]∥[K1,2] :=

Sim(1).ComputeKey(sid, x, y, τx, pw) and ifK1,1 = K∗
1,1 sends (TestPwd, sid,P, pw)

to FPAKE. In all other cases, the simulator keeps letting the internally em-

ulated F (2)
PAKE instance handle the guess. When P is supposed to generate

output, if the guess came back “correct”, the simulator sets the key of P
to be H2(sid,K1,2,K

∗
2 , tr), where K

∗
2 is taken from the NewKey query from

Z to F (2)
PAKE for P. The simulator sends this key through NewKey to F,

which outputs it for compromised records.

The changes of key computation of P in this game are only syntactical
because the correct TestPwd guess guarantees that pw is the input password
of P. We hence have

Pr[G3] = Pr[G4].

Game G5: Removing two password equality checks from the simula-
tion. We change the functionality to ignore the simulator’s output key for
honest parties finishing last in honest sessions, with matching passwords,
and where both records were fresh at the time of output generation (i.e.,
no TestPwd was queried by the simulator on any of the two parties). In
this case, the functionality outputs the output key of the first party also
to the second party.

At the same time we make a similar change in the simulation of F (2)
PAKE,

for a corrupt party finishing last in a session with an honest party, where
simulator’s TestPwd query to FPAKE returned “correct” for that honest
party, for Z input by the corrupt party. Instead of comparing the honest
party’s password with the corrupt party’s password, we let the simulator
output the key K∗

2 that was previously output to the corrupt party.

This and the previous game are not distinguishable by the (trivial) cor-
rectness of the protocol and the correctness of FPAKE. We note that the
correctness of FPAKE can be used as an argument only in case of no adver-
sarial interference, as is the case in this game, but does not hold in general
as demonstrated by Roy and Xu [RX23]. Hence we have

Pr[G4] = Pr[G5].
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Game G6: Randomize output keys of interrupted sessions. We change
the functionality to ignore the simulator’s output keys for interrupted
sessions and instead output they key stored in the Key record, i.e., a
randomly chosen key.

In this game, interrupted sessions got marked as such due to either an
incorrect password guess, or Z tampering with the transcript between two
honest users. Z can only notice a difference if it queries what the honest
user with the interrupted session outputs, namely H1(sid,K1,2,K2, x, y). In

case of message tampering without an active attack on F (2)
PAKE, this happens

at most with probability qH/2
λ because F (2)

PAKE chooses K2 uniformly at
random and does not leak any information about it since the other party
is also honest and outputs a hash H1(sid,K1,2,K2, x

′, y′) where (x, y) ̸=
(x′, y′). In case of an incorrect password guess, F (2)

PAKE chooses a uniformly
random K2 for the honest party with the interrupted session and outputs
it only to that party. Hence, we have

|Pr[G6]− Pr[G5]| ≤
qH
2λ

.

Game G7: Randomize keys of an honest party finishing first with
a fresh record. We change the functionality to ignore the simulator’s
output keys for an honest P finishing on a fresh session, and instead
output to P the key from the Key record, i.e., a randomly chosen key.

Note that, as of G5, the functionality aligns the output key in case of
matching passwords, which implies that the randomized key chosen of P
in this game might get repeated to the other party.

Because the simulation of G7 always asks TestPwd queries if an honest P
either runs with a corrupt party, or with an honest party but is attacked
by either a message tampering adversary or an active adversary through

TestPwd on F (2)
PAKE, P finishing on a fresh record is not under any attack.

In G7, F (2)
PAKE chooses a fresh K2 for P that is only given to the honest P ′

(if passwords match; otherwise P ′ receives no information about K2). We
hence have

|Pr[G7]− Pr[G6]| ≤
qH
2λ

.

Game G8: Remove the passwords from the simulation. We modify the
simulator to use ⊥ as password in all NewSession inputs to the internally

simulated F (1)
PAKE for honest parties. We let it omit ComputeKey runs on

the input passwords of honest parties. At the same time, we change
the functionality not to forward input passwords of honest parties to the
simulator, but relay (NewSession, sid,P,P ′) from F to Z as coming from

F (1)
PAKE.
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Alice(sid, pw) Bob(sid, pw)

pw pw

K1,1 K1,2
F (1)

PAKE K1,1 K1,2

Z := H0(sid, pw,K1,1) Z := H0(sid, pw,K1,1)

Z Z

tr K2
P
sid∥2
2 tr K2

K := H1(sid,K1,2,K2, tr) K := H1(sid,K1,2,K2, tr)

return K return K

Figure 13: Protocol SeqComb[F (1)
PAKE,P2] relying on an intact first PAKE protocol.

As of G7, outputs are fully determined by F except for compromised
records where F forwards the key from the simulator. A careful inspection
of the simulator code of G8 shows that it does not use honest parties’
input passwords anymore: the protocol transcript is generated without
passwords of honest parties as of G2, with ComputeKey taking extracted

passwords as input as of G4. The internal simulation of F (2)
PAKE also works

without passwords since we replace password equality checks in G5. We
hence have

Pr[G7] = Pr[G8].

Because forwarding of input passwords and relaying of simulator output
keys was the only difference when we introduced F in G1, the functionality
F in G8 is equal to FPAKE. The theorem thus follows with the simulator
depicted in Figures 11 and 12.

Lemma 3. Let P2 be any PSK equality hiding PAKE protocol. Then protocol

SeqComb[F (1)
PAKE,P2] (Figure 13) UC-realizes FlePAKE in the (FRO,FPAKE)-hybrid

model with respect to static party corruptions, where H0,H1 are modeled as

random oracles (i.e., as calls to FRO), and F (1)
PAKE = FPAKE (i.e., the superscript

is only added to differentiate between the two instances of FPAKE in the statement).

We again make the following simplifying assumptions.

1. Z corrupts at most one party in a session

2. Z never issues a TestPwd query against a corrupt party
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On (NewSession, sid,P,P ′) from FPAKE

• Record (P1Session, sid,P,P ′,⊥) and mark it fresh
• (G1) Send (NewSession, sid∥1,P,P ′) to Z

On (NewSession, sid||1,P,P ′, pw) from corrupt P to F (1)
PAKE

• (G1) Record (P1Session, sid,P,P ′, pw) and mark it fresh
• (G1) Send (NewSession, sid∥1,P,P ′) to Z

On (NewKey, sid,P,K∗) from Z to F (1)
PAKE

// Follow the logic of the FPAKE NewKey interface to compute the output key of P2:
• (G1) Retrieve (P1Session, sid,P, [P ′], [pw]) with mark m ̸= completed

• (G1) If m = compromised: K1,1,K1,2 := K∗

• (G8) Elif m = fresh AND ∃(P1Key, sid,P ′, [K ′], fresh): // P finishes last
– If ∃(TestedPwd, sid,P ′, pw, correct): K1,1,K1,2 := K ′ // Z ̸= ⊥ ⇒ P corrupt ⇒ w.l.o.g, P ′

is honest, and we already ran TestPwd when P ′ finished.
– (G1) Elif P and P ′ are honest: K1,1,K1,2 := ⊥ // FPAKE controls the final K anyway
– (G1) Else: K1,1,K1,2 ←$ {0, 1}λ // P corrupt, wrong password

• (G1) Elif ∃(P1Session, sid,P ′,P, ·) then set K1,1,K1,2 ←$ {0, 1}λ // P finishes first or interrupted,
or P ′ finished non-fresh.

• (G1) Else ignore the query // Isolated P does not output a key
• (G2) If P1Session is fresh, P is honest and P ′ is corrupt: // Now that TestPwd can no longer be
called on this session, we can finally call it

– (G2) Retrieve (P1Session, sid,P ′,P, [pw′])
– (G2) Run code of (TestPwd, sid∥1,P, pw′)

• (G1) Record (P1Key, sid,P,K1,1,K1,2,m)
• (G1) Mark the P1Session completed

• If P is corrupt:
– (G1) Send (sid,K1,1,K1,2) to P
– (G1) Return

• Else: // Now compute Z for honest P if we can, and run the rest of the protocol
– (G2) If ∃(TestedPwd, sid,P, [pw′], “correct”): Z := H0(sid, pw

′,K1,1) // K1,1 ̸= ⊥ because it’s
only ⊥ when both parties are honest and P ’s session is uncompromised. But when that’s the
case, (TestedPwd, sid,P, . . .) doesn’t exist

– (G9) & (G10) Else: Z ←$ {0, 1}λ
– (G1) Store (P2Input, sid,P, Z)
– (G1) Run P2 on behalf of P on input Z

On (TestPwd, sid,P, pw) from Z to F (1)
PAKE or as internal call // W.l.o.g., P is honest

• (G2) Retrieve (P1Session, sid,P, ·, ·) marked fresh

• (G2) Send (TestPwd, sid,P, pw) to FPAKE, get result b, and mark P1Session accordingly
• (G2) Record (TestedPwd, sid,P, pw, b)
• (G2) Return b

On Z sending the final message in P2 to honest (sid,P)
• (G1) Ignore if simulated P is not ready to receive the final P2 message
• (G1) Retrieve (P1Key, sid,P, ·, [K1,1,K1,2], ·) // Exists because P starts P2 after P1Key was
recorded

• (G1) If K1,1,K1,2 ̸= ⊥: // If we can compute K2 and K then do so
– (G1) Compute P2 protocol output tr,K2 on behalf of P
– (G1) Record (P2Key, sid,P,K2, tr)
– (G1) Compute K := H1(sid,K1,2,K2, tr)

• Else: K := ⊥ // P1 is uncompromised and interacting with honest party: Sim’s key will be ignored.
• (G3) If ∃ record (P2Key, sid,P ′, ∗, [tr′]) with tr ̸= tr′, send (TestPwd, sid,P,⊥) to FPAKE // DoS
on P2

• (G1) Send (NewKey, sid,P,K) to FPAKE

Figure 14: Simulator for SeqComb[F (1)
PAKE,P2] realizing FPAKE, Lemma 3. Random

oracles H0,H1 are simulated as in the real execution. Label (G9) indicates that
the line of code is activated in game G9.
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3. Z never issues a TestPwd query against an honest party if the other party
is corrupt

Game G0: The real execution.

Game G1: Change layout. We change the previous game as follows:

• We move the whole execution into a single machine and call it the
simulator Sim.

• We add all the record-keeping of the simulator as in Figure 14.
• In between Z and Sim we add one dummy party for each real party.
• In between the dummy parties and Sim, we add the ideal functionality
FPAKE as in Figure 1, but relaying passwords of honest parties to Sim
and relaying outputs keys provided by Sim to the dummy parties. We
call that functionality F.

The changes are only syntactical since the real execution runs on same
inputs and produces outputs the same way as in the previous game. We
hence have

Pr[G0] = Pr[G1].

Game G2: Extract password from corrupt party We change the simulator

upon a corrupt P sending input (NewSession, sid,P,P ′, pw) to F (1)
PAKE, or

upon Z sending (TestPwd, sid,P ′, pw). W.l.o.g., P ′ from these queries is
honest. Upon TestPwd, the simulator immediately forwards the query
to F. For the NewSession, the simulator first waits until P ′ is supposed

to output a key through F (1)
PAKE (i.e., Z sends a NewKey query for P ′ to

F (1)
PAKE), and then sends the password guess to F. If the response from
FPAKE is “correct”, the simulator uses pw in the computation of Z for P.
Because of the input password of P is the same in the simulation and in
F, the switch to pw upon “correct” is only syntactical and we have

Pr[G1] = Pr[G2].

Game G3: Randomize output key upon message tampering in P2. We
change the simulator to send (TestPwd, sid,P,⊥) to F in case of P,P ′

both honest and Z tampering with a message from P ′. At the same time,
we let the functionality ignore the simulator’s output key for P in case
such a TestPwd happened, and instead take the key from its Key record
(i.e., a randomly chosen one).

In an honest interaction, the only values depending on key K1,2 are the
outputs of the two honest parties, which because of the inclusion of tr
in the final hash are different. Hence, this and the previous game are
equally distributed unless Z queries (sid,K1,2,K2, tr) to H1 which happens
only with probability 1/2λ for each H1 query of Z, because K1,2 is chosen
uniformly at random. Hence we have
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|Pr[G3]− Pr[G2]| ≤
qH
2λ

.

Game G4: Abort if Z queries a secret P1 output key to H0. We abort

the simulation if Z queries H0(sid, ·,K1,1) for a K1,1 that F (1)
PAKE generated

as output to an honest party P, except when P is attacked with a correct
password guess.

Because F (1)
PAKE generates output keys uniformly at random and, unless P

is subject to a successful active attack, these output keys are not given to
anybody else than the honest P, the probability for the abort to happen
is 1/2λ per hash query, and hence we have

|Pr[G4]− Pr[G3]| ≤
qH
2λ

.

Game G5: Randomize output keys of interrupted sessions. We change
F to ignore the simulation’s ouput keys for interrupted sessions and instead
output the key from the Key record. This means that honest parties who
received wrong password guesses now obtain a fresh random key from F.
The argument is the same as in G4, this time relying on the negligible
probability of Z querying K1,2 to H1. We again have

|Pr[G5]− Pr[G4]| ≤
qH
2λ

.

Game G6: Functionality aligns keys In this game we let F output the
same key to the party who finishes last in a fresh session, with matching
passwords, and thereby ignore the output key provided by the simulator.

Due to the (trivial) correctness of the protocol and of F (1)
PAKE in an unattacked

session, the changes are only syntactical and to not affect the output dis-
tribution. We have

Pr[G5] = Pr[G6].

Game G7: Randomize output keys parties finishing first in fresh
sessions We change F to ignore the simulator’s output keys for honest
parties finishing first on a fresh session, and instead output the key from
the Key record. I.e., these parties get a fresh uniform key generated by F
now.

Because of games G2 and G3, the simulator queries TestPwd for honest
parties under attack, and hence the fresh sessions modified in this game are
guaranteed to belong to honest parties that are running with another honest
party and an untampered transcript. Hence, K1,2 chosen uniformly by

F (1)
PAKE are only given to the honest parties. Z can only notice a difference
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in the output distribution of G7 and G6 if it queries K1,2 to H1, which
happens with negligible probability

|Pr[G7]− Pr[G6]| ≤
qH
2λ

.

Game G8: Remove password equality check from simulation. We
change the simulation to replace the password equality check in the NewKey

interface of the internally simulated F (1)
PAKE: instead of comparing the

input password of a finishing corrupt P with its honest counterparty’s
password, the simulator compares with the correct password guess against
the counterparty (if it happened).

Because TestPwd compares a password guess against an input password,
the changes are only syntactical and we have

Pr[G7] = Pr[G8].

Game G9: Randomize Z of honest unattacked parties with matching
passwords. We change the simulation to use a randomly chosen Z ←$

{0, 1}λ as a password in P2 both honest parties if they have matching
passwords and are not attacked, i.e., parties that received a session key

from F (1)
PAKE while their session at F was marked fresh.

A distinguisher between this and the previous game breaks the pre-shared
key equality hiding property of P2. To see this, in G8 both parties were
running on the same Z, which was randomly chosen by the random oracle.
In this game, both parties are running on randomly chosen Z values.
Further, Z does not see the output keys K2 since we randomized outputs
of honest parties in G7. We hence have

|Pr[G9]− Pr[G8]| ≤ AdvPEHP2
.

Game G10: Randomize Z of honest attacked parties and honest parties
with mismatching passwords. We now change the simulation to use
a random Z for an honest P in all other cases except if P’s session in F
is compromised, which the simulator can determine via the existence of a
(TestedPwd, sid,P, ·, correct) entry.

In all these cases, F (1)
PAKE outputs a key K1,1 to P that is not given to

anybody else. Hence, Z can only notice a difference if it queries K1,1 to
H0. We hence have

|Pr[G10]− Pr[G9]| ≤
qH
2λ

.

We are now in a situation where, in the simulation, honest parties whose
sessions are not marked compromised in F no longer useK1,1 to compute Z.
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The output keys of these parties are determined by F and the corresponding
output keys produced by the simulation are ignored by F. Hence, the
whole execution does not depend on the input passwords of honest parties
anymore, and we can replace them by dummy values in the next game.

Game G11: Remove passwords from simulation. We let the simulator
use ⊥ as input password for honest parties, and change F to not forward
passwords of honest parties to the simulator anymore.

As argued above, the changes go unnoticed by Z because the distribution
does not depend on the honest parties’ passwords in the simulation as of
G10. We hence have

Pr[G10] = Pr[G11].

Because forwarding of input passwords and relaying of simulator output
keys was the only difference when we introduced F in G1, the functionality
F in G11 is equal to FPAKE. The theorem thus follows with the simulator
depicted in Figure 14.

A.3 Proof of Lemma 1

The overall idea of the proof is to let FrlePAKE handle LateTestPwd queries by

Z. However, Z issues those queries against the first sub-PAKE, i.e., F (1)
lePAKE,

while the simulator has a LateTestPwd interface at FrlePAKE which handles the
overall key exchange. This causes a slight timing issue: if P1 completed but
P2 is still ongoing, Z can issue a late password guess against P1 while FrlePAKE

would reject such a query. The solution is to let our simulator translate late
password guesses against P1 to online guesses against FrlePAKE while the overall
key exchange is not yet completed.

The proof is derived from the proof of Lemma 3 by changing all occurrences

of F (1)
PAKE to F (1)

lePAKE, changing all occurrences of FPAKE to FrlePAKE, and modifying
the games as follows.

• Registering lazy extractions at FrlePAKE. We add a new gameG2.1 right
after G2 where we change the simulation to forward a (RegisterTest, sid,P)
query to FrlePAKE, but only at the very last moment before P is producing
an output key. That is, we mark the P1Session of P with a tested flag
and, right before sending (NewKey, sid,P, ·) to FrlePAKE, the simulator sends
(RegisterTest, sid,P) to FrlePAKE. Because the effect of RegisterTest is an
interrupted record and these markings do not yet affect any output keys
in this game, the changes do not affect the output distribution and the
new game G2.1 is equally distributed to G2.

• Answering “online” LateTestPwd queries without passwords. We
add a new game G2.2 right after G2.1 where we change the simulation in
case Z sends (LateTestPwd, sid,P, pw) for a P1Session that is completed
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and flagged tested, but where P has not yet produced an output key.
The simulator sends (TestPwd, sid,P, pw) to FrlePAKE. Upon “correct”, it
returns the P1Key record K1,1,K1,2 to Z, otherwise a random key. Because

the passwords in both FrlePAKE and F (1)
lePAKE match, the changes are only

syntactical and G2.1 and G2.2 are equally distributed.

• Answering “completed” LateTestPwd queries without passwords.
We add a new game G2.3 right after G2.2 where we change the simulation
in case Z sends (LateTestPwd, sid,P, pw) for a P that has a completed P1
session flagged tested, and that has already produced an output. In case
the guess comes back correct with a key K ̸= ⊥, the simulator programs
H0[sid, pw

∗,K1,1] := Z and H1[sid,K1,2,K2, tr] := K for K1,1,K1,2, Z,K2

from the simulation of P. The changes are only syntactical because the
simulator re-programs exactly what P already computed.

• Randomize output keys of interrupted sessions. This is the original
G5, where we additionally let the simulator skip the output key compu-
tation of interrupted sessions. Because LateTestPwd queries also result in
interrupted records, these output keys are also randomized by this game.
The effect is that LateTestPwd responses are now also random keys chosen
by FrlePAKE, and hence the programming of the simulator in G2.3 becomes
crucial as it reinstalls consistency between the simulated protocol values for
P and its FrlePAKE-determined output key. Hence, the switch to different
keys goes unnoticed by the environment except with negligible probability
as argued in G5, despite the additional interrupted records through the
LateTestPwd queries.
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On Z sending the final message in P2 to honest (sid,P)
• Ignore if simulated P is not ready to receive the final P2 message
• Retrieve (P1Key, sid,P, ·, [K1,1,K1,2], ·) // Exists because P starts P2 after P1Key was recorded
• If K1,1,K1,2 ̸= ⊥: // If we can compute K2 and K then do so

– Compute P2 protocol output tr,K2 on behalf of P
– Record (P2Key, sid,P,K2, tr)
– Compute K := H1(sid,K1,2,K2, tr)

• Else: K := ⊥ // P1 is uncompromised and interacting with honest party: Sim’s key will be ignored.
• If ∃ record (P2Key, sid,P ′, ·, [tr′]) with tr ̸= tr′, send (TestPwd, sid,P,⊥) to FrlePAKE // DoS on P2

• (G2.1) If P is honest AND P1Session is flagged tested AND ∄(TestedPwd, sid,P, . . .): send
(RegisterTest, sid,P) to FrlePAKE // Forward the RegisterTest at the last possible moment

• Send (NewKey, sid,P,K) to FrlePAKE

On (RegisterTest, sid∥1,P) from Z to F (1)
lePAKE

• (G2.1) Retrieve (P1Session, sid,P, ·, ·) marked fresh

• (G2.1) Mark it interrupted and flag it tested
• // Defer forwarding the RegisterTest until right before we do NewKey

On (LateTestPwd, sid∥1,P, pw∗) from Z to F (1)
lePAKE // W.l.o.g., P is honest

• (G1) Retrieve (P1Session, sid,P, ·, ·) marked completed with flag tested

• (G1) Remove the flag tested

• (G1) Retrieve (P1Key, sid,P, [K1,1,K1,2], [m]) // K1,1,K1,2 can’t be ⊥ because that only happens
for untested sessions

• (G2.2) If m = interrupted: // TestPwd was not queried on this session yet. It was marked
interrupted by RegisterTest, so the normal TestPwd points were never triggered

– (G2.2) Send (TestPwd, sid,P, pw∗) to FrlePAKE, get result b
– (G2.2) If “correct”: return K1,1,K1,2

– (G2.2) Else: return K ′
1 ←$ {0, 1}2λ

• Else: // The session ended. Need to make it such that K1,2 explains the final K
– (G2.3) Retrieve (P2Key, sid,P,K2, ·)
– (G2.3) Retrieve (P2Input, sid,P, Z)
– (G2.3) Send (LateTestPwd, sid,P, pw∗) to FrlePAKE and get K
– (G2.3) If K = ⊥ return K ′

1 ←$ {0, 1}2λ
– Else:

∗ (G2.3) Set H0[sid, pw
∗,K1,1] := Z //Program the P2 input to the correct password.

∗ (G2.3) Set H1[sid,K1,2,K2, tr] := K // Program the final hash to the key K previously
output by P.

∗ (G1) Return K1,1,K1,2

Figure 15: Simulator for Lemma 1 in terms of added/modified interfaces from
Figure 14.
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B Formal distinguisher for SeqComb with lazy
extraction

To make SeqComb work with lazy extraction PAKEs, we would need to prove
the following statement: if P1 UC-realizes FlePAKE and P2 is PSK equality hiding,
then P UC-realizes FlePAKE (in the FRO-hybrid model). In this section we give a
formal distinguisher for this statement.

The PSK equality hiding property does not rule out offline attacks against
P2. We use that to distinguish the protocol from FlePAKE.

1. Z starts honest P with pw, sends RegisterTest to F (1)
lePAKE and completes

P’s session to receive output key K.

2. Z flips a coin b and sends pwb as LateTestPwd guess to F (1)
lePAKE, where

pw0 = pw and pw1 is a different password.

3. Z receives key K1,1,K1,2 from F (1)
lePAKE

4. Z tests whether H0(sid, pwb,K1,1) was used by P in P2.

• If b = 0 Z expects that test to pass
• If b = 1 Z expects that test to fail.

A simulator Sim can react in the following way to this Z

1. Sim has no information about P’s password, so it chooses a random Z to
run P2

2. Sim submits pwb via LateTestPwd to FlePAKE and receives back Kb, where
Kb = K for b = 0 and random otherwise.

3. Sim chooses random K1,1,K1,2 to reply to Z.

4. Sim obtains query H0(sid, pwb,K1,1) and can now program it:

• If Sim programs the hash to Z and b = 1, the test passes—Z can
distinguish

• If Sim programs the hash to a different Z ′ and b = 0, the test fails—Z
can distinguish

C Changelog

Version 1.5

• Added footnote explaining SPAKE2 initiators behave slightly differently
from receivers, and that this difference does not matter for our analysis.

• Added comparisons between our theorems about ParComb and SeqComb
and those from [LL24], including a table of results.
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• Removed CHIC and OCAKE from list of PSK-equality-hiding PAKEs,
and added EKE-PRF. Also fixed proof of PSK equality hiding.

• Added proof that CPace is perfectly password hiding.

• Amended definition of password-hiding to be defined for maliciously chosen
y.

• Amended Lemma 1 to include requirement of password hiding on P1.

• Relaxed requirement in theorems to statistical password hiding. Perfect
password hiding was never necessary.

Version 1.0

Initial ePrint submission
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