
Related-Key Cryptanalysis of FUTURE
The Full Round Distinguishing Attack

Amit Jana, Smita Das, Ayantika Chatterjee, and Debdeep Mukhopadhyay

Indian Institute of Technology, Kharagpur
{janaamit001,smita1995star,cayantika,debdeep.mukhopadhyay}@gmail.com

Abstract. In Africacrypt 2022, Gupta et al. introduced a 64-bit lightweight
MDS matrix-based SPN-like block cipher designed to encrypt data in a
single clock cycle with minimal implementation cost, particularly when
unrolled. While various attack models were discussed, the security of the
cipher in the related-key setting was not addressed. In this work, we
bridge this gap by conducting a security analysis of the cipher under
related-key attacks using MILP (Mixed Integer Linear Programming)-
based techniques. Our model enables a related-key distinguishing attack
on 8 rounds of FUTURE, requiring 264 plaintexts, 263 XOR operations,
and negligible memory. Additionally, we present a 10-round boomerang
distinguisher with a probability of 2−45, leading to a distinguishing at-
tack with 246 plaintexts, 246 XOR operations, and negligible memory.
This result demonstrates a full break of the cipher’s 64-bit security in
the related-key setting.

Keywords: Related key cryptanalysis · Boomerang attack · FUTURE.

1 Introduction

In recent years, the demand for cryptographic solutions optimized for resource-
constrained environments–such as RFID tags, sensor networks, and contactless
smart cards–has led to the development of lightweight cryptographic primi-
tives. Unlike traditional cryptographic methods like AES [21], SHA-256 [33],
and RSA [35], which are designed for systems with substantial processing power
and memory, lightweight cryptography prioritizes efficiency across various met-
rics including hardware cost, power utilization, and latency. Block ciphers, which
can be thought of a pseudo-random permutations to transform plaintext into ci-
phertext blocks of fixed lengths, are mainly categorized into Feistel structures
and substitution-permutation networks (SPNs). Feistel structures, used in ci-
phers like TWINE [45] and Piccolo [39], are cost-effective but require more
rounds to ensure security, while SPNs offer robust security but can be more
resource-intensive. The field of lightweight cryptography has expanded signifi-
cantly, with ciphers such as PRESENT [16], KATAN [19], SIMON & SPECK [6],
PRINCE [17], MANTIS [7], LED [24], MIDORI [4], and GIFT [5] being opti-
mized for parameters like code size, latency, and energy consumption. Moreover,

tweakable block ciphers like SKINNY [7], CRAFT [8], and QARMA [3], en-
hance encryption modes and authentication. Additionally, CRAFT addresses
challenges such as resistance to Differential Fault Analysis (DFA) attacks.

Several lightweight block ciphers, including LED, MIDORI, and SKINNY,
build on the fundamental structure of the AES round function, modifying its
components to enhance performance. AES employs MDS (Maximum Distance
Separable) matrices in its round function to achieve strong diffusion, which is
essential for robust security against various cryptographic threats. However, in-
corporating MDS matrices into lightweight block ciphers poses a challenge due
to their high implementation cost. This often necessitates additional rounds in
these ciphers to maintain security against attacks such as differential and linear
attacks. As a result, many lightweight block ciphers opt for lighter components,
such as near-MDS matrices and bit-permutations, to avoid the high costs asso-
ciated with MDS matrices. This approach helps manage implementation costs
while still aiming to achieve effective diffusion, even though MDS matrices offer
superior diffusion benefits.

Mixed Integer Linear Programming (MILP) is a well-established optimiza-
tion technique used to find the optimal solution for a linear objective function
subject to a set of linear constraints. In 2011, Mouha et al. introduced an auto-
mated differential path search method utilizing MILP [31], which helps generate
lower bounds for the number of active S-boxes. At that time, the method could
not account for the differential properties of the S-box, limiting its application
to bit-oriented ciphers like PRESENT and LS-designs [30]. This limitation was
later addressed by Sunet al. [44, 43], who developed two distinct methods to
model the differential propagation of S-boxes using systems of inequalities. The
first approach uses logical conditions to represent differential properties through
linear inequalities. The second approach employs a geometric method to capture
all possible input-output difference transitions through an n-bit S-box, comput-
ing the H-representation (convex hull) of this set using the SageMath inequality
generator function and simplifying constraints with a greedy approach. Sasaki
and Todo [37] further advanced this technique by incorporating a MILP-based
optimization phase to achieve a more compact representation of S-boxes with
fewer constraints. Additionally, Boura et al. [18] enhanced the method by reduc-
ing the number of constraints needed to capture the differential properties of an
S-box by adding related constraints from the set of constraints generated by the
SageMath inequality generator function.

In 2022, Gupta et al. introduced a new 64-bit lightweight block cipher known
as FUTURE [25], which stands out for its exceptionally low implementation cost
compared to other block ciphers, particularly when implemented in an unrolled
fashion. Notably, FUTURE is one of the few lightweight ciphers where all the
round components are new, and it employs an MDS matrix for its diffusion layer.
The internal functions of the cipher are designed for high hardware efficiency,
with the MDS matrix and S-box being specifically optimized to minimize hard-
ware costs. The S-box used is reported to match the cryptographic quality of
those in SKINNY and Piccolo. Hardware benchmarks on FPGA and ASIC plat-

forms demonstrated that FUTURE outperforms several well-known lightweight
ciphers in terms of size, critical path, and throughput, achieving superior results
across multiple metrics.

Researchers have explored various attack methods on the FUTURE cipher
in single-key settings. In [26], a bit-based Mixed integer linear programming
(MILP) approach was used to identify both differential and linear distinguish-
ers, revealing distinguishers up to five rounds with probabilities of 2−58 and
2−62, respectively. In [38], a meet-in-the-middle (MITM) technique combined
with MILP demonstrated a key recovery attack with data, time, and memory
complexities of 264,2126, and 234, respectively. Lin et al. [29] also employed
a MILP-aided MITM attack, achieving complexities of 264 for data, 2124 for
time, and 248 for memory complexities. Additionally, Roy et al. [36] conducted
an attack based on biclique structures with data, time, and memory complexities
of 248,2125.54, and 232, respectively. Furthermore, Mondal et al. [30] applied
Yoyo techniques in the secret-key settings to distinguish up to five and six rounds
with data complexities of 29.83 and 258.83, respectively.

Despite the theoretical attacks on FUTURE in single-key settings, there has
been no related-key cryptanalysis attempted on this cipher, and the design pro-
posal did not include any related-key analysis. This paper addresses this gap by
providing a detailed examination of related-key cryptanalysis. We develop both
word and bit-oriented MILP models to identify improved differential characteris-
tics. Although [26] outlines a bit-oriented MILP model for searching differential
characteristics in single-key settings for the FUTURE cipher, the description
is incomplete for related-key models. In this work, we provide a comprehensive
description of how to build both word and bit-oriented MILP framework for the
FUTURE cipher, which can also be useful for constructing MILP frameworks
for other SPN-like ciphers. To search for differential characteristics, our approach
first employs the word-oriented model and then utilizes a bit-based model based
on the optimal input-output difference patterns obtained from the word-oriented
model. When searching for related-key differences, the basic word-oriented model
is insufficient because it fails to capture optimal difference patterns due to the
potential cancellation of intermediate word differences when both the state and
key words are active. To address this, we introduce a new non-linear constraint
to improve the identification of better difference patterns for optimal differen-
tial characteristics. We apply this enhanced search technique to the FUTURE
cipher, covering up to 7 rounds.

Our Contributions. Our contributions are three-fold, as follows:

– We propose an extensive bit-based related-key MILP model for the FU-
TURE cipher, which can be helpful for building MILP models for any MDS
matrix-based SPN ciphers. We revisit Boura et al. [18]’s work due to insuf-
fcient information in their proposed algorithm to generate optimal number
of constraints to capture the behavior of DDT. From our understanding,
we provide a revised algorithm that produces the same results as Boura et
al. [18, Algorithm 1], but with a larger set of final constraints. Additionally,

we provide a detailed explanation of how to construct a primitive representa-
tion of MDS (or near-MDS) matrices using a companion matrix approach,
which is compatible with the cipher’s structure.

– Utilizing this technique, we demonstrate an 8-round related-key differential
characteristic for FUTURE with a probability of 2−63.4, which leads to a
distinguisher with 264 data, 263 time, and negligible memory complexities.

– Additionally, we develop a full-round related-key boomerang distinguisher
with practical complexities, indicating a full-round break of the cipher. A
detailed comparison of the previous attack methods and their complexities
is provided in Table 1.

Attack Types #Rounds Settings Prob.
Complexity

Reference
Data Time Memory

Differential – 5 Single-key 2−58 – – – [26]

MITM Key Recovery 10 Single-key – 264 2126 234 [38]

MITM Key Recovery 10 Single-key – 264 2124 248 [29]

Biclique Key Recovery 10 Single-key – ≤ 248 2125.53 232 [36]

Yoyo Distinguisher
6 Single-key – 258.83 – –

[30]
8 Known-key – 215 – –

Differential Distinguisher 8 Related-key 2−63.4 264 263 XOR Negligible This Work

Boomerang Distinguisher 10 Related-key 2−45 246 246 XOR Negligible This Work

Table 1: A Comparison of Different Attacks on FUTURE

Outline of the Paper. The paper is structured as follows: Section 2 provides
an overview of the FUTURE cipher. In Section 3, we present a brief introduc-
tion to related-key differential and boomerang cryptanalysis. Section 4 explains
the bit-oriented MILP model used for the analysis. In Section 5, we apply this
model to construct related-key differential and boomerang distinguishers for the
FUTURE cipher. Finally, Section 8 concludes the paper with remarks and sug-
gestions for future work.

2 Description of FUTURE

FUTURE is an SPN-based 64-bit lightweight block cipher designed to have
applications on low hardware cost and latency. It has a key size of 128-bit.

The Round Function. The round structure of the FUTURE cipher consists of
four operations: SubCell, MixColumn, ShiftRow, and AddRoundKey, as illustrated
in Figure 2. Notably, the MixColumn operation is omitted in the final round. The
cipher processes a 64-bit input state S arranged as a 4 × 4 matrix, where each
cell is a nibble (i.e., s ∈ {0,1}4 for 0 ≤  ≤ 15), as shown in the Figure 1a.
Furthermore, the round structure is depicted in the following Figure 2.

SubCell. The nonlinear transformation in the round function is defined by the
SubCell operation, which applies a 4-bit S-box to each cell of the state matrix.
This transformation is depicted in Figure 1b.

S =







s0 s4 s8 s12
s1 s5 s9 s13
s2 s6 s10 s14
s3 s7 s11 s15







(a) The FUTURE State

x 0 1 2 3 4 5 6 7 8 9 A B C D E F
S(x) 1 3 0 2 7 E 4 D 9 A C 6 F 5 8 B

(b) The S-box Table

Fig. 1: The State Representation and S-box Table of FUTURE Cipher

SC MC ARK
>>> 1

>>> 2

>>> 3

SR

Fig. 2: Round Function

MixColumn. The linear operation is represented by the finite field matrix mul-
tiplication involving the MDS (maximum distance separable) matrix (μ) and
the state matrix, where the matrix elements are in GF(24). The MDS matrix
is illustrated in Figure 3a. Matrix and vector multiplications are performed in
the field F24 , defined by the primitive polynomial 4 +  + 1.

μ =







8 9 1 8
3 2 9 9
2 3 8 9
9 9 8 1







(a) The MixColumn Matrix







s0 s4 s8 s12
s1 s5 s9 s13
s2 s6 s10 s14
s3 s7 s11 s15






→







s0 s4 s8 s12
s13 s1 s5 s9
s10 s14 s2 s6
s7 s11 s15 s3







(b) The ShiftRow Operation

Fig. 3: The MixColumn Matrix and ShiftRow Operation of FUTURE Cipher

ShiftRow. Each row (ro(),  = 0,1,2,3) of the state matrix is rotated to the
right by  positions following the MixColumn operation. This process is illustrated
in Figure 3b.

AddRoundKey. The 64-bit round keys (sub-keys) SK,  = 0,1, . . . ,10 are
XORed to the state S in each round. Additionally, the final round sub-key
SK10 is XORed with the state before producing the ciphertext.

Key Schedule. In FUTURE encryption, a 128-bit secret key K is divided into
two halves k0 and k1 for generating round and whitening keys. k0 acts as the
whitening key and generates each round sub-keys SK,  = 0,1, . . . ,10 depends

64
-b

it
m

es
sa

ge

A
dd
R
ou
nd
K
ey

Su
bC

el
l

M
ix
C
ol
um

n

Sh
ift
R
ow

s

A
dd
R
ou
nd
K
ey

R
ou

nd
 K

ey
 G

en
er

at
io

n

K
0K

1.
..K

62
K

63

K
64

K
65

...
K

12
6K

12
7

Su
bC

el
l

M
ix
C
ol
um

n

Sh
ift
R
ow

s

A
dd
R
ou
nd
K
ey

K
5K

6..
.K

63
K

0.
..K

4

Su
bC

el
l

M
ix
C
ol
um

n

Sh
ift
R
ow

s

A
dd
R
ou
nd
K
ey

K
69

K
70

...
K

12
7K

64
...

K
68

Su
bC

el
l

Sh
ift
R
ow

s

A
dd
R
ou
nd
K
ey

K
25

K
26

...
K

63
K

0..
.K

24

64
-b

it
ci

ph
er

te
xt

Pr
e-

ro
un

d

R
ou

nd
 1

R
ou

nd
 2

R
ou

nd
 3

R
ou

nd
 1

0

Fig. 4: FUTURE Encryption Scheme

on whether  is even or odd. If  is even, k0 is left-rotated by 5 · 2 bits; if 
is odd, k1 undergoes the same left rotation. Left rotation involves circularly
shifting bits. Additionally, except for the 5th and 10th rounds, a single ‘1’ bit is
XORed into specific positions within 4-bit cells during each encryption round,
with these operations defined by round constants.

3 Related Key Cryptanalysis

A related-key attack [9] involves analyzing a cipher using multiple keys with
known mathematical relationships between them. The attacker has access to
encryption or decryption functions with these keys and aims to determine the
actual secret keys. The simplest form uses a constant (Δ) XOR relation between
keys, such as K2 = K1 ⊕ Δ. Related-key attacks offer more freedom compared
to other attacks but can be more challenging to implement. Resistance to such
attacks is crucial, as exemplified by the design goals of AES cipher. This paper
employs differential attacks and boomerang attacks in a related-key context.

Related-Key Differential Cryptanalysis. Differential cryptanalysis is an ef-
fective method for analyzing and attacking symmetric-key ciphers by examining
the differences between pairs of plaintexts and ciphertexts, known as “differ-
ential”. Introduced by Biham and Shamir [13] in 1990, this technique seeks to
identify specific patterns in these differences, termed “differential characteris-
tics”, that are unique to the encryption algorithm. By studying these patterns,

cryptanalysts can infer the internal state of the cipher and, with sufficient data,
uncover the secret key. This approach can lead to distinguishing attacks and
key-recovery attacks.

In related-key attack settings, an attacker can establish or enforce a relation-
ship between multiple keys and has access to the corresponding encryption and
decryption functions for all these keys. Consider a tuple (Δin, ΔK , Δout) as an n-
round related-key differential for a keyed round function ƒK , where ƒ 

K
represents

the output after the -th round for  = 0,1, . . . , n−1. This differential is valid if,
for some plaintext P and key K, the equation ƒn−1K (P)⊕ ƒn−1K⊕ΔK (P⊕ Δin) = Δout

holds. Let S
P,K

denote the internal state of the round function at round  with
inputs P and K. The tuple (Δin, ΔK , ΔS0, . . . , ΔSn−1 = Δout) is an n-round
related-key differential characteristic if (Δin, Δout, ΔK) is an n-round related-
key differential and for all , S

P,K
⊕ S

P⊕Δin,K⊕ΔK
= ΔS.

Let p = Pr[(Δin, ΔK)→ Δout] represent the probability that the related-key
differential (Δin, ΔK , Δout) holds. This implies that if 1

p number of plaintexts P
and keys K are selected uniformly at random, the equation ƒK (P) ⊕ ƒK⊕ΔK (P ⊕
Δin) = Δout will be satisfied at least once.

Related-Key Boomerang Attack. The boomerang attack, introduced by
Wagner in [47], is a differential cryptanalysis method that combines two high-
probability differentials to enhance the chances of breaking a cipher. This is de-
scribed in Figure 5a. For a block cipher E = E1 ◦E0, with differentials Δ0

p
−→ Δ1

for E0 and ∇0
q
−→ ∇1 for E1, the attack checks if differential relationships hold,

with an expected probability of success given by:

Pr(E−1(E() ⊕ ∇1) ⊕ E−1(E( ⊕ Δ0) ⊕ ∇1) = Δ0] = p2 · q2.

The procedure for mounting the distinguisher in adaptive settings is as follows:

1. Request the ciphertexts C0 = E(P0) and C1 = E(P1), where P1 = P0⊕ Δ0.
2. Request the plaintexts P2 = E−1(C2) and P3 = E−1(C3), where C2 =
C0 ⊕ ∇1 and C3 = C1 ⊕ ∇1.

3. Verify if P2 ⊕ P3 = Δ0.

To amplify this attack, the amplified boomerang attack [27] was proposed
which works in a non-adaptive (chosen-plaintext attack) scenario. In this attack,
the expected probability to get a right quartet will be p2 ·q2 ·2−n. Furthermore,
in [10, 11], they have pointed out that any value of Δ1 and ∇0 can be considered
as long as Δ1 ̸= ∇0. As a result, the probability of the right quartet is increased

to 2−n · p̂2 · q̂2, where p̂ =
√

√

∑


Pr2(Δ0 → Δ1) and q̂ =

√

√

∑

j
Pr2(∇j0 → ∇1).

Note that this amplification can be done in the adaptive setting to increase the
probability to p̂2 · q̂2 from p2 ·q2. The sandwich attack [22] further refines this
approach by decomposing the cipher into three parts and using the Boomerang
Connectivity Table [20] (BCT) to systematically analyze the connections between

P0

P1

P2

P3∆0

∆0

E0

E0

E0

E0

∆1
∆1

E1

E1

E1

E1

C0

C1

C2

C3

∇0

∇0

∇1

∇1

(a) Boomerang

P0

P1

P2

P3

K0

K1

α
α

β

β K2

K3
∆0

∆0

E0(K0)

E0(K1)

E0(K2)

E0(K3)

∆1
∆1

E1(K0)

E1(K1)

E1(K2)

E1(K3)

C0

C1

C2

C3

∇0

∇0

∇1

∇1

(b) Related-key Boomerang

Fig. 5: The Boomerang Framework

input and output differences, improving the probability approximation of the
distinguisher.

The related-key boomerang attack [12], depicted in Figure 5b, utilizes both
key and plaintext differences. It assumes that the upper sub-cipher E0 follows
a differential characteristic Δ0

p
−→ Δ1 under a key difference α = K0 ⊕ K1 =

K2⊕K3, while the lower sub-cipher E1 has a differential characteristic ∇0
q
−→ ∇1

under a key difference β = K0 ⊕ K2 = K1 ⊕ K3. A related-key distinguisher is
built using four different unknown keys: K0, K1 = K0 ⊕ α, K2 = K0 ⊕ β, and
K3 = K1 ⊕ β. The related-key boomerang distinguisher in the adaptive scenario
is executed as follows:

1. Request the ciphertext pairs (C0, C1), where C0 = EK0(P0) and C1 =
EK1(P1), with P0 ⊕ P1 = Δ0, K0 ⊕ K1 = α.

2. Request the plaintexts pairs (P2, P3), where P2 = E−1K2 (C2) and P3 =

E−1K3 (C3), with K2 ⊕ K3 = α,C2 = C0 ⊕ ∇1 and C3 = C1 ⊕ ∇1.
3. Verify if P2 ⊕ P3 = Δ0.

4 Mixed-Integer Linear Programming models

Mixed-integer linear programming (MILP) has been successfully utilized to de-
velop automated search algorithms for differential and linear cryptanalysis. Two
primary modeling approaches exist for implementing ciphers: the word-oriented
model and the bit-oriented model. In the word-oriented model, the cipher state
is treated as a sequence of words, with each word represented as a binary vari-
able. In contrast, the bit-oriented model represents each bit of the cipher state
as a binary variable, ensuring the generation of the most optimal and valid
differential characteristics without any inconsistencies in the trail. The MILP

constraints introduced in Mouha et al.’s method are insufficient to fully capture
the differential propagation behavior in linear diffusion layers built from non-
MDS codes. In [42], the authors first proposed a bit-oriented model specifically
for SPN ciphers that utilize bit permutation-based linear layers.

In this section, we model the FUTURE cipher components as constraints
to construct a bit-based MILP model for analyzing differential characteristics.
To build this model, the S-box, permutation, and matrix multiplication over a
finite field are represented by linear inequalities with binary variables. In [26],
the authors present a bit-based MILP model for the FUTURE cipher aimed
at searching for single-key differential and linear characteristics. However, the
details provided are incomplete, particularly regarding the generation of linear
inequalities for the S-box and the conversion of the MDS matrix to a binary ma-
trix using the companion matrix representation. By employing linear inequalities,
one can construct a comprehensive bit-based MILP model that automatically
identifies differential characteristics.

4.1 Constraints for SubCell Operation

For differential cryptanalysis using bit-based MILP, the goal is to generate a
minimal number of constraints involving input and output bits of an S-box to
capture the actual behavior of the differences according to the difference distri-
bution table (DDT). Let us assume that, (0, . . . , n−1) and (y0, . . . , yn−1)
represent the input and output bit differences of an n×n S-box respectively. The
problem corresponds to modeling the fact that (0, . . . , n−1)→ (y0, . . . , yn−1)
is a possible difference transition in a DDT. In this regard, two different ap-
proaches were proposed in 2014 by Sun et al. [44, 43]. The first is a geometrical
one and consists of computing the H-representation of the convex hull of the set
of possible transitions. The second one is based on logical condition modeling.
The first approach is to use the Sagemath inequality generator by taking all
the valid difference transition points from the DDT and it generates the num-
ber of linear inequalities which satisfies all the valid difference transition points.
However, the number of inequalities using Sagemath is typically quite high with
many redundant inequalities. The authors of [44] applied a greedy algorithm to
reduce the number of constraints. In this approach, the algorithm adds to the
solution set the best possible inequality which can remove the highest number
of impossible difference transition points among those that have not been re-
moved yet. Later, Sasaki and Todo in [37] proposed a new reduction algorithm
to further reduce the number of constraints compared to the greedy approach.
They proposed to model the problem of minimizing the set of inequalities that
remove all the impossible difference transition points as a MILP problem itself
and solve it by some solver. More precisely, their method consists of assigning
a binary variable z to each inequality in which z = 1 denotes that inequality
 is included in the system. Then for each impossible difference transition point
j, add the corresponding constraints in the list Lj which leads to the inequality
as
∑

∈Lj
z ≥ 1. Finally, the MILP solver is used for minimizing

∑

 z giving a
solution to optimize the constraints to capture the DDT of an S-box. However,

Algorithm 1 Revised Boura et al.’s Approach to Compute a Set of Inequalities
from DDT of an S-box.
1: procedure ComputeConstraints(VDP , k(≥ 2))
2: Hset ← inequality_generator(VDP)
3: Cset ←Hset
4: Dset ← {}
5: for all α ∈ VDP do
6: Hα

set
= {C ∈Hset |C(α) = 0}

7: for all Hα
set

, α ∈ VDP do
8: if k ≥ |Hα

set
| then

9: for all {C1, · · · , Ck} ⊆ Hα
set

do
10: Cne = C1 + · · · + Ck
11: Add Cne into Dset

12: for all constraints C ∈Hset ,1 ≤  ≤ |Hset | do
13: Construct the set S = {β ∈ IDP |C(β) < 0}
14: L = [S1, · · · , S|Hset |] ▷ A list of sets
15: for all constraints Cj ∈ Dset ,1 ≤ j ≤ |Dset | do
16: Construct the set S = {β ∈ IDP |Cj(β) < 0}
17: if ̸ ∃ any S from L such that S ⊆ S then
18: Add S in the list L
19: Add Cj in Cset
20: Apply Sasaki et al.’s [37] approach from Cset to finally get the optimal number

of constraints to capture the DDT of S-box

there are other works [46, 28, 34] that further reduce the number of constraints
to capture DDT of S-box by proposing new approaches to generate additional
inequalities, surpassing the Sagemath inequality generator or using Boura et al.’s
approach. In this work, we follow the method outlined by Boura et al. [18] to
generate the constraints that capture the DDT of a FUTURE S-box. The DDT
of the FUTURE S-box is provided in Table 3a (in Appendix A). The algorithm
presented by Boura et al. [18, Algorithm 1] for deriving a set of inequalities from
the DDT of an S-box lacks certain details. Specifically, in step 7, the authors
state that if Cne removes a new set of impossible transitions, Cne should
be added as new constraints to capture the DDT of the S-box. However, the
precise meaning of Cne is unclear. It is not explicitly explained whether the
set S of impossible transitions from Cne should contain elements distinct from
the elements of S, for all , where each S is a set of impossible transitions for
every constraint in Cset. To clarify this, we revisited their approach and out-
lined the complete steps necessary to generate the S-box constraints based on
our understanding.

Suppose, a difference transition  → y, , y ∈ F42 through the S-box can be
seen as a vector of F2n2 , involving 2n binary variables represented as (0, . . . , n−1,
y0, . . . , yn−1) or as (0, . . . , 2n−1). Let VDP and IDP denote a set of valid
and impossible difference transition points according to the DDT of FUTURE

S-box. For example, 012 ∈ VDP and 011 ∈ IDP are the valid and in-
valid difference points according to the DDT in Table 3a. Given VDP to the
inequality_generator() function in the sage.geometry.polyhedron class of
Sagemath returns a list of inequalities as the H-set representation of the convex
hull of all possible transitions in a DDT. For FUTURE S-box, we get returns
214 inequalities. We denote this list of inequalities as Hset. This set Hset has the
following properties: (1.) each α ∈ VDP must satisfy all the constraints in Hset
and (2.) each β ∈ IDP will not be satisfied by at least one of the constraints in
Hset. The interesting point here is that the addition of any number of constraints
always maintains the above two properties. Although, adding the constraints by
choosing all the subsets (of cardinality k) of constraints from Hset and then
append it to Hset can increase the list Hset remarkably high. Instead, for each
α ∈ VDP, the authors choose the constraints from Hset which satisfies by the
point α and store them in another list Hα

set
. Then, for each set Hα

set
, choose

�|Hα
set
|

k

�

constraints, denoted C1, . . . , Ck , and add Cne = C1+ · · ·+Ck to a set
Dset. A list of sets, L, is constructed, where each entry contains the impossible
transition points for each constraint in Dset. Finally, the constraints from Dset
are filtered and added to L, ensuring that the set of impossible transition points
S is not a subset of any set already in L. After this filtration, Sasaki and Todo’s
method is applied to the selected constraints to generate the optimal constraints
for capturing the DDT of the S-box. These steps are detailed in Algorithm 1.

Using this algorithm with k = 2, we obtain 971 constraints for Cset and
ultimately reduce this to 17 constraints using Sasaki et al.’s approach. In com-
parison, according to [18, Algorithm 1], the authors generated approximately
500 constraints for the Present S-box with k = 2, which were reduced to 17
constraints using Sasaki et al.’s method. However, by applying the revised ap-
proach outlined in Algorithm 1, we generated 1138 constraints for Cne for the
Present S-box, which were similarly reduced to 17 constraints using Sasaki et
al.’s method. Using the revised Algorithm 1, we obtained 17 constraints for both
the FUTURE and Present S-boxes to capture the DDT. These constraints
are depicted in Figure 16 and Figure 17 (in Appendix A), respectively.

4.2 Constraints for MixColumn Operation

For word-based MILP modeling, Mouha et al. [31] modeled the MixColumn ma-
trix multiplication using its branch number, i.e., a lower bounds on the number of
active S-boxes. Whereas for a bit-based model, an MDS (or near MDS) matrix
μ must be converted to a binary matrix over the base field F2, which is called
the primitive representation of M. In [40], the authors give a short description
of the primitive representation of μ using a companion matrix. However, in [41],
Sun et al. provided a method to obtain a primitive representation using linear
maps with matrix representation. In this work, we thoroughly explore how to ef-
ficiently compute a primitive representation of μ using a companion matrix that
is compatible with the cipher’s bit format, whether it follows a least significant
bit (LSB) to the most significant bit (MSB) order or an MSB to LSB order.

Finally, to model matrix multiplication in MILP, we might need several binary
XOR operations.

For 1-XOR operation, c = ⊕b, , b, c ∈ {0,1}, Mouha et al. [31] modeled
it using 4 constraints and 3 variables as +b+ c ≥ 2d1, d1 ≥ , b, c, where d1
is a dummy variable. Similarly, for d = ⊕ b⊕ c, , b, c, d ∈ {0,1}, known as
a 2-XOR operation, the approach requires 8 constraints and 5 variables. Yin et
al. [48] showed a method to model it using 8 constraints and 4 variables. However,
Fu et al. [23] efficiently model the 1-XOR operation using only one constraint
+b+c+d = 2d1, , b, c, d, d1 ∈ {0,1}. Based on this approach, the authors
in [26] extend this approach to model the n-XOR operations 0⊕. . .⊕n−1 = b,
as follows.

0 + . . . + n−1 + b =
§

(n + 2)d1 − (nd2 + (n − 2)d3 + . . . + 2d n
2 +1
) if n is even

(n + 1)d1 − ((n − 1)d2 + (n − 3)d3 + . . . + 2d n−1
2 +1) if n is odd

In our model, we adopt this approach for n-XOR operations for MixColumn
matrix multiplication. In FUTURE cipher, the multiplication by 4 × 4 MDS
matrix μ is performed over GF(24), defined by the primitive polynomial 4++
1. Let, α be a primitive element, serving as a root of the polynomial 4+ + 1.
The MDS matrix m includes field elements 1, 2, 3, 8, and 9 from GF(24).
To model the multiplication by μ for bit-oriented MILP, we need to convert the
4 × 4 MDS matrix μ over GF(24) into a primitive representation of μ, i.e., a
16 × 16 binary matrix over the base field F2. Using linear maps with matrix
representation, the authors [26] express the corresponding 4×4 binary matrices
of these field elements in Figure 6.

1 =







1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1






, 2 =







0 1 0 0
0 0 1 0
1 0 0 1
1 0 0 0






, 3 =







1 1 0 0
0 1 1 0
1 0 1 1
1 0 0 1






, 8 =







1 0 0 1
1 1 0 0
0 1 1 0
0 0 1 0






, 9 =







1 1 0 0
0 1 1 0
1 0 1 1
1 0 0 1







Fig. 6: 4 × 4 binary matrix representation of the field elements in μ

Note that, the primitive representation of μ by replacing the corresponding
field elements 1, 2, 3, 8, and 9 is compatible with cipher representation from
MSB to LSB. However, this primitive representation would not be compatible
with the cipher representation from LSB to MSB. Here we will describe how to
construct the primitive representation of μ using a companion matrix to model
the cipher which would be compatible in both ways. We know that 2 = 0010 ∈
GF(24) is the root α of the primitive polynomial 4 +  + 1 over Gƒ (24).
Let us assume that, the state of the cipher represented from MSB to LSB, i.e.,
S = s63||s62|| . . . ||s0. In this case, the companion matrix representation of α
of the monic primitive polynomial c0 + c1 + c22 + c33 + 4, c ∈ F2 can

be written as

2 = α =







c3 1 0 0
c2 0 1 0
c1 0 0 1
c0 0 0 0






=







0 1 0 0
0 0 1 0
1 0 0 1
1 0 0 0






with 1 = α0 =







1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1






.

The other field elements of μ can be computed as

3 = α + 1 =







1 1 0 0
0 1 1 0
1 0 1 1
1 0 0 1






,8 = α3 =







1 0 0 1
1 1 0 0
0 1 1 0
0 0 1 0






,9 = α3 + 1 =







1 1 0 0
0 1 1 0
1 0 1 1
1 0 0 1






.

Thus the 16× 16 binary matrix M1, representing the primitive form of μ, cor-
responds to the cipher’s bit representation from MSB to LSB over F2 is given in
Figure 13 (in Appendix A). On the other hand, if the cipher is represented from
LSB to MSB, i.e., S = s0||s1|| . . . ||s63, then the companion matrix representa-
tion of α of the monic primitive polynomial c0+c1+c22+c33+4, c ∈ F2
can be written as

2 = α =







0 0 0 c0
1 0 0 c1
0 1 0 c2
0 0 1 c3






=







0 0 0 1
1 0 0 1
0 1 0 0
0 0 1 0






with 1 = α0 =







1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1






.

Similarly, the other field elements of μ can be computed as

3 = α + 1 =







1 0 0 1
1 1 0 1
0 1 1 0
0 0 1 1






,8 = α3 =







0 1 0 0
0 1 1 0
0 0 1 1
1 0 0 1






,9 = α3 + 1 =







1 1 0 0
0 0 1 0
0 0 0 1
1 0 0 0






.

Thus the 16× 16 binary matrix M2, serving as the primitive representation
of μ, corresponds to the bit order from LSB to MSB over F2 is given in Figure 13
(in Appendix A). Apart from these two companion matrix representations, using
any other form of companion matrix in the model either by transposing it or by
reordering the rows/columns of the above two matrices would not be compatible
with the cipher representation. This is because altering the companion matrix
used to construct the primitive representation M would change the bit sequences.
As a result, multiplying M (a 16 × 16 matrix) by the state (a 16 × 4 matrix)
would not produce a correct state consistent with the cipher’s structure.

Finally, the 4×4 state matrix of FUTURE cipher can be further deduced to
16×4 binary matrix. Let, the 16-bit column vectors as y = (y0, y1, · · · , y15)T
and t = (t0, t1, · · · , t15)T , where t = M · y. The 16 constraints corresponding
to one column transformation of the state after the MixColumn operation are
given in Figure 14 (see Appendix A). Therefore, for all four columns of the
state, a total of 16 ·4 = 64 constraints are required to represent the differential
propagation through the MixColumn operation.

4.3 Constraints for ShiftRow Operation

The ShiftRow operation performs a row-wise shift at the nibble level, which
can be represented as a bit-wise permutation π : {0,1}64 → {0,1}64. To
model this operation, the binary variables resulting from the MixColumn step
are permuted by ShiftRow. After that, 64 new binary variables are introduced
and assigned to these permuted values. If  and y represent the input and
output binary variables respectively, the constraint y = π() is added to the
MILP model. To reduce the number of constraints, the output binary variables
can be directly permuted according to the ShiftRow bit-wise permutation π while
modeling the MixColumn operation.

4.4 Constraints for AddRoundKey Operation

The AddRoundKey operation directly XORs the state bits with the round keys.
In the bit-oriented related-key model, the state difference is XORed directly with
the sub-key difference. To model the XOR operation between the key and state
differences (c =  ⊕ b), we use the following constraints without introducing
dummy variables: c ≥  − b, c ≥ b − , c ≤  + b, c ≤ 2 −  − b.

4.5 Construction of the Objective Function

The objective function of an MILP model can be designed to minimize the
number of active S-boxes. In a bit-oriented MILP model, there will be no in-
consistencies in the propagation of bit differences through rounds, provided the
S-box constraints accurately represent its DDT. To account for an active S-box
in a bit-based model, we introduce a dummy variable along with four additional
constraints for each S-box. Let the input bit differences of an S-box be repre-
sented by (δ3, δ2, δ1, δ0) and define a new binary dummy variable, d0.
This dummy variable d0 will determine whether the S-box is active or inactive

based on the following constraints:
n−1
∑

=0
δ ≥ d0, d0 ≥ δ,  = 0,1,2,3. The

objective function is then to minimize the sum of the dummy variables d for
each S-box position in the rounds. To calculate the probability of the differen-
tial trail produced by the model, the probability of each active S-box from the
DDT must be checked, and the overall probability of the differential charac-
teristic is obtained by multiplying these values. For a clearer understanding of
the MILP model applied to the FUTURE cipher, we provide our MILP model
implementation in [2].

5 Results

This section presents an analysis of the differential characteristics of FUTURE
in the related key attack setting. The differential characteristics are determined
using the methodology in Section 4.

Algorithm 2 Distinguishing Attack against FUTURE Reduced to 8 Rounds
1: procedure Distinguisher((ΔP = 00000800011800008,ΔSK0 =

00000800011800008, ΔSK1 = 00000020000200002)
8 round differential−−−−−−−−−−−−→ ΔC = 0014420000899108)

2: Randomly choose a key K = SK0||SK1
$
←− {0,1}128.

3: Form another key K
′
= K ⊕ ΔSK0||ΔSK1. ▷ Steps 2 and 3 are chosen by the

oracle.
4: Choose 263 distinct plaintexts P,  = 1,2, . . . ,263

5: for  = 1 to 263 do
6: Query P to the encryption oracle under the key K and obtain the

corresponding ciphertext C = EK (P).
7: Query P

′

 = P ⊕ ΔP to the encryption oracle under the key K
′

and obtain
the corresponding ciphertext C

′

 = EK ′ (P
′

).
8: if C ⊕ C

′

 == ΔC then
9: Return 1 ▷ The oracle is the FUTURE reduced to 8 rounds.

10: Return 0 ▷ The oracle is a random permutation.

5.1 Related-Key Differential Distinguishers

To search for the differential characteristics of FUTURE in the related-key set-
ting, we constructed an MILP model using the Gurobi Python API [1]. The
necessary constraints for building the model across rounds are outlined in Sec-
tion 4. A summary of the related key characteristics for different rounds, along
with their probabilities, is presented in Table 2. This model enables us to search
for related-key differential characteristics up to 7 rounds. However, due to the
large number of constraints and variables, the model struggles to complete the
search for 6 and 7 rounds. For the 7-round case, we identified several differential
characteristics with 22 active S-boxes and a probability of approximately 2−48.
The 7-round differential characteristic is shown in Figure 15 in Appendix ??. To
confirm the individual probabilities for each S-box, the DDT, and inverse DDT
are provided in Table 3a and Table 3b, respectively. Additionally, we identified
three distinct clustering effects for the 7-round differential characteristic (see
Table 2) from 50 different solutions generated by the model, where the charac-
teristics share the same input and output. This clustering further increases the
probability of the differential characteristic to 3 · 2−48 ≈ 2−46.4. Furthermore,
for 8 rounds, the solver could not reach a near-optimal solution due to the large
number of constraints and variables. Therefore, we extended the 7-round dif-
ferential characteristic by adding an additional round. Using the MILP model,
we verified that seven S-boxes are active in the final round, with a probabil-
ity of 2−17. Consequently, the overall probability for the 8-round differential
characteristic becomes 2−46.4 · 2−17 = 2−63.4. This can be directly leveraged
to mount an attack on the security notion of indistinguishability against FU-
TURE reduced to 8 rounds. The attack procedure is detailed in Algorithm 2.
In this distinguisher, the attacker requires 263 plaintext pairs, effectively ex-
hausting the entire plaintext space. The offline time complexity amounts to 263

XOR operations. The attack does not necessitate storing intermediate values,
except for one ciphertext when C⊕C

′


= ΔC is satisfied. Therefore, the memory

complexity is minimal, or effectively negligible.

Experimental Verification. As previously mentioned, the bit-oriented MILP
model guarantees no inconsistencies in the solutions it returns. In our exper-
iments, we successfully verified differential characteristics with a probability
greater than 2−32. The implementation used to verify these characteristics is
available in [2].

Fig. 7: Eight Round Related Key Differential Characteristic of FUTURE Cipher

5.2 Related Key Boomerang Distinguisher

In this section, we construct boomerang distinguishers for FUTURE over differ-
ent rounds. Using our automated search model, we identify two distinct related-
key differential characteristics for five rounds each, corresponding to the up-
per and lower halves of the boomerang. These characteristics have probabil-

ities of 2−14 and 2−16, respectively. For clarity, let Δ0
Upper Tr
−−−−−−−→ Δ1 and

∇0
Loer Tr−−−−−−−→ ∇1 denote the differential characteristics for the upper and lower

five rounds of the full boomerang, respectively. Additionally, let α and β rep-
resent the differences in the round keys of the upper and lower trails. The full
round boomerang structure is illustrated in Figure 8. Thus, the distinguishing
probability for this boomerang is given by (2−14)2 · (2−16)2 = 2−60. , which
can be utilized to perform a distinguishing attack on the full-round FUTURE
cipher under adaptively chosen plaintext and ciphertext (ACPC) settings. The
detailed attack procedure is presented in Algorithm 3. In this distinguisher, the

#Rounds
#Active Differential

Probability
S-box Input Differences Output Difference

4 2
ΔP = 02300 0010 0001 0000

ΔC = 00000 4000 0440 008c 2−5ΔK0 = 02300 0010 0001 0000

ΔK1 = 00004 0000 0000 0000

5 6
ΔP = 01201 01c0 0000 0000

ΔC = 00008 0000 8000 0802 2−14ΔK0 = 00000 01c0 0000 0000

ΔK1 = 00000 0200 0020 0002

6 11
ΔP = 0c840 0000 0000 0005

ΔC = 00200 0010 0001 d420 2−27ΔK0 = 0c840 0000 0000 0005

ΔK1 = 00000 0000 0000 2480

7 22
ΔP = 00000 8000 1180 0008

ΔC = 00000 0007 1002 0000 2−48ΔK0 = 00000 8000 1180 0008

ΔK1 = 00000 0000 000b 0000

8 22
ΔP = 00000 8000 1180 0008

ΔC = 00144 200 0089 9108 2−63.4ΔK0 = 00000 8000 1180 0008

ΔK1 = 00000 0000 000b 0000

Table 2: Related Key Differentials for Different Rounds of FUTURE using Bit-
Oriented MILP Model

attacker needs 260 plaintext pairs, which corresponds to 261 plaintexts in to-
tal. The offline time complexity is 2 · 260 = 261 XOR operations. The attack
does not require storing intermediate values, except for one plaintext P when
P2 ⊕ P


3 = Δ0 is satisfied. As a result, the memory complexity is negligible.

Checking Incompatibilities in the Boomerang. In boomerang-style at-
tacks, selecting compatible differential characteristics for E0 and E1 is crucial,
as independent choices can lead to incompatibility and reduce the probability
of generating a right quartet to zero. Murphy [32] highlighted that dependen-
cies between characteristics can benefit attackers. Biryukov et al. introduced
the middle-round S-box trick [14], and later Biryukov and Khovratovich [15]
proposed techniques like the ladder and S-box switch to improve probabilities.
These ideas were formalized by Dunkelman et al. as the sandwich attack [22],
which divides the cipher into three parts, enhancing the overall probability. Fur-
ther, to evaluate the middle part efficiently and systematically, the authors [20]
introduced a boomerang connectivity table (BCT) for a single round.

Suppose that the middle layer at the fourth round of the given boomerang
(Figure 8) is composed of 16 S-box layers independently. For more clarity, we
only chose one s-box layer which is depicted in Figure 9. According to Figure 9,
the BCT [20] is defined in the following way.

BCT(Δ,∇o) = { ∈ {0,1}4 : S−1(S()⊕∇o)⊕S−1(S(⊕Δ0)⊕∇o) == Δ0}.

This BCT provides a unified representation of existing observations on checking
the inconsistency as well as the dependencies to further increase the probability
of the boomerang for a single round.

Incompatibility. Incompatibility occurs when, as shown in Figure 9, the
boomerang connection table (BCT) entry BCT(Δ,∇o) = 0, meaning the

Fig. 8: Full Round Boomerang Distinguisher

Fig. 9: Single S-box Layer in the Middle of the Boomerang

boomerang cannot be formed. If BCT(Δ,∇o) ̸= 0, the differential charac-
teristics are compatible to form the quartet for the boomerang.

Ladder Switch. The ladder switch, introduced in [15], occurs when Δ ̸=
0 and ∇o = 0, resulting in BCT(Δ,∇o) = 24, i.e., Pr[Δ

′


= Δ] = 1. Ge-

ometrically, when ∇o = 0, the upper planes coincide, and the input pairs
(3, 4) on the opposite plane are directly replaced by (1, 2). In a similar
fashion, if Δ = 0 and ∇o ̸= 0, the lower planes coincide, and the input pairs
(y1, y3) on the opposite plane are directly replaced by (y2, y4).

Algorithm 3 Boomerang Distinguishing Attack against the FUTURE Cipher
1: procedure Distinguisher((Δ0, Δ1,∇0,∇1, α, δ))

2: Randomly choose a key K0
$
←− {0,1}128. ▷ Steps 2 and 3 are chosen by the

oracle.
3: Form another keys K1 = K0 ⊕ α,K2 = K0 ⊕ β, and K3 = K0 ⊕ α ⊕ β.
4: Choose 260 distinct plaintext pairs as (P0, P


1 ⊕ Δ0),  = 1,2, . . . ,260

5: for  = 1 to 260 do
6: Query P0 to the encryption oracle under the key K0 and obtain the

corresponding ciphertext C0 = EK0 (P

0).

7: Query P1 = P

0 ⊕ Δ0 to the encryption oracle under the key K1 and obtain

the corresponding ciphertext C1 = EK1 (P

1).

8: Compute C2 = C

0 ⊕ ∇1 and C3 = C


1 ⊕ ∇1.

9: Query C2 to the decryption oracle under the key K2 and obtain the
corresponding plaintext P2 = EK2 (C


2).

10: Query C3 to the decryption oracle under the key K3 and obtain the
corresponding plaintext P3 = EK3 (C


3).

11: if P2 ⊕ P

3 == Δ0 then

12: Return 1 ▷ The oracle is the FUTURE cipher.
13: Return 0 ▷ The oracle is a random permutation.

S-box Switch. The S-box switch, introduced in [15], occurs when DDT(Δ, Δo) ̸=
0 and Δo = ∇o, resulting in BCT(Δ,∇o) = DDT(Δ, Δo), i.e., Pr[Δ

′


=

Δ] =
DDT(Δ,Δo)

24
. Geometrically, when Δo = ∇o, the upper planes inter-

change their input pairs, i.e., the input pairs (3, 4) on the opposite plane
are directly replaced by (2, 1), consistent with DDT(Δ, Δo).

Based on the switch techniques and the BCT, we verified the compatibility of
the full round boomerang distinguisher shown in Figure 8. In this distinguisher,
the S-box layer in the fifth round (Round 4) is chosen as the middle layer. We
examine the state difference at the Round 4 S-box layer for the upper differential
trail and the state difference at the Round 5 S-box layer for the lower trail. This
setup is illustrated in Figure 10. As shown, only the third S-box is active in the
upper trail, while all S-box nibbles are active in the lower trail. Consequently, all
nibbles except the third in the middle layer fall under the ladder switch category,
resulting in a probability of 1. For the third nibble position, Δ = 007 and
∇o = 00c, where we confirmed that BCT(007,00c) = 2, validating the
compatibility of our differential characteristics to form the full-round boomerang
distinguisher.

Refinements to the Boomerang Distinguisher. In the previous paragraph,
we demonstrated the compatibility of the two differential characteristics neces-
sary to form a full-round boomerang using middle-round switch effects. Now,

we will delve into a more detailed analysis of how these switching effects can
be leveraged to significantly enhance the boomerang probability. As shown in
Figure 10, there are three active S-boxes at positions 12, 14, and 15 in the
lower trail during round 5. Tracing this lower trail backward, the first column
((0,0,0,8)T) contains a single active nibble, 008, at the third position fol-
lowing the inverse ShiftRow operation. This nibble difference, 008, arises from
the difference 009 after the inverse S-box operation in round 5. Notably, the
other two active S-boxes in round 5 do not impact the first column after the
inverse ShiftRow and MixColumn operations, as depicted in Figure 11.

Fig. 10: Middle Round Switching Effects

According to the Figure 11, if we chose all possible differences δ from 09

through S-box inverse, i.e., 09
nerseDDT−−−−−−−−→ {01,07,08,0,0c,0e}

(see Table 3b), we get different δ3(= η3) ∈ {0c,08,0d,0ƒ ,0,09}
through inverse ShiftRow and MixColumn operations. Finally, we checked that
if δ3(= η3) ∈ {0c,0,09}, then BCT(ζ(= 07), η) ̸= 0. This demon-
strates that the two differential characteristics are compatible for forming the
quartet in the boomerang if the output differences are {08,0c,0e} from
the input difference 009 through the inverse S-box operation at round 5 (at
position 15 in the lower half). This increases the probability from 2−3 (=

Pr[09
S−1−−→ 08]) to 2−1. Furthermore, any possible output differences from

the input differences 005 and 002 (i.e., Pr[05
S−1−−→ ∗] = 1,Pr[02

S−1−−→
∗] = 1) do not affect the first column after the ShiftRow and MixColumn in-
verse operations, increasing the probability from 2−5 to 1. Similarly, the out-
put difference corresponding to the active S-box at round 4 for the upper half
can be arbitrary, i.e., 07

DDT−−−→ ∗. This also increases the probability from
2−2 to 1. As a result, for the one lower half, the probability improves by
a factor of 27. Thus, for the two parallel lower halves, the probability im-
proves by a factor of (27)2 = 214. For upper halves, the probability improves
by a factor of (22)2 = 24. Additionally, we account for the probability that
BCT(7, δ3) ̸= 0 for the middle-round switch at the round 4 S-box operation.

Since δ3 ∈ 0c,0,09, the probability of BCT(7, δ3) ̸= 0 is lower bounded
by the minimum of their respective probabilities, i.e.,

Pr[BCT(7, δ3) ̸= 0] ≥
min{BCT(7,08),BCT(7,0),BCT(7,09)}

24

=
min{2,4,4}

24
= 2−3,

where BCT(7,08) = 2,BCT(7,0) = 4, and BCT(7,0c) = 4. Finally,
the refined probability for the boomerang becomes 24 ·214 ·2−60 ·2−3 = 2−45.
This scenario can be further mapped to a Sandwich attack (E = E1 ◦ Em ◦ E0)
with probability p̄2 ·r · q̄2, where p̄ = 2−12, r = 2−3, and q̄ = 2−9. As a result,
the data, time, and memory complexities of the distinguishing attack are reduced
to 246 plaintexts, 246 XOR operations, and negligible memory, respectively.

Fig. 11: Middle Round Switching Effects using Truncated Differences

Experimental Verification. For this boomerang distinguisher, we have ex-
perimentally verified both the upper and lower differential characteristics along
with their corresponding probabilities. The implementation used for verification
is provided in [2].

6 Conclusion and Future Works

In this work, we present a comprehensive implementation of bit-oriented MILP
models for the FUTURE lightweight block cipher in related-key settings. This
approach can be extended to model MDS (or near-MDS) based SPN ciphers in
the future. Utilizing this model, we explored related-key differential characteris-
tics across different rounds, identifying a seven-round differential characteristic
with a probability of 2−46.4. We further extended this characteristic by adding
an extra round, providing a distinguisher with data complexity of 264, time
complexity of 263 XOR operations, and negligible memory requirements. Addi-
tionally, we developed a full-round boomerang distinguisher with a probability

of 2−60 based on the round-reduced differential characteristics. By applying
a one-round middle switch effect, we refined the boomerang’s probability from
2−60 to 2−45. Consequently, the complexities of the attack are improved to 246
plaintexts, 246 XOR operations, and negligible memory.

In future work, it would be valuable to explore optimizing the probability of
the distinguisher, rather than focusing solely on the number of active S-boxes.
This could potentially enhance the overall probability of the distinguisher. Ad-
ditionally, recent advancements in automated tools for cryptanalysis present an
opportunity to develop a tool for conducting truncated differential and sand-
wich attacks, capturing more dependencies in the middle rounds, and further
improving the probabilities of differential and boomerang distinguishers. Lastly,
another interesting direction for future research would be to propose an efficient
key recovery attack based on the distinguishers presented in this work.

References

1. Linear Programming Formulation With Gurobi Python API.
https://www.gurobi.com/resources/ch4-linear-programming-with-python.

2. Unoptimized MILP Codes and Their Verifications using C.
https://drive.google.com/drive/folders/1e5wZ6wy5xd8AZUV1v7E2PtBUzAg5c91.

3. Roberto Avanzi. The QARMA block cipher family. almost MDS matrices over rings
with zero divisors, nearly symmetric even-mansour constructions with non-involutory
central rounds, and search heuristics for low-latency s-boxes. IACR Trans. Symmetric
Cryptol., 2017(1):4–44, 2017.

4. Subhadeep Banik, Andrey Bogdanov, Takanori Isobe, Kyoji Shibutani, Harunaga Hi-
watari, Toru Akishita, and Francesco Regazzoni. Midori: A block cipher for low energy.
In Tetsu Iwata and Jung Hee Cheon, editors, Advances in Cryptology - ASIACRYPT
2015 - 21st International Conference on the Theory and Application of Cryptology and
Information Security, Auckland, New Zealand, November 29 - December 3, 2015, Pro-
ceedings, Part II, volume 9453 of Lecture Notes in Computer Science, pages 411–436.
Springer, 2015.

5. Subhadeep Banik, Sumit Kumar Pandey, Thomas Peyrin, Yu Sasaki, Siang Meng Sim,
and Yosuke Todo. GIFT: A small present - towards reaching the limit of lightweight
encryption. In Wieland Fischer and Naofumi Homma, editors, Cryptographic Hardware
and Embedded Systems - CHES 2017 - 19th International Conference, Taipei, Taiwan,
September 25-28, 2017, Proceedings, volume 10529 of Lecture Notes in Computer Sci-
ence, pages 321–345. Springer, 2017.

6. Ray Beaulieu, Douglas Shors, Jason Smith, Stefan Treatman-Clark, Bryan Weeks, and
Louis Wingers. The SIMON and SPECK lightweight block ciphers. In Proceedings of
the 52nd Annual Design Automation Conference, San Francisco, CA, USA, June 7-11,
2015, pages 175:1–175:6. ACM, 2015.

7. Christof Beierle, Jérémy Jean, Stefan Kölbl, Gregor Leander, Amir Moradi, Thomas
Peyrin, Yu Sasaki, Pascal Sasdrich, and Siang Meng Sim. The SKINNY family of block
ciphers and its low-latency variant MANTIS. In Matthew Robshaw and Jonathan
Katz, editors, Advances in Cryptology - CRYPTO 2016 - 36th Annual International
Cryptology Conference, Santa Barbara, CA, USA, August 14-18, 2016, Proceedings,
Part II, volume 9815 of Lecture Notes in Computer Science, pages 123–153. Springer,
2016.

8. Christof Beierle, Gregor Leander, Amir Moradi, and Shahram Rasoolzadeh. CRAFT:
lightweight tweakable block cipher with efficient protection against DFA attacks. IACR
Trans. Symmetric Cryptol., 2019(1):5–45, 2019.

9. Eli Biham. New types of cryptanalytic attacks using related keys. J. Cryptol., 7(4):229–
246, 1994.

10. Eli Biham, Orr Dunkelman, and Nathan Keller. The rectangle attack - rectangling the
serpent. In Birgit Pfitzmann, editor, Advances in Cryptology - EUROCRYPT 2001,
International Conference on the Theory and Application of Cryptographic Techniques,
Innsbruck, Austria, May 6-10, 2001, Proceeding, volume 2045 of Lecture Notes in Com-
puter Science, pages 340–357. Springer, 2001.

11. Eli Biham, Orr Dunkelman, and Nathan Keller. New results on boomerang and rectan-
gle attacks. In Joan Daemen and Vincent Rijmen, editors, Fast Software Encryption,
9th International Workshop, FSE 2002, Leuven, Belgium, February 4-6, 2002, Revised
Papers, volume 2365 of Lecture Notes in Computer Science, pages 1–16. Springer, 2002.

12. Eli Biham, Orr Dunkelman, and Nathan Keller. Related-key boomerang and rectangle
attacks. In Ronald Cramer, editor, Advances in Cryptology - EUROCRYPT 2005,
24th Annual International Conference on the Theory and Applications of Cryptographic
Techniques, Aarhus, Denmark, May 22-26, 2005, Proceedings, volume 3494 of Lecture
Notes in Computer Science, pages 507–525. Springer, 2005.

13. Eli Biham and Adi Shamir. Differential cryptanalysis of des-like cryptosystems. In
Alfred Menezes and Scott A. Vanstone, editors, Advances in Cryptology - CRYPTO ’90,
10th Annual International Cryptology Conference, Santa Barbara, California, USA,
August 11-15, 1990, Proceedings, volume 537 of Lecture Notes in Computer Science,
pages 2–21. Springer, 1990.

14. Alex Biryukov, Christophe De Cannière, and Gustaf Dellkrantz. Cryptanalysis of
SAFER++. In Dan Boneh, editor, Advances in Cryptology - CRYPTO 2003, 23rd
Annual International Cryptology Conference, Santa Barbara, California, USA, August
17-21, 2003, Proceedings, volume 2729 of Lecture Notes in Computer Science, pages
195–211. Springer, 2003.

15. Alex Biryukov and Dmitry Khovratovich. Related-key cryptanalysis of the full AES-
192 and AES-256. In Mitsuru Matsui, editor, Advances in Cryptology - ASIACRYPT
2009, 15th International Conference on the Theory and Application of Cryptology and
Information Security, Tokyo, Japan, December 6-10, 2009. Proceedings, volume 5912
of Lecture Notes in Computer Science, pages 1–18. Springer, 2009.

16. Andrey Bogdanov, Lars R. Knudsen, Gregor Leander, Christof Paar, Axel Poschmann,
Matthew J. B. Robshaw, Yannick Seurin, and C. Vikkelsoe. PRESENT: an ultra-
lightweight block cipher. In Pascal Paillier and Ingrid Verbauwhede, editors, Crypto-
graphic Hardware and Embedded Systems - CHES 2007, 9th International Workshop,
Vienna, Austria, September 10-13, 2007, Proceedings, volume 4727 of Lecture Notes in
Computer Science, pages 450–466. Springer, 2007.

17. Julia Borghoff, Anne Canteaut, Tim Güneysu, Elif Bilge Kavun, Miroslav Knezevic,
Lars R. Knudsen, Gregor Leander, Ventzislav Nikov, Christof Paar, Christian Rech-
berger, Peter Rombouts, Søren S. Thomsen, and Tolga Yalçin. PRINCE - A low-latency
block cipher for pervasive computing applications - extended abstract. In Xiaoyun
Wang and Kazue Sako, editors, Advances in Cryptology - ASIACRYPT 2012 - 18th
International Conference on the Theory and Application of Cryptology and Informa-
tion Security, Beijing, China, December 2-6, 2012. Proceedings, volume 7658 of Lecture
Notes in Computer Science, pages 208–225. Springer, 2012.

18. Christina Boura and Daniel Coggia. Efficient milp modelings for sboxes and linear
layers of spn ciphers. IACR Transactions on Symmetric Cryptology, 2020(3):327–361,
2020.

19. Christophe De Cannière, Orr Dunkelman, and Miroslav Knezevic. KATAN and KTAN-
TAN - A family of small and efficient hardware-oriented block ciphers. In Christophe
Clavier and Kris Gaj, editors, Cryptographic Hardware and Embedded Systems - CHES
2009, 11th International Workshop, Lausanne, Switzerland, September 6-9, 2009, Pro-
ceedings, volume 5747 of Lecture Notes in Computer Science, pages 272–288. Springer,
2009.

20. Carlos Cid, Tao Huang, Thomas Peyrin, Yu Sasaki, and Ling Song. Boomerang con-
nectivity table: A new cryptanalysis tool. In Jesper Buus Nielsen and Vincent Rijmen,
editors, Advances in Cryptology - EUROCRYPT 2018 - 37th Annual International
Conference on the Theory and Applications of Cryptographic Techniques, Tel Aviv, Is-
rael, April 29 - May 3, 2018 Proceedings, Part II, volume 10821 of Lecture Notes in
Computer Science, pages 683–714. Springer, 2018.

21. Joan Daemen and Vincent Rijmen. The Design of Rijndael: AES - The Advanced
Encryption Standard. Information Security and Cryptography. Springer, 2002.

22. Orr Dunkelman, Nathan Keller, and Adi Shamir. A practical-time related-key attack on
the KASUMI cryptosystem used in GSM and 3g telephony. J. Cryptol., 27(4):824–849,
2014.

23. Kai Fu, Meiqin Wang, Yinghua Guo, Siwei Sun, and Lei Hu. Milp-based automatic
search algorithms for differential and linear trails for speck. In Fast Software En-
cryption: 23rd International Conference, FSE 2016, Bochum, Germany, March 20-23,
2016, Revised Selected Papers 23, pages 268–288. Springer, 2016.

24. Jian Guo, Thomas Peyrin, Axel Poschmann, and Matthew J. B. Robshaw. The LED
block cipher. In Bart Preneel and Tsuyoshi Takagi, editors, Cryptographic Hardware
and Embedded Systems - CHES 2011 - 13th International Workshop, Nara, Japan,
September 28 - October 1, 2011. Proceedings, volume 6917 of Lecture Notes in Computer
Science, pages 326–341. Springer, 2011.

25. Kishan Chand Gupta, Sumit Kumar Pandey, and Susanta Samanta. Future: a
lightweight block cipher using an optimal diffusion matrix. In International Conference
on Cryptology in Africa, pages 28–52. Springer, 2022.

26. Murat Burhan İlter and Ali Aydın Selçuk. Milp-aided cryptanalysis of the future block
cipher. In International Conference on Information Technology and Communications
Security, pages 153–167. Springer, 2022.

27. John Kelsey, Tadayoshi Kohno, and Bruce Schneier. Amplified boomerang attacks
against reduced-round MARS and serpent. In Bruce Schneier, editor, Fast Software
Encryption, 7th International Workshop, FSE 2000, New York, NY, USA, April 10-12,
2000, Proceedings, volume 1978 of Lecture Notes in Computer Science, pages 75–93.
Springer, 2000.

28. Ting Li and Yao Sun. Superball: A new approach for MILP modelings of boolean
functions. IACR Trans. Symmetric Cryptol., 2022(3):341–367, 2022.

29. Han Lin, Jian Zou, and Jiayin Li. The differential meet-in-the-middle attack on FU-
TURE and CRAFT. In Proceedings of the 2023 13th International Conference on
Communication and Network Security, ICCNS 2023, Fuzhou, China, December 6-8,
2023, pages 151–158. ACM, 2023.

30. Sandip Kumar Mondal, Mostafizar Rahman, Santanu Sarkar, and Avishek Adhikari.
Yoyo cryptanalysis on future. Int. J. Appl. Cryptogr., 4(3/4):238–249, 2024.

31. Nicky Mouha, Qingju Wang, Dawu Gu, and Bart Preneel. Differential and linear
cryptanalysis using mixed-integer linear programming. In Information Security and

Cryptology: 7th International Conference, Inscrypt 2011, Beijing, China, November
30–December 3, 2011. Revised Selected Papers 7, pages 57–76. Springer, 2012.

32. Sean Murphy. The return of the cryptographic boomerang. IEEE Trans. Inf. Theory,
57(4):2517–2521, 2011.

33. National Institute of Standards, Technology (NIST), and Quynh Dang. Secure hash
standard (shs), 2012-03-06 00:03:00 2012.

34. Debranjan Pal, Vishal Pankaj Chandratreya, and Dipanwita Roy Chowdhury. New
techniques for modeling sboxes: An MILP approach. In Jing Deng, Vladimir
Kolesnikov, and Alexander A. Schwarzmann, editors, Cryptology and Network Secu-
rity - 22nd International Conference, CANS 2023, Augusta, GA, USA, October 31 -
November 2, 2023, Proceedings, volume 14342 of Lecture Notes in Computer Science,
pages 318–340. Springer, 2023.

35. Ronald L. Rivest, Adi Shamir, and Leonard M. Adleman. A method for obtaining
digital signatures and public-key cryptosystems. Commun. ACM, 21(2):120–126, 1978.

36. Himadry Sekhar Roy, Prakash Dey, Sandip Kumar Mondal, and Avishek Adhikari.
Cryptanalysis of full round FUTURE with multiple biclique structures. Peer Peer
Netw. Appl., 17(1):397–409, 2024.

37. Yu Sasaki and Yosuke Todo. New algorithm for modeling s-box in milp based differ-
ential and division trail search. In Innovative Security Solutions for Information Tech-
nology and Communications: 10th International Conference, SecITC 2017, Bucharest,
Romania, June 8–9, 2017, Revised Selected Papers 10, pages 150–165. Springer, 2017.

38. André Schrottenloher and Marc Stevens. Simplified modeling of MITM attacks for
block ciphers: New (quantum) attacks. IACR Trans. Symmetric Cryptol., 2023(3):146–
183, 2023.

39. Kyoji Shibutani, Takanori Isobe, Harunaga Hiwatari, Atsushi Mitsuda, Toru Akishita,
and Taizo Shirai. Piccolo: An ultra-lightweight blockcipher. In Bart Preneel and
Tsuyoshi Takagi, editors, Cryptographic Hardware and Embedded Systems - CHES 2011
- 13th International Workshop, Nara, Japan, September 28 - October 1, 2011. Proceed-
ings, volume 6917 of Lecture Notes in Computer Science, pages 342–357. Springer,
2011.

40. Bing Sun, Zhiqiang Liu, Vincent Rijmen, Ruilin Li, Lei Cheng, Qingju Wang, Hoda
Alkhzaimi, and Chao Li. Links among impossible differential, integral and zero correla-
tion linear cryptanalysis. In Rosario Gennaro and Matthew Robshaw, editors, Advances
in Cryptology - CRYPTO 2015 - 35th Annual Cryptology Conference, Santa Barbara,
CA, USA, August 16-20, 2015, Proceedings, Part I, volume 9215 of Lecture Notes in
Computer Science, pages 95–115. Springer, 2015.

41. Ling Sun, Wei Wang, and Meiqin Wang. Milp-aided bit-based division property for
primitives with non-bit-permutation linear layers. IET Inf. Secur., 14(1):12–20, 2020.

42. Siwei Sun, Lei Hu, Ling Song, Yonghong Xie, and Peng Wang. Automatic security eval-
uation of block ciphers with s-bp structures against related-key differential attacks. In
Dongdai Lin, Shouhuai Xu, and Moti Yung, editors, Information Security and Cryp-
tology - 9th International Conference, Inscrypt 2013, Guangzhou, China, November
27-30, 2013, Revised Selected Papers, volume 8567 of Lecture Notes in Computer Sci-
ence, pages 39–51. Springer, 2013.

43. Siwei Sun, Lei Hu, Meiqin Wang, Peng Wang, Kexin Qiao, Xiaoshuang Ma, Dan-
ping Shi, Ling Song, and Kai Fu. Towards finding the best characteristics of some
bit-oriented block ciphers and automatic enumeration of (related-key) differential and
linear characteristics with predefined properties. Cryptology ePrint Archive, Paper
2014/747, 2014. https://eprint.iacr.org/2014/747.

44. Siwei Sun, Lei Hu, Peng Wang, Kexin Qiao, Xiaoshuang Ma, and Ling Song. Automatic
security evaluation and (related-key) differential characteristic search: application to
simon, present, lblock, des (l) and other bit-oriented block ciphers. In Advances in
Cryptology–ASIACRYPT 2014: 20th International Conference on the Theory and Ap-
plication of Cryptology and Information Security, Kaoshiung, Taiwan, ROC, December
7-11, 2014. Proceedings, Part I 20, pages 158–178. Springer, 2014.

45. Tomoyasu Suzaki, Kazuhiko Minematsu, Sumio Morioka, and Eita Kobayashi.
$\textnormal{\textsc{TWINE}}$: A lightweight block cipher for multiple platforms.
In Lars R. Knudsen and Huapeng Wu, editors, Selected Areas in Cryptography, 19th In-
ternational Conference, SAC 2012, Windsor, ON, Canada, August 15-16, 2012, Revised
Selected Papers, volume 7707 of Lecture Notes in Computer Science, pages 339–354.
Springer, 2012.

46. Aleksei Udovenko. MILP modeling of boolean functions by minimum number of in-
equalities. IACR Cryptol. ePrint Arch., page 1099, 2021.

47. David A. Wagner. The boomerang attack. In Lars R. Knudsen, editor, Fast Soft-
ware Encryption, 6th International Workshop, FSE ’99, Rome, Italy, March 24-26,
1999, Proceedings, volume 1636 of Lecture Notes in Computer Science, pages 156–170.
Springer, 1999.

48. Jun Yin, Chuyan Ma, Lijun Lyu, Jian Song, Guang Zeng, Chuangui Ma, and Fushan
Wei. Improved cryptanalysis of an ISO standard lightweight block cipher with refined
MILP modelling. In Xiaofeng Chen, Dongdai Lin, and Moti Yung, editors, Informa-
tion Security and Cryptology - 13th International Conference, Inscrypt 2017, Xi’an,
China, November 3-5, 2017, Revised Selected Papers, volume 10726 of Lecture Notes
in Computer Science, pages 404–426. Springer, 2017.

Appendix A

M1 =













































































1 0 0 1 0 0 0 1 1 0 0 0 1 0 0 1

1 1 0 0 1 0 0 0 0 1 0 0 1 1 0 0

0 1 1 0 0 1 0 0 0 0 1 0 0 1 1 0

0 0 1 0 0 0 1 1 0 0 0 1 0 0 1 0

1 1 0 0 0 1 0 0 0 0 0 1 0 0 0 1

0 1 1 0 0 0 1 0 1 0 0 0 1 0 0 0

1 0 1 1 1 0 0 1 0 1 0 0 0 1 0 0

1 0 0 1 1 0 0 0 0 0 1 1 0 0 1 1

0 1 0 0 1 1 0 0 1 0 0 1 0 0 0 1

0 0 1 0 0 1 1 0 1 1 0 0 1 0 0 0

1 0 0 1 1 0 1 1 0 1 1 0 0 1 0 0

1 0 0 0 1 0 0 1 0 0 1 0 0 0 1 1

0 0 0 1 0 0 0 1 1 0 0 1 1 0 0 0

1 0 0 0 1 0 0 0 1 1 0 0 0 1 0 0

0 1 0 0 0 1 0 0 0 1 1 0 0 0 1 0

0 0 1 1 0 0 1 1 0 0 1 0 0 0 0 1













































































Fig. 12: The Primitive Representation of μ When Cipher’s State is Represented
from MSB to LSB

M2 =













































































0 1 0 0 1 1 0 0 1 0 0 0 0 1 0 0

0 1 1 0 0 0 1 0 0 1 0 0 0 1 1 0

0 0 1 1 0 0 0 1 0 0 1 0 0 0 1 1

1 0 0 1 1 0 0 0 0 0 0 1 1 0 0 1

1 0 0 1 0 0 0 1 1 1 0 0 1 1 0 0

1 1 0 1 1 0 0 1 0 0 1 0 0 0 1 0

0 1 1 0 0 1 0 0 0 0 0 1 0 0 0 1

0 0 1 1 0 0 1 0 1 0 0 0 1 0 0 0

0 0 0 1 1 0 0 1 0 1 0 0 1 1 0 0

1 0 0 1 1 1 0 1 0 1 1 0 0 0 1 0

0 1 0 0 0 1 1 0 0 0 1 1 0 0 0 1

0 0 1 0 0 0 1 1 1 0 0 1 1 0 0 0

1 1 0 0 1 1 0 0 0 1 0 0 1 0 0 0

0 0 1 0 0 0 1 0 0 1 1 0 0 1 0 0

0 0 0 1 0 0 0 1 0 0 1 1 0 0 1 0

1 0 0 0 1 0 0 0 1 0 0 1 0 0 0 1













































































Fig. 13: The Primitive Representation of μ When Cipher’s State is Represented
from LSB to MSB

y0 + y3 + y7 + y8 + y12 + y15 + t0 − 6d0 + 4d1 + 2d2 = 0

y0 + y1 + y4 + y9 + y12 + y13 + t1 − 6d3 + 4d4 + 2d5 = 0

y1 + y2 + y5 + y10 + y13 + y14 + t2 − 6d6 + 4d7 + 2d8 = 0

y2 + y6 + y7 + y11 + y14 + t3 − 6d9 + 4d10 + 2d11 = 0

y0 + y1 + y5 + y11 + y15 + t4 − 6d12 + 4d13 + 2d14 = 0

y1 + y2 + y6 + y8 + y12 + t5 − 6d15 + 4d16 + 2d17 = 0

y0 + y2 + y3 + y4 + y7 + y9 + y13 + t6 − 8d18 + 6d19 + 4d20 + 2d21 = 0

y0 + y3 + y4 + y10 + y11 + y14 + y15 + t7 − 8d22 + 6d23 + 4d24 + 2d25 = 0

y1 + y4 + y5 + y8 + y11 + y15 + t8 − 6d26 + 4d27 + 2d28 = 0

y2 + y5 + y6 + y8 + y9 + y12 + t9 − 6d29 + 4d30 + 2d31 = 0

y0 + y3 + y4 + y6 + y7 + y9 + y10 + y13 + t10 − 8d32 + 6d33 + 4d34 + 2d35 = 0

y0 + y4 + y7 + y10 + y14 + y15 + t11 − 6d36 + 4d37 + 2d38 = 0

y3 + y7 + y8 + y11 + y12 + t12 − 6d39 + 4d40 + 2d41 = 0

y0 + y4 + y8 + y9 + y13 + t13 − 6d42 + 4d43 + 2d44 = 0

y1 + y5 + y9 + y10 + y14 + t14 − 6d45 + 4d46 + 2d47 = 0

y2 + y3 + y6 + y7 + y10 + y15 + t15 − 6d48 + 4d49 + 2d50 = 0

Fig. 14: 16 Constraints Correspond to One Column Transformation After the
MixColumn Operation

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0 16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 4 4 0 0 0 0 0 4 4 0 0 0 0 0
2 0 4 0 4 0 2 0 2 0 0 0 0 2 0 2 0
3 0 0 0 4 2 0 2 0 0 0 4 0 0 2 0 2
4 0 0 0 0 4 0 4 0 0 0 0 0 0 4 0 4
5 0 0 0 0 2 2 2 2 0 0 0 0 2 2 2 2
6 0 4 0 4 0 2 0 2 0 0 0 0 2 0 2 0
7 0 0 4 0 0 2 0 2 0 4 0 0 2 0 2 0
8 0 0 0 0 2 0 2 0 4 2 0 2 4 0 0 0
9 0 2 2 0 0 2 2 0 0 0 2 2 0 0 2 2
10 0 0 0 0 0 4 0 0 4 2 0 2 0 2 0 2
11 0 2 2 0 0 0 2 2 0 0 2 2 2 0 0 2
12 0 0 0 0 2 0 2 0 4 2 0 2 0 0 4 0
13 0 2 2 0 2 0 0 2 0 0 2 2 2 2 0 0
14 0 0 0 0 0 0 0 4 4 2 0 2 0 2 0 2
15 0 2 2 0 2 2 0 0 0 0 2 2 0 2 2 0

(a) DDT of S-box

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0 16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 4 0 0 0 4 0 0 2 0 2 0 2 0 2
2 0 4 0 0 0 0 0 4 0 2 0 2 0 2 0 2
3 0 4 4 4 0 0 4 0 0 0 0 0 0 0 0 0
4 0 0 0 2 4 2 0 0 2 0 0 0 2 2 0 2
5 0 0 2 0 0 2 2 2 0 2 4 0 0 0 0 2
6 0 0 0 2 4 2 0 0 2 2 0 2 2 0 0 0
7 0 0 2 0 0 2 2 2 0 0 0 2 0 2 4 0
8 0 0 0 0 0 0 0 0 4 0 4 0 4 0 4 0
9 0 4 0 0 0 0 0 4 2 0 2 0 2 0 2 0
10 0 4 0 4 0 0 0 0 0 2 0 2 0 2 0 2
11 0 0 0 0 0 0 0 0 2 2 2 2 2 2 2 2
12 0 0 2 0 0 2 2 2 4 0 0 2 0 2 0 0
13 0 0 0 2 4 2 0 0 0 0 2 0 0 2 2 2
14 0 0 2 0 0 2 2 2 0 2 0 0 4 0 0 2
15 0 0 0 2 4 2 0 0 0 2 2 2 0 0 2 0

(b) Inverse DDT of S-box

Fig. 15: Seven Round Related Key Differential Characteristic of FUTURE Ci-
pher

−20 − 1 − 2 + 3 − y0 − 2y1 + y2 + 2y3 + 0 ≥ 0

−20 − 1 + 22 + 23 + y0 − 2y1 + y2 − 3y3 + 5 ≥ 0

−30 − 1 − 22 + 23 − y0 − 3y1 + y2 + 3y3 + 7 ≥ 0

40 − 31 + 22 + 3 − y0 + 3y1 + 0y2 + y3 + 0 ≥ 0

−20 + 1 − 32 + 23 − 5y0 + 2y1 + 3y2 + 3y3 + 0 ≥ 0

20 − 31 − 32 − 3 − 3y0 − 2y1 − y2 − 3y3 + 13 ≥ 0

40 + 1 − 2 + 33 − 4y0 + 2y1 + 0y2 − 2y3 + 3 ≥ 0

−0 + 01 − 22 + 43 + y0 + 2y1 − 3y2 + 3y3 + 2 ≥ 0

−20 − 1 − 2 − 3 + 3y0 + 2y1 − 3y2 − 3y3 + 8 ≥ 0

−20 + 1 + 02 − 23 − 2y0 + y1 + 2y2 − y3 + 5 ≥ 0

−20 − 21 + 22 − 23 − y0 − 2y1 − 2y2 + y3 + 9 ≥ 0

40 + 61 + 52 + 23 − y0 − 3y1 − y2 − y3 + 0 ≥ 0

00 + 1 + 2 − 23 + 0y0 + y1 + 2y2 + 2y3 + 0 ≥ 0

−0 + 1 + 22 + 23 + 3y0 + 0y1 − y2 − 3y3 + 2 ≥ 0

0 − 21 − 22 + 03 + 2y0 − 2y1 − y2 + 2y3 + 5 ≥ 0

20 + 31 − 2 − 33 + 3y0 − y1 + 2y2 − 3y3 + 5 ≥ 0

0 + 21 − 2 − 23 − 2y0 − 2y1 − y2 + 2y3 + 6 ≥ 0

Fig. 16: 17 Number of Constraints to Capture DDT of FUTURE S-box

20 − 21 + 32 − 43 − y0 − 4y1 − 4y2 + y3 + 11 ≥ 0

20 − 41 − 42 − 3 + 2y0 − 5y1 + 3y2 − 3y3 + 12 ≥ 0

−30 + 21 + 22 + 63 + 2y0 − 3y1 + 2y2 + 4y3 + 0 ≥ 0

0 + 31 + 32 − 3 − 2y0 + 2y1 − 2y2 + y3 + 2 ≥ 0

0 + 1 − 32 + 03 + 2y0 + 3y1 + 2y2 + 3y3 + 0 ≥ 0

0 − 41 + 2 + 23 + 3y0 + 2y1 + 3y2 + 2y3 + 0 ≥ 0

60 + 41 + 52 + 53 − 2y0 − y1 − y2 − 2y3 + 0 ≥ 0

20 + 1 + 2 − 43 + 2y0 + 3y1 + 2y2 + 3y3 + 0 ≥ 0

0 − 21 + 22 + 23 + y0 + 3y1 − 2y2 − 2y3 + 3 ≥ 0

20 + 31 − 22 − 33 − 3y0 − y1 + 2y2 + y3 + 6 ≥ 0

40 + 41 + 2 + 53 + 0y0 + y1 + y2 − 2y3 + 0 ≥ 0

0 + 1 − 2 + 33 + y0 + 3y1 + 3y2 − 2y3 + 0 ≥ 0

−0 − 41 − 42 − 33 − 2y0 + 4y1 − 2y2 − y3 + 13 ≥ 0

−50 − 41 + 32 − 23 − 4y0 − 3y1 + 2y2 − y3 + 14 ≥ 0

00 − 21 − 22 + 3 − 2y0 + y1 − 2y2 + 2y3 + 6 ≥ 0

−50 + 31 − 42 − 23 + 2y0 − 3y1 − 4y2 − y3 + 14 ≥ 0

−0 + 41 − 52 + 23 − 2y0 − 3y1 − 5y2 − 5y3 + 16 ≥ 0

Fig. 17: 17 Number of Constraints to Capture DDT of Present S-box

