
Blaze: Fast SNARKs from Interleaved RAA Codes

Martijn Brehm1 Binyi Chen2 Ben Fisch3

Nicolas Resch1 Ron D. Rothblum4 Hadas Zeilberger3

1University of Amsterdam. Emails: {m.a.brehm,n.a.resch}@uva.nl
2Stanford University. Email: binyi@cs.stanford.edu

3Yale University. Emails:{ben.fisch,hadas.zeilberger}@yale.edu
4Succinct. Email: rothblum@gmail.com

October 9, 2024

Abstract

In this work we construct a new and highly efficient multilinear polynomial commitment
scheme (MLPCS) over binary fields, which we call Blaze. Polynomial commitment schemes
allow a server to commit to a large polynomial and later decommit to its evaluations. Such
schemes have emerged as a key component in recent efficient SNARK constructions.

Blaze has an extremely efficient prover, both asymptotically and concretely. The commit-
ment is dominated by 8n field additions (i.e., XORs) and one Merkle tree computation. The
evaluation proof generation is dominated by 6n additions and 5n multiplications over the field.
The verifier runs in time Oλ(log

2(n)). Concretely, for sufficiently large message sizes, the prover
is faster than all prior schemes except for Brakedown (Golovnev et al., Crypto 2023), but offers
significantly smaller proofs than the latter.

The scheme is obtained by combining two ingredients:

• Building on the code-switching technique (Ron-Zewi and Rothblum, JACM 2024), we
show how to compose any error-correcting code together with an interactive oracle proof
of proximity (IOPP) underlying existing MLPCS constructions, into a new MLPCS. The
new MLPCS inherits its proving time from the code’s encoding time, and its verification
complexity from the underlying MLPCS. The composition is distinctive in that it is done
purely on the information-theoretic side.

• We apply the above methodology using an extremely efficient error-correcting code known
as the Repeat-Accumulate-Accumulate (RAA) code. We give new asymptotic and concrete
bounds, which demonstrate that (for sufficiently large message sizes) this code has a better
encoding time vs. distance tradeoff than previous linear-time encodable codes that were
considered in the literature.

1

Contents

1 Introduction 1
1.1 Our Results . 1
1.2 Technical Overview . 4
1.3 Comparison with Prior Work . 10

2 Preliminaries 12
2.1 Multilinear Extension . 12
2.2 Interactive Proofs and IOPs . 12
2.3 Coding Background . 14

3 The RAA Code 15
3.1 Adding Tests . 17
3.2 Puncturing . 18
3.3 Concrete Numbers . 18

4 IOPs for Multilinear Evaluation 19
4.1 From MLIOP to IOPP . 20

5 Multilinear Evaluation for the (Packed) RAA Code 24
5.1 Checking Simple Linear Operations . 25
5.2 Checking Permutations . 27
5.3 MLIOP for RMLE[PRAA] . 27
5.4 Puncturing . 31

6 IOPs for Interleaved Codes 31

7 Multilinear Evaluation for Interleaved RAA 35

8 Experiments and Results 36
8.1 Prover and Verifier Runtimes . 37
8.2 Communication Complexity . 38

9 Distance Analysis of RAA code 40
9.1 Setup of RAA Analysis . 41
9.2 Probability First Stage Fails . 43
9.3 Given Successful First Stage, Probability Code has Good Distance 50
9.4 Conditioning on Low Weight Messages Having Good First Stage 63
9.5 Puncturing . 70

A Round-by-Round Soundness of the Protocols 82
A.1 RBR Soundness of the Building Block Protocols . 83
A.2 RBR Soundness of the MLIOP-to-IOPP Transformation 84
A.3 RBR Soundness of the Interleaving IOPP . 85

2

1 Introduction

Recent years have seen an incredible progress in the development and deployment of cryptographic
proof-systems. These proof-systems enable a prover to prove correctness of extremely complex
computations to a highly efficient verifier that runs in much faster time.

One of the main approaches to constructing such proof-systems is by combining an information-
theoretic proof-system called a polynomial interactive oracle proof (polynomial IOP) with a crypto-
graphic object called a polynomial commitment scheme (PCS). A polynomial IOP is a proof-system
in which the prover can send truth tables of large polynomials to the verifier. A PCS in turn allows
a prover to commit to a large polynomial P , using a short commitment, such that later it can
prove evaluation claims of the form “P (x) = y”. An efficient proof-system can then be derived by
combining the two: run the IOP prover but instead of sending the large polynomials in the clear,
commit to the them using the PCS, and then provide the desired values to the verifier and prove
their correctness.

Due to the above, PCS’s have emerged as a cornerstone of modern proof-system design. For
example, the famous FRI protocol [BBHR18a,BGKS20] which underlies STARKs [BBHR18b] can
be viewed as a univariate PCS.1 Circle STARKs [HLP24], STIR [ACFY24], and Basefold [ZCF24]
are recent improvements and generalizations of this PCS. We discuss other recent exciting devel-
opments on the PCS front shortly.

In this work we focus on polynomial commitment schemes for multilinear polynomials P : Fm →
F (i.e., m-variate polynomials that have degree 1 in each variable) over binary extension fields (i.e.,
fields of characteristic 2). Multilinear Polynomial Commitments Schemes (MLPCS) have recently
drawn significant attention and are at the heart of some of the most efficient proof-systems that
have been developed. These include systems based on the GKR [GKR15] protocol, Spartan [Set20],
Hyperplonk [CBBZ23] and most recently Lasso/Jolt [STW24,AST24].

Highly efficient proof-systems based on binary extension fields have recently been proposed by
Diamond and Posen [DP23,DP24a]. Such schemes are exceptionally attractive due to the field’s
high level of compatibility with modern computer architectures. In particular, such fields avoid al-
together the notorious problem of embedding overhead which prime fields suffer from. Additionally,
some common CPU operations are natively supported by binary extension fields (e.g., XOR corre-
sponds to field addition and Intel processors natively support field multiplication for some binary
fields). On the downside, some issues in arithmetization (such as handling integer arithmetic) are
somewhat more complicated in the case of binary fields, see [DP23] for details.

1.1 Our Results

In this work we construct a new MLPCS over binary extension fields, which we call Blaze. Our
scheme has an extremely efficient prover, both asymptotically and concretely. The scheme builds on
the code-switching paradigm introduced by Ron-Zewi and Rothblum [RR24] in combination with a
particularly efficient family of error-correcting codes called Repeat-Accumulate-Accumulate (RAA)
codes. The RAA family of codes has been studied in the coding literature due to its extremely fast
encoding, which directly translates into our scheme’s efficiency.

1In a bit more detail, FRI is an interactive oracle proof of proximity (IOPP) for membership in the Reed-Solomon
code. Deep-FRI [BGKS20] shows how to additionally check an evaluation query. A PCS can be derived form these
IOPPs by combining them with a vector commitment (e.g., Merkle hashing) and the Fiat-Shamir [FS86] transform.

1

Similarly to Spielman’s code [Spi96] and Expand Accumulate codes [BCG+22] (which were used,
respectively, in [BCG20,GLS+23,XZS22] and [BFK+24] to construct efficient proof-systems), the
RAA code requires a (public) parameterization, that is generated by a randomized setup algorithm.
This means that the code is constructed by a randomized procedure, that, if successful, outputs
public parameters of the RAA code that guarantee good distance. An important contribution of
our work is providing new asymptotic and concrete bounds on the failure probability of RAA codes.

For example, for messages of size k = 222, we produce an RAA code with rate 1/4 and relative
distance 0.19 except with an error probability of 2−27.4, using a parameter generation procedure
that takes about a second on a laptop. Using a procedure that takes a few days, the error probability
decreases to 2−41.5.2 More generally, for messages of size k and using rate 1/4, for any constant
w ∈ N, we give a Õ(kw) time generation procedure for the code that fails to have distance 0.19
with probability roughly O(k−w−0.5). (This algorithm is fully parallelizable and runs in O(log k)
time given kw processors.)

We emphasize that this error probability comes from a one time setup. As long as the setup,
which is performed only once, is successful, the distance holds for all codewords and so soundness
is guaranteed in all invocations of the proof-systems.

For comparison, when attacking a SNARK with “100-bits of security”, an adversary running
in time 270, which seems a feasible runtime, can break security with probability 2−30. We reiterate
that in our case the bad event can happen only once, when the public parameters of the system are
decided. As such, and in contrast to typical notions of security in cryptography, this error cannot
be leveraged by attackers that run in more time – the error either happens during the parameter
generation or, far more likely, it does not.

Still, it would be interesting to have an efficient procedure for certifying that the public param-
eters for the RAA codeword are “good” (analogously to a test developed by Xie et al. [XZS22] for
Spielman’s code) and we leave this as an interesting open question.

Blaze: a Fast Multilinear PCS over Binary Fields. Our main contribution is a new mul-
tilinear PCS, which we call Blaze, over binary extension fields. Blaze’s asymptotic behavior is
described in the following theorem:

Theorem 1 (Informally Stated, see Theorem 7.1). Let F be a binary extension field. There exists
an MLPCS in the random oracle model with O(n) prover time, and Oλ(log

2 n) proof size and verifier
time. The committing complexity is dominated by 8n field additions and a Merkle tree computation,
and the evaluation proving is dominated by 6n field multiplications and 5n additions.

We remark that the operations in the evaluation proof account also for evaluating the polynomial
at the desired point. The number of steps in the evaluation proof generation can be further reduced,
but at the cost of constant overhead to the proof size that we rather avoid.

While there are previous linear-time PCS constructions, our work is the first to present one that
measures the exact constant overhead. We hope that having these constants as a clean comparison
point will also enable and direct a cleaner comparison to future work (as has happened in other
areas of cryptography, see, e.g., [BCG+23]).

Similarly to other hash based proof-systems, our PCS can be shown secure in the random oracle
model. As in the prior work, the random oracle is used for two reasons: (1) as a collision-resistant

2For sake of comparison, the probability for an individual to win the US Powerball Lottery is 2−28.1, see https:

//www.powerball.com/powerball-prize-chart.

2

https://www.powerball.com/powerball-prize-chart
https://www.powerball.com/powerball-prize-chart

hash function, and (2) to implement the Fiat-Shamir transform. Indeed, the above transformation
(due to [Kil92, FS86,Mic00, BCS16]) is entirely standard in the literature (see the recent related
textbook [CY24]) and our focus is on the information-theoretic core that underlies the PCS and is
described in the technical overview in Section 1.2 below.

The protocol establishing Theorem 1 is not only asymptotically efficient. Our benchmarks
demonstrate that for sufficiently large multilinear polynomials (i.e., of size ≥ 225 or in other words
polynomials on 25 or more variables) Blaze’s prover is faster than prior work. The only exception is
Brakedown [GLS+23] which is faster (up to size about 230) but has much larger proofs, see Section 8
for detailed benchmarks. We emphasize that Blaze is particularly well-suited to large message sizes
and unlocks the possibility of encoding larger polynomials than what was previously possible.

Remark 2. Similarly to Brakedown [GLS+23], our PCS does not guarantee any hiding properties.
Therefore, when using it to construct a zero-knowledge proof-system some care should be taken. For
example, following Ben Or et al. [BGG+88], the resulting succinct argument can be compiled into
a zero-knowledge one using an additional proof-composition step. See, e.g., [XZS22] for a practical
system that does this.

New Bounds for RAA Codes. As previously mentioned, Blaze relies on a particular efficient
family of codes known as repeat-accumulate-accumulate (RAA) codes. We provide additional details
on the codes in Section 3 (see also Section 1.2), but for now we briefly say that the encoding
procedure first repeat each message symbol r = O(1) times, permutes the coordinates, does a
prefix-sum modulo-2, then again permutes and computes a prefix-sum.

The parameters of the code are descriptions of the two permutations that are used in the
encoding procedure, and are sampled at random. Prior work [BMS08, KZCJ07] showed that if
the permutations are chosen at random then the RAA codes offer a good rate/distance tradeoff;
however, the failure bounds implicit in these works can be seen to be quite poor, and therefore insuf-
ficient for our purposes. A contribution of this work is a new analysis of RAA codes, showing they
can achieve very good rate-distance tradeoffs with a small failure probability (both asymptotically
and concretely).

Theorem 3 (Informally Stated, see Theorem 3.1). Let k ∈ N be a growing parameter, let r ∈ N be

even and at least 4, and set γ = 1− 2.01
r . With all but O(k1+γ−r/2) = O(k2−

2.01
r

−r/2) probability, a
random RAA code with rate 1/r and message length k has distance δr > 0, where δr is close to the
GV bound.

For context, the Gilbert-Varshamov (GV) bound states that there exist binary codes of mini-
mum distance δ with rate 1−H(δ), where H is the binary entropy function. Moreover, this is the
best known tradeoff for any binary code.3 We get quite close to the GV bound: e.g., for rate 1/4
we can get distance about 0.19 whereas the GV bound is about 0.215. The general tradeoff is quite
hard to state explicitly; see Theorem 3.1 for additional details.

The error probability achieved by Theorem 3 goes to 0 as k grows, but unfortunately not
fast enough for the message sizes that we consider. Thus, to improve the failure probability, we
observe that after sampling the permutations we can test whether or not all messages of weight at
most ≤ w = O(1) (where w is a parameter we can choose) have encodings of weight at least δn.

3The reason that the codes guaranteed by the GV bound are not used is that their encoding time is quadratic, whereas
the RAA code that we use has a roughly similar rate/distance tradeoff but with linear-time encoding.

3

Conditioned on this test passing, the failure probability decreases to about O(k−(w+1)(r/2−1)+γ).
Given that this runtime is very large even for small values of w, we propose a simplified test
(which, roughly speaking, does half of the encoding procedure) that runs in O(kw log k) time, and
still drastically decreases the error probability. Still, given the exponential dependence of both tests
on w, we cannot choose it to be too large (e.g., for k = 220, testing for w = 3 is about the best we
could hope to do).

We remark that a similar test was suggested by Boyle et al. [BCG+22, Section 3.5] in the context
of the related expand accumulate codes. In their case the test was suggested as a heuristic whereas
we give a full analysis.

1.2 Technical Overview

Our starting point is the code switching technique [RR24] as further developed and articulated
in [BCG20,GLS+23] (and also related to the work of Bootle et al. [BCG+17]). At a high-level,
code-switching is the idea that one can convert claims about the multilinear extension code, into
claims about simple combinatorial extensions of an arbitrary4 error-correcting code. The key benefit
of this approach is that we can utilize the rich literature on efficient codes, and in particular
it demonstrates that the distance property of codes is essentially all that is needed to construct
efficient SNARKs.

In particular, [RR24] (implicitly, see [RR24, Lemma 3.6]) construct an MLPCS by tensoring any
error-correcting code and utilizing the sumcheck protocol for tensor codes [LFKN92,Mei13], and
a similar approach is taken in [BCG20,RR22,HR22]. Brakedown [GLS+23] relies instead on code
interleaving (this is also implicit in [BCG+17] and explicit in Ligero [AHIV23] for the Reed-Solomon
code).

We first describe our code-switching based approach which shows that the prover’s complexity
can essentially only depend on the complexity of the encoding time of the code, and still obtain poly-
logarithmic proof-size and verification complexity. This is described in Section 1.2.1. Afterwards, in
Section 1.2.2 we describe our new analysis of RAA codes and show how to combine code-switching
with RAA codes.

1.2.1 IOPP for Multilinear Evaluation

Before proceeding, let us briefly recall the definition of the multilinear extension. Fix a finite field F,
that, for the moment, can be arbitrary but should be thought of as “cryptographically large”. The
multilinear extension of a vector m ∈ Fk, where k ∈ N is a power of 2, is the multilinear polynomial

m̂ : Flog(k) → F defined as m̂(z) =
∑

b∈{0,1}log(k) eq(z, b) ·mb, where eq(z, b) =
∏log(k)

i=1 eq1(zi, bi) and
eq1(α, β) = α · β + (1 − α) · (1 − β) (see Section 2 for a more thorough exposition and additional
details).

Our MLPCS is best described from the perspective of Interactive Oracle Proofs of Proximity
(IOPP) for Multilinear Evaluation – an information-theoretic abstraction that we put forth (but is
implicit in prior “hash based” MLPCS constructions). An IOPP for Multilinear Evaluation relative
to a code C : Fk → Fn is a protocol in which the verifier is given as explicit input z ∈ Flog(k) and
v ∈ F. The verifier additionally has oracle access to a string y ∈ Fn. The verifier’s goal is to check
that y is close to some codeword C(m) such that m̂(z) = v. The verifier should do so while reading

4Here and throughout this work we assume that all error-correcting codes are linear, meaning that the set of codewords
is a linear space.

4

only a few symbols from y but is allowed to interact with an untrusted prover in the interactive
oracle proof model [BCS16,RRR16], which basically means that the prover can send long messages
from which the verifier reads only a few symbols.

A code C that has good relative distance and an efficient IOPP for Multilinear Evaluation can
be used to derive an MLPCS as follows: given a description f : {0, 1}m → F of a multilinear
polynomial, the prover views f as a message of length 2m, encodes it using C and sends a Merkle
hash of C(f) to the verifier. To prove an evaluation claim of the form f̂(z) = v, the prover and
verifier engage in the above IOPP, which is compiled into a succinct non-interactive argument using
Merkle hashing and the Fiat-Shamir transform.

The core of Brakedown [GLS+23], Basefold [ZCF24], FRI/Binius/Basefold [DP24a] and Red-
Shift [KPV22] can all be framed as IOPPs for Multlilinear Evaluation (for different codes) that are
then compiled into an MLPCS using cryptographic hashing as above.

Lifting MLPCS via Interleaving. Our first main observation, which builds on the code-
switching approach, is a procedure that “lifts” a code C that already has an IOPP for Multilinear
Evaluation, with an inefficient prover, into a new code C ′ that also has such an IOPP, but this
time with an efficient prover. The drawback is that the new code is defined over a larger alphabet,
which accordingly increases the proof’s size.

Following Ligero and Brakedown, this lifting is achieved by using code interleaving. In a nutshell,
this procedure takes an arbitrary code C : Fk → Fn and an integer t ∈ N (which should be
thought of as poly-logarithmic and likewise a power of two), and produces the interleaved code
Ct : Ft×k → Ft×n as follows: the message m is interpreted as a t × k matrix and each row is
encoded separately using C. The output Ct(m) is simply the resulting t× n matrix.

Observe that, assuming C is linear-time encodable, the encoding time of Ct is similar to that of
C. If we view Ct as operating over the alphabet Ft (i.e. each column is a single alphabet symbol)
then the relative distance is also preserved, albeit over the larger alphabet.

It remains therefore to show how to transform an IOPP for Multilinear Evaluation for C into
one for Ct, but with a more efficient prover. In this IOPP we need, given as input a matrix y ∈ Ft×n,
to prove that y is close to some Ct(m) such that m̂(z) = v, for z ∈ Flog(tk) and v ∈ F.

The idea, building on [AHIV23,GLS+23] is as follows. The prover first decomposes the claim
m̂(z) = v into separate claims about the rows of m. Denoting the rows of m by m1, . . . ,mt and
decomposing z = (z1, z2) ∈ Flog(t) × Flog(k), the prover sends a full description of the function
u : {0, 1}log(t) → F defined as u(i) = m̂i(z2).

The verifier then checks that this decomposition is consistent with the prover’s claim. To do
so it simply checks that û(z1) = v. To see why this test should pass (when the prover behaves
honestly) observe that:

û(z1) =
∑

b1∈{0,1}log(t)
eq(b1, z1) · m̂i(z2)

=
∑

b1∈{0,1}log(t)
eq(b1, z1)

∑
b2{0,1}log(k)

eq(b2, z2) ·m(b1, b2)

=
∑

b∈{0,1}log(t)+log(k))

eq(b, z) ·m(b)

= m̂(z).

5

For soundness, we should consider the behavior for a NO input – i.e., an input y that is either
far from the code Ct, or one that is close to some codeword Ct(m) for which the claim about the
multilinear evaluation is false (i.e., m̂(z) ̸= v). Suppose first that we are in the latter case. Denoting
the correct function that the prover should send by u, observe that in this case the prover must
send as its first message a different function ũ ̸= u, since otherwise the verifier will reject in the
above consistency test.

To catch the prover, the verifier now chooses a random linear combination r ∈ Ft of the rows
of m and sends r to the prover. Since C is a linear code, the vector r defines a new codeword
ycombo = rT y ∈ C. Moreover, by linearity, the messagemcombo = rTm encoded within ycombo is such
that m̂combo(z2) =

∑
i ri·m̂i(z2) = ⟨u, r⟩, where ⟨u, r⟩ is a shorthand for ⟨u, r⟩ =

∑
i∈{0,1}log(t) u(i)·ri.

Since u ̸= ũ, with high probability5 over r, it holds that ⟨u, r⟩ ̸= ⟨ũ, r⟩. Thus, to catch the
prover, the verifier simply runs the underlying IOPP for multilinear evaluation on the codeword
ycombo = rT y relative to the – in this case false – claim m̂combo(z2) = ⟨ũ, r⟩. Each query to the
input ycombo is emulated by the verifier by making a query to the corresponding column of y (i.e.,
a single query over the alphabet Ft).

Thus, we are left with the case that y is altogether far from the code Ct. In this case, we use
elegant results on proximity gaps of codes [RVW13,AHIV23, BSCI+20] to argue that, with high
probability over r, the resulting vector rT · y is far from the code C.

We conclude that in any case, for a NO input, the resulting vector rT y is, with high probability
over r, far from any codeword C(x) such that x̂(z2) = ⟨ũ, r⟩ and so, by the soundness of the
underlying Multilinear Evaluation IOPP of C, the verifier rejects.

Observe that when lifting a code, the encoding time for a message of size t · k is just t times the
encoding time of C for a length k message – i.e., the encoding time of C is (at least) retained. As
for the evaluation proof, all the prover needs to do is to compute rT y and then run the underlying
IOPP of C. The point is that the latter IOPP is run on a significantly shorter instance (i.e., smaller
than the input by a multiplicative t factor). Thus, by setting t to be sufficiently large, the running
time of the prover is dominated by the encoding time of Ct.

1.2.2 Choosing the Right Code

To instantiate the above framework we therefore need to choose a base linear code C such that:

1. The code has an extremely fast encoding procedure – this is important since by the above
analysis, the encoding procedure dominates the prover’s complexity.

2. The code has good relative distance – the distance of the code translates into the number of
queries that the IOPP verifier needs to make, which in turn directly affects the proof-size and
verification complexity when further compiled into an argument via Merkle Hashing.

3. The code has an IOPP for Multilinear Evaluation – actually, at least from a theoretical
perspective, this part can be taken “off-the-shelf”, since there exist general results for the
existence of IOPPs for arbitrary computations, in particular there exists an IOPP for Multi-
linear Evaluation for any code. From an asymptotic perspective, by setting t to be sufficiently
large, the prover overhead incurred by these generic results becomes a small order term.

5Specifically the error probability is 1/|F|, and recall that F is cryptographically large, meaning that its size is
exponential in the security parameter.

6

Still, from a concrete perspective, the generic approach does introduce an (additive) overhead
that is important to minimize in practice. Thus, we would like to find a base code that has
a concretely efficient IOPP for Multilinear Evaluation.

RAA Codes. We implement the above framework using the Repeat-Accumulate-Accumulate
(RAA) family of codes [DJM98], mainly due to their extremely efficient encoding and good relative
distance (points 1 and 2) above, but we additionally show an efficient direct IOPP for Multilinear
Evaluation for these codes (point 3 above).

The RAA code is a binary code meaning that the underlying field is GF(2) – both messages and
codewords are just sequences of bits (for the PCS we will actually need a code over a larger alphabet,
but we defer a discussion on this till later). The code RAA : {0, 1}k → {0, 1}n is parameterized
by a small integer r ∈ N (e.g., r = 4 is a good choice) such that r = n/k, and descriptions of two
permutations π1, π2 : [n] → [n]. The encoding of a message m ∈ {0, 1}k proceeds through the five
following step process:

1. (Repeat:) Each bit of m is repeated r times.

2. (Permute:) The order of the n bits is then permuted using π1.

3. (Accumulate:) Then, an accumulation (i.e., prefix-sum modulo 2) is performed on the vector.6

4. (Permute:) Another permutation step is applied, this time using π2.

5. (Accumulate) Lastly, one more accumulation step is applied.

The result of the last step is the encoded RAA codeword (for more details, see Section 3).
RAA codes are known in the coding literature for their extremely fast and simple encoding and

are thus perfectly suited for the first requirement above. Indeed, observe that encoding can be done
using a circuit with exactly 2(kr − 1) XOR gates.7

Distance Analysis of RAA Codes. As with prior works, we analyze the expected number of
low-weight codewords appearing in an RAA code (where the randomness is over a uniform choice of
π1 and π2): if this expectation is proved small enough, Markov’s inequality immediately translates
this into a bound on the probability the code fails to have good minimum distance.

Prior works [BMS08, KZCJ07] already analyzed this expected value and derived promising
results. In particular, [BMS08] showed that asymptotically good RAA codes exist; however, the
tradeoff between rate and distance is not made explicit (and indeed, the proof is not optimized to
obtain meaningful minimum distance). One benefit is that it is fairly easy to follow the argument
and thereby obtain a concrete bound on the expectation. On the other hand, [KZCJ07] provide
an “asymptotic” statement which shows that for sufficiently large n, very impressive rate-distance
tradeoffs are achievable (in particular, one can get quite close to the GV bound). However, the
analysis does not naturally give concrete failure probabilities (and an inspection of the proof shows
that they are quite poor).

6In more detail, the accumulation of a vector a ∈ {0, 1}n is the vector b ∈ {0, 1}n defined as bi =
⊕

1≤j≤i ai.
7The accumulation step can be done either by a straightforward sequential scan with n − 1 XOR operations, or
using an O(logn) depth circuit with O(n) XOR gates and excellent constants, by the classical work of Fischer and
Ladner [LF80].

7

We built off the two approaches in order to obtain the rate-distance tradeoffs of [KZCJ07] while
still obtaining meaningful bounds on the expectation. Our crucial idea is to break the expectation
into two parts: the expectation over message vectors where after the first accumulation the weight
is still small (say, ≪ k1−2/r) vs. the case that it is quite large. (For context, [BMS08,KZCJ07]
establish that k−2/r is roughly the expected minimum distance of an RA code, i.e., a code with only
one round of accumulation.) We provide two separate analyses for each of these expectations: for
the first term with small middle weight, our bound is quite combinatorial and follows by reasoning
about binomial coefficients; for the latter term with large middle weight, we use ideas from [KZCJ07]
with an extended analysis to derive concrete bounds.

While the bounds are meaningful, they are not always satisfactory; i.e., for k = 215 and r = 4,
achieving distance δ = 0.19 the failure probability is about 2−5. Fortunately, we observe that
one can decrease this failure probability by additionally testing the RAA code after sampling: if
the RAA code passes the test then we can argue that it will have good distance with improved
probability.8 We consider the following simple test: for messages of weight at most w (where
w = O(1) is a parameter), we verify that they all have encodings of weight at least δn (here
and throughout, n = rk is the blocklength). The motivation stems from the observation that
the dominant terms in the expectation that we bound come from the case of low weight message
vectors, so if we can remove them from the expectation (which conditioning on a successful test
essentially allows us to do) we then obtain a decreased failure probability. Informally, we observe
that with a Õ(nw) time test, whereas the original failure probability is something like 1/nc for a
constant c, the new failure probability will be roughly 1/nc(w+1).

Improved Rate via Puncturing. RAA codes are inherently limited to rates of the form 1/r
for r ∈ N: in particular, rates > 1/2 are unachievable. Furthermore, as [KZCJ07] point out, at
rate 1/2 the expectation is necessarily Ω(1).9 To remedy this, we follow the lead of [KZCJ07] and
consider puncturing RAA codes.

By puncturing we mean that a subset of the coordinates is selected and removed from the
codewords. We show that if the punctured set is chosen at random then the resulting punctured
RAA code can obtain even higher rates and obtain minimal distance close to the GV bound,
with similar failure probabilities (in particular, the above test is still applicable). We note that
puncturing does not improve the encoding time of the code, but can be useful in our PCS context
in case the Merkle hashing becomes the dominant term. However, for our benchmarks, in the
parameter regime that we consider, Merkle hashing does not dominate and so we do not implement
puncturing but merely suggest it as a possibility. We provide some analysis of punctured RAA
codes and, assuming a conjecture,10 we can show that they achieve good tradeoffs between rate
and distance (e.g., rate 1/2 with distance 0.1, which is nearly the GV bound).

Handling Larger Fields by Bit Packing and Slicing. As mentioned above, the RAA code
is defined over the binary field GF(2), whereas we need our code to work over a larger finite field

8Such an idea was also suggested in [BCG+22], but only as a heuristic, whereas we formally prove the test is effective.
Our argument justifies equally well the heuristic considered in [BCG+22].

9Also for technical reasons we prefer working with even r, meaning that the largest rate we directly analyze is 1/4.
10The conjecture concerns the maximizer of a certain function which arises. For the unpunctured case, we provide a
complete analysis of the analogous function. We believe the analysis could be extended to the case of punctured
RAA codes, but we leave it for future work.

8

(essentially this is a requirement from the proof-system that uses the polynomial commitment
scheme – the scheme has soundness error at least 1/|F|, so the field should be rather large).

In [BFK+24] this was handled in the context of expand accumulate codes, by extending the
construction and analysis of the code to arbitrary fields. Inspired by recent advances in SNARKs
over binary fields [DP23,DP24a] we take a different route, by focusing on binary extension fields.
Recall that the elements of the field GF(2f), for an integer f ∈ F can be viewed as f -dimensional bit
vectors. In this representation field addition is simply an f -bit exclusive-Or (XOR). To extend the
RAA code to GF(2f) we simply “pack” f codewords that live in {0, 1}n into one packed codeword
in (GF(2f)n) as follows. We place the codewords as rows of an f × n dimensional matrix and then
interpret each column as a field element. We remark that this operation is essentially the same as
interleaving described above, but we use the term packing since it will be useful to distinguish the
two stages.

Observe that this method of packing, which is also sometimes referred to as bit slicing, is
particular efficient to implement: to encode a single packed RAA message m ∈ (GF(2f))k we just
apply the original RAA operations but on f bit words at a time. Thus, all we need to do in order to
encode is apply f -bit XORs (for accumulation), or move around f -bit words (for the permutation).

Thus, using, e.g., rate 1/4 the packed RAA codes can be encoded by an arithmetic circuit over
GF(2f) using 8k additions. On a RAM, one additionally needs to implement the two permutations
(that were “for free” in the circuit model), which can be done in O(n) time (the exact constant
depending on the specific architecture).

We remark that the above is the reason that in this work we focus on binary extension fields.
We believe that a different generalization of RAA codes to prime order fields (possibly following
[BFK+24]) may be possible and leave exploring this to future work.

Multilinear Evaluation for Packed RAA Codes. Addressing point 3 above, we also develop
a special purpose multilinear evaluation IOPP for packed RAA codes. In a nutshell we observe
that the (packed) RAA encoding is done by alternating between accumulations and permutations
and handle each of these 4 steps using a simple protocol.

In more detail, the IOPP prover sends Reed-Solomon encodings of the 4 intermediate stages
in the computation. We use the BaseFold-FRI IOPP [ZCF24,DP24a] to “pretend” that we have
access to the multilinear extension of these intermediate computations. Finally, we use sumcheck
to check the accumulations steps and an argument from [CBBZ23] (that is derived from the grand
product argument from [SL20]) to check the permutation steps.

Remark 4. We emphasize that we use BaseFold-FRI as a generic IOPP for checking multilinear
evaluations. As such, any progress on more efficient IOPPs for multilinear evaluation (especially
on the verifier’s side) can be used as a drop-in replacement for BaseFold in our scheme.

1.2.3 Summary and Open Problems

To summarize, in this work we make two main technical contributions:

1. We introduce the IOPP for Multilinear Evaluation as a convenient abstraction from prior
work, and show how to use code interleaving to lift an efficiently computable code into a
new code, that is still efficiently computable, but now also has a highly efficient IOPP for
Multilinear Evaluation.

9

2. We give new asymptotic and concrete bounds for the distance of RAA codes, as well as their
packed analogs.

While these two contributions are somewhat orthogonal, they go very well together. Still, it may
be useful to utilize them separately. For example, one might want to apply the lifting procedure to
other codes (possibly over a prime field). Alternatively, it may be useful to use our improved analysis
of RAA codes in other contexts (e.g., a “vanilla” code interleaving as in Ligero and Brakedown,
which can be viewed as lifting a trivial IOPP for Multilinear evaluation in which the verifier reads
everything).

Open Problems. While Blaze is not the first system to achieve linear-time proving, it is the first
to specify the concrete constant overhead (at least in the circuit model, which serves as a clean
comparison point). We believe that an important challenge for the community is to further improve
this constant prover overhead. We mentions some additional concrete directions for improvement:

1. Construct codes that match the efficiency of our packed RAA codes over large prime fields.

2. While the binary RAA codes that we construct are close to optimal (in the sense of almost
matching the GV bound), the packed RAA codes are still somewhat far from optimal (for
this larger alphabet, optimal would mean meeting the Singleton bound).

3. RAA codes for shorter messages – our distance guarantee scales with the message-size and as
such only gives weak guarantees for short messages. Providing some mechanism for certifying
the parameterization of RAA codes, even specifically for short messages, would therefore be
quite useful.

4. The proximity gap lemma that we use from [BKS18] is for arbitrary codes and still lags behind
the results that are known for the Reed-Solomon code [BCG+22]. Improving these bounds
(ideally for arbitrary codes, but even specifically for the RAA variants) is an interesting and
important open problem.

1.3 Comparison with Prior Work

As already mentioned, our PCS is heavily inspired by prior works. We compare to some of these
works next:

Ligero [AHIV23], Brakedown [GLS+23], Block et al. [BFK+24] and Binius [DP23].
The commitment phase of our PCS is identical to that in these works, except that we use RAA
codes instead of the Reed-Solomon code, Spielman’s code, EA codes and binary Reed-Solomon,
respectively. The evaluation proof in our case is more complex, but offers better parameters, both
asymptotically (i.e., Oλ(log

2(n)) vs. Oλ(
√
n)) and concretely for large instances (see Section 8).

The two main differences from these works is that:

1. We use RAA codes which have a better rate/distance tradeoff than Spielman’s code and the
EA code. Additionally the codes have a much faster encoding time than Reed-Solmonon and
EA codes (the encoding time of both is O(n log n)).

10

2. We utilize an additional proof composition step to reduce the proof length and verification
time to be poly-logarithmic. In contrast [AHIV23,BFK+24,DP23] achieve only O(

√
n) proof-

size and verification time. Still, it seems that for small message sizes their approach is
preferable, see Section 8.

BaseFold [ZCF24] and FRI-Binius [DP24a]. BaseFold achieves Oλ(log
2(n)) proof-size and

verification time by combining sumcheck with FRI. FRI-Binius adapts Basefold to binary extension
fields. However, compared to our approach, both schemes have slower prover times due to their
reliance on the FFT algorithm (or additive NTT in the case of FRI-Binius), which incurs an
O(n log(n)) encoding overhead. We eliminate this overhead by interleaving and running BaseFold
over a smaller instance of size n/t. However, RAA codes have worse distances (than Reed-Solomon),
and thus this optimization comes at the cost of a concretely larger proof size, see Section 8.

Orion [XZS22]. Orion, builds on [GLS+23] but achieves a poly-logarithmic proof size and veri-
fication time. At a very high level their proof composition approach is similar to ours but looking
in more detail, the approaches are quite different. Similarly to Blaze, in Orion, a “Brakedown”-like
system is constructed but is then composed with another proof-system to reduce the proof size.

The key difference is in where this composition happens. Orion constructs a full cryptographic
argument-system (i.e. after Merkle hashing) and then composes with another succinct argument
to prove correctness. In contrast, our composition happens within the information-theoretic proof-
system (as in classical PCP composition [AS92, BGH+06]). We believe that the latter approach
is preferable and in particular it avoids altogether the need for the inner proof-system to prove
correctness of complex cryptographic operations. We note that the original version of Orion had
a soundness issue, which was recently fixed by [dHS24]. Additionally, there is a variant called
Orion+ [CBBZ23], which achieves constant proof sizes by composing with a KZG-based proof-
system. However, both the fixes and variants still need an inner proof-system for verifying complex
cryptographic operations.

Batch FRI [BSCI+20]. Our composition approach is also similar to “batch-FRI” – a method
proposed by Ben Sasson et al. [BSCI+20] to check that t given functions are all close to being
low degree polynomials. Their approach (much like ours) can be described as interleaving these t
polynomials and then applying a proximity test (in their case FRI) to a random linear combination
of the rows. To the best of our knowledge this approach has not been suggested in the context of
obtaining a (multilinear) PCS for a single polynomial.

Additional Related Work. We also mention some other exciting developments. STIR [ACFY24]
suggests an improvement to the FRI PCS by leveraging the fact that due to its recursive nature, as
the FRI protocol advances, the instance size shrinks, which enables them to slow down the prover a
bit in the interest of smaller proofs and faster verification. Circle STARKs [HLP24] are a different
extension of FRI which enables the use of certain non-smooth prime fields, which is extremely
important and useful in practice.

So far we have focused exclusively on hashed-based PCS constructions. We briefly men-
tion that there are other approaches for PCS constructions, based on more structured cryp-
tographic assumptions such as discrete log. Notable examples include KZG [KZG10], Bullet-
proofs [BCC+16, BBB+18], Hyrax [WTS+18], and Dory [Lee20]. Such systems typically have

11

much shorter proofs, but involve expensive “public-key” operations, are typically quantum-insecure
and sometimes require an expensive trusted setup. On the other hand, in contrast to their
hash-based counterparts, this line of work can produce sublinear-space commitments [BHR+20,
BHR+21,BCHO22], which in turn can be used to construct time and space efficient proof-systems
(but see [BBHV22, FPP24] for some exceptions to the general rule). Additionally, many ef-
ficient lattice-based PCS constructions have emerged recently, demonstrating promising perfor-
mance [CMNW24,NS24,AFLN24,BC24,HSS24,BS23].

2 Preliminaries

Throughout this work for equal length strings x, y ∈ Σn over an alphabet Σ, we denote their relative
Hamming distance by ∆(x, y) := 1

n |{i ∈ [n] : xi ̸= yi}|. For a non-empty set S ⊆ Σn and x ∈ Σn,
we define ∆(u, S) := min{∆(u, s) : s ∈ S}. The Hamming weight of a string is the number of
non-zero coordinates.

2.1 Multilinear Extension

Let F be a finite field and m ∈ N be an integer. For every function f : {0, 1}m → F there exists
a unique multilinear polynomial f̂ : Fm → F that agrees with f on {0, 1}m. We refer to f̂ as the
multilinear extension (MLE) of f .

The polynomial f̂ can be expressed explicitly as:

f̂(x) =
∑

b∈{0,1}m
eq(x, b) · f(b), (1)

where eq(x, b) =
∏

i∈[m] eq1(xi, bi) and eq1(xi, bi) = xi · bi + (1− xi) · (1− bi).
For a given x ∈ Fm, the sequence of values (eq(x, b))b∈{0,1}m) can be generated very efficiently,

as demonstrated by the following proposition (see also [VSBW13, CFFZ24] and [Tha22, Section
3.5]).

Proposition 2.1 ([Rot24, Proposition 1 and Section 2.1]). Let F be a binary extension field. Given
as input z ∈ Fm, the sequence of values (eq(z, b))b∈{0,1}m can be generated in lexicographic order in
time O(2m) and space O(m). In more detail, the algorithm performs exactly 2m field multiplications
and an additional O(m) additions, multiplications and inversions over the field.

2.2 Interactive Proofs and IOPs

Let R be an NP relation and denote the corresponding language by L(R) = {x : ∃w, (x,w) ∈ R}.
Throughout, we will think of the language L(R) itself as a pair language - that is, the inputs are a
pair (x, y) where x (which will typically be short) is called the explicit input and y (which is long)
is called the implicit input. In certain cases, we may work with an indexed relation, where the input
additionally includes an index i, such as the description of a circuit or a linear code.

2.2.1 Interactive Proofs and Sumcheck

Interactive proofs [GMR89] are protocols enabling a prover to convince a verifier of the correctness of
a statement x ∈ L by back and forth interaction. We do not formally define interactive proofs since

12

this work focuses on a different form of proof, called an interactive oracle proof [BCS16,RRR16],
which we define below. Still, we will make use of the celebrated sumcheck protocol [LFKN92], with
a linear-time prover [Tha13], as described next:

Lemma 2.2 (The Sumcheck Protocol). Let F be a finite field and m, d ∈ N. There exists a protocol
between a prover, who is given as input a description of an m-variate polynomial Q : Fm → F of
individual degree d, and a verifier who gets as input α ∈ F and either rejects or outputs (z, v) ∈
Fm × F. The protocol satisfies the following properties:

• Complexity: the protocol has m rounds. In each round the prover sends d+1 field elements
and the verifier responds with a single field element. The verifier performs O(d · m) field
operations. The prover runs in time O((d+ 1)m).

• Completeness: if α =
∑

x∈{0,1}m Q(x) then when interacting with the honest prover, the
verifier always outputs (z, v) such that Q(z) = v.

• Soundness: if α ̸=
∑

x∈{0,1}m Q(x) then, when interacting with any prover, with probability

at least 1− dm
|F| , the verifier either rejects or outputs (z, v) such that Q(z) ̸= v.

Remark 2.3 (Batch Sumcheck). Suppose we wish to simultaneously check k sumcheck statements
α1 =

∑
x f1(x), . . . , αk =

∑
x fk(x), where each fi : Fm → F is an individual degree d polynomial.

Rather than running k separate sumcheck protocols, we can batch them by having the verifier select
a random λ ∈ F and running a single sumcheck on the statement

∑
x∈{0,1}m Q(x) =

∑k−1
i=0 λ

i · αi,

where Q is the individual degree d polynomial defined as Q(x) =
∑k−1

i=0 λ
i · fi(x). This batching

incurs an additional k/|F| soundness error.

Interactive Proofs for Batching Polynomial Evaluations. We recall an interactive protocol
that reduce multiple multilinear evaluation claims into a single one [RR24,CBBZ23]. We state the
result from [CBBZ23] due to its optimal prover complexity.

Theorem 2.4 ([CBBZ23, Algorithm 4]). Let f : {0, 1}ℓ → F be a function and denote by f̂ its
multilinear extension. There exists an interactive protocol that reduces t > 1 evaluation claims
for f̂ to a single evaluation claim for f̂ . The protocol has soundness error 2ℓ+3 log2(t)

|F| , prover time

O(t ·2ℓ), verifier time O(tℓ), communication complexity O(ℓ+log(t)) and ℓ+log2(t)+O(1) rounds.

2.2.2 Interactive Oracle Proofs

Interactive Oracle Proofs (IOP) [BCS16, RRR16] are a hybrid between interactive proofs, and
probabilistically checkable proofs. In a nutshell, an IOP is an interactive protocol in which the
prover can send long messages from which the verifier only reads very few symbols. In this work
we focus on variants of IOPs which are introduced next.

Holographic IOP. Holographic IOPs [COS20] combine features of IOPs and holographic inter-
active proofs [GR17]. Let R be an indexed relation. A holographic IOP for R is specified by an
indexer I, a prover P and a verifier V . The IOP consists of an offline phase and an online phase.

In the offline phase, the indexer I outputs an oracle idx(i) given index i. In the online phase,
the prover receives the input (i, x, y, w) ∈ R, while the verifier receives x along with oracle access

13

to idx(i) and y. The prover and verifier then engage in multiple rounds of interaction, where the
prover sends an oracle proof string in each round, and the verifier responds with a message. At the
end of the interaction, the verifier accepts or rejects.

The protocol satisfies completeness if for every (i, x, y, w) ∈ R, the prover convinces the verifier
with probability 1. The protocol has soundness error ϵ if for every (i, x, y) /∈ L(R) and every
malicious prover P ∗ in the IOP model, the probability that the verifier accepts is at most ϵ.

Multilinear polynomial IOPs (MLIOP). Next, we define the notion of a multilinear polyno-
mial IOP (MLIOP)11. Let R be an indexed relation as described earlier, where the online inputs
are pairs of an explicit and implicit input. An MLIOP for R is a public coin interactive protocol
between a prover, a verifier, and optionally a trusted indexer. The indexer is omitted when the
relation has no index component. The protocol consists of following phases:

Offline phase: The trusted indexer provides the verifier with a multilinear polynomial oracle idx,
which encodes the index of the relation R.

Interaction phase: The verifier receives the explicit input x ∈ X and has access to the multilinear
extension of the implicit input y ∈ Y and multilinear access to idx. The prover receives (x, y)
and the witness w ∈ W. The prover and verifier engage in multiple rounds of communication,
where in each round the prover sends a set of multilinear polynomial oracles and possibly an
additional string. The verifier responds with a list of random challenges.

Query phase: The verifier evaluates the multilinear polynomial oracles at specific points and
queries certain entries of y. Finally, the verifier accepts or rejects.

The protocol satisfies completeness if for all (i, x, y, w) ∈ R, the verifier accepts with probability
1 in an honest execution. The protocol has soundness error ε if for every malicious prover P ∗

in the MLIOP model (i.e., P ∗ can only send multilinear polynomials as oracles), and every input
(i, x, y) /∈ L(R), the probability that the verifier accepts is at most ϵ(δ).

Complexity metrics. When measuring proof communication complexity for MLIOPs and IOPs,
we count both the oracle communication (i.e., the total length of the prover oracles being sent) and
the non-oracle communication (i.e., the length of the additional strings being sent). We define the
total proof communication complexity as the sum of the oracle and non-oracle communications. In
MLIOPs, the prover’s time for generating the MLE oracle is the size of the polynomial (i.e., O(2m)
for an m-variate multilinear polynomial).

2.3 Coding Background

A code C over a finite field F is an injective function C : Fk → Fn. We refer to k as the message
length and n as the block length. We will sometimes overload this notation and also use C to
denote the image of the function (i.e., {C(x) : x ∈ Fk}). The rate of a code C is R = k

n and its
minimum distance is min{∆(x, y) : x, y ∈ C, x ̸= y}. Intuitively, thinking of a codeword as a robust

11This notion was originally called “probabilistically checkable interactive proof wrt encoded provers” by Reingold et
al. [RRR16] and also called “polynomial IOP” by Bunz et al. [BFS20] and Chiesa et al. [CHM+20]. We use the
term multilinear IOP (MLIOP) to emphasize that the polynomials are multilinear. Multilinear IOPs are also a
special case of Tensor IOPs [BCG20].

14

representation for some data, the rate quantifies the efficiency of the encoding, while the minimum
distance quantifies its noise-resilience.

If C is a linear function over F then we say that it is a linear code; henceforth all codes in this
work are linear. Note that for a linear code, the minimum distance is the equal to the minimal
Hamming weight of a non-zero codeword – i.e., min{∆(x, 0) : x ∈ C \ {0}}. A code is systematic if
the the first k codeword symbols are always equal to the message.

A linear code C ⊆ Fn of dimension k can be conveniently presented in terms of a generator
matrix, which is a matrix G ∈ Fn×k for which

C = {Gx : x ∈ Fk} .

Note that in general a linear code has many generator matrices; however, it will be convenient for
us to design codes with accompanying generator matrices allowing for very efficient encoding, i.e.,
the computation of Gx from x will be very fast.

Proximity Gaps. We will make use of the following lemma from [BKS18] (see also [RVW13,
AHIV23]), which informally states that any linear code V ⊆ Fn with sufficiently good distance
satisfies a “proximity gap”.12 That is, if U is any other linear space that has at least one vector
that is far from all elements of V , then in fact most vectors in U are far from V (at least, assuming
|F| is sufficiently large). That is, there is a “gap” in terms of proximity: either all elements of U
are close to V , or almost all are far.

Theorem 2.5 ([BKS18, Theorem 4.1]). Let V ⊆ Fn be a linear space over a finite field F with
distance λ. Let U be an affine space and suppose ∃u ∈ U for which ∆(u, V) > δ. Then, for any
ε > 0 such that δ − ε < λ/3,

Pr
u∈U

[∆(u, V) < δ − ε] ≤ 1

ε|F|
.

For our purposes it will be convenient to reformulate Theorem 2.5 in the language of matrices
and codes. If C ⊆ Fn is a code, we denote by Ct the t-fold interleaving of C – namely, the space
of all t× n dimensional matrices whose rows belong to C.

Corollary 2.6. Let C ⊆ Fn be a linear code with distance λ, let t ∈ N and let M ∈ Ft×n be a
matrix such that ∆(M,Ct) > δ. For any ε > 0 such that δ − ε < λ/3,

Pr
r∈Ft

[∆(rTM,C) < δ − ε] ≤ 1

ε|F|
.

Proof. If M is δ-far from Ct then at least one of its rows is δ-far from C. Thus, there exists a
vector in the row span of M that is δ-far from C. Theorem 2.5 now implies that a random vector
in the row span is (δ − ε)-far from C with all but 1

ε||F| probability.

3 The RAA Code

Our proof system makes use of repeat-accumulate-accumulate (RAA) codes over the binary field
F2 = {0, 1}. For an integer n ∈ N, which we assume to be divisible by a constant r ∈ N, we
shall need the following three ingredients to specify a generator matrix for the RAA code as a
composition of linear operators.

12Actually, a weaker statement is true even for general linear spaces (i.e., with poor distance), see [RVW13].

15

• For a constant r ∈ N dividing n, let Fr ∈ {0, 1}n×n/r denote the matrix corresponding to the
linear operator that repeats each entry in the vector r times. That is, Fr[i, j] = 1 if and only
if ⌊j/r⌋+ 1 = i.

• Let A ∈ {0, 1}n×n be the accumulator matrix, A[i, j] = 1 if and only if i ≥ j.

• For a permutation π : [n] → [n], letMπ ∈ {0, 1}n×n be the permutation matrix corresponding
to π. That is, M [i, j] = 1 if and only if π(i) = j.

Using these ingredients, the generator matrix for the rate 1/r RAA code RAAπ1,π2 : {0, 1}n/r →
{0, 1}n code is defined as

RAAπ1,π2(x) = A ·Mπ2 ·A ·Mπ1 · Fr · x.

xFr

1
1
1
1
1
1
1
1
1

Mπ1

1
1
1

1

1

1

1

1
1

A

1
1
1
1
1
1
1
1
1

1
1
1
1
1
1
1
1

1
1
1
1
1
1
1

1
1
1
1
1
1

1
1
1
1
1

1
1
1
1

1
1
1
1
1 1

Mπ2

1
1

1
1
1

1

1
1
1

A

1
1
1
1
1
1
1
1
1

1
1
1
1
1
1
1
1

1
1
1
1
1
1
1

1
1
1
1
1
1

1
1
1
1
1

1
1
1
1

1
1
1
1
1 1

Figure 1: A pictorial representation of (a generator matrix for) an RAA code with rate R = 1/3
and block-length n = 9.

Our main result the following theorem, which is a more formal version of Theorem 3 from the
introduction. The following function will play an important role: for fixed even r ∈ N, r ≥ 4, we
define

f(α, β, ρ) :=
H(α)

r
−H(β)−H(ρ) + α+ (1− α)H

(
β − α/2

1− α

)
+ β + (1− β)H

(
ρ− β/2

1− β

)
where H(p) := −p log p − (1 − p) log(1 − p) is the binary entropy function (and log’s here, and
elsewhere, are base-2 unless otherwise specified). We also use I to denote the indicator for a given
condition, i.e., I{E} is 1 if the condition E holds and is 0 otherwise.

Theorem 3.1. Let r, n ∈ N be integers, r ≥ 4 with r even and r|n. Let δ ∈ (0, 1/3) and, if r = 4,
assume δ < 1/4. Let ε > 0. Assume n is sufficiently large compared to r, δ and ε. Then, there
exists a near-linear time generation algorithm that outputs a representation for a rate 1/r RAA
code with block-length n which has minimum distance ≥ δ with probability ≥ 1− p, where

p ≤ I{r = 4} · 3

n− 2
+ I{r = 6, δ ≥ 1/4} · 180δ

2(1− δ)

(n− 2)2

+ n1−r/2 · ⌈n
γ

2
⌉ · 0.43603

r
·
(
r
r
2

)
· φn

(
2 · ⌈m

2
⌉
)
· φn(r) · (2v∗2)

r+1
2 · ηv∗2

+
0.80192 · δ

r3/2
· n7/2 · 2Bn . (2)

16

In the above, d := δn ∈ N, m := ⌊nγ⌋, γ := 1 − 2
r (1 + ε), η := 4(δ(1 − δ)), v∗2 = 1+r

2 ln(1/η) = O(1),

φn(x) := exp
(
x(x−1)

2n

)
, and

B = max{f(α0, β0, δ),max{f(α, β, δ) : (α, β) ∈ CP(r, δ)}}

where α0 := r/n, β0 := nγ−1 and CP(r, δ) is the set of critical points of f for fixed r and δ (defined
by equations (19) and (20), and further we only consider critical points lying in a certain region
R′ introduced in Section 9.3).

Additionally, assuming max{f(α, β, δ) : (α, β) ∈ CP(r, δ)} < 0, for sufficiently large n we have
B = f(α0, β0, δ) = −Ω(nγ), so we find

(2) ≤ O(n1+γ−r/2) + 2−Ω(nγ) = O(n1+γ−r/2) .

In the above theorem, we have taken great efforts to obtain the tightest bound possible (even
up to constants), as we wish to obtain good guarantees for concrete values of n. We now provide
some interpretation. Firstly, imagine requiring B′ := max{f(α, β, δ) : (α, β) ∈ CP(r, δ)} < 0,
which is a certain set of equations depending on r and δ; while the exact expression is quite messy
to state formally, they are easy to evaluate on a computer. Requiring B′ < 0 is what constrains
the minimum distance δ in terms of the rate R = 1/r: this can be compared to something like
the GV bound that states we need R ≤ 1 − H(δ). Nonetheless, we emphasize that the bound
(2) is completely explicit, and can be computed easily for concrete values of n (and we provide
some calculations in Figure 2 below). An even more detailed version of this theorem is provided
as Theorem 9.1, which provides the explicit requirements on n beyond the above “sufficiently large
compared to r, ε and δ.”

The condition of r even is largely for convenience, and a natural adaptation of our techniques
handle odd r ≥ 3.13 As our target applications of this theorem choose r as a power of 2, we do not
bother with supporting odd r. Furthermore for rate 1/4 the GV bound only guarantees codes with
minimum distance ≈ 0.21, so assuming δ < 1/4 in this case is not meaningfully constraining.

Briefly, our approach is the following: we look at the expected number of RAA codewords of
weight at most d14 and split up the terms based on whether the “middle weight” – i.e., weight after
one round of accumulating and permuting – is small or large. When it is small, we give a novel
combinatorial argument and provide a O(n1+γ− r

2) bound on this portion. For large middle weight,
we repurpose the approach of [KZCJ07] which, along with some additional care to obtain concrete
bounds, yields the 2−Ω(nγ) portion of the bound (assuming B < 0).

3.1 Adding Tests

The above gives us meaningful bounds on the failure probability: for message length k = 222, a
rate 1/4 RAA code has minimum distance δ = 0.19 except with probability 2−13. While this error
probability is perhaps sufficient in some cases (recall this is a one-time set-up procedure), we would
like to do better. In this section, we argue that with more sophisticated generation algorithms we
can decrease the failure probability significantly. For example, a still near-linear time generation
procedure has failure probability 2−27, and a near-quadratic time procedure has failure probability
2−42.

13However, as [KZKJ08, page 14] indicates, for r = 2 the failure probability would be Ω(1).
14By Markov’s inequality, this suffices for bounding the probability the minimum distance is at most d.

17

Consider the following generation procedure: after sampling the permutations π1 and π2, we
check to see if low weight messages are problematic. That is, we run the following test: for all
O(nw) nonzero messages of weight ≤ w (where w = O(1) is a parameter of choice), we check to see
if any of them have encoding of weight at most d.

The bulk of the cost of this test is of course in encoding all O(kw) messages of weight w:
even with the linear-time encoding of RAA codes, this still costs O(kw+1) time. Thus, for weight
exactly w we in fact to a simplified test: we just check that after the first round the permuting and
accumulating, the weight of all these codewords is at least nκ where κ ∈ (0, 1 − 2/r) is a tunable
parameter (e.g., κ = 0.4 is a reasonable choice). Note that for a weight rw vector (obtained after
repeating and permuting a weight w message), given its support {i1 < i2 < · · · < irw} we can
quickly compute its weight after the accumulation step as (i2 − i1) + (i4 − i3) + · · ·+ (irw − irw−1).

We thereby obtain the following informally stated theorem. Due to space constraints, a formal
version (analogous to Theorem 3.1) only appears in the appendix as Theorem 9.16.

Theorem 3.2. Let r, n, δ, γ and B be as in Theorem 3.1, and assume B < 0. Let also w ∈ N.
Then there exists a O(nw log(n)) generation algorithm that outputs a representation for a rate 1/r
RAA code with block-length n which has minimum distance ≥ δ with probability ≥ 1 − p, where
p = O(n(w+1)(1−r/2)+γ).

Morally speaking, Theorem 3.1 is the “w = 0” case of the above theorem. Ignoring the γ
portion, the moral is that the exponent of the inverse polynomial decay is multiplied by w+1 when
we use an Õ(nw) time test.

3.2 Puncturing

As a final contribution, we also consider and analyze punctured RAA codes. By puncturing, we
mean that a subset of the coordinates is chosen at random and discarded from all the codewords,
which increases the rate of the code but will also decreases the distance. Formally, for a code
C ⊆ Fn

2 and a subset S ⊆ [n], C punctured to S is the code C|S = {c|S : c ∈ C}, where for
x ∈ Fn

2 x|S = (xi)i∈S is the subvector consisting only of coordinates in S. Note that to encode a
punctured RAA codeword one typically would encode the entire RAA codeword and then remove
the unnecessary coordinates: i.e., this puncturing operation adds some inefficiency to the encoding.

We provide a formal analysis of the parameters achievable by puncturing RAA codes along
with concrete failure probabilities. As we do not eventually use this result in our proposed proof
system we defer a more formal discussion – including precise theorem statements – to Section 3.2.
Informally, we again find that we can achieve codes very close to the GV bound, and now for higher
rates; e.g., rate 1/2 is now achievable. In settings of interest, the probability of failure is dominated
by the probability that the original “unpunctured” RAA code had much smaller distance than
expected: in particular, using our Õ(nw) time generation procedure, the failure probability will
still be asymptotically O(n(w+1)(1−r/2)+γ).

3.3 Concrete Numbers

To conclude, we provide in Fig. 2 achievable parameters for (generation procedures of) RAA codes,
along with provable failure bounds.

18

Message Length k Rate 1/r Distance δ Generation Time Failure Probability

221 1/4 0.19 k 2−25.4

222 1/4 0.19 k 2−27.4

221 1/4 0.19 k2 2−38.5

222 1/4 0.19 k2 2−41.5

221 1/8 0.29 k 2−86.2

222 1/8 0.29 k 2−92.2

Figure 2: We list parameters achievable by RAA codes along with the running time of the generation
procedure (the run-times have the Õ(· · ·)’s removed). We used the following Mathematica script
to compute the relatively complicated expressions for the failure probabilities https://github.

com/raa-code-analysis/raa-code-analysis.

4 IOPs for Multilinear Evaluation

In this section we introduce the notion of a holographic IOP for Multilinear Evaluation. Loosely
speaking this is the information-theoretic primitive underlying “hash-based” constructions of (mul-
tilinear) polynomial commitment schemes (more on this below). In addition to defining the notion,
we also give an overview and systemization of existing tools from the literature, which will be used
in our eventual construction.

Let I be an index set, and let C = {Ci : Fk → Fn}i∈I be a family of linear codes, indexed by
i ∈ I, where k is a power of 2. We define the indexed relation RMLE[C] as

RMLE[C] :=
{
(i ∈ I; (z, v) ∈ Flog k × F; y ∈ Fn; m ∈ Fk) : m̂(z) = v and y = Ci(m)

}
.

Here i is an index, (z, v) ∈ Flog k × F is the explicit input, y ∈ Fn is an implicit input and m ∈ Fk

is the witness. Intuitively, (i, z, v, y,m) is in RMLE[C] if and only if y is the encoding of m (wrt
code Ci) and the multilinear evaluation m̂(z) equals v. In the following, if the code family C
has only one code C, we simply write RMLE[C] and omit the index i. Recall that in an IOP for
(i, z, v, y,m) ∈ RMLE[C], the verifier has oracle access to the encoding idx(i) of index i.

We will sometimes be interested in IOPs for Multilinear Evaluation in which the code C is
defined over a field extension of the field F. Let K = Ft, for t ∈ N be a field extension, and
{Ci : Kk → Kn}i∈I be a family of linear codes over K, indexed by i ∈ I. where k is a power of 2.
We define the indexed relation RMLE[C] as

RMLE[C] :=
{
(i ∈ I; (z, v) ∈ Flog(tk) × F; y ∈ Kn; m ∈ Kk) : m̂(z) = v and y = Ci(m)

}
,

where m ∈ Kk is interpreted as a vector in m ∈ Ft·k in the natural way and then we require that
the multilinear extension m̂ over F at the point z is equal to v.

Polynomial commitments from IOPPs. For a linear code C with good distance d, an IOPP
for RMLE[C] naturally leads to a multilinear polynomial commitment via Merkle hashing (or more
generally via composition with a vector commitment) [BCS16, CMS19, COS20]: the polynomial
commitment to m is the Merkle commitment to y = C(m); each proof oracle string is replaced
with the corresponding Merkle commitment, and each IOP query is replaced with a Merkle path

19

https://github.com/raa-code-analysis/raa-code-analysis
https://github.com/raa-code-analysis/raa-code-analysis

opening. IOPP verifier challenges are generated via the Fiat-Shamir transformation. The scheme is
a PCS, or equivalently a SNARG (or SNARK) for the polynomial evaluation relation, so long as the
IOPP satisfies round-by-round (knowledge) soundness [CCH+19, CMS19]. We defer the detailed
discussion of the RBR soundness of our IOPP constructions to Appendix A.

The binding property of the commitment follows from the fact that the IOPP has proximity
error δ less than the unique decoding radius: if the prover commits to a string that is δ-far from
any codeword, it will be caught with high probability given the IOPP soundness. Otherwise, the
committed string is δ-close to a unique codeword and the binding property naturally holds.

The above construction generalizes for any code family C whereas only a negligble fraction of
codes C ∈ C have a poor distance. The idea is to randomly pick a code C from C (which has good
distance with high probability), the parties then run the same protocol as above wrt code C.

A building block: IOPPs for RMLE[RS]. BaseFold [ZCF24] constructed an IOPP for RMLE[C]
with polylogarithmic verifiers, where C can be any foldable codes. For simplicity, we consider the
case where C = RS is a Reed-Solomon code (which is indeed foldable). FRI-Binius [DP24a] further
extended BaseFold to support committing polynomials with small coefficients over binary fields.

Theorem 4.1 ([ZCF24,DP24a]). Let λ ∈ N be the security parameter. Let k ∈ N be a power of
2 and let RS := RS[F, k, n] be a Reed-Solomon code with message length k, blocklength n = O(k)
and relative distance d ∈ (0, 1) over the field F (where |F| > 2λ). Moreover, F is either a binary
extension field or a smooth field.15 There exists an IOPP for RMLE[RS] (with alphabet F) which,
for proximity parameter δ < d/3, has the following parameters:

input query complexity O (λ/δ),
proof query complexity O (λ log k/δ),
rounds complexity O(log k),
oracle proof communication O(n),
non-oracle proof communication O(log k),

soundness error 2−λ +O(logn|F|),

prover time O(n),
verifier time O (λ log k/δ).

We note that in BaseFold, generating the implicit input encoding y takes O(n log n) time, but
the IOPP prover’s complexity is linear in n given access to y.

4.1 From MLIOP to IOPP

In this section, we describe an efficient transformation from a holographic MLIOP for a relationR to
a holographic IOPP for R. Recall that in an MLIOP the prover is restricted to sending multilinear
polynomials, whereas in an IOP, the prover can send arbitrary messages. Looking ahead, this
transformation will be used to compile the MLIOP for the multilinear evaluation relation wrt RAA
codes (in Section 5) to an IOPP for the same relation.

The transformation is summarized in the following lemma:

15A field is smooth if the domain L ⊂ F of the code is a multiplicative group whose order is a power of 2.

20

Lemma 4.2. Let λ be the security parameter and let Π be an MLIOP protocol for a relation R
with parameters

(F, qinp, qidx, qpf , rnd, ccoracle, cc, ϵ, TP , TV , noracle) ,

where |F| > 2λ and the largest polynomial being sent has ℓ variables. Set Q := qinp + qidx + qpf as
the total number of evaluation queries. Let RS := RS[F, 2ℓ, n] be the Reed-Solomon code defined in
Theorem 4.1 with relative distance d and let δ < d/3 denote the proximity parameter. There exists
an IOPP for relation R with alphabet F and has the following complexity parameters:

input and index query complexity O(λ/δ),
proof query complexity O((noracle + ℓ)λ/δ),
rounds rnd+ log2(Q) +O(ℓ),
oracle proof communication noracle · n+O(n)
non-oracle proof communication cc+O(ℓ+ logQ),

soundness error ϵ+ 2−λ +O
(
ℓ+logQ

|F|

)
,

prover time TP +O(noracle · n log n+Q · 2ℓ),
verifier time TV +O(Qℓ+ λℓ/δ).

Before describing the scheme, let us recall a nice feature of multilinear polynomials. A multi-
linear polynomial f(x1, . . . , xk) can be written as

f(x1, . . . , xk) = x1 · f(1, x2, . . . , xk) + (1− x1) · f(0, x2, . . . , xk) .

Thus we can split f into two multilinear polynomials f0(·) = f(0, ·) and f1(·) = f(1, ·) of k − 1
variables without losing information. Similarly, we can merge two polynomials of k variables into
one with k + 1 variables. This approach extends to splitting a single polynomial to more than 2
polynomials or merging more than 2 polynomials into one.

Let (I, P, V) be an MLIOP for an indexed relation R. We assume wlog that the prover P sends
at most one multilinear oracle per round, as multiple polynomials can be merged into one using the
previous technique. Let (Pmle, Vmle) be an IOPP for the multilinear evaluation relation RMLE[C],
where C is a systematic linear code.16 A straightforward IOPP for R works by simulating the
MLIOP execution, but replacing each multilinear oracle m̂ with the oracle string C(m). For each
multilinear evaluation query m̂(z) = v made by the MLIOP verifier, the protocol runs an IOPP
protocol for the claim (z, v,m,C(m)) ∈ RMLE[C]. However, this protocol is inefficient, as it requires
running a separate IOPP for each evaluation query.

To improve efficiency, we leverage the batching protocols from Theorem 2.4 that reduces multiple
multilinear evaluation claims into one. Let Πbatch denote the batching protocol. Let (I, P, V) be the
MLIOP for R where every multilinear oracle has ℓ variables. Let ΣC := (Pmle, Vmle) be the building
block IOPP for RMLE[C] wrt a systematic code C with message length 2ℓ. We now describe the
holographic IOPP (Iiop,Piop,Viop) for R.

The protocol ΠR
IOPP[ΣC]:

Offline phase: Given the multilinear polynomial idx sent by the MLIOP indexer I, the indexer
Iiop encodes idx and outputs the index oracle I = C(idx).

16In our instantiation, C is a Reed-Solomon code and we omit the indexer. One can extend to a family of codes by
picking C uniformly random from the family C and let (Pmle, Vmle) denote the corresponding IOPP wrt a code C.

21

Online phase: The prover Piop and the verifier Viop simulate the interaction phase of the MLIOP

between the prover P and the verifier V . Wlog we denote by y ∈ F2ℓ the implicit input of R.

1. The prover Piop provides the verifier with an oracle ỹ containing the non-systematic part
of C(y). Together, the oracles to y and ỹ simulate oracle access to C(y) = (y||ỹ).

2. For every MLE oracle m̂ sent by P , the prover Piop sends the oracle string C(m) instead.

3. Let O denote the set of multilinear oracles sent by P . For every oracle m̂ ∈ O∪{ŷ, idx},
let Sm denote the set of V ’s evaluation queries to m̂.

(a) Piop and Viop run the batching protocol Πbatch to reduce the evaluation claims to a
single claim m̂(zm) = vm.

(b) Run the IOPP (Pmle, Vmle) for RMLE[C] on instance (zm, vm, C(m),m).

Note that the batch protocols and IOPPs for different multilinear oracles run in parallel.

4. Viop accepts if V accepts in the simulated MLIOP, and Vmle accepts in all IOPP execu-
tions.

We can further reduce the number of IOPP executions via the optimization below.

Remark 4.3. The batching technique from Theorem 2.4 [CBBZ23] extends to batch evaluations
over different polynomials. By combining this with the FRI batching techniques from [BSCI+20], we
can reduce evaluation claims across different multilinear polynomials to a single evaluation claim
over a (virtual) multilinear polynomial. A single query to the encoding of this virtual multilinear
polynomial is simulated by corresponding queries to the encodings of the original polynomials–one
per polynomial. As a result, the number of IOPP executions for RMLE[C] is reduced to one, albeit
with a slightly worse proximity parameter depening on the batched FRI.

Proposition 4.4. ΠR
IOPP[ΣC] is an IOPP for the relation R.

Proof. Completeness follows from the completeness property of the MLIOP, the batching protocol
and the IOPP for RMLE[C]. We next prove soundness.

Let P∗
iop be any IOPP adversary for ΠR

IOPP[ΣC], wlog we assume that P∗
iop is deterministic.17

Now, consider an unbounded multilinear IOP adversary P̃ that simulates the execution of P∗
iop.

Let ỹ be the first oracle string sent by P∗
iop that is alleged to be the non-systematic part of a

codeword. For ease of exposition, we instead set the first oracle as πy := (y||ỹ) where y is the implicit
input. Fix any δ < d/3. For every oracle string π sent by P∗

iop, the prover P̃ checks whether π

is within δ-distance to C, and decodes π to m if it is. (Note that P̃ can be computationally
unbounded.) If π is δ-far from any codeword, P̃ aborts; otherwise it sends the corresponding oracle
m̂. In particular, the decoding of πy is set as the implicit input of the MLIOP execution. Finally,
P̃ forwards P∗

iop’s responses to the evaulation queries.
Denote ϵ1, ϵ2 and ϵ3 as the soundness error of the MLIOP, the IOPP for RMLE[C] and the

batching protocol, respectively. Fix δ′ := δ/c where c ∈ (0, 1) is the rate18 of code C. Consider an
indexed input (i, x, y) such that y is δ′-far from the set {y∗ : (i, x, y∗) ∈ L(R)}. We argue that the
success probability of P∗

iop is at most ϵ1 + ϵ2(δ) + ϵ3.

17For a randomized adversary P∗
iop, we can choose its internal randomness that maximizes its success probability,

which leads to a deterministic adversary with success probability no less than that of P∗
iop.

18C is instantiated with Reed-Solomon codes in our solutions, so the rate can be large (e.g. 1/2).

22

Fix α⃗ as any public coin challenges in the MLIOP protocol and consider the execution P∗
iop(α⃗).

Denote by Oα⃗ := {πj} the proof strings sent by P∗
iop and let Sα⃗ := {(j, z, v)} be the set of evaluation

claims, where j refers to the j-th oracle, z is the evaluation point and v is the evaluation result.
Since α⃗ is fixed, Oα⃗ and Sα⃗ are fixed and well-defined. We now consider two cases:

1. There exists πj ∈ Oα⃗ that is δ-far from code C. By the soundness of the IOPP for RMLE[C],
the probability that the verifier Viop accepts is at most ϵ2(δ), where the randomness is over
the public coins of the IOPP for RMLE[C].

2. All oracles in Oα⃗ are δ-close to C, but there exists (j, z, v) ∈ Sα⃗ such that for the unique
codeword C(mj) that is δ-close to πj , it holds that m̂j(z) ̸= v. Then by the soundness of
the batching protocol and the soundness of the IOPP for RMLE[C], the probability that the
verifier Viop accepts is at most ϵ2(δ) + ϵ3.

If neither of the two cases above occurs, then P̃ (α⃗) passes the verification with at least the same
probability as P∗

iop(α⃗). Therefore, the probability that P∗
iop passes the verification is no more than

that of P̃ plus ϵ2(δ) + ϵ3, where the randomness is over the choice of α⃗ and the randomness of the
batching protocol and the IOPP for RMLE[C].

Next, we upper-bound the success probability of P̃ . Wlog we assume that πy is δ-close to C
(as otherwise P̃ immediately aborts). Let y′ be the decoding19 of πy = (y||ỹ). Therefore, πy is
δ-close to C(y′), which implies that y is δ′-close to y′. On the other hand, y is δ′-far from the
set {y∗ : (i, x, y∗) ∈ L(R)}, thus (i, x, y′) /∈ L(R). By the soundness of the MLIOP, the success
probability of P̃ is at most ϵ1.

In sum, the success probability of P∗
iop is at most ϵ1 + ϵ2(δ) + ϵ3, which finishes the proof.

Combining Proposition 4.4 and Remark 4.3, we get the following proposition.

Proposition 4.5. Let λ ∈ N be the security parameter. Let Π = (I, P, V) be an MLIOP protocol
for a relation R with parameters

(F, qinp, qidx, qpf , rnd, ccoracle, cc, ϵ, TP , TV , noracle)

where |F| > 2λ and noracle is the total number of oracles sent by the prover with the largest oracle
being an ℓ-variate multilinear polynomial. Wlog we assume that there is only one index oracle.
Set Q := qinp + qidx + qpf as total number of evaluation queries. Let C be a systematic code with
message length 2ℓ, blocklength n, and encoding complexity TC . Let ΣC := (Pmle, Vmle) be an IOPP
for RMLE[C] with parameters

(q′inp, q
′
pf , rnd

′, cc′oracle, cc
′, ϵ′, T ′

P , T
′
V) .

There is an IOPP ΠR
IOPP[ΣC] for relation R with alphabet F and following complexity parameters:

input and index query complexity q′inp,

proof query complexity noracle · q′inp + q′pf ,

rounds rnd+ rnd′ + ℓ+ log2(Q) +O(1),
oracle proof communication noracle · n+ cc′oracle,
non-oracle proof communication cc+ cc′ +O(ℓ+ logQ),

soundness error ϵ+ ϵ′ + 2ℓ+3 log2(Q)
|F| ,

prover time TP + noracle · TC + T ′
P +O(Q · 2ℓ),

verifier time TV + T ′
V +O(Qℓ)).

19Note that y′ is fixed because P∗
iop is deterministic and ỹ is sent before receiving any challenges.

23

Using the IOPP for RMLE[RS] from Theorem 4.1, and setting C as the Reed-Solomon code, the
compiler described above establishes Lemma 4.2.

Remark 4.6. While the IOPP in Theorem 4.1 has a linear-time prover, the prover complexity in
Lemma 4.2 has a term noracle ·n log n. This is because the IOPP prover for R needs to compute the
RS encoding of the polynomials provided by the MLIOP prover, which requires quasilinear time.

5 Multilinear Evaluation for the (Packed) RAA Code

Recall that the RAA code is parameterized by a repetition parameter r ∈ N and two permutations
π1, π2 : [n] → [n] (see Section 3 for details). We view the repetition parameter as fixed, but the
permutations are thought of as “indexing” the code, as described in Section 4. For convenience,
throughout this section we sometimes omit the parameterization and simply refer to the code as
RAA.

Packed RAA Codes. In this section we will consider a simple extension of the RAA code over a
larger alphabet F which is a binary extension field (i.e., a field of characteristic 2), which we call
packed RAA. There are different ways to view this extension:

1. We consider a list of log(|F|) RAA codewords over the base field GF(2) and view these as
a single codeword over F, where the i-th symbol is constructed by taking the i-th bits of
the RAA codewords, viewing them as a log(|F|)-dimensional bit vector, and interpreting the
latter as an elemenf in F in the natural way.

2. If we consider the encoding process of the RAA code, an equivalent view to the above is that
given a message in Fk we repeat each field element, and then permute and accumulate twice,
where the accumulation is using field’s addition operation (which can be viewed as a bitwise
XOR) and the permutation is also at level of field elements (i.e., we still use two permutations
π1, π2 : [n] → [n]).

Note that the packed RAA code has the same minimal distance as the standard RAA code, and
that it is a linear code over F. We further remark that the packed RAA code is entirely analogous
to interleaving, except that here we use a fixed interleaving parameter which is log(|F|) and we
view the interleaved symbols as elements of our field F in the natural way. We use PRAA to denote
the packed RAA code.

MLIOP for PRAA. The goal of this section is to construct an efficient MLIOP for the relation
RMLE[PRAA]. As discussed in Section 4, such an MLIOP can then be converted into an IOP which
can be further compiled into a multilinear commitment scheme although this will not be the path
that we follow - rather in the subsequent sections we will consider an interleaving of the PRAA
code, for better efficiency.

We proceed to present the MLIOP for PRAA. Recall that in such an MLIOP, the explicit input
is a point z ∈ Fm and a scalar v ∈ F. The implicit input is a string y ∈ Fn, and the verifier has
access to the multilinear extension ŷ of y. The goal is to check whether there exists m ∈ Fk such
that y = PRAA(m) such that m̂(z) = v. In addition, the verifier is gives access to the multilinear

24

extension of the index – namely, to a description of the two permutations π1, π2.
20 The MLIOP

that we construct is captured by the following lemma.

Lemma 5.1. The relation RMLE[PRAA] has an MLIOP with the following parameters:

input, index and proof query complexity O(1),
rounds log2(n) +O(1),

soundness error n+13 log(n)+7
|F| ,

prover time O(n),
verifier time O(log n).

The communication consists of 2 multilinear oracles each on log2(n)+O(1) variables and an addi-
tional O(m) field elements.

The focus of this section is proving Lemma 5.1. In a nutshell, this will be done by decomposing
the RAA computation into the distinct accumulation and permutation steps and handling each of
these separately.

Notation. Throughout this section we identify a vector x ∈ Fn with a function x : {0, 1}m → F,
where m = log2(n), in the natural way (i.e., the vector is viewed as the truth table of the function).
Likewise, we will identify a function M : {0, 1}m ×{0, 1}m → F with the n× n dimensional matrix
Mi,j = M(i, j). Thus, for x : {0, 1}m → F and M : {0, 1}m × {0, 1}m → F, the vector Mx can be
viewed as the function Mx : {0, 1}m → F defined as Mx(i) =

∑
j∈{0,1}m M(i, j) · x(i), for every

i ∈ {0, 1}m, and M̂x : Fm → F denotes the multilinear extension of this function.

Section Organization. In Section 5.1 we show how to reduce checking “simple” linear relations
between multilinear polynomials to sumcheck, and show that the accumulation step is indeed simple
in the above sense. In Section 5.2 we show how to handle permutations. Finally, we combine these
steps and prove Lemma 5.1 in Section 5.3.

5.1 Checking Simple Linear Operations

The next proposition shows that, given oracle access to the multilinear polynomials x̂, ŷ : Fm → F
and M̂ : Fm × Fm → F it is possible to reduce checking that y = Mx to an instance of sumcheck.
Here M should be thought of as a simple function whose low degree extension can be efficiently
computed by anyone, whereas x̂ and ŷ are the (implicit) input.

Proposition 5.2. Let M : {0, 1}m × {0, 1}m → F and x, y : {0, 1}m → F, and let M̂, x̂, ŷ be their
corresponding multilinear extensions.

• If y =Mx then for every r ∈ Fm it holds that ŷ(r) =
∑

j∈{0,1}m x(j) · M̂(r, j).

• If y ̸= Mx then, with probability 1 − m
|F| over r ∈ Fm, it holds that ŷ(r) ̸=

∑
j∈{0,1}m x(j) ·

M̂(r, j).

20Formally, the verifier is given oracle access to the multilinear extension of the concatenation of π1 and π2. This
is merely a technicality and in particular access to the above can be used to emulate access to the individual
multilinear extensions.

25

Before proving Proposition 5.2, we note that it can be directly used to reduce checking whether
y = Mx to a sumcheck instance, by having the verifier select at random r ∈ F, reading ŷ(r) and

checking, via sumcheck, that it is equal to
∑

j x̂(j) · M̂(r, j) (the sumcheck involves a single query

to x̂ and to M̂).

Proof of Proposition 5.2. For the first item, if Mx = y then, simply by definition of matrix-vector
multiplication, for r ∈ {0, 1}m it clearly holds that ŷ(r) =

∑
j∈{0,1}m x(j) · M̂(r, j). However, as

both sides of the equation are multilinear polynomials (in r), this means that the equation holds
for all r ∈ Fm.

For the second item, if y ̸= Mx then the two sides of of the equation are distinct multilinear
polynomials in r, and so, by the Schwartz-Zippel Lemma, they can agree on at most an m/|F|
fraction of the domain.

Accumulations are Simple. The following proposition shows that the accumulation operation,
which is central in the RAA construction, is compatible with Proposition 5.2.

Proposition 5.3 (Efficient Computation of MLE of Accumulation). Let A : {0, 1}m × {0, 1}m →
{0, 1} be such that A(i, j) = 1 if and only if i ≥ j, where the inequality interprets i and j as integers
(in {0, . . . , 2m − 1}) in the natural way. Then,

1. Given r ∈ Fm, the vector
(
Â(r, b)

)
b∈{0,1}m can be generated in time O(2m).

2. The polynomial Â : Fm×Fm → F can be evaluated (on a single point) using O(m) arithmetic
operations over F.

Proof. For the first item, note that by definition of the multilinear extension, it holds that Â(r, b) =∑
x∈{0,1}m eq(x, r)·A(x, b) =

∑
x≥b eq(x, r). Using Proposition 2.1 we can generate all values eq(x, r)

and aggregate them in the correct order.
For the second item, observe that, up to reordering of the input bits, A(i, j) can be computed by

a width 3 read-once branching program. Thus, by [HR18, Theorem 5.2], the multi-linear extension
Â can be computed using O(m) arithmetic operations. For sake of self-containment, we also provide
an explicit multilinear formula for computing A(i, j), as follows.

For every m > 0, letting (i1, i2), (j1, j2) ∈ {0, 1} × {0, 1}m−1 be such that i = (i1, i2) and
j = (j1, j2) (i.e., i1 and j1 are MSBs, respectively of i and j). Then, we can express Am recursively
as

Am(i, j) =
(
(i1 = 1) ∧ (j1 = 0)

)
∨
(
(i1 = j1) ∧Am−1(i2, j2)

)
,

where Am denotes the accumulation function for inputs of size m (and A0 ≡ 1). The foregoing
equation can be easily used to express Âm as the following multilinear polynomial:

Âm(i, j) = i1 · (j1 − 1) +
(
i1 · j1 + (1− i1) · (1− j1)

)
· Âm−1(i2, j2),

which can be computed recursively for i, j ∈ Fm, using exactly m multiplications and O(m) addi-
tions over the field.

26

5.2 Checking Permutations

We use a method for checking permutations from [CBBZ23, Section 3.5] (which relies on a grand
product argument from [SL20, Section 5]). The argument goes through several steps (permutation
→ grand product → zero-check → sum-check), for sake of convenience for our eventual protocol
we simply combine all of these steps and describe the eventual reduction to sumcheck claims in the
following proposition:

Proposition 5.4 ([CBBZ23, Section 3.5]). Assume that |F| ≥ 2m. Let π : {0, 1}m → {0, 1}m be a
permutation. We view π also as a function π : {0, 1}m → F by associate the range of π with some
subset of 2m elements in F. We use π̂ : Fm → F to denote the multilinear extension in the latter
view.

Let x, y : {0, 1}m → F, and let x̂, ŷ : Fm → F be their corresponding multilinear extensions.
Then:

1. If y(b) = x(π(b)) for every b ∈ {0, 1}m, then for every α, β ∈ F there exist multilinear
polynomials f, g : Fm+1 → F such that for every r ∈ Fm:

• f(1m, 0) = g(1m, 0).

• f(0, r) = α− (x̂(r) + β · π(r)).
• g(0, r) = α− (ŷ(r) + β · r).
• 0 =

∑
x∈{0,1}m eq(x, r) · (f(1, x)− f(x, 0) · f(x, 1)).

• 0 =
∑

x∈{0,1}m eq(x, r) · (g(1, x)− g(x, 0) · g(x, 1)).

Moreover, given (x, y, α, β), the polynomials f and g can be found in time O(2m).

2. If y(b) ̸= x(π(b)) for some b ∈ {0, 1}m, then with all but probability 2m+1
|F| over α, β ∈ F, for

every multilinear polynomials f, g : Fm+1 → F it holds that for all but 10m
|F| fraction of r ∈ Fm

at least one of the following is false.

• f(1m, 0) = g(1m, 0).

• f(0, r) = α− (x̂(r) + β · π(r)).
• g(0, r) = α− (ŷ(r) + β · r).
• 0 =

∑
x∈{0,1}m eq(x, r) · (f(1, x)− f(x, 0) · f(x, 1)).

• 0 =
∑

x∈{0,1}m eq(x, r) · (g(1, x)− g(x, 0) · g(x, 1)).

5.3 MLIOP for RMLE[PRAA]

Let π1, π2 : [n] → [n] be permutations and r ∈ N be a repetition parameter for the RAA code.
Observe that the packed RAA code PRAA with these parameters can be viewed as the linear
operator RAA(m) = A ·Mπ2 ·A ·Mπ1 ·Fr ·m, where A denotes the accumulation matrix, Mπ denotes
the permutation matrix associated with π, and Fr is the “repetition operator” (observe that all
operations are over the field F).

Using the results from the previous subsections, we proceed to construct an MLIOP forRMLE[PRAA],
thereby proving Lemma 5.1.

27

An MLIOP for RMLE[PRAA]. Recall that the explicit input for the verifier is a point z ∈ Flog(k)

and value v ∈ F and the implicit input is an alleged codeword y ∈ Fn of PRAA. Recall that the
verifier in an MLIOP has access to the multilinear extension of y. In addition, the verifier has
access to the multilinear extensions π̂1, π̂2 : Fm → F of the permutations describing the RAA code.
The claim is that there exists m ∈ Fk such that y = PRAA(m) and m̂(z) = v. The prover is given
as input m, π1, π2, PRAA(m), z and v.

For a message m ∈ Fk we denote the results of the main intermediate steps of the PRAA
encoding as follows:

u1 = Fr ·m
u2 =Mπ1 · u1
u3 = A · u2
u4 =Mπ2 · u3
u5 = A · u4.

Note that in a correct computation it holds that u5 = y. The MLIOP for RMLE[PRAA] proceeds as
follows:

1. The prover sends to the verifier (as oracles) the multilinear polynomials m̂ : Flog(k) → F
and û2, û3, û4 : Flog(n) → F. We use û1 : Flog(n) → F to denote the multilinear function
û1(x, ·) = m̂(x) (and notice that the verifier can emulate each query to û1 via a single query
to m̂). We also use û5 to denote ŷ and observe that the verifier has query access to û5 since
in the MLIOP model it has access to ŷ.

2. The verifier checks that m̂(z) = v.

3. The verifier chooses at random α, β ∈ F and sends them to the prover.

4. Using Proposition 5.4, wrt the claims (u2 = Mπ1 · u1) and wrt (u4 = Mπ2 · u3), the prover
finds the corresponding pairs (f1, g1) and (f2, g2). The prover sends these 4 oracles to the
verifier.

5. The verifier checks that f1(1
log(n), 0) = g1(1

log(n), 0) and f2(1
log(n), 0) = g2(1

log(n), 0).

6. The verifier samples at random r ∈ Flog(n) and checks the following equations (arising from
Proposition 5.4) hold:

(a) f1(0, r) = α− (û1(r) + β · π1(r)).
(b) g1(0, r) = α− (û2(r) + β · r).
(c) f2(0, r) = α− (û3(r) + β · π2(r)).
(d) g2(0, r) = α− (û4(r) + β · r).

The verifier also sends r to the prover.

7. The prover and verifier engage in a batch sumcheck (see Remark 2.3) protocol to check that
the following sums all hold:

(a) û3(r) =
∑

j∈{0,1}log(n) û2(j) · Â(r, j).

28

(b) û5(r) =
∑

j∈{0,1}log(n) û4(j) · Â(r, j).
(c) 0 =

∑
x∈{0,1}log(n) eq(x, r) · (f1(1, x)− f1(x, 0) · f1(x, 1)).

(d) 0 =
∑

x∈{0,1}log(n) eq(x, r) · (g1(1, x)− g1(x, 0) · g1(x, 1)).
(e) 0 =

∑
x∈{0,1}log(n) eq(x, r) · (f2(1, x)− f2(x, 0) · f2(x, 1)).

(f) 0 =
∑

x∈{0,1}log(n) eq(x, r) · (g2(1, x)− g2(x, 0) · g2(x, 1)).

(Checks 7a and 7b arise from the accumulation test of Proposition 5.3 and 7c-7f arise from
the permutation test of Proposition 5.4)
To run the sumcheck, the prover first generates the vector (A(r, b))b∈{0,1}k using Proposi-
tion 5.3. At the conclusion of the batch sumcheck, the verifier needs to make a single query
to Â (which can be computed using Proposition 5.3), one query to each of û2, û3, û4, û5 and
two queries each to f1, g1, f2, g2.

Completeness. Let z ∈ Flog(k), v ∈ F and c = PRAA(m), such that m̂(z) = v. Let m̂, û1, . . . , û5
be the messages sent by the prover as in Step 1. Note that m̂(z) = v and so the verifier does not
reject in Step 2.

Fix a choice of α, β ∈ F for the verifier in Step 3 and the prover’s responses in Step 4 (according
to Proposition 5.4) by (f1, g1) and (f2, g2). Since u2(·) = u1(π1(·)) and u4(·) = u3(π3(·)), for the
value r ∈ Fk sampled in Step 6 it holds that:

• f1(1
log(n), 0) = g1(1

log(n), 0).

• f1(0, r) = α− (û2(r) + β · π1(r)).

• g1(0, r) = α− (û1(r) + β · r).

• 0 =
∑

x∈{0,1}log(n) eq(x, r) · (f1(1, x)− f1(x, 0) · f1(x, 1)).

• 0 =
∑

x∈{0,1}log(n) eq(x, r) · (g1(1, x)− g1(x, 0) · g1(x, 1)).

• f2(1
log(n), 0) = g2(1

log(n), 0).

• f2(0, r) = α− (û3(r) + β · π2(r)).

• g2(0, r) = α− (û4(r) + β · r).

• 0 =
∑

x∈{0,1}log(n) eq(x, r) · (f2(1, x)− f2(x, 0) · f2(x, 1)).

• 0 =
∑

x∈{0,1}log(n) eq(x, r) · (g2(1, x)− g2(x, 0) · g2(x, 1)).

and so the tests in Step 6 pass and the bottom four sumcheck claims in Step 7 also pass. Since
u3 = A · u2 and u5 = A · u4, by Proposition 5.2, it holds that:

û3(r) =
∑

j∈{0,1}log(n)

û2(j) · Â(r, j), and

û5(r) =
∑

j∈{0,1}log(n)

û4(j) · Â(r, j).

Thus, the top two sumcheck claims are also true. From the completeness of the (batched) sumcheck,
we get that the verifier always accepts.

29

Soundness. Let z ∈ Flog(k) and v ∈ F. Let y /∈
{
PRAA(m) : m̂(z) = v

}
. Fix a (wlog determin-

stic) cheating prover strategy. As in the protocol, denote the multilinear oracles21 that the prover
sends in its first message by m̂ : Flog(k) → F and û2, û3, û4 : Flog(n) → F. Also, similarly to the
protocol, use û1 : Flog(n) → F to denote û1(x, ·) = m̂(x) and û5 ≡ ŷ.

Proposition 5.5. If u5 ̸= PRAAπ1,π2(m) then the verifier rejects with probability at least 1 −
n+13 log(n)+7

|F| .

Proof. The proof proceeds by a somewhat tedious case analysis, that the individual components in
the RAA computation were computed correctly:

Case 1: Suppose u2 ̸= Mπ1u1. After the verifier sends α, β, the prover responds with f1, g1. By
Proposition 5.4 with probability at least 1− n+1

|F| over α, β it holds that for the f1, g1 that the prover

selected, with probability at least 1− 10 log(n)
|F| over r ∈ Flog(n), one of the following is false then

1. f1(1
log(n), 0) = g1(1

log(n), 0). In this case the verifier rejects in Step 5.

2. f1(0, r) = α− (û1(r) + β · π1(r)). In this case the verifier rejects in Step 6.

3. g1(0, r) = α− (û2(r) + β · r). Similar to the previous case.

4. 0 =
∑

x∈{0,1}log(n) eq(x, r) · (f1(1, x)−f1(x, 0) ·f1(x, 1)). In this case, one of the sums in Step 7

is false, and so with probability at least 1− 3 log(n)+6
|F| (see Remark 2.3) the verifier rejects.

5. 0 =
∑

x∈{0,1}log(n) eq(x, r) · (g1(1, x)− g1(x, 0) · g1(x, 1)). Similar to the previous case.

Case 2: Suppose u3 ̸= A · u2. Then, by Proposition 5.2 we have that with probability 1− log(n)
|F|

over r it holds that û3(r) ̸=
∑

j∈{0,1}log(n) û2(j) · Â(r, j). In this case, one of the sums in Step 7 is

false, and so with probability at least 1− 3log(n)+6
|F| the verifier rejects.

Case 3: Suppose u4 ̸=Mπ2 · u3. This case is analyzed similarly to Case 1.

Case 4: Suppose u5 ̸= A · u4. This case is analyzed similarly to Case 2.

(Note that the soundness error is the maximum between these different cases rather than the sum.)

Thus, by Proposition 5.5, we may assume that u5 = PRAAπ1,π2(m).
Notice that we may also assume that m̂(z) = v since otherwise the verifier immediately rejects

(in Step 2). Thus, y ∈
{
PRAA(m) : m̂(z) = v

}
in contradiction to our assumption.

21Recall that in an MLIOP, when instructed to, the prover must send multilinear polynomials of the right size.

30

Optimizations. We remark that some aspects of our MLIOP for RMLE[PRAA] can be further
optimized:

1. In particular, rather than sending u2, u3, u4 we can take a “GKR-like” approach to gradually
reduce claims about them until we get to a claim about the input m̂.

In this approach, the verifier starts by sampling a random point from the input û5. Then,
as in GKR [GKR15], in sequence it reduces this claim to a claim about û4 and then û3 and
so on it until it derives a claim about m̂ which it can check (since m̂ is sent by the prover).
We emphasize that in this variant û2,û4 are not sent by the prover, but rather claims
about them are derived in a gradual process. We remark that in this approach the f and g
polynomials for the permutation argument are still sent.

2. An orthogonal optimization is to batch the two permutation checks that are done (i.e., to
check u4 and u2). This can be done via “fingerprinting”, see [Tha22, Section 6.6.2].

5.4 Puncturing

Since we do not end up using it our system, we give only a brief explanation of how puncturing
can be additionally handled in the IOPP.

Recall that in the punctured RAA code, the code index additionally contains a description of
which are the punctured points. The latter can be described by another permutation π : [n] → [n],
where we interpret that the first n′ < n elements are kept and the rest are discarded.

To check that û is the result of puncturing v̂, the prover sends the multilinear extension ŵ of
the discarded points. We can then recombine v̂ and ŵ into a single multilinear equation and run
the permutation check of Proposition 5.4 to check correctness.

6 IOPs for Interleaved Codes

Given a code C : Fk → Fn and an integer t ∈ N we define the interleaving of C as the code
Ct : Ft×k → Ft×n obtained by viewing the input as a t× k dimensional matrix and encoding each
row separately using C. It will sometimes be convenient to view this code as operating over the
alphabet Ft, that is, we view C : (Ft)k → (Ft)n.

In this section we show how to “bootstrap” an MLE evaluation protocol for a code C, into a
similar MLE protocol for the interleaved code Ct. The benefit is that the cost of resulting protocol
is a combination of a fixed small cost proportional to the input size O(k× t) plus an additional cost
that is independent of t (and arises from the underlying protocol for C). The cost is a multiplicative
in t increase to the verifier’s query complexity, or rather, the same query complexity but over a
larger alphabet.

Recall the following notation from Section 4: if I is an index set, and C = {Ci : Fk → Fn}i∈I
is a family of linear codes then

RMLE[C] :=
{
(i ∈ I; (z, v) ∈ Flog k × F; y ∈ Fn; m ∈ Fk) : m̂(z) = v and y = Ci(m)

}
,

that is, all codewords of C that encode messages whose multilinear extension at the point z is equal
to v. We will also use the extension field variant for Ct:

RMLE[C] :=
{
(i ∈ I; (z, v) ∈ Flog(tk) × F; y ∈ Kn; m ∈ Kk) : m̂(z) = v and y = Ci(m)

}
,

31

where K = Ft is the extension field, and we interpret m simultaneously as m ∈ Kk and m ∈ (F)t×k

in the natural way.

Lemma 6.1. Let C : Fk → Fn be a linear code with distance λ. Assume there exists an IOPP for
RMLE[C] which, for proximity parameter δ < λ

3 , has the following parameters:

input and proof alphabet F,
input query complexity qinp(δ, k),
index query complexity qidx(δ, k),
proof query complexity qproof (δ, k),
rounds ℓ(k),
oracle proof communication ccoracle(k),
non-oracle proof communication cc(k),
soundness error ϵ(δ, k),
prover time TP (δ, k), and
verifier time TV (δ, k).

Then, for every parameter t = t(k) ∈ N there exists an IOPP for the interleaved relation RMLE[Ct]
which, for proximity parameter δ, has the following parameters:

input alphabet Ft,
input query complexity qinp(δ

′, k) ,
index and proof alphabet F
index query complexity qidx(δ

′, k),
proof query complexity qproof (δ

′, k),
rounds ℓ+ 1,
oracle proof communication ccoracle(k),
non-oracle proof communication 2t+ cc(k),
soundness error ϵ+ 1

(δ−δ′)|F| ,

prover time O(tn)+TP (δ
′, k), and

verifier time O(t · qinput(δ′, k)) + TV (δ
′, k),

where δ′ = 0.99δ.

Proof. Let (P, V) be an IOPP for RMLE[C]. We use (P, V) to construct an IOPP for the interleaved
relation RMLE[Ct] as follows.

Recall that the verifier is given as explicit input a point z ∈ Flog(tk) and scalar v ∈ F and let
c = Ct(m) ∈ Ct be the input codeword (to which the verifier has oracle access). We view m and c
as matrices, where m ∈ Ft×k and c ∈ Ft×n. We decompose z into z1 ∈ Flog(t) and z2 ∈ Flog(k) such
that z = (z1, z2).

We proceed to describe the IOPP for LMLE(C
t, z, v):

1. The prover generates a vector u ∈ Ft, where for every i ∈ [t], we set ui = m̂i(z2) (i.e., the
multilinear extension of the i-th row of m, evaluated at the point z2). The prover sends the
vector u to the verifier.

2. The verifier reads u entirely, and, viewing it as a function u : {0, 1}log(t) → F, checks that
û(z1) = v.

32

3. The verifier chooses at random22 r ∈ Ft and sends r to the prover. Denote by mcombo the
vector-matrix product mcombo = rT ·m. Similarly, let ccombo = rT · c. Note that since C is
linear, we have that ccombo = C(mcombo). The prover computes ccombo, but does not send it
to the verifier.

4. The prover and verifier engage in the IOPP (P, V) for RMLE[C] relative to the point z2 ∈ Flog(k)

and value v′ = ⟨u, r⟩ and with implicit access to the input codeword ccombo. As the verifier does
not have direct oracle access to ccombo, it emulates queries to it by reading the corresponding
column of c. That is, given a query j ∈ [n], the verifier emulates the response by computing∑

i∈[t] ri · ci,j .

5. The verifier accepts if and only if all of its tests passed.

Completeness. Suppose ((z, v), c) ∈ RMLE[Ct]. Thus, there exists m ∈ Ft·k such that c = Ct(m)
and m̂(z) = v. As in the protocol, we view m and c as matrices, where m ∈ Ft×k and c ∈ Ft×n, and
decompose z into (z1, z2) ∈ Flog(t) × Flog(k). Let u ∈ Ft be the prover’s message in Step 1 (recall
that ui = m̂i(z2), for every i ∈ [t]).

Observe that

û(z1) =
∑

i∈{0,1}log(t)
eq(i, z1) · u(i)

=
∑

i∈{0,1}log(t)
eq(i, z1) · m̂i(z2)

=
∑

i∈{0,1}log(t)
eq(i, z1) ·

 ∑
j∈{0,1}log(k)

eq(j, z2) ·mi,j


=

∑
(i,j)∈{0,1}log(t)+log(k)

eq(i, z1) · eq(j, z2) ·mi,j

= m̂(z1, z2)

= v.

Thus, the verifier’s test in Step 2 passes.
Fix r ∈ Ft, and let mcombo = rT ·m and ccombo = rT · c as in the protocol, where we observe

22The vector r can be partially derandomized, see [DP24b,AER24]

33

that, since C is linear, it holds that ccombo = C(mcombo). Note that:

m̂combo(z2) =
∑

j∈{0,1}log(k)
eq(j, z2) ·mcombo(j)

=
∑

j∈{0,1}log(k)
eq(j, z2) ·

∑
i∈[t]

ri ·mi,j

=
∑
i∈[t]

ri
∑

j∈{0,1}log(k)
eq(j, z2) ·mi,j

=
∑
i∈[t]

ri · m̂i(z2)

= ⟨r, u⟩

and so the IOPP (P, V) in Step 4 is run on an input (z2, v
′, ccombo) ∈ RMLE[C] where v′ = ⟨r, u⟩)),

and so the verifier always accepts.

Soundness. Fix z = (z1, z2) ∈ Flog(t) × Flog(k) and v ∈ F and let c ∈ (Ft)n such that c is δ-far
from the affine space Affz,v = {Ct(m) : m̂(z) = v}. Fix a (wlog deterministic) cheating prover
strategy P ∗ and denote its first message by u ∈ Ft. We assume that û(z1) = v since otherwise the
verifier immediately rejects.

From the above, we know that c is δ-far from the affine space Affz,v (defined above). It will
be convenient to normalize c so that we can measure the distance of its rows from the same
corresponding linear (rather than affine) space (Linz2)

t, where Linz2 = {C(m) : m̂(z2) = 0}. Here
C is over the alphabet F rather than Ft. This is captured by the following claim.

Claim 6.1.1.
∆
(
c− u⊗ C(1k), (Linz2)

t
)
> δ,

where 1k denotes the all ones vector of length k (and C(1k) is its encoding) and ⊗ denotes the outer
product of the two vectors.

Proof. Suppose toward a contradiction there exists some c′ ∈ (Linz2)
t such that ∆(c−u⊗C(1k), c′) ≤

δ. Then, ∆(c, c′′) ≤ δ, where c′′ = c′ + u⊗C(1k). Let c′i (resp., c
′′
i) denote the i-th row of c′ (resp.,

c′′). Then, for every i ∈ [t],
c′′i = c′i + ui · C(1k).

Since c′i ∈ C and C(1k) ∈ C, by linearity of C, we have that c′′i ∈ C. Letting m′
i = C−1(c′i), since

c′ ∈ Linz2 , we have that m̂
′
i(z2) = 0. Since 1̂k(z2) = 1, we have that c′′i is an encoding of the message

m′′
i = m′

i + ui · 1k, whose multilinear evaluation at the point z2 is equal to 0 + ui · 1 = ui. Hence,
the multilinear evaluation of m′′ at the point (z1, z2) is equal to:

m̂′′(z1, z2) =
∑

i∈{0,1}log(t)
eq(z1, i) ·m′′(i, z2) =

∑
i∈{0,1}log(t)

eq(z1, i) · ui = û(z1) = v.

Overall we have that c is δ-close to a matrix c′′, which is an encoding under Ct of a message m′′

whose multilinear evaluation at the point z = (z1, z2) is equal to v. This contradicts our assumption
on c.

34

Given that c − u ⊗ C(1k) is far from the space (Linz2)
t, Corollary 2.6 implies that a random

linear combination of its rows is far from LMLE(C, z2, 0). In what follows, let δ′ = 0.99δ.

Claim 6.1.2. With all but probability 1
(δ−δ′)|F| over r ∈ Ft, it holds that:

∆
(
rT · (c− u⊗ C(1k)), Linz2

)
> δ′.

Proof. By Claim 6.1.1, the matrix c−u⊗C(1k) is δ-far from the linear space Linz2 . Since δ
′ < δ < λ

3 ,
the claim follows immediately from Corollary 2.6.

In the sequel we assume that r satisfying the condition in the above claim was selected. Next,
we translate the distance from the linear space Linz2 back to the corresponding affine space.

Claim 6.1.3.
∆(rT c,Aff ′

z2,⟨u,r⟩) > δ′,

where Aff ′
z2,⟨u,r⟩ = {C(m) : m̂(z2) = ⟨u, r⟩} and C is over the alphabet F.

Proof. Suppose toward a contradiction that there exists some c′ ∈ Aff ′
z2,⟨u,r⟩ such that ∆(rT c, c′) ≤

δ′. Observe that

rT · (c− u⊗ C(1k))− (c′ − ⟨u, r⟩ ⊗ C(1k)) = rT c− ⟨u, r⟩ · C(1k)− (c′ − ⟨u, r⟩ ⊗ C(1k))

= rT c− c′

≤ δ′

and so rT · (c− u⊗C(1k)) is δ′-close to the codeword c′′ = (c′ − ⟨u, r⟩ ⊗C(1k)). Next observe that
the multilinear evaluation of 1k at the point z2 (or any other point for that matter) is equal to 1,
and that c′ is an encoding of a message whose multilinear evaluation at the point z2 is equal to
⟨u, r⟩. Thus, c′′ is an encoding of a message whose multilinear evaluation at the point z2 is equal
to ⟨u, r⟩ − ⟨u, r⟩ · 1 = 0.

Overall we have that rT · (c− u⊗ C(1k)) is δ′-close to c′′ ∈ Linz2 , a contradiction.

Thus, by Claim 6.1.3, the input ccombo = rT c is δ′-far from LMLE(C, z2, ⟨u, r⟩). By the soundness
of (P, V), the verifier rejects in Step 4 with probability at least ε.

7 Multilinear Evaluation for Interleaved RAA

Let PRAA denote the packed RAA code introduced in Section 5 and for an integer t ∈ N, let PRAAt

denote its t-fold interleaving (effectively this is similar to a t · log(|F|) interleaving of RAA). Building
on the results established in the previous sections, in this section we derive an IOPP for Multilinear
Evaluation of the Interleaved PRAA code.

Theorem 7.1 (Multilinear Evaluation of Interleaved RAA). Let λ be the security parameter. Let
PRAA be a packed RAA code with message length k and block length n over field F where |F| > 2λ.
For every t = t(k) ∈ N, there exists an IOPP for RMLE[PRAA

t] where PRAAt is over alphabet
K = Ft, which, for proximity parameter δ, has the following parameters:

35

input alphabet Ft,
input query complexity O (λ/δ),
index and proof alphabets F,
index query complexity O(λ/δ),
proof query complexity O (λ log(n)/δ),
rounds O(log n),
oracle proof communication O(n),
non-oracle proof communication 2t+O(log n),

soundness error n
|F| + 2−λ +O

(
1/δ+logn

|F|

)
,

prover time O(tn+ n log n),
verifier time O ((t+ log n) · λ/δ).

In particular, when setting t = Θ(log n), the prover time is O(tn) and the verifier time is O(log(n)λ/δ).

We emphasize that the constant overhead underlying the O(tn) term in prover time is small.
Let K = tk denote the description size of the input polynomial. Using RAA code with rate 1/r,
the prover time is dominated by (r + 2)K multiplications and (r + 1)K additions over the field F.
In our instantiation, r = 4, which leads to 6K multiplications and 5K additions over F.

We also note that Theorem 7.1 is only used in the evaluation proof of the PCS. The commitment
is done by encoding using the interleaved packed RAA code and then Merkle hashing. The encoding
can be implemented using using 2rK field additions.

Proof of Theorem 7.1. Recall that Lemma 5.1 gives an MLIOP for Multilinear Evaluation of PRAA,
which has O(1) evaluation queries and prover oracles, prover complexity O(n), and verifier time
O(log n).

Using Lemma 4.2 we transform this MLIOP into an IOPP for RMLE[PRAA], with O(λ/δ) input
queries, O(λ log(n)/δ) proof queries, prover time O(n log n), and verifier time O(λ log(n)/δ). The
MLIOP from Lemma 5.1 involves sending two types of polynomials, one of size k and another of
size n > k. For ease of encoding during the MLIOP-to-IOPP transformation, we pad all oracles to
size n. In practice, different Reed-Solomon encodings can be applied to each type of polynomial.

Finally, using Lemma 6.1, we “bootstrap” the IOPP for RMLE[PRAA] into an IOPP for the
interleaved relation RMLE[PRAA

t], which leads to the result of the theorem. We note that each
input query to the IOPP for RMLE[PRAA] is translated to a corresponding input query to the IOPP
for RMLE[PRAA

t], where PRAA is over the alphabet F, and PRAAt over the alphabet Ft.

After compiling the IOPP for RMLE[PRAA
t] with Merkle commitments and the Fiat-Shamir

transformation, we obtain a polynomial commitment scheme with linear-time prover and Oλ(log
2 n)

proof size and verifier time.

8 Experiments and Results

In this section, we compare Blaze to other state-of-the-art multilinear polynomial commitment
schemes, including Brakedown [GLS+23], Basefold [ZCF24], and ZeromorphFri23. We also measure
a variant which we call “Interleaved Blaze”, which has a similar structure to Brakedown/Ligero,

23ZeromorphFri uses a generic univariate-to-multilinear transformation (due to [KT23]) to obtain a multilinear PCS
from a FRI-based univariate PCS [BBHR18a]

36

in that it stops after taking a linear combination of rows (without a further composition step).
We benchmark Brakedown, Basefold, and ZeromorphFRI over a 64-bit prime field. We benchmark
Blaze using a 128-bit binary extension field.24 We were unable to compare to FRI-Binius as the
available implementation was too memory intensive for our large instances.

We measure prover time, verifier time, and communication complexity. Blaze is designed to
target large instance sizes. There are two reasons for this. Firstly, we do not have satisfactory
distance guarantees for RAA codes of block length smaller than 221.25 Secondly, Blaze’s opening
phase executes a constant number of Basefold commitments, and starts to outperform Basefold
only after the interleaving parameter t (i.e., the number of rows in the message matrix) exceeds a
certain threshold. Thus, we focus our benchmarks on message sizes ranging from 225 to 231 field
elements. To accommodate these large message sizes, we run all of our benchmarks on AWS EC2
Instance c6a.48xlarge, which has 192 vCPUs and 384GiBs of RAM.26

We compare against Basefold and ZeromorphFRI using a Reed-Solomon code with rate 1/2,
and against Brakedown using a Spielman code with rate close to 1 and distance 0.07 (the largest
possible distance) . We expect results to generalize to other distances and rates. In particular, by
decreasing the distance of the code used by Brakedown one could improve its proving time even
further but at great expense to the proof size.

Remark 8.1. Both Basefold (via Binius-Fri [DP24a]) and Blaze enable the prover to very effi-
ciently commit to a polynomial that evaluates to “small values” (e.g. bits), thereby eliminating
the embedding overhead. I contrast, Brakedown and ZeromorphFri require the prover to prove
additional range checks.

8.1 Prover and Verifier Runtimes

We highlight that Blaze is the only scheme capable of running on instances with size 231, all
other schemes run out of memory at this scale. Blaze has a faster prover than both Basefold and
ZeromorphFRI. For witness size 229, Blaze takes only 30.5 seconds to generate a proof, whereas
Basefold takes 145.7 seconds, making Blaze more than 4.5 times faster. ZeromorphFRI runs out
of memory for witness size 229 because it commits to an additional degree-n univariate polynomial
during its opening phase, which doubles its memory usage compared to Basefold. For witness size
228, ZeromorphFRI takes 242.6 seconds, whereas Blaze only takes 21.9 seconds, more than 9.7 times
faster.

Besides Blaze, Brakedown is the only scheme that can prove evaluations on polynomials of
size 230. For this size, Brakedown’s prover takes 40.7 seconds, whereas Blaze takes 47.5 seconds, a
1.16x slowdown. However, Brakedown’s proof sizes are about 10x larger, as discussed in Section 8.2
and shown in Figure 4. Furthermore, for 30-variate polynomials, Interleaved RAA takes only 28.2
seconds to commit and compute evaluation proofs, which is 1.44 times faster than Brakedown, and
has a smaller proof size to boot. Two advantages of Brakedown over Blaze are i) its opening phase
is extremely cheap, at the cost of larger proof sizes and verifier costs, and ii) they better exploit
parallelism in their encoding algorithm. We note that a future implementation could better exploit
the natural parallelism of the RAA encoding algorithm.

24In other words it is essentially Brakedown, but we replace the use of Spielman’s code with the packed RAA code.
25Although with sufficiently long generation procedures the bounds are not too poor.
26Blaze can run on smaller machines, but the other schemes run out of memory faster for our large instance sizes.
Thus we chose a larger one so that we could gather adequate data for all four protocols.

37

Blaze has a roughly similar verifier time to Basefold and ZeromorphFRI. It incurs additional
costs from the interleaving phase (which we discuss in more detail in Section 8.2), which consists of a
constant number of linear combinations on vectors of size t and additional Merkle tree verifications
on a tree with n/t leaves, both of which incur only a small overhead. The Brakedown verifier,
however, needs to compute an inner product on vectors of size n/t, which dominates its verifier
time. Interleaved RAA has the same limitation, however it uses a fixed row length. As operating
on the row is the bottleneck of the verifier, the RAA verifier ends up at around 150ms for all sizes.
Brakedown, on the other hand, uses the row-length that will give it the smallest number of verifier
queries for a given instance size. Brakedown could also fix its row length, but that would make its
proof sizes even larger.

Figure 3: Proving time and verifier time for all five protocols. Prover time consists of commitment
time and evaluation proving time.

8.2 Communication Complexity

We start with a high level comparison of the communication complexity of the different schemes.
Results are listed in Figure 4. Let n = rk where 1/r is the rate of the RAA code. A Blaze proof
for a polynomial with tk coefficients consists of two main components: (i) a constant number of
t-length columns of the interleaved code, and (ii) a Basefold proof for witness size n/t. Let d be
the minimum distance of the RAA code. Recall from Corollary 2.6 that the verifier must check
that the linear combination of the rows is no more than d/3-far from the Interleaved RAA code.
Thus to achieve 100 bits of security in the query phase, the number of verifier queries, qRAA, is set

38

so that (1− d/3)qRAA < 2−100, or in other words,

qRAA <
100

log2(1− d/3)
.

Using an RAA code with distance 0.19, yields a query count equal to 1059. Thus, a Blaze proof
roughly has an additional 1059 · 8 · t bytes compared to Basefold. Additionally, the proof requires
1059 Merkle Paths for a tree with n/t leaves to prove that the queried columns are consistent with
the commitment. Actually, this is a slight overcount because the Basefold proof in the Blaze proof
only has instance size n/t, and will be compared to Basefold of instance size n.

Next, we compare Blaze to Brakedown. Brakedown uses a similar interleaving step in its opening
proof, however the proof includes the entire linear combination of the rows, which Blaze avoids with
the inner IOP. Furthermore, Brakedown uses a Spielman code which has a distance at most 0.07
(and this is the code we compare against). Thus, the number of queries for Brakedown, qbrakedown is
equal to 100

log2(1−0.07/3) , which is approximately 2, 953. To summarize, compared to Blaze, Brakedown

has almost 3 times as many queries, and then requires an additional n/t field elements.
Finally, we compare Blaze to ZeromorphFRI. First, it is important to note that because we are

considering a setting with large instance sizes and relatively small fields, we cannot use the best
known results for FRI, such as those from [BSCI+20], which enables the verifier to query only a
small constant number of elements. Thus, we instead consider results from Deep-FRI [BGKS20],
which are agnostic to the field size. According to that result, the verifier needs to check that the
FRI oracles are inconsistent with each other in (approximately) no more than (1 − d)1/3 fraction
of locations. Thus, the number of queries required is

100

log2((1− d)1/3 + log2(n) · ϵ)
,

where ϵ is a round-by-round error term. We benchmark ZeromorphFRI with a rate and distance
of 1/2, and so the number of queries is 329.

The detailed proof sizes for all schemes are listed in Figure 4.

Vars Input Size (MB) Brakedown Basefold ZeromorphFri Blaze Interleaved Blaze

25 256 7 1.2 .949 1.3 17.6

26 512 9.2 1.2 .949 1.4 17.7

27 1024 12.3 1.4 1.16 2 18

28 2048 16.6 1.4 1.16 2.5 18.5

29 4096 22.7 1.4 x 3.7 19.7

30 8192 31.3 x x 3.8 21.8

31 16384 x x x 6.1 26.2

Figure 4: # Vars is the number of variables m of the input polynomial. Input size is the overall
number of bytes representing the polynomial. Entries have an x if the computer ran out of memory.
All sizes are measured in MB.

39

9 Distance Analysis of RAA code

In this section, we provide an analysis of the mininum distance of RAA codes and the probability
they fail to achieve a certain distance according to various code generation procedures. We begin
in Section 9.1 by setting the stage for our analysis; in particular, we precisely write an expression
for the expected number of codewords of weight ≤ δn in an RAA code. In Section 9.2, we begin by
bounding the portion of this expectation with small “middle” weight, i.e., those vectors for which
after the first round of accumulation their weight is ≤ nγ for some γ ∈ (0, 1). Then in Section 9.3,
we bound the portion of the expectation for those whose middle weight is > nγ : the sum of these
two bounds then bounds the expectation.

Our initial analysis applies to the generation procedure that samples the two defining permu-
tations uniformly at random. Our main result is the following, which is a more formal version of
Theorem 3.1. We state the result as a bound on the expected number of codewords of weight at
most δn; as mentioned earlier, we can apply Markov’s inequality to translate this into an upper
bound on the probability the code fails to have distance d.

Theorem 9.1. Let r, n ∈ N, r even with r ≥ 4, δ ∈ (0, 1/3) such that d = δn ∈ N, γ = 1− 2
r (1+ ε)

for some ε > 0. If r = 4 assume further δ < 1/4. Define m := ⌊nγ⌋, v∗2 = 1+r
2 ln(1/ω) , ω = 4δ(1− δ),

α0 =
r
n and β0 = nγ−1. Assume

n ≥ max

{
1011/γ , 7, 2m+ r + 1,

2

1− ξ
m,

(2/ξ)r/ε

r1/ε

}

and

β1 =
1

2
− 1− α0

2

√
1−

(
α0

1− α0

)2/r

> β0 ,
√
ω < 1− 2β1 −

α0

2β0
.

Finally, set
B = max{f(α0, β0, δ),max{f(α, β, δ) : (α, β) ∈ CP(r, δ)}}

where CP(r, δ) is the set of critical points of f for fixed δ, i.e. the set of (α, β) satisfying equations
(19) and (20).

Then the expected number of vectors of weight at most d in a randomly sampled RAA code of
rate 1/r with block-length n is at most

I{r = 4} · 3

n− 2
+ I{r = 6, δ ≥ 1/4} · 180δ

2(1− δ)

(n− 2)2

+ n1−r/2 · ⌈n
γ

2
⌉ · 0.43603

r
·
(
r
r
2

)
· φn

(
2 · ⌈m

2
⌉
)
· φn(r) · (2v∗2)

r+1
2 · ωv∗2

+
0.80192 · δ

r3/2
· n7/2 · 2Bn . (3)

Additionally, assuming max{f(α, β, δ) : (α, β) ∈ CP(r, δ)} < 0, for sufficiently large n we have
B = f(α0, β0, δ) = −Ω(nγ), so the above is

≤ O(n1+γ−r/2) + 2−Ω(nγ) = O(n1+γ−r/2) .

40

One should think of the condition that max{f(α, β, δ) : (α, β) ∈ CP(r, δ)} < 0 as being anal-
ogous to the statement of the GV bound, namely, that one requires R < 1 − H(δ) to guarantee
minimum distance δ when a randomly sampled code of rate R is sampled. The function f de-
pends on the repetition factor r (and hence the rate 1/r) and, depending on δ, certain expressions
(determined by the critical points) need to be negative. For parameters of interest, there are just
a constant number of conditions that need to be checked (and a simple computer script can in-
deed verify they hold). That is, the condition max{f(α, β, δ) : (α, β) ∈ CP(r, δ)} < 0 constrains
the rate-distance tradeoffs we can achieve. And, as Figure 2 attests, the achievable rate-distance
tradeoff is quite close to the GV bound!

Next, in Section 9.4, we consider generation procedures that verify that low weight messages
have sufficiently high-weight encodings, or sometimes just that they do not have an exceedingly
poor first stage. In either case, we are able to show that these tests yield significantly improved
bounds on the failure probability. The precise statement is given as Theorem 9.16.

Finally, in Section 9.5, we analyze punctured RAA codes. Here, assuming a conjecture, we
observe that we can generate codes with new rate-distance tradeoffs whose generation procedures
have similar failure probabilities.

9.1 Setup of RAA Analysis

The simplicity of the accumulator matrix allows for a relatively simple expression for the probability
that a uniformly random vector of weight a is mapped to a vector of weight b, where we recall the
weight of a vector x ∈ Fn

2 is wt(x) := n ·∆(x, 0) = |{i ∈ [n] : xi ̸= 0}|.

Lemma 9.2 ([DJM98]; see [BFK+24, Theorem 2] for a proof). Let x be uniformly sampled from
all vectors of weight a in Fn

2 , where a ≥ 1. Then, assuming ⌈a/2⌉ ≤ b and ⌊a/2⌋ ≤ n− b,

pa7→b := Pr[wt(Ax) = b] =

(
b−1

⌈a/2⌉−1

)(
n−b
⌊a/2⌋

)(
n
a

) .

Otherwise, this probability is 0.

For intuition, observe that after accumulating a vector of weight a one obtains ⌈a/2⌉ “intervals”
of 1’s: there are ⌈a/2⌉ indices that start a string of 1’s, and ⌊a/2⌋ indices that end the string. One
must then count the number of ways to arrange these “starting and ending” indices so that the
sum of the lengths of the intervals is b.

Applying Lemma 9.2, we can write this expectation as follows (viewing binomial coefficients
(
a
b

)
as 0 if b < 0 or b > a):

n/r∑
w1=1

(
n/r

w1

) n∑
w2=1

d∑
w3=1

prw1 7→w2 · pw2 7→w3 (4)

=

n/r∑
w1=1

n∑
w2=1

d∑
w3=1

(
n/r

w1

)
·

(
w2−1

⌈rw1/2⌉−1

)(
n−w2

⌊rw1/2⌋
)(

n
rw1

) ·

(
w3−1

⌈w2/2⌉−1

)(
n−w3

⌊w2/2⌋
)(

n
w2

) . (5)

41

In fact, it will be useful to rewrite the probability in Lemma 9.2 as follows (this is also done
in [KZKJ08]): (

b−1
⌈a/2⌉−1

)(
n−b
⌊a/2⌋

)(
n
a

) =

(
b

⌈b/2⌉
)(

n−a
b−⌈a/2⌉

)(
n
b

) ·
⌈a2⌉
b

.

The above equality follows from opening up the binomial coefficients. Intuitively, this rewriting is
useful, as now only one of the binomial coefficients depends on both a and b. This will allow for an
easier analysis of certain expressions which will appear.

Thus, the expectation in (5) is

n/r∑
w1=1

n∑
w2=1

d∑
w3=1

(
n/r

w1

)
·

(
rw1

⌈rw1/2⌉
)(

n−rw1

w2−⌈rw1/2⌉
)(

n
w2

) ·

(w2

⌈w2
2
⌉
)(

n−w2

w3−⌈w2/2⌉
)(

n
w3

) ·
⌈rw1/2⌉ · ⌈w2

2 ⌉
w2w3

, (6)

and our target will be to provide meaningful bounds on (6). We now provide some intuition for
our approach.

Firstly, we view the two rounds of permuting and accumulating as two “stages” in the encoding.
We know that the minimum distance of an RA code – i.e., a code with only 1 round of permuting and
accumulating – will never have Ω(1) minimum distance [BMS08,KZCJ07]: the minimum distance
will (with high probability) be something like n−2/r.

However, this is already quite good: in particular, if after the first round all vectors have weight
about n−2/r, the second stage is very likely to give us our desired minimum distance δ.

To make this intuition concrete, we break the expectation in (6) into two parts: one part with
the middle weight w2 less than about n1−2/r, and one part with the middle weight large. We provide
a novel analysis of this first part in Section 9.2, and then use ideas from Kliewer et al. [KZKJ08]
to bound the second part in Section 9.3.

Let us state two lemmas that we will use throughout this section.

Lemma 9.3. Let w1, w2 and w3 be the message weight, intermediate weight (after one permutation
and accumulator) and output weight, respectively, of an RAA code with rate 1/r and block length
n. Then we have

⌈rw1/2⌉ ≤ w2, ⌊rw1/2⌋ ≤ n− w2, ⌈w2/2⌉ ≤ w3 and ⌊w2/2⌋ ≤ n− w3 ,

and in terms of relative weights α := rw1
n , β := w2

n and ρ := w3
n

α

2
≤ β,

α

2
< 1− β,

β

2
≤ ρ and

β

2
< 1− ρ .

Proof. Follows immediately from Lemma 9.2.

Lemma 9.4. For k, n ∈ N with k ≤ n we have the upper-bound(
n

k

)
≤ e

32
360

√
2π

·
√

n

k(n− k)
· 2n·H(

k
n) ≤ e

32
360

√
π

· 2n·H(
k
n) ≤ 0.61664 · 2n·H(

k
n) ,

we have the lower-bound(
n

k

)
≥ e−

61
360

√
2π

·
√

n

k(n− k)
· 2n·H(

k
n) ≥

√
2 · e−

61
360

√
π

· 2
n·H(k

n)
√
n

≥ 0.67352 · 2
n·H(k

n)
√
n

.

42

Proof. The proof is a simple consequence of the following strong form of Stirling’s approximation,
which says that for all n:

√
2πn

(n
e

)n
e

(
1

12n
− 1

360n3

)
< n! <

√
2πn

(n
e

)n
e

1
12n .

9.2 Probability First Stage Fails

In this section, we essentially bound the probability that some message vector has small weight after
the first stage: namely, after (randomly) permuting and accumulating, the obtained intermediate
vector has weight at most nγ for some γ ∈ (0, 1). More precisely, we prove the following proposition,
which makes use of the function

φℓ(x) := exp
(
x(x−1)

2ℓ

)
.

Proposition 9.5. Let r, n ∈ N, r even, with r ≥ 4, δ ∈ (0, 1/3) s.t. d = δn ∈ N, γ = 1− 2
r (1+ε) for

some ε > 0. If r = 4 assume further δ < 1/4. Define m := ⌊nγ⌋, v∗2 = 1+r
2 ln(1/η) and η = 4δ(1− δ).

Suppose there exists ξ ∈ (0, 1) such that the following holds

n ≥ max

{
7, 2m+ r + 1,

2

1− ξ
m,

(2/ξ)r/ε

r1/ε

}
. (7)

Then:

n/r∑
w1=1

m∑
w2=1

d∑
w3=1

(
n/r

w1

)
·

(
rw1

rw1/2

)(
n−rw1

w2−rw1/2

)(
n
w2

) ·

(
w2

⌈w2/2⌉
)(

n−w2

w3−⌈w2/2⌉
)(

n
w3

) · rw1/2 · ⌈w2/2⌉
w2w3

(8)

≤ I{r = 4} · 3

n− 2
+ I{r = 6, δ ≥ 1/4} · 180δ

2(1− δ)

(n− 2)2

+ n1−r/2 · ⌈n
γ

2
⌉ · 0.43603

r
·
(
r
r
2

)
· φn

(
2 · ⌈m

2
⌉
)
· φn(r) · (2v∗2)

r+1
2 · ηv∗2 (9)

= O(n1+γ−r/2) .

Proof. We will bound the sums in (8) by replacing each sum with its largest term multiplied by
the number of terms in the sum, starting out with the sum over w3. To do so we first rewrite (8)
to separate out the factors depending on w3.

(8) =

n/r∑
w1=1

m∑
w2=1

(
n/r

w1

)
·

(
rw1

rw1/2

)(
n−rw1

w2−rw1/2

)(
n
w2

) ·
(

w2

⌈w2/2⌉

)
· rw1/2 · ⌈w2/2⌉

w2
·

d∑
w3=1

(
n−w2

w3−⌈w2/2⌉
)(

n
w3

) · 1

w3
.

We claim that the above expression grows with w3 as long as w2 ≥ 4. To see this, we show that
the ratio between the terms w3 + 1 and w3 term is > 1, except when w2 ≤ 3.

(n−w2
w3+1−⌈w2/2⌉

)

(n
w3+1)

· 1
w3+1

(n−w2
w3−⌈w2/2⌉

)

(n
w3
)

· 1
w3

=
w3

w3 + 1
· n− w2 − w3 + ⌈w2/2⌉

w3 + 1− ⌈w2/2⌉
· w3 + 1

n− w3

=
w3

w3 + 1− ⌈w2/2⌉
· (n− w3)− ⌊w2/2⌋

n− w3
.

43

The above is > 1 if and only if

w3 ((n− w3)− ⌊w2/2⌋) > (n− w3) (w3 + 1− ⌈w2/2⌉)
⇐⇒ −w3 · ⌊w2/2⌋ > (n− w3) · (1− ⌈w2/2⌉)
⇐⇒ −n · (1− ⌈w2/2⌉) > −w3 · (1− ⌈w2/2⌉) + w3 · ⌊w2/2⌋
⇐⇒ n · (⌈w2/2⌉ − 1) > w3 · w2 − w3

⇐⇒ n

(
⌈w2/2⌉ − 1

w2 − 1

)
> w3 .

The final upper-bound on w3 becomes w3 < n/3 assuming w2 ≥ 4. For w2 = 2 the upper-bound
becomes w3 < 0 and for w1 = 1 it is undefined. Thus, if we are willing to settle for a minimum
distance δ of at most 1/3, and separately account for the cases w2 = 1, w2 = 2 and w2 = 3, then
we can suppose that (8) grows with w3. Furthermore, we observe that if δ < 1/4 then it in fact
suffices to just deal with the case w2 = 1 and w2 = 2.

Let us first work out the contribution of these additional cases. Recall from Lemma 9.3 that
the accumulator can at most half the weight of any vector. Note that since we consider r ≥ 4,
this means that we will never obtain w2 = 1, and only have to deal with w2 = 2 and w2 = 3.
Furthermore w2 = 2 can only be achieved when starting with w1 = 1 while r = 4; while w2 = 3
can only be achieved when starting with w1 = 1 while r ∈ {4, 6}. However, for this latter case we
need δ ≥ 1/4, which we assume is not the case when r = 4. Let’s first calculate the contribution in

44

the first case (i.e., for w1 = 1, w2 = 2 and r = 4):

I{r = 4} ·
1∑

w1=1

2∑
w2=2

(
n/r

w1

)
·

(
rw1

rw1/2

)(
n−rw1

w2−rw1/2

)(
n
w2

) ·
(

w2

⌈w2/2⌉

)
· rw1/2 · ⌈w2/2⌉

w2

·
d∑

w3=⌈w2/2⌉

(
n−w2

w3−⌈w2/2⌉
)(

n
w3

) · 1

w3

= I{r = 4} · n
r
·

(
r
r
2

)(
n−r
2− r

2

)
n(n− 1)

· 2 ·
r
2 · 1
2

·
d∑

w3=1

(n−2)!
(w3−1)!(n−w3−1)!

w3 · n!
w3!(n−w3)!

= I{r = 4} · 3

(n− 1)
·

d∑
w3=1

w3 · (n− w3)

w3 · n(n− 1)

= I{r = 4} · 3

(n− 1)
·

(
n · d

n(n− 1)
− 1

n(n− 1)

d∑
w3=1

w3

)

= I{r = 4} · 3

(n− 1)
·
(

d

n− 1
− d(d+ 1)

2 · n(n− 1)

)
= I{r = 4} · 3d

(n− 1)2
·
(
1− d+ 1

2n

)
= I{r = 4} · (3− 3δ/2− 3/n)d

(n− 1)2

≤ I{r = 4} · 3− 3δ2/2

n− 2

≤ I{r = 4} · 3

n− 2
.

We now consider the term with w1 = 1 and w2 = 3. We recall that this term only arises if δ ≥ 1/4
and r = 6:

I{r = 6, δ ≥ 1/4} ·
1∑

w1=1

3∑
w2=3

(
n/r

w1

)
·

(
rw1

rw1/2

)(
n−rw1

w2−rw1/2

)(
n
w2

) ·
(

w2

⌈w2/2⌉

)
· rw1/2 · ⌈w2/2⌉

w2

·
d∑

w3=⌈w2/2⌉

(
n−w2

w3−⌈w2/2⌉
)(

n
w3

) · 1

w3

= I{r = 6, δ ≥ 1/4} ·
(
n/6

1

)
·
(
6
3

)(
n−6
3−3

)(
n
3

) ·
(
3

2

)
· 3 · 2

3
·

d∑
w3=2

(n−3)!
(w3−2)!(n−w3−1)!

w3 · n!
w3!(n−w3)!

= I{r = 6, δ ≥ 1/4} · n
6
· 20

n(n− 1)(n− 2)
· 6 · 3 · 2 ·

d∑
w3=2

(w3 − 1)(n− w3)

n(N − 1)(n− 2)

≤ I{r = 6, δ ≥ 1/4} · 120(n− 4)

(n− 1)(n− 2)
· d2(n− d)

≤ I{r = 6, δ ≥ 1/4} · 180δ
2(1− δ)

(n− 2)2

45

where the penultimate inequality uses that (w3 − 1)(n − w3) ≤ d(n − d), which is valid for all
w3 ≤ d = δn ≤ n/2 (recall δ < 1/3), and the last inequality holds for n ≥ 7.

Thus, the contribution from these terms can be bounded by

I{r = 4} · 3

n− 2
+ I{r = 6, δ ≥ 1/4} · 180δ

2(1− δ)

(n− 2)2
. (10)

Returning to bounding the sum over w3 gives us

(8) ≤ (10) +

n/r∑
w1=1

m∑
w2=1

(
n/r

w1

)
·

(
rw1

rw1/2

)(
n−rw1

w2−rw1/2

)(
n
w2

) ·
(

w2

⌈w2/2⌉

)

· rw1/2 · ⌈w2/2⌉
w2

· d ·

(
n−w2

d−⌈w2/2⌉
)(

n
d

) · 1
d

= (10) +

m∑
w2=1

(
n−w2

d−⌈w2/2⌉
)(

n
d

) 1(
n
w2

) · (w2

⌈w2/2⌉

)

· ⌈w2/2⌉
w2

·
⌊ 2w2

r
⌋∑

w1=1

(
n/r

w1

)(
rw1

rw1/2

)(
n− rw1

w2 − rw1/2

)
· rw1/2 . (11)

We note that the rewritten upper-bound on the sum over w1 follows again from the fact that the
accumulator at worst halves the weight of a vector, which follows from Lemma 9.3.

We now claim that the above expression decreases with w1, and again argue this by showing
that the ratio between the terms w1 + 1 and w1 is ≤ 1. We write out the ratio of these terms for
each factor involving w1. First,(

n/r
w1+1

)(
n/r
w1

) ·
r(w1+1)

2
rw1
2

=
n/r − w1

w1 + 1
· w1 + 1

w1
=
n/r − w1

w1
≤ n

r
.

Next, (r(w1+1)
r(w1+1)

2

)
(

rw1

rw1/2

) =
(rw1 + r)!(rw1/2)!

2

(rw1)!(rw1/2 +
r
2)!

2
=

r
2
−1∏

j=0

(rw1 + 2j + 1)(rw1 + 2j + 2)

(rw1
2 + j + 1)2

.

Lastly, (n−r(w1+1)

w2− r(w1+1)
2

)
(

n−rw1

w2−rw1/2

) =
(n− rw1 − r)!(w2 − rw1/2)!(n− rw1/2− w2)!

(n− rw1)!(w2 − rw1/2− r
2)!(n− rw1/2− w2 − r

2)!

=

r
2
−1∏

j=0

(w2 − rw1
2 − j)(n− w2 − rw1

2 − j)

(n− rw1 − 2j)(n− rw1 − 2j − 1)
.

Now, we first note that for each j

rw1 + 2j + 1

n− rw1 − 2j − 1
≤ rw1 + 2j + 2

n− rw1 − 2j
.

46

Indeed, calling x = rw1 + 2j + 1 and y = n, we wish to show x
y ≤ x+1

y+1 , which is true if and
only if x ≤ y, which is true for our setting since we assumed n ≥ 2m + r + 1 and we have
w1 ≤ 2w2/r ≤ 2m/r. Thus, we bound

r
2
−1∏

j=0

(rw1 + 2j + 1)(rw1 + 2j + 2)

(rw1
2 + j + 1)2

·
(w2 − rw1

2 − j)(n− rw1
2 − j)

(n− w2 − rw1 − 2j)(n− rw1 − 2j − 1)

≤

r
2
−1∏

j=0

(rw1 + 2j + 2)(rw1 + 2j + 2)

(rw1
2 + j + 1)2

·
(w2 − rw1

2 − j)(n− rw1
2 − j)

(n− w2 − rw1 − 2j)(n− rw1 − 2j)

=

r
2
−1∏

j=0

22 ·
(w2 − rw1

2 − j)(n− w2 − rw1
2 − j)

(n− rw1 − 2j)2
. (12)

Now, for fixed j call x = w2 − rw1
2 − j and y = (n− w2 − rw1

2 − j). Observe

(w2 − rw1
2 − j)(n− w2 − rw1

2 − j)

(n− rw1 − 2j)(n− rw1 − 2j)
=

xy

(x+ y)2
=

xy

(y − x)2 + 4xy
.

Instead of upper bounding this ratio, we find it easier to lower bound its reciprocal:

(y − x)2 + 4xy

xy
=

(y − x)2

xy
+ 4 .

Now, we have xy ≤ (w2− rw1
2)(n−w2− rw1

2) ≤ m(n−m) ≤ mn = n1+γ , as w2 ≤ m ≤ n/2. On the
other hand, (y − x) = (n− 2w2) ≥ (n− 2m) ≥ ξn, where this last inequality uses the assumption
n ≥ 2

1−ξm. Hence,

(y − x)2

xy
≥ ξ2n2

n1−γ
= ξ2n1−γ .

Thus, we have the bound

(12) ≤

r
2
−1∏

j=0

4 · 1

ξ2n1−γ + 4
=

r
2
−1∏

j=0

1

(ξ/2)2n1−γ + 1

≤

r
2
−1∏

j=0

(2/ξ)2nγ−1 = (2/ξ)rn
r
2
(γ−1) = (2/ξ)rn−(1+ε)

where we used γ = 1− 2
r (1+ ε) in the last equality. Finally, using the assumption n ≥ (2/ξ)r/ε

r1/ε
⇐⇒

nε ≥ (2/ξ)r

r , we have
n

r
· (2/ξ)rn−(1+ε) =

(2/ξ)r

r
n−ε ≤ 1

establishing that the terms in this summation over w1 are indeed decreasing.

47

Thus, we can conclude that the sum over w1 in (11) is maximised by its first term w1 = 1, so
that we can upper-bound as follows:

(8) ≤ (10) +

m∑
w2=1

(
n−w2

d−⌈w2/2⌉
)(

n
d

) 1(
n
w2

) · (w2

⌈w2/2⌉

)
· ⌈w2/2⌉

w2
· ⌊2w2

r
⌋ ·
(
n/r

1

)(
r
r
2

)(
n− r

w2 − r/2

)
· r
2

≤ (10) +
n

r
·
(
r
r
2

) m∑
w2=1

(
n−w2

d−⌈w2/2⌉
)(

n
d

) (
n−r

w2−r/2

)(
n
w2

) ·
(

w2

⌈w2/2⌉

)
· ⌈w2/2⌉ , (13)

where we upper-bounded ⌊2w2
r ⌋ by removing the floor. We would like to bound the final sum over

w2 in a similar fashion. Unfortunately, this sum isn’t maximized by its first or last term, but rather
by some term in between. To find this term, we first simplify the sum somewhat. Specifically,
we now observe that the sum over w2 grows with w2 for odd w2, i.e. any term for odd w2 can
be upper-bound by its subsequent (and thus even) term w2 + 1. By simplifying the sum in this
manner, we will be able to bound it in a good way. But before we do that, let us justify our claim,
by once again computing the ratio between subsequent terms in the sum, this time assuming w2 is
odd:(n−(w2+1)

d−⌈w2+1
2

⌉

)
(

n−w2

d−⌈w2/2⌉
) =

(n−w2−1)

d−w2+1
2

)
(n−w2

d−w2+1
2

) =
(n− w2 − 1)!

(
d− w2+1

2

)
!
(
n− d− w2/2 +

1
2

)
!

(n− w2)!
(
d− w2+1

2

)
!
(
n− d− w2/2− 1

2

)
!

=
n− d− w2/2 +

1
2

n− w2
,

(
n−r

w2+1− r
2

)(
n−r
w2− r

2

) =
(n− r)!

(
w2 − r

2

)
!
(
n− w2 − r

2

)
!

(n− r)!
(
w2 − r

2 + 1
)
!
(
n− w2 − r

2 − 1
)
!
=
n− w2 − r

2

w2 − r
2 + 1

,(
n
w2

)(
n

w2+1

) =
n! · (w2 + 1)!(n− w2 − 1)!

n! · w2! · (n− w2)!
=
w2 + 1

n− w2
,(w2+1

⌈w2+1
2

⌉
)(

w2

⌈w2/2⌉
) =

(w2+1
w2+1

2

)(w2
w2+1

2

) =
(w2 + 1)!

(
w2+1

2

)
!
(
w2−1

2

)
!

w2!
(
w2+1

2

)
!
(
w2−1

2

)
!

=
(w2 + 1)!(

w2+1
2

) = 2 ,

⌈w2+1
2 ⌉

⌈w2/2⌉
=

w2+1
2

w2+1
2

= 1 .

Combining these ratios gives us the following:

n− d− w2/2 +
1
2

n− w2
·
n− w2 − r

2

w2 − r
2 + 1

· w2 + 1

n− w2
· 2 · 1

=
2(n− d)− w2 + 1

n− w2
·
n− w2 − r

2

n− w2
· w2 + 1

w2 − r
2 + 1

. (14)

Recall that we need to show that the above expression (14) is > 1. To do so, we will use the
following fact: if x, y, z ≥ 0 with y ≥ x > z, then x

x−z · y−z
y ≥ 1. Indeed, we observe

x(y − z) ≥ (x− z)y ⇐⇒ xy − xz ≥ xy − zy ⇐⇒ zy ≥ xz ⇐⇒ y ≥ x .

Applying this claim with x := w2 + 1, y := n− w2 and z := r
2 tells us that the product of the last

two fractions in (14) are ≥ 1. To show that (14) > 1, it therefore suffices to show that the first

48

fraction is > 1:
2(n− d)− w2 + 1

n− w2
≥ 2(n− d)− w2

n− w2
≥ 2(n− d)

n
> 1

where the second inequality follows from

a− x

b− x
≥ a

b
⇐⇒ (a− x) · b

a · (b− x)
⇐⇒ ab− xb ≥ ab− xa ⇐⇒ a ≥ b

and the final inequality uses 2(n− d) = 2(1− δ)n > n since δ < 1/2.
Thus, we have shown that any odd w2 term in the sum over w2 in (13) is smaller than its

subsequent even w2, allowing us to bound the odd terms by the subsequent even terms. To do so,
let w2 := 2v2 so that we can write:

(8) ≤ (10) +
n

r
·
(
r
r
2

) m∑
w2=1

(
n−w2

d−⌈w2/2⌉
)(

n
d

) (
n−r

w2−r/2

)(
n
w2

) ·
(

w2

⌈w2/2⌉

)
· ⌈w2/2⌉

≤ (10) +
n

r
·
(
r
r
2

) ⌈m
2
⌉∑

v2=1

(
n−2v2
d−v2

)(
n
d

) (
n−r

2v2−r/2

)(
n
2v2

) ·
(
2v2
v2

)
· v2 . (15)

To bound this expression, we will write out the binomials and then apply the following bound
from [KZKJ08]

N ℓ

φN (ℓ)
≤

ℓ−1∏
λ=0

(N − λ) ≤ N ℓ (16)

where

φN (ℓ) := exp

(
ℓ(ℓ− 1)

2N

)
,

which gives us the following:

(8) = (10) +
n

r
·
(
r
r
2

) ⌈m
2
⌉∑

v2=1

(n− 2v2)! · d! · (n− d)!

n! · (d− v2)!(n− d− v2)!
· (n− r)!(2v2)!(n− 2v2)!

n! ·
(
2v2 − r

2

)
!
(
n− 2v2 − r

2

)
!
·
(
2v2
v2

)
· v2

= (10) +
n

r
·
(
r
r
2

) ⌈m
2
⌉∑

v2=1

∏v2−1
j=0 (d− j)

∏v2−1
j=0 (n− d− j)∏2v2−1

j=0 (n− j)

·
∏ r

2
−1

j=0 (2v2 − j)
∏ r

2
−1

j=0 (n− 2v2 − j)∏r−1
j=0(n− j)

·
(
2v2
v2

)
· v2

≤ (10) +
n

r
·
(
r
r
2

) ⌈m
2
⌉∑

v2=1

dv2 · (n− d)v2

n2v2
· φn(2v2) ·

(2v2)
r
2 (n− 2v2)

r
2

nr
· φn(r) ·

(
2v2
v2

)
· v2 .

To simplify this further, we note that the factor (n−2v2)
r
2

nr/2 will tend to 1 from below, and be extremely
close to 1 for larger n, so we remove it (this vastly simplifies finding the maximizing term). Next,
we bound the binomial involving v2 using Lemma 9.4. We leave out the factor φn(2v2), simply

49

bounding it as φn(2⌈m/2⌉). Finally, we recall that we defined η := 4δ(1 − δ). Combing all this
gives us the bound:

(8) ≤ (10) + n1−r/2 · 0.87206
r

·
(
r
r
2

)
· φn

(
2 · ⌈m

2
⌉
)
· φn(r)

⌈m
2
⌉∑

v2=1

(2v2)
r
2 · v2 ·

22v2√
2v2

· d
v2 · (n− d)v2

n2v2

= (10) + n1−r/2 · 0.87206
2r

·
(
r
r
2

)
· φn

(
2 · ⌈m

2
⌉
)
· φn(r)

⌈m
2
⌉∑

v2=1

(2v2)
r+1
2 · ηv2 .

To maximize the expression depending on v2 we rewrite it as

(2v2)
r+1
2 · ηv2 = exp

(
r + 1

2
· ln(2v2) + v2 · ln(η)

)
,

so that it suffices to maximize the exponent. We do this by setting its derivative to v2 equal to 0:

r + 1

2
· 1

v2
+ ln(η) = 0 ⇐⇒ v2 =

1 + r

2 ln(1/η)
.

Call this critical point v∗2. To see it is a maximizer, note that the second derivative − r+1
2 v−2

2 < 0
for all v2 > 0. So, v∗2 is indeed the maximizer, so the final bound becomes:

(8) = (10) + n1−r/2 · ⌈n
γ

2
⌉ · 0.43603

r
·
(
r
r
2

)
· φn

(
2 · ⌈m

2
⌉
)
· φn(r) · (2v∗2)

r+1
2 · ηv∗2 .

9.3 Given Successful First Stage, Probability Code has Good Distance

We now focus on the second half of (6). That is, we wish to bound

n/r∑
w1=1

n∑
w2=⌈nγ⌉

d∑
w3=1

(
n/r

w1

)
·

(
rw1

rw1/2

)(
n−rw1

w2−rw1/2

)(
n
w2

) ·

(
w2

⌈w2/2⌉
)(

n−w2

w3−⌈w2/2⌉
)(

n
w3

) · ⌈rw1/2⌉ · ⌈w2/2⌉
w2w3

. (17)

To do this, we more directly exploit analysis of Kliewer et al. [KZKJ08]. In particular, we
consider the following function (as they do):

f(α, β, ρ) :=
H(α)

r
−H(β)−H(ρ) + α+ (1− α)H

(
β − α/2

1− α

)
+ β + (1− β)H

(
ρ− β/2

1− β

)
.

In the above, we’ve used H(·) to denote the binary entropy function, which we recall is defined on
the interval [0, 1] via

H(p) := −p log2 p− (1− p) log2(1− p)

for p ∈ (0, 1) and extended by continuity to the endpoints: H(0) = H(1) = 0.
The motivation for the definition of f stems from the following approximation. Fix w1, w2 and

w3 in (17), and consider the corresponding term in the sums. Set now α = rw1
n , β = w2

n and
ρ = w3

n , the relative Hamming weights of the corresponding vectors (in the case of w1, note this is

50

the weight after repeating the message vector). We argue below that we can then write the term
as nO(1) · 2n·f(α,β,ρ). Thus, we could hope to argue the following: suppose that f(α, β, ρ) < 0 for all
admissible α, β, ρ, with maximal value f∗, where admissibility is determined by Lemma 9.3. Then
the bound would be nO(1) · 2n·f∗

, and it’s reasonable to hope for the second term to overwhelm the
first.

So, we look to maximise f over the set of (α, β, ρ) satisfying 0 < α ≤ min{2β, 2 − 2β}, 0 <
β ≤ {2ρ, 2 − 2ρ} and 0 < ρ ≤ δ. To do so, we start (see Claim 9.9.1) by showing that f grows
monotonically with ρ, so that to maximise f we can simply set ρ := δ (recall that δ is our target
minimum distance). This leaves us with the maximisation of f over α, β; we visualise the admissible
region R ⊆ R2 of points (α, β) as a triangle in Section 9.3.

α

β

4δ

2δ

(a) (α = 0,
0 < β ≤ 2δ)

(b) (0 < α ≤ 4δ, β = α/2)

(c) (0 < α ≤ 4δ, β = 2δ)

R

Figure 5: The region over which we look to maximize f , where ρ = δ is fixed. In fact we assume
δ < 1/4 in this image, so that the constraints α ≤ 2−2β and β ≤ 2−2δ can be removed. However,
f(0, 0, δ) = 0, so a näıve analysis will not work. The blue curve shows the points for which ∂f

∂α = 0

and the red curve shows the points for which ∂f
∂β = 0.

It was already shown by [KZKJ08] that all points in this region with α, β > 0 are indeed
negative, so that for large enough n almost all codes attain this minimum distance δ (assuming one
picks a small enough target minimum distance δ). However, their analysis doesn’t specify which
point is the maximizer. Indeed, the region R is not compact, so that finding a maximizer might not
even be possible. In particular, the supremum value of f on R will be at least 0, as f(0, 0, δ) = 0
and (0, 0) is an accumulation point of R.

Our contribution is to show that we can indeed find a maximum once we restrict the set of
admissible (α, β). We can then use this maximum to bound each term in the expectation (17) and
give a concrete bound on the error probability of sampling a code with minimum distance δ, even
for concrete n. Let us give a brief high-level overview of our argument first.

Note that for fixed n the region over which we maximize does become compact: the permissible
points (α, β) can’t be real numbers arbitrarily close to 0 anymore, but must be at least α0 := r/n
and β0 := r/(2n). Visually, this shrinks our triangle, cutting off a slice on the left, containing the
ranges 0 < α < r/n and 0 < β < r/(2n).

51

This space must then be maximized by a critical point (i.e. an admissible pair (α, β) with
α ≥ r/n and β ≥ r/(2n) at which both ∂f

∂α and ∂f
∂β equal 0) or a point on the boundary. Thanks

to [KZKJ08], we know an algebraic relation that critical points must satisfy, which in particular
implies there are only a constant number of them (and moreover they can be explicitly computed).
Specifically, the red line drawn in Figure 9.3 represents the points where the derivative to α is 0
and the blue line represents the points where the derivative to β is 0. Their points of intersection
are the critical points of f .27

We will argue that the restrictions of f to either α or β (i.e. horizontal or vertical restrictions
of the region) are strictly concave. This means that any horizontal “slice” of our region will be
maximized by the intersection point of the slice and the blue curve; any vertical ”slice” will be
maximized by the intersection of the slice and the red curve. We will show that for most α and β
the red and blue curves lie strictly in the interior of the region. It follows that the boundaries (a),
(b) and (c) cannot contain maximizers for f .

The only exception is tiny α and β. At the very bottom-left, the blue curve exits the interior
of the triangle at (α0, β1) where β1 = Ω(n−2/r). Consider now the very bottom of boundary (a)
where β < β1. A horizontal slice of the region at such a β has a critical point on the blue curve.
But since this curve is now to the left of our triangle, the maximizer instead becomes the left-most
point: α0. This means the points (α0, β) for β < β1 are potential maximizers of f . However, we
will argue that f is decreasing with β on this range, so that the only potential maximizer is the
bottom-left corner of the triangle (α0, β0).

α

β

4δα0 := r/n

2δ

β0 := nγ−1

β1

(a) (α = α0,
β0 ≤ β ≤ 2δ)

(b) (2β0 ≤ α ≤ 4δ, β = α/2)

(c) (α0 ≤ α ≤ 4δ, β = 2δ)

(e) (α0 ≤ α ≤ 2β0, β = β0)

R′

Figure 6: The region R′ that we optimize the function f over (again for δ < 1/4). Notably, we
require α ≥ α0 = r/n and β ≥ β0 = nγ−1, that is, we have a little gap between the axes and the
region R′. Furthermore the region R′ is now compact. The blue curve, representing the values for
which ∂f

∂α = 0, crosses the boundary (a) at some point β1 ≥ β0.

In short, either the bottom-left point or a critical point maximizes f . Unfortunately, the value of

27For r = 4 these curves are quadratic. For different r they are polynomials of differing degrees. Our drawing just
serves to provide some intuition, and doesn’t exactly represent the curves for any r.

52

f at this bottom-left point is so close to 0 that it doesn’t suffice to provide small error probability,28

making this approach unusable as is. However, recall that we have w2 ≥ nγ so that β ≥ nγ−1. It
turns out that this increase of β decreases f enough to make this approach usable. Visually, this
removes the left-most part of the triangle. This turns our original triangle-shaped region into a
quadrilateral-shaped region. We visualise this region in Figure 6.

The analysis remains as above: though we add a new boundary (e), since this boundary lies
strictly below β1 (as β0 = nγ−1 < β1 = Ω(n−2/r) for our choice of γ), we can still argue that the
bottom-left point (α0, β0) = (r/n, nγ−1) is the only maximizer beyond the critical points in the
region. Since the critical points are independent of n, while the bottom-left point decreases with
n, for large enough n the bottom-left point is always the maximizer (assuming δ is not too large
(depending on r). The final bound will be nO(1) · 2f(α0,β0,δ)n = nO(1) · 2−Ω(nγ) = 2−Ω(nγ), using an
estimate f(α0, β0, δ) = −Ω(nγ) which we establish. All in all, we derive the following proposition.

Proposition 9.6. Let r, n ∈ N with r ≥ 3 and r|n, δ ∈ (0, 1/2) s.t. d := δn ∈ N, γ = 1− 2
r (1 + ε)

for some ε > 0. Define α0 :=
r
n and β0 := nγ−1. Assume

β1 =
1

2
− 1− α0

2

√
1−

(
α0

1− α0

)2/r

> β0 ,
√

4δ(1− δ) < 1− 2β1 −
α0

2β0
and nγ ≥ 101 .

Then

n/r∑
w1

n∑
w2=⌊nγ⌋+1

d∑
w3=1

(
n/r

w1

)
·

(
rw1

⌈rw1/2⌉
)(

n−rw1

w2−⌈rw1/2⌉
)(

n
w2

) ·

(
w2

⌈w2/2⌉
)(

n−w2

w3−⌈w2/2⌉
)(

n
w3

) · ⌈rw1/2⌉ · ⌈w2/2⌉
w2w3

≤ 0.80192 · δ
r3/2

· n7/2 · max
(α,β)∈R′

2f(α,β,δ)n (18)

≤ 0.80192 · δ
r3/2

· n7/2 · 2Bn ,

where
B = max{f(α0, β0, δ),max{f(α, β, δ) : (α, β) ∈ CP(r, δ)}} .

Above, CP(r, δ) is the set of critical points of f in R′ given r and δ, i.e. the set of (α, β) satisfying
equations (19) and (20). In particular, if f is negative on all critical points then for sufficiently
large n the bound is

0.80192 · δ
r3/2

· n7/2 · 2f(α0,β0,δ)n ≤ 2−Ω(nγ) .

Remark 9.7. We remark that in the above we do not require r even, nor do we require δ < 1/3;
only Proposition 9.5 requires these bounds.

Before diving into the proof of this proposition, we quickly justify that the constraints are met
for large enough n. Clearly the constraint nγ ≥ 101 just requires large enough n. Furthermore as
δ < 1/2 we have

√
4δ(1− δ) ≤ 1 − Ω(1) whereas 1 − 2β1 − α0

2β0
= 1 − O(n−r/2) − O(n−γ), so the

second requirement is met for reasonable n. For the constraint involving β1:

28We observe that f(r/n, r/(2n), δ) ≈ − ln(n)/n, so then 2nf(r/n,r/(2n),δ) ≈ 1/nln 2 ≈ 1/n0.3 which will not overcome
the poly(n) overhead from the union bound.

53

Claim 9.7.1. Let r, n, δ, ε, γ, α0, β0 be as in Proposition 9.6. Then β1 = Θ(n−2/r), so for large

enough n, β0 = nγ−1 = n−
2
r
(1+ε) < β1.

Proof. We have

β1 ≥
1

2
− 1− r/n

2

(
1− 1

2

(
r/n

1− r/n

)2/r
)

=
1

2
− 1

2
+

1

2

(
r/n

1− r/n

)2/r

+
r

2n
− 1

4

(r/n)1+2/r

(1− r/n)2/r
= Ω(n−2/r) ,

where we use
√
1− x ≤ 1 − x/2 for all x ∈ [0, 1]. Similarly, using

√
1− x ≥ 1 − x one can also

establishes β1 ≤ O(n−2/r), so we conclude β1 = Θ(n−2/r).

We now turn to the proof of Proposition 9.6.

of Proposition 9.6. We start by showing that we can indeed bound the expectation as (18). We
then turn to the maximization of f , and show that it is indeed maximized by one of the points in
the set B.

To bound the expression inside the sums, we rewrite the binomials using Lemma 9.4, with the
goal of writing this expression as poly(n) · 2n·f(α,β,δ). After doing so, we work out the poly(n)
factors we pick up in the process. We then write out the poly(n)-part of the binomials, and finally
remove the sums. We thus write the expression in the sums as(

n/r

w1

)
·

(
rw1

⌈rw1/2⌉
)(

n−rw1

w2−⌈rw1/2⌉
)(

n
w2

) ·

(
w2

⌈w2/2⌉
)(

n−w2

w3−⌈w2/2⌉
)(

n
w3

) · ⌈rw1/2⌉ · ⌈w2/2⌉
w2w3

= poly(n) · 2
n/rH

(
w1
n/r

)
2
(n−rw1)H

(
w2−⌈rw1/2⌉

n−rw1

)
2
rw1H

(
⌈rw1/2⌉

rw1

)
2
w2H

(
⌈w2/2⌉

w2

)
2
(n−w2)H

(
w3−⌈w2/2⌉)

n−w2

)
2nH(

w2
n)2nH(

w3
n)

= poly(n) · 2
n/rH(α)2

n(1−α)H
(

w2−⌈rw1/2⌉
n(1−α)

)
2
nαH

(
⌈rw1/2⌉

rw1

)
2
nβH

(
⌈w2/2⌉

w2

)
2
n(1−β)H

(
w3−⌈w2/2⌉)

n(1−β)

)
2nH(β)2nH(ρ)

= poly(n) · 2n
(

H(α)
r

+(1−α)H
(

w2−⌈rw1/2⌉
n(1−α)

)
+αH

(
⌈rw1/2⌉

rw1

)
+βH

(
⌈w2/2⌉

w2

)
+(1−β)H

(
w3−⌈w2/2⌉

n(1−β)

)
−H(β)−H(ρ)

)

≤ poly(n) · 2
n

(
H(α)

r
+(1−α)H

(
β−α

2
1−α

)
+α+β+(1−β)H

(
ρ−β

2
1−β

)
−H(β)−H(ρ)

)

= poly(n) · 2f(α,β,ρ)n .

where the inequality follows because we can upper-bound the second and third H containing a
ceiling by H(1/2). The fact that we can remove the other two ceilings is somewhat harder to see.
It is not to hard to see that for δ < 1/4 we can remove these ceilings safely using the following
lemma.

Lemma 9.8. If x < 1/2 then
x− y

2
1−y < 1/2 for any y ∈ (0, 1).

Proof.
x− y

2
1− y

< 1/2 ⇐⇒ x− y

2
<

1− y

2
⇐⇒ x <

1

2
.

54

The two ceiling terms we wish to bound indeed have the form
x− y

2
1−y − ϵ denoted in the lemma,

where in the first one x = w2 and in the second one x = w3. Thus it follows from the lemma that if

ρ < 1/2 and β < 1/2, the small decrease from the ceiling only makes H(
x− y

2
1−y − ϵ) smaller, so that

we can upper-bound by just removing the ceilings as we did above. However, note that to achieve
β < 1/2, we need our assumption that ρ ≤ δ < 1/4.

In other words, if we are willing to ‘settle’ for a minimum distance of at most 1/4 then we
are free to remove the ceilings at no extra cost. However, if we want to go to a higher minimum
distance we can’t just remove the ceilings. In these cases, we might be on the right-side of the
binary entropy function, where a decrease by ϵ may increase the output of h. In those cases, we
need to bound potential increase caused by the ceiling. By carefully doing this, it turns out that
as long as δ < 1/2 we can still remove the ceilings with minor cost.

Lemma 9.9. H(a− ϵ) ≤ H(a) + ϵ · log
(

a
1−a

)
.

Proof. Note that we can suppose that a > 1/2, or more specifically that a > 1−ϵ
2 , as for any smaller

value of a we already know that a decrease in ϵ will decrease h. Let Pa(x) be the first-order Taylor
polynomial Pa(x) of H at point a, and let R(x) be the amount by which the Taylor approximation
is off, i.e. H(x) = Pa(x) +R(x). We can then write

H(a− ϵ)−H(a) = Pa(a− ϵ)− Pa(a) +R(a− ϵ) .

The Taylor polynomial Pa is of course equal to

Pa(x) := H(a) +
h′(a)

1!
(x− a) = H(a) + log

(
1− a

a

)
(x− a) ,

and the error term is equal to

R(x) ≤ h′′(ξ)

2
(x− a)2 =

(x− a)2

4 ln(2)ξ(ξ − 1)

for some ξ ∈ (a− ϵ, a). Since ξ − 1 < 0, the denominator is always negative. Since the numerator
is a square it is always positive. It follows that the error term is negative, so that we are free to
ignore it. This means we end up with

H(a− ϵ)−H(a) = Pa(a− ϵ)− Pa(a) +R(a− ϵ)

≤ Pa(a− ϵ)− Pa(a)

= H(a) + log

(
1− a

a

)
((a− ϵ)− a)−H(a)

= ϵ · log
(

a

1− a

)
.

In our case, the expression we want to bound is H
(
w3−⌈w2/2⌉
n(1−β)

)
(and the analogous expression

where w3 becomes w2 and w2 becomes rw1). Again, in case w2 is even this expression simplifies

directly to H

(
ρ−β

2
1−β

)
. However, when w2 is odd we get

H

(
w3 − ⌈w2/2⌉
n(1− β)

)
= H

(
w3 − w2+1

2

n(1− β)

)
= H

(
ρ− β

2

1− β
− 1

2n(1− β)

)
.

55

We then apply the just-proven lemma with a =
ρ−β

2
1−β and ϵ = 1

2n(1−β) to get

H(a− ϵ)−H(a) ≤ ϵ log

(
a

1− a

)
= ϵ log

 ρ−β
2

1−β

1− ρ−β
2

1−β

 = ϵ log

(
ρ− β

2

1− β
2 − ρ

)
.

We would like the above to be negative, as then the ceiling causes no increase at all. The above is
negative whenever the fraction inside the log is at most 1, which is true exactly when

ρ− β/2 < 1− β/2− ρ ⇐⇒ 2ρ ≤ 1 ⇐⇒ ρ < 1/2 .

In other words, for any δ < 1/2 we can safely the ceilings without suffering any additional increase.
Next, we tackle the poly(n)-factors in the above expression. We make use of the bound

⌈rw1/2⌉⌈w2/2⌉
w2w3

= ⌈rw1/2⌉
w3

⌈w2/2⌉
w2

≤ ⌈ 4w3
2

⌉
w3

· 101
100 ≤ 102

100 . This is true because rw1 ≤ 4w3, and as long
as w2 ≥ 101 as w2 ≥ nγ ≥ 101 by assumption. We can then write the poly(n)-factors as follows

(for some binomials we keep the
√

n
k(n−k) -factor from Lemma 9.4 to help us out, while for other

binomials we don’t bother, as it won’t help us much):(
n/r

w1

)
·

(
rw1

⌈rw1/2⌉
)(

n−rw1

w2−⌈rw1/2⌉
)(

n
w2

) ·

(
w2

⌈w2/2⌉
)(

n−w2

w3−⌈w2/2⌉
)(

n
w3

) · ⌈rw1/2⌉ · ⌈w2/2⌉
w2w3

≤ 2f(α,β,ρ)n · 102
100

· 0.61664
3 · 0.436032

0.33675 · 0.67352
·

√
rw1

⌈rw1/2⌉(rw1−⌈rw1/2⌉) ·
√

w2
⌈w2/2⌉(w2−⌈w2/2⌉)√

n
w2(n−w2)

· 1√
n

≤ 102

100
· 0.61664

3 · 0.436032

0.33675 · 0.67352
· 2f(α,β,ρ)n ·

√
4

rw1
· 4

w2
· w2(n− w2)

n
· n

≤ 102

100
· 4 · 0.61664

3 · 0.436032

0.33675 · 0.67352
· 1√

r
· 2f(α,β,ρ)n ·

√
n− w2

≤ 0.80192√
r

·
√
n · 2f(α,β,ρ)n .

Putting these two bounds together gives us the proposed bound (18) on the expectation:

n/r∑
w1=1

n∑
w2=m+1

d∑
w3=1

(
n/r

w1

)
·

(
rw1

⌈rw1/2⌉
)(

n−rw1

w2−⌈rw1/2⌉
)(

n
w2

) ·

(
w2

⌈w2/2⌉
)(

n−w2

w3−⌈w2/2⌉
)(

n
w3

) · ⌈rw1/2⌉ · ⌈w2/2⌉
w2w3

≤
n/r∑
w1=1

n∑
w2=m+1

d∑
w3=1

0.80192√
r

·
√
n · 2f(

rw1
n

,
w2
n

,
w3
n)n

≤ 0.80192 · δ√
r

· n3/2
n/r∑
w1=1

n∑
w2=m+1

2f(
rw1
n

,
w2
n

,δ)n

≤ 0.80192 · δ
r3/2

· n7/2 · max
(α,β)∈R′

2f(α,β,δ)n .

Note that the second inequality uses the fact that f grows monotonically with ρ for ρ < 1/2, which
we prove below.

56

Claim 9.9.1. For fixed admissible α, β, the function f is growing with ρ.

Proof. We show that the derivative of f with respect to ρ is positive when ρ < 0.5:

∂f

∂ρ
= log

(
1− ρ− β/2

ρ− β/2

)
− log

(
1− ρ

ρ

)
> 0

⇐⇒ 1− ρ− β/2

ρ− β/2
>

1− ρ

ρ

⇐⇒ ρ(1− ρ− β/2) > (1− ρ)(ρ− β/2)

⇐⇒ ρ− ρ2 − ρβ/2 > ρ− ρ2 − β/2 + ρβ/2

⇐⇒ β/2 > ρβ

⇐⇒ 0.5 > ρ .

Having established the bound, we turn to the maximisation of f over α, β, where we recall the
constraints nγ−1 ≤ β ≤ 2δ and r/n ≤ α ≤ 2β. We visualised this region R′ of permissible points
(α, β) in Figure 6. This is a compact space, and since f is continuous it is maximized either by a
critical point or some point on the boundary. As explained above, [KZKJ08] computed the partial
derivatives of f with respect to α and β, and provide us equations satisfied by the critical points:

∂f

∂α
= 0 ⇐⇒ β =

1

2
± 1− α

2

√
1−

(
α

1− α

)2/r

(19)

where the root using − yields β < 1/2 and the root using + yields β > 1/2, and

∂f

∂β
= 0 ⇐⇒ δ =

1

2
± 1− β

2

√
1−

(
1− β

β
· β − α/2

1− β − α/2

)2

, (20)

where again the root using − yields δ < 1/2 and the root using + yields δ > 1/2.29 Given a target
minimum distance δ and a rate 1/r, one can solve the above system of equations to find the set of
critical points CP(r, δ). The maximal value of f on these critical points can then be computed.

It remains to deal with potential maximizers on the boundary of our region R′. As explained,
we will argue that the only boundary point that can maximize f is the left-bottom-most point
(α0, β0). To show this, we argue that f restricted to only α or only β (visually, a horizontal or
vertical “slice” of the region, recall Figure 6) is strictly concave. Equation (19) then gives the
critical points for f restricted to α and (20) then gives the critical points for f restricted to β. We
then argue about the location of the critical points for the univariate restrictions, which allow us to
conclude that by moving away from boundary points other than (α0, β0) we can increase f ’s value.

Lemma 9.10. Let fβ,δ(α) := f(α, β, δ) be the restriction of f to α. For all δ ∈ (0, 1) and β ∈
(0,min{2− 2δ, 2δ}), this function is strictly concave on its interval α ∈ (0,min{2β, 2− 2β}).
29Since our codes can’t achieve δ ≥ 1/2 it may seem we only need the root where δ < 1/2. However, when we
puncture these codes in a later section, we will need to bound the probability that a codeword of weight > δn is
punctured down to small weight. In particular, we will need to talk about relative weights δ > 1/2, and we will
need this second root.

57

Proof. It suffices to show that the second derivative of fβ,δ(α) for α, β, δ in the ranges given above
is negative. The first derivative is

f ′β,δ(α) = 1 +
1

r
log

(
1− α

α

)
+

1

2
log

(
(1− β − α/2)(β − α/2)

(1− α)2

)
,

and therefore

f ′′β,δ(α) =
1

ln(2)

(
1

r

α

1− α

−α− (1− α)

α2
+

1

2

(
− 1/2

1− β − α/2
− 1/2

β − α/2
− 2

1− α

))
=

1

ln(2)

(
− 1

r · α(1− α)
− 1

4(1− β − α/2)
− 1

4(β − α/2)
− 1

1− α

)
.

To see that the above is negative, note that the first and fourth terms inside the brackets are
clearly negative, as their denominators can’t be positive (since 0 < α < 1). That the second term
is negative follows from α < 2− 2β and that the third term is negative follows from α < 2β.

Lemma 9.11. Let fα,δ(β) := f(α, β, δ) be the restriction of f to β. For all δ ∈ (0, 1) and α ∈ (0, 1),
this function is strictly concave on its interval β ∈ (α/2,min{2δ, 2− 2δ, 1− α/2}).

Proof. It suffices to show that the second derivative of fα,δ(β) for α, β, δ in the ranges given above
is negative. The first derivative is

fα,δ(β)
′ =

1

ln(2)
log

(
β(1− β − α/2)

√
4(δ − β/2)(1− δ − β/2)

(1− β)2(β − α/2)

)
.

Call the numerator s(β), the denominator t(β). Then we can write the second derivative as

fα,δ(β)
′′ =

s′(β)t(β)− s(β)t′(β)

s(β)t(β)
.

It is not hard to see that the denominator s(β)t(β) > 0, as it is a product of terms that are all
positive . To show that the second derivative is negative, it therefore suffices to show that the
numerator is negative. For simpler notation, let x :=

√
4(δ − β/2)(1− δ − β/2). We can then

write
t′(β) = 2(1− β)(−1)(β − α/2) + (1− β)2 ,

so that

−s(β)t′(β) = 2

a︷ ︸︸ ︷
β(1− β − α/2)x(1− β)(β − α/2)−

b︷ ︸︸ ︷
β(1− β − α/2)x(1− β)2 .

Similarly we get

s′(β) = (1− β − α/2)x− βx− β(1− β − α/2)(1− β)/x .

so that

s′(β)t(β) =

c︷ ︸︸ ︷
(1− β)2(β − α/2)(1− β − α/2)x−

d︷ ︸︸ ︷
(1− β)2(β − α/2)βx

−

e︷ ︸︸ ︷
(1− β)3(β − α/2)β(1− β − α/2)/x .

58

α

β

1α0 := r/n

1/2

2δ

β0 := nγ−1

β1

(a) (α = α0,
β0 ≤ β ≤ 2δ)

(b) (2β0 ≤ α ≤ max{4δ, 1}, β = α/2)

(d) (2− 4δ ≤ α ≤ 1, β = 1− α/2)

(c) (α0 ≤ α ≤ min{4δ, 2− 4δ}, β = 2δ)

(e) (α0 ≤ α ≤ 2β0, β = β0)

R′

R′′

Figure 7: The region R′ that we optimize the function f over (for 1/4 < δ < 1/2). As opposed to
the regions shown earlier for δ < 1/4, there is a new boundary (d). The blue curve, representing
the values for which ∂f

∂α = 0, crosses the boundary (a) at some point β1 ≥ β0.

Thus, to show that the numerator is negative, we need to show that c− d− e+ 2a− b is negative.
We show that this is the case by noting that d > a, e > a and b ≥ c:

b = β(1− β − α/2)x(1− β)2 > (β − α/2)(1− β − α/2)x(1− β)2 = c

d = (1− β)2(β − α/2)βx > (1− β)(1− β − α/2)(β − α/2)βx = a

e = (1− β)3(β − α/2)β(1− β − α/2)/x ≥ (1− β)(β − α/2)β(1− β − α/2)x = a .

where the final inequality follows from (1−β)2

x ≥ x which is the same as

(1− β)2 = β2 − 2β + 1 ≥ x2 = 4(δ − β/2)(1− δ − β/2) = β2 − 2β + 4δ(1− δ) ⇐⇒ 4δ(1− δ) ≤ 1

which holds for any δ ∈ (0, 1).

We now consider boundaries in turn, and argue in each case that they do not yield a maximizer
for f . We review the region R′ and its boundaries in Figure 7.

(b) 2β0 ≤ α ≤ min{4δ, 1} and β = α/2. Fix some β and suppose that the corresponding
boundary point (2β, β) is a maximizer for f . Consider the horizontal slice fβ,ρ(α) containing
this boundary point. Recall that this function is concave over all α in its domain and has a
critical point satisfying (19): β = 1

2 − 1−α
2 x where x < 1 (recall that β < 1/2). This means

that a critical point must satisfy β > 1
2 − 1−α

2 , or equivalently, the critical point occurs at
α < 2β. But our boundary point had α = 2β. By concavity this implies that fβ,ρ will grow as
we move to the left of our boundary point, contradicting our assumption that the boundary
point is the maximizer.

(d) 2−4δ ≤ α ≤ 1, β = 1−α/2. Fix some β and suppose that the corresponding boundary point
(2 − 2β, β) is a maximizer for f . Consider again the horizontal slice fβ,ρ(α) containing this

59

boundary point, which now has a critical point satisfying β = 1
2 + 1−α

2 x where x < 1 (note
that β > 1/2). This means that a critical point must satisfy β < 1

2 +
1−α
2 , or equivalently, the

critical point occurs at α < 2 − 2β. But our boundary point had α = 2 − 2β. By concavity
this implies that fβ,ρ will grow as we move to the left of our boundary point, contradicting
our assumption that the boundary point is a maximizer.

(c) α0 ≤ α ≤ min{4δ, 2− 4δ}, β = 2δ. Fix some α and suppose that the corresponding boundary
point (α, 2δ) is a maximizer. Consider now the vertical slice fα,ρ(β) containing this boundary

point, which has a critical point satisfying (20): δ = 1
2 − 1−β

2 x where x < 1 (note that

δ < 1/2). This means that a critical point must satisfy δ > 1
2 − 1−β

2 , or equivalently, the
critical point occurs at β < 2δ. By concavity this implies that fα,ρ will grow as we move to
the bottom of our boundary point, contradicting our assumption that the boundary point is
the maximizer.

(a) At first, we only consider the top portion of this boundary: α = α0, β1 < β ≤ 2δ. Recall that
we had defined β1 in the statement of the theorem. We now claim that the points where the
derivative of f to α is 0 (i.e. the critical points of each fβ,ρ(α)) crosses through boundary
(a) exactly at β1. Recall that these critical points are described by (19). We therefore enter
α0 = r/n into this equation, and note that this recovers β1:

β1 =
1

2
− 1− r/n

2

√
1−

(
r/n

1− r/n

)2/r

.

Recall we assumed β1 > β0, so we conclude that the curve defined by (19) will indeed cross
through the boundary (a).

Thus, for β > β1 we can assume that the critical points of each horizontal slice lie strictly
inside the region R′, so that an argument analogous to the ones above establishes that this
top part of boundary (a) can’t contain maximizers.

So, if there is a maximizer on the boundary of R′, then it must have a β value at most β1. That
is, the only maximizers on the boundary lie in the compact region R′′ := R′ ∩ {(α, β) : β ≤ β1}.
We argue that the maximum value for f over the region R′′ is necessarily f(α0, β0).

• First, suppose (α, β) ∈ R′′ with α > α0. Suppose that (α, β) is a maximizer for f over R′′.
Consider the horizontal slice fβ,δ, and recall that it is concave for 0 < α ≤ 2β and has a
critical point described by (19). As shown just above, for β < β1, these critical points occur
at α < α0, so that this holds in particular for our function fβ,ρ. But then moving (α, β) to
the left will increase f , contradicting our assumption that this point is the maximizer of f
over R′′.

• Lastly, suppose (α0, β) ∈ R′′ with β > β0 is a maximizer for f over R′′. Consider the vertical
slice fα,δ containing this point. We claim that this function is decreasing with β in this region,
i.e. for β0 ≤ β ≤ β1. It follows that moving (α, β) down will increase f , contradicting our
assumption that this point is a maximizer for f over R′′.

60

To see that fα0,δ(β) is decreasing for β ≤ β1, we compute its derivative

f ′r/n,δ(β) = 1 + log

(
β

1− β

)
+ log

(
1− β − α0/2

β − α0/2

)
+

1

2
log

(
(δ − β/2)(1− δ − β/2)

(1− β)2

)
= log

(
2β(1− β − α0)

√
(δ − β/2)(1− δ − β/2)

(1− β)2(β − α0/2)

)
,

which is < 0 if and only if

2β(1− β − α0)
√

(δ − β/2)(1− δ − β/2) < (1− β)2(β − α0/2)

⇐⇒
√

4(δ − β/2)(1− δ − β/2) <
(1− β)2(β − α0/2)

β(1− β − α0)
,

where we note that the LHS is at most
√

4δ(1− δ) which itself is < 1 since δ < 1/2. It
therefore suffices to show that the RHS is very close to 1:

(1− β)2(β − α0/2)

β(1− β − α0)
>

(1− β)2(β − α0/2)

β
> (1− 2β)(1− α0

2β
)

> 1− 2β − α0

2β
> 1− 2β1 −

α0

2β0
.

By assumption
√
4δ(1− δ) < 1− 2β1 − α0

2β0
, so we indeed find that the derivative is negative.

To conclude, we have established that f is maximized either by a critical point in CP(r, δ) or by
the point (α0, β0). Finally, we will establish that f(α0, β0, δ) = −Θ(β0) = −Θ(nγ−1). This implies
that if max{f(α, β) : (α, β) ∈ CP(r, δ)} < 0 for sufficiently large n we will have f(α0, β0, δ) >
max{f(α, β, δ) : (α, β) ∈ CP(r, δ)}: if the right-hand side is negative, as it is independent of n, it is
a negative constant, so f(α0, β0, δ) (which tends to 0 as n grows) will be larger for large enough n.

Firstly, we have
1

r
H(α0) =

1

r
H(r/n) ≤ (1 + o(1))

n
log(n/r) .

Next, we consider

α0 + (1− α0)H

(
β0 − α0/2

1− α0

)
−H(β0)

= α0 + (β0 − α0/2) log

(
1− α0

β0 − α0/2

)
+ (1− β0 − α0/2) log

(
1− α0

1− β0 − α0/2

)
− β0 log

1

β0
− (1− β0) log

1

1− β0

= α0 + β0 log

(
(1− α0)β0
β0 − α0

)
+ (1− β0) log

(
(1− α0)(1− β0)

1− β0 − α0/2

)
+
α0

2
log

(
β0 − α0/2

1− α0

)
+
α0

2
log

(
1− β0 − α0/2

1− α0

)
= β0 log

(
1− α0

1− α0/(2β0)

)
+ (1− β0) log

(
1− α0

1− α0/(2(1− β0))

)
+ α0 log

(√
4(β0 − α0/2)(1− β0 − α0/2)

1− α0

)
.

61

Now, we first observe that

β0 log

(
1− α0

1− α0/(2β0)

)
+ (1− β0) log

(
1− α0

1− α0/(2(1− β0))

)
≤ β0 log(1− α0) + (1− β0) log(1− α0)

= log(1− α0) ≤ − α0

ln 2
.

Next, we claim that

log

(√
4(β0 − α0/2)(1− β0 − α0/2)

1− α0

)
≤ 0 ,

which is of course equivalent to√
4(β0 − α0/2)(1− β0 − α0/2)

1− α0
≤ 1 . (21)

And indeed, this holds as (1− α0)
2 = 1− 2α0 + α2

0 while

4(β0 − α0/2)(1− β0 − α0/2) = 4β0(1− β0)− 2β0α0 − 2(1− β0)α0 + α2
0

= 4(β0 − α0/2)− 2α0 + α2
0 ,

(21) follows from the fact that 4β0(1−β0) ≤ 1, which itself follows from the fact that 0 ≤ β0 ≤ 1/2.
Hence, putting these bounds together, we find that

α0 + (1− α0)H

(
β0 − α0/2

1− α0

)
−H(β0) ≤ − α0

ln 2
.

Completely analogously, as still 4δ(1− δ) < 1 we can derive that

β0 + (1− β0)H

(
δ − β0/2

1− β0

)
−H(δ) ≤ − β0

ln 2
.

Thus,

f(α0, β0, δ) ≤
1 + o(1)

n
log(n/r)− α0

ln 2
− β0

ln 2
.

Since β0 = Θ(nγ−1) while α0 = Θ(n−1), we conclude that

f(α0, β0, δ) = −Θ(nγ−1) .

Thus, we derive the claimed asymptotic bound of

O(n7/2) · 2f(α0,β0,δ)n ≤ 2−Ω(nγ) .

By combining Proposition 9.5 and Proposition 9.6, we obtain our target Theorem 9.1.

62

9.4 Conditioning on Low Weight Messages Having Good First Stage

So far, we have offered a bound on the expected number of low-weight codewords, which via
Markov’s inequality can be translated into a bound on the probability that an RAA code fails to
have good distance. We can thereby conclude that, say, a random RAA code with block length
n = 223 of rate 1/4 will have minimum distance about 0.19, except with probability about 2−12.
As mentioned in the introduction, we consider a generation procedure for RAA codes that runs
certain tests and, conditioned on the tests passing, we show that the failure probability provably
decreases.

Looking at the expectation in (6), we note that a large contribution comes from weight 1 mes-
sages. Even the individual case w1 = 1 and w2 = 2, which we separated out into (10), contributes
Ω(1/n) to the expectation, limiting the overall error probability to be at best inverse linear. This
motivates us to test low weight messages, and ensure that they all have sufficiently high weight
encodings (i.e., of weight at least d = δn). If we test all nonzero messages of weight at most w, the
test takes time O(nw+1) (recall every message vector can be encoded in linear time).

We can show that this test almost always passes, and that conditioned on it passing, the error
probability for rate 1/4 improves from roughly inverse linear to roughly 1/nw. To back this up,
define the event E≤w to be the event that some nonzero message of a weight ≤ w is encoded by the
RAA code into a codeword of weight ≤ d. Similarly, let E>w denote the event that some nonzero
message of weight > w has encoding of weight ≤ d. Then, if E is the event that the RAA code has
minimum distance ≤ δ, we have

Pr [E|¬E≤w] =
Pr[E ∧ ¬E≤w]

Pr[¬E≤w]
=

Pr[E>w]

Pr[¬E≤w]
. (22)

Below (see Proposition 9.12) we show roughly that Pr[E>w] = O(n−(w+1)(r
2
−1)+γ) (assum-

ing the targeted minimum distance δ is not too large). As Pr[¬E≤w] is very small (definitely
≤ 1/2, see Proposition 9.13), we essentially boost the failure probability from O(n−

r
2
+1+γ) to

O(n−(w+1)(r
2
−1)+γ) (i.e., ignoring γ ∈ (0, 1), the exponent is multiplied by w + 1). Thus, the

generation procedure without tests is analogous to the setting of w = 0.
We actually consider the following faster test: for nonzero messages of weight at most w − 1

we still check if they have encodings of weight at least d, but for messages of weight exactly w
we only check if their weight after the first accumulation round is at least nκ, where κ ∈ (0, 1) is
again a tunable parameter. For w = O(1) checking the weight of the vector after one round of
accumulation requires only O(log k) time: if its support after permuting is {i1, i2, . . . , iwr}, after
reordering the support j1 < j2 < · · · < jwr we can compute the weight of the accumulated vector
as (j2− j1)+ (j4− j3)+ · · ·+(jwr − jwr−1). This test can then be implemented in Õ(kw) time, and
moreover conditioning on this faster test passing the probability decreases almost as much as if we
had conditioned on the slower O(kw+1)-time test passing.

Concretely, let Ẽ≤w denote the event that some nonzero message of weight at most w − 1 has
an RAA encoding of weight at most d or that some message of weight w has weight at most nκ

after one round of accumulation. With E, E≤w and E>w as before, we find

63

Pr[E|¬Ẽ≤w] =
Pr[E ∧ ¬Ẽ≤w]

Pr[¬Ẽ≤w]

=
Pr[E ∧ ¬Ẽ≤w ∧ ¬E≤w]

Pr[¬Ẽ≤w]
+

Pr[E ∧ ¬Ẽ≤w ∧ E≤w]

Pr[¬Ẽ≤w]

≤ Pr[E ∧ ¬E≤w]

Pr[¬Ẽ≤w]
+

Pr[E≤w ∧ ¬Ẽ≤w]

Pr[¬Ẽ≤w]

=
Pr[E>w]

Pr[¬Ẽ≤w]
+

Pr[E≤w ∧ ¬Ẽ≤w]

Pr[¬Ẽ≤w]
. (23)

We will still find that the new dominant term in the above expression will be Pr[E>w], of the
order n(w+1)(1−r/2)+γ (at least, for reasonable choices of κ, say κ = 0.4. In particular, assuming n
large we will find that Pr[E≤w ∧ ¬Ẽ≤w] – which is the probability that some vector of weight w
has weight at least nκ after one round but weight at most d after two rounds – is at most 2−Ω(nκ)

(see Proposition 9.15). And again, Pr[Ẽ≤w] will be shown to be very small (definitely ≤ 1/2; see
Proposition 9.14), so the

Regarding how to set κ, note that Pr[Ẽ<w] is the event that some message of weight w has
weight ≤ nκ after one round or some nonzero message of weight ≤ w − 1 has RAA encoding of
weight at most d. We should expect this probability to increase with κ, as this makes it easier to
obtain weight ≤ nκ. This implies we want to make κ small so that the denominator is close to 1.
Conversely, note that Pr[E≤w ∧ ¬Ẽ≤w] is the event that some nonzero message of weight ≤ w is
mapped to weight ≥ nκ and then mapped to weight < d. We should expect this to decrease with κ,
as having a larger weight after one round is likely to increase your weight after two rounds, making
it harder to get a small weight < d. In practice we find that any κ < 0.5 is a reasonable choice.

First, we analyze the probability that the slower test passes, and argue that it is very close to
1. We note that this is not required for our main result Theorem 9.16, but we still provide it for
intuition.

Proposition 9.12. Let r, n, δ, d, ε, γ, α0 and β0 be as in Theorem 9.1. Let

B′ := max{f(α0, β0, δ),max{f(α, β, δ) : (α, β) ∈ CP(r, δ), α ≤ w/n}}

Let E≤w be the event that some message of weight ≤ w = O(1) is encoded by an RAA code into a
codeword of weight ≤ d. Let v∗2 = r−1

2 ln(1/η) . Then

Pr[E≤w] ≤ I{r = 4} · 3

n− 2
+ I{r = 6, δ ≥ 1/4} · 180δ

2(1− δ)

(n− 2)2

+ n1−r/2 · ⌈n
γ

2
⌉ · w · 0.43603 ·

(
r
r
2

)
· φn

(
2 · ⌈m

2
⌉
)
· φn(r) · (2v∗2)

r+1
2 · ηv∗2

+
0.80192 · δ · w√

r
· n5/2 · 2B′n . (24)

Moreover, assuming B′ < 0 for sufficiently large n we will have B′ = f(α0, β0, δ) = −Ω(n−γ)
yielding the asymptotic bound

O(n1+γ−r/2) + 2−Ω(nγ) .

64

Proof. By Markov’s inequality, we can bound Pr[E≤w] as follows

Pr[E≤w] ≤
w∑

w1=1

n∑
w2=1

d∑
w3=1

(
n/r

w1

)
·

(
rw1

rw1/2

)(
n−rw1

w2−rw1/2

)(
n
w2

) ·

(
w2

⌈w2/2⌉
)(

n−w2

w3−⌈w2/2⌉
)(

n
w3

) · rw1/2 · ⌈w2/2⌉
w2w3

.

We split up the sum over w2, treating the w2 ≤ nγ-part analogous to Proposition 9.5, and treating
the w2 > nγ part analogous to Proposition 9.6.

For the first part, note that the expression we have here is almost the same as the expression
that we bounded in Proposition 9.5, with the only difference that here w1 = 1, .., w while there we
had w1 = 1, ..., ⌊2w2

r ⌋. In that proposition, we observed that the expression grew with w3, so that
we could bound the sum over w3 by setting w3 = d (except for two cases with small w2). We then
observed that the sum over w1 decreased with w1, so that we could bound the sum over w1 by
setting w1 = 1. This gave us the final expression (13). But since we set w1 = 1 this means that
we can use (13) as bound for our current expression, as long as we remember to remove the ⌊2w2

r ⌋
factor that counted the number of iterations over w1, and add in a factor w to count the number
of iterations in our sum.

This leaves bounding the sum over w2. We again follow the same strategy: we first substitute
w2 := 2v2 (showing that we can indeed bound each odd w2 entry by the subsequent even entry
is analogous to before), and then maximize by setting the derivative to v2 equal to 0. Since our
current expression is exactly a factor 2w2

r smaller than the expression we had before, it simple to see
that this changes the maximizer from v∗2 = r+1

2 ln(1/η) to v∗2 = r−1
2 ln(1/η) , and changes the final bound

from (9) to

I{r = 4} · 3

n− 2
+ I{r = 6, δ ≥ 1/4} · 180δ

2(1− δ)

(n− 2)2

+ n1−r/2 · ⌈n
γ

2
⌉ · w · 0.43603 ·

(
r
r
2

)
· φn

(
2 · ⌈m

2
⌉
)
· φn(r) · (2v∗2)

r+1
2 · ηv∗2

Next we consider the large w2 part of the expectation. Again, the only change with Proposition 9.6
is the fact that w1 only has a constant number of terms. This causes two changes. First, we lose
a factor n/r in the final bound (which we originally picked up to count the number of iterations in
the sum over w1) and obtain a factor w. Second, we now only optimize over the region R′∩{(α, β) :
α ≤ w/n}. So we get the bound of

0.80192 · δ · (w − 1)√
r

· n5/2 · 2B′·n .

The reasoning for the “moreover” portion is analogous to that of Theorem 9.1.

Next, we bound the probability that a message vector of weight above w has a low weight
encoding.

Proposition 9.13. Let r, n, δ, d, ε, γ, α0 and β0 be as in Theorem 9.1. Let

B′ := max{f(α0, β0, δ),max{f(α, β, δ) : (α, β) ∈ CP(r, δ), α ≥ (w + 1)/n}}

Let E>w be the event that some message of weight > w is encoded by an RAA code into a codeword
of weight ≤ d. Let v∗2 = r(w+1)+1

2 ln(1/η) . Then

65

Pr[E>w] ≤ n−r(w+1)/2 ·
(
n/r

w + 1

)
· ⌈n

γ

2
⌉ · 0.43603 ·

(
r(w + 1)

r(w + 1)/2

)
· r(w + 1)φn

(
2 · ⌈m

2
⌉
)
φn(r(w + 1)) · (2v∗2)

r(w+1)+1
2 · ηv∗2

+
0.80192 · δ

r1.5
· n7/2 · 2B′n .

Moreover, assuming B′ < 0, for sufficently large n this bound is asymptotically

O(nw+1+γ− r
2
(w+1)) + 2−Ω(nγ) = O(n−(w+1)(r

2
−1)+γ)

Proof. By Markov’s inequality, we can bound Pr[E>w] as follows

Pr[E>w] ≤
n/r∑

w1=w+1

n∑
w2=1

d∑
w3=1

(
n/r

w1

)
·

(
rw1

rw1/2

)(
n−rw1

w2−rw1/2

)(
n
w2

) ·

(
w2

⌈w2/2⌉
)(

n−w2

w3−⌈w2/2⌉
)(

n
w3

) · rw1/2 · ⌈w2/2⌉
w2w3

.

We again split up the sum over w2, treating the w2 ≤ nγ-part analogous to Proposition 9.5,
and treating the w2 > nγ part analogous to Proposition 9.6.

We start with the first case. What changes when we drop the terms with w1 = 1, 2, ..., w?
First, the separate terms (which arose for r = 4 or r = 6) don’t arise (they required w1 = 1).
Second, recall that we bounded the sum over w1 by arguing that it is decreasing with w1, so that
it’s maximized by its first term. By dropping the first w terms, the new maximizing term becomes
w1 = w+1. Let’s see what the effect of this is. Recall that earlier we took the expression (11) and
bounded it by setting w1 = 1 giving us (13). The factors involving w1 are(

n/r

w1

)(
rw1

rw1/2

)(
n− rw1

w2 − rw1/2

)
· rw1/2 .

and so the factors n
r ·
(

r
r/2

)
· r/2 = change to

(
n/r
w+1

)
·
(2r(w+1)
r(w+1)

)
· r(w + 1)/2. More importantly, the

factor
(

n−r
w2−r/2

)
changes to

(n−r(w+1)
w2−r(w+1)/2

)
. Again, one can demonstrate that the terms in the sum

are maximized by an even w2, so we consider even 2v2 values. Recall that we bounded(
n− r

2v2 − r/2

)
≤ (2v2)

r
2 (n− 2v2)

r
2

nr
· φn(r) ;

similar reasoning leads to the bound(
n− r(w + 1)

2v2 − r(w + 1)/2

)
≤ (2v2)

r(w+1)/2(n− 2v2)
r(w+1)/2

nr(w+1)
· φn(r(w + 1)) .

This changes the factor (2v2/n)
r/2 in the bound to (2v2/n)

r(w+1). Moreover, this changes the

maximizing value of v2 from r+1
2 ln(1/η) to v∗2 = r(w+1)+1

2 ln(1/η) . The final bound then becomes

n−r(w+1)/2 ·
(
n/r

w + 1

)
· ⌈n

γ

2
⌉ · 0.43603 ·

(
r(w + 1)

r(w + 1)/2

)
· r(w + 1)φn

(
2 · ⌈m

2
⌉
)
φn(r(w + 1)) · (2v∗2)

r(w+1)+1
2 · ηv∗2

66

We then move to the second case. The contribution of this case to the error probability was
summarised in Proposition 9.6. The effect of w1 = 1 messages lies in α0 = r/n being the smallest
allowed value for α. By moving to w1 ≥ w, the minimum value for α increases to w · α0 = r ·w/n.
Recall that either (α0, β0) or a critical point maximized the function f . It follows directly from our
argument that this first maximizer changes to (w · α0, β0) (recall that the restriction fβ0,δ(α) of f
to α was strictly concave for α > 0 and α ≤ 2β0 and has a critical point strictly smaller than r/n).
30

We now move to analyzing the faster test. We first argue it is likely to pass.

Proposition 9.14. Let r, n, δ, d, ε, γ, α0 and β0 be as in Theorem 9.1. Let

B′ := max{f(α0, β0, δ),max{f(α, β, δ) : (α, β) ∈ CP(r, δ), α ≤ (w − 1)/n}}

Let Ẽ≤w be the event that some message of weight ≤ w = O(1) is encoded by an RAA code into a
codeword of weight ≤ d, or that some message of weight w is encoded by the first round of permuting
and accumulating into a vector of weight ≤ nκ, where κ ∈ (0, 1). Assume nκ ≤ rw/2−1

rw−1 n. Then

Pr[Ẽ≤w] ≤
(
n/r

w

)
rw

2

(
rw
rw
2

)(n−rw
nκ− rw

2

)(
n
nκ

)
+ I{r = 4} · 3

n− 2
+ I{r = 6, δ ≥ 1/4} · 180δ

2(1− δ)

(n− 2)2

+ n1−r/2 · ⌈n
γ

2
⌉ · w · 0.43603 ·

(
r
r
2

)
· φn

(
2 · ⌈m

2
⌉
)
· φn(r) · (2v∗2)

r+1
2 · ηv∗2

+
0.80192 · δ · w√

r
· n5/2 · 2B′n .

Moreover, assuming κ < 1/2 we have(
n/r

w

)
rw

2

(
rw
rw
2

)(n−rw
nκ− rw

2

)(
n
nκ

) ≤
(
n/r

w

)
rw

2

(
rw
rw
2

)
n

rw
2
(κ−1)φn(n

κ)

so assuming B′ < 0 the overall bound is O(n1+γ−r/2) +O(nw(1+ r
2
(κ−1)), which as κ < 1/2 ≤ 1− 2

r
is indeed decreasing with n.

Proof. If Ẽw is the event that some message of weight w is encoded by the first round of permuting
and accumulating into a vector of weight ≤ nκ, then Ẽ≤w = E≤w−1 ∪ Ẽw. By a union bound
Pr[Ẽ≤w] ≤ Pr[E≤w−1] + Pr[Ẽw]. Proposition 9.12 provides a bound on the first term, and so it
suffices for us to bound Pr[Ẽw].

By Markov’s inequality it suffices to bound the expect number of messages of weight w that
have weight ≤ nκ after one round, that is,

Pr[Ẽw] ≤
(
n/r

w

)
rw

2

(
rw
rw
2

) nκ∑
w2=1

(
n−rw
w2− rw

2

)(
n
w2

)
w2

30Although this doesn’t change the asymptotic characterisation 2Ω(nγ) (as we always have nγ−1 < w1 · n−1 for large
enough n), it does improve the bound somewhat. However, recall that the bottleneck is the w2 ≤ nγ part of the
analysis, so the overall effect is not so significant.

67

We now note that the expression in the sum over w2 is analogous to the expression in the sum

over w3 in (8). We had argued that (8) grew with w3 if and only if w3 ≤ n
(
⌈w2/2⌉
w2−1

)
. Our case is

analogous, except we replace w2 with rw and w3 with w2, giving the condition that our expression
grows with w2 if and only if w2 ≤ rw/2−1

rw−1 n. As we assume nκ ≤ rw/2−1
rw−1 n and w2 ≤ nκ, it follows

these terms indeed are increasing in w2. So, we obtain the bound(
n/r

w

)
rw

2

(
rw
rw
2

)(n−rw
nκ− rw

2

)(
n
nκ

) .

For the moreover part of the statement we can rewrite the fraction of the two binomials as follows(
n−rw

nκ−rw/2

)(
n
nκ

) =
(n− rw)!

(n− rw − nκ + rw/2)
· nκ!

(nκ − rw/2)!
· (n− nκ)!

n!

=

∏rw/2−1
i=0 (nκ − i) ·

∏nκ−rw/2−1
i=0 (n− rw − i)∏nκ

i=1(n− i)
,

to which we can apply (16) and obtain(
n−rw

nκ−rw/2

)(
n
nκ

) ≤ n
rw
2
(κ−1)φn(n

κ)

Thus, we have the final bound on this term as(
n/r

w

)
rw

2

(
rw
rw
2

)(n−rw
nκ− rw

2

)(
n
nκ

) ≤
(
n/r

w

)
rw

2

(
rw
rw
2

)
n

rw
2
(κ−1)φn(n

κ)

As we now assume κ < 1/2, φn(n
κ) = exp(nκ(nκ − 1)/(2n)) = O(1), and so this term is

O(nw · n
rw
2
(κ−1)) = O(nw(1+ r

2
(κ−1))) .

Finally, we consider the event that every message of weight w has weight at least nκ after the
first round, but nonetheless some message of weight w has an encoding of weight < d.

Proposition 9.15. Let n, r, δ, d, α0 be as in Theorem 9.1. Let w ∈ N and define the events E≤w

and Ẽ≤w as before. Let

B′ := max{f(α0, n
κ−1, δ),max{f(α, β, δ) : (α, β) ∈ CP(r, δ), β ≥ nκ−1}} .

Then

Pr[E≤w ∧ ¬Ẽ≤w] ≤
0.80192 · δ · (w − 1)√

r
· n5/2 · 2B′n

Proof. It suffices to bound the expected number of weight w messages that are mapped to a weight
> nκ vector after one round, and then mapped to a weight ≤ d codeword after the second round.
That is:

2d∑
w2=nκ+1

d∑
w3=1

(
n/r

w

)
·

(
rw

rw1/2

)(
n−rw

w2−rw/2

)(
n
w2

) ·

(
w2

⌈w2/2⌉
)(

n−w2

w3−⌈w2/2⌉
)(

n
w3

) · rw1/2 · ⌈w2/2⌉
w2w3

68

We can leverage the analysis from Proposition 9.6 as we have a good enough lower-bound on
w2 (recall that for w1, w2 = O(1) that analysis was not sufficient to prove decent error probability).
That is, we can bound the above as

0.80192 · δ · (w − 1)√
r

· n5/2 · 2B′n .

The conclusion of all these bounds is the following theorem.

Theorem 9.16. Let r, n, δ, d, ε, γ, α0, β0 and CP(r, δ) be as in Theorem 9.1. Let κ ∈ (0, 1) and
w ∈ N. Let v∗2 be as in Proposition 9.13. There is Õ(nw) generation procedure procedure outputting
rate 1/r RAA codes with minimum distance δ except with probability at most p>w

1−p̃≤w
+ qw

1−p̃≤w
, where

p>w := n−r(w+1)/2 ·
(
n/r

w + 1

)
· ⌈n

γ

2
⌉ · 0.43603 ·

(
r(w + 1)

r(w + 1)/2

)
· r(w + 1)φn

(
2 · ⌈m

2
⌉
)
φn(r(w + 1)) · (2v∗2)

r(w+1)+1
2 · ηv∗2

+
0.80192 · δ

r1.5
· n7/2 · 2B1n

p̃≤w =

(
n/r

w

)
rw

2

(
rw
rw
2

)(n−rw
nκ− rw

2

)(
n
nκ

)
+ I{r = 4} · 3

n− 2
+ I{r = 6, δ ≥ 1/4} · 180δ

2(1− δ)

(n− 2)2

+ n1−r/2 · ⌈n
γ

2
⌉ · w · 0.43603 ·

(
r
r
2

)
· φn

(
2 · ⌈m

2
⌉
)
· φn(r) · (2v∗2)

r+1
2 · ηv∗2

+
0.80192 · δ · w√

r
· n5/2 · 2B2n ,

qw :=
0.80192 · δ · (w − 1)√

r
· n5/2 · 2B3n .

Above,

B1 := max{f(α0, β0, δ),max{f(α, β, δ) : (α, β) ∈ CP(r, δ), α ≥ (w + 1)/n}}
B2 := max{f(α0, β0, δ),max{f(α, β, δ) : (α, β) ∈ CP(r, δ), α ≤ (w − 1)/n}}
B3 := max{f(α0, n

κ−1, δ),max{f(α, β, δ) : (α, β) ∈ CP(r, δ), β ≥ nκ−1}} .

Assuming max{f(α, β) : (α, β) ∈ CP(r, δ)} < 0, then the bound is asymptotically O(n−(w+1)(r
2
−1)+γ+

2−Ω(nγ) + 2−Ω(nκ).

Proof. We use the fast test for weight w: namely, check that all nonzero messages of weight ≤ w−1
have encodings of weight at least d, and that all messages of weight w have weight at least nκ after
one round. As discussed earlier, this test is implementable in Õ(kw) time, and by Proposition 9.14
a random RAA is very likely to pass.

Recalling (23), we have that conditioned on the test pass the failure probability is at most

Pr[E>w]

Pr[¬Ẽw]
+

Pr[E≤w ∧ ¬Ẽ≤w]

Pr[¬Ẽw]
.

69

That Pr[E>w] ≤ p>w, Pr[¬Ẽw] ≥ 1− p̃≤w and Pr[E≤w ∧¬Ẽ≤w] ≤ qw follow from Proposition 9.13,
Proposition 9.14 and Proposition 9.15, respectively.

9.5 Puncturing

Lastly, we consider the possibility of puncturing an RAA code so as to obtain a higher rate code
while still (mostly) preserving the encoding time. Specifically, suppose we start with a (randomly
sampled) RAA code with repetition factor r and block-length n, and then we puncture down to
keep only ωn coordinates for some ω ∈ (0, 1) (hence, the final rate will be 1/(rω)).

We were not able to provide a completely satisfactory analysis of the failure probability in
this case. However, based on a conjecture – which we consider believable given our analysis of
(unpunctured) RAA codes – we can obtain good bounds on the failure probability. We sketch this
analysis below.

Our strategy is to once again bound the expected number of codewords with weight at most
δ′n′, where δ′ is the target minimum distance of our punctured code. We can write the probability
that a weight w3 string of length n is punctured into a weight w4 string of length n′ as(

w3

w4

)(
n−w3

n′−w4

)(
n
n′

) .

This means we can write the expectation we need to bound as

n/r∑
w1

n∑
w2=1

n∑
w3=1

d′∑
w4=1

(
n/r

w1

)
·

(
rw1

⌈rw1/2⌉
)(

n−rw1

w2−⌈rw1/2⌉
)(

n
w2

) ·

(
w2

⌈w2/2⌉
)(

n−w2

w3−⌈w2/2⌉
)(

n
w3

)
· ⌈rw1/2⌉ · ⌈w2/2⌉

w2w3

(
w3

w4

)(
n−w3

n′−w4

)(
n
n′

) , (25)

where d′ = δ′n′ = δ′ηn.
We will split this sum up based on the value of w3 (the weight of the rate 1/r RAA code, just

before puncturing), specifically we separately consider w3 ≤ d and w3 > d.31 For the former case,
we can re-use our bound on the error probability of sampling an unpunctured RAA code from
Theorem Eq. (18), as this exactly bounded the contribution of w3 ≤ d to the expectation. For
the latter, we need to do some more work. Specifically, inspired again by [KZKJ08], we will do
something similar to the proof of Proposition 9.6, where we rewrite the expression in the sum as
some function F (α, β, ρ, ρ′) over the relative weights, and we attempt to maximize F over the legal
range of these weights. Note that we can get away with this since we have a linear lower-bound
on w3; as we noted before, in case all weights are constant, the maximization of F will be too large
to obtain a small error probability.

Specifically, recall from the proof of Proposition 9.6 that we can write the contribution of the
first three fractions of the expression inside the sums in (25) as poly(n) · 2n·f(α,β,ρ) where

f(α, β, ρ) :=
H(α)

r
+ (1− α)H

(
β − α

2

1− α

)
+ α+ β + (1− β)H

(
ρ− β

2

1− β

)
−H(β)−H(ρ) .

31In fact, one could potentially a threshold t potentially below d, as long as ωt > d′.

70

Looking at Equation (39) in [KZKJ08], we can write the contribution of the fourth fraction (ac-
counting for the puncturing step) as poly(n) · 2n·φ(ρ,ρ′) where

φ(ρ, ρ′) := H

(
ω
ρ′

ρ

)
ρ+H

(
(1− ω)

1− ρ′

1− ρ

)
(1− ρ)−H(ω) .

The crux of the argument for the case w3 > d is now to maximize the following function

F (α, β, ρ, ρ′) := f(α, β, ρ) + φ(ρ, ρ′) .

where as before α = rw1/n, β = w2/n, ρ = w3/n, and now we think of ρ′ = w4/n. In particular,
note that the maximum value of ρ′ is d′/n = ωδ.

To do this in a manageable way, we will start by arguing that F is increasing on ρ′, so that we
can simply set ρ′ := ωδ′. Specifically, we prove the lemma below, and this will imply that for all
α, β, ρ ∈ (0, 1) and ρ′ ∈ [0, δ′],

F (α, β, ρ, ρ′) ≤ F (α, β, ρ, δ′) .

Lemma 9.17. Fix ρ ∈ (0, 1), and consider the univariate function

ψ = ψρ : [0, δ′] → R, ρ′ 7→ φ(ρ, ρ′)

where ρ > ωδ′

1−(1−ω)(1−δ′) and 1− 1
2(1− ω) > δ′. The function ψ is increasing on its domain.

Proof. We begin by considering the derivative of φ with respect to ρ′, which is

ω log

(
(ρ− ωρ′) · (1− (1− ω)(1− ρ′))

ωρ′(1− ω)(1− ρ′)

)
− log

(
1− (1− ω)(1− ρ′)

(1− ω)(1− ρ′)

)
.

We claim this expression is always > 0, i.e., that

ω log

(
(ρ− ωρ′) · (1− (1− ω)(1− ρ′))

ωρ′(1− ω)(1− ρ′)

)
> log

(
1− (1− ω)(1− ρ′)

(1− ω)(1− ρ′)

)
. (26)

We first observe that the RHS above is negative, which is equivalent to

1− (1− ω)(1− ρ′) > (1− ω)(1− ρ′) .

Straightforward algebraic manipulations show that the above condition is equivalent to 1− 1
2(1−

ω) > ρ′, which follows from one of our assumptions on δ′ (recall ρ′ ≤ δ′). Hence, it now suffices to
argue that the LHS of (26) is positive, which is itself equivalent to

(ρ− ωρ′) · (1− (1− ω)(1− ρ′)) > ωρ′(1− ω)(1− ρ′) .

Expanding the LHS above yields

ρ− ωρ′ − ρ(1− ω)(1− ρ′) + ωρ′(1− ω)(1− ρ′)

and so it suffices to argue

ρ− ωρ′ − ρ(1− ω)(1− ρ′) > 0 ⇐⇒ ρ >
ωρ′

1− (1− ω)(1− ρ′)
.

As we assumed ρ > ωδ′

1−(1−ω)(1−δ′) and the function ρ′ 7→ ωρ′

1−(1−ω)(1−ρ′) is increasing on the interval

[0, δ′] (the derivative ω(1−(1−ω)(1−ρ′))+ωρ′(1−ω)
(1−(1−ω)(1−ρ′))2 is manifestly positive on this domain), our desired

conclusion follows.

71

Upon fixing ρ′ to δ′, we are now reduced to considering a trivariate function. We now consider
fixing α and β, and observe that the resulting function is concave. This is analogous to Lemma 9.10
and Lemma 9.11.

Lemma 9.18. Fix α, β ∈ (0, 1), and consider the univariate function

τ = τα,β : (max{δ, β/2},min{ω(1 + δ′ − ωδ′), 1− β/2}) → R, ρ 7→ F (α, β, ρ, ωδ′) .

The function τ is concave on its domain.

It thus makes sense to find values ρ maximizing F by looking for critical points, i.e., points
where ∂F

∂ρ = 0. Looking at Equation (42) in [KZKJ08], this is true exactly when we have

ρ′ =
ρ(c+ 1)− 1/2

1 + c
where c =

(1− ρ)2(ρ− β/2)

ρ2(1− ρ− β/2)
, (27)

Proof. We can first compute the derivative (following [KZKJ08, Equation (41)])

dτ

dρ
= log

(
ρ2(1− ρ− β/2)((1− ρ)− (1− ω)(1− ωδ′))

(1− ρ)2(ρ− β/2)(ρ− ωδ′)

)
.

Calling the numerator inside the logarithm s(ρ) and the denominator t(ρ), it follows that

d2τ

dρ2
=

1

ln 2

t(ρ)

s(ρ)
· t(ρ)s

′(ρ)− s(ρ)t′(ρ)

(t(ρ))2
=

1

ln 2
=
t(ρ)s′(ρ)− s(ρ)t′(ρ)

s(ρ)t(ρ)
. (28)

First, we note that 1
ln 2 > 0, and similarly that s(ρ)t(ρ) > 0. Indeed,

s(ρ)t(ρ) = ρ2(1− ρ− β/2)(1− ρ− (1− ω)(1− ωδ′))(1− ρ)2(ρ− β/2)(ρ− ωδ′)

and it is immediate to verify that for δ ∈ (max{δ, β/2},min{ω(1 + δ′ − ωδ′), 1 − β/2}) all the
terms appearing above are positive (using that ρ > δ ≥ ωδ′). Hence, it suffices to argue that the
numerator of (28) is negative.

We have

t(ρ)s′(ρ)− s(ρ)t′(ρ)

= (1− ρ)2(ρ− β/2)(ρ− ωδ′)
[
2ρ(1− ρ− β/2)(1− ρ− (1− ω)(1− ωδ′))

− ρ2(1− ρ− (1− ω)(1− ωδ′))− ρ2(1− ρ− β/2)
]

− ρ2(1− ρ− β/2)(1− ρ− (1− ω)(1− ωδ′))
[
−2(1− ρ)(ρ− β/2)(ρ− ωδ′)

+ (1− ρ)2(ρ− ωδ′) + (1− ρ)2(ρ− β/2)
]

= 2(1− ρ)2(ρ− β/2)(ρ− ωδ′)ρ(1− ρ− β/2)(1− ρ− (1− ω)(1− ωδ′))

+ 2ρ2(1− ρ− β/2)(1− ρ− (1− ω)(1− ωδ′))(1− ρ)(ρ− β/2)(ρ− ωδ′)

− (1− ρ)2(ρ− β/2)(ρ− ωδ′)ρ2(1− ρ− β/2)

− (1− ρ)2(ρ− β/2)(ρ− ωδ′)ρ2(1− ρ− (1− ω)(1− ωδ′))

− ρ2(1− ρ− β/2)(1− ρ− (1− ω)(1− ωδ′))(1− ρ)2(ρ− β/2)

− ρ2(1− ρ− β/2)(1− ρ− (1− ω)(1− ωδ′))(1− ρ)2(ρ− ωδ′)

That the above is negative follows from the following four inequalities, which are all easily derived:

72

• First,

(1− ρ)2(ρ− β/2)(ρ− ωδ′)ρ(1− ρ− β/2)(1− ρ− (1− ω)(1− ωδ′))

< ρ2(1− ρ− β/2)(1− ρ− (1− ω)(1− ωδ′))(1− ρ)2(ρ− β/2)

⇐⇒ ρ− ωδ′ < ρ ,

which holds since ωδ′ > 0.

• Second,

(1− ρ)2(ρ− β/2)(ρ− ωδ′)ρ(1− ρ− β/2)(1− ρ− (1− ω)(1− ωδ′))

< ρ2(1− ρ− β/2)(1− ρ− (1− ω)(1− ωδ′))(1− ρ)2(ρ− ωδ′)

⇐⇒ ρ− β/2 < ρ ,

which holds since β > 0.

• Third,

ρ2(1− ρ− β/2)(1− ρ− (1− ω)(1− ωδ′))(1− ρ)(ρ− β/2)(ρ− ωδ′)

< (1− ρ)2(ρ− β/2)(ρ− δ′)ρ2(1− ρ− β/2)

⇐⇒ 1− ρ− (1− ω)(1− ωδ′) < 1− ρ ,

which holds since (1− ω)(1− ωδ′) > 0.

• Lastly,

ρ2(1− ρ− β/2)(1− ρ− (1− ω)(1− ωδ′))(1− ρ)(ρ− β/2)(ρ− ωδ′)

< (1− ρ)2(ρ− β/2)(ρ− ωδ′)ρ2(1− ρ− (1− ω)(1− ωδ′))

⇐⇒ 1− ρ− β/2 < 1− ρ ,

which again holds since β > 0.

Thus, the second derivative of τ is negative on the domain (max{δ, β/2},min{ω(1 + δ′ − ωδ′), 1−
β/2}), implying that τ is concave, as claimed.

The idea now is to provide an argument analogous to the end of the proof of Proposition 9.6.
Namely, we argue that either a maximizer for F (with ρ′ fixed to ωδ′) on the relevant domain
occurs at a critical point (in which case we have either set δ or δ′ too large), or that the “smallest”
point is the maximizer. In our case, since ρ ≥ δ, this minimum value would be (r/n, r/(2n), δ,).
However, we cannot fully establish this, so we leave the following conjecture.

Conjecture 9.19. The maximum value for F over the set of all (α, β, ρ, ωδ′) for which

β ≤ α/2,
α

2
≤ 1− β,

β

2
≤ ρ,

β

2
< 1− ρδ ≤ ρ, ρ ≤ (1− ω) + ωδ′ .

either occurs at a critical point, i.e., a point (α, β, ρ, ωδ) for which (19), (20), and (27) holds; or
at the point (r/n, r/(2n), δ, ωδ′).

73

Assuming this conjecture, we can bound the failure probability of this second term quite nat-
urally: namely, it will be of the form poly(n)2Bn, where, assuming F is negative at all critical
points, will be F (r/n, r/(2n), δ, ωδ′) for large enough n. This term is actually of the order −Ω(1),
so the failure probability would be something like 2−Ω(n). By combining this with the bound from
the RAA code generation procedure – i.e., the probability that the RAA code prior to puncturing
has minimum distance less than d – we can obtain meaningful bounds on the probability that a
random punctured RAA code has minimum distance at most δ′, which we recorded in Figure 2.

Lastly, we indicate that we can still run tests on the sampled RAA code, and correspond-
ingly decrease the value of the first term. Thus, with an Õ(nw) generation procedure, the failure
probability will thus be O(n−(w+1)(r

2
−1)+γ).

Acknowledgements

We thank Alex Block for helpful clarifications about [BGK+23] and Yuval Ishai for useful discus-
sions on RAA codes. B. Chen was funded by DARPA, the Simons Foundation, UBRI, and NTT
Research. Opinions, findings, and conclusions or recommendations expressed in this material are
those of the authors and do not necessarily reflect the views of DARPA. N. Resch is supported by an
NWO (Dutch Research Council) grant with number C.2324.0590. This work was done in part while
N. Resch was visiting the Simons Institute for the Theory of Computing, supported by DOE grant
#DE-SC0024124.

References

[ACFY24] Gal Arnon, Alessandro Chiesa, Giacomo Fenzi, and Eylon Yogev. STIR: Reed-Solomon
proximity testing with fewer queries. In Leonid Reyzin and Douglas Stebila, editors,
Advances in Cryptology - CRYPTO 2024 - 44th Annual International Cryptology Con-
ference, Santa Barbara, CA, USA, August 18-22, 2024, Proceedings, Part X, volume
14929 of Lecture Notes in Computer Science, pages 380–413. Springer, 2024. 1, 11

[AER24] Guillermo Angeris, Alex Evans, and Gyumin Roh. A note on Ligero and logarithmic
randomness. Cryptology ePrint Archive, Paper 2024/1399, 2024. 33

[AFLN24] Martin R Albrecht, Giacomo Fenzi, Oleksandra Lapiha, and Ngoc Khanh Nguyen.
Slap: succinct lattice-based polynomial commitments from standard assumptions. In
Annual International Conference on the Theory and Applications of Cryptographic
Techniques, pages 90–119. Springer, 2024. 12

[AHIV23] Scott Ames, Carmit Hazay, Yuval Ishai, and Muthuramakrishnan Venkitasubrama-
niam. Ligero: lightweight sublinear arguments without a trusted setup. Des. Codes
Cryptogr., 91(11):3379–3424, 2023. 4, 5, 6, 10, 11, 15

[AS92] Sanjeev Arora and Shmuel Safra. Probabilistic checking of proofs; A new charac-
terization of NP. In 33rd Annual Symposium on Foundations of Computer Science,
Pittsburgh, Pennsylvania, USA, 24-27 October 1992, pages 2–13. IEEE Computer So-
ciety, 1992. 11

74

[AST24] Arasu Arun, Srinath T. V. Setty, and Justin Thaler. Jolt: SNARKs for virtual ma-
chines via lookups. In Marc Joye and Gregor Leander, editors, Advances in Cryp-
tology - EUROCRYPT 2024 - 43rd Annual International Conference on the Theory
and Applications of Cryptographic Techniques, Zurich, Switzerland, May 26-30, 2024,
Proceedings, Part VI, volume 14656 of Lecture Notes in Computer Science, pages 3–33.
Springer, 2024. 1

[BBB+18] Benedikt Bünz, Jonathan Bootle, Dan Boneh, Andrew Poelstra, Pieter Wuille, and
Gregory Maxwell. Bulletproofs: Short proofs for confidential transactions and more.
In 2018 IEEE Symposium on Security and Privacy, SP 2018, Proceedings, 21-23 May
2018, San Francisco, California, USA, pages 315–334. IEEE Computer Society, 2018.
11

[BBHR18a] Eli Ben-Sasson, Iddo Bentov, Yinon Horesh, and Michael Riabzev. Fast Reed-Solomon
interactive oracle proofs of proximity. In Ioannis Chatzigiannakis, Christos Kaklama-
nis, Dániel Marx, and Donald Sannella, editors, 45th International Colloquium on Au-
tomata, Languages, and Programming, ICALP 2018, July 9-13, 2018, Prague, Czech
Republic, volume 107 of LIPIcs, pages 14:1–14:17. Schloss Dagstuhl - Leibniz-Zentrum
für Informatik, 2018. 1, 36

[BBHR18b] Eli Ben-Sasson, Iddo Bentov, Yinon Horesh, and Michael Riabzev. Scalable, transpar-
ent, and post-quantum secure computational integrity. IACR Cryptol. ePrint Arch.,
page 46, 2018. 1

[BBHV22] Laasya Bangalore, Rishabh Bhadauria, Carmit Hazay, and Muthuramakrishnan Venki-
tasubramaniam. On black-box constructions of time and space efficient sublinear ar-
guments from symmetric-key primitives. In Eike Kiltz and Vinod Vaikuntanathan,
editors, Theory of Cryptography - 20th International Conference, TCC 2022, Chicago,
IL, USA, November 7-10, 2022, Proceedings, Part I, volume 13747 of Lecture Notes in
Computer Science, pages 417–446. Springer, 2022. 12

[BC24] Dan Boneh and Binyi Chen. LatticeFold: A lattice-based folding scheme and its
applications to succinct proof systems. Cryptology ePrint Archive, Paper 2024/257,
2024. 12

[BCC+16] Jonathan Bootle, Andrea Cerulli, Pyrros Chaidos, Jens Groth, and Christophe Petit.
Efficient zero-knowledge arguments for arithmetic circuits in the discrete log setting.
In Marc Fischlin and Jean-Sébastien Coron, editors, Advances in Cryptology - EURO-
CRYPT 2016 - 35th Annual International Conference on the Theory and Applications
of Cryptographic Techniques, Vienna, Austria, May 8-12, 2016, Proceedings, Part II,
volume 9666 of Lecture Notes in Computer Science, pages 327–357. Springer, 2016. 11

[BCG+17] Jonathan Bootle, Andrea Cerulli, Essam Ghadafi, Jens Groth, Mohammad Hajiabadi,
and Sune K. Jakobsen. Linear-time zero-knowledge proofs for arithmetic circuit sat-
isfiability. In Tsuyoshi Takagi and Thomas Peyrin, editors, Advances in Cryptology -
ASIACRYPT 2017 - 23rd International Conference on the Theory and Applications of
Cryptology and Information Security, Hong Kong, China, December 3-7, 2017, Pro-
ceedings, Part III, volume 10626 of Lecture Notes in Computer Science, pages 336–365.
Springer, 2017. 4

75

[BCG20] Jonathan Bootle, Alessandro Chiesa, and Jens Groth. Linear-time arguments with
sublinear verification from tensor codes. In Rafael Pass and Krzysztof Pietrzak, editors,
Theory of Cryptography - 18th International Conference, TCC 2020, Durham, NC,
USA, November 16-19, 2020, Proceedings, Part II, volume 12551 of Lecture Notes in
Computer Science, pages 19–46. Springer, 2020. 2, 4, 14

[BCG+22] Elette Boyle, Geoffroy Couteau, Niv Gilboa, Yuval Ishai, Lisa Kohl, Nicolas Resch,
and Peter Scholl. Correlated pseudorandomness from expand-accumulate codes. In
Yevgeniy Dodis and Thomas Shrimpton, editors, Advances in Cryptology - CRYPTO
2022 - 42nd Annual International Cryptology Conference, CRYPTO 2022, Santa Bar-
bara, CA, USA, August 15-18, 2022, Proceedings, Part II, volume 13508 of Lecture
Notes in Computer Science, pages 603–633. Springer, 2022. 2, 4, 8, 10

[BCG+23] Elette Boyle, Geoffroy Couteau, Niv Gilboa, Yuval Ishai, Lisa Kohl, Nicolas Resch,
and Peter Scholl. Oblivious transfer with constant computational overhead. In Carmit
Hazay and Martijn Stam, editors, Advances in Cryptology - EUROCRYPT 2023 - 42nd
Annual International Conference on the Theory and Applications of Cryptographic
Techniques, Lyon, France, April 23-27, 2023, Proceedings, Part I, volume 14004 of
Lecture Notes in Computer Science, pages 271–302. Springer, 2023. 2

[BCHO22] Jonathan Bootle, Alessandro Chiesa, Yuncong Hu, and Michele Orrù. Gemini: Elas-
tic SNARKs for diverse environments. In Orr Dunkelman and Stefan Dziembowski,
editors, Advances in Cryptology - EUROCRYPT 2022 - 41st Annual International
Conference on the Theory and Applications of Cryptographic Techniques, Trondheim,
Norway, May 30 - June 3, 2022, Proceedings, Part II, volume 13276 of Lecture Notes
in Computer Science, pages 427–457. Springer, 2022. 12

[BCS16] Eli Ben-Sasson, Alessandro Chiesa, and Nicholas Spooner. Interactive oracle proofs.
In Martin Hirt and Adam D. Smith, editors, Theory of Cryptography - 14th Inter-
national Conference, TCC 2016-B, Beijing, China, October 31 - November 3, 2016,
Proceedings, Part II, volume 9986 of Lecture Notes in Computer Science, pages 31–60,
2016. 3, 5, 13, 19

[BFK+24] Alexander R Block, Zhiyong Fang, Jonathan Katz, Justin Thaler, Hendrik Waldner,
and Yupeng Zhang. Field-agnostic SNARKs from expand-accumulate codes. In Annual
International Cryptology Conference, pages 276–307. Springer, 2024. 2, 9, 10, 11, 41

[BFS20] Benedikt Bünz, Ben Fisch, and Alan Szepieniec. Transparent SNARKs from DARK
compilers. In Anne Canteaut and Yuval Ishai, editors, Advances in Cryptology - EURO-
CRYPT 2020 - 39th Annual International Conference on the Theory and Applications
of Cryptographic Techniques, Zagreb, Croatia, May 10-14, 2020, Proceedings, Part I,
volume 12105 of Lecture Notes in Computer Science, pages 677–706. Springer, 2020.
14

[BGG+88] Michael Ben-Or, Oded Goldreich, Shafi Goldwasser, Johan H̊astad, Joe Kilian, Silvio
Micali, and Phillip Rogaway. Everything provable is provable in zero-knowledge. In
Shafi Goldwasser, editor, Advances in Cryptology - CRYPTO ’88, 8th Annual Interna-
tional Cryptology Conference, Santa Barbara, California, USA, August 21-25, 1988,

76

Proceedings, volume 403 of Lecture Notes in Computer Science, pages 37–56. Springer,
1988. 3

[BGH+06] Eli Ben-Sasson, Oded Goldreich, Prahladh Harsha, Madhu Sudan, and Salil P. Vad-
han. Robust PCPs of proximity, shorter PCPs, and applications to coding. SIAM J.
Comput., 36(4):889–974, 2006. 11

[BGK+23] Alexander R. Block, Albert Garreta, Jonathan Katz, Justin Thaler, Pratyush Ranjan
Tiwari, and Michal Zajac. Fiat-Shamir security of FRI and related SNARKs. In
Advances in Cryptology - ASIACRYPT 2023 - 29th International Conference on the
Theory and Application of Cryptology and Information Security, Guangzhou, China,
December 4-8, 2023, Proceedings, Part II, volume 14439, pages 3–40. Springer, 2023.
74, 84

[BGKS20] Eli Ben-Sasson, Lior Goldberg, Swastik Kopparty, and Shubhangi Saraf. DEEP-FRI:
sampling outside the box improves soundness. In Thomas Vidick, editor, 11th Innova-
tions in Theoretical Computer Science Conference, ITCS 2020, January 12-14, 2020,
Seattle, Washington, USA, volume 151 of LIPIcs, pages 5:1–5:32. Schloss Dagstuhl -
Leibniz-Zentrum für Informatik, 2020. 1, 39

[BHR+20] Alexander R. Block, Justin Holmgren, Alon Rosen, Ron D. Rothblum, and Pratik
Soni. Public-coin zero-knowledge arguments with (almost) minimal time and space
overheads. In Rafael Pass and Krzysztof Pietrzak, editors, Theory of Cryptography
- 18th International Conference, TCC 2020, Durham, NC, USA, November 16-19,
2020, Proceedings, Part II, volume 12551 of Lecture Notes in Computer Science, pages
168–197. Springer, 2020. 12

[BHR+21] Alexander R. Block, Justin Holmgren, Alon Rosen, Ron D. Rothblum, and Pratik
Soni. Time- and space-efficient arguments from groups of unknown order. In Tal
Malkin and Chris Peikert, editors, Advances in Cryptology - CRYPTO 2021 - 41st
Annual International Cryptology Conference, CRYPTO 2021, Virtual Event, August
16-20, 2021, Proceedings, Part IV, volume 12828 of Lecture Notes in Computer Science,
pages 123–152. Springer, 2021. 12

[BKS18] Eli Ben-Sasson, Swastik Kopparty, and Shubhangi Saraf. Worst-case to average case
reductions for the distance to a code. In Rocco A. Servedio, editor, 33rd Computational
Complexity Conference, CCC 2018, June 22-24, 2018, San Diego, CA, USA, volume
102 of LIPIcs, pages 24:1–24:23. Schloss Dagstuhl - Leibniz-Zentrum für Informatik,
2018. 10, 15

[BMS08] Louay Bazzi, Mohammad Mahdian, and Daniel A Spielman. The minimum distance
of turbo-like codes. IEEE Transactions on Information Theory, 55(1):6–15, 2008. 3,
7, 8, 42

[BS23] Ward Beullens and Gregor Seiler. Labrador: compact proofs for r1cs from module-sis.
In Annual International Cryptology Conference - CRYPTO, pages 518–548. Springer,
2023. 12

77

[BSCI+20] Eli Ben-Sasson, Dan Carmon, Yuval Ishai, Swastik Kopparty, and Shubhangi Saraf.
Proximity gaps for Reed–Solomon codes. In 2020 IEEE 61st Annual Symposium on
Foundations of Computer Science (FOCS), pages 900–909. IEEE, 2020. 6, 11, 22, 39

[CBBZ23] Binyi Chen, Benedikt Bünz, Dan Boneh, and Zhenfei Zhang. Hyperplonk: Plonk
with linear-time prover and high-degree custom gates. In 42nd Annual International
Conference on Theory and Applications of Cryptographic Techniques, EUROCRYPT
2023, pages 499–530. Springer Science and Business Media Deutschland GmbH, 2023.
1, 9, 11, 13, 22, 27, 83

[CCH+19] Ran Canetti, Yilei Chen, Justin Holmgren, Alex Lombardi, Guy N Rothblum, Ron D
Rothblum, and Daniel Wichs. Fiat-Shamir: from practice to theory. In Proceedings of
the 51st Annual ACM SIGACT Symposium on Theory of Computing, pages 1082–1090,
2019. 20, 82, 83, 84

[CFFZ24] Alessandro Chiesa, Elisabetta Fedele, Giacomo Fenzi, and Andrew Zitek-Estrada. A
time-space tradeoff for the sumcheck prover. IACR Cryptol. ePrint Arch., page 524,
2024. 12

[CHM+20] Alessandro Chiesa, Yuncong Hu, Mary Maller, Pratyush Mishra, Noah Vesely, and
Nicholas Ward. Marlin: Preprocessing zkSNARKs with universal and updatable SRS.
In Advances in Cryptology–EUROCRYPT 2020: 39th Annual International Confer-
ence on the Theory and Applications of Cryptographic Techniques, Zagreb, Croatia,
May 10–14, 2020, Proceedings, Part I 39, pages 738–768. Springer, 2020. 14

[CMNW24] Valerio Cini, Giulio Malavolta, Ngoc Khanh Nguyen, and Hoeteck Wee. Polynomial
commitments from lattices: post-quantum security, fast verification and transparent
setup. In Annual International Cryptology Conference - CRYPTO, pages 207–242.
Springer, 2024. 12

[CMS19] Alessandro Chiesa, Peter Manohar, and Nicholas Spooner. Succinct arguments in
the quantum random oracle model. In Theory of Cryptography: 17th International
Conference, TCC 2019, Nuremberg, Germany, December 1–5, 2019, Proceedings, Part
II 17, pages 1–29. Springer, 2019. 19, 20, 82

[COS20] Alessandro Chiesa, Dev Ojha, and Nicholas Spooner. Fractal: Post-quantum and trans-
parent recursive proofs from holography. In Advances in Cryptology–EUROCRYPT
2020: 39th Annual International Conference on the Theory and Applications of Cryp-
tographic Techniques, Zagreb, Croatia, May 10–14, 2020, Proceedings, Part I 39, pages
769–793. Springer, 2020. 13, 19, 82

[CY24] Alessandro Chiesa and Eylon Yogev. Building Cryptographic Proofs from Hash Func-
tions. 2024. 3

[dHS24] Thomas den Hollander and Daniel Slamanig. A crack in the firmament: Restoring
soundness of the Orion proof system and more. Cryptology ePrint Archive, Paper
2024/1164, 2024. 11

78

[DJM98] Dariush Divsalar, Hui Jin, and Robert J McEliece. Coding theorems for “turbo-like”
codes. In Proceedings of the annual Allerton Conference on Communication control
and Computing, volume 36, pages 201–210. University Of Illinois, 1998. 7, 41

[DP23] Benjamin E. Diamond and Jim Posen. Succinct arguments over towers of binary fields.
IACR Cryptol. ePrint Arch., page 1784, 2023. 1, 9, 10, 11

[DP24a] Benjamin E. Diamond and Jim Posen. Polylogarithmic proofs for multilinears over
binary towers. Cryptology ePrint Archive, Paper 2024/504, 2024. https://eprint.

iacr.org/2024/504. 1, 5, 9, 11, 20, 37

[DP24b] Benjamin E. Diamond and Jim Posen. Proximity testing with logarithmic randomness.
IACR Commun. Cryptol., 1(1):2, 2024. 33

[FPP24] Cody Freitag, Omer Paneth, and Rafael Pass. Public-coin, complexity-preserving,
succinct arguments of knowledge for NP from collision-resistance. In Marc Joye and
Gregor Leander, editors, Advances in Cryptology - EUROCRYPT 2024 - 43rd Annual
International Conference on the Theory and Applications of Cryptographic Techniques,
Zurich, Switzerland, May 26-30, 2024, Proceedings, Part IV, volume 14654 of Lecture
Notes in Computer Science, pages 112–141. Springer, 2024. 12

[FS86] Amos Fiat and Adi Shamir. How to prove yourself: Practical solutions to identification
and signature problems. In Andrew M. Odlyzko, editor, Advances in Cryptology -
CRYPTO ’86, Santa Barbara, California, USA, 1986, Proceedings, volume 263 of
Lecture Notes in Computer Science, pages 186–194. Springer, 1986. 1, 3

[GKR15] Shafi Goldwasser, Yael Tauman Kalai, and Guy N. Rothblum. Delegating computation:
Interactive proofs for muggles. J. ACM, 62(4):27:1–27:64, 2015. 1, 31

[GLS+23] Alexander Golovnev, Jonathan Lee, Srinath Setty, Justin Thaler, and Riad S Wahby.
Brakedown: Linear-time and field-agnostic SNARKs for R1CS. In Annual Interna-
tional Cryptology Conference, pages 193–226, 2023. 2, 3, 4, 5, 10, 11, 36

[GMR89] Shafi Goldwasser, Silvio Micali, and Charles Rackoff. The knowledge complexity of
interactive proof systems. SIAM J. Comput., 18(1):186–208, 1989. 12

[GR17] Tom Gur and Ron D. Rothblum. A hierarchy theorem for interactive proofs of prox-
imity. In Christos H. Papadimitriou, editor, 8th Innovations in Theoretical Computer
Science Conference, ITCS 2017, January 9-11, 2017, Berkeley, CA, USA, volume 67
of LIPIcs, pages 39:1–39:43. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2017.
13

[HLP24] Ulrich Haböck, David Levit, and Shahar Papini. Circle STARKs. IACR Cryptol.
ePrint Arch., page 278, 2024. 1, 11

[HR18] Justin Holmgren and Ron D. Rothblum. Delegating computations with (almost) mini-
mal time and space overhead. In Mikkel Thorup, editor, 59th IEEE Annual Symposium
on Foundations of Computer Science, FOCS 2018, Paris, France, October 7-9, 2018,
pages 124–135. IEEE Computer Society, 2018. 26

79

https://eprint.iacr.org/2024/504
https://eprint.iacr.org/2024/504

[HR22] Justin Holmgren and Ron D. Rothblum. Faster sounder succinct arguments and
IOPs. In Yevgeniy Dodis and Thomas Shrimpton, editors, Advances in Cryptology -
CRYPTO 2022 - 42nd Annual International Cryptology Conference, CRYPTO 2022,
Santa Barbara, CA, USA, August 15-18, 2022, Proceedings, Part I, volume 13507 of
Lecture Notes in Computer Science, pages 474–503. Springer, 2022. 4

[HSS24] Intak Hwang, Jinyeong Seo, and Yongsoo Song. Concretely efficient lattice-based poly-
nomial commitment from standard assumptions. In Annual International Cryptology
Conference - CRYPTO, pages 414–448. Springer, 2024. 12

[Kil92] Joe Kilian. A note on efficient zero-knowledge proofs and arguments (extended ab-
stract). In S. Rao Kosaraju, Mike Fellows, Avi Wigderson, and John A. Ellis, editors,
Proceedings of the 24th Annual ACM Symposium on Theory of Computing, May 4-6,
1992, Victoria, British Columbia, Canada, pages 723–732. ACM, 1992. 3

[KPV22] Assimakis A Kattis, Konstantin Panarin, and Alexander Vlasov. RedShift: transparent
SNARKs from list polynomial commitments. In Proceedings of the 2022 ACM SIGSAC
Conference on Computer and Communications Security, 2022. 5

[KT23] Tohru Kohrita and Patrick Towa. Zeromorph: Zero-knowledge multilinear-evaluation
proofs from homomorphic univariate commitments. Cryptology ePrint Archive,
2023:917, 2023. 36

[KZCJ07] Jörg Kliewer, Kamil S Zigangirov, and Daniel J Costello Jr. New results on the
minimum distance of repeat multiple accumulate codes. In Proc. 45th Annual Allerton
Conf. Commun., Control, and Computing, 2007. 3, 7, 8, 17, 42

[KZG10] Aniket Kate, Gregory M. Zaverucha, and Ian Goldberg. Constant-size commitments to
polynomials and their applications. In Masayuki Abe, editor, Advances in Cryptology
- ASIACRYPT 2010 - 16th International Conference on the Theory and Application
of Cryptology and Information Security, Singapore, December 5-9, 2010. Proceedings,
volume 6477 of Lecture Notes in Computer Science, pages 177–194. Springer, 2010. 11

[KZKJ08] Jörg Kliewer, Kamil S. Zigangirov, Christian Koller, and Daniel J. Costello Jr. Coding
theorems for repeat multiple accumulate codes, 2008. 17, 42, 49, 50, 51, 52, 57, 70,
71, 72

[Lee20] Jonathan Lee. Dory: Efficient, transparent arguments for generalised inner products
and polynomial commitments. IACR Cryptol. ePrint Arch., page 1274, 2020. 11

[LF80] Richard E. Ladner and Michael J. Fischer. Parallel prefix computation. J. ACM,
27(4):831–838, 1980. 7

[LFKN92] Carsten Lund, Lance Fortnow, Howard J. Karloff, and Noam Nisan. Algebraic methods
for interactive proof systems. J. ACM, 39(4):859–868, 1992. 4, 13

[Mei13] Or Meir. IP = PSPACE using error-correcting codes. SIAM J. Comput., 42(1):380–
403, 2013. 4

80

[Mic00] Silvio Micali. Computationally sound proofs. SIAM J. Comput., 30(4):1253–1298,
2000. 3

[NS24] Ngoc Khanh Nguyen and Gregor Seiler. Greyhound: Fast polynomial commitments
from lattices. In Annual International Cryptology Conference - CRYPTO, pages 243–
275. Springer, 2024. 12

[Rot24] Ron D. Rothblum. A note on efficient computation of the multilinear extension. Cryp-
tology ePrint Archive, Paper 2024/1103, 2024. https://eprint.iacr.org/2024/

1103. 12

[RR22] Noga Ron-Zewi and Ron D. Rothblum. Proving as fast as computing: succinct ar-
guments with constant prover overhead. In Stefano Leonardi and Anupam Gupta,
editors, STOC ’22: 54th Annual ACM SIGACT Symposium on Theory of Computing,
Rome, Italy, June 20 - 24, 2022, pages 1353–1363. ACM, 2022. 4

[RR24] Noga Ron-Zewi and Ron Rothblum. Local proofs approaching the witness length. J.
ACM, 71(3):18, 2024. 1, 4, 13

[RRR16] Omer Reingold, Ron D. Rothblum, and Guy N. Rothblum. Constant-round interactive
proofs for delegating computation. Electron. Colloquium Comput. Complex., TR16-
061, 2016. 5, 13, 14

[RVW13] Guy N. Rothblum, Salil P. Vadhan, and Avi Wigderson. Interactive proofs of proxim-
ity: delegating computation in sublinear time. In Dan Boneh, Tim Roughgarden, and
Joan Feigenbaum, editors, Symposium on Theory of Computing Conference, STOC’13,
Palo Alto, CA, USA, June 1-4, 2013, pages 793–802. ACM, 2013. 6, 15

[Set20] Srinath T. V. Setty. Spartan: Efficient and general-purpose zkSNARKs without
trusted setup. In Daniele Micciancio and Thomas Ristenpart, editors, Advances
in Cryptology - CRYPTO 2020 - 40th Annual International Cryptology Conference,
CRYPTO 2020, Santa Barbara, CA, USA, August 17-21, 2020, Proceedings, Part III,
volume 12172 of Lecture Notes in Computer Science, pages 704–737. Springer, 2020. 1

[SL20] Srinath T. V. Setty and Jonathan Lee. Quarks: Quadruple-efficient transparent zk-
SNARKs. IACR Cryptol. ePrint Arch., page 1275, 2020. 9, 27

[Spi96] Daniel A. Spielman. Linear-time encodable and decodable error-correcting codes. IEEE
Trans. Inf. Theory, 42(6):1723–1731, 1996. 2

[Sta23] StarkWare. ethSTARK documentation. Cryptology ePrint Archive, Paper 2021/582,
2023. 84

[STW24] Srinath T. V. Setty, Justin Thaler, and Riad S. Wahby. Unlocking the lookup singu-
larity with Lasso. In Marc Joye and Gregor Leander, editors, Advances in Cryptology
- EUROCRYPT 2024 - 43rd Annual International Conference on the Theory and Ap-
plications of Cryptographic Techniques, Zurich, Switzerland, May 26-30, 2024, Pro-
ceedings, Part VI, volume 14656 of Lecture Notes in Computer Science, pages 180–209.
Springer, 2024. 1

81

https://eprint.iacr.org/2024/1103
https://eprint.iacr.org/2024/1103

[Tha13] Justin Thaler. Time-optimal interactive proofs for circuit evaluation. In Ran Canetti
and Juan A. Garay, editors, Advances in Cryptology - CRYPTO 2013 - 33rd Annual
Cryptology Conference, Santa Barbara, CA, USA, August 18-22, 2013. Proceedings,
Part II, volume 8043 of Lecture Notes in Computer Science, pages 71–89. Springer,
2013. 13

[Tha22] Justin Thaler. Proofs, arguments, and zero-knowledge. Found. Trends Priv. Secur.,
4(2-4):117–660, 2022. 12, 31

[VSBW13] Victor Vu, Srinath T. V. Setty, Andrew J. Blumberg, and Michael Walfish. A hybrid
architecture for interactive verifiable computation. In 2013 IEEE Symposium on Se-
curity and Privacy, SP 2013, Berkeley, CA, USA, May 19-22, 2013, pages 223–237.
IEEE Computer Society, 2013. 12

[WTS+18] Riad S. Wahby, Ioanna Tzialla, Abhi Shelat, Justin Thaler, and Michael Walfish.
Doubly-efficient zkSNARKs without trusted setup. In 2018 IEEE Symposium on Se-
curity and Privacy, SP 2018, Proceedings, 21-23 May 2018, San Francisco, California,
USA, pages 926–943. IEEE Computer Society, 2018. 11

[XZS22] Tiancheng Xie, Yupeng Zhang, and Dawn Song. Orion: Zero knowledge proof with
linear prover time. In Yevgeniy Dodis and Thomas Shrimpton, editors, Advances
in Cryptology - CRYPTO 2022 - 42nd Annual International Cryptology Conference,
CRYPTO 2022, Santa Barbara, CA, USA, August 15-18, 2022, Proceedings, Part IV,
volume 13510 of Lecture Notes in Computer Science, pages 299–328. Springer, 2022.
2, 3, 11

[ZCF24] Hadas Zeilberger, Binyi Chen, and Ben Fisch. Basefold: Efficient field-agnostic polyno-
mial commitment schemes from foldable codes. In Leonid Reyzin and Douglas Stebila,
editors, Advances in Cryptology - CRYPTO 2024 - 44th Annual International Cryptol-
ogy Conference, Santa Barbara, CA, USA, August 18-22, 2024, Proceedings, Part X,
volume 14929 of Lecture Notes in Computer Science, pages 138–169. Springer, 2024.
1, 5, 9, 11, 20, 36

A Round-by-Round Soundness of the Protocols

In this section, we sketch the proof idea of the round-by-round soundness of the IOPP forRMLE[PRAA
t].

As discussed in Section 4, after compiling the IOPP with Merkle commitments and the Fiat-Shamir
transformation, the resulting argument preserves soundness and is therefore a polynomial commit-
ment [CMS19,COS20].

We begin by briefly reviewing the concept of round-by-round (RBR) soundness [CCH+19]. A
public-coin interactive protocol for a language L is round-by-round sound if there exists a state
function over (partial) transcripts that satisfies the following three properties. (i) If the instance x
is not in L, then the initial state of the protocol is doomed, i.e., State(x, ∅) = reject. (ii) In each
round, if the current transcript is already in a doomed state, no matter how a malicious prover
chooses its next message, with overwhelming probability over the verifier’s challenge, the protocol
state will remain doomed. (iii) If the full transcript is in a doomed state, the verifier will reject.

We establish the RBR soundness of the IOPP for RMLE[PRAA
t] via the following steps:

82

1. We start by arguing the RBR soundness of the key building blocks, which include the evalu-
ation batching protocol from Hyperplonk, the BaseFold IOPP for RMLE[RS], and the MLIOP
for RMLE[PRAA] as described in Section 5.

2. Next, we argue that the MLIOP-to-IOPP transformation from Section 4.1 preserves RBR
soundness, assuming that the underlying evaluation batching protocol and the building block
IOPP for RMLE[C] are RBR sound. By Lemma 4.2 and the result in Step 1, we conclude that
our IOPP for RMLE[PRAA] is RBR sound.

3. Finally, we show that the interleaving IOPP for RMLE[C
t] (from Section 6) preserves RBR

soundness if the underlying IOPP for RMLE[C] is RBR sound. Building on the conclusion
from Step 2, this yields the desired result that the IOPP for RMLE[PRAA

t] is RBR sound.

A.1 RBR Soundness of the Building Block Protocols

Evaluation batching. The evaluation batching protocol from Hyperplonk reduces t = 2ℓ > 1
multilinear evaluation claims into a single one. Let m denote the number of variables in each
multilinear polynomial. The protocol begins with the verifier sampling and sending a random
challenge vector r ∈ Fℓ. This challenge reduces the t multilinear evaluation claims into a single
sumcheck claim over an (m+ℓ)-variate polynomial. The prover and the verifier then run a sumcheck
protocol, which ultimately reduces the sumcheck claim to a single multilinear evaluation claim.

Recall that we define the initial state as doomed if the instance x is not in L, meaning that one of
the multilinear evaluation claims is false. After the verifier sends the first challenge vector r, we say
that the partial transcript is doomed if and only if the resulting sumcheck claim is false wrt r and
the t multilinear polynomials. It is straightforward to see that, if x /∈ L, then with overwhelming
probability over r, the sumcheck claim will be false and state remains doomed. The protocol then
proceeds with the sumcheck protocol, and the round-by-round soundness follows naturally from
the RBR soundness of the sumcheck protocol [CCH+19].

The MLIOP for RMLE[PRAA]. Given the instance x := (z, v, y), the MLIOP for RMLE[PRAA]
(Section 5) proceeds as follows:

First, the prover sends polynomials m̂, û2, û3 and û4 to the verifier. Let û1 denote the polynomial
representing r copies of m. We define a partial transcript state as doomed if either m̂(z) ̸= v or any
of the equations below is not satisfied. Note that the state will be doomed if x /∈ L(RMLE[PRAA]).

u2 =Mπ1 · u1
u3 = A · u2
u4 =Mπ2 · u3
y = A · u4.

Next, the verifier samples and sends random challenges α, β ∈ F, reducing the permutation
relations to checking the existence of polynomials f1, g1, f2, g2 that satisfy certain zero-check (or
Hadamard check) relations—i.e., certain expressions evaluates to zero at every point in the boolean
hypercube. The prover then provides oracles for f1, g1, f2, and g2. The doomed transcript states
are redefined similarly to before, except that permutation checks are replaced by zero-checks. By
the argument from [CBBZ23, Section 3.5], with overwhelming probability over α, β, the state will
remain doomed if it was initially doomed.

83

After this, the verifier samples and sends a random challenge r ∈ Flogn that reduces the zero-
check claims to a bunch of evaluation and sumcheck claims. The doomed transcript states are
again defined similarly, now replacing the zero-checks with evaluation and sumcheck checks. By
the Schwartz-Zippel lemma, with overwhelming probability over r, the state will remain doomed.

Finally, the prover and the verifier run a sumcheck protocol to reduce the sumcheck claims to a
single evaluation claim. The final transcript is doomed if m̂(z) ̸= v or any of the evaluation claims
fails. Recall that the sumcheck protocol is RBR sound, and the verifier indeed check m̂(z) = v and
the rest of the evaluations, thus rejecting if the final transcript is doomed. This finishes the proof.

The BaseFold IOPP for RMLE[RS]. The BaseFold IOPP for RMLE[RS] works by interleaving a
sumcheck protocol with a FRI-like proximity check. The proximity check ensures that the implicit
input y is close to an encoding of a message m, while the sumcheck guarantees that the evaluation
claim regarding m holds. This evaluation claim can be equivalently expressed as a sumcheck
statement. Crucially, in each round of the BaseFold IOPP, the verifier’s challenge ri serves as both
the sumcheck challenge and the folding challenge in the FRI protocol, which is essential for security.

We prove the RBR soundness of BaseFold by combining the strategies for proving that of
sumcheck [CCH+19] and FRI [BGK+23,Sta23].

For any instance (z, v, y) /∈ L(RMLE[RS]), note that either π0 := y is δ-far from codewords, or

the decoded message m ∈ F2ℓ of y doesn’t satisfy the evaluation claim m̂(z) = v. Here, the claim
m̂(z) = v can be viewed as a sumcheck statement v =

∑
b m̂(b) · êqz(b).

For each round i ∈ [1, ℓ], let π′1, . . . , π
′
i denote the oracle strings sent by the prover, let r0, . . . , ri

be the verifier’s challenges, and π1, . . . , πi denote the honestly folded proof oracles derived from
π0 = y and r0, . . . , ri−1. (Note that π0 is δ-far by assumption.) Let mi denote the decoding of π′i (or
⊥ if π′i is δ-far). We define the partial transcript state for round i as doomed if any of the following
hold: (i) fold(πi, ri) is δ-far from codewords; or (ii) for some j ∈ [1, i] where πj := fold(πj−1, rj−1)
is δ-far from codewords, it holds that π′j ̸= πj ; or (iii) the reduced sumcheck claim (with respect
to mi) fails. By sumcheck soundness and Theorem 2.5, with overwhelming probability over the
verifier’s challenge, the transcript remains doomed if it initially was.

At the query phase, the verifier checks the final evaluation claim and performs consistency
checks as required by the FRI and sumcheck protocols. Given the FRI query challenges, we modify
the definition of doomed state for the final transcript (that includes the query challenges). In
particular, we additionally check the consistency of {π′j}j over the query sets. The state is also
doomed if any evaluation checks fail, or if the final proof string π′ℓ sent by the prover is not an RS
codeword. Using similar arguments as in Lemma 5.3 and Lemma 5.4 from [BGK+23], we can show
that the final transcript is doomed with overwhelming probability if it was the case previously.
This concludes the proof as the verifier will reject any doomed final state.

A.2 RBR Soundness of the MLIOP-to-IOPP Transformation

We establish the RBR soundness of the MLIOP-to-IOPP transformation from Section 4, assuming
that the underlying MLIOP for R, the IOPP for RMLE[C], and the batch evaluation protocol Πbatch

are all RBR sound. To proceed, we define the set of doomed states and bound the probability of
escaping the doomed set. Here, let δ denote the proximity parameter for the building block IOPP
for RMLE[C], and set δ′ = cδ, where c is the rate of code C.

At the start of the protocol, when the transcript is empty, the state is considered doomed if the
instance inst = (i, x, y) is δ′-far from any (i, x, y∗) ∈ L(R). Initially, given the first oracle ỹ sent

84

by the prover, denote πy = (y||ỹ), and set y′ as the decoded message of πy if πy is δ-close to C
(otherwise, set y′ = ⊥). We append πy to the current transcript τ and define the state as doomed
if either y′ = ⊥ or State′(inst′, ∅) = reject, where inst′ = (i, x, y′) and State′ is the state function
in the RBR soundness proof for the MLIOP. Clearly, if (i, x, y) is δ′-far from any (i, x, y∗) ∈ L(R)
while πy is δ-close to C, then y is δ′-close to y′ and inst′ = (i, x, y′) /∈ L(R). Thus the state in the
MLIOP will be doomed.

For each subsequent MLIOP verifier challenge r, we append it to both the transcript τ and
the simulated transcript τ ′ for the MLIOP. For every oracle π sent by the prover, let m be the
decoded message of π if it is δ-close to C (set m = ⊥ otherwise). We append π to the transcript
τ and append m to the simulated transcript τ ′. We say that (inst, τ) is in a doomed state if
State′(inst′, τ ′) = reject. Wlog we assume that State′(inst′, τ ′) is always doomed if τ ′ includes any
⊥ symbols. By the RBR soundness of the MLIOP, the probability that a doomed transcript state
escapes from the doomed set is negligible.

Next, the prover and verifier run a batch evaluation protocol Πbatch to reduce multiple evaluation
claims to a single claim. We append the set of evaluation claims instbatch and the transcript τbatch of
Πbatch to τ . We consider the transcript to be in a doomed state if Statebatch(instbatch, τbatch) = reject,
where Statebatch is the state function used in the proof of RBR soundness for Πbatch. By the RBR
soundness of the batching protocol, the probability that a doomed transcript state escapes from
the doomed set is negligible.

Finally, the prover and verifier run a single IOPP ΣC for RMLE[C] to check the reduced multilin-
ear evaluation statement. We append this statement and the transcript of ΣC to τ , and define the
state according to the state function used in the proof of RBR soundness for ΣC . The RBR sound-
ness of the transformation follows naturally from the RBR soundness of the IOPP for RMLE[C].

A.3 RBR Soundness of the Interleaving IOPP

We establish the RBR soundness of the IOPPs for interleaved codes from Section 6. Assume that
the IOPP for RMLE[C] is RBR sound, where C is a base code over the alphabet F. To prove the
RBR soundness of the IOPP for RMLE[C

t], where Ct is over the alphabet K = Ft, we define the set
of doomed states and bound the probability of escaping from this set.

Consider an instance x = (i, z ∈ F, v ∈ F, c ∈ Kn) /∈ L(RMLE[C
t]). We define m as the decoded

message of c if c is δ-close to Ct; otherwise we set m = ⊥. Since x /∈ L(RMLE[C
t]), it follows that

either m = ⊥, or m̂(z) ̸= v, where m̂ is the multilinear extension of m. Here, m is viewed as a
t-by-k matrix over F instead of K. In what follows, we decompose z into (z1, z2) ∈ Flog t × Flog k.

At the start of the protocol, the prover sends an oracle u ∈ Ft, claimed to be the list of
evaluations {m̂i(z2)}i∈[t], where mi is the i-th row of the matrix m. We append u to the transcript
and define the state as doomed if one of the following holds: (i) m = ⊥ (i.e., c is far from Ct),(ii)
û(z1) ̸= v, or (iii) ui ̸= m̂i(z2) for some i ∈ [t]. Importantly, if the instance x /∈ L(RMLE[C

t]), the
state will always be doomed.

Next, the verifier samples a challenge r ∈ Ft and the prover folds both c ∈ Kn and u to
ccombo = r⊤y ∈ Fn and v′ = ⟨u, r⟩ ∈ F. The state is then set as doomed if one of the following
holds: (i) ccombo is (δ′ = 0.99δ)-far from C, or (ii) m̂combo(z2) ̸= v′, where m̂combo is the decoding
of ccombo. Equivalently, it is doomed if and only if (i, z2, v

′, ccombo) /∈ RMLE[C]. By Corollary 2.6
and Claim 6.1.1, the state remains doomed with high probability if it was doomed previously.

Finally, the prover and verifier engage in the IOPP forRMLE[C] on the instance x′ = (i, z2, v
′, ccombo).

The RBR soundness of the IOPP forRMLE[C
t] follows naturally from that of the IOPP forRMLE[C].

85

	Introduction
	Our Results
	Technical Overview
	Comparison with Prior Work

	Preliminaries
	Multilinear Extension
	Interactive Proofs and IOPs
	Coding Background

	The RAA Code
	Adding Tests
	Puncturing
	Concrete Numbers

	IOPs for Multilinear Evaluation
	From MLIOP to IOPP

	Multilinear Evaluation for the (Packed) RAA Code
	Checking Simple Linear Operations
	Checking Permutations
	MLIOP for RMLE[PRAA]
	Puncturing

	IOPs for Interleaved Codes
	Multilinear Evaluation for Interleaved RAA
	Experiments and Results
	Prover and Verifier Runtimes
	Communication Complexity

	Distance Analysis of RAA code
	Setup of RAA Analysis
	Probability First Stage Fails
	Given Successful First Stage, Probability Code has Good Distance
	Conditioning on Low Weight Messages Having Good First Stage
	Puncturing

	Round-by-Round Soundness of the Protocols
	RBR Soundness of the Building Block Protocols
	RBR Soundness of the MLIOP-to-IOPP Transformation
	RBR Soundness of the Interleaving IOPP

