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Abstract

Multiple Matrix congruential generators is an important class of pseudorandom number

generators. This paper studies the predictability of a class of truncated multiple matrix

congruential generators with unknown parameters. Given a few truncated digits of high-

order bits or low-order bits output by a multiple matrix congruential generator, we give a

method based on lattice reduction to recover the parameters and the initial state of the

generator.

1 Introduction

Random numbers is at the heart of Monte Carle methods and simulation, while widely

used in cryptography. In the cryptographic setting, the requirements for/randomness0are

somewhat different from ordinary applications in simulation, such as predictability. A pseu-

dorandom number generator(PRNG) is considered unpredictable if the known conditional

probability of the next event, given the previous history events or any other information,

is no different from the known unconditional probability. The predictability of PRNGs is

a crucial aspect of evaluating the security of PRNGs for cryptographic applications and

numerous studies have explored the predictability of PRNGs, yielding diverse results.

As one class of PRNGs, the linear congruential generator(LCG) proposed by D. H.

Lehmer in [15]. is based on the recurrence

ai+1 ≡ bai + c(modm),with 0 ≤ ai < m.

In the case that the parameters b, c,m are unknown, Plumstead [19] showed that the fixed

LCG is predictability if all bits of the sequence are output. Knuth [11] considered the

problems arising when only truncated high-order bits of the sequence generated by an LCG
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are known. In the case that the modulus m = 2k is known and the parameters b, c are

unknown, Knuth presented an attack to reconstruct the parameters and the seed of the

LCG. Subsequently, the study is further extended, due to the work of Frieze [6, 7], Boyar

[2], Stern[10, 21].

LCGs gained popularity due to their simplicity, efficiency, and well-established theoretical

characteristics. However, contemporary standards do not recommend the use of LCGs. This

is primarily attributed to their limited periods, which are bounded by the modulus m. In

order to improve the period of the sequences generated by LCGs, the multiple recursive

generator(MRG) is proposed and defined as

ai+n ≡ cn−1ai+n−1 + · · ·+ c1ai+1 + c0ai(modm),with i ≥ 0,

where c0, . . . , cn−1 are not all zero. Deng [4] showed that by appropriately choosing the

parameters, MRGs can be as fast as the classical LCGs, while their periods are much longer

and their empirical performances are better. In particular, ZUC [20], a stream cipher in-

cluded in the 4G mobile standard, uses an MRG of order 16 over Z231−1. The characteristic

polynomial of the MRG is

f(x) = x16 − (215x15 + 217x13 + 221x10 + 220x4 + 28 + 1)

which is a primitive polynomial over Z231−1. Recently, insights into the predictability of

MRGs have also been explored. In the case that all parameters of a MRG are known, Yang

et al. [23] introduced a method based on Coppersmith’s approach to recover the initial state

using truncated sequences. In situations where all MRG parameters are unknown, Sun et

al. [22] extended Stern’s algorithm to predict truncated MRGs. Their approach involves

constructing appropriate lattices to sequentially recover the modulus m, followed by the

coefficients c0, . . . , cn−1, and ultimately retrieving the initial state a0, . . . , an−1. Yu et al.

[24] proposed an alternative method for parameter and initial state recovery, emphasizing

its superior efficiency and reduced data requirements compared to Sun et al.’s approach.

Notably, Yu et al. [25] successfully addressed MRGs with constant c type. There are several

specific results about MRGs that can be referred to [3, 9, 12, 13, 14, 26].

In the realm of linear PRNGs, another notable type is Pseudorandom Vector Gener-

ators (PRVGs). The significance of pseudorandom vectors has been growing, particularly

due to the increasing emphasis on parallelization in scientific computing. Random vectors

find typical applications in parallelized probabilistic algorithms, parallel Monte Carlo and

simulation methods, as well as in multivariate statistics. Matrix congruential generators

(MCGs) constitute a crucial class of PRVGs. Given a vector (u0,0, . . . , u0,n−1) ∈ Znm and

a matrix A ∈ Zn×nm as input, an MCG outputs a sequence u = (ui,0, . . . , ui,n−1)i≥0 which

satisfies the recurrence

(ui+1,0, . . . , ui+1,n−1) ≡ (ui,0, . . . , ui,n−1)A (modm),with i ≥ 0.

While previous work in [5, 8, 18] have predominantly explored characteristics like the pe-

riod of MCGs, few results have been available regarding the predictability of MCGs. This
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paper focuses on predicting truncated k-order (k ≥ 2) MMCGs, where both the matrix

Ai, (i = 1, . . . , s − 1) and modulus m are unknown. The approach involves constructing

an appropriate lattice to recover the modulus m, followed by the retrieval of the matrix

Ai, (i = 1, . . . , s − 1) and the initial state. Similar to Stern’s algorithm, the success of the

method in this paper relies on two lattice properties that are challenging to prove mathe-

matically.

The other parts of this article are organized as follows. Section 2 introduces the basic

knowledge of lattice. Section 3 proposes our method to predict truncated MMCGs with

known high-order bits. Section 4 proposes our method to predict truncated MMCGs with

known low-order bits. Section 5 provides an experimental example. section 6 proposes issues

for further study.

2 Preliminary

In this section,we briefly review the basic knowledge of lattice reduction.

All lattice take row vectors as a lattice basic in this paper.

Definition 1. Let n ≥ l ≥ 1 and let v1, v2, . . . , vl be a set of l linearly independent vectors

in Rn. The l-dimensional lattice spanned by v1, v2, · · · , vl in n-dimensional Euclidean space

is defined to be

L = Zv1 + Zv2 + · · ·+ Zvl = {
l∑
i=1

kivi | k1, k2, . . . , kl ∈ Z}.

For i = 1, 2, . . . , l, let vi = (vi,1, vi,2, . . . , vi,n) and form the l× n matrix V = (vi,j). Let V T

be the transpose of V . Then the determinant of lattice L is defined by

det(L) =
√

det(V V T ).

Definition 2. Let L be a lattice. The ith minimum of L denoted by λi(L) is defined to

be the radius of the smallest zero-centered ball containing at least i linearly independent

lattice vectors. In particular, λ1(L) is the norm of the shortest non-zero vector in L.

Lemma 3. [17] Let L be an n-dimensional lattice. If the Gaussian heuristic holds for L,

then

λ1(L) ≈
√

n

2πe
det(L)

1
n .

Denote by ‖u‖ the Euclidean norm of vector u. The following two types of difficult

problems are commonly concerned in lattice.

(1) The shortest vector problem(SVP): Given a lattice L ⊂ Rn, find a non-zero vector u ∈ L,

such that ‖u‖ ≤ ‖v‖ for any non-zero vector v ∈ L.
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(2)The closest vector problem(CVP): Given a lattice L ⊂ Rn and a vector w ∈ Rn, find a

vector u ∈ L, such that ‖u-w‖ ≤ ‖v-w‖ for any vector v ∈ L.

Lemma 4. [16] Let L be an n-dimensional lattice. Assume δ is the reduction parameter of

the LLL algorithm and v1, v2, . . . , vn is a δ-reduced basis of L output by the LLL algorithm.

Let λi(L) be the ith minimum of L. Then

(1) ‖vi‖ ≤ ρ(n−1)/2λi(L), 1 ≤ i ≤ n,

(2) ‖v1‖ ≤ ρ(n−1)/4det(L)1/n,

where ρ = 4
4δ−1

.

Remark 1 The value of the reduction parameter is usually set to δ = 3
4
, at the time ρ = 2.

3 Main results

In this paper, the k-order (k ≥ 2) of Multiple-MCG is denoted as

ui+s ≡ uiA0 + ui+1A1 + · · ·+ ui+s−1As−1 (modm), (1)

where ui = (ui,0, . . . , ui,k−1), (i ≥ 0), s ≥ 1, m ≥ 2, and

Ai =


ai,11 ai,12 · · · ai,1k

ai,21 ai,22 · · · ai,2k
...

...
. . .

...

ai,k1 ai,k2 · · · ai,kk

 ∈ Zk×km .

To guarantee that the sequence u is purely periodic, we assume that gcd(detAi,m) = 1.

Define l = dlogme as the number of bits in m − 1. Assuming that yi,j encompasses a

fraction α of the high-order bits of ui,j and zi,j comprises the remaining low-order bits, we

can express this as follows:

ui,j = 2βlyi,j + zi,j , (2)

where β = 1−α. We study the following predictability problemµGiven the first N truncated

digits

{(y0,0, y0,1, . . . , y0,k−1), . . . , (yN−1,0, yN−1,1, . . . , yN−1,k−1)}.

We want to predict the rest of the sequence accurately. Obviously, if we can recover the

modulus m, the matrix Ai, (i = 0, . . . , s − 1), and the initial state (u0, u1, . . . , us−1), then

we can predict the rest of the sequence. As a result, to solve the predictability problem we

just need to solve the following problem.
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Problem Let yi,j be a proportion α of the high-order bits of ui,j . Given the firstN truncated

digits ((y0,0, y0,1, . . . , y0,k−1), . . . , (yN−1,0, yN−1,1, . . . , yN−1,k−1)), the problem is to recover

the modulus m, the matrix Ai, (i = 0, . . . , s− 1), and the initial state (u0, u1, . . . , us−1).

For i ∈ {0, . . . , s−1}, j ∈ {1, . . . , k}, let αi,j = (ai,1j , . . . , ai,kj)
T , thenAi = (αi,1, . . . , αi,k).

By (1), we can get

ui+s,0 ≡ uiα0,1 + ui+1α1,1 + · · ·+ ui+s−1αs−1,1 (modm)

ui+s,1 ≡ uiα0,2 + ui+1α1,2 + · · ·+ ui+s−1αs−1,2 (modm)

...

ui+s,k−1 ≡ uiα0,k + ui+1α1,k + · · ·+ ui+s−1αs−1,k (modm)

. (3)

Then by the recurrence relation of the sequence u, for j ≥ s, we have

(uj,0, uj,1, . . . , uj,k−1) ≡ (u0, u1, . . . , us−1)Tj (modm), (4)

where Tj is a sk × k matrix. Let

Tj =


tj,0 tj,sk · · · tj,sk(k−1)

tj,1 tj,sk+1 · · · tj,sk(k−1)+1

...
...

...
...

tj,sk−1 tj,2sk−1 · · · tj,sk(k−1)+sk−1

 .

In particular, when j = s, then

Ts =


A0

A1

...

As−1

 .

For i = 0, 1, . . . , k − 1, then we have

uj,i ≡
k−1∑
v=0

tj,isk+vu0,v+

2k−1∑
v=k

tj,isk+vu1,v−k+· · ·+
sk−1∑

v=(s−1)k

tj,isk+vus−1,v−(s−1)k (modm). (5)

3.1 Searching linear dependence relations

Lemma 5. [10] Assume Y0, Y1, · · · , Yr−1 is a family of vectors with integer coordinates in

the t-dimensional space, with t < r. Let M denote an upper bound for the absolute values

of all coordinates of the various Yis. There exist integers ζ0, ζ1, · · · , ζr−1 such that

r−1∑
i=0

ζiYi = 0,

where max| ζi |≤ B, and B is given by

logB = t
logM + logr + 1

r − t .
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Let r = kh, h ∈ Z. For (i = 0, 1, . . . , h − 1). Choose positive r, t satisfying r > t > sk

and construct vectors Yi ∈ Zt,

Yki = (yi,0, yi+1,0, . . . , yi+t−1,0),

Yki+1 = (yi,1, yi+1,1, . . . , yi+t−1,1),

Yki+2 = (yi,2, yi+1,2, . . . , yi+t−1,2),

...

Yki+k−1 = (yi,k−1, yi+1,k−1, . . . , yi+t−1,k−1).

(6)

According to the Lemma 5, there exist integer coefficients η0, . . . , ηr−1, such that

r−1∑
i=0

ηiYi = 0, (7)

where | ηi |≤ B, and B satisfying

logB = t
log(2αl) + logr + 1

r − t = t
αl + logr + 1

r − t . (8)

The next step of the process is to discuss in which case the equation

U ,
r−1∑
i=0

ηiAi = 0 (9)

holds, where

Aki = (ui,0, ui+1,0, . . . , ui+t−1,0),

Aki+1 = (ui,1, ui+1,1, . . . , ui+t−1,1),

Aki+2 = (ui,2, ui+1,2, . . . , ui+t−1,2),

...

Aki+k−1 = (ui,k−1, ui+1,k−1, . . . , ui+t−1,k−1).

As a preparation for recovering the unknown parameters, we still need to find a set of

linear relations for uN = ((u0,0, u0,1, . . . , u0,k−1), . . . , (uN−1,0, uN−1,1, . . . , uN−1,k−1)). How-

ever, we do not need to find the vectors η = (η0, η1, . . . , ηr−1) that validate both (7) and

(9). Actually, validating (9) is our ultimate goal while (7) can be neglected. Observe that

if (9) holds, then

0 =

r−1∑
i=0

ηiAi = 2βl
r−1∑
i=0

ηiYi +

r−1∑
i=0

ηiZi,

where
Zki = (zi,0, zi+1,0, . . . , zi+t−1,0),

Zki+1 = (zi,1, zi+1,1, . . . , zi+t−1,1),

Zki+2 = (zi,2, zi+1,2, . . . , zi+t−1,2),

...

Zki+k−1 = (zi,k−1, zi+1,k−1, . . . , zi+t−1,k−1),

and so
r−1∑
i=0

ηiYi = −2−βl
r−1∑
i=0

ηiZi.
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Since |zi,j | < 2βl, it follows that

‖
r−1∑
i=0

ηiYi‖ ≤
r−1∑
i=0

‖ − 2−βlηiZi‖ ≤
√
t

r−1∑
i=0

|ηi|,

This means that
r−1∑
i=0

ηiYi is a short vector, which inspires us to search a short vector of the

lattice rather than a vector that validates (7).

Construct the following lattice

L′ =


Y0 1 0 · · · 0

Y1 0 1 · · · 0

...
...

...
. . .

...

Yr−1 0 0 · · · 1

 ,

and obviously, the (r + t)-dimensional vector

W = (w0, . . . , wt−1, wt, . . . , wr+t−1) = (

r−1∑
i=0

ηiYi, η0, η1, . . . , ηr−1) ∈ L′.

If η is a vector that validates (9), then
r−1∑
i=0

ηiYi is a short vector, and so is W. Therefore,

the desire vectors η = (η0, η1, . . . , ηr−1) that validate (9) can be obtained by applying LLL

to the lattice L′.

Remark 2 If the value of r and t are chosen correctly, a single call to lattice reduction

algorithm can output multiple sets of η0, η1, . . . , ηr−1 that satisfy (9).

3.2 Constructing congruence equations

We can appropriately determine the values of r and t through the aforementioned process.

we can get

k−1∑
i=0

ηiu0,i +
2k−1∑
i=k

ηiu1,i−k + · · ·+
sk−1∑

i=(s−1)k

ηius−1,i−(s−1)k + ηskus,0 + · · ·+ ηr−1uh−1,k−1 = 0

k−1∑
i=0

ηiu1,i +
2k−1∑
i=k

ηiu2,i−k + · · ·+
sk−1∑

i=(s−1)k

ηius,i−(s−1)k + ηskus+1,0 + · · ·+ ηr−1uh,k−1 = 0

...
k−1∑
i=0

ηiut−1,i +
2k−1∑
i=k

ηiut,i−k + · · ·+
sk−1∑

i=(s−1)k

ηiut+s−2,i−(s−1)k + ηskut+s−1,0 + · · ·+ ηr−1ut+h−2,k−1 = 0

(10)

By (10), we can get
u0,0 · · · u0,k−1 · · · us−1,0 · · · us−1,k−1

u1,0 · · · u1,k−1 · · · us,0 · · · us,k−1

...
...

...
...

...
...

...

ut−1,0 · · · ut−1,k−1 · · · ut+s−2,0 · · · ut+s−2,k−1




t0

t1
...

tsk−1

 ≡


0

0

...

0

 modm,

(11)
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where

ti = ηi +

2sk−1∑
j=sk

ηjts,k(j−sk)+i +

3sk−1∑
j=2sk

ηjts+1,k(j−2sk)+i + · · ·+
hk−1∑

j=(h−1)k

ηjth−1,k(j−(h−1)k)+i,

(12)

for 0 ≤ i ≤ sk − 1.

If (11) has only the trivial solution over Zskm , then we can get

t0 ≡ 0 modm

t1 ≡ 0 modm

...

tsk−1 ≡ 0 modm

. (13)

So§the modulus m and the matrix A can be recovered by (13) which is to be seen in Sects.

3.3 and 3.4. Therefore, it is necessary to discuss the condition that (11) has only trivial

solution.

Denote by T the coefficient matrix in (11). Obviously, if select a sk-order submatrix

from T randomly, and the probability that the determinant of the submatrix is coprime to

m is 6/π2. So the probability that (11) has only the trivial solution is about Cskt × 6/π2,

then the probability is almost equal to 1.

3.3 Recovering the modulus m

In this section we will prove that for any i ∈ {0, 1, . . . , sk − 1}, the modulus m can be

recovered by ti ≡ 0 modm in (13).

From (13), we know that ti ≡ 0 modm, i.e.,

ti = ηi+

2sk−1∑
j=sk

ηjts,k(j−sk)+i+

3sk−1∑
j=2sk

ηjts+1,k(j−2sk)+i+· · ·+
hk−1∑

j=(h−1)k

ηjth−1,k(j−(h−1)k)+i ≡ 0,

then there exists an integer ui making the following equation holds.

ηi = uim−(

2sk−1∑
j=sk

ηjts,k(j−sk)+i+

3sk−1∑
j=2sk

ηjts+1,k(j−2sk)+i+· · ·+
hk−1∑

j=(h−1)k

ηjth−1,k(j−(h−1)k)+i).

Constructing the following lattice L(ti) whose dimension is r − sk + 1

L(ti) =



m 0 0 · · · 0

−ts,i 1 0 · · · 0

−ts,k+i 0 1 · · · 0

...
...

...
. . .

...

−th−1,k(k−1)+i 0 0 · · · 1


.
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The determinant of L(ti) is m. Denoted by ωj the j row vector of L(ti) for 0 ≤ j ≤ r − sk.

Then we have

η(i) = uiω0 +

r−1∑
j=sk

ηjωj−sk+1 ∈ L(ti),

where η(i) = (ηi, ηsk, ηsk+1, . . . , ηr−1).

From Sections 3.1 and 3.2, it is evident that with a finite truncated sequence of h+ t− 1

vectors represented as yl(h+ t− 1) = ((yl,0, . . . , yl,k−1), . . . , (yl+h+t−2,0, . . . , yl+h+t−2,k−1))

for some l ≥ 0, it becomes possible to identify at least one η(i) such that ti ≡ 0 modm. If

we are acquainted with d distinct finite truncated sequences (where some yl may be shared

by distinct finite truncated sequences), the conclusion can be drawn that we can obtain at

least d such vectors

η(i)(j) = (η
(j)
i , η

(j)
sk , η

(j)
sk+1, . . . , η

(j)
r−1), 0 ≤ j ≤ d− 1

satisfying ti ≡ 0 modm.

Let

M(ti) =


ηi

(0) ηsk
(0) ηsk+1

(0) · · · ηr−1
(0)

...
...

...
...

...

ηi
(d−1) ηsk

(d−1) ηsk+1
(d−1) · · · ηr−1

(d−1)

 .

The row vectors of M(ti) are not necessary linearly independent. So we reduce M(ti)

through LLL algorithm and let L(ti)
∗ be the lattice generated by the output reduced basis.

Since

η(i)(j) = (η
(j)
i , η

(j)
sk , η

(j)
sk+1, . . . , η

(j)
r−1) ∈ L(ti)

for any j ∈ {0, . . . , d− 1}. Obviously, L(ti)
∗ is a sublattice of L(ti).

Similarly to case of LCGs, the lattice L(ti)
∗ also has the following two properties which

were found by Stern [10, 21]:

(1) As d grows, the dimension of L(ti)
∗ very quickly increases to full rank r − sk + 1¶

(2) Once the dimension of L(ti)
∗ reaches full rank, the determinant of L(ti)

∗ is a multiple

of m, and very quickly decreases to m.

3.4 Recovering the matrix A0, . . . , As−1

In this section we will show that the matrix Ai, i ∈ {0, . . . , s− 1} can be recovered by (13).

Building on the discussion in Section 3.3, it is apparent that L(ti)
∗ forms a sublattice

of L(ti). Upon achieving full rank, the lattice L(ti)
∗ ensures that its determinant becomes

a multiple of m. As new vectors are added, the determinant of L(ti)
∗ rapidly decreases,

eventually reaching m. When the determinant of L(ti)
∗ reaches m, we have

L(ti)
∗ = L(ti).
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Let

L(ti)
∗ =



τ0,0 τ0,1 τ0,2 · · · τ0,r−sk

τ1,0 τ1,1 τ1,2 · · · τ1,r−sk

τ2,0 τ2,1 τ2,2 · · · τ2,r−sk
...

...
...

. . .
...

τr−sk,0 τr−sk,1 τr−sk,2 · · · τr−sk,r−sk


.

Choose a large constant K > m2(r−sk)/2. Multiply the jth column vector of L(ti)
∗ by K

for sk + 1 ≤ j ≤ r − sk and denoted by G the new lattice, that is

G =



τ0,0 τ0,1 · · · τ0,sk Kτ0,sk+1 · · · Kτ0,r−sk

τ1,0 τ1,1 · · · τ1,sk Kτ1,sk+1 · · · Kτ1,r−sk
...

...
...

...
...

...
...

τsk,0 τsk,1 · · · τsk,sk Kτsk,sk+1 · · · Kτsk,r−sk
...

...
...

...
...

. . .
...

τr−sk,0 τr−sk,1 · · · τr−sk,k Kτr−sk,sk+1 · · · Kτr−sk,r−sk


.

Reduce G through LLL algorithm and denoted by H = (hu,v)0≤u,v≤r−sk the reduced matrix.

Let Hj be the jth row vector of H for 0 ≤ j ≤ r−sk. Then we have the following conclusion.

Theorem 6. If L(ti)
∗ = L(ti), then the lattice generated by H0, . . . , Hsk is equal to the

lattice generated by (m, 0, 0, . . . , 0), (−ts,i, 1, 0, . . . , 0), . . . , (−ts,k(sk−1)+i, 0, . . . , 1, 0, . . . , 0).

Through Theorem 6, we can get the matrix Ai, for i ∈ {0, . . . , s− 1}.

3.5 Recovering the initial state (u0, u1, . . . , us−1)

We have known the modulus m and Ai, i ∈ {0, . . . , s− 1}. Our objective now is to recover

the initial state (u0, u1, . . . , us−1). Given that (y0, y1, . . . , ys−1) is known, by (2), recovering

(u0, u1, . . . , us−1) is essentially equivalent to recovering (z0, z1, . . . , zs−1). Yang [23] has

successfully addressed this challenge by transforming it into the task of finding small integer

solutions to systems of linear congruences. He then applied the method proposed by Frieze

[6] to solve this problem. Let’s briefly outline this method.

Suppose the first d(d > sk) consecutive truncated digits are given, we need to recover

(z0, z1, . . . , zs−1). By (2) and (5), for i ∈ {0, . . . , k − 1}, s ≤ j ≤ d− 1, we can get

(E − zj,i) ≡ 2βl(yj,i − F ) modm, (14)

where

E =

k−1∑
v=0

tj,isk+vz0,v +

2k−1∑
v=k

tj,isk+vz1,v−k + · · ·+
sk−1∑

v=(s−1)k

tj,isk+vzs−1,v−(s−1)k,

F =

k−1∑
v=0

tj,isk+vy0,v +

2k−1∑
v=k

tj,isk+vy1,v−k + · · ·+
sk−1∑

v=(s−1)k

tj,isk+vys−1,v−(s−1)k.
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It can be seen that to recover the unknown (z0, z1, . . . , zs−1), it suffices to solve (14).

Let

L(m, d+ s(k − 1)) =



m 0 · · · 0 0 0 · · · 0

0 m · · · 0 0 0 · · · 0

...
...

. . .
...

...
...

. . .
...

0 0 · · · m 0 0 · · · 0

ts,isk ts,isk+1 · · · ts,isk+sk−1 −1 0 · · · 0

ts+1,isk ts+1,isk+1 · · · ts+1,isk+sk−1 0 −1 · · · 0

...
...

. . .
...

...
...

. . .
...

td−1,isk td−1,isk+1 · · · td−1,isk+sk−1 0 0 · · · −1



.

Let z = (z0, . . . , zs−1, zs,i, . . . , zd−1,i) and let H = d + s(k − 1). Denoted by λH the Hth

minimum of the lattice L(m, d+ s(k − 1)). The solution of (14) has been solved in [6].

Lemma 7. [6] The system of modular Eqs.(14) has at most one solution z ∈ ZH satisfying

‖z‖ ≤ mλ−1
H 2−(H−1)/2−1.

Furthermore, there is a polynomial time algorithm that either finds z or proves that no such

z exists.

Since |zi,j | < 2βl, then we have ‖z‖ <
√
H2βl, by Lemma 7, if

√
H2βl ≤ mλ−1

H 2−(H−1)/2−1

then

αk ≥ logH

2
+ logλH +

H + 1

2
,

then we can recover the initial state (u0, . . . , us−1) by solving (14).

4 The algorithm with known low-order bits

Problem Let zi,j be the low-order bits of ui,j . Given the first N truncated digits

((z0,0, z0,1, . . . , z0,k−1), . . . , (zN−1,0, zN−1,1, . . . , zN−1,k−1)),

the problem is to recover the modulus m, the matrix Ai, (i = 0, . . . , s − 1), and the initial

state (u0, u1, . . . , us−1).

11



Let K = d 1
2βl

(
√

2πer
r+t

B)
r+t
t e. Construct the following lattice

L2 =



K2βl 0 · · · 0 0 0 · · · 0 0 0 0

0 K2βl · · · 0 0 0 · · · 0 0 0 0

...
...

. . .
...

...
...

...
...

...
...

...

0 0 · · · K2βl 0 0 · · · 0 0 0 0

Kz0,0 Kz1,0 · · · Kzt−1,0 1 0 · · · 0 0 0 0

Kz0,1 Kz1,1 · · · Kzt−1,1 0 1 · · · 0 0 0 0

...
. . .

...
...

...
...

. . .
...

...
...

...

Kz0,k−1 Kz1,k−1 · · · Kzt−1,k−1 0 0 · · · 1 0 0 0

Kz1,0 Kz2,0 · · · Kzt,0 0 0 · · · 0 1 0 0

...
...

...
...

...
...

. . .
...

...
. . .

...

Kzh−1,k−1 Kzh,k−1 · · · Kzh+t−2,k−1 0 0 · · · 0 0 0 1


and obviously, the (r + t)-dimensional vector

W = (w0, . . . , wt−1, wt, . . . , wr+t−1) = (0, . . . , 0, η0, η1, . . . , ηr−1) ∈ L2.

According to Lemma 3, the shortest vector λ1(L2) of L2 is λ1(L2) ≈
√

r+t
2πe

(2βlK)
t
r+t . Due

to

‖η‖ =

√√√√r−1∑
i=0

η2i ≤
√
rB ≤

√
r + t

2πe
(2βlK)

t
r+t .

Therefore, the desire vectors η = (η0, η1, . . . , ηr−1) that validate (9) can be obtained by

applying LLL to the lattice L2. Then we can get (10) and (11), the modulus m and Ai,

i = 1, . . . , s− 1 can be recovered by (13), more details in Sects 3.3 and 3.4.

4.1 Recovering the initial state (u0, u1, . . . , us−1)

We have known the modulus m and Ai, i ∈ {0, . . . , s− 1}. Our objective now is to recover

the initial state (u0, u1, . . . , us−1). Given that (z0, z1, . . . , zs−1) is known, by (2), recovering

(u0, u1, . . . , us−1) is essentially equivalent to recovering (y0, y1, . . . , ys−1).

Suppose the first d(d > sk) consecutive truncated digits are given, we need to recover

(y0, y1, . . . , ys−1). Let ŷi = yi − 2αl−1, then

−2αl−1 ≤ ŷi ≤ 2αl−1.

Let gcd(2βl,m) = 2ρl, then 0 ≤ ρ ≤ β, by (14), we have

2ρl | zj,i − E.

By (14), we can get

2(β−ρ)lyj,i ≡ 2(β−ρ)lF − (zj,i − E)

2ρl
mod

m

2ρl
(15)

12



if ρ < β, where gcd(2(β−ρ)l, m
2ρl

) = 1. Multiply (15) by [2−(β−ρ)l]mod m

2ρl
, we can get

yj,i ≡ F − bj mod
m

2ρl
, s ≤ j ≤ d− 1,

where bj = [2−(β−ρ)l · (zj,i−E)

2ρl
]mod m

2ρl
.

we can get

yj,i ≡ F − bj mod
m

2ρl
, s ≤ j ≤ d− 1,

if ρ = β, where bj = [
(zj,i−E)

2ρl
]mod m

2ρl
.

By Kannan’s embedding technique, we construct the following lattice

L3 =



2αl−1 2αl−1 · · · 2αl−1 bs + 2αl−1 bs+1 + 2αl−1 · · · bd−1 + 2αl−1

0 1 · · · 0 ts,isk ts+1,isk · · · td−1,isk

...
...

. . .
...

...
...

...
...

0 0 · · · 1 ts,isk+sk−1 ts+1,isk+sk−1 · · · td−1,isk+sk−1

0 0 · · · 0 m
2ρl

0 · · · 0

0 0 · · · 0 0 m
2ρl

· · · 0

...
. . .

...
...

...
...

. . .
...

0 0 · · · 0 0 0 · · · m
2ρl



.

The target vector v = (−2αl−1, ŷ0,0, . . . , ŷs−1,k−1, ŷs,i, . . . , ŷd−1,i) ∈ L3, and

‖v‖ ≤ 2αl−1
√
d+ s(k − 1) + 1.

Obviously, the upper bound for the target vector is a conservative estimation of its length.

Inspired by [1], heuristically, y0,0, . . . , y0,k−1, y1,0, . . . , ys−1,k−1, ys,i, . . . , yd−1,i are randomly

uniformly distributed, so we use the expected norm of a uniformly distributed vector instead.

The target vector v has the following expected squared norm

E[‖v‖2] = E[

s−1∑
j=0

k−1∑
t=0

(yj,t − 2αl−1)2 +

d−1∑
j=s

(yj,i − 2αl−1) + (2αl−1)2]

= H · 1

2αl
·
2αl−1∑
i=0

(i− 2αl−1)2 + (2αl−1)2

= (
H

3
+ 1) · (2αl−1)2 +

H

6
.

By Lemma 3,

λ1(L3) =

√
H + 1

2πe
(2αl−1)

1
H+1 (

m

2ρl
)
d−s
H+1 .

Heuristically, if √
(
H

3
+ 1) · (2αl−1)2 +

H

6
≤
√
H + 1

2πe
(2αl−1)

1
H+1 (

m

2ρl
)
d−s
H+1 , (16)

then v could be recovered by reducing L3 through the LLL algorithm. If this is achieved,

we can recover y0, . . . , ys−1 and then the initial state u0, . . . , us−1 by simple computation.

13



To give a lower bound in the number of truncated digits, here we simplify (16) by using

proper scaling techniques. First we increase slightly the left-hand side of inequality (16) to√
(
H + 3

3
) · (2αl−1)2 +

H + 3

6
=

√
(H + 3) · [ (2

αl−1)2

3
+

1

6
],

then √
(H + 3) · [ (2

αl−1)2

3
+

1

6
] ≤

√
H + 1

2πe
(2αl−1)

1
H+1 (

m

2ρl
)
d−s
H+1 .

Next, we square and take the logarithm that

log(1 +
2

H + 1
) + log(

(2αl−1)2

3
+

1

6
) + log(2πe) ≤ 2(αl − 1)

H + 1
+

2(d− s) · logm

H + 1
− 2ρl(d− s)

H + 1
.

Since

log(1 +
2

H + 1
) ≤ 2

ln2
· 1

H + 1
,

we replace log(1 + 2
H+1

) by 2
ln2
· 1
H+1

, it follows that

d ≥
2

ln2
+ (s(k − 1) + 1)Q− 2(αl − 1− slogm+ ρls)

2logm−Q− 2ρl
,

where Q = log(2πe) + log( (2αl−1)2

3
+ 1

6
).

5 Example

We have performed a lot of experiments to verify the correctness and effectiveness of our

method. In our experiments, the parameters A0, A1 and the initial states u0, u1 are chosen

randomly in Zm. All the experiments are performed on our personal computer(Windows

11, AMD R7-5800H, 3.20GHz). The lattice reduction algorithm used is the LLL algorithm

in the Maple.

Now we define a k-MMCG and choose randomly its parameters and initial states as

follow.

u0 = (326521, 453100), u1 = (398002, 488987), A0 =

(
5 2

3 4

)
, A1 =

(
3 5

1 8

)
,m = 219 − 1.

As assumed in the previous text, we suppose that the modulus m, the matrix A0, A1,

and the initial state u0, u1 are unknown, and we intend to recover the parameters and the

initial state by means of 11 high-order bits of a part of the consecutive sequence, that is,

α = 11/19. The experimental process involves the following three steps.

Step 1 We select r = 48 and t = 17, and proceed to repeatedly apply the methodology

outlined in Sect. 3.1 to obtain a set of such vectors (η0, η1, . . . , η47) that satisfies the condition

ti ≡ 0 modm, for i = 0, 1, 2, 3.

Step 2 For i ∈ {0, 1, 2, 3}, we proceed with recovering the matrix A0, A1. The modulus

m can be retrieved during the process of recovering the parameters ai,11, ai,12, ai,21, ai,22,

14



i = {0, 1}. In the recovery of ai,11, ai,12, ai,21, ai,22, we utilize the method detailed in Sect-

s. 3.3 and 3.4. Here, we construct the matrix M(ti) by employing the vectors η(i) =

(ηi, η2, . . . , η47) obtained in step 1, and then reduce M(ti) using the LLL algorithm. With

Table 1: MMCG-Using only the first row

Coefficients Reach full rank Reach m Coefficients Reach full rank Reach m

a0,11 45 53 a1,11 45 46

a0,12 45 53 a1,12 45 46

a0,21 45 46 a1,21 45 49

a0,22 45 46 a1,22 45 49

the inclusion of more row vectors, the dimension of the lattice L(ti)
∗ rapidly reaches full

rank 45, and the determinant of L(ti)
∗ becomes a multiple of m, eventually decreased to m.

When the determinant of L(ti)
∗ equals m, we confirm that L(ti)

∗ = L(ti), facilitating the

retrieval of the matrix A0, A1 through the procedure delineated in Sect. 3.4.

Only the first row vector output by the LLL algorithm in the step 1 is used here. The

experimental results are shown in Table 1. The column named ”Reach full rank” indicates

the number of row vectors needed for the dimension of L(ti)
∗ to reaches full rank for the

first time. The column named ”Reach m” shows the quantity of row vectors wanted for the

determinant of L(ti)
∗ to reaches m for the first time.

Step 3 When the modulus m and the matrix A0, A1 have been recovered, we use the method

in Sect. 3.5 to recover the initial state u0, u1. In the experiments, we can use the first d = 12

consecutive truncated digits {(y0,0, y0,1), . . . , (y11,0, y11,1)} to recover the initial state u0, u1.

Table 2: MMCG-Using only the first row(low-order)r=50,t=18

Coefficients Reach full rank Reach m Coefficients Reach full rank Reach m

a0,11 47 48 a1,11 47 49

a0,12 47 48 a1,12 47 49

a0,21 47 48 a1,21 47 49

a0,22 47 48 a1,22 47 49

Step 1′ When the modulus m and the matrix A0, A1 have been recovered, we use the

method in Sect. 4.1 to recover the initial state u0, u1. In the experiments, we can use the

first d = 12 consecutive truncated digits {(y0,0, y0,1), . . . , (y11,0, y11,1)} to recover the initial

state u0, u1.
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6 Conclusion

In this paper, we study the predictability of truncated k-MMCGs

ui+s ≡ uiA0 + ui+1A1 + · · ·+ ui+s−1As−1 (modm), with i ≥ 0

Assume that the modulus m, the matrix A0, . . . , As−1 and the initial state u0, . . . , us−1

are unknown. Given a few truncated digits of high-order bits or low-order bits, we give a

method based on lattice reduction to predict the rest of the sequence. The limitations of our

approach primarily revolve around one aspects: we currently lack a valid heuristic analysis

for the choices of r and t. Open question include whether our method can succeed establish

a valid heuristic analysis for the choices of r and t.
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