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Abstract. We introduce a powerful attack, termed the bit-fixing
correlation attack, on Goldreich’s pseudorandom generators (PRGs),
specifically focusing on those based on the XOR-THR predicate. By
exploiting the bit-fixing correlation property, we derive correlation
equations with high bias by fixing certain bits. Utilizing two solvers to
handle these high-bias correlation equations, we present inverse attacks
on XOR-THR based PRGs within the complexity class NC0.

We efficiently attack the XOR-MAJ challenges (STOC 2016),
demonstrating that the XOR-MAJ predicate fails to be s-pseudorandom
with n-bit security even for a stretch factor s = 1, where n is the size of
the secret seed. For instance, a challenge of n = 42 and s = 1 can be
broken using approximately 228 calls to Gaussian elimination. We
extend our attack to an instance used in constructing silent Oblivious
Transfer (OT) protocols (Eurocrypt 2024), with n = 256. This attack
can be realized with approximately 229 calls to Gaussian elimination,
and we have implemented this attack on a cluster of 32 CPU cores,
successfully recovering the secret seed in 5.5 hours. Furthermore, we
extend our results to general Piecewise Symmetric Predicates of the
form XOR-X, showing that XOR-MAJ is far from well designed
predicate against bit-fixing correlation attack.

With marginal modification, our attack can also be adapted to the
FiLIP cipher instantiated with THR-related predicates, making it
effective against most FiLIP instances. For example, the FiLIP cipher
instantiated on XOR-THR with key size 982 can be broken using
approximately 251 calls to Gaussian elimination.

Based on these findings, we show that the traditional security
assumptions for Goldreich’s PRGs—namely, (a) Ω(s)-resilience and (b)
algebraic immunity—are insufficient to guarantee pseudorandomness or
one-wayness.

Keywords: Golereich’s PRGs, random local function, XOR-MAJ, correlation
equation, FiLIP cipher



1 Introduction

A pseudorandom generator (PRG) is a fundamental cryptographic tool that
takes a short random seed of length n as input and generates m � n
pseudorandom bits. Goldreich [16] introduced a family of one-way functions
with a locality property: each output bit is generated by applying a fixed
d(n)-ary predicate to a randomly selected subset of d(n) input bits. Promising
research on PRGs with locality have been inspired, thus are commonly named
Goldreich’s PRGs. Specifically, when d(n) = d is constant, Goldreich’s PRGs
belong to the complexity class NC0. The constant locality ensures that the
PRG can be efficiently implemented in parallel, making it highly scalable
across multiple computing cores. This property has attracted significant
attention to Goldreich’s PRGs.

Cryan and Miltersen [13] first considered the existence of PRGs in NC0 and
obtained a negative result: any PRG in NC0

3 cannot resist statistical linear
tests for m ≥ 4n. Mossel et al. [22] further ruled out PRGs in NC0

4 for m ≥ 24n
but proved the existence of PRGs in NC0

5. Specifically, they proposed a
candidate PRG instantiated with the XOR-AND predicate, defined as
P5(x1, x2, x3, x4, x5) = x1 ⊕ x2 ⊕ x3 ⊕ (x4 ∧ x5), achieving superlinear stretch.

A natural and ambitious goal is to achieve polynomial stretch, i.e., m = ns

for some s > 1. Goldreich’s PRGs with polynomial stretch have garnered
special attention due to their wide range of cryptographic applications, such as
secure computation with constant computational overhead [18,5,6],
indistinguishability obfuscation (iO) [8,9,24,25,19], MPC-friendly
primitives [21,17,1], and cryptographic capsules [10]. Applebaum [2] first
proved the existence of weak PRGs with polynomial stretch m = ns for some
s > 1, having a distinguishing gap of at most 1/ns. This result was later
improved to m = ns for s < 1.25 using non-degenerate predicates [4], and
further extended to s < 1.5 for the special case of P5 [23]. Subsequently, the
general polynomial regime m = ns was considered, and the XOR-THR
predicate was proposed as a candidate with constant locality d = O(1) [7],
where the challenge of XOR-MAJa,b with a ≥ 5s and b > 36s was proposed to
achieve s-pseudorandomness with proved resistance to existent attacks.

Since the inception of Goldreich’s PRGs [16], cryptanalysis has been an
integral part of the research on predicate design and PRG construction in NC0.
Early works focused on asymptotic security. However, concrete security is also
crucial, especially for parameter selection in explicit encryption schemes. For
instance, although both 2n and 1.1n are exponential in n, the latter only provides
18-bit security even when n reaches 128.

For PRGs based on the P5 predicate, guess-and-determine attacks [12] and

improved methods [27] have been proposed, with complexities O(2
1
2n

2−s

) and

O(2
73
288n

2−s

), respectively. The guess-and-decode method [27] further improved
experimental results. For the XOR-MAJ predicate, a guess-and-determine attack

succeeds with complexity O(nω2n
b−s
b−1 ) [12]. As stated in [11], these attacks are

specifically targeted at predicates with very small locality (from 5 to 8), and their
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complexity becomes prohibitive for predicates with larger locality. Therefore,
whether efficient attacks exist for arbitrary XOR-MAJ predicates or even for
arbitrary predicate remains an open question.

1.1 Our contributions

In this paper, we give a new attack on Goldreich’s PRGs, specifically focused
on those instantiated on the XOR-THR predicate. We first show the bit-fixing
correlation property of the XOR-THR predicate—that is, by fixing r bits in
the THR predicates to 1s, the correlation of the output with a corresponding
linear expression increases significantly. Thus, each output bit corresponds to
a correlation equation. When the correlation is high, the system can be solved
efficiently.

Combining the bit-fixing property and solvers for correlation equations, we
give an attack on the XOR-THR predicate. Then we apply the attack to the
XOR-MAJ challenges proposed in [3]. The results show that some PRGs with
the XOR-MAJ predicate can be inverted efficiently even when the stretch s = 1,
such that one-wayness cannot be guaranteed. Next, we extend the attacks to
an instance used for constructing silent OT [11]. By choosing appropriate
parameters, a PRG with a 256-bit secret seed can be broken practically with a
cost of around 229 calls to Gaussian elimination. We implement this attack on
a cluster of 32 CPU cores and the attack succeeds in around 5.5 hours.
Furthermore, we provide some results on so-called piecewise symmetric cases,
where the predicate can be expressed as a direct sum of some symmetric
predicates, in which each one does not rely on the order of the input, and we
show that the attack is feasible. All the above results extend the security
analysis of Goldreich’s PRGs—Ω(s)-resilience and algebraic immunity are
insufficient to achieve pseudorandomness or one-wayness with n-bit security
guarantee.

Finally, we give key recovery attacks on FiLIP cipher[15], of which some
instances are based on the THR related predicates. Our attacks are efficient for
most instances. For example, FiLIP with the XOR-THR predicate, whose key
size is 1944, can be broken by 295 calls to Gaussian elimination. FiLIP with
the XOR-THR-THR predicate, whose key size is 913, can be broken by fewer
than 2100 calls to Gaussian elimination. In both examples, the assumed security
guarantee is λ = 128.

The rest of the paper is organized as follows. In Section 2, some basic
preliminaries will be introduced. Then we show the bit-fixing correlation attack
on the XOR-THR predicate in Section 3. Next, we apply our attack to
XOR-MAJ based encryption schemes, including the attack on the XOR-MAJ
challenges (STOC 2016) and an attack on an instance used for silent OTs
(EUROCRYPT 2024), followed by some discussion on general piecewise
symmetric predicates in Section 4. In Section 5, we present key recovery
attacks on the FiLIP cipher instantiated on THR-related predicates. Finally, we
conclude this paper in Section 6.

3



2 Preliminaries

In this paper, all operations are over the finite field F2, where addition
corresponds to the XOR operation. We denote sets using braces {}, vectors
using parentheses (), and use square brackets [ ] to indicate indices of a vector.

2.1 Goldreich’s Pseudorandom Generator

A pseudorandom generator (PRG) maps a short secret random input x ∈ {0, 1}n
to a longer pseudorandom output y ∈ {0, 1}m. In this paper, we focus on the
polynomial regime, where the output length m is a polynomial function of the
input length n; specifically, we assume m = ns for some stretch factor s ≥ 1.

Goldreich’s pseudorandom generator (PRG) employs a fixed predicate P
and computes each output bit yi by applying P to a subset of the input bits.
Specifically, to generate each yi, the generator selects a set σi of d distinct indices
and computes

yi = P (x[σi]) ,

where x[σi] denotes the vector of input bits at indices specified by σi. For
convenience, we write

∑
x[σi] =

∑
j∈σi

xj , and we use x[σi] = 1 to indicate
that xj = 1 for all j ∈ σi.

A special class of predicates, namely picewise-symmetric predicates, which
can be decomposed into k symmetric sub-predicates over disjoint subsets
combined through the XOR operation, namely piecewise symmetric, is
thoroughly explored in this work.

Definition 1 (Symmetric Predicate). A predicate (or sub-predicate) P over
variables x1, x2, . . . , xb is termed as symmetric if, for any permutation Perm(·),
it holds that

P (x1, x2, . . . , xb) = P
(
Perm(x1, x2, . . . , xb)

)
.

Accordingly, each output bit yi can be expressed as

yi = P
(
x[σi]

)
= P1

(
x[σi,1]

)
+ P2

(
x[σi,2]

)
+ · · ·+ Pk

(
x[σi,k]

)
,

i.e., the j-th sub-predicate Pj operates on the subset x[σi,j ] of the input bits
to generate one bit output, where σi,j are disjoint and σi = ∪kj=1σi,j . All sub-
predicates are symmetric, allowing us to treat their inputs as sets rather than
ordered sequences. We assume that there is at least one nonlinear sub-predicate
and at least one linear sub-predicate among the Pj . For example, XOR-AND
predicate, contains an XOR sub-predicate and an AND predicate is one in the
family.

In the typical attack scenario, the predicate P , the input lengths, the index
sets Σ = (σ1, σ2, . . . , σm), and the outputs y are all accessible to the attacker.
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2.2 Predicates

A commonly used linear sub-predicate is the XOR predicate of input x, defined
as

XORd(x[σ]) =
∑

x[σ],

A commonly used nonlinear sub-predicate is the threshold predicate of input
x, defined as

THRt,d(x[σ]) =

{
1, if Hamming(x[σ]) ≥ t;
0, otherwise,

where Hamming(x[σi]) denotes the Hamming weight (i.e., the number of ones)
in the vector x[σi]. Majority predicate MAJ is a special case of the threshold
predicate and is defined as

MAJd(x[σ]) = THR d+1
2 ,d(x[σ]),

for odd d.

XOR-Threshold Predicate: The XOR-Threshold predicate is a direct sum of an
XOR predicate and a threshold predicate, defined as

XORa-THRt,b(x[σ] = (x[σ1], x[σ2])) = XORa(x[σ1]) + THRt,b(x[σ2]),

where σ1 and σ2 are disjoint and σ = σ1 ∪ σ2.
Specifically, when b is odd, the XOR-MAJ predicate can be defined as

XORa-MAJb(x[σ]) = XORa(x[σ1]) + MAJb(x[σ2]).

2.3 Correlation Equations

The correlation between a function f(x) ∈ {0, 1} and a linear expression L(x) ∈
{0, 1} is defined as the cardinality of the set of x such that f(x) = L(x) over the
number of all possible inputs 2n, expressed as

p =
|{x ∈ {0, 1}n : f(x) = L(x)}|

2n
.

The bias of this correlation is ε = p− 1
2 , so the range of ε should be [− 1

2 ,
1
2 ].

If ε < 0, it indicates that f(x) is more likely equal to L(x) + 1 than L(x). In
such cases, we can consider the correlation between f(x) and L(x) + 1, which
will have a positive bias. Therefore, without loss of generality, we focus on cases
where ε ≥ 0.

Given the output y = f(x), the equation y = L(x) is a correlation equation
that holds with probability p. As a special case, constant is also a linear
expression.
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Algorithm 1 System Solving

Input: A group of noisy equations G, number of variables k, maximum number of
equations used e

1: S ← min{e, k} randomly chosen equations
2: X ← solutions of S, including enumeration
3: return X

For example, suppose P1 is a linear predicate and P2 is a nonlinear predicate
with input length b. Then each output bit yi can be used to derive a correlation
equation of the form

yi = P1

(
x[σi,1]

)
+ 1,

which holds with probability

p =
|
{
x ∈ {0, 1}n : P2

(
x[σi,2]

)
= 1
}
|

2b
.

Here, x[σi,1] and x[σi,2] are disjoint subsets of the input bits x, and σi,1 and σi,2
are the corresponding index sets.

2.4 Solving Correlation Equations

Throughout the paper, we often need to solve correlation equations involving k
variables, using at most e equations. Here, each correlation equation holds with
certain probability.

When e ≥ k, selecting k random equations allows us to form a square system,
which can be solved using Gaussian elimination. If the system is of full rank, all
k variables can be determined, and a single solution will be found; otherwise,
some variables may need to be enumerated, leading to more than one solutions.

On the other hand, if e < k, we can only use e equations, so at most e
variables can be determined directly, and the remaining variables need to be
enumerated.

These two cases can be unified by first selecting min{e, k} equations to form
a system. We then solve this system using Gaussian elimination to determine
some variables and enumerate the values of the remaining variables, obtaining
one or more solutions. We refer to this entire process as the System Solving
procedure, outlined in Algorithm 1.

Notably, even solutions are obtained, their correctness can not be verified here
as the system is noisy. However, it is obvious that if and only if all correlation
equations are correct, the solutions containsexactly one correct solution, which
is the correct input, or part of it.
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3 Bit-fixing Correlation Attack on Goldreich’s PRGs
with XOR-THR Predicate

In this section, we present inverse attacks on Goldreich’s pseudorandom
generators (PRGs) that use the XOR-THR predicate. Our goal is to recover the
secret input seed x using all available output data.

3.1 Observation

The MAJ predicate is a balanced Boolean function, meaning it outputs 0 and
1 with equal probability when its inputs are uniformly random. Consequently,
the correlation equation yi = XORa(x[σi,1]) + 1 holds with probability p = 1

2 .
Therefore, any system containing such correlation equations cannot be efficiently
solved or even distinguished due to the lack of bias.

However, we observe that by fixing some input bits of the MAJ predicate to
either all zeros or all ones, we can introduce a bias into its output. This property
is referred to as the bit-fixing correlation.

To illustrate this observation, consider the following example.

Example 1. Consider the predicate P = MAJ3 with input indices σi = {1, 2, 3}.
Without fixing any bits, the probability that P outputs 1 is

Pr[P (x[σi]) = 1] =

∑3
i=2

(
3
i

)
23

=
1

2
,

consistent with the well-known result that MAJ is balanced.
If we fix one bit, say x1 = 1, then the probability becomes

Pr[P (x[σi]) = 1 | x1 = 1] =

∑2
i=1

(
2
i

)
22

=
3

4
.

Thus, the corresponding bias is ε = Pr(P [x[σi]) = 1 | x1 = 1]− 1
2 = 1

4 .
Similarly, if we fix two bits to ones, say x1 = x2 = 1, then

Pr[P (x[σi]) = 1 | x1 = x2 = 1] = 1,

and the bias is ε = Pr[P (x[σi]) = 1 | x1 = x2 = 1]− 1
2 = 1

2 .
Analogous results can be obtained by fixing certain bits to zeros.

This bit-fixing property exists for the general THRt,b predicate, as shown in
Lemma 1.

Lemma 1. Given the threshold predicate THRt,b over an arbitrary set x[σ], by
fixing r ≤ t bits of indices ρ = {ρ1, ρ2 · · · ρr} to ones, where ρ ⊂ σ, i.e., x[ρ] = 1,
we have

p = Pr[THRt,b(x[σ]) = 1|x[ρ] = 1] =
1

2b−r

b−r∑
t−r

(
b− r
i

)
. (1)
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As a special case, when t = b+1
2 and b is odd,

p = Pr[MAJb(x[σ]) = 1|x[ρ] = 1] =
1

2b−r

b−r∑
i=(b+1)/2−t

(
b− r
i

)
, (2)

and the corresponding bias

ε = p− 1

2
=

1

2b−r+1

(b−1)/2∑
i=(b+1)/2−t

(
b− r
i

)
. (3)

Proof. See Appendix A.

Based on the property, the holding probability of the correlation equation
derived from the general XOR-THR predicate can be calculated by Theorem 1.

Theorem 1. Given the predicate XORa-THRt,b, by fixing r indices, ρi, in σi,2
to 1s, the following correlation equation holds with probability

Pr[yi = XORa(x[σi,1])+1] = Pr[THRt,b(x[σi,2]) = 1|x[ρi] = 1] =
1

2b−r

b−r∑
i=t

(
b− r
i

)
.

(4)

3.2 Bit-fixing Correlation Attack

To recover the secret seed or input x, the simplest method is to find all the
correlation equations corresponding to the outputs, randomly select some to form
a noisy system, and then solve it using system solving methods. However, since
the bias of a randomly selected system is small, according to our discussion in
Section2.4, system solving can yield the correct solution only when all equations
in the system are correct. Therefore, this random selection is very inefficient.
By leveraging the bit-fixing property, if some input bits of certain indices can be
fixed to 1s or 0s, the bias of the correlation equations becomes very high.

Thus, the bit-fixing correlation attack naturally divides into two phases, as
shown in Figure 1.:

1. The first phase increases the bias by achieving the bit-fixing effect through
grouping according to sharing bits.

2. The second phase randomly selects equations to construct noisy systems and
finds the correct solution through system solving and verification.

Grouping Phase In this phase, we aim to collect enough correlation equations
by exploiting the bit-fixing property of the THR predicate. Although the values
of the input bits are unknown, we can group the equations based on common
indices in their THR inputs σi,2. Let ρj denote the set of common indices for
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Fig. 1. Framework of Bit-fixing Correlation Attack

Algorithm 2 Equation Grouping

Input: Number of fixing bits r, number of groups g
1: for j = 1 to g do
2: ρj ← randomly chosen a set of r distinct indices, each ∈ [1, n]
3: Gj ← ∅
4: for i = 1 to m do
5: if ρj ⊂ σi,2 then
6: Gj .append(yi = XORa(x[σi,1]) + 1)
7: end if
8: end for
9: end for

10: return (G1,G2 · · · Gg) and (ρ1, ρ2 · · · ρg)

group Gj . If the bits corresponding to ρj are all ones, the bias of the correlation
equations in Gj becomes significant. By creating a sufficiently large number of
groups (e.g., 2r), there is an non-negligible probability that at least one group
will have all its common bits equal to ones.

Given an integer r and a number of groups g, the grouping phase is
described in Algorithm 2. First, we randomly generate g different indices sets
(ρ1, ρ2 · · · ρg), each containing r distinct indices, and initialize the
corresponding empty groups Gj . Then, for each σi ∈ Σ, we append the
corresponding equation yi = XORa(x[σi,1]) + 1 to group Gj if and only if
ρj ⊆ σi,2.

Thus, the time complexity of Algorithm 2 is

Tgroup = mg. (5)

Next, we analyze the expected number of equations in each group. Each
correlation equation can be appended to

(
b
r

)
groups, since there are

(
b
r

)
ways to

choose r indices from the b bits in σi,2. There are at most
(
n
r

)
possible groups.

Therefore, the expected number of equations in each group is

e = m

(
b
r

)(
n
r

) =
ns
(
b
r

)(
n
r

) . (6)

9



Algorithm 3 Attack with Gauss

Input: Number of fixed bits r

1: e← ns(b
r)

(nr)
,p← 1

2b−r

∑b−r
i=t−r

(
b−r
i

)
,g ← 2r

pmin{e,n−r}

2: Grouping Phase:
3: (G1,G2 · · · Gg), (ρ1, ρ2 · · · ρg)← Equation Grouping (r, g)
4: Solving Phase:
5: for j = 1 to g do
6: Xj ← System Solving (Gj , n− r, e)
7: for x ∈ Xj do
8: if P (x[σi]|x[ρi] = 1) = yi for all i ∈ [1,m] then
9: return x

10: end if
11: end for
12: end for
13: return ⊥

Solving Phase After the grouping phase, while the total number of correct
equations remains the same, the grouping may result in certain groups containing
significantly more correct equations. Therefore, our next goal is to find a group
that contains equations with a high bias, solve the equations in that group, and
then verify the solution. We aim to efficiently execute this process, which we call
the solving phase.

In this subsection, we introduce two solving algorithms inspired by [14],
namely Gauss and SubGauss. Since these solvers are straightforward, we
present them along with the entire attack process.

Gauss Solver: The Gauss solver is a direct extension of Gaussian
elimination. The combined grouping and solving process using the Gauss solver
is outlined in Algorithm 3.

First, we choose the parameter r, which will be determined by the complexity
analysis in Section3.3. We compute the probability p using Equ. (1) and the
expected number of equations per group e using Equation (6). We then set

g =
2r

pmin{n−r,e} (7)

In the grouping phase, using (r, g) as input, we execute Algorithm 2 to obtain
g groups, each containing approximately e equations.

In the solving phase, we process each group using the Gauss solver. For each
group Gj , we perform Gaussian elimination and, if necessary, enumerate the
remaining variables to obtain candidate solutions, denoted asXj . Each candidate
solution x ∈ Xj is verified by checking whether P (x[σi]|x[ρi] = 1) = yi holds for
all i ∈ [1,m].

SubGauss Solver: SubGauss is still based on Gaussian elimination, but
uses fewer groups with each containing more equations. Concretely, g = 2r and
the required number of equations in each group is (n − r)/p. Compute p by
Equ. (1) and e by Equ. (6).
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Algorithm 4 Attack with SubGauss

Input: Number of fixing bits r

1: e← ns(b
r)

(nr)
,p← 1

2b−r

∑b−r
i=t−r

(
b−r
i

)
,g ← 2r

2: Grouping Phase:
3: (G1,G2 · · · Gg), (ρ1, ρ2 · · · ρg)← Equation Grouping (r, g)
4: Solving Phase
5: for j = 1 to g do
6: for i = 1 to 1

pmin{ep,n−r} do

7: Xj ← System Solving (Gj , n− r, ep)
8: for x ∈ Xj do
9: if P (x[σi]|x[ρi] = 1) = yi for all i ∈ [1,m] then

10: return x
11: end if
12: end for
13: end for
14: end for
15: return ⊥

As shown in Algorithm 4, in the grouping phase, Equation Grouping

(Algorithm 2) is performed, such that g groups with each containing e
equations are obtained. If e > (n − r)/p, then randomly chosen (n − r)/p
equations in each group are used.

In the solving phase, similar to the Gauss Solver case, there are two cases.
When e > (n − r)/p, in a group, perform Gaussian elimination on randomly
chosen n− r equations and verify the solutions, which is executed 1/pn−r times
for each group . When e < (n−r)/p, guess n−r−ep bits, substitute and perform
Gaussian elimination on randomly chosen ep equations and verify the solutions,
which is executed 1/pep times for guess and each group.

3.3 Analysis of Complexity and Success Ratio

In this section, we present the complexity and success ratio analysis.

Attack with Gauss Revisiting Algorithm 3, the complexity of the solving
phase is {

g(Tg + Tv), e ≥ n− r,
g2n−r−e(Tg + Tv), e < n− r,

where Tg and Tv denotes the cost of Gaussian elimination and verification,
respectively. For the ease of analysis, we use nω to represent Tg + Tv, where
ω is a constant.

As the complexity of grouping phase is nsg, by substituting g by Equ. (7)
the total complexity of the attack with Gauss solver is

TGauss =

{
2r

pn−r (ns + nω), e ≥ n− r,
2r

pe (ns + 2n−r−enω), e < n− r.
(8)
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Now we analyze the success ratio of the attack with Gauss solver. The attack
succeeds when 1) r-bit setting is correct (r bits are ones) and 2) the solution
obtained from at least 1 group is correct. Each out of g groups satisfies the above
two constraints simultaneously with the probability 1

g , hence the success ratios
of the attack with Gauss solver is

psucGauss = 1−
(

1− 1

g

)g
= 1− 1

E
,

where E denotes the base of natural logarithm.

In order to guarantee that there are enough groups, the following inequality
holds (

n

r

)
≥ 2r

(
1

p

)min(e,n−r)

.

Increasing r increases p but decreases e. When e > n− r, it is more efficient
to increase r. But when e < n − r, the complexity of solving phase may
increase significantly when increasing r. The results are confirmed by the
attacks in Section4. The attack with Gauss solver can be reduced to minimize
TGauss (Equ. (8)) by choosing appropriate r with success ratio E−1

E and

constraint
(
n
r

)
≥ 2r

pmin(e,n−r) , where p and e are computed by Equ. (1) and

Equ. (6), respectively.

Attack with SubGauss Revisiting Algorithm 4, the complexity of the solving
phase is {

g 1
pn−r n

ω, e ≥ (n− r)/p,
g2n−r−ep 1

pepn
ω, e < (n− r)/p,

where nω term denotes the cost of Gaussian elimination and verification.

As the complexity of grouping phase is nsg, by substituting g = 2r, the total
complexity of attack with SubGauss solver is

TSubGauss =

{
2r(ns + 1

pn−r n
ω), e ≥ (n− r)/p,

2r(ns + 2n−r−ep

pep nω), e < (n− r)/p.
(9)

In order to obtain a right guess of the r bits, enough sets are needed with
the rough computing (

n

r

)
≥ 2r.

Now we analyze the success ratio of the attack with SubGauss solver. The
attack instantiated on SubGauss algorithm succeeds when 1) the r-bit setting is
correct (r bits are ones) and 2) in the correct r-bit setting, at least 1 choice of ep
equations are correct. The former holds with probability 1− (1− 1

2r )2
r

= 1− 1
E .

For the latter case, let e′ = min(e, (n − r)/p), each out of 1/pe
′

trials succeeds
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with the probability∑e′

i=e′p

(
e′

i

)
pi(1− p)e′−i

(
i
e′p

)(
e′

e′p

) =

e′∑
i=e′p

(
e′ − e′p
i− e′p

)
pi(1− p)e

′−i

= pe
′p

e′−e′p∑
i=0

(
e′ − e′p

i

)
pi(1− p)e

′−k−i

= pe
′p.

Hence, the latter case holds with the probability 1−
(

1− pe′p
)1/pe′p

= 1− 1
E .

Summed up, the success ratio of the attack with SubGauss solver is

psucSubGauss = (1− 1

E
)2 =

(E − 1)2

E2
,

where E denote the base of natural logarithm.

Similarly, increasing r can lead to larger p but decrease e. If e is large enough,
it is more efficient to increase r. But when e < (n − r)/p, the complexity
increases significantly due to smaller e. The results are confirmed by the attacks
in Section 4. The attack with Gauss solver can be reduced to minimize TsubGauss
(Equ. (9)) by choosing appropriate r with success ratio (E−1)2

E2 and constraint(
n
r

)
≥ 2r, where p and e are computed by Equ. (1) and Equ. (6), respectively.

Further Discussion In Section 3.2, we provide two types of solvers to address
the linear noisy system of correlation equations. They perform well in different
cases, discussed as follows.

When the stretch s is small and hence the output is short, e is small even for
small r, solving phase dominates the cost of the attack. Revisiting the bit-fixing
correlation attacks instantiated on Gauss and SubGauss solves, given the same
parameter r and hence the same e,

TGauss
TSubGauss

=
1

(2p)e−ep
.

As p > 1/2, TGauss over TSubGauss is usually smaller than 1, hence Gauss solvers
outperforms SubGauss solver.

However, when the stretch s is large and hence the output is sufficiently long,
e may be as large as n− r for a larger r. The attack instantiated on SubGauss
solver is obviously more efficient than that on Gauss solver as they share the
same solving complexity but the grouping complexity of SubGauss is reduced
by a factor of 1

pn−r .

The above results are confirmed by the attacks on the instances in Section 4
and Section 5.
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4 Attacks on XOR-THR Based Schemes

In this section, we present attacks on schemes that utilize the picewise-symmetric
predicate. First, we demonstrate an attack on the XOR-MAJ challenges proposed
at STOC 2016, followed by an attack on an instance used for constructing silent
Oblivious Transfers (OTs).

4.1 Attack on the Challenges at STOC 16

Table 1. The parameters for the attack on the challenge with a = 5s and b = 37s for
different stretches s. In order to guarantee valid Majority predicate, b is set to the least
odd integer for b ≥ 37s. The output length is m = ns. For Gauss solver and SubGauss
solver, corresponding parameters are chosen accordingly. p denotes the probability
each equations holds. e denotes the expected number of equation in each group and
ep denotes the expected number of correct equations. Teg denotes the complexity
of grouping phase and Ts denotes the number of calls to Gaussian elimination and
substitution for verification in the solving phase.

s (n, a, b) Solver r p e ep Teg Ts

1

(42,5,37)
Gauss 5 0.8115 21 17 217 228

SubGauss 7 0.8998 16 14 213 230

(80,5,37)
Gauss 1 0.5660 37 20 238 274

SubGauss 1 0.5660 37 20 28 277

(128,5,37)
Gauss 1 0.5660 37 20 239 2122

SubGauss 1 0.5660 37 20 28 2125

1.25

(54,7,47)
Gauss 9 0.9283 37 34 220 221

SubGauss 7 0.8659 51 44 214 219

(80,7,47)
Gauss 3 0.6742 47 31 238 260

SubGauss 2 0.6170 81 50 211 265

(128,7,47)
Gauss 2 0.6170 57 35 251 2111

SubGauss 1 0.5585 157 88 210 2114

1.5

(65,8,57)
Gauss 12 0.9638 92 88 224 215

SubGauss 9 0.9033 147 133 218 217

(80,8,57)
Gauss 7 0.8389 59 49 232 236

SubGauss 6 0.7995 86 69 215 233

(128,8,57)
Gauss 3 0.6583 119 78 285 281

SubGauss 2 0.6061 274 166 212 293

At STOC 2016, the authors introduced challenges instantiated on the
XOR-MAJ predicate [3] for cryptanalysis, specifically,

XORa-MAJb, (10)

where d = a + b and m = ns. It was claimed that the challenge (10) is secure
when a ≥ 5s and b > 36s.

14



Here, we provide results for different stretches s and key sizes n. Since our
attack is independent of a, we fix a = 5s for our analysis. The approximate
parameter r, representing the number of fixed bits, can be determined
experimentally. The corresponding probability p and the expected number of
equations in each group e are computed using Equ. (1) and Equ. (6),
respectively. The results are summarized in Table 1.

Note that in the cases highlighted in red, the expected number of equations
exceeds the required number. For example, in the case where
(n, a, b) = (65, 8, 57), it is required that (e, ep) = (71, 64). Therefore, we use
71/157 of the total m = ns = 651.5 ≈ 524 bits. The complexity of the grouping
phase can be reduced by a factor of 71/157. However, since the grouping phase
costs much less than the solving phase for the parameter r = 9 with the
SubGauss solver, this optimization can be neglected. A similar observation
applies to the case (n, a, b) = (128, 8, 57).

We demonstrate that fixing just a few bits can achieve highly biased
correlation equations. Taking the example with (n, a, b) = (65, 8, 57), where the
threshold of the majority predicate is 29, by fixing 9 bits to ones, the
probability that each equation holds can reach as high as 0.9033. This instance
can be broken with approximately 217 calls to Gaussian elimination and
substitution of solutions for verification.

When the stretch is small (e.g, s = 1) and the output is short, the attack
with Gauss solver outperforms SubGauss solver. However, when the output is
relatively long, (s = 1.5 for n = 65), SubGauss solvers beats Gauss solver. This
is because Gauss solver needs fewer equations in each group, confirming our
analysis in Section 3.3.

4.2 Attack on the Instance at EUROCRYPT24

The XORa-THRt,b predicate was used for constructing fast silent OT with the
parameter (n,m, b, t) = (256, 240, 64, 32) [11]. In this section, we show how to
break this instance and implement the attack on PCs.

For THR32,64, by heuristic of r, we obtain the probability p that each
correlation equation holds according to Equ. (2), compute e according to
Equ. (6) and then obtain ep. Then the complexities for Gauss solver and
SubGauss solver are computed by Equ. (8) and Equ. (9), respectively. We show
the complexities of grouping phase and solving phase in separate columns for
clear presentation. The results are shown in Table 2.

Experiment By Table 2, r = 10 is optimal for trading off the grouping
complexity Teg and the solving complexity Ts. In practice, Gaussian elimination
is much more expensive than each operation in the grouping phase, hence we
choose r = 11 for implementation. Using 231.0 output bits, the attack can
be realized with 242.0 costs for the grouping phase and 228.9 calls to Gaussian
elimination for the solving phase, as shown in Table 2.

The attack was utilized on two PCs, each with 16 i7-13700 CPU cores. Taken
the SHA-256 hash of the string ”EUROCRYPTO2025” as the seed, we generated
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Table 2. The parameters for breaking the instance [11]. D denotes the number of used
output bits. e is the expected number of equations in each group and ep denotes the
expected number of correct equations in each group. Teg denotes the cost of grouping
phase. Ts denotes the number of calls to Gaussian elimination used in the solving phase.

r p solver D e ep Teg Ts

7 0.8554
Gauss 222.3 249 212 285.4 263.1

SubGauss 222.6 291 249 229.6 263.1

8 0.8856
Gauss 224.5 248 219 275.9 251.5

SubGauss 224.6 280 248 232.6 251.5

9 0.9115
Gauss 226.6 247 225 268.6 242.0

SubGauss 226.7 270 247 235.7 242.0

10 0.9332
Gauss 228.8 246 229 263.3 234.6

SubGauss 228.9 263 246 238.9 234.6

11 0.9508
Gauss 230.9 245 232 259.8 228.8

SubGauss 231.0 257 245 242.0 228.9

12 0.9648
Gauss 233.1 244 235 257.8 224.6

SubGauss 233.2 252 244 245.2 224.6

13 0.9756
Gauss 235.4 243 237 257.0 221.7

SubGauss 235.4 249 243 248.4 221.7

14 0.9836
Gauss 237.6 242 238 257.4 219.8

SubGauss 237.6 246 242 251.6 219.8

15 0.9894
Gauss 239.9 241 238 258.6 218.7

SubGauss 239.9 243 241 254.9 218.7

231 output bits and store the output bits together with the indices of the input
bits in the disk. The SHA-256 function and pseudorandom generator in the c++
library were applied. The generation process cost around 14 hours on a single
CPU core. Then the data was copied to the other PC.

After the output bits were generated, grouping and solving phase were
executed. Concretely, each CPU core of two PCs randomly selected r = 11
indices and executed Equation Grouping algorithm. Then Gaussian

elimination was performed on 245 randomly chosen equations and the
corresponding solutions were substituted into the encryption scheme for
verification, which is repeated 1/0.9508245 ≈ 233428 times for each group.

We conducted the experiment twice on the same output bits. The correct
seed can be recovered after evaluating around 1600 groups, in each of which
performing Gaussian elimination on 245 randomly chosen equations was
repeated 100000 times, costing 5.5 hours in the cluster of 32 CPU cores. Then
we re-executed the attack by repeatedly performing Gaussian elimination on
245 randomly chosen equations 233428 times for each group. The secret seed
was recovered by evaluating 500 groups, taking 4.7 hours. The implementation
code is available at https://github.com/Analytic233/

-Bit-fixing-Correlation-Attack-on-Random-Local-Functions.
Note that our implementation is less optimized. In this attack, the Hamming

weight of each correlation equation is a = 10 while there are n − r = 245
unknowns, i.e., the equations are sparse. As is widely known, a sparse matrix can
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be inverted with quadratic complexity [26]. Hence, the attack can be optimized
furthermore and is feasible on a single PC in practice.

4.3 Generation to Piecewise Symmetric Predicates

In this section, we generalize the bit-fixing correlation attack on Goldreich’s
pseudorandom generators (PRGs) to more general XOR-X predicates, where X
is the sum of multiple symmetric sub-predicates. While the general case involves
multiple sub-predicates, we focus on the scenario with a single sub-predicate,
as other cases can be addressed by combining the XOR-X case with the Piling-
up Lemma. The similar approach is applied to attacks on the FiLIP ciphers in
Section 5.2. Here, we consider the case where the stretch factor s is small.

Similar to the attack on XOR-THR based PRGs, we need to analyze the bit-
fixing property and compute the probability that a derived correlation equation
holds when fixing r bits to specific values. The bit-fixing correlation attack
consists of two phases: the grouping phase and the solving phase. The grouping
phase is identical to Algorithm 2. When s is small, so that m = ns is small, we
consider the Gauss solver to minimize the number of equations required in each
group. The attack is identical to Algorithm 3 with the exception of p, which is
replaced by that for arbitrary case.

Assuming there are e correlation equations in each group, and each
equation holds with probability p, the probability that all equations in a group
are correct is pe. By selecting 1/pe such systems, we can obtain, on average, a
linear system consisting entirely of correct equations. As discussed previously,
the total complexity is

Tsym =

{
2r

pn−r (ns + nω), e ≥ n− r,
2r

pe (ns + 2n−r−enω), e < n− r.
(11)

Consider a b-arity symmetric predicate. By fixing r bits to specific values
(e.g., ones for the THR predicate), the optimal correlation is no smaller than
1
2 + 2

r−b
2 −1.

Further Discussion Now, we consider a special case that b = cn1/s + s, where
c ≥ 1.

For the bit-fixing correlation attack, we can set r = s. By Equ. (6), we have

e =
ns(b

s)
(n
s)
≥ n > n − r. The complexity, by omitting the ns term and nω term,

is then upper-bounded by

Tsym =

(
1

1
2 + 2

r−b
2 −1

)n−s
2s =

(
2

1 + 2
r−b
2

)n−s
2s = 2(n−s)(1−log2 E·2

−0.5cn1/s
)+s.

(12)
Take (n, s, b) = (512, 3, 19) as an example. By Equ. (12), the PRGs with

19-ary arbitrary symmetric predicate can be inverted by 2509 calls to Gaussian
elimination.
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Revisiting the XOR-MAJ predicate, one in the piecewise symmetric family,
by fixing r � b bits to zeros or ones, the correlation is 1

2 + r√
2πb

, as justified in

Corollary 1.

Corollary 1. Given a majority function f(x) over variables x1, x2, . . . , xb, when
r � b bits are fixed to a constant value δ, i.e., xi1 = xi2 = · · · = xir = δ, the
correlation is approximately

p ≈ 1

2
+

r√
2πb

. (13)

Corollary 1 can be proved by combining Lemma 1 and Stirling’s
approximation. The complete proof is presented in Appendix B.

Consider the same case that b = cn1/s+s, where c ≥ 1. Substituting Equ. 13,
omitting the ns and nω terms, the complexity is upperly bounded by

Txt =

(
1

1
2 + r√

2πb

)n−s
2s.

Taking the same example (n, s, b) = (512, 3, 19), the complexity is around
2191, which is much lower than the general piecewise symmetric case, indicating
that XOR-THR is far from well designed predicate to resist bit-fixing correlation
attack.

5 A Key-recovery Attack on FiLIP

FiLIP [20] is an improved version of the FLIP cipher [21] to achieve higher
security and better MPC performance (in terms of throughput and latency)
and FHE performance (in terms of noise). Compared with the instances in [20],
the instances in [15] adopt smaller key sizes with fewer output bits with
extensive cryptanalysis, thereby reducing computation and storage
requirements. Our attacks focus on these instances. In [15], the authors
presented two types of FiLIP ciphers based on the THR related predicates,
namely, instances with the XOR-THR predicate and the XOR-THR-THR
predicate. We provide attacks on these instances in Sections 5.1 and 5.2,
respectively, given the output yi (i = 1, . . . ,m) with the indices σi and noise wi
known.

Given a secret key x of length n, the keystream y is generated similarly to
the PRGs discussed earlier, with the key difference being that the input to the
predicate P is the sum (over F2) of the key bits and a publicly known noise
vector wi. As is shown in Fig. 2, each output bit yi of FiLIP is generated by

yi = P
(
x[σi] + wi

)
,

where wi is a vector of publicly known noise bits.
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Fig. 2. Encryption Scheme of FiLIP

5.1 Attack on FiLIP Instantiated on XOR-THR

For FiLIP instantiated with the XORa-THRt,b predicate, each output yi can be
expressed as:

yi = XORa
(
x[σi,1] + wi[1:a]

)
+ THRt,b

(
x[σi,2] + wi[a+1:a+b]

)
,

where wi represents the noise bits added to the input, and additions are over F2.
Due to the whitening (i.e., addition of noise bits), the inputs to the predicate

may differ even when the indices are the same. Therefore, the original grouping
phase cannot be directly applied in the attack, as it assumes that the same
indices always lead to the same predicate input values.

To address this issue, we introduce a new grouping algorithm called data
filtering :

First, fix two parameters l and r with l > r. Randomly choose a set L
containing l indices from the key indices [1, n]. For each yi, we append the tuple
(yi, σi) to the collected set B if the intersection size satisfies r ≤ |σi,2 ∩ L| ≤ l.

Next, we attempt to guess the values of x at the indices in L, i.e., x[L].
For each guess, we initialize an empty group G. For each tuple (yi, σi) in B, we
consider the corresponding correlation equation:

y′i = XORa
(
x[σi,1] + wi[1:a]

)
+ 1,

and append it to G if there exists a subset Ri ⊆ σi,2 ∩L with |Ri| ≥ r such that

x[Ri] + wi[pos(Ri, σi)] = 1. (14)
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Algorithm 5 Attack on FiLIP Instantiated on XORa-THRt,b
Input: Number of fixing bits r, larger range l.
1: e←

∑l
u=r

∑u
v=rmpu2−u(u

v

)
, p← 1

2b−r

∑b−r
i=t−r

(
b−r
i

)
2: Data Filtering Phase:
3: B ← ∅, randomly chosen l indices forming L
4: for i = 1 to m do
5: if r ≤ |σi,2 ∩ L| ≤ l then
6: B.append (yi, σi)
7: end if
8: end for
9: Guess and Solve Phase:

10: for a guess x[L] ∈ {0, 1}l do
11: G ← ∅
12: for (yi, σi) ∈ B do
13: if exists Ri ⊆ σi,2 ∩ L with |Ri| ≥ r such that x[Ri] + wi[pos(Ri, σi)] = 1

then
14: G.append (yi = XOR(x[σi,1] + wi[1 : a]) + 1)
15: end if
16: end for
17: X ← System Solving (G, n− r, ep)
18: for x ∈ X do
19: if P (x[σi] + wi|x[L]) = yi for all i ∈ [1,m] then
20: return x
21: end if
22: end for
23: end for
24: return ⊥

Here, pos(Ri, σi) maps each index in Ri to the corresponding position in wi,
ranging from a+ 1 to a+ b. In other words, for each index j ∈ Ri, the key bit xj
and the corresponding noise bit of index pos(j, σi) satisfy xj +wi[pos(j, σi)] = 1.

After grouping, we apply the SubGauss solver to each group G and verify the
solutions by substituting them back into the FiLIP cipher. The attack is detailed
in Algorithm 5.

Analysis of Complexity and Success Ratio It is clear that the complexity
of data filtering is m. For u ∈ [r,min(l, b)], u out of the l bits of L appear in the
THR predicate with the probability

pu =

(
l
u

)(
n−l
b−u
)(

n
b

) . (15)

After the data filtering step, the set B is of size
∑l
u=rmpu.

It is cleat that the complexity of guess and solve step is 2l(
∑l
u=rmpu + Ts),

where Ts denotes the complexity of solving a group of correlation equations and
verifying solutions. In order to evaluate Ts, we first evaluate the expected number
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of correlation equations in each group e. For a tuple with u (r ≤ u ≤ l) bits in L,
at least r bits taken into the THR predicate are all ones after the whitening with
probability 2−u

∑u
v=r

(
u
v

)
. Hence, the expected number of correlation equations

in each group is

e =

l∑
u=r

u∑
v=r

mpu2−u
u∑
v=r

(
u

v

)
. (16)

Similar to the analysis in Section 3.3, the complexity of the attack on FiLIP
instantiated on XOR-THR predicate is

Ts =

{
1

pn−ln
ω, e ≥ (n− l)/p,

2n−l−ep

pep nω, e < (n− l)/p.

Hence, the total complexity is

Txt =


2lm

l∑
u=r

pu +
2l

pn−l
nω, e ≥ (n− l)/p,

2lm

l∑
u=r

pu +
2n−ep

pep
nω, e < (n− l)/p.

(17)

Differently with the attack in Section 3, we guess a set of bits rather than
random 2r trials. The correct answer of the l bits must not be overlooked.
The attack succeeds only when the SubGauss solver succeeds in the group
with correct guess. Consistent with the analysis in Section 3.3, the SubGauss
solver succeeds and hence the attack shown in Algorithm 5 succeeds with the
probability 1− 1

E , where E denotes the base of natural logarithm.

Table 3. Attack Parameters for Reduced FiLIP with XORa-THRt,b.

a t b n r l p D e ep Teg Ts 2λ

40 52 104 530 16 29 0.9653 239.5 518 501 252.2 254.5 280

100 24* 44 982 10 34 0.9878 239.8 959 948 253.3 250.7 280

65 32 63 2560 15 60 0.9853 264.0 2537 2500 285.7 2113.2 2128

58 35 70 4096 14 68 0.9780 263.8 4118 4028 293.5 2197.4 2128

80 260 520 1200 41 56 0.9726 263.0 1176 1144 2100.8 2101.9 2128

70 93 186 1499 26 60 0.9838 263.8 1462 1439 293.7 294.0 2128

65 96 191 1461 27 63 0.9827 263.3 1422 1398 297.3 298.3 2128

70 61 122 1777 21 61 0.9860 263.5 1740 1716 291.1 296.0 2128

160 48 96 1987 19 64 0.9890 263.9 1944 1923 292.7 294.7 2128

*THR24,44(x) can be treated as a dual threshold predicate for 0, i.e., THR24,44(x) =
0 if there are more than or equal to 21 zeros. The corresponding equation is
flipped, i.e., append the equations yi = XOR(x[σi,1] + wi[1 : a])) rather than
yi = XOR(x[σi,1] + wi[1 : a]) + 1 (line 14) in Algorithm 5.
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The parameters r and l are chosen to minimize the complexity Txt in
Equ. (17). We provide by heuristic the results, as shown in Table 3. The results
demonstrate the efficiency of our attacks for most instances. For example,
FiLIP cipher with XOR100-THR24,44 can be broken by no more than 251 calls to
Gaussian elimination, while the key size is 982 and security assumption is
λ = 80.

5.2 Attack on FiLIP Instantiated on XOR-THR-THR

In the same paper [15], another instance with the XOR-THR-THR predicate was
proposed, defined as:

XORa-THRt1,b1-THRt2,b2(x[σi]) = XORa
(
x[σi,1]

)
+THRt1,b1

(
x[σi,2]

)
+THRt2,b2

(
x[σi,3]

)
,

where σi,j (j = 1, 2, 3) are disjoint and σi = σi,1 ∪ σi,2 ∪ σi,3.
The attack on the FiLIP cipher instantiated with the XOR-THR-THR

predicate is similar to the attack on the XOR-THR instance. The main
difference lies in the probability that a correlation equation holds.

For the XOR-THR-THR predicate, by fixing r1 bits in the THRt1,b1 predicate
and r2 bits in the THRt2,b2 predicate, a correlation equation can be derived, as
justified in Theorem 2.

Theorem 2. The equation

XORa-THRt1,b1-THRt2,b2(x[σi]) = XORa
(
x[σi,1]

)
holds with probability

p =
1 + (2p1 − 1)(2p2 − 1)

2
,

where

p1 =
1

2b1−r1

b1−r1∑
u1=t1−r1

(
b1 − r1
u1

)
,

p2 =
1

2b2−r2

b2−r2∑
u2=t2−r2

(
b2 − r2
u2

)
.

Proof. Theorem 2 can be proved by combining Lemma 1 and the well-known
Piling-up Lemma.

The attack involves two phases similar to the previous case: the data filtering
phase and the guess and solve phase.

First, randomly choose a set L of l indices and select parameters (l, r1, r2)
such that r1 + r2 ≤ l. For each output bit yi, append the tuple (yi, σi) to the
collected set B if

r1 ≤ |σi,2 ∩ L| ≤ l and r2 ≤ |σi,3 ∩ L| ≤ l.
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Next, we guess the l bits in L. For each guess, initialize an empty equation
group G. For each tuple (yi, σi) in B, we consider the equation:

y′i = XORa
(
x[σi,1] + wi[1:a]

)
,

and append it to G if there exist subsets R1,i ⊆ σi,2 ∩ L and R2,i ⊆ σi,3 ∩ L,
with |R1,i| ≥ r1 and |R2,i| ≥ r2, such that

x[R1,i] + wi[pos(R1,i, σi)] = 1,

x[R2,i] + wi[pos(R2,i, σi)] = 1.

Here, pos(R1,i, σi) maps each index in R1,i to the corresponding position for wi,
ranging from a + 1 to a + b1 and pos(R2,i, σi) maps each index in R2,i to the
corresponding position for wi, ranging from a+ b1 + 1 to a+ b1 + b2.

After forming the group G, we apply the SubGauss solver and verify the
solutions by substituting them back into the FiLIP cipher. The attack is detailed
in Algorithm 6.

Table 4. Choosing Equation Attack Parameters for FiLIP Instantiated on
XORa-THRt1,b1 -THRt2,b2 .

a t1 b1 t2 b2 n r1 r2 l p D e ep Teg Ts 2λ

40 26 52 26 52 360 11 11 42 0.9422 239.2 337 318 268.4 269.3 280

100 11 22 11 22 397 7 7 40 0.9655 238.8 369 357 261.1 258.1 280

54 19 38 19 38 6500 7 7 109 0.8616 263.8 7417 6391 2135.1 21482.7 2128

54 22 45 23 45 3072 9 10 111 0.9255 263.9 3199 2961 2140.1 2441.6 2128

70 30 61 31 61 841 13 14 61 0.9659 263.9 807 780 294.6 2100.0 2128

65 47 95 48 96 830 16 18 66 0.9642 263.9 792 764 2104.5 2106.2 2128

70 46 93 47 93 736 16 18 62 0.9625 263.3 700 674 2100.4 299.2 2128

60 26 53 27 53 1229 11 13 74 0.9598 263.8 1203 1155 2105.7 2142.3 2128

160 24 48 24 48 913 12 12 62 0.9716 263.9 875 851 293.5 297.4 2128

Analysis of Complexity and Success Ratio It is clear that the complexity
of data filtering is m. Similar to the previous analysis, u1 out of the l bits appear
in the THRt1,b1 predicate and u2 out of the remaining l − u1 bits appear in the
THRt2,b2 predicate with the probability

pu1,u2 =

(
l
u1

)(
l−u1

u2

)(
n−l
b1−u1

)(
n−l−(b1−u1)

b2−u2

)(
n
b1

)(
n−b1
b2

) , (18)

After the data filtering phase, the set B is of size
∑l−r2
u1=r1

∑l−u1

u2=r2
mpu1,u2

.
It is cleat that the complexity of guess and solve step is

2l(
∑l−r2
u1=r1

∑l−u1

u2=r2
mpu1,u2

+ Ts), where Ts denotes the complexity of solving a
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Algorithm 6 Attack on FiLIP Instantiated on XOR-THR-THR
Input: Number of fixing bits r1, r2, larger range l.
1: e←

∑l−r2
u1=r1

∑l−u1
u2=r2

mpu1,u22−u1−u2
∑u1
v1=r1

(
u1
v1

)∑u2
v2=r2

(
u2
v2

)
2: p1 ← 1

2b1−r1

∑b1−r1
u1=t1−r1

(
b1−r1
u1

)
3: p2 ← 1

2b2−r2

∑b2−r2
u2=t2−r2

(
b2−r2
u2

)
4: p← 1+(2p1−1)∗(2p2−1)

2

5: Data Filtering Phase:
6: B ← ∅, randomly chosen l indices forming L
7: for i = 1 to m do
8: if r1 ≤ |σi,2 ∩ L| ≤ l and r2 ≤ |σi,3 ∩ L| ≤ l then
9: B.append (yi, σi)

10: end if
11: end for
12: Guess and Solve Phase:
13: for each guess x[L] ∈ {0, 1}l do
14: G ← ∅
15: if exists R1,i ⊆ σi,2∩L with |R1,i| ≥ r1 such that x[R1,i]+wi[pos(R1,i, σi)] = 1

and R2,i ⊆ σi,3 ∩ L with |R2,i| ≥ r2 such that x[R2,i] + wi[pos(R2,i, σi)] = 1
then

16: G.append (yi = XOR(x[σi,1] + wi[1 : a]) + 1)
17: end if
18: end for
19: X ← System Solving (G, n− r, ep)
20: for x ∈ X do
21: if P (x[σi] + wi|x[L]) = yi for all i ∈ [1,m] then
22: return x
23: end if
24: end for
25: return ⊥

group of correlation equations and verifying solutions. In order to evaluate Ts,
we need to evaluate the expected number of equations in each group e. For a
tuple with u1 (r1 ≤ u1 ≤ l) bits in the THRt1,b1 predicate and u2 bits in the
THRt2,b2 predicate, at least r1 bits taken into the THRt1,b1 predicate and r2
bits taken into the THRt2,b2 predicate are all ones with the probability
2−u1

∑u1

v1=r1

(
u1

v1

)
2−u2

∑u2

v2=r2

(
u2

v2

)
. Hence, the expected number of correlation

equations in each group for each guess is

e =

l−r2∑
u1=r1

l−u1∑
u2=r2

mpu1,u2
2−u1−u2

u1∑
v1=r1

(
u1
v1

) u2∑
v2=r2

(
u2
v2

)
. (19)
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The total complexity of the attack on FiLIP instantiated on XOR-THR
predicate is

Txtt =


2lm

l−r2∑
u1=r1

l−u1∑
u2=r2

pu1,u2 +
2l

pn−l
nω, e ≥ (n− l)/p,

2lm

l−r2∑
u1=r1

l−u1∑
u2=r2

pu1,u2 +
2n−ep

pep
nω, e < (n− l)/p.

(20)

Identical to the attack in Section 5.1, Algorithm 6 succeeds with the
probability 1− 1

E , where E denotes the base of natural logarithm.
The parameters r1, r2 and l are determined to minimize the complexity Txtt

in Equ. (20) and the results are shown in Table 4. The results demonstrate
the efficiency of our attacks for most instances. For example, FiLIP cipher
instantiated on XOR100-THR11,22-THR11,22 can be broken with no more than
259 calls to Gaussian elimination, while the key size is 397 and the security
assumption is λ = 80.

6 Conclusion

In this paper, we propose a new attack on Goldreich’s PRGs with XOR-THR
predicate. We exploit the bit-fixing correlation property and give attacks on the
challenges which are immune to linear test and algebraic attacks. We give and
implement an attack on an instance used for silent OT (EUROCRYPT 2024),
which we implement on two PCs. Then we extend the attacks to FiLIP cipher
instantiated on THR related predicates. The results show that XOR-THR is far
from a well designed predicate that is immune to bit-fixing correlation attack.
Based on these findings, the traditional security assumptions for Goldreich’s
PRGs, namely, (a) Ω(s)-resilience and (b) algebraic immunity, are insufficient
to guarantee pseudorandomness. Then the following problem remains open:
whether a predicate that is simultaneously immune to linear test, algebraic
attack and bit-fixing correlation attack exists?
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A Proof of Lemma 1

Proof. For fixed xi1 = · · · = xir = 1, f(·) = 0 if and only if there are at least
t− r ones among the remaining b− r bits. Hence,

p = Pr[f(·) = 1|xi1 = · · · = xit = 1] =
1

2b−r

b−r∑
i=t−r

(
b− r
i

)
.

As a result,

ε = p− 1

2
=

1

2
(2p− 1).

As

p =
1

2b−r

b−r∑
i=t−r

(
b− r
i

)
,

and (
b− r
i

)
=

(
b− r

b− r − i

)
,

2p =
1

2b−r

b−r∑
i=t−r

(
b− r
i

)
+

1

2b−r

(b−1)/2∑
i=0

(
b− r
i

)

= 1 +
1

2b−r

(b−1)/2∑
i=t−r

(
b− r
i

)
.

Consequently,

ε =
1

2
(2p− 1) =

1

2b−r+1

(b−1)/2∑
i=t−r

(
b− r
i

)
.

B Proof of Corollary 1

Proof. According to Lemma 1, the bias by fixing r bits to ones

ε = p− 1

2
=

1

2b−r+1

(b−1)/2∑
i=t−r

(
b− r
i

)
.

For each i ∈ [t− r, (b− 1)/2],(
b− r
i

)
=

(b− r)!
i!(b− r − i)!

.

Substitute the Stirling’s approximation,(
b− r
i

)
=

√
2π(b− r)

(
b−r
e

)b−r
√

2πi
(
i
e

)i√
2π(b− r − i)

(
b−r−i
e

)b−r−i
=

√
b− r√

2πi(b− r − i)
(b− r)b−r

ii(b− r − i)b−r−i
.
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When r � b, i ≈ b−r
2 , so (

b− r
i

)
≈ 2b−r+1√

2π(b− r)

≈ 2b−r+1

√
2πb

.

As a result (
b−r
i

)
2b−r+1

≈ 1√
2πb

.

Hence,

ε =
1

2b−r+1

(b−1)/2∑
i=t−r

(
b− r
i

)
≈ b− 1

2
− (

b+ 1

2
− r − 1)

1√
2πb

=
r√
2πb

.

Then the correlation p = 1
2 + ε = 1

2 + r√
2πb

.
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