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Abstract—Oblivious Transfer (OT) is one of the fundamental
building blocks in cryptography that enables various privacy-
preserving applications. Constructing efficient OT schemes has
been an active research area. This paper presents three efficient
two-round pairing-free k-out-of-N oblivious transfer protocols
with standard security. Our constructions follow the minimal
communication pattern: the receiver sends k messages to the
sender, who responds with n+k messages, achieving the lowest
data transmission among pairing-free k-out-of-n OT schemes.
Furthermore, our protocols support adaptivity and also, enable
the sender to encrypt the n messages offline, independent of the
receiver’s variables, offering significant performance advantages
in one-sender-multiple-receiver scenarios. We provide security
proofs under the Computational Diffie-Hellman (CDH) and RSA
assumptions, without relying on the Random Oracle Model. Our
protocols combine minimal communication rounds, adaptivity,
offline encryption capability, and provable security, making them
well-suited for privacy-preserving applications requiring efficient
oblivious transfer. Furthermore, the first two proposed schemes
require only one operation, making them ideal for resource-
constrained devices.

Index Terms—Oblivious Transfer (OT), adaptable Oblivi-
ous Transfer, privacy-preserving, secure multiparty computa-
tion,offline precomputation

I. INTRODUCTION

Oblivious Transfer (OT) is a fundamental cryptographic
primitive that enables secure two-party computation. In its
simplest form, known as 1-out-of-2 OT, one party (the sender)
holds two messages M0 and M1, while the other party (the
receiver) holds a bit b. At the end of the protocol execution,
the receiver learns Mb but gains no information about M1−b,
and the sender remains oblivious to the receiver’s choice bit
b. Despite its seeming simplicity, OT is a powerful building
block for constructing secure multiparty computation (SMPC)
protocols [1] and various other privacy-preserving applica-
tions, such as private set intersection [2], [3], and location-
based services [4]. Since its introduction by Rabin in 1981 [5],
Oblivious Transfer (OT) has been widely researched [6], [7]
and has become a vital tool in modern cryptography. It allows
secure computations while maintaining the confidentiality of
inputs and outputs.

The concept of k-out-of-N Oblivious Transfer (OT) emerged
as a generalization of the fundamental 1-out-of-2 OT primitive
introduced by Rabin in 1981 [5]. This generalization, first

proposed by Brassard, Crépeau, and Robert [8]. Over the
years, numerous efficient constructions and security models
for k-out-of-N OT have been explored [9]–[13], driven by its
potential applications in areas such as secure database query-
ing [14], private information retrieval [15], privacy-preserving
data mining [16] and data transmission [17]. In the pairing
model, Lai et al. [18] achieved the lowest communication cost,
where the receiver sends 3 group elements to the sender, who
responds with n+1 group elements. In pairing-free schemes,
the lowest communication cost involves the receiver sending k
group elements to the sender and the sender sending n+k group
elements to the receiver [19], [20].While these constructions
optimize communication complexity, designing efficient k-
out-of-N OT protocols under stronger security assumptions
remains an active research direction. [21], [22]

In this paper, we construct three pairing-free k-out-of-N
oblivious transfer schemes with the ability to use them as
adaptive oblivious transfer protocols. Our schemes also sup-
port offline encryption of messages, enabling their application
in scenarios involving one sender and multiple receivers. Our
proposed schemes are accompanied by security proofs under
the standard model, providing provable security guarantees
without relying on the Random Oracle Model.

Our proposed pairing-free k-out-of-N oblivious transfer
schemes offer several advantages over previous works. In
contrast to the schemes [18], [23], which rely on costly
pairing operations, our constructions eliminate the need for
such expensive computations, making them more suitable for
resource-constrained environments. Furthermore, our proto-
cols support offline precomputation, enabling the sender to
encrypt messages independent of the receiver’s inputs. This
feature not only makes our schemes usable in one-sender-
multiple-receiver scenarios, but also enhances the efficiency
of online execution of the protocol. In Section V, we provide
a comprehensive comparison of our protocols with other k-
out-of-n oblivious transfer schemes that share similar features,
such as adaptivity and offline precomputation capabilities [19],
[24], [25].

The organization of this paper is as follows: In Section II,
we review some preliminary concepts, hard assumptions, and
their respective proofs. Section III describes the constructions
of our three proposed pairing-free k-out-of-N oblivious trans-



fer schemes. The security proofs for these schemes are pro-
vided in Section IV. In Section V, we compare our proposed
schemes with other existing pairing-free k-out-of-N oblivious
transfer protocols. Finally, we conclude the paper in Section
VI.

II. PRELIMINARIES

This section introduces and defines core concepts that are
essential throughout the paper: Oblivious Transfer, a variant
of the Generalized Computational Diffie-Hellman (CDH) and
RSA assumptions, along with essential lemmas employed in
Section 4. We also define the notations used in the paper.

A. Notations

Let E be an elliptic curve defined over a finite field Fp, and
let N = #E(Fp) denote the number of points on E. If G is a
generator of this elliptic curve, then for any integer a ∈ ZN ,
we define [a]G as the point on the elliptic curve obtained by
scalar multiplication of the generator G with a, i.e.,

[a]G =

a times︷ ︸︸ ︷
G+G+ · · ·+G .

B. Oblivious Transfer

Oblivious Transfer (OT) is a two-party cryptographic proto-
col, first introduced by Rabin [5] in 1981. It has evolved into
three main varieties:

• 1-out-of-2 OT: In this variant, two parties are involved:
a sender and a receiver. The sender possesses two mes-
sages, M0 and M1, while the receiver holds a bit b. At
the end of the protocol, the receiver learns Mb without
gaining any information about M1−b, and the sender
remains oblivious to the value of b.

• 1-out-of-n OT: This is a generalization of the 1-out-of-2
OT, where the sender has n messages M1,M2, . . . ,Mn,
and the receiver holds an integer r ∈ {1, 2, . . . , n}. Upon
completion, the receiver learns Mr without obtaining any
information about the other messages, while the sender
remains unaware of the value of r.

• k-out-of-n OT: Further extending the concept, this variant
allows the receiver to obtain k messages out of the n mes-
sages held by the sender. Specifically, the sender holds n
messages M1,M2, . . . ,Mn, and the receiver possesses
k integers σ1, σ2, . . . , σk ∈ {1, 2, . . . , n}. At the end
of the protocol, the receiver learns Mσ1

,Mσ2
, . . . ,Mσk

without obtaining any information about the remaining
messages, while the sender remains oblivious to the
values of σ1, σ2, . . . , σk.

These variants of Oblivious Transfer enable secure two-party
computation and serve as fundamental building blocks for
various cryptographic protocols.

C. Computational assumptions

Computational Diffie-Hellman (CDH) assumption [26]: Let
g be a randomly chosen generator of a cyclic group G of prime
order p. The Computational Diffie-Hellman assumption states

that, given (g, ga, gb) for a, b randomly chosen from Zp, it is
computationally infeasible to compute gab.

Our constructions is implemented in groups where the
Computational Diffie-Hellman problem (CDH) is believed to
be hard. For our work, we utilize a variant of the Generalized
Multi-Variant Computational Diffie-Hellman problem, defined
as follows:

Alternative Generalized Computational Diffie-Hellman
problem (AGCDH): Let g be a randomly chosen
generator of a cyclic group G of prime order p. Given
(g, gα1 , gα2 , . . . , gαk , gαk+1 , grα1 , grα2 , . . . , grαk) for
r, α1, α2, . . . , αk+1 randomly chosen from {0, 1, . . . , p − 1},
it is computationally infeasible to compute grαk+1 .

Proof: We show that if there exists a polynomial-time
algorithm for the AGCDH, then we can use it to solve the
CDH in polynomial time, which means CDH ⪯ AGCDH .
We assume that there exists an efficient algorithm A1 that
can solve the AGCDH. A CDH solver S(g, gr, gx) can be
constructed as follows:

1. S generates k random integers β1, β2, . . . , βk from Z∗
p.

2. S calls A1 as a subroutine with the input
(g, gβ1 , gβ2 , . . . , gβk , gx, (gr)β1 , (gr)β2 , . . . , (gr)βk).

3. A1 returns grx

4. S outputs grx as the solution to the CDH problem
instance (g, gr, gx).

It follows that if there exists an efficient algorithm A1 that
can solve the AGCDH, then we can use it to construct
an efficient solver S for the Computational Diffie-Hellman
(CDH) problem. In other words, the CDH is reducible to the
AGCDH problem. If the CDH problem is considered to be
hard, then the AGCDH must also be considered at least as
hard, since solving the AGCDH would allow us to efficiently
solve the CDH problem as well. □

RSA assumption: Given N, e and me mod N such that
N is the product of two large random prime numbers p, q
of approximately equal size, and gcd(e, (p − 1)(q − 1)) = 1
finding m is computationally hard.

Generalized Blinded RSA (GBRSA): In an RSA
algorithm with parameters (N, e, d), given non-identity
random elements x, β1, β2, . . . , βk, βk+1 from Z∗

N ,
it is computationally hard to compute xβd

k+1 given
(N, e, xe, β1, β2, . . . , βk, βk+1, xβ

d
1 , xβ

d
2 , . . . , xβ

d
k).

Proof : We show that if there exists a polynomial-time
algorithm for the GBRSA, then we can use it to solve the
RSA in polynomial time, which means RSA ⪯ GBRSA.
We assume that there exists an efficient algorithm A2 that
can solve the GBRSA. RSA solver S(e,N, y = me) can be
constructed as follows:

1. S generates k+1 random integers A1, A2, . . . , Ak, x from
Z∗
N .

2. S calls A2 as a subroutine with the input
(N, e, xe, Ae

1, A
e
2, . . . , A

e
k, y, xA1, xA2, . . . , xAk).

3. A2 returns xyd ≡ x(me)d ≡ xm (mod N)
4. S outputs x−1xm ≡ m (mod N) as the solution to the

RSA problem instance (e,N,me).



If there exists an efficient algorithm A2 that can solve the
GBRSA, then we can construct an efficient algorithm S for
the RSA problem. In other words, RSA is reducible to the
GBRSA, which implies that the GBRSA must be considered
at least as hard as the RSA problem. □

Lemma 1: Let G be a finite cyclic group of order k, and g
be a generator of G. For an integer α with gcd(α, k) = 1, gα

is also a generator of G.
Lemma 2: If G is a finite cyclic group of prime order p,

then every non-identity element of G is a generator.
Remark: To creat a cyclic group of prime order q, one can

choose a prime q and an arbitrary small integer r such that
p = rq+1 is also prime. Since φ(p) = rq, where φ is Euler’s
totient function, we can randomly select an element g from Z∗

p

such that gr ̸≡ 1 (mod p) and gq ≡ 1 (mod p). This ensures
that the order of g is q, which means g is a generator of a
cyclic group G of prime order q.

III. K-OUT-OF-N OT SCHEMES

In this section, we describe three efficient k-out-of-n
Oblivious Transfer protocols with standard security proofs.
In all these schemes a sender possesses n messages,
m1,m2, . . . ,mn, and a receiver wishes to recover k mes-
sages mσ1

,mσ2
, . . . ,mσk

out of those n messages, where
Ω = {σ1, σ2, . . . , σk} are the k indices chosen by the receiver.
The source codes for our implementations are available at
github1.

A. Scheme 1

Let q and p = 2q + 1 be fixed prime numbers, and let g
be a generator of a cyclic multiplicative group G of order
q, which is a subgroup of Z∗

p . The sender generates the
parameters p, q and g and shares these values with the receiver.
All arithmetic operations mentioned hereafter are performed
modulo p. Scheme 1 is depicted in Figure 1.

The sender randomly selects n distinct integers
α1, α2, . . . , αn ∈R Z∗

q , and then computes gα1 , gα2 , . . . , gαn

and publishes these values on a bulletin board, accessible to
both parties. The system parameters generated by the sender
are denoted as SP = {q, g, gα1 , gα2 , . . . , gαn}. The protocol
is executed using the following steps:

1. The receiver selects k integers s1, s2, . . . , sk, randomly
from Z∗

q , then computes and sends the values
(gασ1 )s1 , . . . , (gασk )sk to the sender.

2. The sender selects an integer r, randomly from Z∗
q .

For each i = 1, 2, . . . , n, the sender encrypts the mes-
sage mi as ci = mi · grαi , then computes the values
(gs1ασ1 )r, (gs2ασ2 )r, . . . , (gskασk )r and sends them to
the receiver.

3. For each j = 1, 2, . . . , k, the receiver first computes
(grsjασj )s

−1
j = grασj , where s−1

j denotes the mul-
tiplicative inverse of sj modulo q. Then, using the
Extended Euclidean algorithm, the receiver computes

1https://github.com/keykhosro/k-n-Oblivious-Transfer.git

scheme 1
Sender (m1, . . . ,mn) Receiver (σ1, . . . , σk)

q, p = 2q + 1 are prime,
⟨g⟩ is a subgroup of Z∗

p of order q
r, α1, α2, . . . , αn ∈R Z∗

q

SP = {q, g, gα1 , gα2 , . . . , gαn}
s1, s2, . . . , sk ∈R Z∗

q

(gασ1 )s1 , . . . , (gασk )sk

for i = 1, 2, . . . , n

ci
p
≡ mi · grαi

c1, . . . , cn, (g
s1ασ1 )r, . . . , (gskασk )r

for j = 1, 2, . . . , k

(g
rsjασj )−s−1

j
p
≡ g

−rασj

mσj

p
≡ cσj · g−rασj

Fig. 1: Scheme 1: The construction of k-N OT based on Discrete
logarithm in mult. group

g−rασj . Finally, the receiver can recover mσj
as follows:

mσj
= cσj

· g−rασj .

B. Scheme 2

Let p be a fixed prime number, and G be a generator of a
prime order elliptic curve E of order N = #E(Fp) defined
over finite field Fp. The sender generates the parameters
p,N and G and shares these values with the receiver. All
arithmetic operations mentioned hereafter are performed in
the elliptic curve group E(Fp). Scheme 2 is depicted in
Figure 2. The sender has n messages, m1,m2, . . . , and
mn, which are points on elliptic curve E(Fp). The sender
randomly selects n distinct integers α1, α2, . . . , αn ∈R Z∗

N

and computes [α1]G, [α2]G, . . . , [αn]G and publishes these
values on a bulletin board accessible to both parties. The
system parameters generated by the sender are denoted as
SP = {p,G,N, [α1]G, [α2]G, . . . , [αn]G}. The protocol is
executed using the following steps:

1. The receiver randomly selects k integers s1, s2, . . . , sk
from Z∗

N , then computes and sends the values
[s1ασ1

]G, [s2ασ2
]G, . . . , [skασk

]G to the sender.
2. The sender randomly selects an integer r ∈R Z∗

N . For
each i = 1, 2, . . . , n, the sender encrypts the message mi

as ci = mi + [rαi]G. Subsequently, the sender computes
[rs1ασ1

]G, [rs2ασ2
]G, . . . , [rskασk

]G and sends these
values to the receiver.

3. For each j = 1, 2, . . . , k, the receiver first computes
[s−1

j rsjασj ]G = [rασj ]G, where s−1
j denotes the mul-

tiplicative inverse of sj modulo N . Then, the receiver
can recover mσj

for each j = 1, 2, . . . , k as follows:
mσj

= cσj
− [rασj

]G.

https://github.com/keykhosro/k-n-Oblivious-Transfer.git


scheme 2
Sender (m1, . . . ,mn) Receiver (σ1, . . . , σk)

p,N = #E(Fp) are prime,
G is a generator of E(Fp)

r, α1, α2, . . . , αn ∈R Z∗
N

SP = {p,G,N, [α1]G, . . . , [αn]G}
s1, s2, . . . , sk ∈R Z∗

N

[s1ασ1 ]G, . . . , [skασk ]G

for i = 1, 2, . . . , n

ci = mi + [rαi]G

c1, . . . , cn, [rs1ασ1 ]G, . . . , [rskασk ]G

for j = 1, 2, . . . , k

[s−1
j rsjασj ]G = [rασj ]G

mσj = cσj − [rασj ]G

Fig. 2: Scheme 2: The construction of k-N OT based on Discrete
logarithm in additive group

C. Scheme 3

This scheme is based on the RSA algorithm, which relies
on the computational difficulty of factoring large composite
numbers. Let a and b be two distinct, large prime numbers
greater than n, carefully chosen by the sender in such a way
that p = 2a+1 and q = 2b+1 are prime numbers as well. Let
N = pq and ϕ(N) = (p−1)(q−1) = 4ab, and α1, α2, ..., αn

be a sequence of n consecutive prime numbers, with α1 = 3.
All arithmetic operations mentioned hereafter are performed
modulo N . Scheme 3 is depicted in Figure 3.

The sender randomly selects an integer e from the set
Z∗
ϕ(N), which is the set of positive integers less than ϕ(N) and

relatively prime to ϕ(N). Subsequently, the sender employs
the Extended Euclidean algorithm to compute d, such that
ed ≡ 1 (mod ϕ(N)). This ensures that d is the multiplicative
inverse of e modulo ϕ(N). The sender also randomly selects
an integer x from the set Z∗

N , in such a way that x4 ̸= 1
(mod N) and computes xe mod N , then publishes the values
e and xe on a public bulletin board, while keeping the values p,
q, d, and x secret. The protocol is executed using the following
steps:

1. The receiver randomly selects k integers
s1, s2, . . . , sk ∈R Z∗

N , then computes and sends
values ασ1

(xe)se1, . . . , ασk
(xe)sek to the sender.

2. For each i = 1, 2, . . . , N , the sender encrypts the message
mi as ci = mi · xαd

i . Subsequently, the sender computes
(ασ1 · xese1)

d, . . . , (ασk
· xesek)

d = αd
σ1
xs1, . . . , α

d
σk
xsk

and sends these values to the receiver.
3. For each j = 1, 2, . . . , k, the receiver first employs

the Extended Euclidean algorithm to compute s−1
j . then,

the receiver computes αd
σj
xsjs

−1
j = αd

σj
x . Finally,

to decrypt cσj for each j = 1, 2, . . . , k, the receiver
computes mσj = cσj · (αd

σj
x)−1, where (αd

σj
x)−1 is the

scheme 3
Sender (m1, . . . ,mn) Receiver (σ1, . . . , σk)

p, q are prime,
N = pq , ϕ(N) = (p− 1)(q − 1)

e ∈ Z∗
ϕ(N) , ed ≡ 1 (mod ϕ(N))

x ∈ Z∗
N , SP = {N, e, xe mod N}

s1, s2, . . . , sk ∈R Z∗
N

ασ1(x
e)se1, . . . , ασk (x

e)sek

for i = 1, 2, . . . , n

ci = mi · xαd
i

c1, . . . , cn, α
d
σ1
xs1, . . . , α

d
σk

xsk

for j = 1, 2, . . . , k

αd
σj
xsjs

−1
j = αd

σj
x

mσj = cσj · (αd
σj
x)−1

Fig. 3: Scheme 3: The construction of k-N OT based on RSA

multiplicative inverse of αd
σj
x modulo N , which is also

computed using the Extended Euclidean algorithm.

constructed schemes inherit the following features:

• Adaptivity: All of the proposed schemes are capable
of being used as adaptive Oblivious Transfer protocols.
Initially, the sender encrypts n messages and sends them
to the receiver. To recover each message, the receiver
follows the protocol for a single choice, sends the cor-
responding data to the sender, and the sender responds
with one message based on the protocol.

• Precomputation: Our schemes enable the sender to pre-
compute the encryption of n messages offline, inde-
pendent of the receiver’s parameters and choices. The
precomputation offers two key advantages: Improved
efficiency by reducing computational overhead during
protocol execution, and support multi-receiver scenarios
by allowing precomputation and broadcast of encrypted
messages to multiple receivers.

Moreover, the system can be further optimized by introduc-
ing a pseudorandom function F : {1, . . . , n} → G, where
G represents the cyclic group utilized in our cryptosystem.
With this function, the receiver no longer needs to publish n
separate parameters. Instead, both the sender and the receiver
can independently compute F (i) for each i ∈ {1, 2, . . . , n}.
This modification significantly reduces the size of the pub-
lic key and consequently enhances the overall efficiency of
the cryptosystem. However, it is important to note that for
IoT systems, this optimization presents a trade-off. While it
reduces communication overhead, it necessitates additional
hardware resources for implementing function F , which may
be a considerable constraint in resource-limited IoT devices.



IV. SECURITY PROOFS

In k-out-of-n OT schemes the sender possesses n messages,
m1,m2, . . . ,mn, and the receiver wishes to recover k of
those messages, mσ1

,mσ2
, . . . ,mσk

, where σ1, σ2, . . . , σk are
k indices chosen by the receiver.

So far, we have presented three schemes for semi-honest
parties with the following security requirements:

• Receiver’s Privacy: It is computationally infeasible for the
sender to distinguish between I = {σ1, σ2, . . . , σk} and
any other arbitrary set I ′ = {σ′

1, σ
′
2, . . . , σ

′
k} of the same

size [19].
• Sender’s Security: The receiver cannot recover any mes-

sage mj for j ̸∈ {σ1, σ2, . . . , σk}
in this section we are going to provide security proofs for our
schems:

A. Security of Scheme 1

Lemma 3: In scheme 1, receiver’s choices are uncondition-
ally secure.
Proof: Based on Lemma 2, since gcd(q, αi) = 1 for each
i ∈ 1, 2, . . . , n, it implies that gαi is a generator of the
group G of order q. When the sender receives E = (gασi )si ,
this value can be potentially a mask for any element in the
set B = {gα1 , gα2 , . . . , gαn}, because all elements in B are
generators of G. As gαi and gαj are generators of the group
G, For any two distinct indices 1 ≤ i ̸= j ≤ n, there exist
integers si and sj such that gαisi = gαjsj . Consequently,
the received value E can potentially mask any element of
the set B, and the receiver’s choice σi is hidden from the
sender. Therefore, the receiver’s choices are unconditionally
secure, meaning that the sender has no information about the
receiver’s choice, even with unlimited computational power,
as E can mask any element of the set B equally likely. □

Lemma 4: In scheme 1, the sender’s security is conditional,
subject to AGCDH problem.
Proof : Suppose 1 ≤ j ≤ n is not an element of the set
Ω = {σ1, σ2, . . . , σk}, but the receiver can recover mj from
executing the protocol, defined in Scheme 1. If the receiver
can recover mj from the received ciphertext cj = mj · grαj ,
one can then effectively recover grαj by computing cj ·m−1

j =
grαj . Since the receiver is semi-honest, it follows the exact ex-
ecution of the protocol. Therefore, by the end of the protocol,
it possesses the set T = {gα1 , . . . , gαn , σ1, . . . , σk, s1, . . . , sk,
gs1ασ1 , . . . , gskασk , grs1ασ1 , . . . , grskασk , c1, . . . , cn}, which
comprises public parameters, the receiver’s choices, the re-
ceiver’s secret values, and the transcript of the protocol. In a
semi-honest setup, If the receiver can recover the extra data
mj , it means there exists a polynomial-time algorithm R1 that
the receiver executes to recover mj . However, we prove that
there exists no probabilistic polynomial-time (PPT) algorithm
R1 to recover the extra data mj . Therefore, there exists no
semi-honest receiver who can recover mj .

Suppose there exists a PPT algorithm R1 that can recover
mj for j /∈ Ω. We construct an algorithm A3 that can solve the
AGCDH problem using R1 as a subroutine. Given an AGCDH

instance (g,A1, A2, . . . , Ak, x, A
r
1, A

r
2, . . . , A

r
k) A3 proceeds

as follows:
1. computes the public parameters PP through

this process: It submits (A1, A2, . . . , Ak, x) as
(gασ1 , gασ2 , . . . , gασk , gασj ) to the bulletin board.
For the remaining n − k − 1 values in PP , A3 selects
random non-identity elements from the cyclic group G.

2. randomly selects k integers s1, s2, . . . , sk from Z∗
q , col-

lectively referred to as the set S. It then computes
(gασ1)s1 , . . . , (gασk )sk , and denotes them as the set A.

3. Utilizing the values s1, s2, . . . , sk from set S, computes
(Ar

1)
s1 , (Ar

2)
s2 , . . . , (Ar

k)
sk , collectively denoting them

as set B. Furthermore, generates n random values to serve
as the ciphertexts C.

4. constructs the transcript T ′ = {PP,Ω, S,A,B,C} in the
simulated world, which is indistinguishable from the real-
world transcript T .

5. executes R1 with input T ′ as a subroutine to obtain mj .
6. computes cj · m−1

j = xr and outputs it as
the solution to the AGCDH problem with input
(g,A1, A2, . . . , Ak, x, A

r
1, A

r
2, . . . , A

r
k).

If the receiver could efficiently recover the message mj for j /∈
Ω in polynomial time, then the algorithm A3 could use Scheme
1 to solve the AGCDH problem, which has been proven to be
computationally hard. Therefore, it must be computationally
infeasible for the receiver to recover mj , implying that Scheme
1 is computationally secure for the sender’s security. □

B. Security of Scheme 2

Lemma 5: In Scheme 2, the receiver’s choices are uncon-
ditionally secure and the sender’s security is conditionally
secure.
Proof : The proof of this theorem is similar to the proofs
presented in Lemmas 3 and 4, with the difference that Scheme
2 operates on elliptic curve points. Therefore, we omit the
proofs.

C. Security of Scheme 3

Lemma 6: In Scheme 3, the receiver’s choices are uncondi-
tionally secure.
Proof : The sender receives xeαis

e from the receiver and sends
xαd

i s back to it. Since the sender possesses the values x and
xe, it can compute (αis

e, αd
i s), which hides the receiver’s

choice αi, because it can be generated by masking any
arbitrary choice αj with s′ ≡ αd

iα
−d
j s (mod N), according

to Scheme 3. Therefore, by observing (w,wd) := (αis
e, αd

i s)
one cannot obtain any information about the choice αi, since
there exists some t, which can be used as the masking factor
for any arbitrary choice αj , where

(w,wd) = (αjt
e, αd

j t)

t = wdα−d
j mod N

Therefore, (αis
e, αd

i s) can potentially mask any αj , and the
receiver’s choice αi is perfectly hidden from the sender. □



To establish the sender’s security for Scheme 3, we must
first prove the following lemma:

Lemma 7: The GBRSA problem remains computationally
hard even when β1, β2, . . . , βk, βk+1 are all prime numbers.
We prove that if there exists a polynomial-time algorithm for
the GBRSA problem in the prime setup, then we can use it
to solve the RSA problem in polynomial time, implying that
RSA ⪯ GBRSA-prime (RSA reduces to GBRSA in the prime
setup).

Suppose there exists an efficient algorithm A4 that can
solve the GBRSA problem. We can construct an RSA solver
S(e,N, y = me) as follows:

1. S generates k+1 random integers A1, A2, . . . , Ak, x from
Z∗
N , such that for each 1 ≤ i ≤ k, Ae

i be prime.
2. If y is not prime, S finds a random θ such that θey

becomes prime. If y is prime, S sets θ = 1.
3. S calls A4 as a subroutine with the input

(N, e, xe, Ae
1, A

e
2, . . . , A

e
k, yθ

e, xA1, xA2, . . . , xAk).
4. A4 returns xydθed ≡ x(me)dθ ≡ xmθ (mod N).
5. S outputs x−1xmθθ−1 ≡ m (mod N) as the solution to

the RSA problem instance (e,N,me).
If there exists an efficient algorithm A4 that can solve the
GBRSA problem in the prime setup, then we can construct
an efficient algorithm S for the RSA problem. In other words,
RSA is reducible to the GBRSA problem in the prime setup,
which implies that it is at least as hard as the RSA problem.
Having proved the hardness of the GBRSA problem in the
prime setup, we use it to prove the security of this lemma.

Lemma 8: In scheme 3, sender’s security is conditional,
according to lemma 7.
Let us assume that there exists a polynomial-time algorithm
R2 that allows the semi-honest receiver to recover the plaintext
mj for some j /∈ Ω, where Ω = {σ1, σ2, . . . , σk} is the set
of indices chosen by the receiver. We show that the existence
of such an algorithm R2 leads to a contradiction, as it can
be used to solve the GBRSA problem in the prime setup,
which is known to be at least as hard as the RSA problem.
If the receiver can recover mj from the received ciphertext
cj = mj · xαd

j , where αj is j-th prime starting from 3, one
can then compute m−1

j · cj = xαd
j , effectively recovering

the value xαd
j . Since the receiver is semi-honest, it follows

the exact execution of the protocol, and ultimately, it obtains
the set T = {N, e, xe, σ1, . . . , σk, s1, . . . , sk, ασ1x

ese1, . . . ,
ασk

xesek, α
d
σ1
xs1, . . . , α

d
σk
xs1, c1, . . . , cn}, which comprises

the public parameters, the receiver’s choices, the re-
ceiver’s secret values, and the transcript of the ex-
ecuted protocol. We construct an algorithm A5 that
uses R2 as a subroutine to solve the GBRSA prob-
lem in the prime setup. Given a GBRSA prime instance
(N, e, xe, β1, β2, . . . , βk, βk+1, xβ

d
1 , xβ

d
2 , . . . , xβ

d
k) A5 pro-

ceeds as follows:
1. Constructs the public parameters PP as {N, e, xe}.
2. Selects S = {s1, s2, . . . , sk} containing k random inte-

gers from Z∗
N , then computes {β1x

ese1, . . . , βkx
esek} and

denotes them as set A.

3. Computes (xβd
1 )s1, . . . , (xβ

d
k)sk using the values

s1, s2, . . . , sk and denotes them as set B, and generates
n random values as ciphertext set C.

4. Compute σi = Pindex(βi), where The function
Pindex(x) returns t such that x is the t − th prime
number in the sequence of prime numbers starting from
3, and then construct Ω = {σ1, . . . , σk}

5. Constructs the transcript T ′ = {PP,Ω, S,A,B,C} in
the simulated world, which is indistinguishable from the
real-world transcript T .

6. Executes R2 as a subroutine, with inputs T ′ and
Pindex(βk+1), and obtains mσ1 ,mσ2 , . . . ,mσk

with the
extra plaintext mj , where j = Pindex(βk+1).

7. Computes m−1
j · cj = xαd

j = xβd
k+1 and out-

puts the solution to the GBRSA problem with input
(N, e, xe, β1, β2, . . . , βk, βk+1, xβ

d
1 , xβ

d
2 , . . . , xβ

d
k).

If the receiver could recover more than k chosen plaintexts,
a solver A5 could use Scheme 3 to find a solution for
the GBRSA for special case, where β1, . . . , βk+1 are prime
numbers, which was proved to be at least as hard as the RSA
problem. Therefore, the receiver cannot recover additional data
and the sender’s security is conditional. □

V. PERFORMANCE ANALYSIS

A. Comparison

In this paper we have proposed three efficient 2-round k-out-
of-N Oblivious Transfer schemes, in which k data transferred
from the receiver to the sender, followed by n+k data from the
sender to the receiver. This communication pattern achieves
the lowest data transmission among the existing pairing-free k-
out-of-N oblivious transfer schemes. An additional significant
feature of the three proposed schemes is their support for
adaptivity, enabling the receiver to retrieve one of the k
selected data by sequentially executing the protocol to recover
one data at a time (k=1). Furthermore, our constructions
enable offline encryption of the n messages by the sender,
independent of the receiver’s choices and random variables,
before executing the protocol. This property offers significant
performance advantages in scenarios where the sender needs
to prepare encrypted data for multiple receivers,which was first
introduced in [10]. Table I provides a comprehensive compar-
ison of our proposed schemes with other existing pairing-free
k-out-of-N oblivious transfer protocols that support adaptivity,
focusing on the computational complexity for the sender and
the receiver during the protocol execution [19], [24], [25].

B. Performance Evaluation

We have implemented and evaluated our proposed schemes
using Python, leveraging the gmpy2 library for efficient
arbitrary-precision arithmetic and SageMath for advanced
cryptographic operations. The simulations were conducted as
follows:

• Scheme 1, employing multiplicative group arithmetic,
utilizes a 2048-bit modulus.



• Scheme 2, based on elliptic curve cryptography, is im-
plemented with a 224-bit curve, providing security com-
parable to Scheme 1.

• Scheme 3, based on RSA, also employed a 2048-bit
modulus, ensuring equivalent security to Schemes 1 and
2.

This setup ensures consistent performance metrics across all
three schemes, allowing for accurate comparison of their
computational efficiency. All simulations were executed on
a desktop computer equipped with an Intel Core i7-6500U
multi-core processor running at 2.5 GHz and 8 GB of RAM.
Table II presents a comparative analysis of average execution
times for 1,000 7-out-of-45 Oblivious Transfer operations
across our proposed schemes, both with and without precom-
putation, where k = 7 and n = 45 are chosen arbitrarily.
Figure 4 illustrates the impact of increasing n on the execution
time of 7-out-of-n Oblivious Transfer in Scheme 1. The com-
parison between scenarios with and without precomputation
reveals that the precomputation performance of the model
remains constant regardless of n, indicating its independence
from this parameter. Figure 5 demonstrates how increasing
k affects the execution time of k-out-of-45 Oblivious Trans-
fer in Scheme 1, again comparing precomputation and non-
precomputation scenarios. Figure 6 showcases the effect of
increasing k on the execution time of k-out-of-45 Oblivious
Transfer in our proposed scheme with precomputation.

Fig. 4: Impact of Increasing n on Execution Time for 7-out-of-n
Oblivious Transfer: Comparing Scheme 1 With and Without Precom-
putation

VI. CONCLUSIONS

In this paper, we have presented three efficient two-round
pairing-free k-out-of-N oblivious transfer protocols with stan-
dard security in the semi-honest model. These protocols can
also be used as adaptive oblivious transfer schemes. Our
schemes offer compairable performance in terms of communi-
cation rounds, computational complexity for both parties, and
the size of transmitted messages. Furthermore, they provide

Fig. 5: Impact of Increasing k on Execution Time for k-out-of-
45 Oblivious Transfer: Comparing Scheme 1 With and Without
Precomputation

Fig. 6: Impact of Increasing k on Execution Time for k-out-of-45
Oblivious Transfer: Comparing proposed schemes with precomputa-
tion

provable security under the well-studied Computational Diffie-
Hellman (CDH) and RSA assumptions, without relying on the
Random Oracle Model (ROM).

It is crucial to recognize that the emergence of quantum
computers poses a significant threat to traditional crypto-
graphic systems based on the hardness of integer factorization
and discrete logarithms. These systems are no longer consid-
ered secure in the face of quantum computing capabilities. To
address this challenge, NIST recommends the use of hybrid
cryptography during the transition period from classical to
post-quantum cryptography. Building on this recommendation,
a promising direction for further research is the design of an
Oblivious Transfer (OT) scheme that incorporates either hybrid
or post-quantum encryption methods. Such a scheme should
be optimized for implementation in Internet of Things (IoT)
systems, addressing both the security concerns of the post-
quantum era and the practical constraints of IoT devices.
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