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Abstract. Value Added Tax (VAT) is a cornerstone of government rev-
enue systems worldwide, yet its self-reported nature has historically been
vulnerable to fraud. While transaction-level reporting requirements may
tackle fraud, they raise concerns regarding data security and over-reliance
on tax authorities as fully trusted intermediaries. To address these issues,
we propose Verifiable VAT, a protocol that enables confidential and ver-
ifiable VAT reporting. Our system allows companies to confidentially
report VAT as a homomorphic commitment in a centrally managed per-
missioned ledger, using zero-knowledge proofs to provide integrity guar-
antees. We demonstrate that the scheme strictly limits the amount of
fraud possible due to misreporting. Additionally, we introduce a scheme
so companies can (dis)prove exchange of VAT with fraudulent companies.
The proposed protocol is flexible with regards to real-world jurisdictions’
requirements, and underscores the potential of cryptographic methods to
enhance the integrity and confidentiality of tax systems.

Keywords: Tax · Zero-Knowledge Proofs · Incrementally Verifiable Com-
putation · Accumulators.
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1 Introduction

Value Added Tax (VAT) has taken the world by storm. Since its introduction
in the 1950s, it is now one of the largest sources of government tax revenue
[ROO23].

VAT works as follows. Suppliers are obligated to charge a percentage of tax
on top of their selling price. The supplier has to remit it to the tax authority,
whereas the buyer can ask it back, but only if they are also an economic entity.
As a result, at every step of the value chain, the difference between a firm’s
purchases and sales, the value added, is taxed 3.

Unfortunately, when the tax is self-reported, as it has been in most countries
for most of VAT’s history, there is a risk of malicious or accidental differences
between the supplier and buyer’s reported amounts. Companies are effectively
given a theoretically unlimited "VAT credit" because collected VAT is not re-
turned to the tax authority immediately, only by the next VAT return. Billions
are lost each year due to such misreporting and fraud [Mur19] [Com18]. As a
concrete example : Alice sells apples worth 100 EUR (+ 20 EUR output VAT)
to Bob, who in turn sells bottled apple juice worth 200 EUR (+ 40 EUR out-
put VAT) to consumer Charlie. Both companies charge the local VAT rate of
20%. Given that Bob is allowed to deduct his input VAT, the tax authority ul-
timately gains 40 EUR in VAT. If however, Bob reports higher input VAT, the
tax authority will gain less, or can even lose money.

In the fight against fraud, many tax authorities have mandated various forms
of reporting requirements [con23], revealing invoice details to the tax authority
and linking the report of the supplier and buyer. This resolves the aforemen-
tioned fraud, as there can be no discrepancy between Alice and Bob’s reporting.
The major downside is that all transaction details and company relations be-
come visible to the tax authority. In this setup, tax authorities are fully trusted
intermediaries, responsible for the integrity and privacy of the VAT reporting.
To overcome these issues, we propose a scheme for confidential and verifiable
reporting of VAT.

Contributions. We design a confidential VAT reporting system, which offers
key fraud prevention benefits of a transparent invoice reporting system without
revealing invoice details to the tax authority by default. We formally analyze the
security and guarantees which the system can offer, namely that the maximum
amount which fraudulent companies can extract is bounded by the amounts
reported by honest companies.

3 A useful property of VAT is its economic "neutrality" - it aims to directly tax "value
added" and to minimize distortions to firms’ production decisions. A closely related
tax system which also aims to have similar neutrality is the US Sales Tax. In a Sale
Tax, the full burden of tax collection lies on only the few companies at the end of
the supply chain, creating a distortionary impact on economic activity.
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2 Overview

2.1 Goals

While reporting requirements can help to reduce VAT fraud, transparent report-
ing of invoice data to tax authorities has two major downsides:

1. A large amount of confidential business information is shared with tax
authorities, which makes it possible that the data is leaked to unintended
parties.

2. The tax authority is assumed to be a fully trusted party, responsible for the
integrity of the system.

Design goals to overcome the above two obstacles include:

1. Company transaction details should be committed to, but they should not
be revealed by default to the tax authority. Only the end balance at the end
of each VAT period should, which is the minimum requirement for VAT to
function.

2. Companies and third parties should be able to verify that reported commit-
ments are being tracked correctly.

Making VAT verifiable has the potential to bring many exciting additional
benefits: 1. Improved government revenue-based finance 2. More accurate na-
tional economic statistics 3. More accurate bookkeeping and easier audits with
regards to other taxes.

In reality, VAT systems are more complicated than outlined in the model in
this paper. There are reporting requirements which can change depending on the
sector, type of product and jurisdiction. Still, the basic system outlined in this
paper should be implementable in any jurisdiction and leaves enough flexibility
to enforce additional policies.

2.2 System Model & Trust Assumptions

We build upon the model introduced by Platypus [WKDC22]. We consider the
setting in which a tax authority wants to issue and maintain a public transac-
tion log, as shown in Figure 1. For simplicity, we assume the tax authority is
responsible for enforcing regulatory requirements, but note that arbitrary tasks
can theoretically be delegated to a regulator like in Platypus.

Companies reporting VAT are considered untrusted, i.e., they may behave
arbitrarily. Since tax authorities are responsible for VAT collection, we assume
that the tax authority is trusted for the integrity of company enrollment. Given
that commitments to any state updates are publicly recorded, it is possible for
any external auditor to verify that regulatory requirements were indeed upheld.

We assume companies have access to secure messaging channels. For cen-
sorship resistance and enhanced privacy, transactions can be submitted to a
distributed ledger or using onion routing like Tor.
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Fig. 1. The Verifiable VAT reporting model. The tax authority is responsible for trans-
action validation and publishes a log of all transactions.

We present and analyse our VAT reporting system with a number of simpli-
fying assumptions, each of which can easily be loosened up to complement more
complex real-world VAT systems:

– All companies adhere to the same VAT period.
– There is a fixed set of companies and they are all operational during the full

VAT period.

Our Verifiable VAT scheme does not eliminate all fraud. For example, compa-
nies can lie about how much VAT they received from consumers. Companies may
also disappear and not pay the VAT deficit which they owe the tax authority.
However, the maximum fraud due to misreporting is limited by the reporting of
honest firms (formally argued in section 6.3), and we can discover direct trading
partners of disappearing companies (formally argued in section 6.4).

2.3 Verifiable VAT Design

The key insight underlying this work, is that VAT credit can be represented
as a privacy preserving homomorphic commitment. Instead of requiring
companies to transparently report the amount of VAT in a transaction to the
tax authority, tokenized VAT credit can be transferred from suppliers to buyers
in a confidential manner.

In order to capitalize on this insight, we formalize a VAT reporting system by
building on the design introduced in Platypus [WKDC22]. Platypus is a privacy-
preserving Central Bank Digital Currency system in which users create privacy
preserving currency transfers which are finalized and ordered by the central
bank. In contrast, in our VAT reporting system, privacy preserving VAT credit
transfers are finalized and ordered by the tax authority.

In more detail, in our reporting system companies can perform 4 different
actions in a given VAT period:

1. Enroll accounts with the tax authority.
2. Request VAT credit from the tax authority.
3. Transfer VAT credit to another company.
4. Return VAT credit to the tax authority.
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We now explain the intuition for how this flow enables tax authorities to
limit fraud by looking at the example presented in section 1. After Alice and
Bob enroll, let’s assume they both request an initial 100 EUR of VAT credit.
When Alice sells 100 EUR worth of apples to Bob, Bob will demand that Alice
transfers 20 VAT credit. When Bob sells 200 EUR worth of bottles to Charlie,
no VAT credit is sent, as Charlie is not a registered company. When the period
closes, all VAT credit must be returned to the tax authority. Compared to the
amounts requested:

– Alice has a deficit of 20 VAT credit, meaning she must remit 20 EUR to
the tax authority. We do not rely on Alice’s honesty because it is in Bob’s
rational interest to obtain VAT credit.

– If Bob is honest, he will have a deficit of 20 VAT credit, meaning he has to
remit 20 EUR to the tax authority. If Bob is dishonest, he might also return
the 40 VAT credit which was supposed to be linked to Charlie’s purchase,
and even end up with a surplus. We describe additional mechanisms to
enforce Bob to be honest in section 4.1.

(a) VAT credit transfer flow (b) Enrollment, VAT credit request and
VAT credit return flow

Fig. 2. Flow of proofs and signatures for all transaction types in the protocol.

3 Protocol Description

We now give a high-level description of the protocol. We present a more formal
fully rolled out protocol in section 6.2 and a description of how much this scheme
can limit fraud in section 6.3. For more background and security definitions, we
also refer the reader to Platypus [WKDC22].

In order for a company to perform enrollment, VAT credit requests, VAT
credit transfers and VAT credit returns without revealing confidential informa-
tion, the following general recipe is used: 1. create a hiding and binding com-
mitment to private information 2. create a zero-knowledge proof which privately
attests that the committed data adheres to the desired properties. 3. after check-
ing the proof, the tax authority signs and publishes the commitment.

There are three types of commitments which companies create:
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– account state commitment stateCi , which commits to a company’s cur-
rent valid VAT credit balance, as well as a private unique serial number
serialCi .

– request commitment reqCi , which commits to a VAT credit amount to
request.

– transaction commitment commtx, which commits to a VAT credit amount
to transfer between two companies.

3.1 Company enrollment

During enrollment, companies create an initial account state commitment and
request commitment, and prove their initial committed balance and requested
amount are set to 0.

3.2 VAT credit requests

Companies can ask the tax authority to ’mint’ VAT credit for them. A company
will want to request enough VAT credit to fulfill all of their VAT credit transfer
needs in a given period. However, the total requested amount must stay below a
designated maximum reqCmax. The enables the tax authority to limit fraud, see
section 6.3 for a discussion.

A company can request X amount of VAT credit by sending a previous
account serial number serialCi , a new account state commitment stateCi+1 and a
zero knowledge proof to the tax authority. The proof must attest to:

– The correct creation of a new account state commitment. Meaning, serialCi
was present in a previously signed account state commitment stateCi with
private balance Bi and stateCi+1 commits to private balance Bi +X.

– The correct creation of a new request commitment. Meaning, the existing
commC

req commits to value Ri, the total requested amount Ri +X is less
than reqCmax and is committed to in the new request commitment commC

req.

The tax authority checks the proof and uniqueness of the serial number, and
returns a signature over the company’s new state and request commitment.

3.3 VAT credit transfers

If Bob’s company buys a product with VAT, they will be entitled to receive
VAT credit from seller Alice. Recall it is in Bob’s rational interest to obtain the
VAT credit, he can return any surplus to the tax authority in exchange for fiat
currency.

X amount of VAT credit can be transferred by both companies sending a
previous account serial number {serialCi }C∈{A,B}, a new account state commit-
ment {stateCi+1}C∈{A,B}, zero knowledge proofs and a transaction commitment
commtx to the tax authority. The proofs must attest to:
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– The correct creation of the new account state commitments. Meaning, the
numbers {serialCi }C∈{A,B} were present in previously signed account state
commitments{stateCi+1}C∈{A,B} with private balances Ai and Bi respec-
tively. commtx commits to private amount X, stateBi+1 commits to private
balance Bi +X and stateBi+1 commits to private balance Ai −X.

The tax authority checks the proof and uniqueness of the serial numbers, and
sends back signatures over the new state commitments.

We model these transfers as being buyer-initiated instead of supplier-initiated,
because only the buyer of a product or service will always know who the counter-
party is. Think of the case where a buyer’s receipt is processed by a corresponding
finance department far past the date of purchase.

3.4 VAT credit returns

When a VAT period ends, companies return any remaining VAT credit to the tax
authority. As mentioned in the example presented in section 1, when more VAT
credit is returned than was requested, the surplus is awarded to the company in
fiat currency. When less VAT credit is returned than was requested, the deficit
must be paid for in fiat currency.

A company can return VAT credit by sending a previous account serial num-
ber serialCi , values X and U, and a zero knowledge proof to the tax authority.
The proof must attest to:
– serialCi was present in a previously signed account state commitment stateCi

with public balance X+U.

Additionally, the company must prove how much VAT credit R they re-
quested, by revealing the latest commC

req’s blinding value.
The tax authority checks the proof and uniqueness of the serial number, and

sends back a signature over returned amounts X and U. The tax authority can
determine the size of a company’s VAT credit surplus or deficit by comparing
their requested VAT credit R and their returned VAT credit X. In section 6.3
we show this scheme is sufficient to ensure that the VAT credit returns of hon-
est companies limit the amount of fraud which any dishonest companies can
misappropriate.

Note how the company also returns unclaimed amount U. This voluntarily
indicates the total amount of VAT credit which was technically claimable by
counterparties, but never was. A common scenario is when this VAT credit was
part of a B2C sale. See section 4.1 for a discussion on enforcing honest reporting
of VAT credit.

4 Discussion

4.1 Real world deployment concerns

Interactivity and concurrency. The transaction model used in this paper to
transfer VAT credit requires 1 round of interaction between buyer and supplier.
We now discuss whether this is feasible for a real-world deployment.
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One concern one might have is that being always online is a hard guarantee to
make, even when making use of intermediaries. But this is not a major concern
in the context of VAT, as there is no need for VAT credit transfers to finalize in
real-time - as long as they happen before the end of the VAT period.

Another concern is that the interactivity requirement may limit throughput,
as an account can only start to process a new transaction when the previous one
has finalized. To see why this is an issue, consider the edge case where Alice and
Bob send VAT credit to *each other* concurrently. They will both be waiting for
a tax authority signature before completing the other’s transaction. Moreover,
all of Alice and Bob’s current buyers will *also* be waiting for the transaction
to complete. In theory such deadlocks can be resolved by letting outstanding
transactions expire. A faster resolution would entail companies having at least
two accounts: one for sending and one for receiving VAT credit. Not only does
this prevent such deadlocks, if Alice and Bob’s buyers are waiting for them to
respond, at least they can still send VAT credit to others. To further increase
throughput, one can increase the number of sending or receiving accounts.

Approaches to limit fraud Although Verifiable VAT limits the maximum
amount of fraud (see section 6.3), companies can still disappear and leave their
VAT credit deficit unpaid. A tax authority can limit companies from disappear-
ing with too much requested VAT credit by:

1. Limiting the total amount of VAT credit given (for free).
2. Not paying for surplus unless the full or partial deficit of company’s direct

suppliers has been paid for.
3. Checking that companies correctly indicate when VAT credit is unclaimed

(implying a transaction occurred at the end of the value chain). This can be
done with B2C spot checks by the tax authority, enforced use of secure hard-
ware, or even incentivising consumers to check that receipts are registered
using lotteries. These approaches are common practice in various countries
around the world today.

Key management. The cryptographic primitives used in Verifiable VAT re-
quire companies to do some form of key management, a seemingly high require-
ment. The burden can be alleviated by making use of existing software and
hardware which companies already entrust with their data. More specifically,
hosted bookkeeping software could offer the service to maintain keys and inter-
act with other parties. Some form of insurance may also additionally be possible
to protect against the risk of losing ones VAT credit keys.

Scalability. Platypus describes how their registration system’s overhead is small
enough to plausibly be used for all payments [WKDC22]. An important part of
their reasoning is that their system is horizontally scalable. The tax authority
can split workloads by company id or the most significant bits of the serial
number. The transaction types introduced in this paper are similar in size and
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complexity as Platypus, and the number of transactions with VAT is a strict
subset of all transactions. We therefore conclude that scalability should not be
a concern.

4.2 Future work

We leave the reader with several directions for future work.

– Can the maximum VAT credit deficit be bounded by a lower amount than
indicated in section 6.3? One additional tool which can be used is to only
allow VAT credit to be spent when it has been received directly from the
tax authority.

– Can Verifiable VAT be implemented (efficiently) in a UTXO-based transac-
tion model, whereby there are no account state commitments and there is
no interactivity requirement?

– Can the Proof of Interaction described in section 6.4 be implemented (effi-
ciently) in such a way that the companies which are "blacklisted" are not
revealed?

– How much can prover time, proof size and verifier time of the designed
scheme be reduced? Some strategies include: making use of better proving
systems, combining (commit-and-prove) proving systems, using more effi-
cient arithmetization and arithmetization-friendly primitives.

4.3 Related Work

CDBC / e-cash. Central Bank Digital Currency literature comes closest to the
Verifiable VAT design, as this literature also aims to efficiently realize private
permissioned e-cash [WKDC22]. An interesting avenue some of these systems
take is to use multi-party computation to allow for conditionally revealing data
to authenticated stakeholders [KKS22] [TBA+22].

Tokenized VAT. Several papers have been published on tokenizing VAT
[AAC16] [AAC20], which have not presented rigorous arguments about how
fraud is prevented or how transaction data is kept private. Critically, these pro-
posals fundamentally alter how VAT works by introducing a new non-tradeable
currency to pay VAT in.
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6 Appendix

6.1 Algorithms

To make VAT verifiable, we make black-box use of the following cryptographic
algorithms. We informally describe their interface, and refer the interested reader
to the respective sources for more in-depth definitions and background. We as-
sume all algorithms are instantiated with a security parameter λ. Similarly, any
generated public parameters are included implicitly in all algorithms.

Commitment Scheme (CS)
A hiding and binding CS is a tuple of algorithms (Setup, Commit) adopted
from [KL14].

– Setup outputs public parameters params.
– Commit takes as input a message m and randomness r and outputs a

commitment comm.

Pseudo-Random Function (PRF)
A PRF is a tuple of algorithms (Init, Gen) adopted from [KL14].

– Init takes as input a domain separator d and randomness r and outputs an
initial state st0.

– Gen takes as input state information sti, and outputs bits y and updated
state sti+1.

Digital Signature Scheme (DS)
A DS is a tuple of algorithms (Generate, Sign, Verify) adopted from [KL14].

– Generate outputs a pair of keys (pk, sk). We refer to the first of these as
the public key and the second as the secret key.

– Sign takes as input a secret key sk and a message m, and outputs a signature
σ.

– Verify takes as input a public key pk, a message m, and a signature σ. It
outputs a bit b indicating whether or not σ is valid.

Authenticated Dictionary (AD) Scheme
An AD is a tuple of algorithms (Setup, Init, Update, Lookup, and Verify-
Lookup), adopted with slight modifications from [TFZ+22].

– Setup outputs public parameters.
– Init takes as input a set of keys and values [(kj , vj)] and outputs an initial

digest d0.
– Update takes as input a digest di, a key k, and a delta δ. It outputs an

updated digest di+1. In our construction, this increments the stored value
by δ, i.e., di+1[k] = di[k] + δ.
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– Lookup takes as input a key k. It outputs a value v and proof Λk.
– Aggregate takes as input a set of proofs Λk. It outputs a single proof Λ.
– VerifyLookup takes as input a digest d, a set of keys and values [key, value]k

and proof Λ. It outputs a bit b indicating whether or not Λ is valid.

Zero-Knowledge Succinct Non-Interactive Argument of Knowledge
(zk-SNARK) Scheme
A zk-SNARK is a tuple of algorithms (Generate, Prove, Verify) adopted
with slight modifications from [KST22].

– Generate takes as input a structure s, and outputs a proving and verifying
key (pk, vk).

– Prove takes as input the proving key pk, an instance x, and a witness w,
and outputs a proof π.

– Verify takes as input the verifying key vk, an instance x, and a proof π. It
outputs a bit b indicating whether or not π is valid.

Incrementally-Verifiable Computation Scheme (IVC)
An IVC is a tuple of algorithms (Generate, Prove, Verify) adopted from
[KST22].

– Generate takes as input a statement s, and outputs a proving and verifying
key (pk, vk).

– Prove takes as input the proving key pk, index i, public inputs z0 and zi,
witness wi and a proof Πi. It outputs a new proof Πi+1.

– Verify takes as input the verifying key vk, index i, public inputs z0 and zi
and a proof Πi. It outputs a bit b indicating whether or not Πi is valid.

6.2 Verifiable VAT protocol

We now present a rolled-out protocol of the full scheme, including the Proof of
Interaction.

System Setup To set up the system, the tax authority:

– runs DS.Generate to create a secret/public key pair (skT , pkT ) that is used
for signing account state commitments and publishes its public key pkT .

– sets balmax which is a maximum limit on account balances to prevent value
overflows (i.e. since all values are finite field elements, it ensures that balances
cannot be negative) and can be set to a value larger than all realistic values
for account balances.

– sets reqCmax which is the maximum amount of VAT credit companies are
allowed to request.

Both the tax authority and companies run:
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– IVCPOI.Generate

– zk-SNARKenrollment.Generate

– zk-SNARKrequest.Generate

– zk-SNARKtransfer,send.Generate

– zk-SNARKtransfer,receive.Generate

– zk-SNARKreturn.Generate

– CS.Setup

Company enrollment When a company C enrolls in the system, they create
a secret key skC = (skC1, skC2), consisting of two randomly chosen keys. These
keys can later be used to pseudorandomly derive serial numbers and blinding
values for their account states using pseudorandom functions PRFserial,C =
PRF.Init(′serial′, skC1) and PRFblind,C = PRF.Init(′blind′, skC1). The com-
pany also needs a unique identifier idC , which could be for example their VAT
number. To create an enrollment transaction, C derives the pseudorandom values
serialC1 = PRFserial,C .Gen(0) , blindC1 = PRFblind,C .Gen(0) and uses them
to create a new state commitment. C then runs zk-SNARKenrollment.Prove
to create πenrollment which proves the following statement:

Given public values X = (stateC1 , reqC1 , idC),
I know secret values W = (skC1 , serialC1 , blindC

1 ), such that
stateC1 == CS.Commit(serialC1 , 0, idC , blind

C
1 )

reqC1 == CS.Commit(0, blindCreq)
serialC1 == PRFserial,C .Gen(0)

C then sends X and πC
enrollment to the tax authority. The tax authority

checks that the check zk-SNARKenrollment.Verify(πC
i+1,X) passes. If the proof

is correct, the tax authority runs DS.Sign(skT , stateC1 , reqC1 ) and returns the
signature back to C.

VAT credit requests If companies want to request additional credits, they
can create a one-sided transaction as follows.

1. Transaction Initiation

They runs zk-SNARKrequest.Prove to create πC
i+1 which proves the follow-

ing statement:
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Given public values X = (serialCi , commTx, stateCi+1, balmax, pkT , commreq,in,
idreceiver, commreq,out),
I know secret values W = (skC1, balCi , balCi+1, blindC

i , σC
i , reqin, reqout, vTx, blindTx,

serialCi+1, blindC
i+1, i), such that

1 == DS.Verify(pkT , stateCi , commC
Tx,i−1, σ

C
i )

commTx == CS.Commit(vTx, 0, idreceiver, i, blindTx)
stateCi == CS.Commit(serialCi , balCi , idreceiver, i, blindC

i )
stateCi+1 == CS.Commit(serialCi+1, bal

C
i+1, idreceiver, i+ 1, blindC

i+1)
balmax ≥ balCi+1

balCi+1 := balCi + vTx

serialCi+1 == PRFserial,C .Gen(serialCi )
commreq,in == CS.Commit(reqin, blindreq)
reqout == reqin + vTx

reqmax ≥ reqout
commreq,out == CS.Commit(reqout, blindreq)

The company then sends commTx, serialCi , stateCi+1, π
C
i+1, commreq,out to the

tax authority.

2. Transaction Execution
The tax authority checks that the serial number is unique and that the

check zk-SNARKrequest.Verify(πC
i+1,X) passes. If so, it publishes the transac-

tion and signs and returns the new state and transaction commitment: σC
i+1 =

DS.sign(skT , commTx, state
C
i+1). It also replaces the company’s request com-

mitment commreq,in by commreq,out.

3. Acceptance
The company checks that the signature is valid, and if so, stores it.

VAT credit transfers
Let’s look at the example from section 1, Alice transfers VAT credit to Bob.
1. Transaction Initiation: Bob runs zk-SNARKtransfer,receive.Prove to create
πB
i+1 which proves the following statement:

Given public values XB = (serialBi , commTx, stateBi+1, balmax, pkT ),
I know secret values WB = (skB1, balBi , balBi+1, blindB

i , σB
i , vTx, blindTx, serialBi+1,

blindB
i+1, idsender, idreceiver, i), such that

1 == DS.Verify(pkT , stateBi , commB
Tx,i−1, σ

B
i )

commTx == CS.Commit(vTx, idsender, idreceiver, i, blindTx)
stateBi == CS.Commit(serialBi , balBi , idreceiver, i, blindB

i )
stateBi+1 == CS.Commit(serialBi+1, bal

B
i+1, idreceiver, i+ 1, blindB

i+1)
balmax ≥ balBi+1

balBi+1 == balBi + vTx

serialBi+1 == fskA1(serial
B
i )
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Bob then sends vTx, blindTx, serialBi , commTx, stateBi+1 and πB
i+1 to Alice.

2. Transaction Completion
Alice runs zk-SNARKtransfer,sender.Prove to create πA

i+1 which proves the
following statement:

Given public values XA = (serialAj , commTx, stateAj+1, balmax, pkT ),
I know secret values WA = (skA1, balAj , balAj+1, blindA

j , σA
j , vTx, blindTx, serialAj+1,

blindA
j+1, idsender, idreceiver, j), such that

1 == DS.Verify(pkT , stateAj , commA
Tx,j−1, σ

A
j )

commTx == CS.Commit(vTx, idsender, idreceiver, j, blindTx)
stateAj == CS.Commit(serialAj , balAj , idsender, j, blindA

j )
stateAj+1 == CS.Commit(serialAj+1, bal

A
j+1, idsender, j + 1, blindA

i+1)
balAj ≥ vTx

balAj+1 == balAj − vTx

serialAi+j == fskA1(serial
A
j )

Alice then sends commTx, serialAi , stateAi+1, π
A
i+1, serial

B
j , stateBj+1, π

B
j+1 to the

tax authority.

3. Transaction Execution
The tax authority checks that the serial numbers are unique and that the

check for Alice zk-SNARKtransfer,sender.Verify(πA
j+1,XA) as well as the check

for Bob zk-SNARKtransfer,receiver.Verify(πB
i+1,XB) both pass. If so, it pub-

lishes the transaction and signs and returns the new state commitments and
transaction commitment:

– σA
i+1 = DS.sign(skT , commTx, state

A
i+1).

– σB
j+1 = DS.sign(skT , commTx, state

B
j+1).

4. Payment Acceptance
Alice checks that the signatures are valid, and if so, stores their own signa-

ture and forwards Bob’s signature back.

5. Payment Completion
Bob checks that the signature is valid, and if so, stores it. If they have not

received a signature yet after a time-out, Bob scans the public transaction log
for the signature. If it is not present, Bob creates a transaction to request 0 VAT
credit, in order to invalidate the previous incomplete transaction.

VAT credit returns If companies want to return their VAT credit, they can
create a one-sided transaction.

1. Transaction Initiation
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They runs zk-SNARKreturn.Prove to create πC
i+1 which proves the follow-

ing statement.

Given public values X = (serialCi , commTx, stateCi+1, balmax, pkT , commreq,in, i,
balCi+1, X, U , commreq,out, idC),
I know secret values W = (skC1, balCi , blindC

i , σC
i , blindTx, serialCi+1, blindC

i+1), such
that
1 == DS.Verify(pkT , stateCi , commC

Tx,i−1, σ
C
i )

commTx == CS.Commit(X + U, idC , 0, i, blindTx)
stateCi == CS.Commit(serialCi , balCi , idC , i, blindC

i )
stateCi+1 == CS.Commit(serialCi+1, bal

C
i+1, idC , i+ 1, blindC

i+1)
balCi ≥ (X + U)
balCi+1 == balCi − (X + U)
serialCi+1 == PRFserial,C .Gen(serialCi )

The company then sends commTx, serialCi , stateCi+1, π
C
i+1, i, bal

C
i+1, X, U to the

tax authority.

2. Transaction Execution
The tax authority checks that the serial number is unique and that the

check zk-SNARKreturn.Verify(πC
i+1,X) passes. If so, it publishes the trans-

action and signs and returns the new state and transaction commitment: σC
i+1 =

DS.sign(skT , commTx, state
C
i+1).

3. Acceptance
The company checks that the signature is valid, and if so, stores it.

6.3 Verifiable VAT Security Analysis

Given the similarity of our model with Platypus, most of their security analysis
holds also for our model. We introduce a couple of extensions and enhancements
where we introduce significant changes.

Transaction Integrity Claim (Balance Invariance) No computationally
bounded adversary without access to the simulation trapdoor of the zero-knowledge
proof system can create a transaction that increases the available funds in the
system or spends funds more than once.

In contrast to Platypus, the proof sketch must also take into account that
companies can formally request up to reqmax from the tax authority.

Proof extension. Consider the case where an adversary attempts to create a
credit request transaction that increases the account balance of the sender by
more than the global parameter reqmax. Since the value requested is committed
to using the transaction commitment commTx, which is created using a hiding
and binding commitment scheme, no computationally bounded party can open
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the commitment to a transaction value other than what was committed to origi-
nally. Since the proof of the transaction sender proves that their account balance
was increased by exactly the committed value, any adversary that could increase
the sender’s balance by a different value could be used to either break soundness
of the zk-SNARK proof system or to break the binding property of the com-
mitment scheme. Moreover, the same proof system allows a user to attest that
the sum of requested values thus far (committed to in commreq), stays below
reqmax. Because we assume the use of a secure authenticated broadcast channel,
the tax authority is ensured a company only uses and updates their own request
commitment. □

Bounds on maximum amount of fraud

ClaimTotal VAT credit surplus is bounded by total VAT credit deficit and
total unclaimed VAT credit

We can distinguish between VAT credit returns which result in a surplus Si,
or a deficit Di of VAT credit. The maximum deficit Di of each company equals
the maximum VAT credit they can request from the tax authority: reqmax. Recall
that the deficit and surplus respectively signal that a company has to pay VAT
to the tax authority or is eligible to receive back VAT. Call the total surplus
S =

∑
i Si and the total deficit D =

∑
i Di. Tax authority revenue is non-zero

if S < D.
Recall also that there is VAT credit U =

∑
i Ui which companies report to be

unclaimed - these were claimable in a real-world transaction by a counterparty,
but never were, potentially because the counterparty was a consumer.

We can prove that S ≤ D − U as follows:

– First assume a non-zero U and a single firm i = 1. There is no surplus S and
the VAT deficit, D1 must equal U1.

– Next, if any new firm sends a non-zero amount A of VAT credit to an existing
firm, e.g. firm i = 1, then either:
• A is less than or equal to D1, total S, D and U remain constant
• A is bigger than D1, total S and D will grow equally.

– If any firm has additional unclaimed VAT credit, this must either increase
total D or decrease total S.

We discuss methods to further bound fraud in section 4.1.

6.4 Proof of Interaction Protocol

We demonstrate an extension to Verifiable VAT which is of unique use to tackle
VAT fraud. We first highlight the intuitions, after which we demonstrate the
rolled out protocol additions.

Companies might not pay their VAT credit deficit and try to disappear. One
response to this is for the tax authority to put the disappeared companies on a
blacklist, so companies can prove whether or not they interacted with them. It’s
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very useful information for the tax authority to know who the buyer is, because
the VAT credit receiver might be collaborating with a fraudulent supplier in
order to siphon VAT from the tax authority. Proof of interaction with blacklisted
parties can provide grounds for audits or even reduction of VAT to get in return
for a VAT credit surplus.

A first naïve attempt to achieve this could involve each company maintaining
an accumulator which encodes a mapping of suppliers and buyers to the amount
of VAT credit received and sent respectively. At the end of the period, Compa-
nies share the proof that a certain (key, value) pair was included with the tax
authority. However, this construction has two issues:

1. The tax authority has no guarantee that the accumulator has actually been
updated with all or even any of the company’s confirmed VAT credit trans-
fers.

2. Accumulator constructions are typically not guaranteed to be hiding [TFZ+22],
[AR20], [CCDW20], so a company risks leaking the amount of VAT ex-
changed with non-blacklisted trading partners.

To overcome these issues:

1. Companies should generate a zk-SNARK which attests to the fact that up-
dates to the accumulator were made using all of a company’s signed trans-
action commitments.

2. Companies should not share the final accumulator directly, but rather prove
the value that it opens to for given blacklisted companies, keeping the accu-
mulator as private witness inputs.

Ideally, such a proof should incur minimal proving or communication over-
head. A natural candidate to prove and verify this efficiently is to leverage Incre-
mentally Verifiable Computation (IVC) using e.g. folding schemes [KST22]. This
allows a prover to produce a succinct proof of repeated invocation of the same
function. Note that folding schemes by themselves reveal the public function
input and output to the verifier [KST22]. Therefore, to avoid data leakage we
must ensure that the input and output of each IVC step is a hiding commitment
to the accumulator.

To make the scheme secure, we require that both state and transaction com-
mitments need to include:

– A transaction counter, which increments with each new transaction. This
will allow for tracking that all transactions are included in the Proof of
Interaction.

– Company ids referring to the sending and receiving company (in the case of
the tx commitment) or holding company (in the case of the state commit-
ment). This will allow for tracking which counterparties companies trans-
acted with.

We make the following adjustments to the Verifiable VAT protocol.
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– System Setup: the tax authority generates a public keypair with which
they can receive encrypted data.

– Company Enrollment: During enrollment, companies must prove they
included the correct company id into their initial state commitment. After
all companies are enrolled, all companies and the tax authority must initialize
the accumulator with the value 0 for each enrolled company.

– VAT credit transfers and requests: Companies must prove the same
company id is used across state commitments, and that each new state com-
mitment includes an incremented counter. Moreover, the tax authority must
sign the transaction commitment. After receiving back a signed transaction,
each company proves in one IVC step that a committed accumulator is up-
dated with a unique signed transaction commitment’s value.

– VAT credit returns The final counter, value, remaining balance and com-
pany id must be proven and revealed to the tax authority.

After the tax authority shares a blacklist of company ids, companies must
create a proof of how much VAT credit was traded with respective blacklisted
companies in the final accumulator. For this a company will need to prove knowl-
edge of the fact that:

1. n IVC steps were performed correctly and output a commitment accn, where
n equals the index revealed during the VAT credit return.

2. There exists a valid proof such that accn is an accumulator commitment to
a set of (sent and received) values (to and from) the blacklisted company
ids.

Rolled out protocol: Accumulating interactions Both the tax authority
and companies need to run AD.Setup. After all companies are enrolled, com-
panies and the tax authority run ADinit = AD.init, inserting for all registered
company identifiers the value 0.

Whenever a company requested or transferred VAT credit, they call IVC.Prove
for the following statement:

Given public values XIV C,i = (i, pkT , CommADi , CommADi+1 , idC),
I know secret values WIV C,i = (σ, statei, commTx, blindtx, blindAD, vTx, idsender,
idreceiver, updi), such that
DS.Verify(statei, commTx) == true
commTx == CS.Commit(vTx, idsender, idreceiver, index, blindTx)
index == i
is_sender := idC == idsender

is_receiver := idC == idreceiver
is_sender ∨ is_receiver
counterpartyi := is_sender?idreceiver : idsender

CommADi == CS.Commit(ADi, blindAD)
(i == 1 ∧ADi == ADinit) ∨ true
(ADi+1, updi) = AD.Update(ADi, (counterpartyi, is_sender), vTx)
CommADi+1 == CS.Commit(ADi+1, blindAD)
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Rolled out protocol: Proving interactions In theory, a Proof of Interaction
could be submitted with every new transaction. For simplicity, we describe a
scenario where a Proof of Interaction is required just once. If the tax authority
determines that a Proof of Interaction is required after n transactions regarding
a certain m possible counterparties, companies and tax authority run:

– zk-SNARKIVC-n.Generate
– zk-SNARKPOI-m.Generate

Companies run for each txtype and for each company K in the blacklist
B, ΛK,txtype = AD.Lookup(keyK,txtype, valK,txtype). These can be aggregated
into a single proof Λ = AD.Aggregate([ΛC,txtype]K∈B,txtype∈{send,receive}). If
the company itself is in the blacklist, they can exclude this entry.

Companies run zk-SNARKIV C−n.Prove to create πIV C which proves n
steps of IVCPOI were run correctly, and have as final output CommADn . Com-
panies also run zk-SNARKPOI−m.Prove to create πPOI which proves the
following statement.

Given public values XPOI,m = (CommADn , [(key, val)K,txtype]K∈B,txtype∈{send,receive}),
I know secret values WPOI,m = (Λ, blindAD), such that
commADn == CS.Commit(ADn, blindAD)
1 == AD.VerifyLookup(Λ,CommADn , [(key, val)K,txtype]K∈B,txtype∈{send,receive}

The company then sends πIV C , πPOI , XIV C,n and XPOI,m to the tax au-
thority.

Finally, tax authority will accept the proof if both the following pass:

– zk-SNARKIV C−n.Verify(πIV C ,XIV C,n)

– zk-SNARKPOI−m.Verify(πPOI ,XPOI,m)

6.5 Proof of Interaction Benchmark

In the following, we only implement and benchmark the steps unique to Proof of
Interaction. Performance of enrollment and VAT credit transfers/requests/returns
are similar to the original enrollment and transaction benchmarks in [WKDC22].

We benchmark the Proof of Interaction scheme using two instantiations of
authenticated dictionary accumulators, similar to those presented by [TFZ+22].

– We use a RSA accumulator construction with 100-bit security, originally
proposed in [AR20].

– We use a Poseidon-based Sparse Merkle Tree construction with 128-bit se-
curity.
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We instantiate IVC and zk-SNARKIVC over BN256 and Grumpkin (which
form a curve cycle) and the Nova library [Nov]. We instantiate zk-SNARKPOI
over BN256 using the Arkworks Groth16 library [ark]. We instantiate PRF and
Commit using Poseidon, and DS using schnorr.

We assume balmax = 264, and using 32-bit transaction counters and company
ids.

Given our existing constructions and trust assumptions, our benchmarks
show that merkle trees are more efficient than RSA accumulators for our pur-
poses. Only if the tax authority blacklists tens of thousands of companies, do
the asymptotic benefits of batched RSA accumulator proof verification kick in.
We briefly list avenues for optimizing both constructions in 4.2.

Algorithm # constraints Prover time (s) Proof size (bytes) Verifier time (s)

SMT

IVCPOI 18314 0.1 n.a. n.a.
zk-SNARKIVC-1 n.a. 0.1 10264 0.03

zk-SNARKIVC-100 n.a. 0.7 10639 0.03
zk-SNARKPOI-1 38853 0.2 200 0.2

zk-SNARKPOI-100 753099 2.1 200 0.2

RSA

IVCPOI 4143228 2.3 n.a. n.a.
zk-SNARKIVC-1 n.a. 13.5 12774 0.2s

zk-SNARKIVC-100 n.a. 14.5 13151 0.2s
zk-SNARKPOI-1 10484634 44 200 0.2

zk-SNARKPOI-100 10484634 44 200 0.2

Table 1. Concrete efficiency for both the Sparse Merkle Tree and RSA Key-Value
Accumulator constructions to run various operations. (1) IVCPOI to prove insertion
of a company’s transaction value into their accumulator (2) zk-SNARKIVC-n to prove
and verify compression of n-step IVCPOI (3) zk-SNARKPOI-m to prove and verify
the sent and received amounts from n random blacklisted counterparties. Tested on
M2 Max, 12 cores and 32 GiB RAM.

6.6 Proof of Interaction Security Analysis

Proof of Interaction Integrity and Privacy We now discuss the integrity
and privacy of the Proof of Interaction scheme.

Claim: No company can create a valid Proof of Interaction such that their
transacted amounts with blacklisted counterparties are not revealed to the tax
authority.

Working our way backwards, for a succeeding proof, assuming a sound Au-
thenticated Dictionary (AD), commitment scheme and zk-SNARK, companies
can only cheat by using a value of ADn which does not actually reflect their
accumulated state. There are several ways in which they can try to achieve this:
1. The companies does not start their AD as ADinit, as all parties compute it
during enrollment 2. The company does not verifiably update the AD with some
or any of their transfers 3. A verified update to the AD does not reflect the state
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of a confirmed transfer 4. The AD passed into an IVC step is not equal to the
AD passed into the previous IVC step.

1. ADinit is a public value, checked by the verifier in the first step of IVC
(which is proven in zk-SNARKIVC). 2. The zkp in each credit request and
transfer checks that the new state includes a counter one above the counter of
the previous state. In turn, each IVC step in the Proof of Interaction checks that
the counter equals the IVC step index. Finally the verifier checks that the final
IVC step counter equals the counter in the final state during the VAT credit
return. So the company cannot exclude any transfer. 3. Each state can be used
exactly once, because at each IVC step, the index is increased. In turn, at each
IVC step, the AD must be updated with the values of the new state. The com-
pany can try to use a different a. transfer amount b. sending company id c.
receiving company id, but these are all directly derived from the commitment
responsible for the signed updated states, and inextricably linked by a trans-
fer zkp: any increase in transfer amount to a receiving company’s id, must be
increased on the state commitment with the receivingid, which in turn must
consume a state commitment with the same id - the same argument holds for
the sendingid. The question remains how a company’s first state commitment
has the correct id encoded. This is enforced by the tax authority during enroll-
ment, because the id is a public input to the enrollment creation zkp. Because we
assume a secure authenticated broadcast channel, the tax authority can enforce
the use of the correct company id. 4. This is guaranteed by the underlying IVC
scheme.

Claim. A valid Proof of Interaction does not reveal anything other than a
company’s transacted amounts with blacklisted counterparties to the tax author-
ity.

The final zk-SNARKIVC and zk-SNARKPOI verification does not use
and reveal any sensitive public inputs related to a company’s transacted amounts
with parties other than the counterparties. Companies do leak the total number
of transactions they created on each of their accounts.

Claim. A valid Proof of Interaction does not reveal anything to any party
other than the tax authority.

We assume a secure authenticated broadcast channel between companies and
the tax authority, ensuring no data leaks when the Proof of Interaction is shared.
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