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Abstract. In this work, we put forth the notion of dynamic zk-SNARKs.
A dynamic zk-SNARK is a zk-SNARK that has an additional update al-
gorithm. The update algorithm takes as input a valid source statement-
witness pair (x,w) ∈ R along with a verifying proof π, and a valid target
statement-witness pair (x′,w′) ∈ R. It outputs a verifying proof π′ for
(x′,w′) in sublinear time (for (x,w) and (x′,w′) with small Hamming
distance) potentially with the help of a data structure. To the best of
our knowledge, none of the commonly-used zk-SNARKs are dynamic—a
single update in (x,w) can be handled only by recomputing the proof,
which requires at least linear time. After formally defining dynamic zk-
SNARKs, we present two constructions. The first one, Dynarec, is based
on recursive zk-SNARKs, has O(logn) update time and is folklore, in the
sense that it shares similarities (and limitations such as small number
of compositions and heuristic security) with existing tree-based Incre-
mental Verifiable Computation (IVC) schemes. Our second and central
contribution is Dynaverse, a dynamic zk-SNARK based on a new dy-
namic permutation argument that we propose and whose security rests
solely KZG commitments. Dynaverse has O(

√
n logn) update time and

proofs of O(logN) size. As a central application of dynamic zk-SNARKs,
we build a compiler from any dynamic zk-SNARK to a non-trivial (i.e.,
sublinear) scheme for recursion-free IVC, allowing us for the first time
to base non-trivial IVC security solely on KZG commitments, therefore
removing any bound on the number of allowed iterations as well any
reliance on heuristic security. We also detail additional applications of
dynamic zk-SNARKs such as dynamic state proofs and keyless authen-
tication. Our preliminary evaluation shows that Dynaverse outperforms
baseline PLONK proof recomputation by up to approximately 500× as
well as heuristically-secure and asymptotically-superior Dynarec by up to
one order of magnitude.

1 Introduction

Data structures are fundamental tools in computer science, enabling us to
efficiently update the result of a computation whenever data inputs change.
In this paper we put forth the problem of “data structures for zk-SNARKs”
and accordingly introduce the notion of dynamic zk-SNARKs—SNARKs with
efficiently-updatable proofs.
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Table 1. Comparison of Dynarec with Dynaverse (w/o and with IPA [9]). k is the
number of updates between source and target statements and with n the number of
multiplication and addition gates.

scheme keygen prove update verify proof prover key verifier key security
G P U V |π| |pk| |vk|

Dynarec n n logn k logn 1 1 n 1 heuristic
Dynaverse n n logn k

√
n logn

√
n
√
n n

√
n KZG

Dynaverse (IPA) n n logn k
√
n logn logn logn n logn KZG

Consider for example the following “commit-and-prove” map-reduce appli-
cation appearing in zk-coprocessors (e.g., [2]), where a dynamic zk-SNARK is
useful: A prover Merkle-commits to a set of elements x1, . . . , xn outputting a
commitment d. Then the prover provides a proof π for the public statement
(d, cnt), where cnt is the number of elements xi satisfying a fixed predicate
(e.g., signature verification under a public key). Now, whenever any element
xi of the Merkle tree changes (e.g., during a database update), a dynamic zk-
SNARK would provide a way to update π to π′ efficiently without requiring proof
recomputation—just as the Merkle commitment can be efficiently updated with-
out recomputation. Of course, appending a Merkle proof for the changed element
to the existing SNARK proof and re-computing the predicate on the verified,
updated Merkle element would not work, since the SNARK proof after t updates
would be proportional to t—in this work we aim to have succinct dynamic proofs
(We detail more applications of dynamic zk-SNARKs in Sections 1.5 and 6.)

We begin this line of work by first formally defining dynamic zk-SNARKs—
see Definition 2. Naturally, a dynamic zk-SNARK for a relation R is a SNARK
(G,P,V) with an additional update algorithm U : Algorithm U , run by the prover,
takes as input a valid source statement-witness pair (x,w) ∈ R along with a
verifying proof π and a valid target statement-witness pair (x′,w′) ∈ R. It out-
puts a verifying proof π′ for (x′,w′) without running P from scratch, potentially
with the help of a data structure aux. In particular, we are only interested in
an algorithm U whose running time for a single change in (x,w) is sublinear.
To the best of our knowledge, none of the commonly-used zk-SNARKs, such
as Groth16 [20], PLONK [19], Bulletproofs [10] and Orion [34], are dynamic: A
single update in (x,w) can be handled only by recomputing the proof, which
requires at least linear time. Most of the times, this is due to Fiat-Shamir, that
outputs randomness crucially depending on all circuit wires, or the use of poly-
nomial division, which is sensitive to the changes on the dividend polynomial
encoding wire values.

1.1 Dynarec: A dynamic zk-SNARK from recursion

While dynamic zk-SNARKs have not been formally defined before in their
generality, there have been some constructions of dynamic proof systems for
specific types of computation (but not for general-purpose computation), cru-
cially relying on recursive zk-SNARKs [6]. For example, Incremental Verifiable
Computation (IVC) [32] uses recursive zk-SNARKs to support dynamic chain
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computations, and Reckle trees [26] use recursive zk-SNARKs to support dy-
namic batch proofs in vector commitments.

Our first “warm-up” contribution is Dynarec, a folklore generalization of the
aforementioned approaches to general-purpose computation—see Section 3.1.
Dynarec is a dynamic zk-SNARK based on recursion. While Dynarec has ex-
cellent asymptotic complexities (O(log n) update time), it suffers from standard
efficiency and security issues shared by all approaches performing recursive com-
position of SNARKs: In particular, recursive zk-SNARKs are not particularly
practical, and the ones the seem to be (e.g., Plonky2 [31] or folding schemes
that can implement recursive relations like Nova [23]) have verifiers that must
call a random oracle which must then be encoded in the proven relation, leading
to only heuristic security proofs (unless unconventional random oracle models
are to be considered [16]). In addition, in order to recurse log n times (which is
needed for Dynarec), an assumption on the size of the underlying extractor is re-
quired (to avoid exponential blowup of the final extractor), in particular that the
extractor size is at most a constant times the prover size [7] (In general, recursing
beyond log n requires much stronger assumptions.) These security and efficiency
limitations motivate our next construction, Dynaverse, summarized below.

1.2 Dynaverse: A dynamic zk-SNARK from KZG

Our second and central contribution, Dynaverse, is a dynamic zk-SNARK that
is not using recursive SNARKs and is based solely on KZG commitments [21]. It
has O(

√
n log n) update time (see Table 1 for comparison). Dynaverse’s technical

highlights are summarized in the following.
From Plonkish arithmetization [19], recall that the wire assignment of a cir-

cuit C with n addition gates, n multiplication gates, n0 public inputs and wire-
consistency permutation σ (of size N = 6n+n0) can be described with six n-sized
vectors z1, z2, z3, z4, z5, z6 and one n0-sized vector z7 such that: (i) z1 and z4
store the left inputs of addition and multiplication gates respectively; (ii) z2 and
z5 store the right inputs of addition and multiplication gates respectively; (iii)
z3 and z6 store the outputs of addition and multiplication gates respectively;
(iv) z7 stores the public inputs. Also recall that z = [z1 z2 z3 z4 z5 z6 z7] is a
satisfying assignment of C if and only if

– z[i] = z[σ[i]], for all i = 1, . . . , 6n+ n0 (copy constraint).
– z[i] + z[n+ i] = z[2n+ i], for all i = 1, . . . , n (add gate constraint).
– z[3n+ i] · z[4n+ i] = z[5n+ i], for all i = 1, . . . , n (mult gate constraint).

At a very high level, most known zk-SNARKs (e.g., [19]) commit to z and
provide a proof π that z satisfies all three relations above. Our task is to find a
way to do that so that π is efficiently updatable whenever some z wires change.
First step: Dynamo, a dynamic permutation SNARK. The most crucial
piece of our construction is Dynamo, a dynamic permutation SNARK (or per-
mutation argument, as is commonly known) that we build with O(1) proof size
and O(1) update time—see Section 4. In particular, Dynamo allows a prover
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to commit to z using KZG [21] and provide a proof that the copy constraint
is satisfied for a given σ. Dynamo’s proof can be updated, whenever say, the z
values of a k-size cycle in σ change, in O(k) time. To the best of our knowledge,
this is the first permutation SNARK with such an updatability property, and
it could potentially have other applications. To construct Dynamo, the prover
KZG-commits to z with a standard univariate Lagrange polynomial, i.e.,

[z(X)] =

[∑
i

Li(X) · zi

]
,

where [z(X)] is the KZG commitment of polynomial z(X). The permutation σ
is KZG-committed to with another carefully-constructed bivariate polynomial

[σ(X,Y )] =

[∑
i

Li(X) · (Y i − Y σ−1(i))

]
,

which is held by the verifier. Our main observation is that the polynomial∑
i

zi · (Y i − Y σ−1(i))

is identically 0 if and only z satisfies the copy constraint. Dynamo provides a
proof for exactly that, on input commitment [z(X)] (from prover) and [σ(X,Y )]
(from verifier). Importantly, the Dynamo proof consists of 15 group elements (see
Table 2), all of which can be expressed as linear combinations of z and other
fixed polynomials (see Theorem 1). Therefore all group elements are efficiently
updatable with a single group operation.
Second step: Dynamically enforcing gate constraints. To complete the
construction of Dynaverse, what is left to do is provide a proof π that the commit-
ment z also satisfies the gate constraints, in a way that π is also updatable—see
Section 5. The most challenging part of this step is to deal with multiplication
constraints: To prove multiplication constraints, we use a standard approach
from PLONK [19], namely a zero test on {1, . . . , n} for the polynomial

τ(X) = z(3n+X) · z(4n+X)− z(5n+X) ,

which is done by returning a commitment to the quotient polynomial A(X) =
τ(X)/

∏
i(X − i). Unfortunately the commitment [A(X)] is not efficiently up-

datable: A single change in z will completely change the quotient polynomial
and therefore the update would take at least linear time (We note here that the
same idea applied to addition constraints yields a quotient polynomial that is
efficiently updatable, due to the linearity of addition!)
Addressing the expensive division problem: Bucketization. A natural
way to address the expensive division problem is to “bucketize” the first 6 · n
entries of vector z into 6 ·m buckets of size m, where m =

√
n. Let zij be the

m-sized bucket that starts at position (i−1)n+(j−1)m+1 of z for i = 1, . . . , 6
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and j = 1, . . . ,m. Now the prover will commit to 6 · m buckets outputting
6 ·m commitments [zij(X)]. Due to this bucketization, we can prove multiplica-
tion constraints by providing m commitments of smaller quotient polynomials
[Ai(X)] (instead of a single commitment of one large A(X)), with the effect that
any update can be handled in m =

√
n time since whenever a wire changes,

we only need to update the quotient commitment [Ai(X)] of the bucket that
contains it. Therefore the update time of this approach becomes O(

√
n) and the

proof size also becomes O(
√
n). Thankfully though, by using a proof system for

pairing equations [9], we reduce the proof size and verification time to O(log n).
Wrapping up: Adjusting the permutation SNARK. We finally note that
due to bucketization, we cannot apply Dynamo for copy constraints any more:
Dynamo was meant to be applied to the whole vector z. Instead, what we do is
apply a slight generalization of Dynamo to each bucket zij , called Dynamix—see
Section 4.1. Dynamix provides proofs that the local values of zij are consistent
with the permutation σ. Figure 11 in Appendix H illustrates how Dynaverse
performs bucketization and utilizes quotient and Dynamix proofs.

1.3 From dynamic zk-SNARKs to recursion-free IVC

As a central application of dynamic zk-SNARKs, we propose a compiler
from dynamic zk-SNARKs to a version of IVC [6] that is recursion-free and has
sublinear time per iteration, showing for the first time that non-trivial, fully-
secure IVC is possible—see Section 6. Recall that in IVC, there is an initial
input z0 and a function F of size n, and the goal of the prover is to provide a
proof for the public statement (i, z0, zi), meaning that zi is the output of F on
z0 a number of i times, i.e., there exist zi−1, . . . , z1 and wi−1, . . . , w0 such that

zi = F(zi−1, wi−1), zi−1 = F(zi−2, wi−2), . . . , z1 = F(z0, w0) ,

where the wi’s denote non-deterministic inputs. An important feature in IVC is
that if one is given a proof πi for the statement (i, z0, zi), one should be able to use
that proof to derive a proof for (i+ 1, z0, zi+1). Technically this is implemented
by producing a proof πi+1 for a recursive SNARK circuit that verifies (i, z0, zi)
through πi and simply outputs zi+1 = F(zi). While space-efficient (the SNARK
circuit used is independent of the number of iterations), the security of the above
IVC construction faces two challenges, as we discussed before: First, it cannot
be proven beyond log λ iterations due to extractor blowup [7] (For example,
the security definition of IVC in [22] is stated only for a constant number of
iterations.) Second, when efficient recursive zk-SNARKs are used [31], one needs
to encode the random oracle in the SNARK circuit, leading to an additional
heuristic security argument. In conclusion, concretely-efficient IVC implemented
with recursion faces severe security limitations.
Removing recursion at the expense of fixing the number N of IVC
iterations: A naive O(N2) approach. Our proposal is to remove recursion
from IVC by considering a different model, one which requires the number N
of IVC iterations to be fixed ahead of time. While this seems to be a departure
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Fig. 1. Circuit FN for recursion-free IVC using dynamic zk-SNARKs. We do not in-
clude non-deterministic input for simplicity. When proceeding from step 2 (1100) to
step 3 (1110), only Õ(1) wires change, indicated with orange above.

from the original IVC model, it is really not: The original IVC model restricts
the number of iterations it can perform to constant or logarithmic due to the
aforementioned extractor blowup problem [7], while our model allows this bound
to be increased to any polynomial. In this setting, consider the following naive
approach to implement IVC.

– There is an initial setup phase where N different SNARK circuits C1, . . . , CN

are initialized, where circuit Ci contains i applications of F (hence it has size
O(i)) starting with z0 and proves the statement (i, z0, zi), without using
recursion. Clearly setting up the public parameters for all N circuits would
require time 1 + . . .+N = O(N2).

– Once these parameters have been setup, the prover can produce the proof
πi by running a proof for the SNARK circuit Ci. Crucially, in the proof
πi, it appends all witnesses w0, . . . , wi, so that to ensure that πi+1 can be
computed from πi—a foundational requirement of IVC.

Clearly, the above approach has severe efficiency and privacy limitations.
First, the amount of computation and communication required is O(N2) and
the work per iteration is linear. Additionally, including the witnesses as part
of πi is not zero-knowledge. We observe that both limitations above can be
addressed with dynamic zk-SNARKs.
Our approach: Efficient recursion-free IVC from dynamic zk-SNARKs.
Our idea to address the above inefficiency is to use a dynamic zk-SNARK (e.g.,
Dynaverse) on a special circuit FN of size N that has the following properties.

– On input a counter i, initial value z0 and final value zi it checks whether zi
is the i-th application of F on z0.

– Every neighboring public statements (i, z0, zi) (with corresponding witness
wi) and (i+1, z0, zi+1) (with corresponding witness wi+1) differ only in Õ(1)
wires. Note that this requires special care. For example, we had to pass the
counter i in unary (we show how this does not affect the verifier efficiency
in Section 6) and we had to sum N elements on a binary tree, instead on a
line—see Figure 1.
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The general description of the circuit can be found in Figure 4. Given the circuit
FN , it is now natural to build recursion-free IVC using a dynamic zk-SNARK
(G,P,U ,V) on FN in the following way.

1. In the setup phase, one can compute the public parameters of FN by running
G. Also we compute an initial proof π0 for the public statement (z0, 0, z0)
using algorithm P. Note that π0 can be computed ahead of time and can be
used as a starting point, irrespective of the future inputs zi.

2. On input πi−1, one can compute the proof πi using U from the dynamic
SNARK. Because neighboring statements differ by only Õ(1) number of
wires, computing π takes time almost equal to the SNARK update time.

If we use Dynaverse, this construction provides a recursion-free IVC with Õ(
√
N)

step computation and communication time (as opposed to O(N) of the naive
approach), and O(logN) proof size. We also note here, that due to the way
Dynaverse prover works, if a single proof every

√
N iterations is to be produced

(as opposed to every single iteration), then our a recursion-free IVC has Õ(1)
amortized step computation and communication time. Clearly, if a recursion-
free dynamic zk-SNARK with better update time is constructed in the future,
it could serve as drop-in replacement for the IVC construction, leading to better
complexities. The detailed construction is described in Section 6.

1.4 Evaluation

In Section 7 we present an initial prototype implementation of Dynarec (using
the Plonky2 recursive SNARK [31]) and Dynaverse. Our main findings are:

1. (Dynaverse update v. recomputing with PLONK [19]) Updating a Dynaverse
proof is up to approximately 500× faster (n = 224) than recomputing a
PLONK proof from scratch. This is to be expected, given the asymptotics.
However, Dynaverse verification time and proof size are more larger but rea-
sonable, up to 0.293s for verification and 768 KiB for proof size when n = 224.

2. (Dynaverse v. Dynarec.) Although Dynarec is superior asymptotically, we have
found that its prover is 30× to 55× slower than Dynaverse, while also be-
ing heuristically-secure, as opposed to Dynaverse, whose security is based
on KZG commitments. We expect using more practical implementations of
recursion, such as folding schemes with Nova [23], to narrow this gap.

1.5 Other applications of dynamic zk-SNARKs

In this section, we detail other applications of dynamic zk-SNARKs mainly
from the blockchain domain.
Updating block proofs. In Ethereum, consider computing a SNARK proof pi
for the following query on block i: What is the number of accounts in block i
that have balances greater than 50? The answer changes for block i + 1. With
dynamic SNARKs, the proof pi+1 can be computed in time proportional to
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the number of changing balances, which is small (bounded by the size of the
block) compared to the total number of ETH accounts (in the millions). This is
the motivation behind the Merkle example presented in the introduction. This
technology is currently explored by several early-stage companies for verifiably
querying on-chain data, including Axiom, Space and Time, Lagrange.
Digest translation. Ethereum data are stored with a Keccak-based authenti-
cated data structure—Merkle Patricia Trie (MPT). Computing SNARK proofs
directly on MPTs is notoriously slow, due to Keccak’s SNARK unfriendliness.
Therefore one can build another MPT using Poseidon, a SNARK-friendly hash,
for this purpose. In this case, a proof of digest translation is required, to en-
sure that the two digests are computed on the same data, yet with different
hash functions. This proof will have to be maintained from block to block, and
just as before (low entropy from block to block), one can use dynamic SNARKs
to do that efficiently. This technology is currently implemented, using Reckle
trees [26], in Lagrange’s prover network [1].
zkLogin systems. In zkLogin systems [4], users can log into web services with-
out explicitly sending their credentials. This is achieved by providing a zero-
knowledge proof for a specific statement/witness pair (x,w). In particular in
the recent zkLogin system [4], the public statement is x = (pkop, id, addr, T, vku)
and the witness is w = (token, r1, r2). Whenever a client tries to reconnect to
the web service, pkop and id remain the same, and thus a dynamic zk-SNARK
could alleviate the cost of recomputing the proof.
Verifiable inference of dynamic models. Consider a situation where an ML
service provider has generated a proof π to prove that the inference result for
input x is correct with respect to a committed model m. If the model is updated
to m′, the service provider can use dynamic zk-snarks to update π to prove the
inference result on x under the updated model m′. We remark that updating the
proofs is particularly relevant for models like decision trees [35], where only a
portion of the model changes on retraining, as opposed to deep neural networks,
where most weights undergo significant changes.

1.6 Other related work

Authenticated data structures and dynamic vector commitments. Dy-
namic proof systems have appeared before in the literature but with limited
expressiveness. For example, authenticated data structures [30] and updatable
vector commitments [13,29] are dynamic proof systems for simple data structure
queries, such as membership, range search and vector queries. Other examples
include certain constructions for batch-membership proofs, e.g., [11], as well as
functional vector commitments supporting linear functions, e.g., [12].
Malleable proofs and homomorphic proofs. Another related line of work
is that of malleable proofs [14]. The goal of a malleable proof system is to com-
pute a proof p′ for a statement x′, on input a proof p for a related statement x,
without knowing the witness w′ for x. Due to this, the extractability property
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is weaker, i.e., not guaranteed to extract a witness for derived proofs. Regard-
ing homomorphic proofs [3], given only the proofs p1, . . . , pn for the outputs of
circuits y1 = C1(x1), . . . , yn = Cn(xn), the goal is to compute a proof p′ for
a circuit C ′ over the yi values, without requiring xi’s. Unfortunately, it is not
possible to capture arbitrary updates on the original data in this model.

Finally, we note that in neither malleable nor homomorphic proofs do the def-
initions explicitly capture the performance requirement that updates are faster
than proof recomputation. In fact, all proposed schemes have linear-size proofs,
i.e., they are not succinct.

2 Preliminaries

Roots of unity and vectors. For m power of two, we denote with ω the
m-th root of unity in a field F, i.e., ωm = 1. We also use Ω to denote the
set of m-th roots of unity, i.e., Ω = {ω, . . . , ωm}. The Lagrange polynomial is
Li(X) = ωi(Xm − 1)/m(X − ωi) such that Li(ω

i) = 1 and Li(ω
j) = 0 (i ̸= j).

[n] is the set {1, . . . , n} and [n1, n2] is the set {n1, n1 + 1, . . . , n2 − 1, n2}.
Bilinear groups. Let ppbl := (p,G,GT , e, g) ← Gbl(1λ) denote the pairing
parameters. In particular G is a group of prime order p, g is a generator of G
and pairing function e : G × G → GT is such that ∀u,w ∈ G and a, b ∈ Zp,
it is e(ua, wb) = e(u,w)ab. We note here that our actual implementation is
using asymmetric pairings for efficiency, but we use symmetric pairings in our
presentation for notational convenience.
KZG commitments. Let (p,G,GT , e, g)← Gbl(1λ) be bilinear pairing param-
eters and let secret α ∈ F be chosen at random. A trusted party outputs the
elements g, gα, . . . , gα

q

for some polynomially-large q. For univariate polynomial
f(X) over variable X, the KZG commitment [21] of f is gf(α), which we write
as [f(X)]. The celebrated KZG commitment [21] allows a prover to commit to a
polynomial f(X) via [f(X)] and run a zero-check, i.e., prove that the commit-
ted polynomial satisfies f(xi) = 0 for a set of points x1, . . . , xt. To do that, the
prover computes the quotient polynomial q(X) = f(X)/

∏
i∈[t](X−xi) and out-

puts the commitment [q(X)] as a proof. To verify, the verifier uses the bilinear
map to check that

e([f(X)], g) = e

[q(X)],

∏
i∈[t]

(X − xi)

 .

Our protocols rely heavily on the KZG zero-check.
KZG variable check. We will be using KZG commitments on bivariate polyno-
mials f(X,Y ) as well, in which case the trusted setup outputs {gαiβj}i,j=0,...,q,
for random α and β, or {[XiY j ]}i,j=0,...,q. Variable check is a useful tool to ensure
a polynomial does not contain a specific variable. In particular, when a prover
commits to polynomial f(X), we want to ensure that variable Y is not present.
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To do that, we ask the prover to provide a KZG commitment to f(X) · Y q as
well, and we use the pairing to check whether

e([f(X)], [Y q]) = e([f(X) · Y q], g) .

Clearly, if Y was present in f(X), the prover would not have been able to com-
pute [f(X) ·Y q] since the commitment [Y q+1] is not output as part of the setup.
Indexed relations and permutation relation. We use i to denote an indexed
relation, i.e., the description of the circuit checking a public statement x and
a witness w. We slightly abuse notation and write (x,w) ∈ i iff running i on
(x,w) returns 1, so i is both the description of the computation and the set
of valid tuples in the language. For example, the indexed relation iP = [n, σ],
where σ is a permutation of size n over domain F, contains those w such that
w[i] = w[σ[i]] for all i (Note x = ∅.)
Plonkish arithmetization. Per Plonkish arithmetization [15,19], an index iC =
[n, n0, σ] is an indexed relation for a fan-in 2 arithmetic circuit C over F with n0

input gates (n0 ≤ n), n addition gates and n multiplication gates (padding can
handle the general case), where:

– Gate 1 to n are addition gates, gate n+1 to 2n are multiplication gates, and
gates 2n+ 1 to 2n+ n0 are input gates (holding the public statement).

– σ ∈ [6n+ n0]
6n+n0 is a permutation vector describing the wire connections.

For every addition gate i (1 ≤ i ≤ n), its left input, right input and output
are labeled by i, n+ i, 2n+ i respectively. Similarly, for every multiplication
gate i (n+ 1 ≤ i ≤ 2n) its left input, right input and output are labeled by
2n + i, 3n + i, 4n + i respectively. Input wires are labeled from 6n + 1 to
6n + n0. For example, if addition gate i’s right input is connected to input
wire j, then we may have σ[6n+ j] = n+ i.

For any fixed index iC = [n, n0, σ] describing a circuit C, an instance of public
inputs x ∈ Fn0 , and a witness w ∈ F6n, let z = [w;x] ∈ F6n+n0 . We have
(x,w) ∈ iC if and only if the following hold: (a) (∅, z) ∈ iP = [6n + n0, σ]. (b)
∀i ∈ [n], z[i] + z[n+ i] = z[2n+ i] and z[3n+ i] · z[4n+ i] = z[5n+ i].
Extractors. Following [20] we write (a; b)← (A||EA)(x) to indicate that adver-
sary A and extractor E are given the same input x and output a and b respec-
tively. We write EA to indicate that E also takes as input A’s state, including
any random coins.

zk-SNARKs. We now present the definition of circuit-specific zk-SNARKs [20].
For zk-SNARKs with universal setup, algorithm G below is separated into two
algorithms, a universal generation G(1λ, |i|) → pp and an indexer I(pp, i) →
(pk, vk). To avoid complexity in our presentation, all our constructions are pre-
sented as circuit-specific, but we show how to turn them into universal. In both
circuit-specific and universal zk-SNARKs, algorithm G must be trusted.

Definition 1 (zk-SNARKs). A zero-knowledge succinct non-interactive ar-
gument of knowledge (zk-SNARK) for an indexed relation i is a tuple of PPT
algorithms S = (G,P,V) with the following interface:
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– G(1λ, i)→ (pk, vk) : Outputs prover key pk and verifier key vk.
– P(pk,x,w) → (π, aux) : Given proving key pk, instance x, and witness w,

outputs proof π.
– V(vk,x, π) → 0/1 : Given verification key vk, instance x, and a proof π,

outputs accept or reject.

A zk-SNARK S should have polylog-sized proofs and satisfy the following prop-
erties.

– Completeness: Let G(1λ, i) → (pk, vk). We say that S satisfies completeness
if for any i, for any (x,w) ∈ i, if π ← P(pk,x,w), then V (vk,x, π)→ 1.

– Knowledge Soundness: We say that S satisfies knowledge soundness if for any
PPT adversary A and for any i there exists a PPT extractor EA such that

Pr

G(1
λ, i)→ (pk, vk); ((x, π);w)← (A||EA)(pk, vk)

:

V(vk,x, π)→ 1 ∧ (x,w) /∈ i


is negligible.

– Zero Knowledge: Fix any i and (x,w) ∈ i. Let D be the distribution of π as
output by the experiment below.
1. G(1λ, i)→ (pk, vk).
2. π ← P(pk,x,w).

We say that S satisfies zero-knowledge if there exists a PPT simulator S
such that the distribution D̃ of π̃ output by the following experiment is
computationally-indistinguishable from D.
1. (pk, vk)← S(1λ, i).
2. π̃ ← S(pk, vk,x).

The zero-knowledge definition naturally extends to statistical/perfect zero-
knowledge.

Algebraic group model and q-DLOG assumption. For our security anal-
ysis, we will use the algebraic group model from [18]. In our protocols, by an
algebraic adversary A we refer to a PPT algorithm which satisfies the follow-
ing: Given lists of initial group elements L ∈ Gn, whenever A outputs a group
element g ∈ G, it also outputs a vector g ∈ Fn such that g =

∏
j∈[n] L[j]

g[j].
Finally, as in [18,19], our security also rests on the q-DLOG assumption, which
we present in the following.

Assumption 1 (q-DLOG) Fix integer q. For any PPT adversary A, given
ppbl ← Gbl(1λ) and (g, gτ , . . . , gτ

q

) where τ
$← F, the probability of A outputting

τ is negl(λ).

We also present two standard lemmata with respect to the algebraic group
model (polynomial check and variable check) in a more general form that will
be useful for our proofs—see Appendix E.
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3 Dynamic zk-SNARKs definition and a construction
based on recursion

In this section we present the formal definition of dynamic zk-SNARKs and
Dynarec—a heuristically-secure dynamic zk-SNARKs construction. Our dynamic
zk-SNARKs definition (Definition 1) is an extension of the original zk-SNARKs
definition in two ways, as we explain below.

First we require an updatability property, stating that there should be an
update algorithm U , such that, on input a valid instance (x,w) along with
its proof π, a “data structure” aux and another valid instance (x′,w′) that has
“small” Hamming distance k from (x, w), it should be able to output the updated
proof π′ (along with the updated data structure aux′) in time strictly less than
T (P), where P is the prove algorithm of the SNARK. Note the requirement
for “small” Hamming distance is necessary: If, say, a linear number of positions
change from (x,w) to (x′,w′), it will be impossible to update the proof in
sublinear time: If such an algorithm existed, it would have to ignore some of the
updates.

Second, we must slightly modify the definition for zero-knowledge. Now the
simulator is asked to simulate not a single proof, but a series of honestly-
generated proofs that are produced by running the update algorithm.

Definition 2 (Dynamic zk-SNARKs). A dynamic zero-knowledge succinct
non-interactive argument of knowledge (dynamic zk-SNARK) for an indexed re-
lation i is a tuple of PPT algorithms DS = (G,P,U ,V) with the following inter-
face:

– G(1λ, i) → (pk, upk, vk) : Given 1λ and an indexed relation i, outputs a
proving key pk, an update key upk and a verification key vk.

– P(pk,x,w) → (π, aux) : Given proving key pk, instance x, and witness w,
outputs a proof π and an extra auxiliary information aux.

– U(upk,x′,w′,x,w, π, aux)→ (π′, aux′) : Given update key upk, new instance
x′, new witness w′, the previous proof π for instance x and witness w and
auxiliary information aux, outputs a new proof π′ for x′ and w′, and new
auxiliary information aux′.

– V(vk,x, π) → 0/1 : Given verification key vk, instance x, and a proof π,
outputs accept or reject.

A dynamic zk-SNARK DS should have polylog-sized proofs and satisfy the fol-
lowing properties.

– Updatability: We say that DS satisfies updatability if there is a function
f(|x| + |w|) = o(|x| + |w|) such that algorithm U(upk,x′,w′,x,w, π, aux)
runs in time O(k · f(|x|+ |w|)), where k is the Hamming distance of vectors
x||w and x′||w′.4

4 Note that for k = o (T (P)/f(|x|+ |w|)), where T (P) is the prover’s runtime, this is
o(T (P)), as desired. Besides, for simplicity of notation, we write x′,w′,x,w as ex-
plicit inputs of U but, in practice, it suffices to receive the old and new instance/wit-
ness elements at the k modified positions.
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– Completeness: Let (pk, upk, vk) ← G(1λ, i). We say that DS satisfies com-
pleteness if for any i, for any (x0,w0) ∈ i, . . . , (xℓ,wℓ) ∈ i, if (π0, aux0)←
P(pk,x0,w0) and, (πi+1, auxi+1) ← U(upk,xi+1,wi+1,xi,wi, πi, auxi), for
i = 0, . . . , ℓ− 1, then V (vk,xℓ, πℓ)→ 1.

– Knowledge Soundness: We say that DS satisfies knowledge soundness if for
any PPT adversary A and for any i there exists a PPT extractor EA such
that

Pr

(pk, upk, vk)← G(1
λ, i); ((x, π);w)← (A||EA)(pk, upk, vk)

:

V(vk,x, π)→ 1 ∧ (x,w) /∈ i


is negligible.

– Zero Knowledge: Fix any i and (x0,w0) ∈ i, . . . , (xℓ,wℓ) ∈ i for some poly-
nomially bounded ℓ. Let D be the distribution of (π0, . . . , πℓ) as output by the
experiment below.
1. (pk, upk, vk)← G(1λ, i).
2. (π0, aux0)← P(pk,x0,w0).
3. (πi+1, auxi+1)← U(upk,xi+1,wi+1,xi,wi, πi, auxi), for i = 0, . . . , ℓ− 1.

We say that DS satisfies zero-knowledge if there exists a PPT simulator S
such that the distribution D̃ of (π̃0, . . . , π̃ℓ) output by the following experiment
is computationally-indistinguishable from D.
1. (t, pk, upk, vk)← S(1λ, i).
2. (π̃0, . . . , π̃ℓ)← S(t, pk, upk, vk,x0, . . . ,xℓ).

This definition also extends to statistical / perfect zero-knowledge.

Remark. There could be an alternative definition for zero knowledge which re-
quires that the output of U is indistinguishable from the output of P. This
is a stronger notion but our definition above is still meaningful, e.g., in some
blockchain applications it is public knowledge that updates take place. In fact,
our constructions also satisfy this indistinguishability definition.

3.1 Dynarec: Dynamic zk-SNARKs from recursive zk-SNARKs

We now provide a dynamic zk-SNARK scheme that satisfies our definition
and uses a recursive SNARK as a black box. Our construction is similar to Man-
grove [25], that builds a highly parallelizable SNARK from Proof-Carrying-Data
(PCD), with necessary modifications to make it updatable (See end of section for
a detailed comparison.) As we mentioned, Dynarec is a folklore construction—we
give a high-level description here and the full construction is provided in Figure 8
in Appendix B.

At a high level, our protocol for i = [n, n0, σ] works as follows. Consider a
binary tree with n leaves, where each leaf i is a small circuit Ci verifying the
integrity of one addition gate and one multiplication gate, and each internal
node is a small circuit D verifying the proofs of its children (This is where a
recursive SNARK is needed.) In particular, for every leaf i, its circuit checks
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if the gate constraints hold for the i-the addition and multiplication gates. In
order to ensure that each leaf circuit i verifies the correct indices from z, we
hard-code the 6 indices σ(jn + i) for j ∈ [0, 5] in it, i.e., our construction has
a circuit-specific setup phase.5 Likewise, for internal nodes, we hard-code the
specific (vkL, vkR) keys corresponding to its children node circuits.

The above check guarantees that the input values in each circuit satisfy the
gate constraints. We also need to ensure that collectively the values of z that
the prover used satisfy the copy constraints, which may need to span checking
across different circuits Ci. For this, we use an incremental multiplicative hash
function [17] to calculate the product

hi =
∏

j∈[0,5]

H(mj , jn+ i)

H(mj , σ(jn+ i))
(1)

for each circuit, where H is a random oracle. Subsequently, each internal circuit D
first recursively verifies the two proofs of its children nodes, and then it calculates
the product of their hash values. It is easy to see that at the root of the recursion
tree the produced hash hroot satisfies

hroot ·
∏

i∈[n0]

H(x[i], 6n+ i)

H(x[i], σ[6n+ i])
= 1 (2)

if the input values satisfy the copy constraints. The leaf circuit Ci is shown
in Figure 6 in Appendix B and the internal circuit D is shown in Figure 7
in Appendix B. Note that, to preserve zero-knowledge and avoid revealing the
partial product term hl ·hr, the root node takes as public statement the product
over the hash values of the public inputs and checks the multiplication result is
1.

Updates of values are handled in a straightforward manner. Each change to
an input circuit value corresponds to changes to a set of wire values. For each
wire j that is updated, all proofs for the respective leaf circuits that are affected
and their ancestor nodes must be recomputed, together with their hi values,
leading to O(log n) time. Our final protocol is in Figure 8 in Appendix B.
Similarities of Dynarec with Mangrove [25]. A similar approach was used
in [25] to build scalable and parallelizable zk-SNARKs. As in our protocol, they
also use an incremental hash function to parallelize checking the copy constraints.
For efficiency purposes, they instantiate their H as a universal hash function with
its parameters being chosen after the witness has been committed, e.g., via a
Merkle tree. (This step can then be made non-interactive via the Fiat-Shamir
heuristic.) Subsequently, all circuits Ci need to verify the provided w entries
with respect to the Merkle root. Considering our goal of building dynamic zk-
SNARKs, committing to the witness vector w introduces an important issue to
5 It is possible to avoid this by committing to the permutation cycles and correspond-

ing indices in a separate step and then providing them as input to a “generic” leaf
circuit, together with their proofs of opening, as in [25]. Our current design choice
allows us to simplify the presentation.
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updatability. Each change to w changes the Merkle tree root, hence, all n circuits
Ci have to be re-computed, making updates as costly as running the original
prover. Instead, our adopted approach avoids this, at the cost of embedding
costly hash computations in each leaf circuit.

4 Dynamo: A new dynamic permutation SNARK

Our first step towards building a general dynamic zk-SNARK (i.e., for iC)
without using recursive zk-SNARKs is to build a recursion-free dynamic per-
mutation argument for iP = [m,σ]. Indeed, in this section we present Dynamo,
a new zero-knowledge dynamic permutation argument for iP = [m,σ]. Dynamo
has optimal asymptotic complexities: Its proof size is O(1) and its update com-
plexity is O(k), where k is the Hamming distance between two valid neighboring
witness vectors z and z′, i.e., two vectors z and z′ satisfying z[i] = z[σ[i]] and
z′[i] = z′[σ[i]] for i = 1, . . . ,m, for fixed σ.

To the best of our knowledge, Dynamo is the first permutation argument that
is dynamic—all other permutation arguments (e.g., the one used in PLONK [19])
require at least linear time to handle a small update in the witness. The reason
for that is mostly due to Fiat-Shamir, where the randomness used depends on
all the entries of the witness, yielding proofs that cannot be efficiently updated.
Our starting point: Permutation polynomial. Given a permutation σ of
size m and a vector z of size m, one can define a permutation polynomial s(Y )
over a finite field F as

s(Y ) =
∑
i∈[m]

(z[i]− z[σ[i]]) · Y i.

Note that s(Y ), by a simple change of variable, can also be written as

s(Y ) =
∑
i∈[m]

z[i] ·
(
Y i − Y σ−1[i]

)
=

∑
i∈[m]

z[i] · y[i] ,

where, for ease of notation, we write

y[i] =
(
Y i − Y σ−1[i]

)
.

It is easy to see that (∅, z) ∈ iP = [m,σ] if and only if s(Y ) = 0 for all Y . We build
our permutation argument on this idea: In particular, we have a prover commit
to vector z and provide a proof that, for given σ, s(Y ) is the zero polynomial.
Computing the proof. To compute the proof, the prover will commit to two
polynomials, z(X) and bivariate v(X,Y ), using Lagrange interpolation and KZG
commitments. In particular z(X) encodes the z elements (z(ωi) = z[i] for all
i = 1, . . . ,m), i.e.,

z(X) =
∑
i∈[m]

Li(X) · z[i] (3)
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and v(X,Y ) encodes z[i] · y[i] (v(ωi, Y ) = z[i]y[i] for all i = 1, . . . ,m), i.e.,

v(X,Y ) =
∑
i∈[m]

Li(X) · z[i] · y[i] . (4)

The input of the verifier is an honestly-computed commitment to a bivariate
polynomial u(X,Y ) that encodes the permutation σ in a natural manner, i.e.,

u(X,Y ) =
∑
i∈[m]

Li(X) · y[i] . (5)

Now to prove that the commitments to the polynomials z(X), v(X,Y ) and
u(X,Y ) satisfy s(Y ) = 0 the prover must provide two additional proofs (in
addition to the commitment of z and v) as we detail in the following.

Zero-check. First the prover must prove that for all i = 1, . . . ,m it is v(ωi, Y ) =
u(ωi, Y ) · z(ωi). This is a standard zero-check (as in PLONK [19]) for the poly-
nomial v(X,Y )−u(X,Y ) ·z(X) on the set (Ω, Y ), where Ω = {ω, . . . , ωm}. The
proof for that is a KZG commitment to the quotient polynomial

α(X,Y ) =
v(X,Y )− u(X,Y ) · z(X)

Xm − 1
. (6)

Sum-check. Finally, the prover will have to provide a proof that∑
i∈[m]

v(ωi, Y ) = 0 .

Here we cannot use existing techniques from PLONK [19] since, as we mentioned,
we must avoid Fiat-Shamir. The main idea is to have the prover commit to a
“prefix polynomial” p(X,Y ) such that its evaluation at (ωi, Y ) equals the sum
of the first i terms of the above sum, i.e.,

p(X,Y ) =
∑
i∈[m]

Li(X)

i∑
j=1

v(ωj , Y ) . (7)

Now it is enough to have the prover prove that (i) p(ω, Y ) = v(ω, Y ) (first
term equality); (ii) p(ωm, Y ) = 0 (sum-check correctness); (iii) and the following
“prefix recursion”

p(ωi, Y ) = p(ωi−1, Y ) + v(ωi, Y ) for all i = 2, . . . ,m . (8)

The first two relations are straightforward to prove using a standard KZG evalu-
ation proof: For (i), the proof is a KZG commitment to the quotient polynomial

β(X,Y ) =
p(X,Y )− v(X,Y )

X − ω
(9)
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and for (ii), the proof is a KZG commitment to the quotient polynomial

γ(X,Y ) =
p(X,Y )

X − 1
. (10)

Computing a proof for prefix recursion is more involved, and we describe it next.
A proof system for prefix recursion. For Eq. (8) prefix recursion, the prover
provides commitments to polynomials p(X,Y ) and

t(X,Y ) = p(X · ω−1, Y ) (11)

as well as v(X,Y ) and must also provide a proof that these commitments satisfy
Equation 8. Note that as long as t(X,Y ) = p(X · ω−1, Y ), prefix recursion
is reduced to a simple zero-check of p(X,Y ) − t(X,Y ) − v(X,Y ) on the set
{(ω2, Y ), . . . , (ωm, Y )}. However it is easy to see that p(X,Y )−t(X,Y )−v(X,Y )
is identically 0, and therefore there is no need to provide a quotient polynomial—
but the verifier will still need to check that this is the case.

So the fundamental problem remaining to solve is to design a proof system
for “polynomial displacement”: Given two commitments to polynomials p(X,Y )
and t(X,Y ) how can we prove that t(X,Y ) = p(X · ω−1, Y )?
A proof system for polynomial displacement. Using ideas from PLONK [19]
we can solve polynomial displacement with Fiat-Shamir: For random r, KZG-
evaluate p(X,Y ) at (α · r, Y ) and t(X,Y ) at (r, Y ), and check whether the eval-
uations are the same. Since we cannot use Fiat-Shamir, we follow a different
approach. We will use an additional variable W . The prover, along with commit-
ments to p(X,Y ) and t(X,Y ), it provides a commitment to another polynomial

g(W,Y ) = p(W,Y ) . (12)

To check that the two commitments p(X,Y ) and g(W,Y ) refer to the same
polynomial, the prover provides a commitment to the quotient polynomial

δ(X,W, Y ) =
p(X,Y )− g(W,Y )

X −W
. (13)

The final check is to ensure that the evaluation of g(W,Y ) at point X · ω−1 is
equal to t(X,Y ). This is easy to do by providing a commitment to the following

ε(X,W, Y ) =
g(W,Y )− t(X,Y )

W −X · ω−1
. (14)

Final variable check. The final thing that the prover must do is variable
checks for the polynomials z(X), v(X,Y ), p(X,Y ), t(X,Y ) and g(W,Y ) as de-
scribed in Appendix E. Let Z(X,W, Y ), V (X,W, Y ), P (X,W, Y ), T (X,W, Y )
and G(X,W, Y ) be the polynomials committed for that purpose. For example,
Z(X,W, Y ) = z(X) ·Y m ·Wm. The other commitments are computed similarly.
Summary. The final Dynamo proof for iP = [m,σ] consists of 15 group elements
that are KZG commitments of 5 committed polynomials, 5 variable checks and
5 committed quotient polynomials—see Table 2.
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Table 2. The 15 polynomial commitments contained in the Dynamo proof.

Commitments z(X) v(X,Y ) p(X,Y ) t(X,Y ) g(W,Y )
Eq. (3) Eq. (4) Eq. (7) Eq. (11) Eq. (12)

Variable Checks Z(X,W, Y ) V (X,W, Y ) P (X,W, Y ) T (X,W, Y ) G(X,W, Y )

Quotients α(X,Y ) β(X,Y ) γ(X,Y ) δ(X,W, Y ) ε(X,W, Y )
Eq. (6) Eq. (9) Eq. (10) Eq. (13) Eq. (14)

Computing and updating the proof. There are closed formulas for all poly-
nomials of Table 2. In particular, we have the following theorem, whose proof
can be found in Appendix F.

Theorem 1. Let F = {z, v, p, t, g, Z, V, P, T,G, α, β, γ, δ, ε} be the set of poly-
nomials from Table 2. Every polynomial f ∈ F from can be expressed as

f =
∑
i∈[m]

fi · z[i] ,

where {f1, . . . , fm} is a fixed set of m polynomials.

We note here that Theorem 1 allows us not only to easily compute the
Dynamo proof (e.g., without any division) but also to update the proof in con-
stant time whenever a value z[i] changes.

Final protocol. Our complete circuit-specific Dynamo protocol is shown in
Figure 2. We summarize our protocol in the following theorem.

Theorem 2 (Dynamo). The protocol of Figure 2 is a dynamic SNARK (per
Definition 2) for iP = [m,σ] assuming q-DLOG (see Assumption 1) in the AGM
model. Its complexities are as follows.

1. G runs in O(m) time, outputs pk and upk of O(m) size and vk of O(1) size;
2. P runs in O(m) time and outputs a proof π of O(1) size;
3. U runs in O(k) time, where k is the Hamming distance of w and w′;
4. V runs in O(1) time.

Proof. Completeness and updatability follow naturally from the construction.
For knowledge soundness, we define the following extractor EA(pk, vk):

1. Run the algebraic adversary (x, π)← A(pk, vk).
2. Parse [z] from π. Note that since A is algebraic, it should also outputs vectors

to show how [z] can be computed from pk. Thus EA can reconstruct z̃(X)
such that [z] = [z̃(X)]. Abort if degY z̃ > 0 or degW z̃ > 0.

3. Output w ∈ Fm where w[i] = z̃(ωi), ∀i ∈ [m].

Since verification accepts, all checks in the V algorithm of Figure 2 pass.
Parse π = {[f ]}f∈F . Since A is algebraic, it should also output vectors to show
how [f ] can be computed from pk, and then we can reconstruct {f̃(X,W, Y )}f∈F
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– G(1λ, [m,σ])→ (pk, upk, vk) :
- ppbl ← Gbl(1λ);
- Let F = {z, v, p, t, g, Z, V, P, T,G, α, β, γ, δ, ε} be the set of polynomials

from Theorem 1.
- Pick random a, b, c from F for variables X, Y and W respectively.
- Set pk = upk to contain the following KZG commitments, defined in The-

orem 1, and computed using a, b and c directly

{[f1], . . . , [fm]}f∈F .

- Set vk = {[u(X,Y )], [X], [W ], [Xm], [Y mWm], [Wm]} (u is from Eq. (5)).

– P(pk,x,w)→ (π, aux):
- Parse x as ∅ and w as z[1], . . . , z[m].
- Following Theorem 1, output |F| = 15 KZG commitments as π and aux,

i.e., for all f ∈ F output

[f ] =
∏

i∈[m]

[fi]
z[i] .

– U(upk,x′,w′,x,w, π, aux)→ (π′, aux′):
- Parse w as z and w′ as a new valid witness z′. Parse π and aux as {[f ]}f∈F .
- Let J be the set of locations that z and z′ differ and let {δj}j∈J be the

corresponding deltas. Output as π′ and aux′ the new KZG commitments
{[f ′]}f∈F where

[f ′] = [f ] ·
∏
j∈J

[fj ]
δj .

– V(vk,x, π)→ 0/1:
- Parse vk and π as output by G and P respectively.
- Output 1 if and only if all the following relations hold:

e([v], g) · e([−u], [z]) = e([α], [Xm − 1]).
e([p], g) · e([−v], g) = e([β], [X − ω]).
e([p], g) = e([γ], [X − 1]).
[p] · [−t] · [−v] = 1G.
e([p] · [−g], g) = e([δ], [X −W ]).
e([g] · [−t], g) = e([ε], [W −X · ω−1]).
e([z], [Y mWm]]) = e([Z], g).
e([v], [Wm]]) = e([V ], g).
e([p], [Wm]]) = e([P ], g).
e([t], [Wm]]) = e([T ], g).
e([g], [Xm]]) = e([G], g).

Fig. 2. The Dynamo SNARK.

such that [f ] = [f̃(X,W, Y )]. From the zero-checks and variable checks, we have
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the following equations.

ṽ(X,Y )− ũ(X,Y )z̃(X) = α̃(X,Y,W )(Xm − 1) (15a)

p̃(X,Y )− ṽ(X,Y ) = β̃(X,Y,W )(X − ω) (15b)
p̃(X,Y ) = γ̃(X,Y,W )(X − 1) (15c)

p̃(X,Y )− t̃(X,Y )− ṽ(X,Y ) = 0 (15d)

p̃(X,Y )− g̃(W,Y ) = δ̃(X,W, Y )(X −W ) (15e)

g̃(W,Y )− t̃(X,Y ) = ε̃(X,W, Y )(W −X · ω−1) (15f)

From Eqs. (15e) and (15f), we have

p̃(ωi, Y ) = g̃(ωi, Y )

g̃(ωi−1, Y ) = t̃(ωi, Y )
(16)

By combining Eq. (16) with Eqs. (15b) to (15d), we have

p̃(ω, Y ) = ṽ(ω, Y )

p̃(ωi, Y ) = p̃(ωi−1, Y ) + ṽ(ωi, Y ), i ∈ [2,m]

p̃(1, Y ) = 0

(17)

From Eq. (15a), we have u(ωi, Y )z̃(ωi) = ṽ(ωi, Y ). Therefore,

p̃(1, Y ) =
∑
i∈[m]

ṽ(ωi, Y ) =
∑
i∈[m]

u(ωi, Y )z̃(ωi) =
∑
i∈[m]

y[i]z̃(ωi) = 0 ,

which means the output w of EA should be a valid witness. The complexities
of P,U ,V follow naturally from the protocol. For the runtime of G, since this
algorithm knows a, b and c, it can compute everything in linear time. ⊓⊔

Universal protocol. We note that our protocol can be turned into a universal
protocol, introducing an I algorithm. Unfortunately, in the universal version of
our protocol the time complexity of both G and I is Õ(m2) (This is not an issue
for our final protocol, since we apply the permutation argument in buckets.) The
proof of the following lemma can be found in Appendix F.

Lemma 1 (Universal Dynamo). There exists a universal version of Dynamo
whose (i) G algorithm runs in O(m2) time and outputs public parameters of
O(m2) size; (ii) I algorithm runs in O(m2) time and outputs pk of O(m) size
and vk of O(1) size. All other complexities are the same.

Finally note, that by following the ideas from [19,28], we can use random
masks for the polynomials and add zero-knowledge to Dynamo. The proof of the
lemma below can be found in Appendix F.

Lemma 2 (Zero-knowledge Dynamo). There is a zero-knowledge version of
Dynamo with the same complexities.
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4.1 Dynamix: A generalization of Dynamo

As we will see in the next section, our final dynamic zk-SNARK protocol
will have to apply the permutation argument on

√
N subvectors of z (each

one containing m =
√
N values of z) and therefore we will be using a slight

generalization of Dynamo which we call Dynamix (We need this generalization
because the overall permutation condition holds for the whole vector z and not
for subvectors of z.) Recall that Dynamo provided a way for a prover to convince
a verifier that, for a given σ it knows a vector z such that∑

i∈[m]

z[i] · (Y i − Y σ−1[i]) = 0 .

With Dynamix, we make two changes to the above relation. First, we allow the
exponents of Y to take arbitrary values si ∈ [N ] and ti ∈ [N ] for some N
that potentially is not equal to m. Second, we require that instead of 0, the sum
equals another polynomial h(Y ), whose commitment the prover will provide. We
therefore define the Dynamix relation as iD = [m,N, s, t] (where s = [si]i∈[m],
t = [ti]i∈[m] and si, ti ∈ [N ]) to contain (∅, (z, h)) such that∑

i∈[m]

z[i] · (Y si − Y ti) = h(Y ) . (18)

We can trivially extend Dynamo to Dynamix in the following fashion.

1. Instead of using y[i] = Y i − Y σ−1(i) in KZG commitments [v] (Eq. (4)) and
[u] (Eq. (5)), we use y[i] = Y si − Y ti .

2. Since the right-hand side of the sum-check equation changes from 0 to h(Y ),
the prover must commit to an additional polynomial h(Y ) as defined in
Equation 18. Note that along with [h(Y )], the prover provides a commitment
[H(Y )] for variable check.

3. Since the right-hand side of the sum-check equation changes from 0 to h(Y ),
the quotient polynomial γ(X,Y ) (Eq. (10)) is now computed as γ(X,Y ) =
(p(X,Y )− h(Y ))/(X − 1).

4. Note that the polynomial p(X,Y )−t(X,Y )−v(X,Y ) is not identically 0 any-
more. We will therefore need a zero-check on {(ω2, Y ), . . . , (ωm, Y )}. In par-
ticular, the prover will have to commit to (p(X,Y )−t(X,Y )−v(X,Y ))/((Xm−
1)(X−ω)−1), which after careful calculation, this is equal to −ω ·h(Y )/m—
therefore this part does not require a new commitment since the prover has
already committed to h(Y ).

5. The third pairing equation in V becomes e([p] · [−h], g) = e([γ], [X − 1]].

All in all, the Dynamix proof contains 17 group elements, 2 more than the Dynamo
one. We provide the detailed Dynamix protocol in Figure 10 in the Appendix.
Zero-knowledge and universality follow exactly in the same way as in Dynamo.

Theorem 3 (Dynamix). The protocol of Figure 10 is a dynamic SNARK (per
Definition 2) for iD = [m,N, s, t] assuming q-DLOG (see Assumption 1) in the
AGM model. Its complexities are as follows.
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1. G runs in O(min{m logN,N}) time and outputs pk and upk of O(m) size
and vk of O(1) size;

2. P runs in O(m) time and outputs a proof π of O(1) size;
3. U runs in O(k) time, where k is the Hamming distance of w and w′;
4. V runs in O(1) time.

Proof. The proof is almost the same as the proof of Theorem 2. The main differ-
ence is the runtime of G: In G, we need to calculate {bsi , bti}i∈[m] where si, ti are
bounded by N . We can either compute {bj}j∈[N ] in O(N) time, or compute each
bsi , bti in O(logN) time through a fast exponentiation trick for every i ∈ [m]. ⊓⊔

Lemma 3 (Universal Dynamix). There exists a universal version of Dynamix
whose (i) G algorithm runs in O(m ·min{m logN,N}) time and outputs public
parameters of O(m2) size; (ii) I algorithm runs in O(m2) time and outputs pk
and upk of O(m) size and vk of O(1) size. All other complexities are the same.

The proof of Lemma 3 is a based on the proofs of Lemma 1 and Theorem 3.
Finally, by the same zk-masking techniques as in Dynamo, we have the following.

Lemma 4 (Zero-knowledge Dynamix). There is a zero-knowledge version of
Dynamix with the same complexities.

5 Dynaverse: A dynamic zk-SNARK without recursion

In this section, we present Dynaverse, a general-purpose dynamic zk-SNARK
(i.e., for i = [n, n0, σ]) without recursion. Dynaverse is using the Dynamix SNARK
from Section 4.1. Dynaverse is a circuit-specific dynamic zk-SNARK that has
O(n) setup time, O(k ·

√
n log n) update time (where k is the Hamming dis-

tance between the statements) and O(log n) proof size. The universal version
of Dynaverse has O(n

√
n) universal setup time and O(n) circuit-setup time. We

note here that Dynaverse’s update algorithm is trivially parallelizable.
Background and problem with PLONK approach. Recall that for any
fixed index iC = [n, n0, σ] describing a circuit C, an instance of public inputs
x ∈ Fn0 , and a witness w ∈ F6n, we set z = [w;x] ∈ F6n+n0 . We have (x,w) ∈ iC
if and only if the following hold:

– Copy constraint: (∅, z) ∈ iP = [6n+ n0, σ].
– Gate constraint: ∀i ∈ [n], z[i]+z[n+i] = z[2n+i],z[3n+i]·z[4n+i] = z[5n+i].

Let us focus on updatability of gate constraints and will come back to copy
constraints later. Dynaverse will be using a similar technique with PLONK [19].
Recall that in PLONK, instead of committing to one large vector z, the prover
commits to six vectors of size n (Subvector z7 is of size n0 and contains the
public statement.) In particular one can write z as

[z1 z2 z3 z4 z5 z6 z7],
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where z1 holds the left inputs of all addition gates, z2 holds the right inputs of all
addition gates, z3 holds the outputs of all addition gates, z4 holds the left inputs
of all multiplication gates, z5 holds the right inputs of all multiplication gates,
and z6 holds the outputs of all multiplication gates. Let zt(X) (for t = 1, . . . , 6)
be the Lagrange polynomials that the prover uses to commit to those subvectors
(We use φ to denote the n-th root of unity used in those Lagrange polynomials.)

Clearly, to prove that the committed polynomials zt(X) satisfy the gate
constraints we need to prove that

z1(X) + z2(X) = z3(X) for all X = φ, . . . , φn ,

z4(X) · z5(X) = z6(X) for all X = φ, . . . , φn .

Note that the addition constraint is easy to check due to the fact that [zt(X)]’s
are additively homomorphic and therefore all the verifier has to do is to check
whether [z3(X)] = [z1(X)] · [z2(X)]. Similarly, the prover can update the com-
mitments in constant time when a value changes.

However, the same does not hold for the multiplication constraint. In par-
ticular note that checking the multiplication constraint requires a zero-check for
the polynomial z4(X) · z5(X)− z6(X) on the set Φ = {φ, . . . , φn} which can be
done via a commitment to the quotient polynomial

A(X) =
z4(X) · z5(X)− z6(X)

Xn − 1
.

However, as opposed to the addition constraint, if a single entry of say, z4,
changes, the quotient polynomial A(X) changes completely and must be recom-
puted from scratch. Unfortunately, this takes at least linear time.
Our main technique: Enforcing gate constraints on subvectors. To ad-
dress the linear update time of the multiplication gate constraints update, we
follow a natural approach. We divide each vector zt into the m =

√
n succesive

subvectors zt1, . . . , ztm of m values each. The prover will therefore provide m
polynomial commitments for each vector zt (note that for these commitments
we are using m-th roots of unity), for a total of 6 ·m commitments, i.e., the com-
mitments [zt1(X)], . . . , [ztm(X)] for t = 1, . . . , 6. First, notice that the addition
constraint is handled exactly as before.

For the multiplication constraint, the prover must now provide m commit-
ments to the following quotient polynomials

Ai(X) =
z4i(X) · z5i(X)− z6i(X)

Xm − 1
for i = 1, . . . ,m . (19)

Wrapping up: Enforcing copy constraints across subvectors. Note now
that the final thing that the prover must do is to convince the verifier that

[zt1(X)], . . . , [ztm(X)] for t = 1, . . . , 6

are consistent with σ and [z7(X)]—the commitment of the public input com-
puted by the verifier. To do that, we will do 6 ·m invocations of the Dynamix
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– G(1λ, [n, n0, σ])→ (pk, upk, vk) :

- ppbl ← Gbl(1λ).
- Set m =

√
n and N = 6n+ n0.

- Pick random a, b, c from F for variables X, Y and W respectively.
- For t = 1, . . . , 6, for i = 1, . . . ,m, call

G′a,b,c,ppbl(1
λ, [m,N, sti, tti])→ (pkti, upkti, vkti) ,

where sti and tti are defined in Equation 20.
- Set pk = {pkti}t,i, upk = {upkti}t,i and vk = {vkti}t,i.

– P(pk,x,w)→ (π, aux):
- Parse x as z7 and w as {zt1, . . . , ztm}t=1,...,6.
- For t = 1, . . . , 6, for i = 1, . . . ,m call P ′(pkti, ∅, zti)→ (πti, auxti).
- For i = 1, . . . ,m, compute the commitments [Ai(X)] as in Equation 19.
- Proof π contains {πti}t,i and {[Ai(X)]}i, and aux contains {auxti}t,i.

– U(upk,x′,w′,x,w, π, aux)→ (π′, aux′):
- Parse (x,w) as z and (x′,w′) as a new valid witness z′.
- Let C be the set of tuples (t, i) that correspond to updated subvectors zti.
- For every (t, i) ∈ C call

U ′(upkti, ∅, z
′
ti, ∅, zti, πti, auxti)→ (π′

ti, aux
′
ti) .

- Let I = {i : (t, i) ∈ C ∧ t ≥ 4}.
- For every i ∈ I recompute [A′

i(X)] as in Equation 19.
- Output the updated proofs {π′

ti} and the updated commitments [A′
i(X)]

as the updated proof π′ and {aux′ti} as aux′.

– V(vk,x, π)→ 0/1:
- Extract from π the commitments [zti(X)] for t = 1, . . . , 6 and i = 1, . . . ,m;
- Check the addition constraints, i.e., that for all i = 1, . . . ,m it is

[z1i(X)] · [z2i(X)] = [z3i(X)] .

- Check the multiplication constraints, i.e., that, for all i = 1, . . . ,m it is

e([z4i(X)], [z5i(X)]) · e([−z6i(X)], g) = e([Ai(X)], [Xm − 1]) .

- Check the Dynamix proofs, i.e., for all t = 1, . . . , 6 and i = 1, . . . ,m it is

V ′(vkti, ∅, πti)→ 1 .

- Parse x as z[6n+ 1 . . . 6n+ n0]. Set hx(Y ) =
∑6n+n0

i=6n+1 z[i](Y
i + Y σ−1(i)).

Check whether [hx(Y )] ·
∏6

t=1

∏m
i=1[hti(Y )] = 1G, where [hti(Y )] is ex-

tracted from the Dynamix proof πti.

Fig. 3. Dynaverse SNARK using Dynamix SNARK (G′,P ′,V ′) as a black box.
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protocol from Section 4.1, one for each one of the 6 ·m subvectors. In particular,
for vector zti that covers the m-sized range [x, y] from the original z vector (in
particular x = (t− 1) · n+ (i− 1)m+ 1 and y = x+m− 1), set

sti = [x x+ 1 . . . y] and tti = [σ−1(x) σ−1(x+ 1) . . . σ−1(y)] . (20)

Then the prover will output the proof that is output by a Dynamix for [m,N, sti, tti].
Final proof and verification. The final proof consists of 6 ·m Dynamix proofs
and m commitments to the quotient polynomials from Equation 19. To verify
the final proof the verifier first verifies the Dynamix proofs and the quotient
polynomials Ai. Then the verifier computes a commitment to the h polynomial
corresponding to the public statement, i.e.,

hx(Y ) =

6n+n0∑
i=6n+1

z[i](Y i + Y σ−1(i))

and checks whether

[hx(Y )] ·
6∏

t=1

m∏
i=1

[hti(Y )] = 1G ,

where [hti] is the commitment to the polynomial h corresponding to the Dynamix
proof for the zti vector. Fig. 11 in Appendix H provides a pictorial description
of Dynaverse. Our complete protocol is shown in Figure 3.

Theorem 4 (Dynaverse). The protocol of Figure 3 is a dynamic SNARK (per
Definition 2) for iC = [n, n0, σ] assuming q-DLOG (see Assumption 1) in the
AGM model. Its complexities are as follows.

1. G runs in O(n+ n0) time, outputs pk of O(n) size, vk of O(
√
n+ n0) size;

2. P runs in O(n log n) time and outputs a proof π of O(
√
n) size;

3. U runs in O(k
√
n log n) time, where k is the Hamming distance of w,w′;

4. V runs in O(n0 +
√
n) time.

Proof. Completeness and updatability follow naturally from the construction.
For knowledge soundness, we can build an extractor by calling the extractor
of Dynamix to extract the witness which satisfies the copy constraints. The
verification algorithm can also ensure that this extracted witness also satis-
fies the gate constraints. The complexities of P,U and V follow naturally from
the protocol. For the runtime of G, although the runtime of G in Dynamix is
O(min{m logN,N}), we can directly compute {bj}j∈[N ] and let each G′ reuse
these values. Hence, the runtime of G is O(N +m2) = O(n+ n0). ⊓⊔

Lemma 5 (Universal Dynaverse). There is a universal version of Dynaverse
whose (i) G algorithm runs in O(n

√
n) time and outputs public parameters of

O(n
√
n) size; (ii) I algorithm runs in O(n

√
n) time and outputs pk of O(n) size

and vk of O(
√
n+ n0) size. All other complexities are the same.
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Lemma 6 (Zero-knowledge Dynaverse). There is a zero-knowledge version
of Dynaverse with the same complexities.

The proof for zero-knowledge is presented in Appendix F.
Concretely reducing the Dynaverse proof size. One of the main drawback of
Dynaverse is that the constant in the Õ(

√
n) update time/proof size is too large.

More specifically, we have 6
√
n sub-vectors, and for copy constraints we need to

run Dynamix for each sub-vector. One Dynamix proof contains 17 groups elements
and for one update we need to update all of them. Overall, a Dynaverse proof
contains 17× 6

√
n = 102

√
n groups elements. However, for gate constraints, we

only need
√
n groups elements—[Ai]. To concretely improve the proof size we

run Dynamix on O(1) length-O(n) sub-vectors while still remaining O(
√
n log n)

update time for gate constraints. For that, we face the following problems.

1. For the universal setup of Dynamix, the runtime of G and I and the size of
pp output by I will go to O(n2).

2. We need to deal with the inconsistency between [z] for Dynamix of length
O(n) and [z] for gate constraints of length O(

√
n).

For the first problem, there is no simple way to avoid that so we decide to
consider only circuit-specific setup for this optimization, and then the runtime of
G for Dynamix is O(n). For the second problem, we need to introduce a natural
trick to show the consistency. See Figure 12 in Appendix H. First, we split z into
[zi]i∈[1,6] of 6 n-sized vectors. For z1, z2, z3, we are dealing with add gates, i.e.,

z1[i] + z2[i] = z3[i], ∀i ∈ [n] .

Therefore for z1, z2, z3 we do not further partition to achieve sublinear time.
In order to achieve sublinear update time for z4, z5, z6 (multiplication gates),

we follow the idea in the original Dynaverse to partition them into sub-vectors
of length

√
n. However, we still want to apply the protocol for copy constraints

on the whole vectors z4, z5, z6, so we use two-layer interpolations (same as the
technique introduced in [33]): In particular, ∀i ∈ {4, 5, 6}, let m =

√
n,

zi(X1, X2) =
∑
j∈[m]

∑
k∈[m]

Lj(X1)Lk(X2)zi[(j − 1)m+ k] ,

zi,j(X2) =
∑
k∈[m]

Lk(X2)zi[(j − 1)m+ k] ,

then the consistency between them can be shown by the following check:

zi(X1, X2) = qi,j(X1, X2)(X1 − ωj) + zi,j(X2) .

Here, we use two variables X1, X2 to avoid super-linear key size increment [33].
Now, we can finally apply a variant of Dynamix with bi-variate polynomials
zi(X1, X2) (and we also need to modify all other polynomials to fit into this bi-
variate setting) to z4, z5, z6 to achieve constant update time on copy constraints,
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while maintaining O(
√
n) update time on gate constraints with small constants.

After this optimization, the new proof size will be 4
√
n+O(1) group elements,

which is over 20× smaller than original Dynaverse. Note this optimization will
not improve the asymptotic complexities for Dynaverse (except that the size of
vk will be improved from O(

√
n + n0) to O(n0)) because the update algorithm

and proof size are still lower-bounded by Õ(
√
n) for gate constraints.

Asymptotically reducing the Dynaverse proof size to O(log n). Bünz et
al. [9] introduced IPA proofs for pairings, a way to delegate a pairing equation
with n terms and have it proved with a proof of log n size—see Appendix D.
By using this technique, the Dynaverse proof size and verification time can be
reduced to O(log n). To do that, recall that a Dynaverse verifier must compute
the following equation for every i ∈ [6m]: e([pi], g) = e([vi], g) · e([βi], [X − ω]).
If V picks r

$← F, then it only needs to check the following combination:∏
i∈[6m]

e([pi], g
ri−1

) =
∏

i∈[6m]

e([vi], g
ri−1

) ·
∏

i∈[6m]

e([βi], [X − ω]r
i−1

) , (21)

Next, P can compute three products E1, E2, E3 in Eq. (21) and provide proofs
πIPA,1, πIPA,2, πIPA,3 for each product so that V just needs to check the IPA proofs
and whether E1 = E2 · E3. Such methods can be applied to all O(

√
n) simi-

lar equations that V needs to verify. Therefore, finally we can get a variant of
Dynaverse with O(log n) proof size and verification time.

Lemma 7 (Dynaverse with IPA). There exists a variant of Dynaverse whose
proof size and verification time is O(log n). All other complexities are the same.

6 Recursion-free Incremental Verifiable Computation

We now present our recursion-free IVC scheme. Recall the main difference
from other IVC schemes is that our construction must know the number of
iterations N it can support. The definition of IVC adjusted to include N from [22]
is given in the Appendix (see Definition 3). Our main idea is the following: We
represent the IVC computation with an N -sized circuit FN (see Figure 4) whose
public input is (i, z0, zi)—the same with the public input of an IVC scheme.
However, the circuit is constructed so that when the public statement changes
from (i − 1, z0, zi−1) to (i + 1, z0,F(zi−1, wi−1)) only a logarithmic number of
wires change. We will use a dynamic zk-SNARK DS, as in Definition 2, to build
an IVC scheme I as in Definition 3. Recall the dynamic zk-SNARK API:

– DS.G(1λ, i)→ (pk, upk, vk);
– DS.P(pk,x,w)→ (π, aux);
– DS.U(upk,x′,w′,x,w, π, aux)→ (π′, aux′);
– DS.V(vk,x, π)→ 0/1.

The algorithms of the final IVC scheme are provided in Figure 5.
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Dealing with linear-size public statement. Due to the fact the the counter
i must be passed in unary (to ensure a few wires change between neighboring
statement), the public statement has linear size. We can deal with this in the
following way: Instead of exposing all N bits of the counter as a public statement,
we can expose an easily-updatable hash of the sequence (e.g., Muhash [5]). The
hash then will have to be computed using a binary tree inside FN .
Ensuring the transferred state is sublinear and zero-knowledge. Our
IVC scheme appends to the dynamic SNARK proof the state aux that is required
for the dynamic SNARK to perform the next update. We note that this state,
for the case of the sequential updates of FN is sublinear (This is not the case in
general, for example, when arbitrary updates must be supported.) In particular,
recall that Dynaverse, for proving multiplication constraints, bucketizes the wit-
ness in

√
n-sized buckets. Because updates in IVC are monotonically increasing,

only the bucket needs to be appended as state, which keeps the transferred state
sublinear. In Appendix G, we also show how to keep the state zero-knowledge.
We now have the following Theorem (See Appendix F for proofs.)

Theorem 5 (Recursion-free IVC from dynamic zk-SNARKs). The pro-
tocol of Figure 5 is a recursion-free IVC scheme (per Definition 3) for N it-
erations of function F, assuming a dynamic zk-SNARK DS with algorithms
(G,P,U ,V) (per Definition 2). Its complexities are as follows.
1. G runs in time |DS.G|+ |DS.P| where DS.G runs on an NP relation i defined

by the N · |F |-sized circuit FN from Figure 1. It outputs pk of size |DS.pk|+
|DS.upk| and vk of size and |DS.vk|;

2. P runs in |DS.U| time and outputs a proof π of |DS.π|+ |DS.aux| size;
3. V runs in |DS.V| time.

We note for the above compiler to output a zero-knowledge IVC, the used
dynamic zk-SNARK must be zero-knowledge even when it outputs its state aux
as part of the proof, which is the case for Dynaverse. We now have the following.

Lemma 8 (Recursion-free IVC from Dynaverse). There exists a recursion-
free IVC scheme (per Definition 3) for N iterations of function F, assuming q-
DLOG (see Assumption 1) in the AGM. Its complexities are as follows, where
M = N |F|.
1. G runs in time O(M logM) and outputs O(M)-size pk and O(

√
M)-size vk;

2. P runs in O(
√
M logM) time and outputs a proof π of O(

√
M) size;

3. V runs in O(
√
M) time.

We note here that the IVC proof above can further be compressed to O(logM)
if needed, using GIPA, as in Dynaverse.

7 Evaluation

In this section, we evaluate the performance of our constructions. Specifi-
cally, we compare the performance of Dynarec and Dynaverse against a PLONK-
based [19] implementation that needs to recompute the proof from scratch when-
ever there is an update.
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- Public Inputs: i = [b1, . . . , bN ], zi, z0
- Witness: w0, z1, w1, . . . , zN−1, wN−1, zN , wF
- Computation:
• Check z1 = F(b1 · z0, b1 · w0);
• Check z2 = F(b2 · z1, b2 · w1);
• . . .
• Check zN = F(bN · zN−1, bN · wN−1);
• Check zi = SUMTREE[(b1 ⊕ b2) · z1, . . . , (bN−1 ⊕ bN ) · zN−1, bN · zN ];
• Return true.

Fig. 4. Circuit FN iterating F N times and then selecting the right output. Counter i
is given in unary. The circuit might also take additional witnesses for F denoted wF.
SUMTREE(x1, . . . , xN ) adds x1, . . . , xN using a binary tree, i.e., in logN parallel time.

– G(1λ,F, N)→ (pk, vk).
1. Let FN be the N -sized circuit wrt to F from Figure 4;
2. Let i = (x,w) be the NP relation of FN , i.e., x = (i = [b1, . . . , bN ], zi, z0)

and w = (w0, z1, w1, . . . , zN−1, wN−1, zN , wF);
3. Run DS.G(1λ, i)→ (DS.pk,DS.upk,DS.vk);
4. Set x = ([0 . . . 0], 0, z0), w = (0, (F(0, 0), 0) . . . , (F(0, 0), 0),F(0, 0), wF);
5. Run DS.P(DS.pk,x,w)→ (Π0, aux0);
6. Output DS.pk, DS.upk and (Π0, aux0) as pk and DS.vk as vk.

– P(i, z0, πi−1, zi−1, wi−1, zi, pk)→ πi.
1. Parse pk as DS.pk, DS.upk and (Π0, aux0);
2. Let πi−1 = (Πi−1, auxi−1) be a valid proof for x = ([b1, . . . , bN ], zi−1, z0),

where [b1, . . . , bN ] is the unary representation of i− 1. Let also

w = (w0, z1, w1, . . . , zN−1, wN−1, zN , wF)

be the corresponding witness (For i = 1, πi−1 = (Π0, aux0) and can be
retrieved from pk.)

3. Consider the statement x′ = ([b1, . . . , bi−1, 1, bi+1, . . . , bN ], zi, z0) which
differs only in the counter’s bit i from x as well as in zi and zi−1, in that
zi = F(zi−1, wi);

4. Let w′ be the same as w with the only difference being zi = F(zi−1, wi−1)
and wi are now set, as opposed to F(0, 0) and 0 respectively. Also note,
due to zi being computed with SUMTREE, only a logarithmic number of
additional circuit wires change.

5. Run DS.U(DS.upk,x′,w′,x,w, Πi−1, auxi−1)→ (Πi, auxi);
6. Output πi as (Πi, auxi).

– V(vk, (i, zi, z0), πi)→ 0/1 :
1. Parse vk as DS.vk and πi as (Πi, auxi);
2. Output DS.V(DS.vk, (i, zi, z0), Πi).

Fig. 5. Constructing an IVC scheme from a dynamic zk-SNARK.

The implementation details are as follows: (1) Our Dynaverse implementa-
tion6 is written in Rust using the BLS12-318 elliptic curve. (2) Our Dynarec

6 https://anonymous.4open.science/r/dsnark-CC7E

https://anonymous.4open.science/r/dsnark-CC7E
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Table 3. Comparison of one random update between Dynaverse, Dynarec, and PLONK-
based baseline.

PLONK (baseline) Dynarec Dynaverse

L = log2 n
Update Verify Proof Update Verify Proof Update Verify Proof

(s) (ms) (KiB) (s) (ms) (KiB) (s) (ms) (KiB)

18 1.24

≤5 0.64

3.82

≤6 129.8

0.07 95 96

20 4.92 4.53 0.08 125 192

22 19.38 4.63 0.12 179 384

24 80.12 5.09 0.16 293 768

implementation is written in Rust using Plonky2 [31]. Plonky2 [31] is a recursive
proof system based on the Goldilocks field, which is faster than the BLS12-
318 elliptic curve used in Dynaverse. However, this difference in fields negatively
presents Dynaverse’s performance. Despite this disadvantage, we demonstrate
that Dynaverse outperforms Dynarec and the baseline in this section. (3) Our
baseline implementation for measuring the cost of recomputing proofs from
scratch whenever the witness is updated is written in Golang and uses the
PLONK proof system. This baseline implementation uses the state-of-the-art
gnark library [8] and the BLS12-318 elliptic curve with KZG commitments [21].

Recall that Dynarec requires incremental multiset hashing. However, incre-
mental multiset hashing requires the hash function output to be several thousand
bits long [24]. To overcome this limitation, we adopt the elliptic curve-based in-
cremental multiset hashing approach proposed by Maitin-Shepard et al. [24].
Specifically, we use the EcGFp5 curve [27], based on the GF(p5) extension of the
Goldilocks field, and apply the Poseidon hash within our circuits.
Hardware. We executed our experiments on an AWS EC2 c7i.48xlarge instance
with Intel Xeon Scalable CPU with 3.2 GHz, 192 cores and 384 GB of RAM.
All the experiments are parallelized and use as many threads as allowed by the
multi-threading library.
Comparison with a baseline. In our experiments, we generate a random
circuit of size n (see Plonkish arithmetization in Section 2), run G and P to
produce the initial proof, and then modify a randomly selected witness location
to update the proof. In our PLONK baseline, we ensure the number of gates
matches that of our construction.

We present the prover and verifier time, and proof size in Table 3. We observe
that the update time of Dynaverse is 17−488× faster than the PLONK [19] base-
line for circuit sizes between 218 to 224. This is because asymptotically update
time of Dynaverse is at least

√
n times faster than recomputing from scratch

using PLONK. However, Dynaverse verification time and proof size are more
expensive but still reasonable—up to 0.293 seconds for verification and 768 KiB
for proof size when n = 224.

Although, asymptotically, Dynarec is better than Dynaverse, concretely, the
update time of Dynarec is 30× to 55× smaller. This is because of small constants
and the inefficiency of SNARK recursion. However, Dynarec has comparable or
better verification time and proof size when compared to Dynaverse. Regardless
of its concrete performance, Dynarec is only heuristically secure.
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A IVC Definition

Definition 3 (IVC). An incremental verifiable computation scheme (IVC)
scheme is a tuple of PPT algorithms I = (G,P,V) with the following interface:

– G(1λ,F, N)→ (pk, vk). On input security parameter, the function F and the
number of iterations N , it outputs a prover key pk and verification key vk.

– P(pk, i, z0, πi−1, zi−1, wi−1, zi) → πi. On input a counter i, initial input z0,
a proof πi−1 and value zi−1, auxiliary input wi−1 and value zi and the prover
key pk, it outputs a new proof πi.

– V(vk, (i, zi, z0), πi) → 0/1 : On input verification key vk, counter i, output
zi, initial input z0 and proof πi, outputs accept or reject.

A IVC scheme I should satisfy the following properties.

– Completeness: Let N be polynomially-bounded and let G(1λ,F, N)→ (pk, vk)
for some function F. We say that I satisfies completeness if for all i ≤
N , for all z0, z1, . . . , zi and for all w0, w1, . . . , wi−1 such that F (z0, w0) =
z1, . . . , F (zi−1, wi−1) = zi it is:
For all 1 ≤ j ≤ i, if we have P(pk, j, z0, πj−1, zj−1, wj−1, zj) → πj, then
V(vk, (i, zj , z0), πj)→ 1.

– Knowledge Soundness: We say that I satisfies knowledge soundness if for all
for all N , for all i ≤ N , for all PPT adversary A and for all functions F
there exists a PPT extractor EA such that

Pr


G(1λ,F, N)→ (pk, vk);

(((i, zi, z0), π), z0, w0, . . . , zi−1, wi−1, zi)← (A||EA)(pk, vk)
:

V(vk, (i, zi, z0), π)→ 1 ∧ ∃j ∈ [1, i] : zj ̸= F (zj−1, wj−1)



https://github.com/mir-protocol/plonky2/blob/main/plonky2/plonky2.pdf
https://github.com/mir-protocol/plonky2/blob/main/plonky2/plonky2.pdf
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is negligible.
– Zero Knowledge: Fix N , any iteration number i ≤ N , any F and some valid

tuple (i, z0, w0, . . . , zi−1, wi−1, zi). Let D be the distribution of π as output
by the experiment below.
1. G(1λ,F, N)→ (pk, vk);
2. For j = 1 to i output P(j, z0, πj−1, zj−1, wj−1, zj , pk)→ πj.

We say that I satisfies zero-knowledge if there exists a PPT simulator S
such that the distribution D̃ of π̃j output by the following experiment is
computationally-indistinguishable from D.
1. (pk, vk)← S(1λ,F, N).
2. (π̃1, . . . , π̃i)← S(pk, vk, (i, z0, zi)).

The zero-knowledge definition naturally extends to statistical/perfect zero-
knowledge.

Just like in SNARKs, for IVC with universal setup, algorithm G below is sep-
arated into two algorithms, a universal generation G(1λ, |F|, N) → pp and an
indexer I(pp,F) → (pk, vk). To avoid complexity in our presentation, all our
constructions are presented as specific to F, but we show how to turn them into
universal. In both circuit-specific and universal IVC, G must be trusted.

B Details of Dynarec

- Public Input: hi

- Witness: (mj)j∈[0,5]

- Computation:
1. Check m0 +m1 = m2, m3 ·m4 = m5.
2. Check hi =

∏
j∈[0,5]

H(mj ,jn+i)

H(mj ,σ(jn+i))
. Note that the values of σ(jn + i) are

hard-coded into Ci.
3. Return true.

Fig. 6. Dynarec’s leaf circuit Ci.

- Public Input: h
- Witness: πL, πR, hL, hR

- Computation:
1. Check S.V(vkL, hL, πL) and S.V(vkR, hR, πR). Note that specific vkL and

vkR keys are hard-coded for each D.
2. if D is the root node, check h · hL · hR = 1. Else, check hL · hR = h.
3. Return true.

Fig. 7. Dynarec’s internal circuit D with hard-coded vkL, vkR .
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– G(1λ, [n, n0, σ])→ (pk, upk, vk) :
- For each leaf node i = 1, . . . , n, run

(pkCi
, vkCi)← S.G(1λ, Ci) .

- For each internal node D, run

(pkD, vkD)← S.G(1λ,D) .

- Set pk = upk = ({(pkCi
, vkCi)}i∈[n], {(pkD, vkD)}D).

- Set vk = (vkroot, vkσ = {[σ(6n+ i)]}i∈[n0]).

– P(pk,x,w)→ (π, aux):
- For i = 1, . . . , n, compute hi as in Equation 1.
- Compute hpub as in Equation 2.
- For all leaves i = 1, . . . , n, πCi ← S.P(pkCi

, hi, (w[jn+ i])j∈[0,5]).
- For all internal nodes D, πD ← S.P(pkD, hL · hR, (πL, πR, hL, hR)).
- For the root, πroot ← S.P(pkD, hpub, (πL, πR, hL, hR)).
- Output π = πroot. Include all proofs and hpub in aux.

– U(upk,x′,w′,x,w, π, aux)→ (π′, aux′):
- Determine the set of affected values due to the update from w||x to w′||x′.
- Update corresponding hi, and πCi , πD from leaf to root.
- Update related terms in π and aux to π′ and aux′.

– V(vk,x, π)→ 0/1:
- Compute hpub as in Equation 2.
- Check S.V(vkroot, hpub, πroot).

Fig. 8. Dynarec from a recursive zk-SNARK (G,P,V).

C Auxiliary lemmas

Lemma 9. Suppose f(X1, . . . , Xs) ∈ F≤d[X1, . . . , Xs] is a non-zero s-variate
polynomial over variable X1, . . . , Xs such that every variable has degree at most
d (total degree at most sd). Pick r1, . . . , rs

$← F. Then the univariate polynomial
g(X) := f(r1X, . . . , rsX) is zero polynomial with probability at most d/|F|.

Proof. Group the terms of f(X1, . . . , Xs) by the same total degree into the
following form:

f(X1, . . . , Xs) =

sd∑
l=0

∑
(i1,...,is):i1+...+is=l

ai1,...,isX
i1
1 . . . Xis

s .

Then we have

g(X) := f(r1X, . . . , rsX) =

sd∑
l=0

X l
∑

(i1,...,is):i1+...+is=l

ai1,...,isr
i1
1 . . . riss .
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Since f(X1, . . . , Xs) is non-zero, we assume ai′1,...,i′s ̸= 0 and let l′ = i′1+ . . .+
i′s. Consider the following multivariate polynomial:

h(X1, . . . , Xs) :=
∑

(i1,...,is):i1+...+is=l′

ai1,...,isX
i1
1 . . . Xis

s .

The number of roots (a1, . . . , as) ∈ Fs of h(X1, . . . , Xs) is at most |F|s−1 · d =
d|F|s−1, thus

Pr
[
h(r1, . . . , rs) = 0

∣∣∣ r1, . . . , rs $← F
]
≤ d|F|s−1

|F|s
=

d

|F|
.

Finally, we have

Pr
[
g(X) is zero polynomial

∣∣∣ r1, . . . , rs $← F
]

≤Pr

 ∑
(i1,...,is):i1+...+is=l′

ai1,...,isr
i1
1 . . . riss = 0

∣∣∣∣∣∣ r1, . . . , rs $← F


=Pr

[
h(r1, . . . , rs) = 0

∣∣∣ r1, . . . , rs $← F
]
≤ d

|F|
.

⊓⊔

The following lemma is Lemma 1 from [28] that is helpful to prove the zero-
knowledge property. We refer to [28] to see its formal proof.

Lemma 10 ([28]). Let S ⊂ F and ZS(X) :=
∏

a∈S(X − a). Fix a polyno-
mial f ∈ F[X] and any distinct values x1, . . . , xk ∈ F \ S. Then the following
distribution is uniform in Fk:

1. Choose a random polynomial ρ← F(≤k−1)[X] of degree k − 1 and define

f̃(X) := f(X) + ZS(X)ρ(X) .

2. Output (f̃(x1), . . . , f̃(xk)) ∈ Fk.

D Inner Product Arguments

Bünz et al. [9] give a non-interactive IPA which allows a prover to show that
for r ∈ F (r could be 1F) and EA, EB , Er ∈ GT , they know (A,B) ∈ Gm

1 ×Gm
2

such that EA, EB are pairing commitments to A,B, and Er is the inner pairing
product with respect to r = [r2(i−1)]i∈[m]:

Er = ⟨Ar,B⟩ =
∏

i∈[m]

e(A[i]r
2(i−1)

,B[i]) .



Dynamic zk-SNARKs 37

More specifically, it is an argument for the following relation:

Rm
IPA =





x = (gβ ∈ G1, h
α ∈ G2, r ∈ F,

EA, EB , Er ∈ GT ),

w = (r = [r2(i−1)]i∈[m],A ∈ Gm
1 ,

B ∈ Gm
2 ,vA = [hβ2(i−1)

]i∈[m],

vB = [gα
2(i−1)

]i∈[m]))


:

g
$← G1, h

$← G2,

α, β
$← F

∧ EA = ⟨A,vA⟩
∧ EB = ⟨vB,B⟩
∧ Er = ⟨Ar,B⟩


We give an abstraction for their non-interactive argument for Rm

IPA:

– GIPA(1λ,m) → (pk, vk) : Outputs pk = ([gα
i

]i∈[0,2m−2], [h
βi

]i∈[0,2m−2]) and
vk = (gβ , hα).

– PIPA(pk,xIPA,wIPA)→ π : Outputs a proof π that (xIPA,wIPA) ∈ Rm
IPA.

– VIPA(vk,xIPA, π)→ 0/1 : Verifies the proof π that (xIPA,wIPA) ∈ Rm
IPA.

PIPA takes O(m) time, VIPA takes O(logm) time (using the optimization in
Section 5 of [9]), and the proof size is |π| = O(logm).

E Algebraic Group Model

Pairings for polynomial check. In our protocols, we may need to check the fol-
lowing is a zero polynomial∑

i∈[t]

f1,i(X1, . . . , Xs) · f2,i(X1, . . . , Xs) ≡ 0 (Polynomial check)

for polynomials f1,i, f2,i (i ∈ [t]) over variables X1, . . . , Xs. Instead of sending
the whole polynomials to the verifier, the prover computes

[f1,i(X1, . . . , Xs)], [f2,i(X1, . . . , Xs)],∀i ∈ [t]

so that the verifier checks if∏
i∈[t]

e([f1,i(X1, . . . , Xs)], [f2,i(X1, . . . , Xs)]) = 1 (Pairing check)

The following lemma states that it suffices to use pairing checks instead of poly-
nomial checks.

Lemma 11. For any PPT algebraic adversary A, given ppbl ← Gbl(1λ) and
L = {ghi(α1,...,αs)}h as the initial list (hi(X1, . . . , Xs) are some pre-defined public
polynomials), the following probability is negligible under q-DLOG assumption:

Pr


Cl,i = [fl,i(X1, . . . , Xs)], ∀i ∈ [t], l ∈ {1, 2}

∧
∑
i∈[t]

f1,i(X1, . . . , Xs) · f2,i(X1, . . . , Xs) ̸≡ 0

∧
∏
i∈[t]

e(C1,i, C2,i) = 1

:
{Cl,i}i∈[t],l∈{1,2}

← A(ppbl,L)


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Proof. Suppose A is an adversary as described in the lemma statement. Here,
we construct another adversary A∗ for q-DLOG assumption:

A∗(ppbl, (g, g
τ , . . . , gτ

q

)) :

1. Pick r1, . . . , rs
$← F. Let α1 := r1τ, . . . , αs := rsτ . Compute

L =
{
ghi(α1,...,αs) = ghi(r1τ,...,rsτ)

}
h

and sends ppbl and L to A.
2. Receive {Cl,i}i∈[t],l∈{1,2} fromA. Note that sinceA is algebraic,A should

also outputs vectors to show how each group element in (C1,i, C2,i)i∈[t]

can be computed from L. Thus A∗ can reconstruct fl,i(X1, . . . , Xs) such
that

Cl,i = [fl,i(X1, . . . , Xs)], ∀i ∈ [t], l ∈ {1, 2}.
3. If the following holds:∑

i∈[t]

f1,i(X1, . . . , Xs) · f2,i(X1, . . . , Xs) ̸≡ 0 ∧

∏
i∈[t]

e([f1,i(X1, . . . , Xs)], [f2,i(X1, . . . , Xs)]) = 1 ,

thenA∗ knows that
∑

i∈[t] f1,i(X1, . . . , Xs)·f2,i(X1, . . . , Xs) is a non-zero
polynomial which evaluates 0 on (α1, . . . , αs). According to Lemma 9,
g(X) :=

∑
i∈[t] f1,i(r1X, . . . , rsX) · f2,i(r1X, . . . , rsX) is a zero poly-

nomial with probability at most d/|F| (d the maximum degree of any
variable in

∑
i∈[t] f1,i(X1, . . . , Xs) ·f2,i(X1, . . . , Xs)), which is negligible.

Factor g(X) and output the root τ .

Therefore, if A can success with non-negligible probability, then A∗ can also
break q-DLOG with non-negligible probability. ⊓⊔

Variable check. Suppose for pp = {ghi(α1,...,αs)}h, d1, . . . , ds are the maximum
degree of X1, . . . , Xs among hi(X1, . . . , Xs), i.e.,

di = max
i

degXi
hi(X1, . . . , Xs), for i ∈ [s]

If we want to check that a polynomial f(X1, . . . , Xs) is only over variables
X2, X3, . . . , Xs without X1, i.e., degX1

f(X1, . . . , Xs) = 0, then the prover can
computes [f(X1, . . . , Xs)] and [f(X1, . . . , Xs)X

d1
1 ] so that the verifier can check

if

e([f(X1, . . . , Xs)], [X
d1
1 ]) = e([f(X1, . . . , Xs)X

d1
1 ], g) (Variable check)

Similarly, we can check the following to ensure f has no variable X1, X3:

e([f(X1, . . . , Xs)], [X
d1
1 Xd3

3 ]) = e([f(X1, . . . , Xs)X
d1
1 Xd3

3 ], g)

The following lemma states that it suffices to use variable checks to ensure some
f is not a polynomial over some variable(s).
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Lemma 12. For any PPT algebraic adversary A, given ppbl ← Gbl(1λ) and
L = {ghi(α1,...,αs)

l }h as the initial list (hi(X1, . . . , Xs) are pre-defined public
polynomials) where d1, . . . , ds are the maximum degree of X1, . . . , Xs among
hi(X1, . . . , Xs), the following probability is negligible under q-DLOG assump-
tion:

Pr

 C = [f(X1, . . . , Xs)], C
′ = [f ′(X1, . . . , Xs)]

∧degX1
f(X1, . . . , Xs) > 0

∧e([C, [Xd1
1 ]2) = e(C ′, g2)

: (C,C ′)← A(ppbl,L)


Similar results apply for other variable(s).

Proof. We only consider the case for l = 1 and variable X1. Suppose A is an
adversary as described in the lemma statement. Here, we construct another
adversary A∗ for q-DLOG assumption:

A∗(ppbl, (g1, g
τ
1 , . . . , g

τq

1 ), (g2, g
τ
2 , . . . , g

τq

2 )) :

1. Pick r1, . . . , rs
$← F. Let α1 := r1τ, . . . , αs := rsτ . Compute

L =
{
g
hl,i(α1,...,αs)
l = g

hl,i(r1τ,...,rsτ)
l

}
l∈{1,2},h

and sends ppbl and L to A.
2. Receive (C,C ′) from A. Note that since A is algebraic, A should also

outputs vectors to show how (C,C ′) can be computed from L. Thus A∗

can reconstruct f(X1, . . . , Xs), f
′(X1, . . . , Xs) such that

C = [f(X1, . . . , Xs)], C
′ = [f ′(X1, . . . , Xs)].

Note that degX1
f(X1, . . . , Xs) ≤ d1, degX1

f ′(X1, . . . , Xs) ≤ d1.
3. If the following holds:

degX1
f(X1, . . . , Xs) > 0

∧ e([f(X1, . . . , Xs)], [X
d1
1 ]) = e([f ′(X1, . . . , Xs)], g) ,

then A∗ knows that f(X1, . . . , Xs) ·Xd1
1 − f ′(X1, . . . , Xs) is a non-zero

polynomial which evaluates 0 on (α1, . . . , αs). According to Lemma 9,
the polynomial g(X) := f(r1X, . . . , rsX) · (r1X)d1 − f ′(r1X, . . . , rsX)
is a zero polynomial with probability at most d/|F| (d the maximum
degree of any variable in f(X1, . . . , Xs) ·Xd1

1 − f ′(X1, . . . , Xs)), which is
negligible. Factor g(X) and output the root τ .

Therefore, if A can success with non-negligible probability, then A∗ can also
break q-DLOG with non-negligible probability. ⊓⊔
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F Other proofs

F.1 Proof of Theorem 1.

Proof. All the above fi can be directly calculated from the definition of f . In
particular,

– zi(X) = Li(X);
– vi(X,Y ) = y[i]Li(X);
– pi(X,Y ) = y[i]

∑m
j=i Lj(X);

– ti(X,Y ) = y[i]
∑m

j=i Lj(X · ω−1);
– gi(W,Y ) = y[i]

∑m
j=i Lj(W );

– Zi(X,W, Y ) = Y m ·Wm · Li(X);
– Vi(X,W, Y ) = Wm · y[i]Li(X);
– Pi(X,W, Y ) = Wm · y[i]

∑m
j=i Lj(X);

– Ti(X,W, Y ) = Wm · y[i]
∑m

j=i Lj(X · ω−1);
– Gi(X,W, Y ) = Xm · y[i]

∑m
j=i Lj(W );

– αi(X,Y ) = Li(X)(y[i]−u(X,Y ))
Xm−1 ;

– βi(X,Y ) = y[i] ·
∑m

j=i+1 Lj(X)

X−ω ;

– γi(X,Y ) = y[i] ·
∑m−1

j=i Lj(X)

X−1 ;
– δi(X,W, Y ) = y[i] ·

∑m
j=i

Lj(X)−Lj(W )
X−W ;

– εi(X,W, Y ) = y[i] ·
∑m

j=i
Lj(W )−Lj(X·ω−1)

W−X·ω−1 .
⊓⊔

F.2 Proof of Lemma 1

We present the universal protocol in Fig. 9. We only need to show the com-
plexity of G and I here (all other parts are the same as the proof of the circuit-
specific version). For the runtime of G, since this algorithm exactly knows the
secrets a, b, c, it can computes everything from scratch in O(m2) time. For the
runtime of I, let us take a look at every f ∈ F :

– [zi], [vi], [pi], [gi]. Directly extracted/computed from pp in O(m2) time.

– [ti(X,Y )] = [y[i]
∑m

j=i Lj(X · ω−1)]. Similar to [pi]. Note that

Lj(X · ω−1) =
ωj((X · ω−1)m − 1)

m(X · ω−1 − ωj)
=

ωj+1(Xm − 1)

m(X − ωj+1)
= Lj+1(X) .

– [Zi], [Vi], [Pi], [Ti], [Gi] are similar to [zi], [vi], [pi], [ti], [gi].

– [αi(X,Y )] = [Li(X)(y[i]−u(X,Y ))
Xm−1 ]. Expand this polynomial,

Li(X)(y[i]− u(X,Y ))

Xm − 1

=
∑

j∈[m]\i

y[j](ωjLi(X)− ωiLj(X))

m(ωj − ωi)
− ωi(Li(X)− 1)y[i]

m(X − ωi)
,
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– G(1λ,m)→ (pp) :
- ppbl ← Gbl(1λ);
- Pick random a, b, c from F for variables X, Y and W respectively. Let
c′ = c · ω−1.

- Set pp = ppbl and all the following:

{[ai], [aibmcm]}i∈[m] {[aibj ], [aibjcm], [bjci], [ambjci]}i,j∈[m]

{[Li(a)b
j ], [Li(a)b

jcm], [bjLi(c)], [ambjLi(c)]}i∈[m],j∈[0,m]{[
bj

Li(a)− 1

a− ωi

]
,

[
bj

Li(a)− Li(c)

a− c

]
,

[
bj

Li(a)− Li(c
′)

a− c′

]}
i,j∈[m]

– I(pp, [m,σ])→ (pk, upk, vk) :
- Let F = {z, v, p, t, g, Z, V, P, T,G, α, β, γ, δ, ε} be the set of polynomials from

Theorem 1.
- Set pk = upk to contain the following, computed using pp

{[f1], . . . , [fm]}f∈F .

- Set vk = {[u(X,Y )], [X], [W ], [Xm], [Y mWm], [Wm]} (u is from Eq. (5)).

Fig. 9. The universal Dynamo SNARK. P, U , V are the same as Fig. 2.

which can be computed from [Y j Li(X)−1
X−ωi ] and [Y jLi(X)] in O(m2) time.

– γi(X,Y ) = y[i] ·
∑m−1

j=i Lj(X)

X−1 . Note that when i ∈ [m− 1],

Li(X)

X − 1
=

ωi(Xm − 1)

m(X − ωi)(X − 1)
=

Li(X)− ωiL1(X)

ωi − 1
,

then [γi] can be computed from [Y jLi(X)] in O(m2) time.

– βi(X,Y ) = y[i] ·
∑m

j=i+1 Lj(X)

X−ω . Similar to [γi].

– δi(X,W, Y ) = y[i] ·
∑m

j=i
Lj(X)−Lj(W )

X−W . Compute from [Y j Li(X)−Li(W )
X−W ] in

O(m2) time.

– εi(X,W, Y ) = y[i] ·
∑m

j=i
Lj(W )−Lj(X·ω−1)

W−X·ω−1 . Similar to [δi].

F.3 Proof of Lemma 2

We introduce how to add zero-knowledge for Dynamo here. Following the idea
of [19,28], we can use random mask polynomials. More specifically, we introduce
masks for z, v, p, t, g:

zzk(X) = z(X) + ρz · (Xm − 1) ,

vzk(X,Y ) = v(X,Y ) + ρv · (Xm − 1) ,
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pzk(X,Y ) = p(X,Y ) + (ρ(2)p X2 + ρ(1)p X + ρ(0)p ) · (Xm − 1) ,

tzk(X,Y ) = t(X,Y ) + (ρ(2)p (Xω−1)2 + ρ(1)p (Xω−1) + ρ(0)p ) · (Xm − 1) ,

gzk(W,Y ) = g(W,Y ) + (ρ(2)p W 2 + ρ(1)p W + ρ(0)p ) · (Wm − 1) ,

where the randomness ρz, ρv, ρ
(2)
p , ρ

(1)
p , ρ

(0)
p

$← F should be picked at the begin-
ning of Pzk and U zk.

Based on zzk, vzk, pzk, tzk, gzk, we can naturally derive corresponding Zzk,
V zk, P zk, T zk, Gzk for variable checks. However, for new quotient polynomials
αzk, βzk, γzk, δzk, εzk, we need to carefully calculate their forms. Replace z, v, p, t, g
in Eqs. (6), (9), (10), (13) and (14) with zzk, vzk, pzk, tzk, gzk, we have

– αzk(X,Y ) = α(X,Y ) + ρv − ρzu(X,Y ) ;
– βzk(X,Y ) = β(X,Y ) + ((ρ

(2)
p X2 + ρ

(1)
p X + ρ

(0)
p )− ρv) · X

m−1
X−ω ;

– γzk(X,Y ) = γ(X,Y ) + (ρ
(2)
p X2 + ρ

(1)
p X + ρ

(0)
p ) · X

m−1
X−1 ;

– δzk(X,W, Y ) = δ(X,W, Y ) + ρ
(2)
p

(Xm+2−Wm+2)−(X2−W 2)
X−W +

ρ
(1)
p (X

m+1−Wm+1

X−W − 1) + ρ
(0)
p

Xm−Wm

X−W ;

– εzk(X,W, Y ) = ε(X,W, Y ) + ρ
(2)
p

(Wm+2−(Xω−1)m+2)−(W 2−(Xω−1)2)
W−Xω−1 +

ρ
(1)
p (W

m+1−(Xω−1)m+1

W−Xω−1 − 1) + ρ
(0)
p

Wm−(Xω−1)m

W−Xω−1 .

Now we can use

F zk = {zzk, vzk, pzk, tzk, gzk, Zzk, V zk, P zk, T zk, Gzk, αzk, βzk, γzk, δzk, εzk}

instead for Dynamo to achieve zero knowledge. We omit the redundant illus-
tration for minor changes in the keys (basically we need O(1) number of new
prover keys to help update the group elements in F zk) and the detailed protocol
of zero-knowledge Dynamo.

We only show here a simulator for Zero-knowledge property:

S(1λ, i)→ (t, pk, upk, vk) :
Follow every step of G(1λ, [m,σ]), and output (t = (a, b, c), pk, upk, vk).

S(t, pk, upk, vk,x0, . . . ,xl)→ (π̃0, . . . , π̃l) :
For every i ∈ [0, l],
(a) For every f ∈ {z, v, p, t, g}, pick τf

$← F and let [̃f zk] = [τf ]. Also
compute the variable-check polynomials for f from (a, b, c).

(b) For every f ∈ {α, β, γ, δ, ε}, compute [̃f zk] as following:

˜[αzk] =

[
τv − u(a, b)τz

am − 1

]
[̃βzk] =

[
τp − τv
a− ω

]
[̃γzk] =

[
τp

a− 1

]
[̃δzk] =

[
τp − τg
a− c

]
[̃εzk] =

[
τg − τt
c− a

]
(c) Output all the group elements computed above in πi.
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Now we argue S correctly simulates a prover. Recall that Ω = {ωi}i∈[m].

For fixed polynomial z(X) and a value a, if a /∈ Ω and ρz
$← F, then according

to Lemma 10, zzk(a) = z(a) + ρz(a
m − 1) is also uniform in F.

For fixed polynomial v(X, b) and a value a, if a /∈ Ω and ρv
$← F, then

according to Lemma 10, vzk(a, b) = v(a, b) + ρv(a
m − 1) is also uniform in F.

For fixed polynomial p(X, b) and value a, c, ω−1a, if a, c, ω−1a /∈ Ω and
ρ
(2)
p , ρ

(1)
p , ρ

(0)
p

$← F, then according to Lemma 10 and the following calculation,

pzk(a, b) = p(a, b) + (ρ(2)p a2 + ρ(1)p a+ ρ(0)p )(am − 1)

gzk(c, b) = p(c, b) + (ρ(2)p c2 + ρ(1)p c+ ρ(0)p )(cm − 1)

tzk(a, b) = p(ω−1a, b) + (ρ(2)p (ω−1a)2 + ρ(1)p (ω−1a) + ρ(0)p )((ω−1a)m − 1)

(pzk(a, b), gzk(c, b), tzk(a, b)) is also uniform.
Above all, as long as a, c, ω−1a /∈ Ω (which is of overwhelming probability),

(zzk(a), vzk(a, b), pzk(a, b), gzk(c, b), tzk(a, b))

is uniform in F5 and thus S can perfectly simulate [f zk]f∈{z,v,p,g,t}. Based on
the codes of the prover and the simulator, [f zk]f∈{Z,V,P,G,T,α,β,γ,δ,ε} are exactly
determined by [f zk]f∈{z,v,p,g,t}. Therefore, S can successfully simulate a prover.

F.4 Proof of Lemma 6

We briefly introduce how to add zero knowledge to Dynaverse here. The
intuition is also to add mask polynomials, following the next two steps:

1. Similar to the way we add zero knowledge to Dynamo, we add mask polyno-
mials to F in Dynamix. However, we cannot put [h] in πti because it could
leak some information about w. We should remove all [h], [H] in the proof
and fix the equations with h with the following trick. Note that we can
compute γzk

ti as

γzk
ti (X,Y ) =

pzkti (X,Y )− hti(Y )

X − 1
,

then we have∑
t∈[1,6],i∈[m]

hti(Y ) =
∑

t∈[1,6],i∈[m]

pzkti (X,Y )− (X − 1)
∑

t∈[1,6],i∈[m]

γzk
ti (X,Y ) .

Replace all the [γti] in the proof with one group element [γzk] where

γzk(X,Y ) =
∑

t∈[1,6],i∈[m]

γzk
ti (X,Y ) .

Then for [hx(Y )]·
∏6

t=1

∏m
i=1[hti(Y )]

?
= 1G, V can verify the following instead

e([hx], g) ·

 ∏
i∈[m],t∈[1,6]

e([pzkti ], g)

 · e([−γzk], [X − 1])
?
= 1GT

.
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[γzk] can be simulated from [hx] and [pzkti ].
And for e([p] · [−t] · [−v], g) ?

= e([−ωh
m ], [ (X

m−1)
(X−ω) ]), a new quotient polynomial

should be computed as follows (and can be easily simulated):

pzk(X,Y )− tzk(X,Y )− vzk(X,Y )

(Xm − 1)(X − ω)−1
.

2. We also need to add masks for zt,i for t ∈ {4, 5, 6} and Ai should also be
modified due to changes in Eq. (19).

F.5 Proof of Theorem 5

The completeness and soundness follow directly from those of the dynamic
zk-SNARK DS. The complexities also follow from the complexities of DS.

F.6 Proof of Lemma 8

The proof is similar to the proof of Theorem 5. We want to mention that
although there are O(logM) wires changed for the SUMTREE, they are basically
all from addition gates. The wires changed from multiplication gates are all from
the computation F.

G Ensuring the IVC transferred state is zero-knowledge

Recall that in the update algorithm of Dynaverse (cf. Fig. 3), the only place
we need the whole witnesses for one bucket is where we compute quotient polyno-
mials A′

i(X) from Eq. (19). This is because we need to compute the polynomial
multiplication and division from scratch every time. Now we consider another
approach to update [Ai(X)] without revealing all the coefficients or evaluations
of Ai(X). Whenever we compute or update the proof, we also maintain the fol-
lowing in the state (we only care about and compute the quotients and ignore
the remainders here, same thing for other quotients below):[

z4i(X) · Lj(X)

Xm − 1

]
,

[
z5i(X) · Lj(X)

Xm − 1

]
for i, j = 1, . . . ,m,

and we need to pre-compute [lij(X)] for i, j ∈ [m] where

lij(X) =
Li(X) · Lj(X)

Xm − 1
.

When we have an update for z4i(X) or z5i(X), we can update both [Ai(X)]
and the state in O(m) time. For example, if z4i(X) is updated as

z′4i(X) = z4i(X) + Lj(X) · δ ,
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then we have
A′

i(X) = Ai(X) +
z5i(X) · Lj(X)δ

Xm − 1
,

and we can update [Ai(X)] with the help of the previous state. Also, we can
update the whole state with the help of [lij(X)]. All the group elements in the
state can be zero-knowledge through simple masks.

We emphasize that we only need to maintain one state of O(m) size since
updates in IVC are monotonically increasing.

H Details for Dynamix and Dynaverse
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– G(1λ, [m,N, s, t])→ (pk, upk, vk) :
- ppbl ← Gbl(1λ).
- Let F = {z, v, p, t, g, h, Z, V, P, T,G,H, α, β, γ, δ, ε} be the set of polynomi-

als from Theorem 1, including h and H from Equation 18.
- Pick random a, b, c from F for variables X, Y and W respectively.
- Set pk = upk to contain the following KZG commitments, defined in The-

orem 1, and computed using a, b and c directly

{[f1], . . . , [fm]}f∈F .

- Set

vk = {[u], [X], [W ], [Xm], [(Xm−1)(X−ω)−1], [Y NWm], [Wm], [XmWm]} ,

where u is u(X,Y ) =
∑

i∈[m] Li(X) · (Y si − Y ti).

– P(pk,x,w)→ (π, aux):
- Parse x as ∅ and w as z[1], . . . , z[m].
- Output |F| = 17 KZG commitments as π and aux, i.e., for all f ∈ F output

[f ] =
∏

i∈[m]

[fi]
z[i] .

– U(upk,x′,w′,x,w, π, aux)→ (π′, aux′):
- Parse w as z and w′ as a new valid witness z′. Parse π and aux as {[f ]}f∈F .
- Let J be the set of locations that z and z′ differ and let {δj}j∈J be the

corresponding deltas. Output as π′ and aux′ the new KZG commitments
{[f ′]}f∈F where

[f ′] = [f ] ·
∏
j∈J

[fj ]
δj .

– V(vk,x, π)→ 0/1:
- Parse vk and π as output by G and P respectively.
- Output 1 if and only if all the following relations hold:

e([v], g) · e([−u], [z]) = e([α], [Xm − 1]).
e([p], g) · e([−v], g) = e([β], [X − ω]).
e([p] · [−h], g) = e([γ], [X − 1]).
e([p] · [−t] · [−v], g) = e([−ωh/m], [(Xm − 1) · (X − ω)−1]).
e([p] · [−g], g) = e([δ], [X −W ]).
e([g] · [−t], g) = e([ε], [W −X · ω−1]).
e([z], [Y NWm]]) = e([Z], g).
e([v], [Wm]]) = e([V ], g).
e([p], [Wm]]) = e([P ], g).
e([t], [Wm]]) = e([T ], g).
e([g], [Xm]]) = e([G], g).
e([h], [XmWm]]) = e([H], g).

Fig. 10. The Dynamix SNARK.
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Fig. 11. The Dynaverse dynamic SNARK. The initial 6n-sized witness [z1 . . . z6] is
split into subvectors zij of size m =

√
n, which are KZG-committed to [zij ]. For each

[zij ], we provide a Dynamix proof with respect to the permutation σ. For every [zij ]
participating in multiplications (i = 4, 5, 6) we provide commitments to the quotient
polynomials Ai(X).
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Fig. 12. The optimized Dynaverse dynamic SNARK. The addition wires are committed
with three commitments [z1], [z2] and [z3] of n-sized vectors. The multiplication wires
are committed in two ways, i.e., first with three commitments [z4], [z5] and [z6] of n-
sized vectors and then with 3m commitments of m-sized vectors, as before. Overall we
reduce the number of Dynamix proofs to six, we maintain the quotients polynomials,
and we provide additional subvector proofs, denoted with “⊆”, to ensure consistency
between [zi] and [zij ] for i = 4, 5, 6.
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