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ABSTRACT
A Private Set Union (PSU) allows two parties having sets 𝑋 and 𝑌
to securely compute the union 𝑋 ∪𝑌 while revealing no additional
information. Recently, there have been proposed so-called shuffle-
based PSU protocols due to Garimella et. al. (PKC’21) and Jia et. al.
(USENIX’22). Except a few base oblivious transfers, those proposals
are fully based on symmetric key primitives and hence enjoy quite
low computation costs. However, they commonly have drawbacks
on large communication cost of 𝑂 (ℓ𝑛 log𝑛) with input set size 𝑛
and ℓ ≥ 𝑂 (𝜆 + log𝑛) where 𝜆 is a statistical security parameter.

We propose two optimizations for each work that reduce com-
munication cost while maintaining strength in computation cost;
the first one optimizes Garimella et. al. to have𝑂 (ℓ𝑛 +𝑛 log𝑛), and
the second one optimizes Jia et. al. by reducing the concrete value of
ℓ by log𝑛. Concretely, the first (second, resp) optimization provides
3.3 − 3.9x (1.7 − 1.8x, resp) lower communication input set sizes
𝑛 = 216 − 220.

We demonstrate by comprehensive analysis and implementation
that our optimization leads to better PSU protocol, compared to the
state-of-the-art proposal of Zhang et. al. (USENIX’23) as well as
previous shuffle-based PSUs. As a concrete amount of improvement,
we see 1.4 − 1.5x speed up for 100Mbps network, and 1.8 − 2.2x
speed up for 10Mbps network on input set sizes 𝑛 = 216 − 220.
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1 INTRODUCTION
A (two-party) Private Set Union (PSU) allows two parties having
sets 𝑋 and 𝑌 to securely compute the union 𝑋 ∪ 𝑌 while reveal-
ing no additional information. In particular, each party obtains no
knowledge of whether each item is in the intersection 𝑋 ∩𝑌 or not.

Even a decade after early PSU proposals [11, 18], there was
comparably less attention on efficient PSU protocols than private
set intersection (PSI). However, starting from the first scalable PSU
construction [20], several protocols with enhanced efficiency [12,
17, 31] have sprung up recently.

In this work, we especially focus on what we call shuffle-based
PSUs [12, 17]. At the current state, shuffle-based PSUs have signifi-
cant weakness in the communication complexity of𝑂 (𝑛 log𝑛) with
input set size 𝑛, where the most efficient one [31] requires only
𝑂 (𝑛) communication complexity. Indeed, concrete communication
costs differ by almost one order of magnitude; for example, [31]
requires only 157MB but [17] requires 1338MB to union 𝑛 = 220
size sets. Meanwhile, compared to the other work [31] that ex-
ploits public-key techniques in some parts, shuffle-based PSUs may
have an advantage in computation as they are purely based on
symmetric-key techniques.

1.1 Our Contribution
Revisit Shuffle-based PSU. We revisit shuffle-based PSUs [12, 17]

in modular view in relation with recent techniques for PSI, espe-
cially with Oblivious Key-Value Store (OKVS) [13] abstraction and
recent advances on Oblivious Transfer (OT) extension [10]. In a nut-
shell, shuffle-based PSUs commonly require OKVS operations with
𝑂 (𝑛) items, and additional 𝑂 (𝑛 log𝑛) OTs. This explains the com-
putational strength of Shuffle-based PSUs over [31] in an objective
way; [31] also requires𝑂 (𝑛) OKVS operations, but additional𝑂 (𝑛)
public key operations or 𝑂 (𝑡𝑛) OTs with huge 𝑡 ≈ 600 ≫ log𝑛 for
realistic 𝑛.

Reduce Communications. We then propose optimized shuffle-
based PSUs that reduce communication costs, while maintaining
the strength of computational cost. To be precise, the root cause
of the huge communication cost of previous shuffle-based PSU is
the term 𝑂 (ℓ𝑛 log𝑛), where ℓ ≥ 𝜆 + log𝑛 for statistical security
parameter 𝜆. In this respect, we propose two independent ideas
that optimize previous shuffle-based protocols respectively. The
first one optimizes [12] to have 𝑂 (ℓ𝑛 + 𝑛 log𝑛) communication,
at the additional computational cost for 𝑂 (ℓ𝑛) OT. The second
one optimizes [17] to have 𝑂 ((ℓ − log𝑛) · 𝑛 log𝑛) communication,
without any sacrifice on computational cost. Concretely, for 𝑛 = 220
input size, the first one reduces from 572MB to 144MB, and the
second one reduces from 970MB to 533MB.

Implementation and Evaluation. We provide comprehensive per-
formance evaluation, along with implementation results. From this,
we argue that our optimizations make shuffle-based PSUs have
better concrete performance than linear complexity PSUs [31] and
previous shuffle-based PSUs. Precisely, our first proposal that op-
timizes [12] is the best for a network slower than about 100Mbps,
and then our second proposal that optimizes [17] is the best one
for the other side; faster than 100Mbps. The absolute amount of
improvement is substantial over medium to low networks; 1.4−1.5x
speed up for 100Mbps network, and 1.8− 2.2x speed up for 10Mbps
network on input set sizes 𝑛 = 216 − 220. See Section 5.2 for detailed
comparisons.

1.2 Technical Overview
Throughout this section, we denote the size 𝑛𝑥 and 𝑛𝑦 of input sets
𝑋 and 𝑌 respectively, and assume that the 𝑌 holder is the receiver.
We often assume 𝑛𝑥 and 𝑛𝑦 are equal to 𝑛.

Most recent PSU proposals are based on an abstraction called
Reverse Private Membership Test (RPMT) [20], where the sender
inputs an element 𝑥 and the receiver inputs a set𝑌 , and the receiver
obtains the membership indicator 1(𝑥 ∈ 𝑌 ) (1 if 𝑥 ∈ 𝑌 , 0 otherwise).
Then the receiver obtains each 𝑥 ∉ 𝑌 using oblivious transfer (OT),
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where the sender inputs𝑚0 = 𝑥 and𝑚1 = ⊥ for some dummy ele-
ment ⊥. As all known methods for RPMT takes 𝑂 (𝑛𝑦) complexity,
the naive PSU that applies RPMT on every 𝑥 ∈ 𝑋 and 𝑌 results in
𝑂 (𝑛𝑥𝑛𝑦) = 𝑂 (𝑛2) complexity. To enhance efficiency, Kolesnikov
et al. [20] further applied a bucketing technique, where each party
hashes their items into bins and applies the naive PSU for each bin.
They used 𝑂 (𝑛/log𝑛) bins that lead to each bin size 𝑂 (log𝑛), and
hence the overall cost becomes 𝑂 (𝑛/log𝑛 · log2 𝑛) = 𝑂 (𝑛 log𝑛).

One would naturally consider cuckoo hashing [3], which ensures
that each bin has at least one item 𝑥 , whose underlying idea is to use
several hash functions to avoid the collision of bin index. Indeed,
there are some PSU protocols that make use of cuckoo hashing, in
both directions where the sender performs cuckoo hashing [12]
and the receiver performs cuckoo hashing [17].1 However, cuckoo
hashing alone leads to additional information leakage to the receiver
other than 𝑋 ∪ 𝑌 . The fundamental reason for the leakage is the
fact that the receiver can correspond each membership indicator
1(𝑥 ∈ 𝑌 ) to some table index.

In this regard, the true novelty of both works [12, 17] lies on
the idea of shuffle the receiver-side table in order to break the
correspondence with 1(𝑥 ∈ 𝑌 ). The formal notion of shuffle is
abstracted by permute-and-share functionality (P&S) [8, 23], where
the sender inputs a permutation 𝜋 and the receiver inputs a vector t
and two parties obtain secret-shared 𝜋 (t). The existing protocol [23]
realizing P&S takes𝑂 (𝑛 log𝑛) computation cost for a vector length
𝑛, and the communication cost further depends on the bit-length of
each vector item ℓ that leads to 𝑂 (ℓ · 𝑛 log𝑛)-bit communication.

Below we revisit both sender-cuckoo and receiver-cuckoo con-
structions in a modular view. Then we point out the reason for
huge communication and present our ideas for communication
reduction.

1.2.1 Previous Sender Cuckoo Protocol [12]. We start with an ab-
straction of the RPMT construction of Kolesnikov et al. [20]. In the
first step, two parties convert the membership problem 𝑥 ∈ 𝑌 into
the equality test problem 𝑡𝑠 = 𝑡𝑟 , using oblivious programmable
PRF (OPPRF) [19, 26] functionality. Roughly, the receiver sets a
random function 𝐹 (·) such that 𝐹 (𝑦) = 𝑡 for every 𝑦 ∈ 𝑌 with some
random value 𝑡𝑟 , and the sender obtains an evaluation 𝑡𝑠 = 𝐹 (𝑥).
Note that 𝑡𝑠 = 𝑡𝑟 if and only if 𝑥 ∈ 𝑌 with high probability. Then as
the second part, two parties privately check the equality 𝑡𝑠 = 𝑡𝑟 to
let the receiver knows 1(𝑡𝑠 = 𝑡𝑟 ).

An (insecure) cuckoo hashing-based optimization is as follows.
The sender performs cuckoo hashing to haveCT𝑋 of size 𝛽 = 𝑂 (𝑛𝑥 )
and the receiver performs simple hashing to have ST𝑌 . Denot-
ing 𝑥𝑖 := CT𝑋 [𝑖] and 𝑌𝑖 := ST𝑌 [𝑖], the goal is to let the receiver
knows 1(𝑥𝑖 ∈ 𝑌𝑖 ) for each bin index 𝑖 . In this case, OPPRF can
be batched into only one call with whole ST𝑌 of size 𝑂 (𝑛𝑦) by
programming 𝐹 by 𝐹 (𝑌𝑖 ) = 𝑡𝑟,𝑖 . After (batched) OPPRF, the sender
and the receiver respectively obtain t𝑠 and t𝑟 of length 𝛽 such that
1(𝑥𝑖 ∈ 𝑌𝑖 ) = 1(𝑡𝑠,𝑖 = 𝑡𝑟,𝑖 ). Then two parties engage private equal-
ity test (PEqT) protocol so that the receiver knows the vector of
membership indicators 1(𝑥𝑖 ∈ 𝑌𝑖 ).

1In fact, [17] also proposed another protocol where the sender performs cuckoo
hashing, but [12] version is much efficient so we only focus on the receiver-cuckoo
version in this paper.

This cuckoo hashing version really makes the total complexity
𝑂 (𝑛𝑥 + 𝑛𝑦) = 𝑂 (𝑛). However, [20] pointed out the information
leakage of this protocol; the receiver obtains 𝑥𝑖 ∈ 𝑋\𝑌 in the end
but further knows that the bin index 𝑖 where the item 𝑥𝑖 is mapped
to. Since the bin index of 𝑥𝑖 is dependent on the entire set 𝑋 , the
view of the receiver cannot be simulated without the knowledge of
𝑋 , which can be understood as information leakage.

Later, Garimella et al.[12] resolves this issue by inserting P&S phase
to convert t𝑟 into an additive share of 𝜋 (t𝑟 ), say s and p𝑟 := s⊕𝜋 (t𝑟 ),
while 𝜋 is only known to the sender. The sender then can compute
p𝑠 := s ⊕ 𝜋 (t𝑠 ) by itself, since it knows s, 𝜋 and s. Two parties
perform PEqT on inputs p𝑠 and p𝑟 , so that the receiver ends with
membership indicators 1(𝑥𝑖 ∈ 𝑌𝑖 ) in permuted order. This prevents
the receiver to correspond the received item 𝑥 with the bin index,
which solves the problem of the cuckoo hashing only protocol. Fig-
ure 1a illustrates the summary. As the sender knows the order of
1(𝑥𝑖 ∈ 𝑌𝑖 ), it can send the corresponding item 𝑥𝑖 using OT.

The P&S target vector t𝑟 has length 𝛽 = 𝑂 (𝑛𝑥 ), and hence it
takes𝑂 (𝛽 log 𝛽) = 𝑂 (𝑛𝑥 log𝑛𝑥 ) complexity, this increases the total
complexity by 𝑂 (𝑛𝑥 log𝑛𝑥 ). Even worse, the communication cost
also depends on the bit-length ℓ of OPPRF output, which is taken
ℓ ≈ 𝜆 + log𝑛𝑥 to prevent false positive. This is the main reason for
the huge communication cost of [12].
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(a) Original [12]
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(b) Our optimized version

Figure 1: Our sender-cuckoo optimization

1.2.2 Our Sender Cuckoo Protocol. The starting point of our opti-
mization is to switch the execution order of the shuffling and the
private equality test, in order to compress the input of P&S to a
Boolean vector. However, a naive switching is definitely insecure;
the receiver knows the membership indicator in hash table order
right after private equality test, and the information leakage pointed
out in [20] occurs again.

To remedy this, we change the intermediate PEqT phase into
the private equality share generation (PESG) phase that generates
Boolean shares of (𝑥𝑖 ∈ 𝑌𝑖 ). Clearly the resulting protocol becomes
secure, because each membership indicator is not revealed to the
receiver because it is secret-shared, although the order remains
unchanged. Also remark that this change from PEqT to PESG incurs
only a small overhead in a cost respect, thanks to recent advances in
OT extension [10, 30] that significantly reduces the communication
cost of GMW protocol.
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After generating Boolean shares of b := (𝑥𝑖 ∈ 𝑌𝑖 ), we can convert
Boolean shares of b into Boolean shares of c = 𝜋 (b) using P&S sim-
ilar to the [12], but notably the input bit-length of P&S drops to 1
(from ℓ) now. This significantly drops the previously heaviest part
P&S of𝑂 (ℓ · 𝑛𝑥 log𝑛𝑥 )-bit communication to𝑂 (𝑛𝑥 log𝑛𝑥 ). Finally,
the sender sends its share to the receiver who finally obtains mem-
bership indicators in randomly permuted order, which is exactly
the same situation with [12]. Figure 1b illustrates the summary.

1.2.3 Previous Receiver Cuckoo Protocol [17]. It suffices to overview
the RPMT construction of Jia et al. [17], which are illustrated as Fig-
ure 2a. First the receiver performs cuckoo hashing on𝑌 to haveCT𝑌
of size 𝛽 = 𝑂 (𝑛𝑦) using𝛾 hash functionsℎ1, · · · , ℎ𝛾 : {0, 1}∗ → [𝛽].
Two parties engage P&S to have an additive share of 𝜋 (CT𝑌 ), say
s to the sender and p := 𝜋 (CT𝑌 ) ⊕ s to the receiver. Their main
observation is, when defining 𝐼𝑥 := {𝑥 ⊕ 𝑠𝑖𝑑𝑖 : 𝑖𝑑𝑖 = 𝜋 (ℎ𝑖 (𝑥))}𝑖∈[𝛾 ]
for each 𝑥 ∈ 𝑋 , it holds that

𝐼𝑥 ∩ {𝑝𝑖 }𝑖∈[𝛽 ] ≠ ∅ ⇐⇒ 𝑥 ∈ 𝑌 (1)
with high probability. To securely exploit this observation, two
parties first execute OPRF so that the sender obtains PRF key 𝑘 and
the receiver obtains {𝐹𝑘 (𝑝𝑖 )}𝑖∈[𝛽 ] . Then the sender sends 𝐹𝑘 (𝐼𝑥 ),
so that the receiver determines 1(𝑥 ∈ 𝑌 ) using eq. (1). It is easy to
see that shuffling is essential for security. If the same methodology
is applied without shuffle, the receiver knows the exact cuckoo
hash index 𝑖 where 𝑥 intersects with t𝑦 , which lets the receiver
conclude 𝑡𝑦 [𝑖] is also in the sender set 𝑋 . This protocol also suffers
from the large communication cost owing to P&S. By denoting the
original item length by ℓ0, the first P&S call takes 𝑂 (ℓ0 · 𝑛𝑦 log𝑛𝑦)-
bit communication. Several PSU works including [17] assumes
ℓ0 = 128, which results in devastating communication cost.

Sender (𝑋 ) Receiver (𝑌 )
𝑌CT𝑌

Cuckoo
Hash

𝜋

s
CT𝑌
pP&S

:= 𝜋 (CT𝑌 ) ⊕ s
(Length ℓ = ℓ0, e.g. 128)
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(a) Original [17]
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(b) Our optimized version

Figure 2: Our receiver-cuckoo optimization

1.2.4 Our Receiver Cuckoo Protocol. As a starting observation, the
RPMT result 1(𝑥 ∈ 𝑌 ) remains same even if the original items
are hashed into shorter string. The hash output length ℓ1 is set to
avoid hash collision, and roughly ℓ1 ≈ 𝜆 + log𝑛𝑥𝑛𝑦 ensures failure
probability less than 2−𝜆 . This readily decreases communication
cost for P&S, as the item length drops from ℓ0 = 128 to 80 for𝑛 = 220
and 𝜆 = 40.

Onemay easily think of permutation-based hashing (phashing) [3,
25] in order to further reduces the item length by log 𝛽 ≈ log𝑛𝑦
bits. Instead of a naive hashing method that inserts an item 𝑥 into
the bin of index ℎ(𝑥), the phashing represents 𝑥 = 𝑥𝐿 | |𝑥𝑅 with
|𝑥𝐿 | ≈ log 𝛽 , and inserts only 𝑥𝑅 into the bin of index ℎ′ (𝑥) :=
ℎ(𝑥𝑅) ⊕ 𝑥𝐿 . 2At first glance, this is seemingly well-compatible with
the aforementioned RPMT method, and easily reduces P&S input
bit-length by |𝑥𝐿 | ≈ log 𝛽 , and the sender has s ∈ {0, 1}ℓ1−log𝑛
and the receiver has p := 𝜋 (CT𝑌 ) ⊕ s ∈ {0, 1}ℓ1−log𝑛 . However,
if the receiver naively follow the remaining procedures, it would
implicitly use the set 𝐼𝑥𝑅 := {𝑥𝑅 ⊕ 𝑠𝑖𝑘 : 𝑖𝑘 = 𝜋 (ℎ′

𝑘
(𝑥))}𝑘∈[𝛾 ] and

check
𝐼𝑥𝑅 ∩ {𝑝𝑖 }𝑖∈[𝛽 ] ≠ ∅. (2)

Then the receiver determines 1(𝑥 ∈ 𝑌 ) = 1 only when 𝑥𝑅 = 𝑦𝑅
for some 𝑦 ∈ 𝑌 . This causes a significantly larger false positive
probability. More precisely, for the initial hash item length choice
ℓ1 ≈ 𝜆 + log𝑛𝑥𝑛𝑦 , this leads to 2−𝜆+log𝑛 false positive probability.

As an intuitive explanation why this happen, note that the cor-
rectness of phasing holds because the removed part 𝑥𝐿 is reflected
in the bin index ℎ′

𝑖
(𝑥) = ℎ(𝑥𝑅) ⊕ 𝑥𝐿 . It enables the other party can

implicitly check whether 𝑥𝐿 is same when computing hash bin in-
dex. However, the logic eq. (2) does not work in the way where the
other party computes hash index ℎ′

𝑖
(𝑥), but simply check whether

𝑥𝑅 is in the whole other table.
To resolve this problem, we propose a tweak on the member-

ship check logic eq. (2) that enables to enjoy the length saving
of phashing, without any harm on false positive. The underlying
idea of our tweak is to restore the bin index information, which is
removed by phashing. It may seem impossible because the receiver
does not know about the permutation 𝜋 of P&S, but it is sufficient
to attach the permuted hash table index to the item in the phash-
ing bin; more precisely we change the definition of the set 𝐼𝑥 by
𝐼 ′𝑥 := {(𝑥𝑅 ⊕ 𝑠𝑖𝑑𝑖 | |𝑖𝑑𝑖 ) : 𝑖𝑑𝑖 = 𝜋 (ℎ′

𝑖
(𝑥))}𝑖∈[𝛾 ] . As a corresponding

change on the receiver, we let the receiver check whether

𝐼 ′𝑥 ∩ {𝑝𝑖,𝑅 | |𝑖}𝑖∈[𝛽 ] ≠ ∅. (3)

This determines 1(𝑥 ∈ 𝑌 ) if 𝑥𝑅 = 𝑦𝑅 and ℎ′
𝑘
(𝑥) = ℎ′

𝑘
(𝑦) for some

𝑘 ∈ [𝛾], where 𝑥𝐿 = 𝑦𝐿 is implicitly checked by the latter condition.
This change can be easily realized in the protocol by letting the
receiver execute OPRF with input {𝑝𝑖,𝑅 | |𝑖}, and the sender to com-
putes 𝐹𝑘 on input {𝑥𝑅 ⊕ 𝑠𝑖 | |𝑖}. The resulting protocol is illustrated
as Figure 2b.

To summarize, our tweak enables to partially enjoy the benefit of
phashing to reduce the heavy communication of P&S, by restoring
the bin index information of log𝑛-bit removed by phashing after
P&S. We think this is an interesting situation that comes from the
combination of phasing and P&S. It can be easily checked that our
modification has a negligible impact on computational cost. It only
consists of pre-phashing phase and a slight change in OPRF input
sets.

As a final remark, the benefit of phashing optimization is signifi-
cant when the original input length ℓ0 is small. To be precise, the
naive hashing brings no improvement when the collision-avoiding
length ℓ1 ≈ 𝜆+ log𝑛𝑥𝑛𝑦 is longer than ℓ0. Considering this, we may

2This representation assumes that 𝛽 is a power of two. For a general case, one may
use the unique representation 𝑥 = 𝑥𝐿 · 𝛽 + 𝑥𝑅 where 0 ≤ 𝑥𝑅 < 𝛽 .
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assume that the RPMT input item length is ℓ′ = min(ℓ1, ℓ0). In this
situation, phashing can further reduce the RPMT input length by
log𝑛𝑦 , no matter what is ℓ′. The effect of this reduction is clearly
much larger when ℓ0 is small; when ℓ0 = 32 and 𝑛 = 216, phashing
reduces almost 50% communication for P&S.

1.3 Further Related Works
We overview other recent PSU protocols, especially semi-honest
proposals.

1.3.1 Zhang et. al. [31]. The construction of [31] is based on the
following clever idea that achieves linear complexity without the
hash bin technique. Roughly speaking, the receiver produces a ci-
phertext per each item 𝑦 ∈ 𝑌 , and then computes OKVS encoding
of the ciphertexts. The receiver sends the OKVS encoding to the
sender who decodes OKVS on its items 𝑥 ∈ 𝑋 , and obtains a valid
ciphertext only when 𝑥 = 𝑦 ∈ 𝑋 . In a (re-randomizable) Public Key
Encryption (PKE) version, the sender re-randomize the decoded
ciphertexts and sends them to the receiver, so that the receiver de-
crypts the ciphertext to obtain RPMT result 1(𝑥 ∈ 𝑌 ). This scheme
arguably achieves𝑂 (𝑛𝑥 +𝑛𝑦) complexity on both computation and
communication. As a downside, each computation unit is rather
heavy PK operation, and each communication unit is also quite
large 𝑂 (𝜅). In a Secret Key Encryption (SKE) version, the sender
and the receiver engage 2PC that privately decrypts the cipher-
text, in the sense that that the receiver only obtains RPMT result
1(𝑥 ∈ 𝑌 ), not the decryption result itself. The computation com-
plexity includes 𝑂 (𝑛𝑥 ) times of 2PC evaluation of underlying SKE
decryption circuit. The authors used LowMC [1] cipher that has
small number of AND gates, concretely 𝑡 ≈ 600 AND gates.

1.3.2 Gordon. et. al. [15]. More recently, another PSU protocol [15]
based on a different idea is proposed. In this protocol, the receiver
consider a polynomial 𝑃 (𝑥) := ∏

𝑦∈𝑌 (𝑥 −𝑦). Then it sends additive
homomorphic encryption (AHE) of each coefficient of 𝑃 (𝑥) to the
sender who then homomorphically computes encryption of 𝑃 (𝑥)
for each 𝑥 ∈ 𝑋 . The sender sends back all ciphertexts, then the
receiver decrypts and obtains 𝑃 (𝑥). It holds that 𝑃 (𝑥) = 0 if 𝑥 ∈ 𝑌 ,
from which the receiver knows the membership indicator 1(𝑥 ∈ 𝑌 ).
This core idea is actually adapted from [11], but the authors further
optimize this using a hash table, in a similar way to [20]. The
authors of [15] particularly exploit RLWE-AHE [7] that supports
SIMD operations for fast evaluation.

We currently see some issues in performance reports of [15]
which are briefly described here with further details in Appendix C.
As the first issue, we found that it only provide performance re-
ports with input item length ℓ0 = 64, whereas other PSU protocols
considers ℓ0 = 128. As their performance seems to linearly depend
on the input item length, this leads to unfair comparison. Of course,
this issue is not a big deal, as we can simply run our proposals with
ℓ0 = 64 to compare with [15]. However, we would raise a secu-
rity issue in the [15] construction. Roughly speaking, the receiver
should only know the decryption result 𝑃 (𝑥) when decrypts the
returning ciphertext, which is called function privacy sometimes.
The authors of [15] seems to aware of the necessity of function
privacy, but the current treat seems to be insufficient because of
the use of RLWE-based AHE. For a completeness though, one can

find some comparisons with as-is performance reports of [15] in
Appendix C.

2 PRELIMINARIES AND BUILDING BLOCKS
2.1 Notations
We write vectors by bold lowercase letters. For any real number 𝑥 ,
we denote ⌊𝑥⌉ by the round-off to an integer. The 𝑖-th component
of a vector v is denoted by 𝑣𝑖 or 𝑣 [𝑖]. For an integer 𝑘, we denote
the set {1, · · · , 𝑘} by [𝑘] . The logarithm function log is assumed to
have base 2 without special mention. For any statement 𝑇 that can
be determined by true or false (Boolean), we denote 1(𝑇 ) to be the
truth value for the equality, i.e., it is 1 if 𝑇 is true and 0 else.

2.2 Security Notion and Definition
2.2.1 Semi-honest Security. We use a standard notion of security
against semi-honest adversaries, and provide a simplified descrip-
tion for the 2-party case. Consider a two-party protocol Π that
computes an ideal functionality 𝑓 (𝑥1, 𝑥2) where party 𝑃𝑖 has input
𝑥𝑖 . For each party 𝑃𝑖 , define view𝑖 (𝑥1, 𝑥2) denote the view of party
𝑃𝑖 during an execution of Π on input 𝑥1, 𝑥2. Precisely, it consists of
input 𝑥𝑖 , messages that are sent or received, sampled random tape
during protocol execution, and the output of the protocol Π .

Definition 2.1. We say a (two-party) protocol Π for 𝑃1 and 𝑃2
computes 𝑓 against semi-honest adversary, if there exists simulators
Sim1 and Sim2 such that, for any inputs 𝑥1, 𝑥2 and 𝑖 = 1, 2,

Sim𝑖 (𝑥𝑖 , 𝑓 (𝑥1, 𝑥2)) �𝑐 view𝑖 (𝑥1, 𝑥2),
where �𝑐 represents the computational indistinguishability.

2.2.2 Private Set Union. Private Set Union (PSU) lets two parties
of input 𝑋 and 𝑌 privately compute the union set 𝑋 ∪ 𝑌 . Typically
it is defined by one-sided output where only one party obtains
the result, but it is trivial to extend this to two-sided output in a
semi-honest setting.

Many private set operation literature implicitly (or explicitly)
assume that both parties know at least the size of the input of the
opposite party. In particular for PSU case, the receiver then naturally
knows the intersection size from |𝑋 ∩𝑌 | = |𝑋 | + |𝑌 | − |𝑋 ∪𝑌 |. Thus
the desired ideal functionality FPSU is defined so that additionally
output |𝑋 ∩ 𝑌 | to the receiver.

Parameters: A sender set size 𝑛𝑥 and a receiver set size 𝑛𝑦 .
Input: A sender with a set 𝑋 of size 𝑛𝑥 and a receiver with a
set 𝑌 of size 𝑛𝑦 .
Functionality: Output 𝑋 ∪ 𝑌 (and |𝑋 ∩ 𝑌 |) to the receiver.

Figure 3: Ideal Functionality FPSU of Private Set Union

2.3 Oblivious Transfer and Vector-OLE
Oblivious Transfer (OT) functionality lets the sender inputs two
messages𝑚0 and𝑚1, and lets the receiver obtains a message𝑚𝑏

for a choice bit 𝑏 ∈ {0, 1}. For a later convenience, we specify two
OT variants; correlated OT (COTℓ ) where the sender inputs one
correlation 𝛿 ∈ {0, 1}ℓ to have𝑚0 = 𝑟 and𝑚1 = 𝑟 ⊕ 𝛿 for a random
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𝑟 ∈ {0, 1}ℓ , and random OT (ROTℓ ) where the sender has no inputs
and obtain random messages 𝑚0 and 𝑚1 of length ℓ as outputs.
To prevent confusion, we denote the original OT by standard OT
(SOTℓ ). We sometimes denote𝑚 calls of XOT with message length
ℓ by XOT𝑚

ℓ
, where X can be C, R, S.

When huge amounts of OTs are required, it is typical to con-
sider OT extension framework that assumes small (polynomials in
𝜅) numbers of base OTs and extends them to a huge amount of
ROT𝜅 . The state-of-the-art OT extension protocols [10, 30] require
almost negligible communication, for example, less than 0.1 bit
per each ROT. One can perform SOTℓ and COTℓ with additional
communication 2ℓ + 1 and ℓ + 1, using offline ROT as an ephemeral
secret as described in [4]. As state-of-the-art ROT extension enable
tremendous amounts of ROT in bulk with negligible communica-
tion cost [10, 30], we assume that total communication cost of SOTℓ
and COTℓ by 2ℓ + 1 and ℓ + 1.

In a (random) Vector Oblivious Linear Evaluation (VOLE) func-
tionality, the sender obtains random vectors a and b over F and the
receiver obtains 𝑥 ∈ F and c := 𝑥 · a+ b for some field F. There have
been reported silent protocols based on pseudorandom correlation
generator (PCG) [6, 10]. Those protocols require only a tiny amount
of communication to build a correlated seed, and the desired output
of VOLE is locally computed. The state-of-the-art protocol [10]
requires only 214.5𝜅-bit communication3 (empirically estimated),
and extremely fast local computation.

2.3.1 Gate Evaluation. Assume that two parties have Boolean
shares (or additive shares) of bits 𝑥 and 𝑦. The Boolean share of
XOR 𝑥 ⊕ 𝑦 evaluation can be easily computed by locally. For AND
𝑥 ∧ 𝑦 evaluation, we make use GMW protocol [14] that computes
it using two COT1, which requires 4-bit communication plus neg-
ligible communication for random-OTs. Sometimes in literature
including [31], GMW protocol is differently described in terms
of Beaver multiplication triple [5]. However, these two methods,
Beaver triple based one and COT based one, have almost similar
costs, because one (Boolean) Beaver multiplication triple genera-
tion takes two ROT1 [4] and the input-dependent phase takes 4-bit
communication per AND gate.

2.3.2 Private Equality Share Generation. We especially define a
functionality by Figure 4 that given input strings 𝑥,𝑦 ∈ {0, 1}ℓ
from each party, computes Boolean shares of 1(𝑥 = 𝑦). This can
be efficiently realized by evaluating the equality circuit on 𝑎 and
𝑏, which consists of ℓ − 1 AND gates. Using GMW protocol, it
translates into 2(ℓ − 1) times of COT1.

Parameters: An item length ℓ

Input: A sender with a string 𝑥 ∈ {0, 1}ℓ and a receiver with a
string 𝑦 ∈ {0, 1}ℓ .
Functionality: Denoting 𝑏 := 1(𝑥 = 𝑦), the functionality sam-
ples a random bit 𝑟 , and output a sender 𝑟 and the receiver 𝑟 ⊕𝑏.

Figure 4: Ideal Functionality FPESG of Private Equality Share
Generation

3Almost independent to the field size and the vector length.

2.3.3 Permute and Share. Permute and Share (P&S) is functionality
that obliviously performs shuffle, whose definition is given as Figure
5. Writing 𝜋 (x) = (𝑥𝜋 (1) , · · · , 𝑥𝜋 (𝑛) ) for a vector x of length 𝑛, this
functionality is simply represented to output additive shares of
𝜋 (x). There are known several protocols [8, 23] that realize this
functionality, but we especially focus on the protocol of [23] in this
paper, as it shows much better performance on PSU applications.
See Appendix A for details. It requires about 𝑛 log𝑛 times of COT2ℓ ,
where ℓ is bit-length of input vector entry.

Parameters: A permutation target size 𝑛 and an item length ℓ

Input: A sender with a permutation 𝜋 over [𝑛], and a receiver
with input vector t ∈ ({0, 1}ℓ )𝑛 .
Functionality: The functionality samples a random vector
s ∈ ({0, 1}ℓ )𝑛 , and sends s to the sender and 𝜋 (t) ⊕ s to the
receiver.

Figure 5: Ideal Functionality FP&S of Permute and Share

2.4 Oblivious Pseudo-Random Functions
2.4.1 Oblivious Pseudo-Random Function (OPRF). In Oblivious Pseudo-
Random Function (OPRF), the sender with no input obtains a key
𝑘 that determines a PRF 𝐹𝑘 , and the receiver with an input set 𝑌
obtains 𝐹𝑘 (𝑌 ). The sender learns no information of 𝑌 (other than
|𝑌 |), which explains the term oblivious. The formal definition is
described in Figure 6.

Parameters: A receiver set size 𝑛𝑦
Input: A receiver with input 𝑌 of size 𝑛𝑦 .
Functionality: The functionality samples a PRF key for 𝐹𝑘 :
{0, 1}∗ → {0, 1}ℓ and sends 𝐹𝑘 (𝑌 ) := {𝐹𝑘 (𝑦) : 𝑦 ∈ 𝑌 } to the
receiver, and 𝑘 to the sender.

Figure 6: Ideal Functionality FOPRF of OPRF

2.4.2 Oblivious Programmable PRF (OPPRF). Oblivious Programmable
PRF (OPPRF) is a special sort of OPRF where the sender can program
some PRF values. The sender feeds an input set 𝑋 and correspond-
ing values 𝑉 = {𝑣𝑥 : 𝑥 ∈ 𝑋 }, so that 𝐹𝑘 satisfies 𝐹𝑘 (𝑥) = 𝑣𝑥 for
𝑥 ∈ 𝑋 . The formal definition is described in Figure 7.

Parameters: A sender set size 𝑛𝑥 and a receiver set size 𝑛𝑦 ,
and value length ℓ .
Input: A sender with an input-value pair set (𝑋,𝑉 ) = {(𝑥, 𝑣𝑥 ) :
𝑥 ∈ 𝑋, 𝑣𝑥 ∈ {0, 1}ℓ } of size 𝑛𝑥 , and a receiver with input 𝑌 of
size 𝑛𝑦 .
Functionality: The functionality samples a random function
𝐹𝑘 : {0, 1}∗ → {0, 1}ℓ conditioned on 𝐹𝑘 (𝑥) = 𝑣𝑥 for every
(𝑥, 𝑣𝑥 ) pair, and sends 𝐹𝑘 (𝑌 ) := {𝐹𝑘 (𝑦) : 𝑦 ∈ 𝑌 } to the receiver,
and the key 𝑘 to the sender.

Figure 7: Ideal Functionality FOPPRF of OPPRF
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2.5 Oblivious Key-Value Store
Oblivious Key-Value Store (OKVS) [13] is a useful concept that
abstracts many recent constructions of O(P)PRF. OKVS is a pair of
algorithms Encoding and Decoding, where Encoding on an input
key-value pair (𝑋,𝑉 ) outputs some object (typically a vector) 𝑃 ,
and Decoding on an input key 𝑦 and the encoding result 𝑃 outputs
𝑣𝑥 if 𝑦 = 𝑥 ∈ 𝑋 and random value otherwise. For an input key
size 𝑛, the state-of-the-art OKVS algorithm named by 3H-GCT [13]
achieves𝑂 (𝑛𝜆) encoding time complexity, and𝑂 (𝜆) decoding time
complexity, and corresponding 𝑃 consists of roughly 1.3𝑛 items
having the same size with values 𝑣 ∈ 𝑉 .

Garimella et. al. [13] provides an abstract construction of OPRF
on input𝑌 , from𝑂 (𝑛) VOLEs over some field F and OKVS Encoding
with a key set 𝑌 and the value set 𝑉 = {𝐻 (𝑦) : 𝑦 ∈ 𝑌 } with
a random oracle 𝐻 : {0, 1}∗ → F. Rindal and Schoppmann [29]
show that OPPRF on (𝑋,𝑉 ) and 𝑌 can be obtained from OPRF on
𝑌 that determines a function 𝐹𝑘 , and then OKVS Encoding with
a key set 𝑋 and the value set 𝑉 ′ := {𝑣𝑥 − 𝐹𝑘 (𝑥) : 𝑥 ∈ 𝑋 }. In
both constructions, the computation cost is dominated by OKVS
Encoding and Decoding, and the communication cost is dominated
by the size of 𝑃 (thanks to the small communication cost of VOLE).

3 OUR SENDER CUCKOO PROTOCOL
In this section, we present our sender-side cuckoo hashing PSU
protocol. Our construction starts from the framework of Garimella
et. al. [12], which can be abstracted by following consecutive stages:
(1) cuckoo / simple hashing to reduce the set size of private mem-
bership test (2) reduce each bin-wise private membership test into
equality test (PEqT) instances using OPPRF (3) shuffle the order
of PEqT instances using P&S (4) solve PEqT using OPRF to let the
receiver know 1(𝑥𝑖 ∈ 𝑌 ) (5) obliviously sends 𝑋 −𝑌 using Boolean
shares. Thanks to recent advances in submodules, one can expect
a fast performance of this framework. However, the problem lies
in the huge communication cost, which is mainly due to P&S on
PEqT instances.

We briefly explain our idea that reduces that communication
burden. We first observe that the core fact for security is that the
receiver knows the membership indicator 1(𝑥 ∈ 𝑌 ) in shuffled
order. Our main idea is to achieve the same goal by (3’) solving
PEqT in secret-shared manner, and then (4’) shufling the results.
This change greatly reduces the communication burden on P&S
by changing the shuffling target item to Boolean. Moreover, secret-
shared PEqT exactly corresponds to PESG of Figure 4, which can
be efficiently executed from the GMW protocol. The details are
presented in Figure 8.

A Tweak on Final OT. Denote the cuckoo table 𝑇𝑋 as a vector
x = (𝑥𝑖 ). In Garimella et. al., the receiver knows 1(𝑥𝜋 (𝑖 ) ∈ 𝑌 ) in
consecutive order, so that the sender obliviously sends𝑚0 = 𝑥𝜋 (𝑖 )
or𝑚1 = ⊥. In our protocol of Figure 8, the receiver instead knows
a Boolean share of 1(𝑥𝜋 (𝑖 ) ∈ 𝑌 ) as 𝑐′

𝑖
, and the sender holds the

other part say 𝑐𝑖 . Instead of letting the sender send c = (𝑐𝑖 ) to have
an exactly same situation as Garimella et. al., we observe that two
parties can directly engage the final OT with the sender’s message
𝑚𝑐𝑖 = 𝑥𝜋 (𝑖 ) and𝑚1−𝑐𝑖 = ⊥ and the receiver’s choice 𝑐′

𝑖
. The tweak

on the final OT phase decreases in one round interaction and tiny
communication for sending c.

Optimization on Shuffling. There is an optimization proposed in
[12], that generalizes P&S to an injective function 𝜌 : [𝑛] → [𝛽],
instead of a permutation on [𝛽]. Given a target vector x ∈ ({0, 1}ℓ )𝛽 ,
it computes additive shares of 𝜌 (x) := (𝑥𝜌 (𝑖 ) ) ∈ ({0, 1}ℓ )𝑛 . The
sender uses 𝜌 to exclude dummy bins in the cuckoo table, and this
provides a small benefit on procedures after P&S as it reduces target
vector length from 𝛽 to 𝑛. We can also apply this optimization, but
we omit this in formal descriptions and performance evaluations
for the sake of brevity.

Correctness and False Positives. For 𝑖-th cuckoo bin filled with
𝑥 ∈ 𝑋 , it holds that 𝑡𝑠,𝑖 = 𝑡𝑟,𝑖 if 𝑥 ∈ 𝑌 , thanks to the definition of
FOPPRF. More precisely, we defined 𝑡𝑟,𝑖 = 𝐹𝑘 (𝑥 | | 𝑗𝑥 ) where 𝑗𝑥 is the
the hash index such thatℎ 𝑗𝑥 (𝑥) = 𝑖 . If𝑥 = 𝑦 ∈ 𝑌 , it clearly holds that
𝐹𝑘 (𝑥 | | 𝑗𝑥 ) = 𝐹𝑘 (𝑦 | | 𝑗𝑥 ) where the RHS maps to 𝑡𝑠,ℎ 𝑗𝑥 (𝑦) , thanks to
the definition of OPPRF. Finally, we know 𝑡𝑠,ℎ 𝑗𝑥 (𝑦) = 𝑡𝑟,ℎ 𝑗𝑥 (𝑥 ) = 𝑡𝑟,𝑖

from the definition of 𝑗𝑥 .
As the next step, the private equality share generation FPESG

ensures 𝑏𝑠,𝑖 ⊕ 𝑏𝑟,𝑖 = 1 if and only if 𝑡𝑠,𝑖 = 𝑡𝑟,𝑖 . Then FP&S permutes
them without correctness harm, and then 𝑐𝑠,𝜋 (𝑖 ) ⊕ 𝑐𝑟,𝜋 (𝑖 ) = 1 if
and only if 𝑡𝑠,𝑖 = 𝑡𝑟,𝑖 . Finally, FSOT sends 𝑥𝑖 if and only if 𝑐𝑠,𝜋 (𝑖 ) ⊕
𝑐𝑟,𝜋 (𝑖 ) = 0, which holds when 𝑥𝑖 ∉ 𝑌 .

The only part that may cause a false positive is 𝑥 ∈ 𝑌 ⇒ 𝑡𝑠,𝑖 =

𝑡𝑟,𝑖 , whose reverse is not always true. Since 𝑡𝑠,𝑖 is uniformly chosen
from {0, 1}ℓ , it may happen that 𝑡𝑠,𝑖 = 𝑡𝑟,𝑖 despite 𝑥 ∉ 𝑌 with
probability 1/2ℓ . We set the OPPRF output length by ℓ ≥ 𝜆 + log 𝛽
to avoid such event in every bin with probability 2−𝜆 .

Security Proof. Theorem 3.1 shows the security of our construc-
tion against a semi-honest adversary.

Theorem 3.1. The protocol in Figure 8 realizes FPSU of Figure 3
in semi-honest setting, in FOPPRF, FP&S, FOT-hybrid model.

Proof. We first construct SimS that simulates the views of
corrupt S of input 𝑋 and no output. First, SimS samples PRF key
𝑘 uniformly at random, and simulates the views for FOPPRF by
computing the output set {𝐹𝑘 (𝑥 | | 𝑗𝑥 ) : 𝑥 ∈ 𝑋 }. Then it samples a
random Boolean vector b𝑠 ∈ {0, 1}𝛽 and uses it as the output of
FPESG to simulates the views. Similarly it samples another random
Boolean vector s𝑠 ∈ {0, 1}𝛽 to simulates the views for FP&S. The
simulation for FOT can be done trivially, as it has no output. SimS is
trivially indistinguishable from the view of S in the real execution,
since each simulated output follows exactly the same distribution
of the real execution with FOPPRF, FPESG and FP&S.

We proceed to SimR that simulates the views of corrupt R of
input𝑌 and output𝑋 ∪𝑌 (and |𝑋 ∩𝑌 |). SimR samples a random PRF
key 𝑘 to simulate the views for FOPPRF. Similar to the corrupt S
case, it samples a random Boolean vector b𝑟 ∈ {0, 1}𝛽 to simulates
the views for FPESG, and samples another random Boolean vector
c𝑟 ∈ {0, 1}𝛽 to simulates the views for FP&S. To simulate FOT,
SimR first takes a random subset 𝑈 ⊂ [𝛽] of size |𝑋 ∪ 𝑌 − 𝑌 |.
Then it simulates the views of 𝑖-th OT call by taking one item from
𝑋 ∪ 𝑌 − 𝑌 in random order (as output), otherwise taking ⊥.

We show the indistinguishability of SimR from the real execution
via the sequence of the following hybrids:
Hyb 0. The real execution where R runs honestly.



Revisiting Shuffle-Based PSUs with Reduced Communication

Input: A sender S with an input set 𝑋 ⊂ {0, 1}ℓ0 of size 𝑛𝑥 and a receiver R with an input set 𝑌 ⊂ {0, 1}ℓ0 of size 𝑛𝑦 .
Protocol:

(1) S and R agree on hash table size 𝛽 , random functions ℎ1, · · · , ℎ𝛾 : {0, 1}∗ → [𝛽], and dummy element ⊥ ∈ {0, 1}ℓ0 .
(2) S constructs cuckoo table CTX from 𝑋 using ℎ1, · · · , ℎ𝛾 of size 𝛽 , with empty bins filled by ⊥. After cuckoo hash done,

denote 𝑗𝑥 ∈ [𝛾] be the hash index that 𝑥 is finally stored in ℎ 𝑗𝑥 (𝑥)-th bin.
(3) S and R invoke FOPPRF:

• Both parties agree on OPPRF output length ℓ .
• S acts as a receiver with an input set {𝑥 | | 𝑗𝑥 : 𝑥 ∈ 𝑋 }.
• R samples a random tag t𝑟 ∈ ({0, 1}ℓ )𝛽 , and acts as a sender with the following input-value set of size 𝛾 · 𝑛𝑦 :{(

𝑦 | | 𝑗, 𝑡𝑟,ℎ 𝑗 (𝑦)
)
: 𝑦 ∈ 𝑌, 𝑗 ∈ [𝛾]

}
• R receives a PRF key 𝑘 , and S receives {𝐹𝑘 (𝑥 | | 𝑗𝑥 ) : 𝑥 ∈ 𝑋 }.

(4) S defines t𝑠 = (𝑡𝑠,𝑖 ) ∈ ({0, 1}ℓ )𝛽 where

𝑡𝑠,𝑖 =

{
𝐹𝑘 (𝑥 | | 𝑗𝑥 ) if CT𝑋 [𝑖] = 𝑥 ∈ 𝑋

𝑟 otherwise,

for some random value 𝑟 ∈ {0, 1}ℓ .
(5) For each 𝑖 ∈ [𝛽], S and R invoke FPESG:

• Each party feeds 𝑡𝑠,𝑖 and 𝑡𝑟,𝑖 , respectively.
• Each party receives 𝑏𝑠,𝑖 ∈ {0, 1} and 𝑏𝑟,𝑖 ∈ {0, 1}, respectively.

(6) S and R invoke FP&S:
• S picks a random permutation 𝜋 on [𝛽], and acts as a sender with input 𝜋 .
• R acts as a receiver with input b𝑟 = (𝑏𝑟,𝑖 ) ∈ {0, 1}𝛽 .
• S receives 𝑠 ∈ {0, 1}𝛽 , and R receives c𝑟 := 𝜋 (b𝑟 ) ⊕ s ∈ {0, 1}𝛽 .

(7) S defines c𝑠 = 𝜋 (b𝑠 ) ⊕ s, where b𝑠 = (𝑏𝑠,𝑖 )
(8) R initializes 𝑍 = ∅.
(9) For each 𝑖 ∈ [𝛽],

(a) S and R invoke SOTℓ0 :
• S acts as a sender with input𝑚𝑐𝑠,𝑖 = CT𝑋 [𝜋 (𝑖)] and𝑚1−𝑐𝑠,𝑖 = ⊥
• R acts as a receiver with choice index 𝑐𝑟,𝑖 .
• R receives 𝑧𝑖 .

(b) If 𝑧𝑖 ≠ ⊥, R adds 𝑧𝑖 to 𝑍 .
(10) R outputs 𝑌 ∪ 𝑍 .

Figure 8: A Full Description of Our Sender-Cuckoo Shuffle-based PSU Protocol

Hyb 1. Change PRF key to another one 𝑘𝑠𝑖𝑚 sampled randomly
from PRF key space, and Boolean vectors b𝑟,𝑠𝑖𝑚 ∈ {0, 1}𝛽
and s𝑟,𝑠𝑖𝑚 ∈ {0, 1}𝛽 sampled uniformly at random. This
change is indistinguishable from Hyb 0, since the random
choice of key in FOPPRF, and uniform randomness of out-
puts of FPESG and FP&S.

Hyb 2. Sample a random subset 𝑈 of 𝛽 of size |𝑋 ∩ 𝑌 − 𝑌 |. Then
uniformly assign elements of 𝑋 ∩ 𝑌 − 𝑌 for 𝑖-th OT for
𝑖 ∈ 𝑈 , and ⊥ for 𝑖 ∉ 𝑈 . This is perfectly indistinguishable
from Hyb 1, thanks to the random choice of permutation 𝜋 .

Note that Hyb 2 is same with the views output by SimR . □

Cost Analysis. We decompose our protocols into 4 phases to
represent the costs in a convenient form for comparison: (1) OPPRF
on the simple table of size 𝛾𝑛𝑦 and the cuckoo table of size 𝛽 =

𝑂 (𝑛𝑥 ). More precisely, it first invokes OPRF on 𝑋 that requires
VOLE of size 𝜀𝑛𝑥 over a field size 2𝜅 , and OKVS encoding on 𝑋

with values of bit-length 𝜅 . Then the receiver decodes the received
OKVS on each simple table item of size 𝛾𝑛𝑦 , and sends back an
OKVS encoding on another 𝛾𝑛𝑦 size inputs with values of bit-
length ℓ . Finally, the sender decodes the received OKVS 𝑛𝑥 times.
(2) FPESG of 𝛽ℓ AND gate evaluation. It requires 2𝛽ℓ times of COT1
using GMW protocol. (3) FP&S of 𝛽 log 𝛽 times of COT2 using a
protocol [23]. (4) The final OT that consists of 𝛽 times of SOTℓ0 .

Table 1 summarizes the results. Note that we represent OKVS
cost by adding all input set sizes required during protocol execu-
tions. Although OKVS Encoding and Decoding are actually done
separately on different input sets during protocol execution, our
representation is reasonable as the complexity is linear on the input
set size.
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Table 1: The costs of sender-cuckoo based protocols for a
sender set size 𝑛𝑥 and a receiver set size 𝑛𝑦 . OKVS(𝑎) repre-
sents the computation for OKVS Encoding on 𝑎 size set, and
OKVS Decoding on 𝑎 size set. 𝛾 is the number of hash func-
tions for cuckoo hashing, and 𝛽 = 𝑂 (𝑛𝑥 ) is the cuckoo hash
table size. 𝜀 is the OKVS encoding size expansion factor. ℓ0
denotes the original item length, and ℓ ≈ 𝜆 + log 𝛽 is OPPRF
output length. 𝜅 is a computational security parameter, and
𝜆 is a statistical security parameter.

Ours OPPRF PESG P&S Final OT

Comp. OKVS(𝑛𝑥 +𝛾𝑛𝑦) COT2𝛽ℓ1 COT𝛽 log 𝛽
2 SOT𝛽

ℓ0

Comm. 𝜀 (𝜅𝑛𝑥 + 𝛾ℓ𝑛𝑦) 2ℓ𝛽 2𝛽 log 𝛽 2ℓ0𝛽

[12] OPPRF P&S PEqT Final OT

Comp. OKVS(𝑛𝑥 + 𝛾𝑛𝑦 ) COT𝛽 log 𝛽
2ℓ OKVS(𝛽) SOT𝛽

ℓ0

Comm. 𝜀 (𝜅𝑛𝑥 + 𝛾ℓ𝑛𝑦) 2ℓ𝛽 log 𝛽 𝜀 (𝜅 + ℓ)𝛽 2ℓ0𝛽

Comparison with Garimella et. al. With respect to the view of
computation cost, the only difference of [12] with our proposal is
whether to perform PEqT on 𝛽 strings (of length ℓ) or PESG of 𝛽
strings. PEqT can be efficiently done by executing OPRF on the re-
ceiver’s inputs and then the sender sends its PRF evaluation values.
Thus PEqT computation is dominated by OPRF, which consists of
OKVS Encoding and Decoding on 𝛽 inputs and VOLE of size 𝜀𝛽 ,
instead of 2𝛽ℓ times of COT1.

4 OUR RECEIVER CUCKOO PROTOCOL
In this section, we present our receiver-side cuckoo hashing PSU
protocol. This shares the framework of Jia et. al.[17], which con-
sists of the following consecutive stages: (1) the receiver builds a
cuckoo table to reduce the set size of the corresponding member-
ship problem (2) generate additive shares of the shuffled cuckoo
table using P&S (3) the receiver obtains 1(𝑥 ∈ 𝑌 ) for each 𝑥 ∈ 𝑋

using OPRF (4) obliviously sends 𝑋 − 𝑌 . This shows considerably
fast computational cost, but also suffers from huge communication
costs due to P&S on the cuckoo table.

Our first idea to reduce communication is an application of
permutation-based hashing (phashing) on the cuckoo hash part. It
readily reduces the communication cost burden of P&S, but signifi-
cantly harms correctness, due to a larger false positive probability.
Our second idea is to modify OPRF stage to normalize the correct-
ness, which is based on a simple but clever idea that reflects the
property of phashing. As a consequence, we become able to en-
joy the communication benefit of phashing without correctness
harm. The formal description is presented in Figure 9, and below
we present the detailed explanation.

Correctness and False Positives. Pick an item 𝑥 ∈ 𝑋 . Suppose that
𝑥 = 𝑦 ∈ 𝑌 and 𝑦′ := 𝐻 (𝑦) is stored by 𝑘-th index function ℎ′

𝑘
. It

can be easily checked that for 𝑥 ′ = 𝐻 (𝑥)

ℎ′
𝑘
(𝑥 ′) = ℎ′

𝑘
(𝑦′) ∧ 𝑥 ′𝑅 = 𝑦′𝑅, (4)

thanks to the permutation-based hashing technique. This is equiva-
lent to

𝜋 ◦ ℎ𝑘 (𝑥 ′) | |𝑥 ′𝑅 ⊕ 𝑠𝜋◦ℎ𝑘 (𝑥 ′ ) = 𝜋 ◦ ℎ𝑘 (𝑦′) | |𝑦′𝑅 ⊕ 𝑠𝜋◦ℎ𝑘 (𝑦′ ) ,

where the LHS is an element in 𝐼𝑥 , and the RHS is an element in
p′. Thus 𝐹𝑘 (𝐼𝑥 ) and 𝐹𝑘 (p′) both contains the element, so that the
receiver concludes 𝑏𝑥 = 1.

There could be false positive cases where the receiver concludes
𝑏𝑥 = 1 despite 𝑥 ∉ 𝑌 . First, it may happens that 𝐻 (𝑥) = 𝐻 (𝑦) for
some 𝑦 ∈ 𝑌 . To prevent this collision by preprocessing hash, we
use the birthday bound to have

𝜆 + log𝑛𝑥𝑛𝑦 ≤ ℓ1 .

Second, the set 𝐼𝑥 and p′ may have false intersections. In other
words, eq. (4) falsely holds for some index 𝑘 ∈ [𝛾], precisely

ℎ𝑘 (𝑥 ′) ⊕ ℎ𝑘 (𝑦′) = 𝑥𝐿 ⊕ 𝑦𝐿 ∧ 𝑥𝑅 = 𝑦𝑅

for some 𝑘 ∈ [𝛾]. For each 𝑘 , the probability of the former part is
2− log 𝛽 , and latter part is 2−ℓ2 . Then it can happen with probability
2−ℓ2−log(𝛾𝛽 ) for some 𝑘 ∈ [𝛾]. To prevent this event for every 𝑥 ∈ 𝑋

with probability 2−𝜆 , we set 𝜆 + log(𝛾𝑛𝑥 ) ≤ ℓ2, equivalently
𝜆 + log(𝛾𝛽𝑛𝑥 ) ≤ ℓ1 .

Finally, the set 𝐹𝑘 (𝐼𝑥 ) and 𝐹𝑘 (p′) may have false intersection, de-
spite 𝐼𝑥 ∩p′ = ∅. This can happen since 𝐹𝑘 (𝐼𝑥 ) consists of 𝛾 random
elements in {0, 1}ℓ for OPRF output length ℓ . Each element of 𝐹𝑘 (𝐼𝑥 )
can falsely intersects with 𝐹𝑘 (p′) with probability < 2−ℓ+log 𝛽 . The
probability of false intersection for each 𝐹𝑘 (𝐼𝑥 ) is < 2−ℓ+log(𝛾𝛽 ) . In
order to upper bound the false intersection for every 𝑥 ∈ 𝑋 by we
set

𝜆 + log(𝛾𝛽𝑛𝑥 ) ≤ ℓ .

To summarize, it is sufficient to take both ℓ1 and ℓ by
𝜆 + log(𝛾𝛽𝑛𝑥 ) ≈ 𝜆 + log𝛾 + log(𝑛𝑥𝑛𝑦)

to ensure false positive 2−𝜆 .

Table 2: The costs of receiver-cuckoo based protocols for
a sender set size 𝑛𝑥 and a receiver set size 𝑛𝑦 . OKVS(𝑎, 𝑏)
represents the computation for OKVS Encoding on 𝑎 size set,
and OKVS Decoding on 𝑏 size set. 𝛾 is the number of hash
functions for cuckoo hashing, and 𝛽 = 𝑂 (𝑛𝑦) is the cuckoo
hash table size. 𝜀 is the OKVS encoding size expansion factor.
ℓ0 denotes the original item length, ℓ1 ≈ 𝜆+log𝛾+2 log𝑛 is both
OPRF output length and initial hash compression length, and
ℓ2 ≈ min(ℓ0, ℓ1) − log𝑛 is phashing length. 𝜅 is a computational
security parameter, and 𝜆 is a statistical security parameter.

Ours P&S OPRF Final OT

Comp. COT𝛽 log 𝛽
2ℓ2

OKVS(𝛽,𝛾𝑛𝑥 ) SOT𝑛𝑥
ℓ0

Comm. 2ℓ2𝛽 log 𝛽 𝜀𝜅𝛽 + 𝛾ℓ1𝑛𝑥 2ℓ0𝑛𝑥

[17] P&S OPRF Final OT

Comp. COT𝛽 log 𝛽
2ℓ0

OKVS(𝛽,𝛾𝑛𝑥 ) SOT𝑛𝑥
ℓ0

Comm. 2ℓ0𝛽 log 𝛽 𝜀𝜅𝛽 + 𝛾ℓ1𝑛𝑥 2ℓ0𝑛𝑥
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Input: A sender S with an input set 𝑋 ⊂ {0, 1}ℓ0 of size 𝑛𝑥 and a receiver R with an input set 𝑌 ⊂ {0, 1}ℓ0 of size 𝑛𝑦 .
Protocol:

(1) S and R agree on initial hash length ℓ1 and hash function 𝐻 : {0, 1}ℓ0 → {0, 1}ℓ1 .
(2) If ℓ0 > ℓ1, the receiver computes 𝑌 ′ = 𝐻 (𝑌 ). Otherwise 𝑌 ′ = 𝑌 .
(3) S and R agree on hash table size 𝛽 and cuckoo hash functions ℎ1, · · · , ℎ𝛾 : {0, 1}∗ → [𝛽].
(4) R computes cuckoo table CT𝑌 ∈ ({0, 1})ℓ2 of 𝑌 ′ using permutation-based hashing routine with ℎ1, · · · , ℎ𝛾 . Denote the

index function used for permutation-based hashing by ℎ′
𝑖
: 𝑥 ↦→ 𝑥𝐿 ⊕ ℎ𝑖 (𝑥) where 𝑥 = 𝑥𝐿 | |𝑥𝑅 with |𝑥𝐿 | = log 𝛽 . Note

that CT𝑌 [𝑖] has length ℓ2 := ℓ1 − log 𝛽 .
(5) S and R invoke FP&S:

• S samples a random permutation 𝜋 on [𝛽], and acts as a sender with input 𝜋 .
• R acts as a receiver with input CT𝑌 .
• S receives s, and R receives p := 𝜋 (CT𝑌 ) ⊕ s.

(6) S and R invoke FOPRF:
• Both parties agree on OPRF output length ℓ .
• R acts as a receiver with input p′ = (𝑝𝑖 | |𝑖)𝑖∈[𝛽 ] .
• S receives a PRF key 𝑘 , and R receives 𝐹𝑘 (p′) :=

(
𝐹𝑘 (𝑝′𝑖 )

)
𝑖∈[𝛽 ] ∈ ({0, 1}ℓ )𝛽

(7) R initialize 𝑍 = ∅.
(8) For each 𝑥 in 𝑋 :

(a) S defines
𝐼𝑥 :=

{
(𝑥 ′𝑅 ⊕ 𝑠𝑖𝑑𝑖 | |𝑖𝑑𝑖 ) : 𝑖𝑑𝑖 = 𝜋 ◦ ℎ′𝑖 (𝑥

′), 𝑖 ∈ [𝛾]
}
,

where 𝑥 ′ = 𝐻 (𝑥) if ℓ0 > ℓ1, otherwise 𝑥 ′ = 𝑥 . Then S sends to R the set 𝐹𝑘 (𝐼𝑥 ).
(b) R checks 𝐹𝑘 (𝐼𝑥 ) ∩ 𝐹𝑘 (p′) = ∅. If so, R sets 𝑏𝑥 = 0, otherwise sets 𝑏𝑥 = 1.
(c) S and R invoke FOT:

• S acts as a sender with input𝑚0 = 𝑥 and𝑚1 = ⊥.
• R acts as a receiver with choice index 𝑏𝑥 .
• R receives 𝑧𝑥 .

(d) If 𝑧𝑖 ≠ ⊥, R adds 𝑧𝑖 to 𝑍 .
(9) R outputs 𝑌 ∪ 𝑍 .

Figure 9: A Full Description of Our Receiver Cuckoo Shuffle-based PSU Protocol

Security Proof. Theorem 4.1 shows the semi-honest security of
our construction. The simulator construction and proof are almost
the same with [17], and hence we only describe simulators with
some intuitions in this paper.

Theorem 4.1. The protocol in Figure 9 realizes FPSU of Figure 3
in semi-honest setting, in FP&S, FOPRF, FOT-hybrid model.

Proof. We first construct SimS that simulates the views of cor-
rupt S of input 𝑋 and no output. SimS samples a random string
s ∈ ({0, 1}ℓ2 )𝛽 , and simulates the views for FP&S using FP&S-
simulator with output s𝑠 . Similarly, it samples a random key 𝑘

from the PRF key space to simulate the views for FOPRF with out-
put 𝑘 . The final simulation for FOT views is immediate, as it has no
output. Each simulation outputs exactly the same distribution with
FP&S, FOPRF and FOT, and hence this SimS is indistinguishable
from the view of S in the real execution.

We proceed to SimR that simulates the views of corrupt R of
input 𝑌 and output 𝑋 ∪ 𝑌 and |𝑋 ∩ 𝑌 |. It samples a random string
p ∈ ({0, 1}ℓ2 )𝛽 to simulate the views for FP&S, similarly to the
corrupt S case. To simulate FOPRF, it samples a random key 𝑘 and

use 𝐹𝑘 (p′) := (𝐹𝑘 (𝑝𝑖 | |𝑖)) as an output of FOPRF. The simulation of
the views of the sets 𝐹𝑘 (𝐼𝑥 ) for 𝑥 ∈ 𝑋 is as follows. For the sake of
convenience, we represent 𝑋 = {𝑥1, · · · , 𝑥𝑛𝑥 }. Since SimR knows
|𝑋 ∩𝑌 |, it can takes a random subset𝑈 ⊂ [𝑛𝑥 ] of size |𝑋 ∩𝑌 |, which
would be the bin index where the RPMT results is 1. If 𝑖 ∈ 𝑈 , SimR
defines 𝐹𝑘 (𝐼𝑥𝑖 ) by a random entry in 𝐹𝑘 (p′) with 𝛾 − 1 random
elements other than 𝐹𝑘 (p′). If 𝑖 ∉ 𝑈 , SimR defines 𝐹𝑘 (𝐼𝑥𝑖 ) by 𝛾

random elements other than 𝐹𝑘 (p′). Finally, it remains to simulate
FOT views. For an input 𝑏𝑥 = 0, SimR takes one item from𝑋 ∪𝑌 −𝑌
in random order as output, otherwise use ⊥. □

Cost Analysis. We divide our proposal into 3 phases: (1) P&S
phase with FP&S call that includes 𝛽 log 𝛽 times of COT2ℓ2 where
𝛽 = 𝑂 (𝑛𝑦), (2) OPRF phase FOPRF call on a vector of size 𝛽 , which
requires 𝜀𝛽 VOLE and OKVS on 𝛽 size set with values of size 𝜅 , and
the sender sends 𝛾𝑛𝑥 PRF evaluations of each length ℓ1. (3) Final
OT phase that consists of 𝑛𝑥 times of SOTℓ0 .

Table 2 shows the results with respect to submodules. We again
represent OKVS cost by adding all input set sizes required during
protocol executions, as the cost is linear in the size of inputs.
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In terms of cost, the only difference from [17] is the input item
bit-length for P&S. It can be easily confirmed that the computational
cost of our protocol is almost the same as [17], as our protocol has
only an additional computational burden on the preprocessing hash
and permutation-based hash that require negligible time.

5 PERFORMANCE EVALUATION
In this section, we evaluate the performances of our proposals and
provide comparisons with other protocols. Throughout this section,
we assume the computational security parameter 𝜅 = 128 and the
statistical security parameter 𝜆 = 40 for concrete evaluations.

Submodule Instantiations. We assume that cuckoo hash is done
with 𝛾 = 3 hash functions with corresponding table size expansion
factor 𝜀 = 1.3, which is empirically considered to have 2−𝜆 failure
probability. We consider 3H-GCT construction [13] for OKVS that
has encoding expansion factor 𝜀 = 1.3, which also have 2−𝜆 failure
probability. For VOLE and OT extension, we assume Silver [10]. For
P&S, we consider the switching network based construction [23].

To instantiate [31] protocols that are our main comparison tar-
gets, we basically follow those of the original work; we consider
ECC ElGamal encryption scheme with the curve SecP256K1 for
[31]-PK, and LowMC [1] for [31]-SK where the block size and the
key size are both 128-bit, the number of Sboxes𝑚 = 10, and the
number of rounds are taken 𝑟 = 20.4

5.1 Theoretical Comparisons
5.1.1 Communication Costs. Table 3 shows asymptotic communi-
cation costs represented with dominant terms, and some concrete
numbers for various input sizes. The concrete numbers for ours,
[12], and [17] can be reproduced from Table 1 and Table 2. The
numbers for [31] protocols are computed from the formulas in the
original paper.

As we stressed several times, the largest bottleneck of communi-
cation costs of previous shuffle-based PSU [12, 17] comes from the
dependency on ℓ𝑛 log𝑛, for some length parameter ℓ ≥ 𝑂 (𝜆+ log𝑛).
Our sender-cuckoo based protocol (Our-SC) splits this term into
ℓ𝑛 + 𝑛 log𝑛, and this shows considerable decreases in communica-
tion costs. Moreover, this shows the lowest concrete cost among all
known PSU protocols, including [31].

Our receiver-cuckoo protocol (Our-RC) still has a term of the
form ℓ𝑛 log𝑛, and only optimizes by reducing ℓ by log𝑛. Therefore,
it still requires somewhat heavy communication compared to [31].
However, we would like to stress that it has a special advantage
when the input length ℓ0 is short. In that case, Our-RC has parameter
ℓ = ℓ0 − log𝑛, and this significantly reduces communication cost.
For example, when ℓ0 = 32, Our-RC has even better concrete cost
than [31] as shown in Table 3. Note that [12] cannot enjoy this, as
it always has a dependency with 𝜆 regardless of the input length ℓ0.

5.1.2 Computation Costs. Table 4 represents required computa-
tions with respect to common submodules, say OKVS Encoding and
Decoding, and OT and VOLE. Regarding OT, note that we exploit
the OT extension framework that consists of an offline ROT phase,
and an online phase that interacts with actual messages. Since the
4Measured by the attack estimation code in [2].
5𝑂 (ℓ0𝑛 log𝑛) when ℓ0 < 𝜆 + 2 log𝑛

Table 3: Communication costs of PSU protocols, where ℓ0 is
the input item length. For each column, we mark the best
value by blue, and the next by grey. The constant 𝑡 is the
number of ANDgates of LowMC [1] decryption circuit, which
is ≈ 600 for actual instantiation.

Asymptotic ℓ0 = 128 ℓ0 = 32
216 220 216 220

[12] 𝑂 (𝜆𝑛 log𝑛) 3826𝑛 4406𝑛 3576𝑛 4157𝑛
[17] 𝑂 (ℓ0𝑛 log𝑛) 6082𝑛 7395𝑛 1896𝑛 2211𝑛

[31]-PK 𝑂 (𝜅𝑛) 1433𝑛 1433𝑛 1241𝑛 1241𝑛
[31]-SK 𝑂 (𝑡𝑛) 3016𝑛 3058𝑛 2569𝑛 2569𝑛
Our-SC 𝑂 (𝜆𝑛 + 𝑛 log𝑛) 1168𝑛 1136𝑛 918𝑛 886𝑛
Our-RC 𝑂 (𝜆𝑛 log𝑛)5 3419𝑛 4483𝑛 1231𝑛 1379𝑛

online phase is computationally cheaper than the offline ROT phase,
we count all required OT calls without distinguishing COT and SOT,
and represent them by the column ‘ROT’.

Although our experimental results are based on specific con-
structions of submodules at the time of writing, the abstraction of
Table 4 will remain useful even with further improvements on each
submodule, and help future works to compare with the protocols
that we cover.

Table 4: Computation costs of PSU protocols with respect
to submodules. The constant 𝑡 is the number of AND gates
of LowMC [1] decryption circuit, which is ≈ 600 for actual
instantiation.

OKVS ROT VOLE Other
Enc Dec

[12] 5.3𝑛 5.3𝑛 1.3𝑛 log𝑛 3.4𝑛 -
(1+3+1.3) (3+1.3+1.3)

[17] 1.3𝑛 3𝑛 1.3𝑛 log𝑛 1.7𝑛 -
[31]-PK 𝑛 𝑛 - - 𝑛 PK

[31]-SK 𝑛 𝑛
2𝑡𝑛 - -(≈ 1200𝑛)

Our-SC 4𝑛 4𝑛 2.6𝜆𝑛+ 1.7𝑛 -
(1 + 3) (3 + 1) 3.9𝑛 log𝑛

Our-RC 1.3𝑛 3𝑛 1.3𝑛 log𝑛 1.7𝑛 -

5.2 Experimental Comparisons
5.2.1 Overview of Our Implementation. We found that some previ-
ous PSU works publicized their implementations [12, 17]. However,
they used rather old instantiation for some submodules, e.g. OPRF
or OT extension, whose performances have been rapidly improved
over the past few years. To capture the latest performance state of
each PSU protocol, we have to replace them into state-of-the-art
constructions. As a consequence, we end with recent PSU proto-
cols implementation in C++ with updated submodule instantiations,
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which covers original shuffle-based one [12, 17], the linear complex-
ity one [31], and our optimized shuffle-based one. We are planning
to publicize our implementation.

Below are some further information of each submodule imple-
mentation. We self-implement 3H-GCT OKVS by following the
description in [13], and rely on libOTe library [28] for Silver VOLE
and OTe, and Microsoft Kuku library [21] for a cuckoo hashing. For
P&S, we adapted the implementation of [12, 17], while changing
the underlying OTs from IKNP [16] to Silver [10]. For [31]-PK, we
rely on MCL library [22] that provides an ECC ElGamal encryp-
tion implementation, which is also used as a base library in [31]
implementation. For [31]-SK, we adapt the publicly available im-
plementation of LowMC [2], but with some simple speed-ups on
implementation. Note that the decryption phase should be executed
in 2PC manner in [31]-SK, and we use GMW protocol for that.

All our experiments are conducted on a machine equipped with
Intel Xeon Silver 4208 CPU of 2.10GHz clock, and 128GB RAM. The
network environment is simulated using linux tc command.

5.2.2 Experimental Results. We provide experimental results over
various networks by Table 5. Taking a look at the exact amount
of improvement, our optimizations have almost no improvement
for extremely high bandwidth (like > 10Gbps), where a decrease in
communication cost has negligible impact. Our-SC is even slower
than the original sender-cuckoo [12], and this would arguably be
due to the change from PEqT (based on OPRF) to PESG (based on
OT). Apart from the advantage of our optimizations, we would
like to remark that shuffle-based PSUs, especially receiver-cuckoo
version [17], have really small computational cost, considering
state-of-the-art instantiations of OPRF [13] and OT extension [10].

The value of our optimization comes out for slower bandwidth
networks. For a medium network environment (100Mbps) where
computation and communication costs both affect running time,
Our-SC and Our-RC perform best. Our optimization brings about
1.36 − 1.46x improvement over the original shuffle-based PSUs for
𝑛 = 216 − 220, and 3.21− 4.15x over [31] protocols. For an extremely
slow network environment (10Mbps) where communication cost is
dominant for running time, Our-SC is the best and [31]-PK becomes
a runner-up instead of Our-RC. The ratio of improvement is about
1.8 − 2.18x for 𝑛 = 216 − 220.

Superiority of Our Proposals. As for Our-RC, we can argue that
it is strictly superior than [17] and [12] from theoretical compar-
isons of Table 3 and Table 4, even without any experimental results.
Our-RC has almost the same computation cost but strictly smaller
communication cost than [17], and similar communication (even
slightly smaller) communication cost and smaller input sizes for
every submodule than [12]. Note that this superiority holds regard-
less of not only network environments and but instantiations of
submodules.

We then justify that Our-SC is superior to both versions of [31].
Note that both protocols of [31] require smaller OKVS input size,
but significantly larger number of OTs or heavy unit operation from
public key primitives. This leads to large (local) computation time,
and this is really the main reason for the large running time of [31]
protocols. As Our-SC requires the smallest communication costs
among comparison targets, we can deduce that Our-SC is better
for any network bandwidth than [31] protocols.

5.2.3 Differences with [31] Reports. We found that our reports in
Table 5 shows some differences with [31, Table 3]. As a general fac-
tor, the implementation of [31] is based on a different programming
language Java, which may bring some difference in experiments.

Still, we have some points to explain with more specific argu-
ment. As for [31]-SK timing, we found that the authors of [31]
excludes ROT timing to generate Beaver triples in the timing re-
ports of the main body, while assuming this process is done in
advance. Although this part can be done in offline, we believe such
offline cost should be specified for a fair comparison. Indeed, their
comparison target protocols also had some parts (including ROTs)
can be done offline, but report the total timing without separating
or excluding such offline timings. To clarify things, we report the
offline time including ROT time in Table 5. Note that [31] needs to
spend somewhat large offline time for ROT, and Our-SC follows
the next. This can be expected from the ‘ROT’ column of Table 4,
as ROT time is linear to the number of required OTs.

As another one, [31, Table, 3] also reported quite difference per-
formance for previous shuffle-based PSUs [12] and [17], compared
to our reports. We explain two reasons for this difference. The first
one comes from the difference of implementation language, where
Java incurs overhead for type conversion [31, Section 6.3]. As the
second one, we found that [31] used rather old OPRF due to [9]
and OPPRF due to [24] to implement [12] and [17]. Our imple-
mentation exploits more efficient OKVS-based OPRF and OPPRF
constructions [13, 29] that are recently proposed. Thus we believe
our timing more exactly shows the current state of [12] and [17],
as well as our proposed protocols.

Lastly, we found that the implementation [31] becomes avail-
able6, and tested it with our machine. Our machine shows a bit
slower performance than originally reported numbers7; for exam-
ple, [31]-PK takes about 67.5𝑠 and [31]-SK takes 25.5𝑠 for online
phase when 𝑛 = 218, whereas the original paper reports 41.5𝑠 and
10.8𝑠 for each case. Our self-implementation of [31] protocol shows
even closer performance than their implementation executed on
our machine, and hence we decide to report the numbers obtained
from our implementation in Table 5.

6 DISCUSSIONS
We provide some further discussions that might lead to future work
or some considerations related to other recent works.

Asymptotically better Receiver-Cuckoo. As the secret-shared equal-
ity check idea leads to asymptotic improvement for sender-cuckoo
protocols from 𝑂 (ℓ𝑛 log𝑛) to 𝑂 (ℓ𝑛 + 𝑛 log𝑛), one may wonder
whether the same idea can apply to receiver-cuckoo protocols.
However, it is non-trivial because the fundamental logic for the
membership check is quite different from the sender-cuckoo case.
More precisely, in the sender-cuckoo case, each RPMT problem
1(𝑥 ∈ 𝑌 ) is reduced to an equality check instance 1(𝑡𝑠,𝑖 = 𝑡𝑟,𝑖 ), and
this can be easily converted into an equality share generation in-
stance. However, in the receiver-cuckoo case, each RPMT problem
1(𝑥 ∈ 𝑌 ) is reduced to a problem of checking whether 𝐼𝑥 ∩ p′ = ∅,

6https://github.com/alibaba-edu/mpc4j
7Conducted on Intel Core i9-9900K with 3.6GHz and 128GB RAM. We had some
personal conversation with the authors of [31], and conclude this comes from machine
spec difference.

https://github.com/alibaba-edu/mpc4j
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Table 5: Comparison of timings and communications. In all experiments, we assume ℓ0 = 128. Offline phase includes base
OT, ROT extension, VOLE, and pre-computation for ECC, where ROT extension usually dominates. For each online and total
timings, we mark the best value by blue, and the next by grey.

Set Size 𝑛 = 𝑛𝑥 = 𝑛𝑦

ℓ0 = 128 216 218 220

Offline Online Total Offline Online Total Offline Online Total

[12] 0.22 1.87 2.09 0.63 7.32 7.95 2.34 31.09 33.42
[17] 0.25 1.06 1.31 0.63 4.01 4.65 2.36 18.02 20.39

10Gbps [31]-PK 0.19 12.88 13.07 0.22 51.30 51.52 0.20 204.8 205.0
0.2ms [31]-SK 6.62 3.77 10.39 27.3 15.66 43.00 109.9 62.30 172.2

Our-SC 1.21 1.72 2.93 4.02 6.71 10.73 15.18 27.43 42.62
Our-RC 0.23 1.06 1.29 0.63 4.02 4.64 2.36 18.22 20.55

[12] 0.27 3.29 3.57 0.69 10.40 11.08 2.40 40.57 42.97
[17] 0.27 2.50 2.78 0.69 6.90 8.59 2.36 31.69 34.05

1Gbps [31]-PK 0.20 14.86 15.06 0.20 59.02 59.22 0.22 234.0 234.2
40ms [31]-SK 6.68 9.99 16.66 27.6 23.04 50.61 111.3 75.48 186.8

Our-SC 1.31 3.08 4.39 4.06 8.56 12.62 15.4 30.74 46.16
Our-RC 0.28 2.16 2.44 0.67 6.42 7.09 2.37 26.35 28.72

[12] 0.30 6.65 6.95 0.72 21.15 21.87 2.42 83.20 85.62
[17] 0.32 6.96 7.25 0.74 23.91 24.65 2.37 103.7 106.2

100Mbps [31]-PK 0.22 16.23 16.45 0.22 60.21 60.43 0.20 242.4 242.6
80ms [31]-SK 6.85 17.32 24.17 28.1 36.04 64.17 111.6 111.7 223.4

Our-SC 1.37 4.92 6.29 4.13 12.68 16.81 15.3 43.19 58.49
Our-RC 0.31 4.80 5.11 0.72 16.41 17.13 2.42 65.95 68.37

[12] 0.35 29.91 30.26 0.84 121.0 121.8 2.43 513.1 515.6
[17] 0.35 44.71 45.06 0.77 190.2 191.0 2.45 838.6 841.0

10Mbps [31]-PK 0.20 23.70 23.90 0.20 91.17 91.37 0.21 362.2 362.4
80ms [31]-SK 6.72 34.77 41.49 27.8 106.2 134.0 111.6 395.4 507.0

Our-SC 1.45 11.69 13.14 4.26 39.02 43.28 15.5 150.0 165.5
Our-RC 0.34 23.70 24.04 0.74 108.0 108.7 2.47 465.6 468.1

[12] 0.10 31.27 31.37 0.12 133.2 133.3 0.13 572.2 572.3
[17] 0.10 50.38 50.48 0.12 221.1 221.2 0.12 969.6 969.7

Comm. [31]-PK ≈ 0 11.58 11.58 ≈ 0 46.08 46.08 ≈ 0 184.0 184.0
(MB) [31]-SK 0.15 23.30 23.45 0.43 94.03 94.45 1.5 374.9 376.4

Our-SC 0.22 9.38 9.59 0.25 36.43 36.68 0.26 145.4 145.6
Our-RC 0.10 25.52 25.61 0.12 122.3 122.4 0.12 532.8 532.9

which is difficult to convert into a secret-share manner. Resolving
this technical difficulty would be an interesting topic.

Unbalanced Input Sets. Although we mostly consider 𝑛 = 𝑛𝑥 =

𝑛𝑦 case in our experiments, sender-cuckoo and receiver-cuckoo
have quite different performances when the input set size 𝑛𝑥 and
𝑛𝑦 are unbalanced. This is because the two protocols have a heavy
dependence on the number of hash table bins 𝛽 , which is 𝑂 (𝑛𝑥 )
in sender-cuckoo versions, and 𝑂 (𝑛𝑦) in receiver-cuckoo versions.
Therefore, sender-cuckoo versions are better for 𝑛𝑦 ≥ 𝑛𝑥 case, and
receiver-cuckoo versions are better for 𝑛𝑥 ≥ 𝑛𝑦 .

Round Complexity. Although our main body has almost no inter-
est on round complexity, it is definitely one of important features of
cryptographic protocols, and could be another interest. We briefly
discuss the round complexities of our interest PSU protocols. First,
our optimization for the receiver-cuckoo PSU [17] incurs no ad-
ditional interaction. However, Our-SC requires more interactions
due to the change from PEqT to PESG based on GMW protocol,
compared to the original sender-cuckoo PSU [12]. Precisely, PEqT
based on OPRF usually requires some constant rounds, but PESG
for ℓ-bit strings based on GMW protocol requires log(ℓ) rounds.
[31]-SK is even worse in round complexity view, because it evalu-
ates LowMC decryption circuit and comparison circuit using GMW
protocol, which is about 20 + log(ℓ). Lastly, [31]-PK is the best in

the round complexity view, as it requires only two rounds to ob-
tain RPMT result 1(𝑥 ∈ 𝑌 ). It could be an interesting direction to
lower round complexity, while maintaining low computation and
communication cost.

Better OKVS. Recently, another construction of OKVS [27] has
been proposed. Although the size of OKVS encoding remains al-
most similar (about 1.3𝑛), it shows about one (two, resp) order of
magnitude improvement on encoding (decoding, resp) time than
our exploited 3H-GCT construction [13], according to reported
performances. We remark that our proposals still be the best one
even considering this advanced OKVS. First, it is already discussed
the advantage of Our-RC over [17] and [12] is independent of the
instantiation of OKVS. Second, Our-SC would likely still be better
than [31], recalling that the computation bottleneck of [31] was not
OKVS operations. However, it is true that the OKVS construction
of [27] will make not a few changes on the concrete timings in
Table 5. We leave additional consideration of [27] as an immediate
future work.
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A ANOTHER P&S PROTOCOL
There is another P&S proposal [8]. However, this protocol orig-
inally aims to improve P&S when the permutation target vector
item is quite long. To be precise, when assuming ℓ ≥ 𝜅, [8] has a
communication cost about

(2ℓ/log𝑇 + 4𝜅)𝑁 log𝑁
where 𝑇 is an optimization parameter for time-communication
trade-off. Clearly, this provides almost 1/log𝑇 reduction on com-
munication cost than the protocol of [23] when ℓ ≫ 𝜅, but it is
rather worse for our interest item lengths; less than 𝜅 bits. For more
detailed formula, we refer [8, Section 7.2].

B MICRO-BENCHMARKS
Table 6 present micro-benchmarks for our experiments for input set
size 𝑛 = 220. For a detailed procedure for each step, see descriptions
in the main body; see Table 1 and Table 2.

Table 6: Micro-benchmarks for our implementations for in-
put set size 𝑛 = 220 and item length ℓ0 = 128. Timings are in
second measured in LAN (10Gbps) environment, and com-
munications are in MB.

[12] Time Comm

Offline 2.34 0.12
OPPRF 20.1 52.4
P&S 3.57 440.1
PEqT 7.17 37.8

Final OT 0.27 41.9

Our-SC Time Comm

Offline 15.18 0.12
OPPRF 20.48 52.4
PESG 2.14 41.0
P&S 4.46 10.2

Final OT 0.31 41.9

[17] Time Comm

Offline 2.36 0.12
P&S 5.75 876.9
OPRF 4.46 60.4

Final OT 0.20 32.2

Our-RC Time Comm

Offline 2.33 0.12
P&S 3.47 440.1
OPRF 14.49 60.4

Final OT 0.27 32.2

[31]-PK Time Comm

Offline 0.2 0.12
Enc 24.8 -

Ctxt-OKVS 14.1 83.2
ReRand&Dec 165.3 64
Final OT 0.27 32.0

[31]-SK Time Comm

Offline 109.9 1.51
Enc 25.2 -

Ctxt-OKVS 4.64 13.0
2PC-Dec 32.2 329.6
Final OT 0.21 32.1

C DISCUSSIONS ABOUT [15]
We first detail the item length ℓ0 = 64 issue. Assuming ℓ0 = 64,
the authors took the RLWE plaintext modulus by ≈ 64 − log𝑛-bit
assuming permutation-based hashing. However, other protocols
assumed ℓ0 = 128, and this is unfair since the RLWE ciphertext
modulus linearly depends on the length of RLWE plaintext modulus,
and the RLWE ciphertext modulus linearly affects both computation
and communication costs. As a rough estimation, it seems that [15]
can also use preprocess hashing to compress the initial item length
ℓ0 = 128 to 𝜆 + 2 log𝑛, and reduce it to 𝜆 + log𝑛 using permutation-
based hashing. However, for example with 𝑛 = 220 and 𝜆 = 40, the
plaintext bit-length for ℓ0 = 128 increases to 60, which was about
44 for ℓ0 = 64. Then the ciphertext modulus should be about 1.3x
times bigger, which also results in the similar overhead on both
computation and communication costs.

We proceed to the security issue. For a security proof, the decryp-
tion of underlying AHE should not reveal any information about

https://eprint.iacr.org/2022/713
https://eprint.iacr.org/2022/713
https://eprint.iacr.org/2022/713
https://github.com/microsoft/Kuku
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the homomorphic operations giving the ciphertext. In particular,
the returning ciphertext of 𝑃 (𝑥) should reveal only the inner plain-
text 𝑃 (𝑥), and no more information about 𝑥 (especially important
when 𝑃 (𝑥) = 0). The description of [11] already cared this by letting
the sender re-randomize the returning ciphertext, whose procedure
is a homomorphic addition of encryption of zero. However, such
a simple remedy only works for ElGamal or Paillier AHE. In fact,
RLWE-AHE requires slightly more, since it additionally reveals the
noise term that could retain some information of 𝑥 . We found no
detailed argument about this in [15], and we believe it should be
addressed properly. One folklore solution is a noise flooding that
covers the noise term by another huge noise, but it requires an
additional ciphertext modulus margin of about 𝜆 bits.

Finally, we remark that the remedy of aforementioned issues will
be likely to require larger ciphertext modulus 𝑞 than the currently
used one. Then the RLWE packing parameter (4096 in the original
text) should also increase to maintain the same security level (𝜅 =

128). This results in a further negative effect on performance, as
the basic RLWE-related operation performances are super-linear
to the RLWE packing parameter.

We concede that those issues do not have a devastating impact on
the performance of [15], and the asymptotic behavior will remain
the same. Meanwhile, we also believe that those issues are likely to
incur a non-negligible difference on concrete performance.

C.1 Comparison with As-Is Reports
At least, we can compare with the current reports of [15] and discuss
some implications. Table 7 takes the reported costs for [15] which
assumes ℓ0 = 64, and compares them with the numbers obtained
from our implementation with ℓ0 = 64. As [15] provided no setup
or offline separation, we also only compare with the total protocol
running time.

Table 7: Comparison with as-is [15].

ℓ0 = 64 216 218 220

10Gbps

Our-SC 2.94 10.7 42.5
Our-RC 1.31 4.66 20.1
[15]-A 3.65 21.1 73.8
[15]-B 3.65 15.7 64.2

10Mbps

Our-SC 12.1 38.9 148
Our-RC 20.8 84.1 364
[15]-A 13.7 40.6 182
[15]-B 13.7 54.6 221

Comm.

Our-SC 7.83 30.4 121
Our-RC 20.5 88.8 388
[15]-A 12.3 29.4 152
[15]-B 12.3 49.8 203

First of all, we observe that [15] shows worse performance than
shuffle-based PSUs, especially than Our-RC (or [17] also) in a high
bandwidth network. This is because [15] is also based on public
key operations like [31]-PK. However, it has quite a low commu-
nication cost comparable to Our-SC, and hence becomes efficient
for a low bandwidth network. Note that, although [15] and [31]-PK

both are based on public key operations, the computational cost is
cheaper than [15] because a difference in unit operation is cheaper
than [15] (RLWE vs ECC). Therefore, we conclude that [15] could
be a promising PSU protocol for low bandwidth, and we hope to
provide a complete comparison after the aforementioned issues are
addressed.

We also leave some discussion about other item lengths than
ℓ0 = 64. First note that [15] has a strong linear dependency on
the input length ℓ0 for both computation and communication, as
mentioned when we discuss the input length issue. Meanwhile, Our-
SC has a dependency with ℓ0 only in the final OT phase, and hence
the input item length ℓ0 has a small impact on the communication
cost of Our-SC. This concludes that Our-SC would be better than
[15] for longer item lengths, and [15] would be better than Our-
SC for shorter item lengths. However, recall that Our-RC has a
further stronger linear dependency on ℓ0, and it requires quite a
small communication cost for short item lengths (See Table 3. Thus
Our-RC could be a competitive protocol when the item length is
short.
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