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Abstract. Tweakable enciphering modes (TEMs) provide security in a variety of stor-
age and space-critical applications like disk and file-based encryption, and packet-based
communication protocols, among others. XCB-AES (known as XCBv2) is specified in
the IEEE 1619.2 standard for encryption of sector-oriented storage media and it comes
with a proof of security for block-aligned input messages.

In this work, we demonstrate the first and most efficient plaintext recovery attack
on XCBv2. We show that XCBv2 is insecure also for full block messages by recovering
the plaintext (all except the final block) using minimal number of queries namely only
two. We demonstrate that our attack further applies to the HCI and MXCB TEMs,
which follow a similar design approach to XCBv2.

Following the responsible disclosure process, we communicated the attack details
to IEEE and the authors4 of XCB-AES. The authors have confirmed the validity of
our attack on 02/09/2024.5

Our next contribution is to strengthen the provable security of XCB-AES (claimed
n/3 bits in queried blocks). We propose a new modular TEM called GEM which can
be seen as a generalization of the Hash-CTR-Hash approach as used in XCB-style and
HCTR-style TEMs. We are able to prove that GEM achieves full n-bit security using
only n-bit PRP/PRF.

We also give two concrete GEM instantiations: KohiNoor and DaryaiNoor, both of
which are based on AES-128 and GHASH-256, and internally use variants of the CTR-
based weak pseudorandom functions GCTR-3 and SoCTR, respectively. SoCTR uses
AES-128 and GCTR-3 is based on ButterKnife-256. Our security proofs show that both
KohiNoor and DaryaiNoor provide full n-bit security. From applications perspective,
DaryaiNoor addresses the need for reusing classical components, while KohiNoor en-
hances performance by leveraging a more modern primitive based on the AES/Deoxys
round function.

Our implementation demonstrate competitive performance: For typical 4KiB sector
size, KohiNoor’s performance is on par with AES6-CTET+, yet achieving higher stan-
dard security guarantees. DaryaiNoor is on par with AES-CTET+ performance-wise
while also maintaining higher security with standard components. Our GEM instances
triple the security margin of XCB-AES and double that of HCTR2 at the cost of
performance loss of only 12% (KohiNoor) and 68% (DaryaiNoor) for 4KiB messages.

Keywords: tweakable enciphering modes, VIL-STPRP, XCBv2, HCI, IEEE 1619.2,
disk-sector encryption, GCTR, SoCTR

4 Authors of both variants XCBv2 [28] and XCBv2fb [10].
5 Our attack first occurred in a submission to CRYPTO 2024 (14/02/2024).
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1 Introduction

An enciphering mode, also known as length-preserving encryption, is an encryp-
tion method whose ciphertext maintains the length of the plaintext and for a
random but fixed key is a deterministic bijective map. Length-preserving en-
cryption is sought for in systems where data storage and space are critical.

Tweakable enciphering modes (TEMs) process an extra public tweak input,
often incorporating some public information like a counter or nonce (e.g., disk
sectors or packet headers), to achieve flexibility and better security against adap-
tive chosen plaintext and ciphertext attacks. TEMs aim to provide a strong no-
tion of security as strong tweakable pseudorandom permutations over variable-
input-length vil-stprp inputs. TEMs can be seen as a generalization of strong
tweakable block ciphers over arbitrary input space, and hence a secure vil-stprp.
A vil-stprp secure TEM is also secure as a tweakable (wide) block cipher stprp.
vil-stprp means that for an adversary with access to both the enciphering and
deciphering and who controls the tweak and input, a TEM design should be
indisntinguishable from a family of independent random permutations (indexed
by the tweak and input length).

TEM Applications. TEMs are used in disk-sector encryption, key-wrap, swap-
file and filebased encryption (FBE), packet-based communication and network
protocols like TLS/SSL and IPsec that prioritize bandwidth efficiency. TEMs
with fixed but large input length (256 bits or more) are known as wide (tweak-
able) block ciphers. Their efficient performance in processing large blocks of
fixed-length data makes them particularly suitable for full disk encryption. If
the tweak input of a TEM is ensured to be unique for every message, e.g. asso-
ciated data, packet headers or packet numbers along with a counter or nonce,
then a vil-stprp secure TEM is also an ind-cca (in the classical sense for random-
ized encryption) secure encryption scheme. In [22], it has been shown that the
Encode-then-Encipher [4] scheme based on a vil-stprp scheme offers also in-depth
or robust [6] security for authenticated encryption schemes. A few TEMs are also
standardized and these include the IEEE 1619.2 (2010 and 2021) standard for
encryption of sector-oriented storage media XCBv2 [28] (a.k.a. XCB-AES) and
XTS [15] for disk-encryption. Still, these standards come with brittle security
guarantees: XCBv2 was proven secure only for block-aligned messages and XTS
is not proven secure even as an stprp enciphering scheme.
The importance of novel, candidate TEM designs was emphasized by the NIST
(National Institute of Standards and Technology of US). In 2023 NIST held a
workshop whose objective was stated [29] as: NIST is “particularly interested in
discussing the possibility of standardizing a tweakable wide block encryption tech-
nique that could support a large range of input length” with applications “such as
storage” and “security and efficiency of tweakable wide encryption techniques”.

TEM Requirements. A TEM aims to achieve the security notion of vil-stprp
via a sound proof of security. A beyond birthday bound (BBB) security guaran-
tees that even after q ≈ 2n/2 message blocks have been enciphered under the
same key, where n is the size of the underlying primitive, the security of the
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TEM as vil-stprp is still attained. BBB security is an important requirement for
present TEM applications as a mean of avoiding frequent rekeying (particularly
relevant for large-data and long-term storage applications), and when used with
standardized ciphers like AES, implying security beyond 264 cipher evaluations
for the same key.

An additional important consideration is the security model. TEMs like
CTET+ manage to achieve BBB security (2n/3 bits), yet they do so only in
the ideal cipher model and not in the standard one, which illustrates the non-
triviality of the task. Yet, security in the standard model gives overall more
realistic security guarantees and hence is a desirable goal for TEMs.

A device implementing a TEM benefits in performance, smaller hardware or
software footprint from optimal use (as few as possible) of inverse-free under-
lying primitives. The latter means that the TEM makes only forward calls to
its underlying primitive(s) for both enciphering and deciphering. If further the
TEM enciphering and deciphering algorithms are almost identical (modifying the
enciphering by a few instructions gives the deciphering), the device minimizes
footprint and implementation size by avoiding storing the whole deciphering.
A highly parallelizable TEM can significantly speed-up the performance, par-
ticularly on platforms with intrinsic hardware accelerators. AES or AES-based
designs like Deoxys [24] are often the primitives of choice [11, 15, 23] due to the
available, in-built AES-NI acceleration support on most platforms that perform
length-preserving encryption.

TEM Designs. The design of well-optimized, secure and efficient TEMs has
been a challenging problem, that has received a lot of attention in the last two
decades [8, 9, 11,12, 19–21,23,27, 28,31]. Existing dedicated TEMs follow design
strategies like the Feistel structure, Encrypt-Mix-Encrypt, Hash-ECB-Hash, and
Hash-CTR-Hash to achieve various optimizations and trade-offs between security
and performance. For example, the Encrypt-Mix-Encrypt approach was intro-
duced and used by the EME design [21], and the AEZ-core [23] builds on the
Feistel structure, and they both go into the direction of performance optimiza-
tions at birthday bound security. Hash-ECB-Hash has been used in the TET [20],
HEH [31] and CTET+ [11] designs. CTET+ was proven 2n/3-bit BBB secure in
the ideal cipher model at the cost of some performance reduction. Note that for
performance oprimization reasons AES6-CTET+ reduces the AES block cipher
use to only six out of 10 rounds to gain in performance, yet weakening the argu-
ment for instantiating CTET+ with an ideal primitive. XCB [27, 28], together
with ZCZ [8], FAST [9], HCTR2 [12] and MXCB [30] follow the Hash-CTR-
Hash approach and aim at efficiency optimizations. These are generally possible
through the application of efficient XOR-universal hash function and the paral-
lelization support of counter mode CTR-based encryption. XCBv2 (a.k.a. XCB-
AES in IEEE 1619.2) [28] and HCTR2 achieve some of the best performance
results but require an inverse primitive call in deciphering, leading to distinct
enciphering and deciphering cost and to the impossibility for instantiation with
primitives that lack an inverse (e.g. a pseudorandom function). A notable excep-
tion in this group is the FAST TEM design which supports inverse-free decipher-
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ing and at the same time offers good performance. All of these Hash-CTR-Hash
designs achieve up to n/2-bit security, except XCBv2 [28] which claims only
n/3-bit security but is highly performant, and ZCZ* [8], which achieves full n-
bit security but at the cost of highly reduced performance competitiveness (see
ZCZ in [8, Table 2] and its main component ZHash under ZMAC in [14, Table
2] for details).

In Table 1, we summarize a selected number of TEMs with their design,
security and efficiency properties. We additionally provide TEM performance
comparisons in Table 2.

While the Hash-CTR-Hash TEM paradigm has enabled the design of effi-
cient TEMs, combining the efficiency with well beyond birthday bound or full
n-bit vil-stprp security, inverse-freeness, and almost identical enciphering and
deciphering has remained a challenge that has not been successful so far.

Mode Key Primitive Mode Security Inverse Almost Identical Partial Block Input Length
Size Assumption Security Size Free Enc/Dec Support Support

XTS 2k sprp ✗ ✗ ✗ ✗ ✓ ≥ n

EME* 3k sprp vil-stprp n/2 ✗ ✗ ✓ ≥ n

AEZ-core 3k prf vil-stprp n/2 ✓ ✓ ✓ ≥ 2n

TET 2k sprp stprp n/2 ✗ ✗ ✓ ≥ n

HEH 3n+ k sprp vil-stprp n/2 ✗ ✗ ✓ ≥ n

CTET+ 5n+ k IC stprp 2n/3 ✗ ✗ ✗ ≥ 2n

HCH 2n+ k sprp vil-stprp n/2 ✗ ✗ ✓ ≥ n

ZCZ* k stprp vil-sprp n ✗ ✗ ✓ ≥ 2n

FAST n+ k prf vil-stprp n/2 ✓ ✓ ✓ ≥ 2n

HCTR2 n+ k sprp vil-stprp n/2 ✗ ✗ ✓ ≥ n

XCB* 2n+ 3k sprp vil-stprp n/3 ✗ ✓ ✗ ≥ n

KohiNoor 2n+ 3k prp, prf vil-stprp n ✓ ✓ ✓ ≥ 4n

DaryaiNoor 2n+ 4k prp vil-stprp n ✓ ✓ ✓ ≥ 4n

Table 1: Comparison of Popular TEMs with KohiNoor and DaryaiNoor. Here n
is the block size of the underlying primitive and IC denotes an ideal cipher. All
variables here are in bits. XCB* [34] is a secure variant of XCB. For XCB*,
Poly [33] is used here as the hash function.

Our Contribution. First, in our study of the IEEE 1619.2 standard XCBv2,
which comes with two proofs of security [10, 28] for messages of block-aligned
length, we unveil a surprisingly simple plaintext recovery attack. Our XCBv2
attack requires only two adversarial queries; one forward and one inverse, to
break the currently claimed sprp n/3-bit security. We are able to also identify
the weak spot, that is an implicit false assumption in both existing proofs of
XCBv2. More specifically, it is assumed (implicitly) in both proofs that the sum
of two linear XOR-universal hashes is a universal hash when the keys to both of
the hashes are identical, a fact we show is untrue. Even further, we demonstrate
that our attack also applies to an XCBv2 variant called MXCB [30] which is
based on a vil-tprs (short for variable-input-length tweakable pseudorandom self-
inverse permutation) HCI [30].
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Attack Overview : Our proposed attack is a plaintext recovery attack under
a chosen-ciphertext attack (CCA) model. For an m-bit ciphertext, the attack
recovers the first m−n bits of the corresponding plaintext. Here, m can be quite
large, such as sector sizes typically used in disk encryption (e.g., 512B or 4KiB),
and n represents the block size of the encryption primitive (16B for AES-128
in this example). Consequently, the attack is capable of recovering almost the
entire sector.

Informally, the attack proceeds as follows: Given a target ciphertext C, the
attacker performs two steps: 1. The attacker decrypts a related ciphertext C ′ =
C ⊕ X, where X is an arbitrary binary string of length |C|, with the last n
bits set to 0. This results in a new message, M ′. 2. The attacker then encrypts
M ′′ = M ′ ⊕X, producing the ciphertext C ′′. Finally, the plaintext is recovered
using the formula M = C ⊕M ′′ ⊕ C ′′, where the first m − n bits of M match
the first m− n bits of the target plaintext.

We note that in a recently uploaded ePrint [34], Wang et al. improved our
all-but-last-block plaintext recovery attack into full plaintext recovery attack by
recovering the last block with few additional queries (total up to seven queries).6

They also extended the attack to the two-key variant of XCB – XCBv1 [27].
Although the extended attack allows recovery of the remaining one block of

plaintext at the cost of at least one additional decryption query, in practice, this
reduces the attack’s effectiveness as making chosen decryption queries to a real
system, such as in the case of full disk encryption, is costly and less feasible.

We also realized that their attack (currently breaking the STPRP claim) can
be further generalized to even break the basic SPRP claim of all XCB variants.
We provide our generalized version of their attack in Appendix E.

In [34], the authors also proposed a fixed XCB variant called XCB* by
adding two extra XORs. XCB* provably provides log(ϵ)/2 bits of security when
used with ϵ-XOR-universal hash functions. For standard polynomial hashes like
GHASH [26] that follow the structure of Poly [33] and have ϵ = ℓ · 2−n (with ℓ
being the input length in n-bit blocks), the concrete security of XCB* becomes
n/3 bits.

The use of ℓ · 2−n-XOR-universal hash function to generate the initialization
value (IV) for the counter (CTR) mode introduces an extra variable ℓ in their
security bounds and that reduces the security to a cubic bound. The ℓ variable
cannot be trivially avoided to achieve BB or BBB security without making more
substantial changes to the algorithms, such as post-processing the hash outputs
with some weak pseudorandom function PRF before using them to generate the
IV for the CTR mode.

In order to increase the concrete security margin of XCB* to BBB, one would
need to instantiate it with at least 2n-bit sprp primitives. We show how the cost
of securely designing and efficiently instantiating such large primitives can be
circumvented. As our second main contribution, we relax the need of large-state
and large-block primitive and propose a new generic n-bit secure vil-stprp TEM,

6 As evidenced by our responsible disclosure dates and earlier submissions of our work,
our attack precedes the results in [34].
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which we call GEM. GEM improves further XCB* in terms of: 1) security margin
– for an internal primitive with block size n, XCB* provides security only up
to n/3 bits, whereas GEM provides full n-bit security; 2) primitive support –
XCB* works only with efficiently invertible SPRPs, whereas GEM allows all
PRPs (including the ones with inefficient inverse) and PRFs, hence a larger set
of permissible instances; 3) small price in performance – GEM instances can
incur a performance loss as little as 12% compared to XCB-AES.

GEM is a generalization of the Hash-CTR-Hash approach as used in XCB-
style and HCTR-style TEMs. GEM relaxes the use of 2n-bit sprp primitive to
n-bit prp or prf primitive (in a two-round Feistel). GEM has three main compo-
nents – a variable-input-length pseudorandom function vilF, a variable-output-
length pseudorandom function volF and an n-to-n-bit block cipher or PRF E (see
Figure 1). The two-round Feistel enables inverse-freeness and supports almost
identical enciphering and deciphering. We also provide a solution for how to
construct the variable-input-length vilF and variable-output-length volF pseudo-
random functions components from any suitable weak pseudorandom function
wPRF and an XOR-universal hash function. We formally prove the full n-bit
vil-stprp security of GEM in the standard model and provide a detailed proof.

As our next contribution, we propose two GEM instances: KohiNoor and
DaryaiNoor (see Table 1 for comparison with existing TEMs). KohiNoor and
DaryaiNoor are based on AES-128 (128-bit secure prp) and GHASH-256 (XOR-
universal hash) and use CTR-based weak pseudorandom functions: GCTR-3 [2]
and Sum of CTR (SoCTR), respectively. SoCTR internally uses AES-128 and
GCTR-3 is based on ButterKnife-256 [3]. We independently prove GCTR-3 and
SoCTR secure as weak PRFs and then use these results to prove that KohiNoor
and DaryaiNoor are each n-bit secure in the standard model. From applications
perspective, DaryaiNoor answers the need of (re)use of classical components,
while KohiNoor further pushes the performance based on the use of a more
recent, yet AES/Deoxys round-function-based primitive.

XCB-AES HCTR2 AES6-CTET+ AES-CTET+ KohiNoor DaryaiNoor

512B 1.02 1.07 1.07 1.49 1.61 1.99
4 KiB 0.95 1.00 1.04 1.53 1.12 1.68

Table 2: Performance (in cycles/byte) comparison of XCB-AES, HCTR2,
CTET+, KohiNoor and DaryaiNoor for 512B and 4096B sizes on the gracemont
cove microarchitecture. XCB-AES, HCTR2, CTET+ and DaryaiNoor use AES-
128.

Finally, we provide an implementation of our GEM instantiations and com-
pare them against a representative number of TEMs following popular design
strategies – XCB-AES, HCTR2 [12] (Hash-CTR-Hash), and CTET+ [11] (Hash-
ECB-hash). On gracemont cove, for 4KiB messages, KohiNoor, which relies on
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the prf security of ButterKnife-256, outperforms AES6-CTET+, which relies on
the ideal cipher assumption of 6-round AES, while improving the security bounds
from 86 to 128 bits in the standard versus ideal model. For 512B message lengths,
KohiNoor is slower than AES6-CTET+, but is still on par with the AES-CTET+.
DaryaiNoor is slower than KohiNoor, but it only relies on the prp security of AES
to achieve 128 bits of security. Performance-wise DaryaiNoor compares to AES-
CTET+ for 4KiB messages whereas for 512B messages, AES-CTET+ is around
25% faster than DaryaiNoor. Compared to the lower security category of 43-bit
secure XCB-AES and 64-bit secure HCTR2 TEMs, KohiNoor provides 128 bits
of security with less than 18% performance loss at just 4 KiB length. At 4KiB
length, DaryaiNoor shows the possibility to achieve 128 bit security with stan-
dard components without significantly hindering the performance. The details
on our implementation and extended benchmarks are given in Appendix C.

Paper Organization. Preliminaries are covered in Section 2, followed by TEM
security notions in Section 3. We present our attack on XCB-AES in Section 4. In
Section 5, we introduce GEM mode as a modular TEM that fixes and improves
XCB-AES. We then state its formal security, and defer the proof to Section 7.
Section 6 presents two secure GEM instantiations, KohiNoor and DaryaiNoor. Full
implementation details and benchmarking results for both GEM instantiations
are provided in Appendix C.

2 Preliminaries

2.1 Notation

All strings used here are binary strings. Strings of length n > 0 are referred to
as n-bit strings, and the set of all n-bit strings is denoted by {0, 1}n. The set of
strings of any possible length is denoted as {0, 1}∗. The set of all permutations
of {0, 1}n is denoted as Perm(n) and the set of all self-inverse permutations or
involutions of {0, 1}n, is denoted by SIPerm(n), where SIPerm(n) ⊂ Perm(n).
The set of all functions/maps from {0, 1}m (respectively, {0, 1}∗) to {0, 1}n is
denoted by Func(m,n) (respectively, Func(∗, n)). For any string A, |A| is the
length of A in bits. For two strings A,B ∈ {0, 1}∗ with (w.l.o.g.) |A| ≤ |B|, we
let A ⊕ B denote the bitwise XOR of A∥0|B|−|A| and B, and define A ⊕a B =
(A ⊕ B)[0 . . . a − 1]. We use msba(A) to denote the prefix string A[0 . . . a − 1].
For two a-bit strings X and Y , we denote their field multiplication in GF(2a)
(using a suitable, fixed irreducible polynomial) as X · Y .

Given a string A and an integer n such that |A| = cn+d, where c is a positive

integer and 0 < d ≤ n, the notation A1, A2, . . . , Ac+1
n←− A is used to indicate

the partitioning of A into a maximum number of n-bit blocks. Each block Ai

has a length of n for 1 ≤ i ≤ c, and the last block Ac+1 has a length of d. For
a given n (as used in partitioning), we define an injective padding function for
A as padn(A) = A1∥A2∥ . . . ∥Ac+1∥0n−d∥binn(|A|) where binn(|A|) denotes the
n-bit binary representation of |A|. The notation r ←$ R indicates the random
sampling of an element r from a finite set R with a uniform distribution. We
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use lexicographic comparison for integer tuples (to exemplify, (i′, j′) < (i, j) iff
i′ < i or i′ = i and j′ < j). The symbol ⊥ is used to represent an undefined
value or an error.

2.2 Definitions

In this section, we provide the syntax of a TEM followed by the standard defini-
tions of relevant cryptographic primitives in this work. The security definitions
for TEMs are provided in Section 3.

Definition 1 (Tweakable Enciphering Mode (TEM)). A TEM scheme
is defined as Π = (K, E ,D) which consists of three components: a key distri-
bution K, a deterministic encryption algorithm E : K × T × M → C that
preserves the length of the message, and a deterministic decryption algorithm
D : K × T × C →M. The encryption algorithm takes a key K, a tweak T , and
a message M from the sets (K,T,M) ∈ K × T ×M, and returns a ciphertext
C = E(K,T,M) = EK(T,M). The decryption algorithm maps the key, tweak,
and ciphertext to the original message using M = D(K,T,C) = DK(T,C). Here
being length-preserving means that for any given key K, tweak T , and message
M , |EK(T,M)| = |M |.

Definition 2 (Universal Hashing). Let H : {0, 1}k × {0, 1}∗ → {0, 1}m for
some non-negative k and m be a set of keyed hash functions. Let HK denote H
with a k-bit key K. H is called ϵ-XOR-universal if for any given two distinct
inputs X,X ′ ∈ {0, 1}∗ and any output Y ∈ {0, 1}m,

Pr[HK(X)⊕HK(X ′) = Y ] ≤ ϵ,

where the probability is computed over K chosen uniformly at random from
{0, 1}k. Further, when Y is fixed to 0m, H is called ϵ-universal.

Definition 3 (Polynomial Hashing). A polynomial hash H : {0, 1}m ×
{0, 1}∗ → {0, 1}m for some non-negative m is a set of keyed hash functions.

For any given inputs (K,X) ∈ {0, 1}m×{0, 1}∗ with P1, P2, . . . , Pc
m←− padm(X)

for some positive c, we define two polynomial hashes H1 and H2 as follows

H1(K,X) = H1K(X) = Kc−1 · P1 ⊕Kc−2 · P2 ⊕ . . .⊕K · Pc−1 ⊕ Pc ,

H2(K,X) = H2K(X) = K · H1K(X) .

H1 and H2 are ℓ · 2−m-universal and ℓ · 2−m-XOR-universal hash functions when
restricted to messages with post-padding length m · ℓ, i.e. setting c = ℓ in Defi-
nition 3 (for detailed discussion on this, see [33]).

Definition 4 (Block Cipher). A block cipher E : {0, 1}k × {0, 1}n → {0, 1}n
is a function that is a permutation for every K ∈ {0, 1}k. We define the ad-
vantage of a distinguisher D in distinguishing E from a random permutation
π ←$ Perm(n) as

Advprp
E (D) =

∣∣∣Pr [K ←$ {0, 1}k : DEK(·) ⇒ 1
]
− Pr

[
π ←$ Perm(n) : Dπ(·) ⇒ 1

]∣∣∣ .
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Note that for prp (pseudorandom permutation) security advantage, D only gets
forward access to E.

Definition 5 (Pseudorandom Function (PRF)). A PRF function F :
{0, 1}k × {0, 1}m → {0, 1}n is a function that takes a key K ∈ {0, 1}k and a
message X ∈ {0, 1}m as input and returns an output Y ∈ {0, 1}n for some
positive integers m and n. We define the advantage of a distinguisher D in dis-
tinguishing F from a random function f ←$ Func(m,n) as

Advprf
F (D) =

∣∣∣Pr [K ←$ {0, 1}k : DFK(·) ⇒ 1
]
− Pr

[
f ←$ Func(m,n) : Df(·) ⇒ 1

]∣∣∣ .
If m is not fixed i.e., when X ∈ {0, 1}∗, we call F a variable input length pseu-
dorandom function (vil-PRF). Similarly, if n is not fixed i.e., when Y ∈ {0, 1}∗,
we call F a variable-output-length PRF. We note that uniform sampling can-
not be defined on Func(m, ∗), therefore, we consider f ′ ←$ Func(m,nmax) for
some large fixed nmax such that for all variable ns, nmax ≥ n. We then define
f(·) = f ′(·)[0 . . . n− 1]. We highlight that for such f , any two queries with same
input but different ns will have one output as prefix of the other. We also note
that there are other ways to sample random fs that can avoid this property.
However, in this work, we consider this sampling as the ideal case.

Definition 6 (Weak Pseudorandom Function (wPRF)). A wPRF function
F : {0, 1}kF × {0, 1}m → {0, 1}n is a function that takes a key K ∈ {0, 1}kF and
a message X ∈ {0, 1}m as input and returns an output Y ∈ {0, 1}n for some
positive integers m and n. We define the advantage of a distinguisher D in
distinguishing F from a random function f ←$ Func(m,n) under transformed
inputs using a keyed XOR-universal hash function H : {0, 1}kH × {0, 1}∗ →
{0, 1}m as

Advwk-prf
F,H (D) =

∣∣∣Pr [K1 ←$ {0, 1}kF ,K2 ←$ {0, 1}kH : DFK1
(HK2

(·)) ⇒ 1
]

− Pr
[
f ←$ Func(m,n),K2 ←$ {0, 1}kH : Df(HK2

(·)) ⇒ 1
] ∣∣∣ .

For simplicity, we keep H implicit and drop the subscript H, denoting the ad-
vantage by Advwk-prf

F (D). Further, when n is not fixed, we sample f in a similar
manner to the variable-output-length pseudorandom function discussed earlier.

3 Security Notions for Enciphering Schemes

In this section, we introduce a unified notion for enciphering schemes which
incorporates popular TEM notions as its special cases.

Let Π = (K,TEM,TEM−1) be a TEM scheme with key space K, tweak
space T and message space M = ∪i∈L{0, 1}i for some set L of all allowed
message lengths. Let T ⋆ = T when |T | ≠ 0 and T ⋆ = {0}, otherwise. Consider
an adversary A whose goal for a given α ∈ {0, 1} is to distinguish between the
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functions (TEMK , αTEM−1
K ) withK ←$ K and a randomly sampled permutation

family (πT ,L, απ
−1
T ,L) by making oracle queries to them where

(πT ,L, π
−1
T ,L) = ∪i∈L{{(πT,i, π

−1
T,i)}T∈T ⋆ ⊆$ Fi}

i.e. for each distinct tweak T ∈ T ⋆ or message length i ∈ L, the corresponding
permutation πT,i is uniformly sampled at random from some set Fi ⊆ Perm(i)
with π−1

T,i defining the inverse map of πT,i. Here the oracle απ−1
T,i(·, ·) returns the

output of π−1
T,i when α = 1 and the empty string, otherwise. The advantage of

A in breaking the type-security of Π is defined as follows:

Advtype
Π (A) =

∣∣Pr[K ←$ K : ATEMK(·,·),αTEM−1
K (·,·) ⇒ 1]

− Pr[∪i∈L{(πT ,i, π
−1
T ,i) ⊆

$ Fi} : AπT ,L(·,·),απ−1
T ,L(·,·) ⇒ 1]

∣∣,
where for any T,M and C, πT ,L(T,M) = πT,|M |(M) and π−1

T ,L(T,C) =

π−1
T,|C|(C).

Now that the generic definition of type is defined, we recall all the existing
TEM security notions of (variable-input-length) (strong) (tweakable) pseudoran-
dom permutation ((vil-)(s)(t)prp) and (variable-input-length) (tweakable) pseu-
dorandom self-inverse permutation ((vil-)(t)prs) as special cases of it in Table 3.

type prp sprp tprp stprp vil-prp vil-sprp vil-tprp vil-stprp prs tprs vil-prs vil-tprs

α 0 1 0 1 0 1 0 1 0

|T | ≤ 1 ≥ 2 ≤ 1 ≥ 2 ≤ 1 ≥ 2 ≤ 1 ≥ 2

|L| 1 ≥ 2 1 ≥ 2

Fi Perm(i) SIPerm(i)

Table 3: Comparison of various TEM or wide block enciphering security notions.
Here α is an indicator function that when 1 allows the inverse oracle access to the
adversary and restricts otherwise. |T | ≤ 1 means that the targeted TEM is not
tweakable or the tweak is fixed for the adversary. |L| = 1 means that the targeted
TEM is a fixed-input-length function and variable-input-length, otherwise.

4 Revisiting XCBv2 and HCI

XCB (short for eXtended Code Book) is a popular TEM proposed by McGrew
and Fluhrer in 2004 [27]. XCB came originnally with no formal security proof.
In 2007 [28], the authors revised XCB (XCBv1 to XCBv2) and provided a proof
for the updated version. However, in 2013, Chakraborty et al. [10] examined
both versions and revealed that the security claims for XCBv2 were flawed, par-
ticularly for messages not aligning with the block cipher’s block length. They
demonstrated this through a distinguishing attack. In the same paper, the au-
thors gave a new proof for XCBv1 and XCBv2 (but restricted to messages that
align with block cipher’s block length a.k.a. full block messages). XCBv2, which
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is also referred to as XCB-AES, is part of the IEEE 1619.2 (2010 and 2021)
standard for encryption of sector-oriented storage media.

Here we show that even for full block messages, XCBv2 is not sprp secure
which implies vil-stprp insecurity. We demonstrate a partial plaintext recovery
attack with only two queries – one forward and one inverse call to XCBv2. We
now recall the definition of XCBv2 [28]. We note that XCBv2 is already insecure
when the underlying messages are not full-blocks [10]. The same attack argument
applies when the tweak is not a full-block. Therefore, w.l.o.g. we consider only
full-block messages and tweaks for the description of XCBv2.

Further, we note that the hash function as defined in [28] takes (excluding
the key) two arguments - the tweak and the input that are individually padded
and then concatenated into one string for polynomial hashing. However, since
we consider only full-block tweaks, we can avoid tweak padding and thus can
use a hash that takes only one argument - tweak concatenated with the input
(see Def. 3 for such one argument hash).

4.1 XCBv2 Mode with Full-block Messages and Tweaks

We refer to XCBv2 [28] with full-block messages and tweaks as XCBv2fb
(see [10]). XCBv2fb consists of two algorithms: encipher and decipher. The en-
cipher algorithm takes a k-bit key K, a tweak T ∈ {0, 1}(t−1)n and a message
M ∈ {0, 1}mn with m, t ≥ 1, M = ML∥MR and |MR| = n. It then uses K to
derive an n-bit key Kh and three k-bit keys Ke, Kd and Kc as

Kh = EK(binn(0)),Ke = msbk(EK(binn(1))∥EK(binn(2))),

Kd = msbk(EK(binn(3))∥EK(binn(4))),Kc = msbk(EK(binn(5))∥EK(binn(6))) .

It uses a keyed hash function HKh
: {0, 1}(m+t)n → {0, 1}n, a counter mode

(IV is the first n-bit input) CTRKc : {0, 1}n × {0, 1}(m−1)n → {0, 1}(m−1)n and
two keyed block ciphers EKe

: {0, 1}n → {0, 1}n and EKd
: {0, 1}n → {0, 1}n

(inverse calls denoted as E−1
Ke

and E−1
Kd

) to compute:

CL = CTRKc
(EKe

(MR)⊕HKh
(0n∥T∥ML∥0n),ML)

CR = E−1
Kd

(EKe
(MR)⊕HKh

(0n∥T∥ML∥0n)⊕HKh
(T∥0n∥CL∥lenm,t))

and returns C as CL∥CR. Here lenm,t = binn/2(|T∥0n|)∥binn/2(|CL|) and the
counter mode is defined using the block cipher E as

CTRKc
(IV, P ) :=(EKc

(IV )∥EKc
(IV ⊕ binn(1))∥ · · ·

· · · ∥EKc
(IV ⊕ binn(⌈|P |/n⌉ − 1)))⊕|P | P .

The XCBv2fb decipher algorithm swaps the block cipher keys and hash inputs’
final blocks. For the same keys and a ciphertext C, it is defined as:

ML = CTRKc
(EKd

(CR)⊕HKh
(T∥0n∥CL∥lenm,t), CL)

MR = E−1
Ke

(EKd
(CR)⊕HKh

(T∥0n∥CL∥lenm,t)⊕HKh
(0n∥T∥ML∥0n))
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and returns the plaintextML∥MR. For ease of understanding, a pictorial diagram
for the enciphering of XCBv2fb is also provided in Appendix A.

Observations. For all valid IV and P it holds that CTRKc
(IV, P ) =

CTRKc
(IV, 0|P |)⊕P . Thus, from Fig. 2 the following equations can be extracted:

Z = XL ⊕XR = HKh
(0n∥T∥ML∥0n)⊕ EKe

(MR) , (1)

Z = YL ⊕ YR = HKh
(T∥0n∥CL∥lenm,t)⊕ EKd

(CR) , (2)

ML ⊕ CL = CTRKc
(Z, 0|ML|) . (3)

HKh
in XCBv2fb is instantiated with the polynomial hash H2 (Def. 3) as an

XOR-universal hash function. We note that H2 is a linear function and has the
following relation for any value of A, B and D when K1 = K2:

H2K1
(A⊕D)⊕ H2K2

(B) = (H2K1
(A)⊕ H2K1

(D))⊕ H2K2
(B)

= H2K1
(A)⊕ (H2K2

(B)⊕ (H2K1
(D))

= H2K1
(A)⊕ (H2K2

(B)⊕ (H2K2
(D))

= H2K1
(A)⊕ H2K2

(B ⊕D) . (4)

This relation shows that the sum of two linear XOR-universal hashes is not a
universal hash when the keys to both of the hashes are same. In AE modes like
GCM [26] and GCM-SIV [18], the same hash key is used over multiple hash calls,
however, they mask the output of each hash with a fresh random value and thus
restrict the appearance of the relation or the exposure of the hash outputs.

XCBv2fb also tries to do the same by post-processing the hash outputs with
a block cipher and then releasing it as the output. But in XCBv2fb a sum of
hashes is already performed before this post-processing (see Eqn. 2), our simple
two query attack shows that the above relation can still be verified and used to
partially recover the plaintext for any given ciphertext.

Since for our attack, the key of XCBv2fb, length of the messages (mn bits for
some positive integers m and n with m ≥ 2) and the tweaks are kept identical
over the queries, we abuse the notation to denote the EKe

(·), EKd
(·), HKh

(·)
and CTRKc

(·, 0mn−n) functions by e(·), d(·), h(·) and c(·), respectively.

4.2 Plaintext Recovery Chosen Ciphertext Attack on XCBv2fb

Our XCBv2fb attack uses one enciphering and one deciphering call. Let A be
an adversary against XCBv2fb who aims to partially recover the plaintext for a
given ciphertext C ∈ {0, 1}mn and tweak T ∈ {0, 1}(t−1)n.

Shared Difference Attack. A splits C as CL∥CR where |CR| = n, chooses a
non-zero constant S ∈ {0, 1}mn−n, and makes two queries to XCBv2fb:

1. Query (CL ⊕ S)∥CR with tweak T to decipher and receive M ′
L∥M ′

R.
2. Query (M ′

L ⊕ S)∥M ′
R with tweak T to encipher and receive C ′

L∥C ′
R.
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A returns the partially recovered left (mn−n) bits of the target plaintext M as
ML = CL ⊕M ′

L ⊕ C ′
L ⊕ S.

Attack Correctness. For the target ciphertext C = CL∥CR and its corre-
sponding secret plaintext M = ML∥MR, the relation from Eqn. 2 and 3 holds:

ML ⊕ CL = c(h(T∥0n∥CL∥lenm,t)⊕ d(CR)) . (5)

Similarly, using Eqn. 1 and 3 over the input and output of the encipher query
made by A, we get the following relation,

(M ′
L ⊕ S)⊕ C ′

L = c(h(0n∥T∥(M ′
L ⊕ S)∥0n)⊕ e(M ′

R)) , (6)

Then, from the input and output of deciphering and Eqn. 1 and 2, we get

h(T∥0n∥(CL ⊕ S)∥lenm,t)⊕ d(CR) = h(0n∥T∥M ′
L∥0n)⊕ e(M ′

R) .

Recall that h in XCBv2fb is instantiated by H2 and thus, we can add h(0tn∥S∥0n)
on both side of the equation and use the relation of Exp. 4 to get:

h(T∥0n∥CL∥lenm,t)⊕ d(CR) = h(0n∥T∥(M ′
L ⊕ S)∥0n)⊕ e(M ′

R) . (7)

Combining, Eqn. 5, 6 and 7, gives us ML⊕CL = M ′
L⊕S⊕C ′

L and hence allows
A to successfully recover ML (i.e., all but last n bits of M) within two oracle
queries and with probability 1.

4.3 Flaw in the Existing Analyses

Both existing XCBv2fb analyses use H as a linear XOR-universal hash func-
tion (Theorem 1 in [28] and Lemma 1 in [10]), which as our attack shows, is
not sufficient for the claimed sprp security. The main flaw lies in the implicit
assumption that the XOR of H on two different inputs X1 ̸= X2 is also a uni-
versal hash and thus can be used to generate an unpredictable IV for the CTR
mode. More specifically, let XHK,K(X1, X2) = HK(X1) ⊕ HK(X2) with H as
an ϵ-XOR-universal then for the CTR IV generating part, it is assumed that
the probability of finding a collision in XH outputs for any two distinct inputs
but same key K (sampled freshly and uniformly at random) is reasonably small.
This is not true as for all ∆ we have XHK,K(X1, X2) = XHK,K(X1⊕∆,X2⊕∆)
with probability 1.

Other Applications of Shared Difference Attack. Our attack is also valid
for the XCB-style, variable-input-length tweakable pseudorandom involution
(vil-tprs) HCI [30] TEM and the vil-stprp secure variant of it MXCB [30], and
breaks their vil-tprs and vil-stprp security claims, respectively.

HCI differs from XCBv2 in: 1) it uses same Kb for both block cipher calls;
2) its left-right partitioning of the inputs is switched i.e., for any M = ML∥MR,
now |ML| = n, and 3) it has the same padding for both hash inputs, i.e., both
hash functions take inputs padn(T )∥padn(X) where T is the tweak and X is the
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right partition of plaintext or ciphertext depending on the hash call. For a full
HCI description, we refer to [30]. While our attack applies directly, no easy fix
seems to allow HCI to regain its vil-tprs security without losing its involution
(self-inverse) property. Keeping the involution property requires the use of same
hash and block cipher keys, which means the XCBv2fb fix cannot be applied.

MXCB [30] is an XCB TEM variant that generically constructs a vil-stprp
mode from a vil-tprs building block (see [30]). MXCB is defined as HCI but with
masked first (n-bit) output block using an XOR with an extra key. Its security
relies on the vil-tprsHCI proof. Our attack invalidates the existing lower bound on
the MXCB vil-stprp security. However, we believe that a dedicated proof similar
to XCBv2 [10] can still be valid for a modified version where not only the first
but also the last output n-bit block is masked with the same key. Such masking
prohibits the adversary to see the actual left or right partitions of underlying
HCI’s outputs (i.e., CL or CR) and thus avoids the attack.

Inapplicability to HCTR-based TEMs and XCB*. Our attack does not
apply to HCTR-style TEMs such as FAST [9] and HCTR2 [12] due to the middle
block cipher that additionally encrypts/decrypts one of the hash outputs before
XORing it with the other hash output, and hence restricts the verification of
Eqn. 4. Further, our attack does not apply to XCB* due to its PIV [32]-style
input processing that makes the block cipher outputs dependent of the XOR-
universal hash function outputs and hence restricts a relation like Eqn. 4 to
appear.

5 GEM: A Generic Enciphering Mode

In this section, we propose a new generic TEM design GEM that improves
upon XCB*. GEM is based on a variable-input-length PRF vilF, a variable-
output length PRF volF and an n-to-n-bit function E that can be either a block
cipher or a PRF. The GEM structure and support of primitives can be seen as
a generalization of the Cipher-Hash-CTR-Hash-Cipher approach that is used in
XCB-style TEMs. GEM relaxes the “Cipher” call requirement from 2n-bit sprp
primitive to n-bit PRP or PRF (in a two-round Feistel). The generic nature of
GEM allows for different optimizations under suitable components and achieves
all desirable TEM properties (see Table 1, 4 and Section 6). Additionally, the
design modularity helps in achieving provable security results with component-
wise separated bad-case analyses that are simpler and thus less error-prone.

We now define some relevant conventions. Let λ be the target vil-stprp security
size (in bits). Then, for GEM, we need that the output size of the vilF and both
input and output sizes of the volF are equal to 2λ bits each (to avoid trivial
birthday attacks). This means that the minimum size of message input to GEM
modes is 4λ bits. For simplicity, we fix λ to n (the block size of the underlying
E) and hence set a target of n-bit security for the GEM mode.

GEM Design. GEM is a tweakable enciphering mode that takes in a tweak
T ∈ {0, 1}∗, a key K = K1∥K2∥K3 ∈ {0, 1}∗ with |K1| = 2kbc, |K2| = kvil
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and |K3| = kvol for some non-negative integers kbc, kvil and kvol, and a message
M ∈ {0, 1}∗ with M = ML∥MR where |MR| ≥ |ML| = 2n. It then uses the
variable-input-length PRF vilF : {0, 1}kvil × {0, 1}∗ × {0, 1}∗ → {0, 1}2n, the
variable-output-length PRF volF : {0, 1}kvol×{0, 1}2n → {0, 1}∗, and the function
E : {0, 1}kbc × {0, 1}n → {0, 1}n as shown in Figure 1 and returns a ciphertext
C as CL∥CR with |CR| ≥ |CL| = 2n and |C| = |M |.

Fig. 1: Generic Enciphering Mode (GEM).

The volF in GEM can return arbitrary large outputs, however, for the XOR
followed by the volF call, we need only |MR| many bits. Hence, the output of
volF is truncated to the first |MR| bits and then XORed with MR (denoted by
⊕|MR| in Figure 1). The deciphering of GEM is defined in the same way as its

enciphering but with M,T∥0 and Feistel2 swapped with C, T∥1 and Feistel−1
2 ,

respectively in Figure 1. For simplicity, we keep the key inputs of vilF, volF and
E implicit and denote them with vilFA, volFB and ED for their keys A,B and
D, respectively. Further, we keep the vilF, volF and E components of GEM as
parameters to its function and denote an instantiation of it by GEM[vilF, volF,E].

5.1 Security of GEM

Theorem 1 states the vil-stprp security of GEM[vilF, volF,E] and its proof is de-
ferred to Section 7.1.

Theorem 1. Let GEM[vilF, volF,E] be the TEM as defined above then for any
adversary A who makes at most qe enciphering and qd deciphering queries to
GEM with input lengths ≥ 4n bits and q = qe + qd ≤ 2n−2, we have
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Advvil-stprp
GEM[vilF,volF,E](A) ≤ Advprf

vilF(B) +Advprf
volF(C) + 2Advprp

E (D) + 11q2

22n
,

Advvil-stprp
GEM[vilF,volF,E](A) ≤ Advprf

vilF(B) +Advprf
volF(C) + 2Advprf

E (D) + 4q2

22n

for some adversaries B, C and D making at most 2q many vilF, 2q many E
and q many volF queries (under fixed but secret, random and independent keys),
respectively, and running in time given by the running time of A plus γ0 · q for
some “small” constant γ0.

5.2 Single Solution for Both vilF and volF

We propose an efficient way to instantiate both vilF and volF using an XOR-
universal hash function and a weakly secure PRF. To define those, we fix kvil =
kvol = kh + kwk for some non-negative integers kh and kwk. Let for all positive
integers ℓ, H : {0, 1}kh × {0, 1}2ℓn → {0, 1}2n be an ϵℓ-XOR-universal hash
function with block aligned messages and wPRF : {0, 1}kwk × {0, 1}2n → {0, 1}∗
be a wk-prf-secure PRF. For GEM, we now define

vilFK2
(A,B) = wPRFK22

(HK21
(pad2n(A)∥pad2n(B))),

volFK3
(C) = wPRFK32

(HK31
(C))

for any A,B ∈ {0, 1}∗ with |A| ≥ 1 and |B| ≥ 2n, C ∈ {0, 1}2n, K21,K31 ∈
{0, 1}kh , and K22,K32 ∈ {0, 1}kwk with K2 = K21∥K22 and K3 = K31∥K32.

Observation. We highlight the following detail that in GEM, all vilF inputs
satisfy |A| ≥ 1 and |B| ≥ 2n (in GEM, A represents T∥0s or T∥1s whereas B
represents MRs or CRs), therefore, we have |pad2n(A)∥pad2n(B)| ≥ 8n. On the
other hand, all volF inputs have |C| = 2n i.e., the input domains of vilF and volF
are different. Even when K2 = K3 i.e., both vilF and volF are keyed with same
hash and wPRF keys, their outputs are independent and distributed uniformly
as long as there is no internal hash output collision.

Let Xvil be the set of all binary strings of the form pad2n(A)∥pad2n(B) for
arbitrary strings A and B satisfying |A| ≥ 1 and |B| ≥ 2n. Let Xvol = {0, 1}2n
and XH = Xvil ∪ Xvol. We call a set “length-extension-free over 2n-bit blocks”
when no two strings S1 and S2 in it can be written as S2 = 02an∥S1 for any
positive integer a. We claim that XH is length-extension-free over 2n-bit blocks.
We prove it under the following two exhaustive cases:

1) When |S1| > 2n. Every string S1 in XH with length > 2n bits has the form
pad2n(A)∥pad2n(B) for some strings A and B where the injective function
pad2n uniquely allows to separate pad2n(A) from pad2n(B). Also, the last
2n-bit blocks of both pad2n(A) and pad2n(B) are always non-zero and de-
note the lengths of A and B, respectively. Hence, S2 of the form 02an∥S1

with a ≥ 1 (i.e., different length than S1) cannot have the valid form
pad2n(A

′)∥pad2n(B′) for some strings A′ and B′s and cannot be in XH .
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2) When |S1| = 2n. For every string S1 in XH with length = 2n bits, we know
that any S2 = 02an∥S1 with a ≥ 1 will have size > 2n and hence for any such
S2 to be in XH we need it to have a form of pad2n(A

′)∥pad2n(B′) for some
non-empty strings A′ and B′. Since |S1| = 2n, we will have pad2n(A

′) = 02bn

for some 0 < b < a and thus |A′| = 0 which contradicts with the non-empty
requirement of A′. This implies no such S2 can exist in XH .

We are now ready to define the hash function H and to compute its output
collision probability in GEM (when used for both vilF and volF as defined above).

Let the total number of queries made to the underlying hash function H in
GEM be qH and let the lengths of these queries (in 2n-bit blocks) be ℓ1, ℓ2, . . . , ℓq
where w.l.o.g., ℓi ≥ ℓj for all j ≤ i and σH =

∑qH
i=1 ℓi. Further, let H for inputs

(K,X) with |K| = kh = 2n, X ∈ XH and X1, X2, . . . , Xℓ
2n←− X be defined as

the standard ℓ · 2−2n-XOR-universal polynomial hash [33] as:

H(K,X) = Kℓ ·X1 ⊕Kℓ−1 ·X2 ⊕ . . .⊕K ·Xℓ . (8)

Note that since XH is length-extension-free, the probability of finding a collision
in H’s outputs is upper bounded by

∑qH−1
i=1 i(ℓi+1 · 2−2n) ≤ qHσH/22n. This is

true because for the (i + 1)th query there are a total of i many other queries,
namely the 1st to ith queries (as ℓi+1 ≥ ℓj for all j ≤ i + 1), that can have an
output collision with it with probability ≤ ℓi+1/2

2n. More concretely, we have

Theorem 2. Let vilF and volF be two keyed functions as defined above that
has same keys (K2 = K3) and use the ℓ · 2−2n-XOR-universal polynomial hash
function H (as of Eqn 8) and the weak PRF wPRF then for any adversaries B
and C making at most 2q queries to vilF and q queries to volF, respectively (i.e.,
a total of qH = 3q queries to H), such that the total number of 2n-bit input
blocks processed under H is σH , we have

Advprf
vilF(B) +Advprf

volF(C) ≤ 2Advwk-prf
wPRF (E) +

qHσH

22n

for some adversary E making at most qH many wPRF queries (under fixed but
secret and uniform random key) and running in time given by the running time
of A plus γ1 · qH for some “small” constant γ1.

The straightforward proof of Theorem 2 is derived by the observation above. We
denote GEM[vilF, volF,E] with vilF and volF defined as above using a weak PRF
wPRF and the concrete polynomial hash H of Eqn. 8 by GEM′[wPRF,E].

6 Crafted GEMs: KohiNoor and DaryaiNoor

We propose two instantiations KohiNoor and DaryaiNoor for GEM′. Both use
AES as the function E. Their differences lie in the choice of wPRF. KohiNoor
uses the key stream generator of GCTRs-3 [2] (denoted by TCTRs-3) which is
based on a tweakable expanding primitive such as ButterKnife [3] and enables
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better parallelization and improved performance for long messages. DaryaiNoor
uses the sum of CTR mode SoCTR variable-output-length PRF which is based on
an n-bit PRP and provides support for AES cipher applications. Both GCTRs-3
and SoCTR are state-of-the-art solutions for efficient key-stream generation.

6.1 TCTRs-3

GCTR [2] is an encryption mode that can be seen as a generalization of the
well-deployed CTR mode of encryption in terms of underlying primitive type
and output sizes. Formally, GCTR takes in a k-bit key K, an (n + t)-bit IV
(originally defined as a pair of n-bit nonce N and t-bit random value R) and
a message M , and returns a ciphertext C with |C| = |M | for some positive
integers k, n and t. GCTRs-3 is one of the most secure variants of GCTR that
internally makes a sequence of calls to its underlying expanding primitive (here
an expanding PRF Fs : {0, 1}k × {0, 1}2n → {0, 1}sn and hence n = t) with
N∥(R⊕ binn(r)) = IV ⊕ (0n∥binn(r)) as input while incrementing the counter r
over primitive calls to generate a key-stream V until |V | ≥ |M |. The ciphertext
is defined as C = M ⊕|M | V .

GCTRs-3 with messages of the form M = 0v can be seen as a key-stream
generator that generates v bits of output for the given input IV . We denote this
generator by TCTRs-3. For more details on GCTRs-3, we refer the reader to [2].

We highlight that the original security proof of GCTRs-3, as provided in [2]
makes strong assumption on the IV input to be of the form N∥R where N is a
unique nonce and R is a uniform random value. In GEM′, however, this strong
assumption cannot be made as the IV s are generated using an XOR-universal
hash function and are not guaranteed to be unique or uniform random. This
means the existing analysis of GCTRs-3 becomes inapplicable here and a new
security proof (and bound) is required for TCTRs-3.

Security of TCTRs-3. TCTRs-3 that takes K ∈ {0, 1}k, IVi ∈ {0, 1}2n and 0li

for some integer li > 0 as input for its ith query simply evaluates a sequence of
ℓ′i = ⌈li/(sn)⌉ many Fs calls with inputs IVi⊕ (0n∥binn(j)) where j is a counter
that runs from 0 to ℓ′i − 1.

Let the total number of queries to TCTRs-3 (as wPRF in GEM′) be upper
bounded by qF with σF =

∑qF
i=1 ℓ

′
i. Let Q be the set of all queried σF many un-

derlying Fs inputs here defined as ∪qFi=1{IVi⊕(0n∥binn(j))}
ℓ′i−1
j=0 and let IVis here

be the outputs of the XOR-universal hash function H (as defined in Eqn. 8) on
some distinct input values Xis of length 2ℓins, respectively with σ′

H =
∑qF

i=1 ℓi.
Notice that when s ≥ 2, we have min{ℓi, ℓ′i} = 1 for all is which holds due to the
input and output domain separation between vilF and volF in GEM′ and we have
σ′
H+σF ≤ σH (where σH is defined in Theorem 2). We call TCTRs-3 queries that

satisfy this relation “GEM′-compatible”. We now state the security of TCTRs-3
(as wPRF in GEM′) in Theorem 3 and defer its proof to Appendix B.1.

Theorem 3. Let TCTRs-3[Fs] be the keyed function as defined above with
s ≥ 2 then for any adversary E making at most qF GEM′-compatible queries
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to TCTRs-3 such that the total number of sn-bit and 2n-bit input blocks pro-
cessed under Fs and H are σF and σ′

H , respectively, with σ′
H + σF ≤ σH then

we have

Advwk-prf
TCTRs-3[Fs]

(E) ≤ Advprf
Fs
(F) + σ2

H

22n

for some adversary F making at most σF many Fs queries (under fixed but secret
and uniform random key) and running in time given by the running time of E
plus γ2 · σF for some “small” constant γ2.

We instantiate Fs with ButterKnife [3]. ButterKnifes (with an expansion pa-
rameter s) is a keyed expanding PRF that maps a string from {0, 1}2n to a
string in {0, 1}sn for n = 128 and 1 ≤ s ≤ 8. In other words, it operates on 256-
bit inputs and generates up to 1024-bit outputs. ButterKnife is based on AES
and leverages the Deoxys-BC design described in [24]. One of the advantages of
ButterKnife is its compatibility with processors that support AES native instruc-
tions (NI). Skye [7] key derivation function (KDF) for Signal-like applications is a
recent examples of ButterKnife’s use which benefits from its high parallelizability
and AES-based structure on platforms with hardware acceleration.

KohiNoor is a GEM′ where wPRF is instantiated with TCTR8-3[ButterKnife8]
and achieves full security i.e., ≈ n = 128 bits (Theorem 1, 2 and 3).

6.2 SoCTR

Let us recall from Section 4.1 that for a given k-bit key K, an n-bit IV
and a plaintext M with length m, CTR mode is defined as CTRK(IV,M) :=
(EK(IV )∥EK(IV ⊕ binn(1))∥ · · · ∥EK(IV ⊕ binn(⌈m/n⌉ − 1))) ⊕m M where E
is an n-bit block cipher.

Similar to GCTRs-3, CTR mode with messages of the form M = 0m can be
seen as a key-stream generator that generates m bits of output for the given
input IV . We denote this generator by CTRg. In other words, for the same
inputs, CTRgK(IV, 0m) := CTRK(IV, 0m).

We define SoCTR (short for sum of CTRg) as a domain extended key-stream
generator that takes two k-bit keys K1 and K2, a 2n-bit IV IV1∥IV2 with |IV1| =
|IV2| = n and a zero message 0m and generates an m-bit output as

SoCTRK1,K2
(IV1∥IV2, 0

m) := CTRK1
(IV1, 0

m)⊕ CTRK2
(IV2, 0

m) .

Security of SoCTR. SoCTR that takes K1 ∈ {0, 1}k,K2 ∈ {0, 1}k, IVi ∈
{0, 1}2n and 0li for some integer li > 0 as input for its ith query evaluates a
sequence of ℓ′i = ⌈li/n⌉ many EK1(IVi1 ⊕ binn(j)) ⊕ EK2(IVi2 ⊕ binn(j)) calls
where j is a counter that runs from 0 to ℓ′i − 1 and IVi1 and IVi2 are two n-bit
strings such that IVi1∥IVi2 = IVi.

Let the total number of queries to SoCTR (as wPRF in GEM′) be upper
bounded by qE with σE =

∑qE
i=1 ℓ

′
i. Let Q be the set of all queried σE many
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underlying E input pairs (IVi1⊕binn(j), IVi2⊕binn(j)) and let IVis here be the
outputs of the XOR-universal hash function H (as defined in Eqn. 8) on some
distinct input values Xis of length 2ℓins, respectively with σ′

H =
∑qE

i=1 ℓi. One
can notice that we have 1 ≤ min{ℓi, ℓ′i} ≤ 2 for all is which holds due to the
input and output domain separation between vilF and volF in GEM′ and we have
σ′
H +σE ≤ σH (where σH is defined in Theorem 2). We call SoCTR queries that

satisfy this relation “GEM′-compatible”. We now state the security of SoCTR
(as wPRF in GEM′) in Theorem 4 and defer its proof to Appendix B.2.

Theorem 4. Let SoCTR[E] be the keyed function as defined above then for any
adversary E making at most qE GEM′-compatible queries to SoCTR such that
the total number of n-bit and 2n-bit input blocks processed under EK1

(or EK2
)

and H are σE and σ′
H , respectively, with σ′

H +σF ≤ σH then for σE ≤ 2n−4 and
n ≥ 4, we have

Advwk-prf
SoCTR[E](E) ≤ 2Advprp

E (F) + 5 · (σH + 2qE)
2

22n
+

(σE

2n

)1.5

for some adversary F making at most σE many E queries (under fixed but secret
and uniform random key) and running in time given by the running time of E
plus γ3 · σE for some “small” constant γ3.

DaryaiNoor is defined as GEM′ with wPRF instantiated with SoCTR[AES-128]
and as shown by Theorem 1, 2 and 4, it achieves full n ≈ 128 bits of security.

Key Size and Derivation. KohiNoor and DaryaiNoor require each a total of
four keys - a 2n-bit hashing key for H, two k-bit Feistel keys (used for AES)
and a key for wPRF which is k-bit for ButterKnife in KohiNoor and 2k-bit for
the two AES instances in DaryaiNoor. This sums to 2n + 3k and 2n + 4k bits
of key material for KohiNoor and DaryaiNoor, respectively. Note that all of these
keys can also be easily generated from a single k-bit key K using the underlying
wPRF primitive of GEM′ with input fixed to a constant such as 02n.

7 Security Analysis

In this section, we provide the deferred proof of Theorem 1.

7.1 Proof of Theorem 1

Proof (Theorem 1). We first replace the keyed functions vilF and volF with
two random functions fvil and fvol, respectively where fvil ←$ Func(∗, 2n) and
fvol(·) = f ′

vol(·)[0 . . . l − 1] with f ′
vol ←$ Func(2n, lmax). Here l represents the

length of the corresponding volF output and lmax = maxi{li} i.e., maximum of
all possible queried output lengths. Note that a keyed vilF is a double argument
function that takes two strings as input, thus, to be compatible with the input
type, we concatenate both the inputs before evaluating them under fvil. We then
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also replace EK11
and EK12

with two independent permutations π1 ←$ Perm(n)
and π2 ←$ Perm(n) and denote the resulting mode as GEM[fvil, fvol, π] which
gives us

Advvil-stprp
GEM[vilF,volF,E](A) ≤ Advprf

vilF(B) +Advprf
volF(C) + 2Advprp

E (D)

+Advvil-stprp
GEM[fvil,fvol,π](A) . (9)

With slight abuse of notation, let us denote the underlying encipher-
ing and deciphering functions of GEM[fvil, fvol, π] by GEM[fvil, fvol, π] and
GEM−1[fvil, fvol, π], respectively. With the above inequality, A is now
left with the goal of distinguishing between the oracles (GEM[fvil, fvol, π],
GEM−1[fvil, fvol, π]) and a randomly sampled permutation family (πT ,L, π

−1
T ,L)

by making oracle queries to them where

(πT ,L, π
−1
T ,L) = ∪i∈L{{(πT,i, π

−1
T,i)}T∈T ⊆$ Perm(i)}

i.e. for each distinct tweak T ∈ T or message length i ∈ L, the corresponding
permutation πT,i is uniformly sampled at random from the set Perm(i) with
π−1
T,i defining the inverse map of πT,i. Here T and L are the tweak space and the

message length space of GEM.

PRP-PRF Switching. We denote duplicate queries and cross-oracle known out-
put queries (i.e., querying the deciphering oracle with an output of enciphering
under the same tweak and message length or vice versa) as trivial queries and
the rest as non-trivial queries. We note that trivial queries cannot help A in
increasing its advantage here as the outputs for them are already known and
thus are independent of the queried oracle. Hence, we can assume w.l.o.g., that
A only makes non-trivial queries.

We now recall that as per the standard PRP-PRF switching lemma [5], a
randomly sampled (πT ,L, π

−1
T ,L) is indistinguishable up to the birthday bound

(in the input size) from a randomly sampled function family (f1,T ,L, f2,T ,L) for
non-trivial oracle queries where

(f1,T ,L, f2,T ,L) = ∪i∈L{{(f1,T,i, f2,T,i)}T∈T ⊆$ Func(i, i)× Func(i, i)}

i.e., for each distinct tweak T ∈ T or message length i ∈ L, the corresponding
functions f1,T,i and f2,T,i are independently and uniformly sampled at random
from the set Func(i, i). More formally, for any adversary A that makes at most
qT,i many non-trivial queries with tweak T and input length i (to both given
oracles in total) such that q =

∑
(T,i)∈T ×L qT,i, we have that

∣∣Pr[AπT ,L(·,·),π−1
T ,L(·,·) ⇒ 1]− Pr[Af1,T ,L(·,·),f2,T ,L(·,·) ⇒ 1]

∣∣ ≤ ∑
(T,i)∈T ×L

q2T,i

2i+1
≤ q2

24n+1

where for any T,M and C, πT ,L(T,M) = πT,|M |(M), π−1
T ,L(T,C) = π−1

T,|C|(C),

f1,T ,L(T,M) = f1,T,|M |(M) and f2,T ,L(T,C) = f2,T,|C|(C). Here the last in-
equality holds due to the assumption that i ≥ 4n (see Theorem 1 statement).
This implies
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Advvil-stprp
GEM[fvil,fvol,π](A) =

∣∣Pr[AGEM[fvil,fvol,π](·,·),GEM−1[fvil,fvol,π](·,·) ⇒ 1]

− Pr[AπT ,L(·,·),π−1
T ,L(·,·) ⇒ 1]

∣∣
≤

∣∣Pr[AGEM[fvil,fvol,π](·,·),GEM−1[fvil,fvol,π](·,·) ⇒ 1]

− Pr[Af1,T ,L(·,·),f2,T ,L(·,·) ⇒ 1]
∣∣+ q2

24n+1
. (10)

For simplicity, we denote the world with oracles (GEM[fvil, fvol, π](·, ·),
GEM−1[fvil, fvol, π](·, ·)) as the “real world” and with oracles (f1,T ,L(·, ·),
f2,T ,L(·, ·)) as the “ideal world”. Let the set of A’s queries and responses to
the enciphering/forward oracle be Qe = {(Me

i , T
e
i , C

e
i )

qe
i=1} where (Me

i , T
e
i ) rep-

resents the query and Ce
i its response. Similarly, let the set of A’s queries and

responses to the deciphering/inverse oracle be Qd = {(Md
i , T

d
i , C

d
i )

qd
i=1} where

(Cd
i , T

d
i ) represents the query and Md

i its response. We can now define the set
of all queries as Q = Qe ∪Qd.

For simplicity of the analysis, we re-index the elements in Q and redefine it
as Q = {(Mi, Ti, Ci)

qe+qd
i=1 } where (Mi, Ti, Ci) := (Me

i , T
e
i , C

e
i ) for i = 1 to qe and

(Mi, Ti, Ci) := (Md
i−qe

, T d
i−qe

, Cd
i−qe

) for i = qe+1 to qe+ qd. We emphasize that
the re-indexing here is done only to make the description of the upcoming bad
events simple and easy to follow and it has no effect on bad event probabilities
as they can be seen independent of the query order.

For any message Mi in Q, we denote the leftmost 2n-bit block of it by Mi,L

(with the first n-bit of it as Mi,L1 and the last n-bit as Mi,L2) and the rest of
it by Mi,R. Similarly, for any ciphertext Ci in Q, the leftmost 2n-bit block is
denoted by Ci,L (with the first n-bit of it as Ci,L1 and the last n-bit as Ci,L2)
and the rest by Ci,R. We now define three internal variables for GEM[fvil, fvol, π]
(as depicted in Figure 1 for GEM[vilF, volF,E]) as

Xi,L = (Mi,L1 ⊕ π2(Mi,L2 ⊕ π1(Mi,L1)))∥(Mi,L2 ⊕ π1(Mi,L1)) ,

Xi,R = fvil(Ti∥0∥Mi,R) ,

Yi,L = (Ci,L1 ⊕ π2(Ci,L2))∥(Ci,L2 ⊕ π1(Ci,L1 ⊕ π2(Ci,L2))) ,

Yi,R = fvil(Ti∥1∥Ci,R) ,

Zi = Xi,L ⊕Xi,R = Yi,L ⊕ Yi,R . (11)

Bad Cases and Analysis. With the notation defined, we now perform an
exhaustive case analysis for internal state collisions in the real world by defining
the following bad events:

Bad1 (fvol Input Collision). For some pair of indices (i, j) with 1 ≤ i < j ≤
qe + qd, the two query-response tuples (Mi, Ti, Ci) and (Mj , Tj , Cj) in Q
satisfy Zi = Zj .

Bad2 (Second fvil Input Collision). For some pair of indices (i, j) with 1 ≤ i <
j ≤ qe + qd, the two query-response tuples (Mi, Ti, Ci) and (Mj , Tj , Cj) in
Q satisfy one of the followings:
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1. 1 ≤ i < j ≤ qe and (Ci,R, Ti) = (Cj,R, Tj).
2. qe + 1 ≤ i < j ≤ qe + qd and (Mi,R, Ti) = (Mj,R, Tj).

Note that when none of these cases occur over Q in the real world, we know the
followings:

– All Zi variables for i = 1 to qe + qd are unique. This means that the right
part of every response output which is defined for i = 1 to qe as Ci,R =
fvol(Zi) ⊕ Mi,R and for i = qe + 1 to qe + qd as Mi,R = fvol(Zi) ⊕ Ci,R

is sampled uniformly at random and thus indistinguishable from uniform
random strings.

– All (Ci,R, Ti) pairs are unique for i = 1 to qe and all (Mi,R, Ti) pairs are
unique for i = qe + 1 to qe + qd. Now, since the left part of every response
output can be seen for 1 ≤ i ≤ qe as

Ci,L = P2(P1(Mi,L)⊕ fvil(Ti∥1∥Ci,R)⊕ fvil(Ti∥0∥Mi,R))

and for qe + 1 ≤ i ≤ qe + qd as

Mi,L = P1(P2(Ci,L)⊕ fvil(Ti∥1∥Ci,R)⊕ fvil(Ti∥0∥Mi,R))

for some 2n-bit permutations P1 and P2 and since (Ti∥1∥Ci,R) ̸=
(Ti∥0∥Mi,R) for every i due to the domain separation bit, we have that at
least one of the two fvil inputs here are unique for every i. This means that
the inputs of P2 for 1 ≤ i ≤ qe and the inputs of P1 for qe + 1 ≤ i ≤ qe + qd
are sampled uniformly at random. Now, since P2 and P1 are permutations
i.e., bijective functions, we have that Ci,L for 1 ≤ i ≤ qe and Mi,L for
qe+1 ≤ i ≤ qe+qd are also uniformly distributed and thus indistinguishable
from uniform random strings.

This means when none of these bad events occurs, the responses in the real world
are sampled uniformly at random and thus are indistinguishable from uniform
random strings. In other words, from Exp. 10 we have that

Advvil-stprp
GEM[fvil,fvol,π](A)−

q2

24n+1
≤ Pr(Bad1) + Pr(Bad2 | ¬Bad1) (12)

where q = qe + qd. We now provide Lemma 1 that bounds these probability
terms individually and defer its proof to Section 7.2.

Lemma 1. Let Bad1 and Bad2 are bad cases for GEM[fvil, fvol, π] as defined
above then for q ≤ 2n−2,

Pr(Bad1) + Pr(Bad2|¬Bad1) ≤ q(11q − 1)

22n
.

Combining Exp. 12 and Lemma 1 together with assuming q ≤ 2n−2, we get

Advvil-stprp
GEM[fvil,fvol,π](A) ≤

11q2

22n

and together with Exp. 9 achieve the first result of Theorem 1. We omit the
proof for the second result of Theorem 1 as it can be seen identical as this one
but with E modeled as a random function. Hence a difference will appear only
in probability bounding of Bad1.3.1 where the sampling probability will now be
replaced from being ≤ 1/(2n − 2q) to 1/2n. ⊓⊔
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7.2 Proof of Lemma 1

Proof (Lemma 1). Bounding Bad1. Recalling the definition of Z, we know that

for any pair of indices (i, j) with 1 ≤ i < j ≤ qe + qd, Zi = Zj can only occur
when one of the followings is true:

1. Bad1.1 : 1 ≤ i < j ≤ qe and Xi,L ⊕Xi,R = Xj,L ⊕Xj,R.
2. Bad1.2 : qe + 1 ≤ i < j ≤ qe + qd and Yi,L ⊕ Yi,R = Yj,L ⊕ Yj,R.
3. Bad1.3 : 1 ≤ i ≤ qe < j ≤ qe + qd and Xi,L ⊕Xi,R = Yj,L ⊕ Yj,R.

In simpler words, it means that Zi = Zj can occur among two enciphering
queries, two deciphering queries or between one enciphering and one deciphering
query.

Bad1.1 : We recall that fvol is a uniform random function and since there are no
trivial queries in Q, we have that for 1 ≤ i < j ≤ qe, (Mi, Ti, Ci) ̸= (Mj , Tj , Cj)
and thusXi,L⊕Xi,R = Xj,L⊕Xj,R which is same as P1(Mi,L)⊕fvil(Ti∥0∥Mi,R) =
P1(Mj,L)⊕ fvil(Tj∥0∥Mj,R) (for some permutation P1) can occur with probabil-
ity at most 1/22n. Since there can be at most

(
qe
2

)
many such (i, j)s, we get

Pr(Bad1.1) ≤ qe(qe − 1)/22n+1.

Bad1.2 : Similarly, for qe + 1 ≤ i < j ≤ qe + qd, (Mi, Ti, Ci) ̸= (Mj , Tj , Cj) and
thus Yi,L ⊕ Yi,R = Yj,L ⊕ Yj,R which is same as P2(Ci,L) ⊕ fvil(Ti∥1∥Ci,R) =
P2(Cj,L) ⊕ fvil(Tj∥1∥Cj,R) (for some permutation P2) can occur with probabil-
ity at most 1/22n. Since there can be at most

(
qd
2

)
many such (i, j)s, we get

Pr(Bad1.2) ≤ qd(qd − 1)/22n+1.

Bad1.3 : For 1 ≤ i ≤ qe < j ≤ qe + qd, we still have (Mi, Ti, Ci) ̸= (Mj , Tj , Cj).
Let us now consider the following two sub-cases: 1) Bad1.3.1 : when Ti = Tj and
there exists another query in Q of the form (Mp, Tp, Cp) with 1 ≤ p ≤ qe+qd and
p ̸∈ {i, j} such that Tp = Ti and (Mi,R, Cj,R) = (Mp,R, Cp,R) and 2) Bad1.3.2 :
otherwise.

In simple words, these cases capture the scenario when the targeted pair of
queries (i, j) have a relation which is known to A due to some other queries and
can be used to achieve Zi = Zj .

Bad1.3.1 : For 1 ≤ i ≤ qe < j ≤ qe + qd and 1 ≤ p ≤ qe + qd with p ̸∈ {i, j},
we have that (Mi, Ci), (Mj , Cj) and (Mp, Cp) are distinct, Ti = Tj = Tp and
(Mi,R, Cj,R) = (Mp,R, Cp,R). Additionally, from the definition of Zp (see Eqn. 11
or Figure 1) we have that Xp,L ⊕ Yp,L = Xp,R ⊕ Yp,R which from this known
relation is now equal to Xi,R ⊕ Yj,R. The probability for the targeted collision
can now be computed as

Pr(Xi,L ⊕Xi,R = Yj,L ⊕ Yj,R)

= Pr(Xi,L ⊕ Yj,L = Xi,R ⊕ Yj,R) = Pr(Xi,L ⊕ Yj,L = Xp,L ⊕ Yp,L)

= Pr(P1(Mi,L)⊕ P2(Cj,L) = P1(Mp,L)⊕ P2(Cp,L))

where P1 and P2 are two permutations. Only at this point, we need to define
these permutations to upper bound the probability of the expression above.
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In GEM[fvil, fvol, π], we recall that these permutations are defined as shown in
Exp. 11 i.e., for every i,

P1(Mi,L) := Xi,L = (Mi,L1 ⊕ π2(Mi,L2 ⊕ π1(Mi,L1)︸ ︷︷ ︸
∆M,i

))∥(Mi,L2 ⊕ π1(Mi,L1)) ,

P2(Ci,L) := Yi,L = (Ci,L1 ⊕ π2(Ci,L2))∥(Ci,L2 ⊕ π1(Ci,L1 ⊕ π2(Ci,L2)︸ ︷︷ ︸
∆C,i

)) .

Hence, we get

Pr(Xi,L ⊕Xi,R = Yj,L ⊕ Yj,R)

= Pr(P1(Mi,L)⊕ P2(Cj,L) = P1(Mp,L)⊕ P2(Cp,L))

= Pr((Mi,L1 ⊕ Cj,L1 ⊕ π2(Cj,L2)⊕ π2(∆M,i))

∥(Mi,L2 ⊕ Cj,L2 ⊕ π1(Mi,L1)⊕ π1(∆C,j)) =

(Mp,L1 ⊕ Cp,L1 ⊕ π2(Cp,L2)⊕ π2(∆M,p))

∥(Mp,L2 ⊕ Cp,L2 ⊕ π1(Mp,L1)⊕ π1(∆C,p)) . (13)

We also highlight an important observation that (Mi, Ci), (Mj , Cj) and
(Mp, Cp) are different queries yet (Mi,R, Cj,R) = (Mp,R, Cp,R). This means
Mi,L ̸= Mp,L and Cj,L ̸= Cp,L. We are now set to bound the probability of
Exp. 13. Let us consider the following four cases:

Bad1.3.1.1 : When (Cj,L2,Mi,L1) = (Cp,L2,Mp,L1). Clearly, under this case, we
have that Cj,L1 ̸= Cp,L1 and Mi,L2 ̸= Mp,L2 which means ∆M,i ̸= ∆M,p and
∆C,j ̸= ∆C,p and hence from Exp. 13, we have that

Pr(Xi,L ⊕Xi,R = Yj,L ⊕ Yj,R)

= Pr((Cj,L1 ⊕ π2(∆M,i))∥(Mi,L2 ⊕ π1(∆C,j)) =

(Cp,L1 ⊕ π2(∆M,p))∥(Mp,L2 ⊕ π1(∆C,p)) ≤
1

(2n − 2q)2
.

Here the last inequality holds as there are at most 2q many π1 and π2 calls
that can be induced under q many GEM calls and therefore the probability of
predicting their output is upper bounded by 1/(2n − 2q) each.

Bad1.3.1.2 : When Cj,L2 ̸= Cp,L2 but Mi,L1 = Mp,L1. This means Mi,L2 ̸= Mp,L2

and ∆M,i ̸= ∆M,p and thus from Exp. 13, we have

Pr(Xi,L ⊕Xi,R = Yj,L ⊕ Yj,R)

= Pr((Cj,L1 ⊕ π2(∆M,i)⊕ π2(Cj,L2))∥(Mi,L2 ⊕ π1(∆C,j)⊕ Cj,L2) =

(Cp,L1 ⊕ π2(∆M,p)⊕ π2(Cp,L2))∥(Mp,L2 ⊕ π1(∆C,p)⊕ Cp,L2) ≤
6

(2n − 2q)2
.

Here the last inequality holds as there are at most 2q many π1 and π2 calls
that can be induced under q many GEM calls and therefore the probability of
predicting their outputs, when the inputs are unique i.e., when {∆M,i, ∆M,p} ≠
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{Cj,L2, Cp,L2} for π2 and when ∆C,j ̸= ∆C,p for π1 is upper bounded by 1/(2n−
2q) each.

Note that by definition, each ∆ here can be seen as an expression contain-
ing one random permutation output, which means we get Pr({∆M,i, ∆M,p} =
{Cj,L2, Cp,L2}) ≤ 2/(2n − 2q) and Pr(∆C,j = ∆C,p) ≤ 1/(2n − 2q) and hence
by the total probability theorem, we get Pr(Xi,L ⊕ Xi,R = Yj,L ⊕ Yj,R) ≤
(1/(2n − 2q) + 2/(2n − 2q))(1/(2n − 2q) + 1/(2n − 2q)) = 6/(2n − 2q)2 .

Bad1.3.1.3 : When Mi,L1 ̸= Mp,L1 but Cj,L2 = Cp,L2. This means Cj,L1 ̸= Cp,L1

and ∆C,j ̸= ∆C,p and thus from Exp. 13, we have

Pr(Xi,L ⊕Xi,R = Yj,L ⊕ Yj,R)

= Pr((Cj,L1 ⊕ π2(∆M,i)⊕Mi,L1))∥(Mi,L2 ⊕ π1(∆C,j)⊕ π1(Mi,L1)) =

(Cp,L1 ⊕ π2(∆M,p)⊕Mp,L1))∥(Mp,L2 ⊕ π1(∆C,p)⊕ π1(Mp,L1)) ≤
6

(2n − 2q)2
.

Here the last inequality holds as there are at most 2q many π1 and π2 calls
that can be induced under q many GEM calls and therefore the probability of
predicting their outputs, when the inputs are unique i.e., when {∆C,j , ∆C,p} ≠
{Mi,L1,Mp,L1} for π1 and when ∆M,i ̸= ∆M,p for π2 is upper bounded by
1/(2n − 2q) each.

Again, by definition, each ∆ here can be seen as an expression contain-
ing one random permutation output, which means we get Pr({∆C,j , ∆C,p} =
{Mi,L1,Mp,L1}) ≤ 2/(2n − 2q) and Pr(∆M,i = ∆M,p) ≤ 1/(2n − 2q) and hence
by the total probability theorem, we get Pr(Xi,L ⊕ Xi,R = Yj,L ⊕ Yj,R) ≤
(1/(2n − 2q) + 1/(2n − 2q))(1/(2n − 2q) + 2/(2n − 2q)) = 6/(2n − 2q)2 .

Bad1.3.1.4 : When Mi,L1 ̸= Mp,L1 and Cj,L2 ̸= Cp,L2. We have

Pr(Xi,L ⊕Xi,R = Yj,L ⊕ Yj,R)

= Pr((Mi,L1 ⊕ Cj,L1 ⊕ π2(Cj,L2)⊕ π2(∆M,i))

∥(Mi,L2 ⊕ Cj,L2 ⊕ π1(Mi,L1)⊕ π1(∆C,j)) =

(Mp,L1 ⊕ Cp,L1 ⊕ π2(Cp,L2)⊕ π2(∆M,p))

∥(Mp,L2 ⊕ Cp,L2 ⊕ π1(Mp,L1)⊕ π1(∆C,p)) ≤
9

(2n − 2q)2
.

Here the last inequality holds as there are at most 2q many π1 and π2 calls
that can be induced under q many GEM calls and therefore the probability of
predicting their outputs, when the inputs are unique i.e., when {∆M,i, ∆M,p} ≠
{Cj,L2, Cp,L2} for π2 and {∆C,j , ∆C,p} ≠ {Mi,L1,Mp,L1} for π1 is upper bounded
by 1/(2n − 2q) each.

Since each ∆ can be written as an expression containing one random per-
mutation output, we get Pr({∆M,i, ∆M,p} = {Cj,L2, Cp,L2}) ≤ 2/(2n − 2q) and
Pr({∆C,j , ∆C,p} = {Mi,L1,Mp,L1}) ≤ 2/(2n − 2q) and hence by the total prob-
ability theorem, we get Pr(Xi,L ⊕Xi,R = Yj,L ⊕ Yj,R) ≤ (1/(2n − 2q) + 2/(2n −
2q))(1/(2n − 2q) + 2/(2n − 2q)) = 9/(2n − 2q)2 .
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Now, for a given (i, j) there can be more than one values of p, let say, 1 ≤ p1 <
p2 ≤ qe + qd only if fvol(Zp1

) = fvol(Zp2
) due to the relation Mp1,R ⊕ Cp1,R =

Mp2,R ⊕ Cp2,R. Let us consider that event Bad1.1 and Bad1.2 does not occur
then we know that Zp1 ̸= Zp2 and hence Pr(fvol(Zp1) = fvol(Zp2)) ≤ 1/22n.
Since there can be at most q = (qe+ qd) many choices for p1 and p2, we get that
for a given (i, j) there can be more than one values of p with at most probability
of q2/22n+1 .

Since there can be at most qe many choices for i and qd many choices for j,
we get Pr(Bad1.3.1|¬Bad1.1 ∧ ¬Bad1.2) ≤ qe · qd · max{1, 6, 6, 9}/(2n − 2q)2 +
q2/22n+1 = 9qeqd/(2

n − 2q)2 + q2/22n+1.

Remark. We highlight that the bad event Bad1.3.1 captures the possibility of
the shared difference attack as shown in Section 4.2 and 4.3.

Bad1.3.2 : For 1 ≤ i ≤ qe < j ≤ qe + qd, we have (Mi, Ti, Ci) ̸= (Mj , Tj , Cj).
Additionally, we have that either Ti ̸= Tj or for all queries in Q of the form
(Mp, Tp, Cp) with 1 ≤ p ≤ qe + qd and p ̸∈ {i, j} we have Tp ̸= Ti or
(Mi,R, Cj,R) ̸= (Mp,R, Cp,R). In other words, there is no known relation be-
tween ith and jth query. Hence, we have that Xi,L ⊕Xi,R = Yj,L ⊕ Yj,R which
is same as P1(Mi,L) ⊕ fvil(Ti∥0∥Mi,R) = P2(Cj,L) ⊕ fvil(Tj∥1∥Cj,R) (for some
permutations P1 and P2) can occur with probability at most 1/22n (due to the
domain separated and thus independent fvil calls). Since there can be at most
qe · qd many such (i, j)s, we get Pr(Bad1.3.2) ≤ qe · qd/22n.
Bad2 : We first assume that the bad event Bad1 does not occur which implies
that for every query-response tuple (M,T,C) in Q, the right part of the response
is uniformly distributed. More concretely, all Ci,Rs with 1 ≤ i ≤ qe and all Mi,Rs
with qe +1 ≤ i ≤ qe + qd are uniformly distributed. Now, since for all Ci,Rs and
Mi,Rs, |Ci,R| ≥ 2n and |Mi,R| ≥ 2n and there are total

(
qe
2

)
+
(
qd
2

)
ways to choose

(i, j), we get

Pr(Bad2|¬Bad1) ≤ (qe(qe − 1) + qd(qd − 1))

22n+1
.

In total, we get from the union bound that Pr(Bad1) + Pr(Bad2|¬Bad1)

≤ Pr(Bad1.1) + Pr(Bad1.2) + Pr(Bad1.3.1|¬Bad1.1 ∧ ¬Bad1.2) + Pr(Bad1.3.2)

+ Pr(Bad2|¬Bad1)

≤ 2
(q2e − qe

22n+1
+

q2d − qd
22n+1

)
+

( 9qeqd
(2n − 2q)2

+
q2

22n+1

)
+

qeqd
22n

≤ q2 − q

22n
+
( 9q2

4(2n − 2q)2
+

q2

22n+1

)
.

Now, assuming q ≤ 2n−2, we get

Pr(Bad1) + Pr(Bad2|¬Bad1) ≤ q(11q − 1)

22n

and therefore the result of Lemma 1. ⊓⊔
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A XCBv2fb: Block Diagram

We provide a block diagram of XCBv2fb in Figure 2.

Fig. 2: XCBv2fb mode (a.k.a. full-block XCBv2). HereKh,Ke,Kd andKc are de-
rived from K as shown in Sec. 4.1 and lenm,t represents binn/2(|T |)∥binn/2(|CL|).

B Omitted Proofs

B.1 Proof of Theorem 3

Proof (Theorem 3). We first replace the underlying primitive Fs of TCTRs-3[Fs]
with a uniform random function fs ←$ Func(2n, sn) and denote the updated
TCTRs-3 as TCTRs-3[fs]. This implies

Advwk-prf
TCTRs-3[Fs]

(E) ≤ Advprf
Fs
(F) +Advwk-prf

TCTRs-3[fs]
(E) . (14)

https://eprint.iacr.org/2024/1527
https://eprint.iacr.org/2024/1527
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Now, E is left with the goal of distinguishing the outputs of TCTRs-3[fs] from
uniform random strings of same size. We recall that TCTRs-3[fs] for ith input
(IVi, 0

li) with li > 0, ℓ′i = ⌈li/(sn)⌉ and IVi = H(Xi) for some unique Xi is
defined as

fs(H(Xi)⊕ (0n∥binn(0)))∥ · · · ∥fs(H(Xi)⊕ (0n∥binn(ℓ′i − 1)))[0 . . . li − 1] .

This means as long as the inputs of all fs queries are unique, the outputs of
TCTRs-3[fs] are uniformly distributed and thus indistinguishable from uniform

random strings. More formally, for Q = ∪qFi=1{H(Xi) ⊕ (0n∥binn(j))}
ℓ′i−1
j=0 , we

have

Advwk-prf
TCTRs-3[fs]

(E) ≤Pr(Given Q,∃ 1 ≤ i < i′ ≤ qF

and 0 ≤ j ≤ max{ℓ′i, ℓ′i′} − 1 such that

H(Xi)⊕H(Xi′) = 0n∥binn(j)) .

Now, since H is an ℓ ·2−2n-XOR-universal hash function with ℓ representing the
maximum length (in 2n-bit blocks) of the XORed hash inputs, we get that the
probability of H(Xi) ⊕ H(Xi′) = 0n∥binn(j) for a given i, i′, j, Xi and Xi′ is

≤ max{ℓi, ℓi′}/22n. We note that there are total
∑qF

i′=2

∑i′−1
i=1 max{ℓ′i, ℓ′i′} choices

for picking (i, j, j′) which gives us

Advwk-prf
TCTRs-3[fs]

(E) ≤
qF∑
i′=2

i′−1∑
i=1

max{ℓ′i, ℓ′i′} ·max{ℓi, ℓi′}
22n

.

Let us now recall that since all these qF queries are GEM′-compatible, we
have min{ℓi, ℓ′i} = 1 and hence

Advwk-prf
TCTRs-3[fs]

(E) ≤
qF∑
i′=2

i′−1∑
i=1

max{ℓ′i · ℓi′ , ℓ′i′ · ℓi}
22n

≤
qF∑
i′=2

i′−1∑
i=1

(ℓ′i · ℓi′) + (ℓ′i′ · ℓi)
22n

=
1

22n
·

 qF∑
i′=2

ℓi′
i′−1∑
i=1

ℓ′i +

qF∑
i′=2

ℓ′i′

i′−1∑
i=1

ℓi

 ≤ 2σ′
H · σF

22n

≤ (σ′
H + σF )

2

22n
≤ σ2

H

22n
. (15)

Now, combining the Exp. 14 and 15 gives us the result of Theorem 3. ⊓⊔

B.2 Proof of Theorem 4

Proof (Theorem 4). We first replace the underlying primitives EK1
and EK2

of
SoCTR[E] with two uniform random n-bit permutations π1 and π2 and denote
the updated mode as SoCTR[π]. This implies

Advwk-prf
SoCTR[E](E) ≤ 2Advprp

E (F) +Advwk-prf
SoCTR[π](E) . (16)
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Now, E is left with the goal of distinguishing the outputs of SoCTR[π] from
uniform random strings of same size. We recall that SoCTR[π] for ith input
(IVi, 0

li) with li > 0, IVi ∈ {0, 1}2n, ℓ′i = ⌈li/n⌉ and IVi = H(Xi) for some
unique Xi is defined as

(⊕2
a=1πa(Ha(Xi)⊕ binn(0)))∥ · · · ∥(⊕2

a=1πa(Ha(Xi)⊕ binn(ℓ
′
i − 1)))[0 . . . li − 1]

=(∥ℓ
′
i−1
j=0 (⊕2

a=1πa(Ha(Xi)⊕ binn(j))))[0 . . . li − 1]

whereH1(Xi) = H(Xi)[0 . . . n−1] andH2(Xi) = H(Xi)[n . . . 2n−1]. We can now
perform an exhaustive case analysis to bound the probability of bias in SoCTR[π]
outputs when compared with uniform random outputs. Let us consider a pair of
indices (i, j) < (i′, j′) with 1 ≤ i ≤ i′ ≤ qE , 0 ≤ j ≤ ℓ′i − 1 and 0 ≤ j′ ≤ ℓ′i′ − 1
then

1. when π1 and π2 input collides: That is, when H1(Xi)⊕binn(j)) = H1(Xi′)⊕
binn(j

′) and H2(Xi)⊕ binn(j)) = H2(Xi′)⊕ binn(j
′), the outputs of (i′, j′)th

π1 and π2 calls have no entropy and hence their sum is easily distinguishable
from uniform random strings. Since H is an ℓ ·2−2n-XOR universal hash and
there can be at most max{ℓ′i, ℓ′i′} many choices for binn(j)) ⊕ binn(j

′), we

get Advwk-prf
SoCTR[π](E) under this case bounded by

∑qE
i′=2

∑i′−1
i=1 max{ℓ′i, ℓ′i′} ·

max{ℓi, ℓi′}/22n .
2. when only π1 input collides: That is, when H1(Xi) ⊕ binn(j)) = H1(Xi′) ⊕

binn(j
′) and H2(Xi)⊕binn(j)) ̸= H2(Xi′)⊕binn(j

′). This means the output
of (i′, j′)th π2 call is still randomly sampled with probability at most 1/(2n−
σE). Since H is an ℓ · 2−2n-XOR universal hash, we have that H1 is also an
ℓ · 2−n-XOR universal hash and since there can be at most max{ℓ′i, ℓ′i′}
many choices for binn(j))⊕ binn(j

′), we get Advwk-prf
SoCTR[π](E) under this case

bounded by
∑qE

i′=2

∑i′−1
i=1 max{ℓ′i, ℓ′i′} ·max{ℓi, ℓi′}/(2n(2n − σE)) .

3. when only π2 input collides: That is, when H1(Xi) ⊕ binn(j)) ̸= H1(Xi′) ⊕
binn(j

′) and H2(Xi)⊕binn(j)) = H2(Xi′)⊕binn(j
′). This means the output

of (i′, j′)th π1 call is still randomly sampled with probability at most 1/(2n−
σE). Since H is an ℓ · 2−2n-XOR universal hash, we have that H2 is also an
ℓ · 2−n-XOR universal hash and since there can be at most max{ℓ′i, ℓ′i′}
many choices for binn(j))⊕ binn(j

′), we get Advwk-prf
SoCTR[π](E) under this case

bounded by
∑qE

i′=2

∑i′−1
i=1 max{ℓ′i, ℓ′i′} ·max{ℓi, ℓi′}/(2n(2n − σE)) .

4. when all π1 and π2 inputs are unique: Under this case, we note that the
SoCTR[π] outputs are identically distributed to the well-studied PRF design
SoP2 a.k.a. XOR2 (short for sum of two independent permutations with
distinct inputs). Hence applying the state-of-the-art result of Theorem 4

from [13], we get for σE ≤ 2n−4 and n ≥ 4, Advwk-prf
SoCTR[π](E) bounded by

(σE/2
n)1.5 .

Now, combining all these bounds together, we get for σE ≤ 2n−4 and n ≥ 4,

Advwk-prf
SoCTR[π](E) ≤ 5 ·

qE∑
i′=2

i′∑
i=1

max{ℓ′i, ℓ′i′} ·max{ℓi, ℓi′}
22n

+
(σE

2n

)1.5

.
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Let us now recall that since all these qE queries are GEM′-compatible, we have
min{ℓi, ℓ′i} ≤ 2 and min{ℓi + 1, ℓ′i + 1} ≥ 2, and hence

Advwk-prf
SoCTR[π](E)−

(σE

2n

)1.5

≤ 5 ·
qE∑
i′=2

i′∑
i=1

max{(ℓ′i + 1) · (ℓi′ + 1), (ℓ′i′ + 1) · (ℓi + 1)}
22n

≤ 5 ·
qE∑
i′=2

i′∑
i=1

(ℓ′i + 1) · (ℓi′ + 1) + (ℓ′i′ + 1) · (ℓi + 1)

22n

=
5

22n
·

 qE∑
i′=2

(ℓi′ + 1)

i′∑
i=1

(ℓ′i + 1) +

qE∑
i′=2

(ℓ′i′ + 1)

i′∑
i=1

(ℓi + 1)


≤ 5 · 2 · (σ′

H + qE) · (σE + qE)

22n

≤ 5 · (σ′
H + σE + 2qE)

2

22n
≤ 5 · (σH + 2qE)

2

22n
. (17)

Now, combining the Exp. 16 and 17 gives us the result of Theorem 4. ⊓⊔

C Implementation Aspects of KohiNoor and DaryaiNoor

The performance of KohiNoor and DaryaiNoor is determined by their three major
components, ButterKnife8 in the GCTR-3 mode, SoCTR instantiated with AES
and the 256-bit polynomial hash. In this section, we discuss the implementation
of these three components.

ButterKnife8 and SoCTR can be efficiently evaluated with native instructions
for the AES round-function that can be found in most modern processors. Sim-
ilarly, polynomial hashes over finite fields of characteristic 2 can be efficiently
evaluated with the carry-less multiplication (CLMUL on x86 64) or polynomial
multiplication (PMULL on ARM) instruction. Both the AES and polynomial mul-
tiplication instruction have high throughput, but also high latency on modern
processors. For example on Intel’s raptor cove microarchitecture, the AES round-
function instruction AESenc has a throughput of 1 cycle and a latency of 3 cycles.
Additionally, two AESenc instructions can be performed in parallel. CLMUL has
the same throughput and latency, but only a single CLMUL instruction can be
performed at a time [1]7. Since the AESenc or CLMUL instructions, are dominant
in all three components, the optimizations in this section focus on amortizing
the latency over as many instruction executions as possible.

Implementation of GCTR-3 with ButterKnife8. ButterKnife8 has 3 major
components to be implemented: the tweakey-schedule, the first 7 rounds of en-
cryption and the 8 8-round branches in feed-forward mode. The tweakey-schedule

7 Raptor cove is the successor of golden cove. Since there are no changes to the in-
struction pipelines, we actually use the results for golden cove.
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is implemented in a straightforward manner. The key-part of the schedule is pre-
computed before enciphering and therefore has no impact on the performance.
The tweak-part of the schedule is computed during enciphering and adds a con-
stant factor to the runtime of the scheme.

The major bottleneck is therefore efficiently evaluating the 71 AESenc calls
required to compute ButterKnife8. To fill up the AESenc pipelines and thus en-
crypt at an amortized 2 rounds per cycle, multiple independent encryptions
have to be performed at the same time. To guarantee independent instruction,
the evaluation of the first 7 rounds of multiple ButterKnife8 are batched to-
gether. Since the branches are already independent, they are then evaluated
in order. In an ideal implementation, where only the AESenc instructions im-
pact the performance, GCTR-3 with ButterKnife8 has a performance impact of
(71/2 cycles)/(8 · 16 bytes) ≈ 0.28 cycles/byte on raptor cove.

Implementation of SoCTR. For optimal performance, SoCTR with AES has
to be implemented such that multiple encryptions are performed in parallel. This
is straightforward as CTR mode is already trivially parallelisable and SoCTR
consists of two CTR modes evaluated in parallel. The amortized performance
impact of SoCTR with AES is exactly twice that of the CTR mode. On raptor
cove that would be 0.625 cycles/byte with AES-128 and 0.875 cycles/byte with
AES-256.

Implementation of 256-bit polynomial hash. While a 256-bit polynomial
hash has been proposed before in [3], we present a different approach that simpli-
fies the implementation complexity. The polynomial hash is evaluated over the
field F2256

∼= F2128 [y]/(y
2+xy+1) where F2128

∼= F2[x]/(x
128+x7+x2+x+1) is

the field of GHASH. Defining F2256 in this way allows us to easily apply the usual
polynomial hash optimizations such as aggregated reduction [17] and Karatsuba
multiplication for polynomials [25] at the level of F2256 and F2128 . Additionally
the fast modular reduction for GHASH-128 [16] can still be applied.

At the top level, all powers of the hash key K = K2y + K1 up to Kn

are precomputed. This allows for the aggregation of n polynomial multiplica-
tions in F2128 [y] and reduces their sum to F2256 once every n multiplications
instead of every multiplication. This aggregation step pairs well with Karat-
suba multiplication. In this case, it computes the product of two degree one
polynomials in F2128 [y] with three multiplications and 4 additions, instead of
the usual 4 multiplications and 1 addition, i.e. (M2y + M1)(K2y + K1) =
M2K2y

2 + ((M1 +M2)(K2 +K1) +M2K2 +M1K1)y+M1K1. While, the extra
additions would in general slow down the multiplication, they do not all have
to be evaluated directly. The addition of the two key halves K2 + K1, can be
precomputed. Additionally, the sum in the coefficient of y can be delayed until
right before the polynomial reduction. At the level of multiplications in F2128 the
same optimizations can be performed, reducing every multiplication to 3 CLMUL

instructions.
Since the reduction can be aggregated over a large number of multiplica-

tions, the number of CLMUL instructions per multiplication in the polynomial
ring is the dominant factor in the performance of this 256-bit polynomial hash.
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Therefore, in an ideal implementation, the performance impact of this hash is
9 cycles/32 bytes ≈ 0.28 cycles/byte on raptor cove. This is only 1.5 times more
than GHASH-128’s impact of 3 cycles/16 bytes ≈ 0.19 cycles/byte.

C.1 Benchmarks

The performance measurments of KohiNoor and DaryaiNoor as well as XCB-AES,
HCTR2 and CTET+ are given in Table 4 in cycles-per-byte on Intel’s raptor
cove and gracemont microarchitectures. The benchmarks are of 512B, 4KiB and
64KiB fixed length implementations of the TEMs. The lengths of 512B and
4KiB reflect the disk encryption application, where sector size are either 512B
or 4KiB. The 64KiB length represents the performance of the scheme without
constant overhead. Table 4 also provides performance of an ideal implementation
of each TEM on the raptor cove and gracemont microarchitectures. This ideal
performance assumes that there are two parallel AESenc pipelines and a CLMUL

pipeline, all with a throughput of 1 cycle, as is the case in both microarchitec-
tures. Additionally, it assumes that all constant overhead is negligible.

For a fair comparison to CTET+, all implementations are block-aligned. The
code is compiled with the Clang C++ compiler version 17.0.6 at O3 optimization
level and with arch and tune compile options set to native. The measurement re-
sults are the median over 100 runs of the cycles per bytes to encrypt 16 MiB with
the specified TEM and length. The time is measured using the thread-specific
cpu-time clock. The cycles per byte are computed by multiplying the measured
time by the frequency of the core and dividing it by 224 bytes. Additionally, the
utility taskset is used to guarantee that the code is run on a core with the
correct microarchitecture.

TEM
Raptor cove Gracemont

Ideal 512B 4KiB 64KiB 512B 4KiB 64KiB

XCB-AES 0.69 0.76 0.70 0.70 1.02 0.95 1.06
HCTR2 0.69 0.81 0.74 0.74 1.07 1.00 1.10

AES6-CTET+ 0.75 0.91 0.90 0.95 1.07 1.04 1.20
AES-CTET+ 1.00 1.19 1.16 1.23 1.49 1.53 1.61
KohiNoor 0.84 1.40 0.93 0.87 1.61 1.12 1.08
DaryaiNoor 1.19 1.62 1.29 1.25 1.99 1.68 1.71

Table 4: Performance (in cycles/byte) comparison of XCB-AES, HCTR2,
CTET+, KohiNoor and DaryaiNoor for 512B, 4096B and 64KiB blocks on the
raptor cove and gracemont microarchitectures as measured on an Intel i7-13700
processor. XCB-AES, HCTR2, AES-CTET+ and DaryaiNoor are instantiated
with AES-128.

Table 4 shows that KohiNoor and DaryaiNoor are most performant at longer
lengths, where the extra constant overhead of the Feistel rounds, the tweakey
schedule and the large field reduction are amortized. At 4 KiB KohiNoor is on
par with AES6-CTET+, and it is 26-33% slower than XCB-AES and HCTR2
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on raptor cove and 12-18% slower on gracemont. Even at 512B, KohiNoor is still
on par with AES-CTET+, although the gap with XCB-AES widens to around
58% on gracemont and 84% on raptor cove. DaryaiNoor is not as performant
as KohiNoor, but for larger block lengths it is still on par with CTET+ while
providing higher security with the same components. At the 512B block length,
DaryaiNoor is twice as slow as XCB-AES on both microarchitectures, however
for larger block lengths its performance improves to being only 61% slower than
XCB-AES. This shows that for long messages it is possible to provide full block-
size security with same standard components without doubling the runtime of
the mode.

Additional benchmarks with AES-256 are provided in Appendix D.

D Additional Benchmarks

We provide additional benchmarks of the relevant modes instantiated with AES-
256 in Table 5.

TEM
Raptor cove Gracemont

Ideal 512B 4KiB 64KiB 512B 4KiB 64KiB

XCB-AES 0.81 0.94 0.88 0.87 1.32 1.22 1.30
HCTR2 0.81 0.95 0.86 0.85 1.33 1.24 1.25

AES-CTET+ 1.25 1.50 1.46 1.56 2.02 1.96 2.06
DaryaiNoor 1.44 2.12 1.67 1.62 2.56 2.15 2.12

Table 5: Performance (in cycles/byte) comparison of XCB-AES, HCTR2,
CTET+ and DaryaiNoor instantiated with AES-256 for 512B, 4096B and 64KiB
blocks on the raptor cove and gracemont microarchitectures as measured on an
Intel i7-13700 processor.

E Generalizing Attack 2 from [34] and Revisiting XCBv3

In an earlier version of this ePrint, together with GEM, we also proposed a
simple fix for XCBv2fb, referred to as XCBv3. XCBv3 is essentially XCBv2fb
with two independent hash keys, designed to prevent the shared difference attack.
Structurally, XCBv3 is same as XCBv1. We also presented a security proof for
XCBv3, specifically for message lengths of ≥ 2n bits.

It is important to note that XCBv1 (and its minor variant, XCBv3) remains
secure against the two-query shared difference attack that compromises the stan-
dard XCB-AES. However, as Wang et al. pointed out in [34], XCBv1/XCBv3 is
still vulnerable to their extended four- and seven-query shared difference attacks.
More precisely, XCBv3 (for messages of length ≥ 2n bits) remains susceptible
to their attack 2 and its extension (attack 3), demonstrating that using inde-
pendent hash keys is not sufficient to mitigate the exploitation of separability in
XOR-universal hash functions.
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In this section, we revisit the security analysis of XCBv3 from the previous
version of this ePrint, highlighting the specific flaw in the proof. In doing so, we
present a generalized version of the attack 2 from [34].

The flaw lies in the analysis of Bad1.3, which corresponds to the same prob-
lematic case identified in Section 4.3 for XCBv2 and XCBv2fb. Below, we quote
the bad case and its analysis from the prior version of this ePrint.

“For any message Mi in Q, we denote the rightmost n-bit block of it by
Mi,R and the rest of it by Mi,L. Similarly, for any ciphertext Ci in Q,
the rightmost n-bit block is denoted by Ci,R and the rest by Ci,L. We
now define three internal variables for XCBv3′[H,CTR, f ] (similar to the
ones depicted in Figure 2 for XCBv2fb but now with different hash keys)
as

Xi,R = fe1(Mi,R) ,

Xi,L = HKh1
(0n∥Ti∥Mi,L∥0n) ,

Yi,R = fd1(Ci,R) ,

Yi,L = HKh2
(Ti∥0n∥Ci,L∥lenmi,ti) ,

Zi = Xi,L ⊕Xi,R = Yi,L ⊕ Yi,R ” (18)

“Bad1.3 : 1 ≤ i ≤ qe < j ≤ qe + qd and Xi,L ⊕ Yj,L = Xi,R ⊕ Yj,R ⊕
binn(ci)⊕ binn(cj).”

Analysis: “Since there are no trivial queries in Q, we also have that
for 1 ≤ i ≤ qe < j ≤ qe + qd, (Mi, Ti) ̸= (Mj , Tj), (Ci, Ti) ̸= (Cj , Tj)
and thus Xi,L ⊕ Yj,L = Yi,R ⊕ Yj,R ⊕ binn(ci) ⊕ binn(cj) which is same
as HKh1

(0n∥Ti∥Mi,L∥0n) ⊕ HKh2
(Tj∥0n∥Cj,L∥lenmj ,tj ) = fe1(Mi,R) ⊕

fd1(Cj,R) ⊕ binn(ci) ⊕ binn(cj) can occur with probability at most
max{ℓi, ℓj}/2n.”

We note that with two independent hash keys the relation above (in blue)
appears to be captured by the definition of an ℓ·2−n-XOR universal hash function
and thus the estimated probability upper bound of max{ℓi, ℓj}/2n. However, the
attack 2 (and its extension; attack 3) from [34] shows that this bound is incorrect.
In fact, this probability can be shown 1 when i ≥ 2, j ≥ 2. To understand this
in detail, we now provide a generalization of their attack 2:

Let us consider ci = cj = 0 and |Ci| = |Mi| then the above relation can be
rewritten as

HKh1
(0n∥Ti∥Mi,L∥0n)⊕HKh2

(Tj∥0n∥Cj,L∥lenmj ,tj ) = fe1(Mi,R)⊕ fd1(Cj,R) .

(19)

Now, considering the scenario where the adversary is adaptive and has already
made three another queries using some arbitrary constants α and β with |α|+n =
|Cj | and |β| = |Tj | as

– Deciphering with input (Cj ⊕ α∥0n, Tj ⊕ β) to get the output Mj′ ,
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– Enciphering with input (Mj′ ⊕ α∥0n, Tj) to get the output Cj′ ,
– Deciphering with input (Cj′ ⊕ α∥0n, Tj ⊕ β) to get the output Mj′′ ,

and has chosen the targeted ith query as (Mi, Ti) = (Mj′′ ⊕ α, Tj), we have

fe1(Mi,R)⊕ fd1(Cj,R)

= fe1(Mi,R)⊕ (fe1(Mj′,R)⊕HKh1
(0n∥(Tj ⊕ β)∥Mj′,L∥0n)

⊕HKh2
((Tj ⊕ β)∥0n∥(Cj,L ⊕ α)∥lenmj ,tj ))

= fe1(Mi,R)⊕ (fe1(Mj′,R)⊕HKh1
(0n∥Tj∥(Mj′,L ⊕ α)∥0n)

⊕HKh2
(Tj∥0n∥(Cj′,L∥lenmj ,tj ))⊕HKh1

(0n∥β∥α∥0n)
⊕HKh2

(β∥0n∥(Cj,L ⊕ Cj′,L ⊕ α)∥0n))
= fe1(Mi,R)⊕ (fd1(Cj′,R)⊕HKh1

(0n∥β∥α∥0n)
⊕HKh2

(β∥0n∥(Cj,L ⊕ Cj′,L ⊕ α)∥0n))
= fe1(Mi,R)⊕HKh1

(0n∥β∥α∥0n)
⊕HKh2

(β∥0n∥(Cj,L ⊕ Cj′,L ⊕ α)∥0n)⊕ fd1(Cj′,R)

= fe1(Mi,R)⊕HKh1
(0n∥β∥α∥0n)

⊕HKh2
(β∥0n∥(Cj,L ⊕ Cj′,L ⊕ α)∥0n)⊕ (fe1(Mj′′,R)

⊕HKh1
(0n∥(Tj ⊕ β)∥Mj′′,L∥0n)

⊕HKh2
((Tj ⊕ β)∥0n∥(Cj′,L ⊕ α)∥lenmj ,tj ))

= fe1(Mi,R)⊕ fe1(Mj′′,R)⊕HKh1
(0n∥Tj∥(Mj′′,L ⊕ α)∥0n)

⊕HKh2
(Tj∥0n∥Cj,L∥lenmj ,tj )

= HKh1
(0n∥Tj∥Mi,L∥0n)

⊕HKh2
(Tj∥0n∥Cj,L∥lenmj ,tj ) .

Here the first, third and fifth equations hold from the Exp. 18, the second and
sixth equations hold from the separability of HKh1

and HKh2
and the last equa-

tion holds because (Mi, Ti) = (Mj′′ ⊕ α, Tj). This means the probability that
Exp. 19 holds is 1.

Remark 1 – Improving the Attacks from [34]. We note that the attack
2 (and its extension; the attack 3) as described in [34] requires two different
tweaks for the attack to work and hence breaks the STPRP security of targeted
XCB variants. However, as captured by our generalization above, their attack
can also be applied with same tweak (by setting β zero) yet different inputs (i.e.,
α non-zero) and thus can also be used to even break the basic SPRP security of
the targeted XCB variants.

Remark 2 – Relation with our Shared Difference Attack. The above de-
scribed generalized version for the attack 2 from [34] can be seen as our shared
difference attack in tweaks applied to the composition AK(T,A−1

K (T ⊕ ∆, ·))
where A is an affected XCB variant such as XCBv1/XCBv3, XCBv2 and
XCBv2fb and ∆ is a non-zero constant. Clearly, with 2 queries under the shared
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difference attack (which can be seen as 4 queries under the attack 2 from [34]),
one can recover almost the full plaintext which implies that the composition
AK(T,A−1

K (T ⊕∆, ·)) is not an STPRP and therefore, A is also not an STPRP.
We observe that even with independent hash keys for A (i.e., XCBv1 and

XCBv3), AK(T,A−1
K (T ⊕∆, ·)) can still be seen as a variant of XCB that uses

same hash keys which makes the shared difference attack still applicable to it.

Remark 3 – Inapplicability to GEM. We highlight that GEM mode is
not vulnerable to this generalized attack (which implies inapplicability of at-
tack 2 and attack 3 from [34]), as it replaces hash functions with stronger
primitives—VIL-PRFs—which, by definition, are not separable. Further, since
GEM design restricts message lengths to ≥ 4n bits, the attack 1 from [34] is also
not applicable to it.
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