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Abstract. Cryptographic proof systems have a plethora of applications: from building other crypto-
graphic tools (e.g., malicious security for MPC protocols) to concrete settings such as private transac-
tions or rollups. In several settings it is important for proof systems to be non-malleable: an adversary
should not to be able to modify a proof they have observed into another for a statement for which they
do not know the witness.
Proof systems that have been deployed in practice should arguably satisfy this notion: it is crucial in
settings such as transaction systems and in order to securely compose proofs with other cryptographic
protocols. As a consequence, results on non-malleability should keep up with designs of proofs being
deployed.
Recently, Arun et al. proposed Jolt (Eurocrypt 2024), arguably the first efficient proof system whose
architecture is based on the lookup singularity approach (Barry Whitehat, 2022). This approach consists
in representing a general computation as a series of table lookups. The final result is a SNARK for a
Virtual Machine execution (or SNARK VM). Both SNARK VMs and lookup-singularity SNARKs are
architectures with enormous potential and will probably be adopted more and more in the next years
(and they already are).
As of today, however, there is no literature regarding the non-malleability of SNARK VMs. The goal
of this work is to fill this gap by providing both concrete non-malleability results and a set of technical
tools for a more general study of SNARK VMs security (as well as “modular” SNARKs in general). As
a concrete result, we study the non-malleability of (an idealized version of) Jolt and its fundamental
building block, the lookup argument Lasso. While connecting our new result on the non-malleability of
Lasso to that of Jolt, we develop a set of tools that enable the composition of non-malleable SNARKs.
We believe this toolbox to be valuable in its own right.
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1 Introduction

A zero-knowledge proof (ZKP) is a privacy-enhancing cryptographic tool that allows to prove that a state-
ment is true while preserving confidentiality of secret information [29]. A special class of ZKPs are the
zkSNARKS [37] that are non-interactive, short, and efficiently verifiable, which make them a critically im-
portant tool in a wide range of applications.

SNARKs for VMs and the Lookup-Singularity. A popular approach to SNARKs is that of SNARKs
for Virtual Machines (or SNARK VMs3), which at their heart consist of proving the execution of a computer
program—expressed in a predetermined instruction set—over some CPU abstraction. This design has a num-
ber of attractive features: it makes available all the existing optimizing compilers for pre-existing instruction
sets; it offers an excellent developer experience making SNARKs usable by anyone able to write a computer
program [2,47]. Many SNARKs that are currently being deployed in practice follow this design pattern.
Examples include the Cairo-VM [28], the RISC Zero project [54], Scroll’s Ceno [35], Polygon Miden [34] and
many others. Among these constructions, a notable example is Jolt [2], a SNARK for VMs that is based on
the lookup-singularity approach [51], which consists in reducing execution of opcodes in a VM to a series of
table lookups. This approach has huge potential for adoption being simple, as well as easy to extend and to
audit. It is also leads to extremely fast provers (up to 2x faster than the current state of the art [46]).

Strong Security Properties in zkSNARKs. Most of the proposed constructions for zkSNARKs usually
provide security for what we may consider bare minimum security properties, e.g., zero-knowledge and
knowledge-soundness. However, when deployed in larger protocol it is important for cryptographic proof
systems to satisfy stronger properties. This includes simulation extractability (or SIM-EXT) introduced by
De Santis et al. [17], that requires that the knowledge extractor succeeds even when the malicious prover
can request simulated proofs for arbitrary statements. This security notion implies non-malleability, where
an accepted proof cannot be successfully tinkered with (mauled) into a different one without knowing the
witness. This requirement is crucial for protocol composition in general [13] and to prevent basic types of
attacks on transaction blockchains (e.g. double spending)4.

A recent line of works [16,20,21,25,26,32] has shown simulation extractability of several zkSNARKs like
Bulletproofs [9], Spartan [41], Sonic [36], PLONK [24], Marlin [15], Lunar [10] and Basilisk [38]. However, none
of these results cover the case of zkVMs (we expand on the technical gap between these works and zkVMs
in Section 1.4). Since zkVMs are behind the design of deployed systems with non-malleability requirements,
this remains an urgent open problem.

1.1 This Work: Concrete Results & General Tools

Our general goal is to make progress on the problem above. The approach we take in this work is:

(i) to analyze the simulation extractability of a concrete, representative zkVM design to use as a case study.
(ii) to provide, at the same time, a set of methodological tools for the study of the simulation extractability

of zkVMs in general—that is, beyond our specific choice of zkVM construction in item (i). In fact, as
we elaborate on below, we will provide a set of technical results useful for an even broader family of
SNARK constructions, namely Lego-ish SNARKs (which we define below).

(i) SIM-EXT of Jolt We will choose as a case study a design loosely based on Jolt, a lookup-singularity
SNARK VM for the RISC-V instruction set, at the heart of which is Lasso, an argument for lookups with

3 A note on terminology: in this paper we will not use the phrase “zk” unless we are talking about zero-knowledge.
In particular: we use the phrase SNARK for VM or simply SNARK VM to mean “a succinct, scalable argument
of knowledge for a VM architecture (which might or might not be zero-knowledge)”; we will apply the phrase
zkVM only to denote the more specific notion of a “SNARK VM that also satisfies zero-knowledge” (i.e., that has
hiding properties). Notice that we are diverging from a common usage which calls “zkVM” a SNARK VM without
zero-knowledge features (or denotes by “zero-knowledge” a succinct SNARK).

4 The work of [18] observes that over three hundred thousand Bitcoins have been involved in malleability attacks
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attractive efficiency features. This makes Jolt/Lasso a likely adoption in different settings in the near fu-
ture [45,48]. However, besides their efficiency, Jolt/Lasso constitute a natural choice since they together
provide the first example of lookup-singularity SNARK VM having been concretely described and imple-
mented. Finally, and crucially, Jolt [2] and Lasso [43], might be the most formal treatment of SNARKs for
VMs in the literature at the present moment. This is important for us since otherwise we would not be
able to carry out the type of formal analysis required by simulation extractability. To be more precise, the
concrete design we will consider will not be exactly identical to that sketched in [2]. First off, the original
description of Jolt and Lasso is not zero-knowledge. Since the framework of simulation extractability presup-
poses zero-knowledge, we have to naturally start from a zero-knowledge version of Lasso/Jolt. Second, for
sake of generality and simplicity, we will abstract out some parts of the Jolt design. At the high-level, Jolt
runs a VM dividing it into three parts5 each proven by a different “sub-SNARKs”: instruction execution
(via Lasso), instruction-fetching and memory-checking (both proven via Spartan-like proof systems [41]). In
our concrete result (Corollary 2) we assume that instruction execution applies (our variant of) Lasso, while
we abstract out the remaining sub-SNARK specifying what properties they need to satisfy in order for the
final zkVM to be simulation-extractable.
(ii) zkVMs through the lens of modularity Our discussion above hints to how it may be possible
to approach the simulation extractability of zkVMs in general: since SNARKs for VMs lend themselves to
modular designs, this is potentially something we can leverage6. Thus, on our way towards our goal in item
(ii) above, we tackle a develop a more broadly interesting problem: the non-malleability of modular (or Lego-
ish) SNARKs [11], i.e. SNARKs that are obtained from the composition of several “sub-SNARKs”, each
possibly of a different design. In particular, we address this question:

What can we say about the non-malleability of a modular SNARK knowing that (some of) its building
blocks are non-malleable?

Modular SNARKs have been identified as worth of a systematic investigation of their own because of their
simplicity and efficiency [1,6,10,11]; general treatment of open problems in SNARKs designs—efficient dis-
tributed proving—have recently benefited from an explicit modular approach [39]. While we do have a general
theoretical framework to reason about knowledge-soundness and zero-knowledge of Lego-ish SNARKs [11],
to the best of our knowledge, no work prior to ours systematically studied the simulation extractability of
modular SNARKs.
Challenges of Lego-ish SIM-EXT. We remark that composing non-malleable objects while maintaining their
non-malleability does not come for free. For instance, as demonstrated in [20], there are copy-paste attacks
when composing different Interactive Oracle Proofs (IOPs) (see Ben-Sasson, Chiesa and Spooner [5]) into
one simulation-extractable zkSNARK. These attacks consider compositions of schemes for arbitrary relations
without any shared knowledge. Briefly, our framework shows how to circumvent these attacks by “gluing”
together the witnesses, either by considering a shared witness or by considering witnesses that are somehow
logically linked (we will elaborate more in the next section and make these intuitions precise in our compilers
in Section 6). To prove a statement composed of different relations, we will have to identify specific constraints
for both the relations themselves as well as the sub-SNARKs used to prove each individual relation.

1.2 Our Results

A. SIM-EXT of Joltish Our main result consists in proving that a lookup-based singularity zkVM based
on Jolt—that we call Joltish—is simulation-extractable.
5 We stress that in the Jolt paper, this distinction is sketched and the reader can think of this paragraph as our own
(intentionally fuzzy) paraphrase. A formal treatment of different components of a VM is highly dependent on the
VM at hand. We will attempt a general formal treatment in Section 7.2.

6 This modularity is not a mere technical artifact of the work in Jolt [2]. It has been used explicitly in other works [35]
and it is a natural design approach: different sub-components of VMs will have distinct features where sub-SNARKs
of different designs will shine. Arguably, a modular design is already explicitly at the core of “lookup-singularity”
SNARKs since their defining principle is to use a specialized SNARK (a lookup argument) for a specific component
(instruction execution).
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Lego-ish SNARKs

zkVMs

Lookup-Singularity
Based

Fig. 1. Intuition for why SIM-EXT results for Lego-ish SNARKs are useful for zkVMs in general: zkVMs in general
lend themselves easily to a modular design; this is especially true for lookup-singularity based ones. See also Section 7.

Fig. 2. Informal description of two of our composition results for SIM-EXT of Lego-ish SNARKs (Theorem 5). We
mark WIT-SAMP with ∗ to hint that the requirements of the theorems are slightly more nuanced. See Theorem 5 for
the full formal statement.

Theorem (informal) Under the hardness of DLOG there exists a simulation-extractable lookup-singularity
zkVM.

Our Joltish is based on our simulation-extractable lookup argument zkLasso, which makes Joltish a lookup-
singularity zkVM. In the technical overview in Section 1.3 we give more details on how we obtain Joltish.

B. A toolbox for SIM-EXT from commit-and-prove zkSNARKs A commit-and-prove argument of
knowledge is an argument of knowledge where the witness is committed using a (non-interactive) commitment
scheme. The work LegoSNARK of Campanelli, Fiore, and Querol [11] shows that commit-and-prove SNARKs
are very useful for composing different SNARKs together in meaningful ways.

We show two compositions derived from commit-and-prove schemes that are simulation extractable. In
particular, we provide two natural ways to compose schemes.

The first composition we consider is the conjunction of two relations. At first glance, given an argument
for a relation RF and an argument for a relation RG, we can realize an argument for ”their conjunc-
tion” by running the two arguments independently. This composition is knowledge-sound; however, it is not
simulation-extractable, as we can mount a copy-paste attack where the attacker knows a witness for the
instance in RF and uses a simulated proof for RG (see [20] for more details). We avoid this attack by con-
sidering a conjunction of relations where the committed witness is shared between the two instances. Given
this, we show that if the two arguments (for RF and RG) are simulation-extractable, then their composition
is also simulation-extractable.

The second composition is what we call function composition. Consider a SNARK for correct function
execution, namely, a SNARK that proves F (x,w) = y for a function F , with public input x, private input w,
and output y. Consider two commit-and-prove schemes: one that proves F (xf ,wf ) = yf , and a second that
proves G(xg,wg) = yg and let us call them ΠF and ΠG respectively. Now we can compose them together to
prove G ◦ F (xf ,xg,wf ) := G(xg, F (xf ,wf )). The idea is to generate the first and second instances so that
they share the commitment to yf , thus linking the private output of F with the private input of G. Also
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in this case, we can show that if the two commit-and-prove schemes are simulation-extractable, then their
composition is also simulation-extractable.

These two results are rather straightforward and rely only on the fact that when the two schemes share
knowledge, one cannot mount the trivial copy-paste attack described above.

We can actually improve the conditions of the results by assuming an extra property from one of the
relations, which we refer formally as efficient witness computability (WIT-SAMP). Loosely speaking, this
property states that we can find easily valid witnesses for the (non-committed part of the) instances. For
example, in the functional composition, if the prover has the freedom to sample the commitment to yf = wg,
then the zero-knowledge simulator for the composed scheme could sample a dummy input (xf ,0) for F , run
the honest prover for ΠF , and simulate the proof for ΠG. Since the simulator for the composed scheme does
not use the simulator for ΠF , we can (1) reduce the simulation extractability of the composed scheme to
the knowledge soundness of ΠF , and (2) reduce the zero-knowledge of the composed scheme to the witness
indistinguishability of ΠF . There is a caveat in this composition: ΠF could be re-randomizable, allowing
the adversary to create a forgery for an instance where it has already seen a simulated proof (i.e., we can
only prove weak simulation extractability for the composed scheme). However, we can address this issue,
and prove full simulation extractability for the composed scheme, by assuming that ΠG is a signature-of-
knowledge (SoK) and by signing the proof for ΠF using ΠG. In Fig. 2 we give a graphical representations of
our results on generic composition of commit-and-prove SNARKs and summarize in the following informal
version of Theorem 5.

Theorem (informal) There exists a black-box transformation from two SIM-EXT commit-and-prove SNARK
ΠF , ΠG to a SIM-EXT conjunction (resp. composition) proof system ΠF∧G (resp. ΠG◦F ). Moreover, there
exists a black-box transformation to a SIM-EXT conjunction proof system ΠF∧G (resp. for functions compo-
sition ΠG◦F ) from two commit-and-prove SNARKs ΠF , ΠG where (1) ΠF is KSND and (statistically) WI
and RF satisfies WIT-SAMP and (2) ΠG is a signature of knowledge.

Recipes for parallelizable SIM-EXT SNARKs. A problem when using signature of knowledge is that we
can call ΠG only after having computed the proof for ΠF , which forces sequentiality in the proof generation.
To mitigate such a bottleneck, in Section 7.3 we describe a notion of signature of knowledge where, roughly
speaking, the message can be fed at the very end of the prover’s computations. We refer to this as a signature
of knowledge with delayed message. We give two instantiations of SoK with delayed message. We show (1) that
the classical Fiat-Shamir approach for signature of knowledge can be adapted to the delayed message setting
extending the results on Fiat-Shamir-based simulation-extractable argument [16] and (2) we give a black-
box construction of signature-of-knowledge with delayed message from (classical) signature-of-knowledge and
one-time signatures.

C. Other contributions At the technical basis of our results on the non-malleable zkVMs lies a series of
contributions that we are going to present in more detail in the next section. First, we give a zero-knowledge
version of Lasso and provide the analysis of its simulation extractability. Second, we revisit the technical
results of [16], weakening their requirements and achieving tighter bounds for Spartan and Bulletproofs.
Finally, we give a proof of the simulation extractability of HyraxPC, which may be of independent interest.

1.3 Technical Overview

SIM-EXT of zkLasso. The technical core of our contribution is providing a simulation-extractable indexed
lookup argument derived from Lasso. We take the work of [16] as our starting point. They prove the simulation
extractability of (zero-knowledge variants of) schemes such as Bulletproofs and Spartan. Their work follows
the results of simulation extractability for Fiat-Shamir based arguments inspired by the work of Faust et al.
[22] and further investigated in [25,26,32].
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Their approach works in three steps which together provide simulation extractability: (i) have ZK version
of the protocols;7 (ii) prove that all the inner (sub)protocols are computational8 special-sound, i.e., it is
possible to extract a witness from a sufficient number of valid proofs and whose transcript possibly satisfies
some additional predicate; (iii) proving that for a specific k (where k is a round index) the protocol satisfies
two properties referred as k-ZK and k-unique response (k-UR for short). k-ZK restricts the ZK simulator by
allowing it to reprogram the random oracle only at the k-th round. k-UR states that the malicious prover’s
responses are uniquely determined after the k-th round.

To achieve step (i), Dao and Grubbs need to replace all the occurrences of the inner protocols, such as the
sum-check-based reductions, with their blinded versions. For example, if we consider the classical sum-check
protocol which eventually evaluates on a random point x defined by the verifier’s challenges a committed
polynomial f , the blinded counterpart would instead commit to f(x), for example using Pedersen, and then
show in zero-knowledge that such a commitment opens to the evaluation of f on x. Thus the scheme blinds
the value y which might leak information about the witness.

While several of the building blocks of Lasso are common to those of Spartan, and we naturally use some
of the same “low-level” technical tools, our analysis diverges substantially from that of [16] and requires
to develop some more machinery. More in detail, we follow [16] and substitute the sub-protocols with their
blinded versions. To do so, we need to define a blinded version of the grand product argument due to [44]
and prove it computational special-sound. Once done that, we need a stronger analysis of the computational
special soundness of the hash-based multi-set fingerprinting used in Spartan. Specifically, Lasso and Spartan
use Spark as their underlying (sparse) polynomial commitment scheme; however, while in Spartan some of
the sparse polynomials are committed honestly by the verifier, in Lasso these polynomials are committed
by the untrusted prover. Crucially, in our case these sparse polynomials encode the matrix of the lookup
indexes, i.e., the witness we wish to extract from the proof of the adversary, and this discrepancy introduces
non-trivial differences between our work and [16] when analyzing the computational special soundness.

A second component of both Lasso and Spartan is (yet another) polynomial commitment called HyraxPC

[49]. We improve the analysis for HyraxPC. Specifically, digging into the technical details of [16], to prove
computational special soundness of Hyrax, we need first to define a tree of transcripts where the edges of
each node satisfy a set of constraints that Dao and Grubbs formalize through a set of predicates. We show
that we need to introduce one more predicate to fix the proof of computational special soundness of HyraxPC.
Moreover, we additionally prove that HyraxPC achieves k-ZK and k-UR, and thus, as additional result, we
can prove that this polynomial commitment is simulation-extractable.

By revisiting the techniques of [16], we also introduce some improvements that directly apply to Spartan
and Bulletproofs, as well as to Lasso. First, we design a (slightly) tighter blinded sum-check protocol that
only relies on the simple distinctness predicate, and for which it is sufficient to use the tree-builder of Attema
et al. [3]. Second, and more importantly, we achieve a tighter bound in our extractor (cf. Theorem 2) avoiding
a loss quadratic in the number of the prover’s queries and by solving a problem left open in the previous
work. We observe that our approach is still rewinding-based and so the provable SIM-EXT security we get
is “low” in terms of security bits, however this seems inherent to this type of analysis.

From zkLasso to Joltish. We provide a model for arguments of knowledge for virtual machine execution.
While similar formalizations exist in the literature [4,8,19,55], our framework focuses on abstracting zkVMs
based on the lookup singularity. We isolate the logical components in the VM that lookup argument can
handle from the rest and demonstrate that our compiler for conjunction, described in Section 6, is sufficient
to achieve simulation-extractable zkVMs. More in detail, we adopt an indirect way to achieve such a formal-
ization: we define a commit-and-prove relation R⋆ as the series of logical and memory constraints and checks
to perform to the trace of the program execution which, together with the correct instructions execution
handled by the lookup argument, prove correct program execution. This abstraction results in a conjunction
of a scheme for R⋆ and a lookup argument. Thus we can use our general non-malleable composition results
(see the informal theorem at page 6 and the associated Theorem 5). In particular, we can leverage on a

7 The usual notion of simulation extractability makes sense for ZK protocols only.
8 If the extractor fails to extract a witness, then we argue that the malicious prover is able to break some
computationally-hard problem, e.g., finding a nontrivial discrete log relation between the Pedersen generators.
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simulation-extractable lookup argument to weaken the necessary security properties of the scheme for R⋆.
To do so, we show that R⋆ is WIT-SAMP, by showing how to derive a valid trace of a program execution
that uses an invalid instruction set. As a consequence, the scheme for R⋆ needs only to be WI and knowledge
sound, which open the doors to many instantiations. Next, we demonstrate how to integrate our zkLasso into
the framework, resulting in a broad class of zkVMs that, as we argue, includes Joltish, our zero-knowledge
variant of Jolt [2]. This task is easier since we can use the knowledge-soundness results for the scheme(s)
for R⋆ of [2]. We emphasize that our composition theorem for zkVMs, Theorem 6, is general and allows for
the replacement of components in Joltish with different SNARKs, which is why we refer to a large class of
zkVMs.

1.4 Why new results for SNARK VMs?

One way to achieve zero-knowledge is to compose Jolt/Lasso with another zkSNARK, i.e., we could use a
zkSNARK to prove the knowledge of a valid Jolt/Lasso proof (e.g., the recent work Testudo [12] composes
Spartan with Groth16 [30], and some folding-based schemes such as Nova [33] follow this approach). If this
zkSNARK is also simulation-extractable, then it seems we get the maximum result with the minimum effort.
Despite viable, this approach of “adding” ZK by composition has some theoretical and practical drawbacks.
In particular, it would require representing the Jolt verifier in a format like R1CS or Plonkish, which may
be cumbersome and partially limit the benefits of the improved auditability depicted above. Furthermore,
this arithmetization procedure incurs in a direct random oracle instantiation that hence becomes public to
the adversary, which may lead to insecure schemes [14].

1.5 Related Work

Simulation extractability was first introduced by De Santis et al. [17], expanding the definition of simulation
soundness of Sahai [40]. For zkSNARKs, this notion was studied by Groth and Maller [31] who proposed as an
interesting application the succinct signatures of knowledge, or Snarky signatures. Recently, we had several
results [16,20,21,25,26,32] about the simulation extractability of notable zkSNARKs, such as Bulletproofs [9],
Spartan [41], Sonic [36], PLONK [24], Marlin [15], Lunar [10] and Basilisk [38].

We mention some notable works related to SNARKs for virtual machine execution. Beginning with
the pioneering work of [4], which required an expensive trusted setup, the field has advanced significantly.
Subsequent works, such as [8,55], showed schemes with transparent setups and improved efficiency. More
recent developments include Cairo-VM [28] and Ceno [35].

A technical tool we leverage is an efficient tree-builder to prove the knowledge soundness of computational
special sound arguments compiled using the Fiat-Shamir transform, that was studied in the work of [16] in
the wake of the results of [25,26].

1.6 Future Work

We foresee applications for our toolbox results beyond zkVMs. For example it could be used to provide
alternative proofs for the SIM-EXT of Spartan and Bulletproofs potentially substantially simplifying the
approach in [16] and our own approach for zkLasso with it. Spartan in particular is a good candidate for
this given its several moving parts which can be seen as separate block (the Hyrax polynomial commitment,
grand product arguments, etc.).

2 Preliminaries

A function f is negligible in λ (we write f ∈ negl(λ)) if it approaches zero faster than the reciprocal of
any polynomial. For an integer n ≥ 1, we use [n] to denote the set {1, 2, . . . , n}. We consider both strict
polynomial time (PPT) and expected polynomial time (EPT) algorithms.
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Cryptographic Assumptions Let GroupGen be some PPT algorithm than on input 1λ, returns a descrip-
tion ppG of a group G. Every element in G can be written as gx for some generator g ∈ G and exponent
x ∈ F, but given gx, it is in general hard to compute x (discrete logarithm problem).

Lemma 1 (Discrete Log Reduction, [27]). For every EPT adversary A, there exists an EPT adversary
B, nearly as efficient as A, such that:

Pr[
∏n

i=1 g
ai
i = 1 ∧ (a1, . . . , an) ̸= 0 | (a1, . . . , an)← A(g1, . . . , gn) ] ≤ AdvDL

G (B) + 1

|F|

where g, g1, . . . , gn are random generators of G and we define the advantage of B as AdvDL
G (B) :=

Pr[gx = h |h←$ G;x← B(g, h) ].

Multilinear extensions For any function f : {0, 1}ℓ → F, there exists a unique ℓ-variate multilinear

polynomial f̃ such that f̃(x) = f(x) for all x ∈ {0, 1}ℓ. We refer to f̃ as the multilinear extension of f . For a
vector a ∈ Fn, where n is a power of 2, we similarly define the multilinear extension ã : Flogn → F as follows:
we interpret a in the natural way as listing all n evaluations of a function with domain {0, 1}logn, and define
ã to be the multilinear extension of this function.

Commitment schemes A commitment scheme with message space M is a tuple of algorithms CS =
(Setup,Commit,VerCom) that works as follows: Setup(ppG) → ck takes as input group parameters ppG
and outputs a commitment key ck. Commit(ck,m) → (c, ρ) takes as input the commitment key ck and a
message m ∈M, and outputs a commitment c and an opening o VerCom(ck, c,m, ρ)→ b takes as input the
commitment key ck, a commitment c, a message m ∈M and an opening o, and it accepts (b = 1) or rejects
(b = 0). Besides correctness, a commitment scheme satisfies two more properties.
(Computational) Binding: no PPT adversary can find, unless with negligible probability, a commitment
c, two messages m ̸= m′ and two openings o, o′:

VerCom(ck, c,m, ρ) = VerCom(ck, c,m′, ρ′) = 1

(Statistical) Hiding: ∀m,m′, ∀ck:

{c : (c, ρ)← Commit(ck,m)} ≈ {c′ : (c′, o′)← Commit(ck,m′)}

Interactive Arguments An (NP-)relation R is a set of tuples (pp,x,w) decided by a PT algorithm. Here
pp are system-wide parameters, x is the public input (or instance), and w is the private input (or witness).
We interchangeably represent a relation R either as an algorithm with boolean output or as a set, thus
R(pp,x,w) ⇐⇒ (pp,x,w) ∈ R. Moreover, when clear from the context, we omit the parameters and
simply write R(x,w).

A public-coin interactive argument for a relation R is a tuple of PPT algorithms Π := (Setup,P,V)
where:

Setup(1λ,ppG)→ pp: outputs parameters pp given global parameters ppG
⟨P(w),V⟩(pp,x)→ {0, 1}: a public-coin interactive protocol whereby the prover P, holding a witness w,

interacts with the verifier V on common input (pp,x) to convince V that (pp,x,w) ∈ R. At the i-th
round, V samples its message uniformly at random from the challenge space Ci. At the end, V outputs
a bit to accept or reject.

We consider interactive arguments that satisfy the standard properties completeness, knowledge soundness
and honest-verifier zero-knowledge.

(Completeness) For any adversary A we have that:

Pr

[
(pp,x,w) ̸∈ R ∨
⟨P(w), V ⟩(pp,x) = 1

∣∣∣∣∣ pp← Setup(1λ,ppG)

(x,w)← A(pp)

]
= 1

9



(Knowledge-Soundness) There exists an EPT extractor E such that for any stateful PPT adversary P∗:

Pr

b = 1 ∧ (pp,x,w) ̸∈ R

∣∣∣∣∣∣∣∣∣∣
pp← Setup(1λ,ppG)

(x, stP∗)← P∗(pp)
b← ⟨P∗(stP∗),V⟩(pp,x)
w← EP

∗
(pp,x)

 ≤ negl(λ)

where E gets black-box access to each of the next-message functions of P∗ in the interactive protocol
and can rewind P∗ to any point in the interaction.

(Honest-Verifier Zero-Knowledge) There exists a PPT simulator S such that for all pp← Setup(ppG)
and (pp,x,w) ∈ R, the following distributions are statistically indistinguishable:

{ViewV⟨P(w),V⟩(pp,x)} ≈s {S(pp,x)}

where ViewV⟨P(w),V⟩(pp,x) denotes the view of the verifier, consisting of the transcript and its own
randomness.

Commit-and-Prove Arguments. Roughly speaking, a commit-and-prove argument of knowledge is an
argument of knowledge whose witness is committed using a commitment scheme. We adapt a simpler defini-
tion of commit-and-prove SNARK than the one in [11]. We assume that there is only a single commitment
(rather than an arbitrary number) and that this opens to the entirety of the witness (instead of allowing for
uncommitted portions as in [11]).

Definition 1. Given a relation R and a commitment scheme CS, the commit-and-prove argument for the re-
lation R with commitment scheme CS is an argument for the relation R̂ such that R̂((pp, ck), (c, x), (w, ρ)) =
1 if and only if c is commitment to w using CS with commitment key ck and opening material ρ, namely
VerCom(ck, c, w, ρ), and R(x,w).

Indexed Lookup Argument A lookup argument allows an untrusted prover to commit to a vector a ∈ Fm

and prove that all entries of a reside in some predetermined table T ∈ Fn. In an indexed lookup argument, in
addition to a commitment to a, the verifier is handed a commitment to a second vector b ∈ Fm. The prover
claims that ai = T [bi] for all i ∈ [m]. We refer to a as the vector of looked-up values, and b as the vector of
indices. We can define the commit-and-prove relation:

Rlookup(pp = (T, n,m),w = (a, b)) ⇐⇒ ∀i ∈ [m] : T [bi] = ai.

Non-Interactive Arguments in the ROM A non-interactive argument (in the ROM) for a relation R
is a tuple of PPT algorithms Π := (Setup,P,V) where: Setup(ppG) → pp generates the public parameters
PH(pp,x,w) → π generates a proof π VH(pp,x, π) → b checks if a proof is valid or not and outputs a bit
b ∈ {0, 1} and H is a random oracle.9

We consider non-interactive arguments that satisfy the following properties.

(Completeness) For any adversary A we have that:

Pr

(pp,x,w) ̸∈ R ∨
VH(pp,x, π) = 1

∣∣∣∣∣∣∣
pp← Setup(1λ,ppG)

(x,w)← AH(pp)

π → PH(pp,x,w)

 = 1

9 For public-coin (2r + 1)-message interactive arguments with challenge spaces C1, . . . , Cr, we actually need r inde-
pendent random oracles Hi : {0, 1}∗ → Ci with i ∈ [r]. For simplicity, we denote these by a single random oracle H,
and it will be clear from context which random oracle is being used in a given round.
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Game KSP∗
0,ΠFS,R(λ)

pp←$ Setup(1λ, ppG)

(x, π)← P∗H
(pp)

b← VH
(pp,x, π)

return b

Game KSE,P∗

1,ΠFS,R(λ)

pp←$ Setup(1λ, ppG)

(x, π)← P∗H
(pp)

b← VH
(pp,x, π)

w← EP
∗
(pp,x, π)

return b ∧(pp,x,w) ∈ R

Fig. 3. Knowledge soundness security games. The extractor E is given black-box access to P∗, it simulates H and
and can rewind P∗ to any point.

(Knowledge-Soundness) There exists an EPT extractor E such that for any stateful PPT adversary P∗,
the following probability is negligible in λ:

AdvKS
ΠFS,R(E ,P

∗) :=
∣∣∣Pr[KSP∗

0,ΠFS,R(λ)
]
− Pr

[
KSE,P

∗

1,ΠFS,R(λ)
]∣∣∣

and the knowledge soundness games are defined in Fig. 3.
(Zero-Knowledge) There exists a PPT simulator S such that for pp ←$ Setup(ppG) and any unbounded

adversary A:10

Pr
[
AH(·),P(pp,·,·)(1λ) = 1

]
≈s Pr

[
AH(·),SRePro(pp,·,·)(1λ) = 1

]
where RePro is an oracle that on input a pair (a, b) reprograms H(a) := b.

We notice that zero-knowledge is defined in a model where the random oracle is explicitly-programmable [50]
by the simulator: in particular, S can reprogram the random oracle H (using RePro).

To turn public-coin interactive arguments into their non-interactive versions, we can employ the Fiat-
Shamir (FS) transform in a setting where P and V have black-box access to a random oracle H. We use ΠFS

to denote the non-interactive argument derived by applying the FS transform to the argument Π.

Tree of Transcripts An (n1, . . . , nr)-tree of transcripts for a (2r+1)-message public-coin protocol is a set
of

∏
i∈[r] ni transcripts arranged in the following tree structure (see Fig. 6 for a graphical illustration):

– The nodes in this tree correspond to the prover’s messages and the edges correspond to the verifier’s
challenges.

– Every node at depth i has precisely ni children.
– Every transcript corresponds to exactly one path from the root to a leaf.

This notion, introduced by [3], was later generalized by [16] to support custom predicates for the veri-
fier challenges. In particular, in the generalization of [16], the edges (i.e., the verifier’s challenges) of each
node need to be distinct and they also need to jointly satisfy a predicate ϕi where i is the depth of their
corresponding node. In this work, we consider only the following predicates:

– ϕ± that on input n field elements (c1, . . . , cn) returns 1 if and only if for all i ∈ [n], there is not j ̸= i
such that ci + cj = 0. We use the shortcut n± to indicate a node supporting this predicate.

– ϕ:k that on input n challenges (c1, . . . , cn) ∈ Fn·m returns 1 if and only if all the inputs have different
prefixes of length k. We use the shortcut n:k to indicate a node supporting this predicate.

We give a formal definition hereafter.

10 Zero-knowledge is a security property that is only guaranteed for valid statements in the language, hence A never
queries P/S with a pair (x,w) such that (pp,x,w) ̸∈ R.
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Game SST E,A
Π,R,(ϕ,n)(λ)

pp←$ Setup(1λ, ppG)

(x,T)← A(pp)

w← T E(pp,x,T)
return (pp,x,w) ̸∈ R ∧ IsAccepting((ϕ,n), pp,x,T)

Fig. 4. Computational Special Soundness security game.

Definition 2 (Tree of Transcripts). Let Π be a (2r + 1)-message public-coin interactive argument for
a relation R, with challenge spaces C1, . . . , Cr. Let n := (n1, . . . , nr) ∈ Nr, and let ϕ := (ϕ1, . . . , ϕr) with
ϕi : Ci → {0, 1}, for all i ∈ [r], we say that T is an (ϕ,n)-tree of accepting transcripts for pp if:

1. T is a tree of depth r + 1,
2. For all i ∈ [r+1], each vertex at depth i is labeled with a prover’s message ai, and if i ≤ r it has exactly

ni outgoing edges to its children, with each edge labeled with a verifier’s challenge ci,1, . . . , ci,ni ∈ C
ni
i ,

satisfying ϕi(ci,1, . . . , ci,ni) = 1. Additionally, the root label is prepended with x (its the label becomes
(x, a1)),

3. The labels on any root-to-leaf path form a valid input-transcript pair (x, tr).

We say that T is accepting with respect to an input-transcript pair (x, tr) if (x, tr) corresponds to the left-
most path of T. We define an acceptance predicate IsAccepting((ϕ,n),pp,x, (π, )T) to check whether T is an
(ϕ,n)-tree of accepting transcripts for pp and x, and optionally π.

We now define computational special soundness that essentially guarantees that there exists a tree-
extractor algorithm T E that, given as input a tree of accepting transcripts produced by an efficient adversary,
outputs a valid witness with high probability.

Definition 3 (Computational Special Soundness). Let Π be a (2r+1)-message public-coin interactive
argument for a relation R with challenge spaces C1, . . . , Cr. For any n := (n1, . . . , nr) ∈ Nr and any ϕ :=
(ϕ1, . . . , ϕr) with ϕi : Cni

i → {0, 1}, we say Π is (ϕ,n)-computational special sound if there exists a PPT
tree-extraction algorithm T E such that for every EPT adversary A, the following probability is negligible in
λ:

AdvSS
Π,R,(ϕ,n)(T E ,A) := Pr

[
SST E,AΠ,R,(ϕ,n)(λ)

]
and the special soundness game is defined in Fig. 4

Attema et al. prove the existence of an efficient tree-builder algorithm that can generate n-trees of
accepting transcripts having oracle access to a (malicious) prover P∗. This result was later generalized
by [16] to support partition predicates; in Section 3 we show how to adapt their result to achieve tighter
bounds for the predicates needed to instantiate Spartan [41] and Bulletproofs [9].

Simulation extractability Simulation extractability requires that extractability holds even when the
malicious prover is given access to simulated proofs, possibly for false statements.

Definition 4 (Simulation extractability). Let Π := (Setup,P,V) be a public-coin zero-knowledge inter-
active argument for relation R with associated NIZK ΠFS := (Setup,PFS,VFS). We say ΠFS is simulation
extractable (with respect to a simulator S) if there exists an EPT extractor E such that for every PPT
adversary P∗, the following probability is negligible in λ:

AdvSIM−EXT
ΠFS,R (S, E ,P∗) :=

∣∣∣Pr[SES,P∗

0,ΠFS
(λ)

]
− Pr

[
SEE,S,P

∗

1,ΠFS
(λ)

]∣∣∣
and the security games are defined in Fig. 5.
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Game SES,P∗

0,ΠFS,R(λ)

pp←$ Setup(1λ, ppG)

(x, π)← P∗H,S
(pp)

b← VH′
FS (pp,x, π)

return b ∧ (x, π) ̸∈ QS

Game SEE,S,P∗

1,ΠFS,R(λ)

pp←$ Setup(1λ, ppG)

(x, π)← P∗H,S
(pp)

b← VH′
FS (pp,x, π)

w← EP
∗
(pp,x, π)

return b ∧ (x, π) ̸∈ QS ∧(pp,x,w) ∈ R

Fig. 5. Simulation extractability security games. S returns a proof π upon an input x (and may reprogram the
random oracle), while QS records all the pairs (x, π) queried by P∗. H′ denotes the modified RO after all the proof
simulation queries. E is given black-box access to P∗; in particular, it simulates H and S for P∗ and can rewind P∗

to any point in its execution (with same initial randomness).

Hereafter, we introduce two more properties, namely k-zero-knowledge and k-unique response. Roughly
speaking, the former notion captures zero-knowledge when the simulator is only allowed to reprogram the
random oracle in the k-th round, while the latter states that the malicious prover’s responses are uniquely
determined after the k-th round. These two properties together with knowledge-soundness imply simulation
extractability [25,16].

Definition 5 (k-Zero-Knowledge, [16]). Let Π := (Setup,P,V) be a (2r + 1)-message public-coin inter-
active. We say that ΠFS satisfies (perfect) k-zero-knowledge, for some k ∈ [r], if there exists a zero-knowledge
simulator SFS,k that only needs to program the random oracle in round k, and whose output is identically
distributed to that of honestly generated proofs.

Definition 6 (k-Unique Response, [16]). Let Π := (Setup,P,V) be a (2r+1)-message public-coin inter-
active argument. We say that ΠFS satisfies k-unique response, for some k ∈ [r], if for every PPT adversary
A:

Pr

b ∧ b′ ∧ π ̸= π′ ∧ π|k = π′|k

∣∣∣∣∣∣∣∣∣∣∣

pp← Setup(1λ,ppG)

(x, π, π′, c)← AH(pp)

b← VH[(pp,x,π|k)→c]
FS (pp,x, π)

b′ ← VH[(pp,x,π′|k)→c]
FS (pp,x, π′)

 ∈ negl(λ)

where H[x→ c] denotes the RO when the input x is reprogrammed to output c.

Theorem 1 ([16]). Let Π be a (2r + 1)-message public-coin interactive argument. If ΠFS is knowledge-
sound and there is k ∈ [r] such that ΠFS satisfies k-zero-knowledge and k-unique response, then ΠFS is
simulation extractable.

Commitment Instantiations We mostly rely on the Pedersen commitment scheme with message space
Fn, for some n ∈ N, that works as follows:

Setup(ppG) outputs n+ 1 random generators g1, . . . , gn, h of G.

Commit(ck,a;ω) parses ck as (g1, . . . , gn, h) and outputs the commitment C :=
∏

i∈[n] g
ai
i hω and the opening

ω.

VerCom(ck, C,a, o) outputs 1 iff Commit(ck,a; o) = C.

We will often use the shortcut ga to represent the multi-exponentiation
∏

i∈[n] g
ai
i .

In this work, we make use of polynomial commitments, namely, commitment schemes with message space
F[X1, . . . , Xµ] for some µ ∈ N. In particular, we rely on the HyraxPC polynomial commitment scheme [49].
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Fig. 6. An (n1, . . . , nr)-tree of transcripts for a (2r + 1)-message public-coin protocol.

3 A Tree Builder for Efficiently-decidable Partitions

A technical tool we leverage is an efficient tree-builder to prove the knowledge soundness of computational
special sound arguments compiled using the Fiat-Shamir transform, that was studied in the work of [16] in
the wake of the results of [25,26].

We start by introducing the notions of an abstract adversary and an abstract tree of transcripts that can
be defined independently of any interactive argument Π.

Definition 7 (Abstract Adversary). Let S1, . . . ,Sr be finite sets and let H := (H1, . . . ,Hr) be a collection
of random oracles Hi : {0, 1}∗ → Si. An r-round and Q-query random oracle adversary A against (S1, . . . ,Sr)
is a deterministic adversary having oracle access to H, making at most Q total accesses to these random
oracles, and returning ((a1, . . . , ar+1), v) where (ai)i∈[r] are strings and v ∈ {0, 1}. The success probability of

A is defined to be Pr
[
v = 1 | ((a1, . . . , ar), v)← AH

]
and this probability is defined over the randomness of

choosing H.

Definition 8 (Abstract Tree of Transcripts). Let S1, . . . ,Sr be finite sets, A be any abstract ad-
versary against S1, . . . ,Sr, and n := (n1, . . . , nr) ∈ Nr. An n-abstract tree of transcripts T for A and
H := (H1, . . . ,Hr) is a labeled n-tree where:

– Each vertex at depth i ∈ [r + 1] is labeled with a message ai
– Each of the ni edges coming from a vertex at depth i ∈ [r] is labeled with a different element s ∈ Si
– For any root-to-leaf path, if the edges are labeled (s1, . . . , sr) and the vertices are labeled (a1, . . . , ar+1)

then ((a1, . . . , ar+1), 1)← AH′
where H′ := (H1[a1 → s1], . . . ,Hr[(a1, . . . , ar)→ sr]).

Let Π be a (2r + 1)-message public-coin interactive argument with challenge sets C1, . . . , Cr. From any
deterministic adversary P∗ against the knowledge-soundness of ΠFS, we can build an abstract adversary
A against the sets C1, . . . , Cr by running (x, (a1, . . . , ar+1)) ← P∗H(pp) (with pp hard-coded) and also
v ← VH

FS(pp,x, π). A then outputs (((x, a1), a2, . . . , ar+1), v). An n-tree of accepting transcripts for (pp,x, π)
can be seen as an n-abstract tree of transcripts for A.

Definition 9 (Partition Predicates). Let C :=
⋃

i∈[C] C(i) be a partition P of a set C into C blocks. We

assume the partition is efficient, i.e. given an index i ∈ [C], we can enumerate the set C(i) in polynomial
time. For n ∈ N, we define the corresponding partition predicate ϕP,n : Cn → {0, 1} to output 1 on input
(c1, . . . , cn) if and only if c1, . . . , cn belong to distinct blocks of C.

We consider the following partition predicates:

– C := F is partitioned into singletons {x}. This is the distinctness predicate, namely the one that outputs
1 if and only if all the inputs c1, . . . , cr are distinct challenges. We implicitly assume that it is the default
predicate and we may omit it, i.e., we abreviate a tree T supporting this predicate as an n-tree of
accepting transcripts
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Game TBA,P∗

ΠFS,(ϕ,n)(λ)

pp←$ Setup(1λ,ppG)

(x, π)← P∗H(pp)

T← AP∗
(pp,x, π)

return VH(pp,x, π) = 1 ∧ IsAccepting((ϕ,n),pp,x,T)

Fig. 7. Tree-building security game. A is given black-box access to P∗.

– C := Fm, for some m ∈ N, is partitioned into {(x, y) | y ∈ Fm−k} for all x ∈ Fk. This is the k-prefix
distinctness predicate, namely the one that outputs 1 if and only if all the inputs c1, . . . , cr have different
prefixes of length k. We abbreviate this predicate into the number n of challenges as n:k.

– C := F is partitioned into {x,−x} for all x. We abbreviate this predicate into the number n of challenges
as n±.

– C := F2 is partitioned into {c · x | c ∈ F∗} for all x ∈ {(0, 0), (0, 1)} ∪ {(1, a) | a ∈ F} that captures the
linear independence between two vectors. We abbreviate this predicate into the number n of challenges
as nli .

Definition 10 (ϵ-Uniform Partition). Let C :=
⋃C

i=1 C(i). We say that {C(i)}i∈[C] is ϵ-uniform if there

exists I ⊆ [C] such that |
⋃

i ̸∈I C(i)| = ϵ · C and for all i, j ∈ I: |C(i)| = |C(j)|.

All the partitions defined in the above predicates satisfy this property. In particular, the distinctness pred-
icate, the k-prefix distinctness (for all k) and the n± predicate use 0-uniform partitions, while nli uses
1/(|F|+ 2)-uniform partitions.

We now restate the guarantees of the (abstract) tree-builder of [3,16].

Theorem 2 (Efficient Abstract Tree Builder). Consider any sets S1, . . . ,Sr that have an efficiently

decidable partition Si :=
⋃Ci

j=1 Si,j, and any n := (n1, . . . , nr) ∈ Nr with N :=
∏r

i=1 ni. There exists a
probabilistic algorithm T such that for any Q-query abstract adversary A with success probability νA against
(S1, . . . ,Sr), T outputs an n-abstract tree of transcript T with probability

νT ≥ νA −
(Q+ 1)(

∑r
i=1 ni − r)

C

where C := mini∈[r] Ci.

Finally, we restate a theorem asserting the existence of an efficient tree-builder that can generate (ϕ,n)-
trees of accepting transcripts, where ϕ consists of partition predicates as defined above. Similarly to [16],
our proof relies on the tree-builder constructed in the work of [3], but we achieve a tighter bound since we
do not incur in a quadratic dependence on the number of queries Q.

Theorem 3 (Efficient Tree Builder). Let Π be a (2r + 1)-message public-coin interactive argument

with challenge spaces C1, . . . , Cr. Consider any efficiently decidable and ϵi-uniform partition Ci :=
⋃Ci

j=1 Ci,j,
with ϵi ∈ negl(λ) for all i ∈ [r], with minimum partition size C := mini Ci, and let ϕ := (ϕ1, . . . , ϕr) be the
corresponding partition predicate. Consider the tree-building experiment in Fig. 7. There exists a probabilistic
algorithm A such that for any n := (n1, . . . , nr) ∈ Nr, with N :=

∏r
i=1 ni, and any (malicious) prover P∗:

Pr
[
TBA,P∗

ΠFS,(ϕ,n)(λ)
]
≥ Pr

[
KSP

∗

0,ΠFS,R(λ)
]
−

(Q+ 1)(
∑r

i=1 ni − r)

C
−Q ·max

i
ϵi

where A makes in expectation at most (Q + 1)(N − 1) + 1 rewinding calls to P∗, and Q is an upper bound
to the number of RO queries of P∗.
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Proof. Without loss of generality, we assume that P∗ is deterministic because if we can prove the theorem
for every choice of P∗’s randomness, then by averaging we also prove the theorem for arbitrary P∗. Thus,
the only source of randomness in the game KSP

∗

0,ΠFS,R(λ), and of the success probability of P∗ is the choice
of the random oracle H.

For all i ∈ [r], let Hi : {0, 1}∗ → [Ci]. Moreover, for all i ∈ [r], let Ir the subset of [Ci] for which the
challenge space Ci admits an ϵi-uniform partition.

We construct an abstract adversary B against the sets [I1], . . . , [Ir], having access to random oracles
H∗ := (H∗1, . . . ,H

∗
r) and to the malicious prover P∗. It does the following:

– Get pp← Setup(ppG) and run P∗ on input pp
– When P∗ makes an oracle query to Hi on input a message a, search through the (initially empty) table

T for an entry of the form (i, a, (·, c)), and return c. If no such query exists, query H∗i (a) and obtain the
value j

• If j ∈ Ci then sample c←$ Ci,j uniformly at random, add (i, a, (j, c)) to T , and return c as the answer
to P∗

• Otherwise abort

– When P∗ outputs (x, π := (a1, . . . , ar+1)), run v ← VH(pp,x, π), where H is determined by T , and output
(((x, a1), a2, . . . , ar+1), v).

We now define our tree-builder algorithm A. Given oracle access to P∗, it emulates the abstract adversary
B, then run the abstract tree-builder T (cf. Theorem 2) on B. If T returns an n-abstract tree of transcripts
T, then A returns a (ϕ,n)-tree of accepting transcripts TΠ for ΠFS as follows:

– For each vertex at depth i ∈ [r + 1] of T with label ai, the same vertex for TΠ has label ai too
– For each edge labeled j going from a vertex labeled a at depth i ∈ [r], the same edge for TΠ has label

c, where c is the unique challenge such that (i, a, (c, j)) ∈ T

First, we observe that the abstract adversary A is nearly as efficient as P∗ since it runs P∗ once and
does some other tasks in comparable time (managing the table T , running the algorithm Setup and the
verifier procedure VFS). The tree-builder A invokes once on B the tree-builder T of [3] (cf. Theorem 2), hence
inheriting its expected running time: concretely, the expected running time of A is at most (Q−1)·(N+1)+1
times the running time of P∗.

We show that if B does not abort, TΠ is indeed a (ϕ,n)-tree of accepting transcripts. It is clear that TΠ

is of the right arity. For any vertex v at depth i ∈ [r], we know that the edges coming from v are labeled with
different (ji,1, . . . , ji,ni

) in T. This implies that for TΠ , the edges coming from the corresponding vertex v has
challenges (ci,1, . . . , ci,ni

) satisfying ci,k ∈ Ci,ji,k for all k ∈ [ni]. Hence TΠ satisfies the partition predicate ϕ.
Moreover, B perfectly simulates the random oracles H for P∗. For all i ∈ [r] it first samples a partition

index j and then samples from the j-th partition Ci,j a random challenge: this procedure is equivalent
to uniformly sampling a challenge from the challenge space Ci since the partitions are ϵi-uniform and, in
particular, have the same size. Then we have that the winning probability of A is the same as P∗, conditioned
on the event that B does not abort. We now bound the probability that B aborts. Since for all i ∈ [r] the
partition {Ci,j}j∈[Ci] is ϵi-uniform, the probability that on input a message a the abstract adversary B aborts
is at most ϵi ∈ negl(λ). By union bound on the number of RO queries we derive that B aborts with probability
at most Q ·maxi ϵi.

4 Simulation extractability of Hyrax

4.1 An overview of Hyrax

We give a brief overview and provide some intuition on the multilinear polynomial commitment HyraxPC

(see Fig. 8) that was first introduced in [49]. It is a polynomial commitment scheme, equipped with a
(µ+ 1)-rounds Eval protocol for a µ-variate multilinear polynomial.
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– Setup(µ,ppG): abort if µ is odd. Parse ppG as a group description (G,F). Sample g1, . . . , gµ/2, h←$ G
and output pp = (F,G, g, g1, . . . , gµ/2, h).

– Commit(pp, p(X1, . . . , Xµ);ω): ∀i ∈ [2µ] let wi := p(bin(i)), define T ∈ F2µ/2×2µ/2

s.t. ∀i, j ∈ [2µ/2] :
Ti,j := wi+2µ/2·(j−1).
(Namely, w is the column-major order of T .)

∀i ∈ [2µ/2], sample ωi ←$ F and compute Ci :=
∏2µ/2

j=1 g
Ti,j

j · hωi .
Output C := (C1, . . . , C2µ/2) and opening ω := (ωi)i∈[2µ/2].

– Eval⟨P(p,ω, v, ωv),V⟩(pp,C, x, Cv): given a commitment Cv as public input, with an evaluation
point x ∈ Fµ

1. Let ẽqL(Y ) =
∏µ/2

i=1 ẽq(xi, Yi) and ẽqR(Y ) =
∏µ

i=µ/2+1 ẽq(xi, Yi).

2. P and V compute P = Cv ·
∏2µ/2

k=1 C
ẽqL(bin(k))
k and r = (ẽqR(k))k∈{0,1}µ/2 .

3. P also computes ωP := ωv +
∑

k∈[2µ/2] ωk · ẽqL(bin(k)) and

l :=

 ∑
k∈[2µ/2]

Tk,j · ẽqL(bin(k))


j∈[2µ/2]

4. P and V engage in LogDotProd, on input ((2µ/2, g,g, h), (P, r), (l, v, ωP )), to prove that P =
gv · gl · hωP and v = ⟨l, r⟩.

– Open⟨P(p,ω),V⟩(pp,C):
1. V samples challenge x← Fµ, P replies with Cv = gvhωv , where v = p(x)
2. P and V engage in Eval on input (pp,C, x, Cv).

Fig. 8. Description of HyraxPC. The function bin : N→ {0, 1}∗ computes the binary representation of an integer. The
protocol LogDotProd is defined in Fig. 9.

Let bin : N → {0, 1}∗ be the function that computes the binary representation of an integer. Moreover,
given a matrix T with n rows and m columns and a column vector w with n · m rows, we say that the
column-major order of T is w if and only if ∀i, j : Ti,j = wi+n·(j−1).

To evaluate on a point x ∈ Fµ a multilinear polynomial p(X1, . . . , Xµ), given its evaluations (wi)i∈[2µ]
over the hypercube {0, 1}µ, we can use the following formula:

p(x) =
∑

k∈{0,1}µ
p(k) ·

µ∏
i=1

ẽq(xi, ki)

=
∑

k∈[2µ]

wk ·
µ∏

i=1

ẽq(xi, bin(k)i)

=
∑

k∈[2µ/2]

∑
ℓ∈[2µ/2]

wk+2µ/2ℓ ·
µ/2∏
i=1

ẽq(xi, bin(k)i)︸ ︷︷ ︸
L

·
µ/2∏
i=1

ẽq(xµ/2+i, bin(ℓ)i)︸ ︷︷ ︸
R

= L · T ·R⊤

where T is the 2µ/2 × 2µ/2 matrix whose column-major order is (wi)i∈2µ , i.e., ∀i, j ∈ [2µ/2] : Ti,j :=
wi+2µ/2·(j−1).
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For n = 2k

RLogDotProd = {((n, g,g, h), (P,a),x, y, rP ) : P = gy · gx · hrP , y = ⟨x,a⟩}.

1. Set n0 ← n,g(0) ← g, P (0) ← P,a(0) ← a,x(0) ← x, y(0) ← y, r
(0)
P ← rP .

For i = 1, . . . , k :

(a) Li ← gy
(i)
L ·

(
g(i−1))x(i−1)

[:ni] · hr
(i)
L , Ri ← gy

(i)
R ·

(
g(i−1))x(i−1)

[ni:] · hr
(i)
R .

(b) V sends challenge ci
$← F.

(c) P and V both compute P (i) ← L
c2i
i · P (i−1) ·Rc−2

i
i and

a(i) ← c−1i · a
(i−1)
[:ni]

+ ci · a(i−1)[ni:]
, g(i) ←

(
g
(i−1)
[:ni]

)c−1
i ◦

(
g
(i−1)
[ni:]

)ci
.

(d) P computes x(i) ← ci · x(i−1)
[:ni]

+ c−1i · x
(i−1)
[ni:]

and

y(i) ← c2i · y
(i)
L + y(i−1) + c−2i · y

(i)
R , r

(i)
P ← c2i · r

(i)
L + r

(i−1)
P + c−2i · r

(i)
R .

2. Set ĝ ← g(k), P̂ ← P (k), â ← a(k), x̂ ← x(k), ŷ ← y(k), r̂P ← r
(k)
P . P samples d, rβ , rδ

$← and sends
β ← gd · hrβ , δ ← ĝd · hrδ .

3. V sends challenge c
$← F.

4. P sends z1 ← d+ c · ŷ and z2 ← â · (c · r̂P + rβ) + rδ.

5. V checks that
(
P̂ c · β

)â

· δ ?
=

(
ĝ · gâ

)z1 · hz2 .

Fig. 9. Description of LogDotProd.

The prover P commits individually to each row of T , using Pedersen, and outputs a list of commitments
C := (C1, . . . , C2µ/2). We observe that the verifier V can compute a commitment to L · T , namely CL·T ←∏2µ/2

k=1 CLk

k since this just requires public information.

Finally, P and V can run an inner product argument to confirm that (L ·T ) ·R⊤ equals p(x), supposedly
committed in Cv, having access to the commitments CL·T and CR. This part is handled by a logarithmic-size
dot product proof LogDotProd (see Fig. 9) that is similar to the inner product argument of Bulletproofs [9],
but also achieves zero-knowledge.

4.2 Proof of the simulation extractability of Hyrax

We recall that HyraxPC has been proved (2µ/2, (4±)
µ/2, 2) computational special sound in [16].11

The protocol Eval is a public coin interactive argument for the relation:

REval =

ck, (Cp, x, Cv), (p, ωp, v, ωv) :
Cp = Commit(ck, p;ωp),
Cv = Commit(ck, v;ωv),
p(x) = v ∧ p is multilinear,


In [16], the authors prove the computational special soundness of Eval under the additional condition that
the evaluation point x ∈ Fµ is sampled uniformly at random. Although conceptually sound, their statement

11 Their proof has some technical flaw, but we show how to fix it.
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does not fulfill the formalism of Definition 3. We fix this inconsistency of the notation of Dao and Grubbs
by, first, defining a different relation:

ROpen = {ck, (C), (p, ω) : C = Commit(ck, p;ω) ∧ p is multilinear}

We then define a protocol Open which, basically, runs Eval on a random challenge x (cf. Fig. 8), and we prove
computational special soundness for Open: crucially, in the proof we can rewind the prover feeding different
challenges x.

By additionally proving that the Open protocol achieves µ-zero-knowledge and µ-unique-response, we
derive that HyraxPC is simulation-extractable.

We start by proving that the Eval protocol of HyraxPC achieves µ-ZK and µ-UR, where µ is the number
of variables of the polynomials committed.

Lemma 2. HyraxPC.Eval is µ-ZK and µ-UR.

Proof. We start by proving the µ-ZK property.

The simulator SHyraxPC for HyraxPC.Eval, on input (pp,C, x, Cv), computes the instance (P, r) for LogDotProd,
as the honest prover would do, and then invokes the simulator SLogDotProd on input ((2µ/2, g, g, h), (P, r)) that
does the following:

1. For i ∈ [µ] samples the group elements Li and Ri at random. Retrieves the challenge ci (as the honest
prover would do) and computes the values P (i),a(i) and g(i) accordingly.

2. Let ĝ := g(µ), P̂ := P (µ) and â := a(µ). Samples random field elements c, z1, z2 and a random group
element β. Finally, computes δ := (ĝ ·gâ) ·hz2/(P̂ c ·β)â and invokes RePro to make c be the final challenge
output by V on input the transcript, including β and δ.

SHyraxPC only makes a single RO reprogramming, in particular when invokes the simulator for LogDotProd.
The output of SHyraxPC is indistinguishable from that of a real transcript: the random group elements Li, Ri

are indistinguishable from the hiding commitments used in a real proof; similarly, the distribution of the
field elements z1, z2 and the elements β, δ is also indistinguishable from the one in a real proof.

As for the µ-UR property, it is sufficient to notice that once the transcript of a proof has been fixed up
to µ-th round, if we are given two accepting last-round pairs (z1, z2) ̸= (z′1, z

′
2) we can always reduce to the

discrete log problem as we can find a non-trivial relation between the generators g and h.

We observe that this result implies the following corollary.

Corollary 1. HyraxPC.Open is (µ+ 1)-ZK and (µ+ 1)-UR.

Proof. Since the Open protocol consists of a random challenge sent by the verifier followed by an execution
of the protocol Eval, the proof of (µ + 1)-UR follows directly by the µ-UR of Eval. Finally, it is easy to see
that the we can define a simple simulator that frst obtains the random coin of the verifier and then runs
the code of the simulator SHyraxPC defined above that needs to reprogram the random oracle only at the µ-th
round and produces transcripts indistinguishable from those of real proofs.

Finally, we show that HyraxPC.Open is computational special sound. Despite similar to the proof of special
soundness of [16], we notice that we rely on the prefix distinctness predicate to extract the witness.

Lemma 3. For all µ ∈ N, the protocol HyraxPC.Open (cf. Fig. 8) is computational special sound, i.e., there
exist a tree extractor T EHyraxPC and an EPT adversary B such that given an n := ((2µ/2):µ/2, (4±)

µ/2, 2)-tree
of accepting transcripts (produced by an adversary A) for the (µ+ 2)-rounds Open protocol, we have that:

AdvSS
Open,n(T EOpen,A) ≤ 2µ/2

(
AdvDL

G (B) + 1

|F|

)

19



Proof. The first layer in the tree of transcripts consists of 2µ/2 distinct verifier’s challenges ((xi,ℓ)ℓ∈[µ])i∈[2µ/2],
each one corresponding to an evaluation point; the rest of the tree then corresponds to an instance of
LogDotProd. The tree extractor T EHyraxPC runs the tree extractor T ELogDotProd (that is similar to the one of
the inner-product argument of Bulletproofs, and so we refer to [9,16]) on each ((4µ/2)±, 2)-subtree to recover
the underlying linear combinations

l(i) :=

 ∑
k∈[2µ/2]

wk+2µ/2(j−1) · ẽq((xi,1, . . . , xi,µ/2), bin(k))


j∈[2µ/2]

Here, the tree extractor T ELogDotProd either succeeds or we can build an adversary B against the discrete
log problem in G.

Finally, for each j ∈ [2µ/2], we can use the j-th entry of all the l(i), for i ∈ [2µ/2], corresponding to the
2µ/2 different verifier’s challenges, and we solve for wk+2µ/2(j−1) for all k ∈ [2µ/2]. This is possible because
the Lagrange polynomials {ẽq((xi,1, . . . , xi,µ/2), k)}i,k are independent since the challenges ((xi,ℓ)ℓ∈[µ])i∈[2µ/2]

crucially satisfy the µ/2-prefix distinctness predicate ϕ:µ/2.

5 Simulation extractability of Lasso

In this section, we recall the Lasso indexed lookup argument [43] and we show how we can apply Theorem 1
to prove that a zero-knowledge version of Lasso is simulation-extractable.

5.1 Overview of Lasso

The starting point of Lasso is to model the lookup argument in a sparse way, as it is done in schemes like
Caulk [52] or Baloo [53]: given a commitment to a table t ∈ Fn and a a commitment to a vector a ∈ Fm,
the prover can prove to know a sparse matrix M ∈ Fm×n such that (1) each row of M is a unit vector, i.e.,
there are n − 1 zeroes and one cell is equal to 1, and (2) M · t = a. This turns out to be equivalent, up to

negligible soundness error logm · |F|−1, to check that:∑
y∈{0,1}log n

M̃(r, y) · t̃(y) = ã(r) (1)

when r ∈ Flogm is chosen uniformly at random by the verifier after the prover has sent (a commitment to)

M̃ . The core idea of Lasso is to use Surge, a generalization of the Spark commitment scheme [41], to commit

to M̃ and then prove that Eq. (1) holds by evaluating M̃ in a point (r, rx) chosen by the verifier. To do that,
the table t needs to be “decomposable” as we define hereafter.12

Definition 11 (Decomposable Table). A table t ∈ Fn is decomposable if there is k ≥ 1 and α := kc

tables t1, . . . , tα, each of size n1/c, as well as an α-variate multilinear polynomial f̂ such that for every

(r1, . . . , rc) ∈ ({0, 1}
1
c logn)c:

t[r1, . . . , rc] = f̂(t1[r1], . . . , tk[r1], tk+1[r2], . . . , t2k[r2], . . . , tα−k+1[r − c], . . . , tα[rc])

Let nz(i) denote the (unique) column in the i-th row of M that contains the value 1. First, we observe
that can rewrite Eq. (1) as: ∑

k∈{0,1}log m

ẽq(k, r) · t[nz(i)] = ã(r) (2)

12 In previous work, this is also referred to as Spark-only structure (SOS).
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1. P → V : The prover sends 3α different (logm)-variate multilinear polynomials E1, . . . , Eα, dim1, . . . , dimα,
read ts1, . . . , read tsα and α different ( 1

c
logN)-variate multilinear polynomials final ts1, . . . , final tsα, where

∀i ∈ [α]: Ei is purported to specify the values of each of the m reads into Ti, dimi is the multilinear exten-
sion of nzi, while read tsi and final tsi are the “counter polynomials” for the i-th sub-table Ti.

2. V → P : The verifier picks a random r ∈ Flogm and sends it to P. The verifier makes one evaluation query to ã
to learn v := ã(r).

3. P ↔ V : sum-check protocol to check that v =
∑

k∈{0,1}log m ẽq(r, k) · f̂(E1(k), . . . , Eα(k))
– logm rounds of interaction in which the prover sends univariate polynomials and the verifier replies with a

random coin
– The verifier checks that Ei(rz) = vi for all i ∈ [α], where (vi)i are values provided by the prover at the end

of the sum-check protocol. The verifier checks the equation above with one oracle query to each Ei.
4. V → P : The verifier picks two random field elements γ, τ
5. P ↔ V : α sum-check-based protocols (in parallel) for “grand products” to check that Hτ,γ(WS) = Hτ,γ(RS) ·

Hτ,γ(S). The verifier checks the equations hold with an oracle query to each of Ei,dimi, read tsi,final tsi.

Fig. 10. A description of Lasso [43]. T is a decomposable lookup table of size N .

and if t is decomposable we can further rewrite it as:∑
k∈{0,1}log m

ẽq(k, r) · f̂(t1[nz1(i)], tk[nz1(i)], . . . , ta−k+1[nzc(i)], . . . , tα[nzc(i)]) = ã(r) (3)

for some polynomial f̂ , where nz1(i), . . .nzc(i) are the “chunks” in which nz(i) has been decomposed.

For all j ∈ [c], let dimj : Flogm → F be equal to ñzj . Moreover, for all i ∈ [α], let Ei : Flogm → F be the
logm-variate multilinear polynomial that interpolates all the m lookups into ti, namely ∀k ∈ {0, 1}logm, we
have that Ei(k) := ti[dimi(k)]. Given this, we can rewrite Eq. (3) simply as:∑

k∈{0,1}log m

ẽq(k, r) · f̂(E1(k), . . . , Eα(k)) = ã(r) (4)

In Lasso, the prover commits to M sending commitments to dim1, . . . ,dimc, Ei, . . . , Eα and the “counter
polynomials” for the i-th sub-table Ti, read tsi and final tsi. Then, the prover and the verifier engage in a
sum-check protocol to check that Eq. (4) holds. Finally, the prover needs to convince the verifier that the
polynomials Ei are actually encoding the values read from the (honest) memory ti: to do that, they apply a
memory checking procedure [7] that finally results into a sum-check-based grand products argument. More
in detail, let WS and RS be two sets accounting for the write and read operations, respectively, and let S
be the final state of the memory. Every time a read operation (i.e., a lookup) is issued, a write operation is
performed too with the goal of updating the “counter” (i.e., the timestamp) associated with that memory
location. The goal of the prover is to convince the verifier that the invariant “every value that has been read
must have been written” is maintained at the end of the lookup process, i.e., WS = RS ∪ S. Lasso is not
zero-knowledge since a proof essentially leaks evaluations of M̃ in some random coins sent by the verifier.

5.2 Zero-Knowledge Lasso

We define the main protocol in Fig. 11. It uses Pedersen, HyraxPC, three (2-perfect special sound)Σ-protocols
(see also Fig. 12) sharing the same setup:

– ProdPf to prove that three commitments Cx, Cy, Cz satisfy xy = z,

– DotProdPf to prove that a multi-commitment Cx and a commitment Cy satisfy y = ⟨x,a⟩ for a public
vector a

– GenPff̂ ,n to prove that n commitments (Cvi)i satisfy f̂((vi)i∈[n−1]) = vn
and the following sub-protocols:
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Setup Phase. Let pp := (ppG, g, g1, . . . , gµ/2, h), where µ := max (deg(f̂), logm, 1
c
logN), deg(f̂) is the total degree

of g and (g1, . . . , gµ/2) are random generators of G. Let ppPedersen,1 := (ppG, g, h) be the parameters for Pedersen with

message space F; for ν > 1, let ppPedersen,ν := (ppG, g1, . . . , gν , h) be the parameters for Pedersen with message space

Fν . For ν ∈ N let ppHyraxPC,2ν := (ppG, g1, . . . , gν) be the parameters for HyraxPC with message space F[X1, . . . , X2ν ].

Interaction Phase.
1. P sends to V HyraxPC commitments to 3α different (logm)-variate multilinear polynomials E1, . . . , Eα,

dim1, . . . , dimα, read ts1, . . . , read tsα and α different ( 1
c
logN)-variate multilinear polynomials

final ts1, . . . , final tsα, where ∀i ∈ [α]: Ei is purported to specify the values of each of the m reads into
Ti, dimi is the multilinear extension of nzi, while read tsi and final tsi are the “counter polynomials” for the
i-th sub-table Ti.

2. V picks a random r ∈ Flogm and sends it to P.
3. P sends a Pedersen commitment Cv to the value v supposedly equal to ã(r).
4. P and V engage in a sum-check to check that v =

∑
k∈{0,1}log m u(k), where u(X) := ẽq(r,X) ·

f̂(E1(X), . . . , Eα(X)): after logm rounds of interaction, the prover sends a Pedersen commitment Cex to the
value ex supposedly equal to u(rz)

5. P sends the Pedersen commitments Cv1 , . . . , Cvα to values v1, . . . , vα, supposedly equal to E1(rz), . . . , Eα(rz)
6. P and V engage in GenPfg,α to check that f̂(v1, . . . , vα) = exẽq(r, rz)

−1

7. The verifier checks using HyraxPC.Eval that Ei(rz) = vi for all i ∈ [α].
8. V picks two random field elements γ, τ .
9. For i = 1 to α:

– P sends to V the Pedersen commitment Chi to the value hi supposedly equal to Hγ,τ (WSi) and Hγ,τ (RSi) ·
Hγ,τ (Si).

– P and V engage in GrandProd to check that Hτ,γ(WSi) = hi and Hτ,γ(RSi) ·Hτ,γ(S) = hi.
10. P and V engage in HyraxPC.Eval to check that v = ã(r)

Fig. 11. The indexed lookup argument zkLasso.

– A protocol SumCheck (see Fig. 13) to reduce the task of proving that
∑

x∈{0,1}µ p(x) = v, given the

commitments (Cp, Cv), to the claim that p(rx) = ex for a random rx ∈ Fµ sampled randomly by the
verifier, and some claimed value ex ∈ F, where Cex is provided by the prover at the end of the procedure.

– A sum-check-based protocol GrandProd for “grand products” (see Fig. 14).

1. P sends to V: α← gb1 · hb2 , β ← gb3 · hb4 , γ ← Xb3 · hb5 , where (b1, . . . , b5)←$ F5

2. V responds with challenge c←$ F \ {0}
3. P sends to V: z1 ← b1 + cx, z2 ← b2 + crx, z3 ← b3 + cy, z4 ← b4 + cry, z5 ← b5 + c(rz − rxy)

V checks that α · Cc
x = gz1 · hz2 , β · Cc

y = gz3 · hz4 and δ · Cc
z = Cz3

x · hz5

Fig. 12. The Σ-protocol ProdPf to check that the prover knows (x, y, rx, ry, rz) such that Cx = gxhrx , Cy = gyhry ,
Cz = gxyhrz , given the commitments (Cx, Cy, Cz) and generators g, h.

On the instantiation of GenPf and GrandProd. If f̂ is a simple string concatenation, we can exploit the
homomorphism of Pedersen and reduce GenPf to a single invocation of a Σ-protocol for the equality of two
commitments (cf. EqPf in [16,49]). As for GrandProd, we use a commit-and-prove version of the Thaler’s
grand product argument [44] that is an optimized application of the GKR protocol for circuit evaluation to
a circuit computing a binary tree of multiplication gates. Another possibility would be to use the protocol
due to Setty and Lee [42] that reduces the communication cost, and hence the proof size, at the cost of
committing to additional field elements.

Lemma 4 ([43]). Lasso has soundness error O(m+logm
|F| ).
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Let e0 = v. For i = 1 to µ:

1. P computes the polynomial pi(X) :=
∑

x∈{0,1}µ−i p(r1, . . . , ri−1, X, x), parses it as a vector of coefficients,

then sends Cpi
← Commit(pp, pi;ωpi

) to V.
2. V responds with challenge ri ←$ F.
3. P computes ei ← pi(ri), then sends Cei ← Commit(pp, ei;ωei) to V.
4. V responds with challenges wi ←$ F.
5. P and V compute a← (1, . . . , 1, 2)+wir

k
i and Cyi ← Cei−1C

wi
ei . In addition, P computes yi ← ei−1+wiei

and ωyi ← ωei−1 + wiωei .
6. P and V engage in DotProdPf on input (pp, (Cpi

, Cyi
,a), (pi, ωpi

, yi, ωyi
)).

It is left to check that p(r1, . . . , rµ) = eµ.

Fig. 13. The protocol SumCheck to reduce the task of proving that
∑

x∈{0,1}µ p(x) = v, given the commitments

(Cp, Cv), to the claim that p(rx) = eµ for a random rx ∈ Fµ sampled randomly by the verifier, and some claimed
value eµ ∈ F, where Ceµ is provided by the prover at the end of the procedure.

Let z0 = r1 = 0. P also sets e1 ← v. For i = 1 to d− 1:

1. If i > 1 P and V engage in a (i rounds) sum-check to reduce the task of proving that
∑

p∈{0,1}i g
(i)
zi−1(p) = Ṽi(zi−1)

to the claim that g
(i)
zi−1(ri) = ei, for some ri and Cei ← Commit(pp, ei;ωei) provided by the prover by the end of

the protocol.
2. P sends Cw1,i ← Commit(pp, Ṽi+1(ri, 0);ωw1,i) and Cw2,i ← Commit(pp, Ṽi+1(ri, 1);ωw2,i)

3. P and V engage in ProdPf on input (pp, (Cw1,i , Cw2,i , C
1/ẽq(zi−1,ri)
ei ), (w1,i, ωw1,i , w2,i, ωw2,i , ei/ẽq(zi−1, ri), ωei))

4. V sends a challenge βi ←$ F
5. P and V set zi ← li(βi), where li(X) is the unique line such that li(0) = (ri, 0) and li(1) = (ri, 1)

6. P and V set Cvi ← C
(1−βi)
w1,i · Cβi

w2,i
. Additionally, P sets vi ← w1,i(1− βi) + wi,2βi

Finally, P and V engage in HyraxPC.Eval to prove that Ṽd(zd−1) = vd−1.

Fig. 14. The protocol GrandProd to prove that the product of 2d inputs equals v, given a commitment Cv and a
commitment to the MLE Ṽd of the input vector to a binary-tree circuit of depth d. The output gate is labelled 0, and
the two inputs to a layer-i gate labelled p ∈ {0, 1}i are labelled as (p, 0) and (p, 1) respectively; hence GrandProd allows

to prove that V1(0) = v. For all i ∈ [d−1] and for all p ∈ {0, 1}i, we have that g
(i)
z (p) := ẽq(z, p) · Ṽi+1(p, 0) · Ṽi+1(p, 1)

Lemma 5. For all Π ∈ {ProdPf, DotProdPf}, Π is 2-perfect special sound, i.e., there exists a tree-extraction
algorithm that can extract a valid witness for Π given any 2-tree of accepting transcripts.

We analyze the computational special soundness of the sumcheck (sub)protocol in Fig. 13. Altough very
similar, our scheme is different from the one used in [16] since we change the way the prover computes the
vector a of the batched evaluations. Besides a negligible improvement in the efficiency, this change allows us
to provide a (tighter) extractor that relies only on the distinctness predicate.

Lemma 6. For all µ ∈ N, the sum-check protocol SumCheck in Fig. 13 is computational special sound, i.e.,
there exist a tree extractor T ESumCheck and an EPT adversary B such that given an n := (1, 2, 2)µ-tree of
accepting transcripts (produced by an adversary A) for the µ-rounds sum-check protocol, we have that:

AdvSS
SumCheck,n(T ESC,A) ≤ µ

(
AdvDL

G (B) + 1

|F|

)
Proof. We construct a tree extractor T ESumCheck that does the following for each iteration i ∈ [µ]. Given a
(1, 1, 2)-tree of transcripts:

1. Run T EDotProdPf on each (1, 1, 2)-subtree (corresponding to an instance Cpi
, Cyi

,a) to extract (pi, ωpi
, yi, ωyi

),
where yi is supposedly equal to ei−1 + wiei
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On input (Ca, T1, . . . , Tα), the simulator does the following:

1. Sample a “dummy” witness M ∈ {0, 1}m×n, such that all the rows of M are unit vectors.
2. Compute the vector of looked-up values b←M · T
3. Run Lasso prover, until the second to last round, on input (Cb, T1, . . . , Tα) and witness M , where Cb ←$

Commit(pp, b̃)
4. To prove that v = ã(r), use the ZK-simulator for HyraxPC.Eval on input (pp, (Ca, r, Cv))

Fig. 15. Our (r − 1)-ZK Simulator S for Lasso, where r is the number of rounds.

2. Given two distinct challenges wi, w
′
i, with extracted witnesses (pi, ωpi , yi, ωyi) and (p′i, ω

′
pi
, y′i, ω

′
yi
) from

the previous step, abort if (pi, ωpi
) ̸= (p′i, ω

′
pi
). Otherwise, solve for ei−1, ei, ωei−1

, ωei the system:{
yi = ei−1 + wiei

y′i = ei−1 + w′iei

{
ωyi

= ωei−1
+ wiωei

ω′yi
= ωei−1

+ w′iωei

The goal is to prove that T ESC either outputs polynomials p1(X), . . . , pµ(X) that satisfy the information-
theoretic sumcheck protocol, or we can build an adversary B, as efficient as T ESumCheck and A combined,
against the discrete log problem in G.

We have that ⟨pi, ai⟩ = yi and ⟨pi, a′i⟩ = y′i by the guarantees of T EDotProdPf. We derive that, if T ESumCheck
does not abort, it would extract values such that pi(0) + pi(1) = ei−1 and pi(ri) = ei, i.e., it extracts valid
polynomials for the information-theoretic sumcheck protocol. In this case, we have that Cpi

= gpi · hωpi =

gp′
i · hω′

pi , and by Lemma 1 we conclude that the probability to abort is bound by the probability to solve
the discrete log problem in G. By union bound on the number of rounds, we derive the claimed bound.

Below we analyze the special soundness of GrandProd (cf. Fig. 14).

Lemma 7. For all d > 1, the protocol GrandProd is computational special sound, i.e., there exist a tree ex-
tractor T EGrandProd and EPT adversaries B,B′ such that given an nGrandProd,d := ((n0, 2, 2), . . . , (nd−2, 2, 2))-
tree of accepting transcripts (produced by an adversary A) for the grand product, we have:

AdvSS
GrandProd,n(T EGrandProd,A) ≤AdvSS

HyraxPC.Open,((2d/2):d/2,(4±)d/2,2)(T EHyraxPC,B)

+

d−2∑
i=1

4i ·AdvSS
SumCheck,(1,2,2)i(T ESumCheck,B′)

where n0 is the empty string and ni := (4, 2, 2)i for all i > 0.

Proof. We construct a tree extractor T EGrandProd that does the following.

1. For each iteration i ∈ [d− 1]:
(a) If i > 1, run T ESumCheck on each of the 4i different (1, 2, 2)i-subtrees, associated with the different

random challenges r
(j)
i , to extract the polynomials sent during the sum-check

(b) Run T EProdPf on each 2-subtree to extract the values (w
(j)
1,i , w

(j)
2,i , e

(j)
i ) and let fi be the polynomial

that interpolates all the pairs (r
(j)
i , e

(j)
i )

2. Extract the polynomial Ṽd running T EHyraxPC on the subtree obtained by merging each ((4±)
d/2, 2)-

subtree corresponding to a different challenge point
At each iteration, the protocol GrandProd performs a sum-check to reduce the task of proving that a certain
polynomial equals some claimed value over an hypercube of a given size, and a “reduction to a line” to batch
two claims into one. Notice that the polynomial in the sum-check is only “virtually” represented and is never
directly evaluated. We need to prove that at each iteration the prover performs a sum-check on a polynomial
that is “consistent” wrt to the MLE of the input Ṽd that we extract using T EHyraxPC.
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We start by focusing on the last iteration of the protocol. Let fz(X) := ẽq(z,X) · Ṽd(X, 0) · Ṽ (X, 1). We
need to prove that the polynomial fd−1 extracted by T EGrandProd at the (d− 1)-th iteration is equal to fz(X)
for some z (corresponding to an ancestor of the current subtree).

First, by the guarantees of the information-theoretic sum-check and the special soundness of ProdPf,
we have that

∑
p∈{0,1}d−2 fi(p) = vd−2, for a value vd−2 that has been committed at the previous iteration.

Second, we observe that fd−1 is a (d−1)-variate polynomial of individual degree at most 3: this is because the
polynomials sent during the sum-check are univariate polynomials of maximum degree 3, due to the number
of Pedersen generators in pp and later used to run ProdPf. Moreover, by definition fz is a (d − 1)-variate

polynomial of individual degree 3. Let Agree be the event that fd−i(r
(j)
d−1) = fz(r

(j)
d−1) for all j. Since there

is a unique (d− 1)-variate polynomial, of individual degree at most 3, that “densely” interpolates the pairs

(r
(j)
d−1, fz(r

(j)
d−1)) [56], we conclude that, conditioned on Agree, fd−1 ≡ fz. When Agree does not occur, we

have that there is at least one challenge r := r
(j)
d−1 such that fd−1(r) ̸= fz(r). In particular, this implies that

w
(j)
1,d−1 ̸= Ṽd(r, 0) ∨ w

(j)
2,d−1 ̸= Ṽd(r, 1). Let ℓ be the unique line interpolating ((r, 0), w

(j)
1,d−1), ((r, 1), w

(j)
2,d−1);

then, there exists at most one field element β such that ℓ(β) = Ṽd(r, β). However, when Agree does not occur,

we can find in the corresponding subtrees two distinct challenges β
(j)
d−1, β

′(j)
d−1 such that the above equation

holds, from which we conclude that Pr[Agree] = 1.
A similar analysis can be run for all the layers of the circuit. We do not need to run T ESC when we reach

the first iteration since the protocol does not invoke the SumCheck protocol. At the first layer, we only rely
on the special soundness of ProdPf to extract the value v consistent with the output Ṽ1(0). ⊓⊔

Lemma 8. zkLasso satisfies n-computational special soundness, where

n = (2logm, (2, 2, 2)logm, 2, (4±)
(log logm)/2, 2, 3, µ+ 1, (nGrandProd,µ)

α, (4±)
(log logm)/2, 2)

Proof. We construct a tree extractor T ELasso that, given an n-tree of accepting transcripts, does the following:
1. Run T ESumCheck on the first sum-check subprotocol on each (1, 2, 2)logm subtree to extract the polynomials

sent during the sum-check for h(X)

2. Run T EGenPf on each corresponding 2-subtree to extract the values v1, . . . , vα such that f̂(v1, . . . , vα) =
ex/ẽq(r, rz)

3. Run T EHyraxPC on the subtree obtained by merging each ((4±)
logm/2, 2)-subtree, corresponding to different

challenge points, to extract α logm-variate multilinear polynomials Ei such that Ei(rz) = vi for all i ∈ [α]
4. Run T EGrandProd on each nGrandProd,µ-subtree to extract the multilinear polynomials dimi, read tsi,write tsi,

for all i ∈ [α], corresponding to the MLE of the last layer of the circuit
5. Output matrix M derived from the encoding of its non-zero entries in dimi

We show that, conditioned on the event that none of the sub-extractor fails, the matrix M extracted by
T ELasso is a valid witness. In particular, from the guarantees of T EGrandProd and T ESumCheck and the soundness
of the corresponding protocols, we have that the prover unconditionally passes the verifier’s checks for the
sum-check and the memory checking argument (cf. Lemma 9) and, moreover, the rows of M are unit vectors.
Also, from the guarantees of T ESumCheck, T EHyraxPC and the soundness of the sum-check protocol we have that
M · t = a because the check holds for more than logm random rows. ⊓⊔

We are ready to present our main theorem on zkLasso.

Theorem 4. zkLasso is simulation-extractable.

Proof. We prove that zkLasso is (r− 1)-ZK and (r− 1)-UR, where r is the number of rounds. By combining
Theorem 1 and Lemma 8, we derive a direct proof of the theorem.

We leverage a simple (r− 1)-ZK simulator S for zkLasso that, at at high-level, executes all subprotocols
using a dummy witness and invoke the simulator for the final HyraxPC.Eval. For sake of completeness, we
give the code of this simulator in Fig. 15.

First, by inspection, it is clear that the proofs produced are accepting: this is because the verifier accepts
if both the Lasso proof (until the last round) is valid (let call this proof π1), and if the final proof π2
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for HyraxPC.Eval is valid too. In fact, π1 is a composition of honestly generated (sub)proofs, and by the
completeness of Lasso, we derive that the verifier accepts all of them. The last proof π2 is generated by
invoking the ZK simulator for HyraxPC.Eval (cf. Lemma 2), and in this case the validity follows from the
NIZK guarantees. Second, we observe that S only makes a single RO reprogramming, in particular when
invokes the ZK simulator for HyraxPC.Eval. Finally, we need to prove that the output of S is indistinguishable
from that of a real transcript. Since the Lasso prover only employs hiding commitments as inputs to the
inner subprotocols and, additionally, all the subprotocols used in Lasso are zero-knowledge, we conclude
that the honestly generated proofs made by our simulator are identically distributed to the proofs in a real
transcript. In the final (sub)protocol HyraxPC.Eval, indistinguishability is due to the guarantees of the ZK
simulator.

The last subprotocol of Lasso consists of an invocation of the (µ+ 1)-rounds HyraxPC.Eval protocol that
satisfies computational µ-UR (cf. Lemma 2). Hence, we conclude that zkLasso satisfies perfect (r−1)-UR. ⊓⊔

5.3 On Multi-Set Fingerprinting

Lemma 9. The extracted multi sets in Step 9 of Fig. 11 are the same except with negligible probability.

Proof. Let A and B be the two multisets and let n := |A| = |B| (we can exclude that they have different
cardinalities from the extraction procedure). Recall that each element in A or B is a tuple of three elements
(x, v, t). In order to check their equality we check the equality of their fingerprints: Hτ,γ(A) = Hτ,γ(B),
where Hτ,γ(A) =

∏
(x,v,t)∈A (hγ(x, v, t)− τ), and hγ(x, v, t) = x · γ2 + v · γ + t denotes the Reed-Solomon

fingerprinting.
Now assume that A ̸= B and let us bound the probability that the fingerprint test verifies. Below we

denote by α (resp. β) the elements of the tuple (hγ(Aj))j∈[n] (resp. Bj) where, in the indexing, we assume

the elements of A (resp. B) are lexicographically ordered13.
We observe that:

Pr [Hτ,γ(A) = Hτ,γ(B)]

=Pr [Hτ,γ(A) = Hτ,γ(B) ∧α ̸= β] + Pr [Hτ,γ(A) = Hτ,γ(B) ∧α = β]

≤Pr [Hτ,γ(A) = Hτ,γ(B) |α ̸= β] + Pr [α = β]

Intuitively the first summand in the last line refers to the event where the final product check passes even
though the Reed-Solomon fingerprints somehow differ. The second summand in the last line is the probability
that all the Reed-Solomon fingerprints are the same (despite A and B being distinct).

We observe:

Pr [Hτ,γ(A) = Hτ,γ(B) |α ̸= β] = Pr

∏
j

(αj − τ) =
∏
j

(βj − τ) |α ̸= β


and in order to bound the last probability we can simply apply Schwartz-Zippel (the left- and right-hand
side are two distinct polynomials of degree n evaluated in a random point τ) and conclude that it is lower
or equal to n

|F| .

We now bound the other summand. We first observe that, from our assumption A ̸= B there must
exist some index j∗ such that Aj∗ ̸= Bj∗ (recall we are assuming a lexicographic ordering of the multisets).
Therefore:

Pr [α = β] = Pr

∧
j

αj = βj

 ≤ Pr [αj∗ = βj∗ ]

13 It could in fact be any canonical ordering. Having some ordering is going to simplify some observations in our
proof.
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By the definition of hγ we can then apply Schwartz-Zippel again and conclude that the last event can occur
with probability at most 2

|F| .

We showed that if A ̸= B then the probability that the test passes is at most n
|F| +

2
|F| . Since this quantity

is negligible this concludes the proof. ⊓⊔

6 Modular Composition of Simulation-Extractable Arguments

We describe two variations of two compilers for modular compositions of non-interactive arguments of knowl-
edge. The first compilers handles conjunction of relations with shared witness; the other two handle functional
compositions.

6.1 General Results on Conjunction and Functional Composition

In both cases, the compilers start from commit-and-prove arguments that are simulation-extractable. How-
ever, for two of the compilers, we require the slightly more general notion of signature-of-knowledge.

Definition 12. We say that a non-interactive argument Π is a signature-of-knowledge for a relation R, if
Π is a complete, simulation extractable and zero-knowledge non-interactive argument for the (augmented)
relation R′ such that:

∀msg ∈ {0, 1}λ : R(pp,x,w) ⇐⇒ R′(pp, (msg,x),w),

where msg is referred to as the signed message.

(Generalized) Conjunction of arguments. We consider two compilers for conjunction of relations with
common witnesses with different trade-offs. Additionally, we generalize the notion of conjunction with
common witness by assuming a (possible) processing through a function M to such a common witness.
Specifically, given relation RA and RB we define RM

A∧B the relation such that RM
A∧B(pp,xA,xB ,w) ⇐⇒

RA(pp,xA,w) ∧RB(pp,xB ,M(w)).

Definition 13. Let M be a polynomial time function, we say that a commitment scheme CS is M -malleable
if there exist efficiently computable functions Mc,Mρ such that, for any commitment c to w with opening ρ we
have that Mc(c) is a valid commit to M(w) with opening Mρ(ρ). Namely ∀pp, c,w, ρ : VerCom(pp, c,w, ρ)⇒
VerCom(pp,Mc(c),M(w),Mρ(ρ)).

We define a compiler from simulation-extractable arguments (resp. signature-of-knowledge) Π∧ (resp.
Π̄∧) for RM

A∧B in Fig. 16.

Functional composition of arguments. For any polynomial-time function f let the relation Rf be such
that Rf (pp, (xi,xo), (wi,wo)) ⇐⇒ f(xi,wi) = (xo,wo). We define g◦f to be the functional composition of
g and f , namely, the function that on input ((xf,i, xg,i), wf,i) computes (xf,o, wg,i)← f(xf,i, wf,i), computes
(xg,o,wo)← g(xg,i, wg,i) and outputs ((xf,o, xg,o),wo). See Fig. 17 for a graphical representation of functional
composition.

We define a compiler to functional composition from simulation-extractable arguments Πg◦f and from a
signature of knowledge Π̄g◦f for Rg◦f in Fig. 16.

Additional Definitions and Theorem on Compilers Security. We are almost ready to state the
theorem. We first need two additional definitions.

Definition 14. We say that a relation R is efficiently witness computable if there exists a EPT algorithm
M such that for any pp and x we have either R(pp,x,M(pp,x)) = 1 or (pp,x) ̸∈ LR. We say that a
relation R is always satisfiable if, for any pp, the language LR,pp = {0, 1}∗, where the latter is the language
associated to the relation for given parameters pp.
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Domain separation: H1 and H2 are two random oracles.

// Conjunction proofs Π∧ and Π̄∧ (including boxed instructions )

Prover: PH1,H2(pp, (xA,xB),w) does:
1. commit c, ρ← CS.Commit(ck,w),
2. prove πA ← ΠA.PH1(pp, (c,xA), (w, ρ)),
3. prove πB ← ΠB .PH2(pp, ( msg ,Mc(c),xB), (M(w),Mρ(ρ)))

where msg := xA∥πA

Verifier: VfH1,H2(pp, (xA,xB), π) parses π = (c, πA, πB), return 1 if and only if VfH1(pp, (c,xA), πA) = 1 and
VfH2(pp, ( msg, Mc(c),xB), πB) = 1

// Composition proofs Πg◦f and Π̄g◦f (including boxed instructions )

Prover: PH1,H2(ci, co,xi,xo,wi,wo, ρi, ρo) does
1. parse xi = xf,i∥xg,i and xo = xf,o∥xg,o and xf = (xf,i, xf,o),
2. let (xf,o, wg,i)← f(xf,i, wf,i) and c′, ρ′ ← CS.Commit(ck, wg,i).
3. prove πF ← Πf .PH1(ci, c

′, (xf,i, xFo), (wi, wg,i), ρi, ρ
′),

4. prove πG ← Πg.PH2( msg , c′, co, (xg,i, xg,o), (wg,i, wo), ρ
′, ρo)

where msg := ci∥xF ∥π1

Verifier: Vf((ci, co,xi,xo), π) parses π = (c′, π1, π2), return 1 if and only if Πf .Vf
H1((ci, c

′, xf,i, xf,o), π1) = 1
and Πg.Vf

H2((msg, c′, co, xg,i, xg,o), π2) = 1.

Fig. 16. Compiler to proofs for conjunction (top) and function composition (bottom). For X ∈ {A,B, f, g} ΠX

is assumed to be a commit-and-prove non-interactive argument over commitment scheme CS (assumed to be M -
malleable for the compiler for conjunction). For Π̄∧ (resp. Π̄g◦f ) we additionally assume that ΠA (resp. Πg) is a
signature of knowledge.

The definition above indicates that the relation R can be decided by an expected polynomial-time algorithm.
At first glance, one might consider an argument of knowledge for a relation in P 14 to be somewhat trivial.
However, the scenario becomes more compelling in the context of commit-and-prove relations. In this case,
while R is decidable, the corresponding commit-and-prove relation R̂ is not, unless, we allow the prover to
sample the commitment to the witness.

Nicely, when the relation RA (resp. Rf ) is efficiently witness computable we can weaken the zero-
knowledge property of ΠA (resp. Πf ) in the compilers to witness indistinguishability (WI)15. Furthermore,
for WI to hold, it is not necessary to reprogram the random oracle.

Definition 15. An non-interactive argument for R is statistically witness indistinguishable (WI) if for any
pp and any x,w1,w2 such that (pp,x,wi) ∈ R the distributions PH(pp,x,wi) for i ∈ {1, 2} are statically
close.

Theorem 5. Assuming that the commitment scheme CS is hiding and binding, the following statements hold
true:
1. For any PT M , if CS is M -malleable, and ΠA and ΠB are trapdoorless zero-knowledge and simulation

extractable then Π∧ for the relation RM
A∧B is simulation-extractable.

2. If Πf and Πg are trapdoorless zero-knowledge and simulation extractable then Πg◦f is simulation-
extractable.

3. For any PT M , CS is M -malleable, and if ΠA is knowledge sound and statistically witness indistinguish-
able, RA is always satisfiable and efficiently witness computable and ΠB is trapdoorless zero-knowledge
and a signature-of-knowledge then Π ′ is simulation-extractable.

14 More precisely, the class AvgP .
15 Zero-knowledge implies witness indistinguishability, see Feige and Shamir [23].
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Fig. 17. Graph for the functional composition g ◦ f .

4. If Πf is knowledge sound and statistically witness indistinguishable, Rf is always satisfiable and effi-
ciently witness computable or the public output of f is the empty string, namely for any xf,i,wi we
have |xf,o| = 0 where xf,o, wf,o = f(xf,i,wi), and Πg is trapdoorless zero-knowledge and a signature-of-
knowledge then Π̄g◦f is simulation-extractable.

Before proving the theorem we remark that the notion of trapdoorless zero-knowledge is key for the four
statements to hold. This is evident, for example, in the proof of the fourth statement, where we can invoke
the knowledge soundness of Πf in the presence of simulated proofs for Πg. We can do this because to simulate
proofs we only need to reprogram the random oracle H2 which does not interfere with Πf . On the other
hand, if we needed a trapdoor for the simulations then we would need to make sure that the knowledge
sound of Πf held in the presence of such a trapdoor (for example, by sampling independent reference strings
for the two schemes, which is unnatural and cumbersome in many practical scenarios).

Proof (of Theorem 5). We proceed statement by statement.

First statement. Completeness of ΠA and ΠB , together with the M -malleability of the commitment
scheme, imply the completeness of Π∧.

As for simulation extractability, let P∗ be an adversary for the simulation extractability of Π∧. Given
the set Qsim of queries and answers to the simulation oracle, we can derive the set Qsim,i of queries and
answers to Πi for i ∈ {A,B}. Specifically, if (x, π) ∈ Qsim and x = (xA,xB) and π = (c, πA, πB) then
((c,xi), πi) ∈ Qsim,i for i ∈ {A,B}. As a shortcut, given a tuple (x, π) for Π∧, we can define (x, π)i the
derived tuple of instance and proof for Πi.

Let (x̃, π̃) be the forgery of the adversary, where x̃ := (x̃A, x̃B) and π̃ := (c̃, π̃1, π̃B), and consider the
event bad:

(x̃, π̃) ̸∈ Qsim ∧

 ∧
i∈{A,B}

(x̃, π̃)i ∈ Qsim,i

 (5)

It is easy to check that the Pr[bad] = 0. In fact, if (x̃, π̃)1 ∈ Qsim,1 then either x̃B or π̃B are fresh, namely
either ∀π′2 : (c̃, x̃B , π

′
2) ̸∈ Qsim,2 or ∀x′2 : (c̃,x′2, π̃B) ̸∈ Qsim,2, as otherwise (x̃, π̃) ∈ Qsim. The other alternative

is (x̃, π̃)2 ∈ Qsim,2, which is handled similarly.
First we show that Π∧ is indeed zero-knowledge. Let Si be the zero-knowledge simulator for Πi, and

consider the zero-knowledge simulator S∧ that runs SA,SB in parallel, in particular the simulator provides
three interfaces to the adversary, the simulation oracle query on the appropriate instances the simulators SA
and SB (following the specification as in the prover), while the other two oracles are the simulator for the
random oracles, in particular, S∧ queries SA for the queries directed to H1 and SB for the queries directed
to H2. Because of the domain separation, the simulators can handle the RO-queries independently. More in
detail, the simulation oracles are handled as follows:

– Parse the instance as x as (xA,xB).
– Sample a commitment to a dummy value, namely c, ρ← CS.Commit(ck, 0̄).
– Run the simulator SA on (c,xA) and SB on (Mc(c),xB).
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It is rather straight-forward to show that if ΠA and ΠB are zero-knowledge and the commitment scheme is
hiding, then Π∧ is zero-knowledge.

Let P∗i be the adversary for the simulation extractability of Πi that internally runs P∗ and the simulator
Sī where i ∈ {A,B} and ī is set to B if i = A and to B otherwise. Specifically, the adversary does:

– Upon simulation query x for Π∧, similarly to the simulator S, it samples a commitment c, ρ ←
CS.Commit(ck, 0̄), runs Sī on the derived instance (c,xī) and queries the simulation oracle for the instance
(c,xi).

– Forward the query to the random oracle appropriately: either internally handled by Sī, or externally
forwarded the queries to P∗i ’s random oracle.

– Upon forgery (x̃, π̃) output the forgery (x̃, π̃)i.

Since the event bad defined in Eq. (5) never happens, from a valid forgery for Π∧ we can derive either valid
forgery for ΠA or for ΠB , thus:

Pr
[
SE
S,P∗

0,Π∧
(λ)

]
≤ Pr

[
SE
SA,P∗

A

0,ΠA
(λ)

]
+ Pr

[
SE
SB ,P∗

B

0,ΠB
(λ)

]
(6)

We define the knowledge extractor E for Π∧:

– For i ∈ {A,B}, run Ei interacting with P∗i and let ŵi := (wi, ρi) be the output of Ei.
– If (M(wA),Mo(ρA)) ̸= (wB , ρB) abort, otherwise output wA.

Notice, the description above is incomplete because we did not describe how E provides the interaction
between Ei and P∗i . More in detail, the extractor can provide a virtual interface to P∗i given oracle access to
P∗ using the same strategy we define the adversary P∗i using only oracle access to P∗. Moreover, the two
(internal) extractors are run with independent randomness. We can show that:

Pr
[
SE
E,S,P∗

1,Π∧
(λ)

]
= Pr

[
SE
S,P∗

0,Π∧
(λ) ∧ ¬

(
∧i(c̃, x̃i, ŵi) ∈ R̂i ∧ ¬Abort

)]
≤

∑
i

Pr
[
SE
Ei,Si,P∗

i

1,Πi
(λ)

]
+ Pr[Abort] (7)

The running time of the extractor is the sum of the running times of EA and EB , and when Abort happens,
we can break the binding property of the commitment scheme. Putting Eqs. (6) and (7) together we have:

AdvSIM−EXT
Π∧,R (S, E ,P∗) ≤

∑
i∈{A,B}

AdvSIM−EXT
Πi,Ri

(Si, Ei,P∗i ) + negl(λ)

Second Statement. The proof for this statement is almost the same as the previous proof. The main
difference is the definition of the extractor which aborts in case it finds two different openings for the
commitment c′. We give more details on the extractor in the proof of the forth statement.

Third Statement. Similarly to the proof of the first statement, we consider P∗ be an adversary for the
simulation extractability of Π̄∧. Given the set Qsim of queries and answers to the simulation oracle, we can
derive the set Qsim,i of queries and answers to Πi for i ∈ {A,B}. The only difference is that from a tuple
(x, π) for Π̄∧ we derive the tuple (x, π)B = (msg, c,xB , πB) where msg = xA∥πA for ΠB . Thanks to this
difference, if the forgery (x̃, π̃) ̸∈ Qsim then the derived forgery (x̃, π̃)2 ̸∈ Qsim,2.

First we show that Π̄∧ is indeed zero-knowledge. Let SB be the zero-knowledge simulator for ΠB , and
consider the zero-knowledge simulator S∧ that:

– Parse the instance as x = (xA,xB).
– LetM be the algorithm satisfying the efficiently witness computability of RA, compute wA ←M(xA).
– Sample ρA and computes honest proof πA for (c,xA,w, ρA) ∈ R̂A where c, ρA ← CS.Commit(ck,wA).
– Run the simulator SB on (msg, c,xB).
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We show that if ΠA is statistical witness-indistinguishable, ΠB is zero-knowledge, and the commitment
scheme is hiding, then Π∧ is zero-knowledge. We start from the real-world distribution of honestly generated
proofs and move to the ideal distribution of simulated proofs through an hybrid argument.

– The first hybrid H1 is the same as the real-world distribution but the proof πB is computed using the
simulator SB on message (msg, c,xB). It is easy to show that the real world and the hybrid H1 are
statistically close thanks to the (statistical) zero-knowledge property of ΠB .

– In the second hybrid H2, the prover, on input (x,w), additionally computes w′ ←M(xA) and breaks
the binding of the commitment c finding ρ′ such that VerCom(ck, c,w′, ρ′) = 1. It aborts if it cannot
find such an opening ρ′. The difference between the two hybrids is the event that H2 might abort. We
can show that, since the commitment scheme is statistically hiding, the event happens with negligible
probability. Briefly, the reduction fixes messages w and w′ ←M(xA) and, given a challenge commitment
c, it outputs 1 if it can brute-force the commitment on a valid opening w.r.t. w′. Notice, if the challenge
commitment is a commitment to w, the reduction outputs 0 with the same probability of the aborting
event, while if c is a commitment to w′ there exists always a valid opening so the reduction eventually
outputs 1.

– The hybrid H3 is the same as H2 but the proof πA is computed using witness (w′, ρ′). The two hybrid
are statistically close thanks to the statistical witness indistinguishability of ΠA.

– The last hybrid H4 is the same as H3 but the commitment is computed directly as a commitment to w′.
Again, we can reduce to the hiding of the commitment scheme. Also notice, this last hybrid is equivalent
to the simulated world.

We are ready to prove simulation extractability. Let P∗A be an adversary for the knowledge extractability of

ΠA that internaly runs P∗ and S2. Notice that, even if RA is efficiently witness computable, the relation R̂A

(proved by ΠA) is not polynomially decidable, thus the notion of knowledge extractability is still meaningful.
Specifically the adversary P∗A does:

– Upon simulation query x for Π̄∧, similarly to the simulator S described above, it computeswA ←M(xA)
and samples commitment c, ρA ← CS.Commit(ck,wA), it runs S2 on the derived instance (msg, c,x2).

– Internally forward the query to H2 to SB , and (externally) forward the queries to H1.
– Upon forgery (x̃, π̃) output the forgery (x̃, π̃)A.

Almost identically, let P∗B be an adversary for the simulation extractability of ΠB that internally runs P∗.
Specifically the adversary P∗B does:

– Upon simulation query x for Π̄∧, similarly to the simulator S described above, it computeswA ←M(xA)
and samples commitment c, ρA ← CS.Commit(ck,wA), and it queries the simulation oracle on the derived
instance (msg, c,xB).

– Forward the query to Hi for i ∈ {A,B} to the appropriate oracles.
– Upon forgery (x̃, π̃) output the forgery (x̃, π̃)B .

Identically to the proof of the first statement, we define the knowledge extractor E for Π̄∧ to:

– For i ∈ {A,B}, run Ei interacting with P∗i and let ŵi = (wi, ρi) be the output of Ei.
– If M(wA),Mo(ρA) ̸= wB , ρB abort, otherwise output wA.

As in the proof of the first statement, the extractor can provide a virtual interface to P∗i given oracle access
to P∗ using the same strategy we define the adversary P∗i using only oracle access to P∗. The only difference
is that P∗1 is an adversary for the knowledge extractability (it does not need simulation queries). Moreover,
the two (internal) extractors are run with independent randomness. It is rather straight-forward to show
that:

Pr
[
SE
E,S,P∗

1,Π∧
(λ)

]
= Pr

[
SE
S,P∗

0,Π∧
(λ) ∧ ¬

(
∧i(c̃, x̃i, ŵi) ∈ R̂i ∧ ¬Abort

)]
≤

≤ Pr
[
SE
EB ,SB ,P∗

B

1,ΠB
(λ)

]
+ Pr

[
KS
EA,P∗

A

A,ΠA
(λ)

]
+ Pr[Abort] (8)
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The running time of the extractor is the sum of the running times of EA and EB , and when Abort happens,
we can break the binding property of the commitment scheme. Putting things together we have:

AdvSIM−EXT
Π̄∧,R (S, E ,P∗) ≤ AdvKS

ΠA,RA
(EA,P∗A) +AdvSIM−EXT

ΠB ,RB
(SB , EB ,P∗B) + negl(λ). :

Fourth Statement. Given the set Qsim of queries and answers to the simulation oracle, we can derive the
sets Qsim,f and Qsim,g of queries and answers to Πf and Πg respectively. Specifically, if x, π ∈ Qsim and x =
(ci, co,xi,xo) and π = (c′, πf , πg) then (ci, c

′, xf,i, xf,o), πf ∈ Qsim,f and (msg, c′, co, xg,i, xg,o), πg ∈ Qsim,g

where msg = c′∥xf∥πf . As a shortcut, given a tuple x, π for Πg◦f , we can define (x, π)X the derived tuple
of instance and proof for ΠX for X ∈ {f, g}.

Similarly to the simulator for zero-knowledge in the proof of the third statement. We can define a
simulator for Πg◦f that makes use of the efficient witness computability of Rf . Additionally, we give a
second simulator for the special case where xf,o is the empty string for any assignments of the public and
private inputs xf,i, wf,i.

Let Sg the zero-knowledge simulator for Πg, and consider the zero-knowledge simulator S (resp. the
zero-knowledge simulator S ′ that executes Item 2b instead of Item 2a) that:

1. Parse the instance as x = (xf ,xg).
2. Execute one of the two steps:

(a) LetM be the algorithm satisfying the efficient witness computability ofRf , computewf = (wf,i, wf,o)←
M(xf ).

(b) Set wf,i := 0̄ compute wf,o ← f(xf,i, wf,o) and let wf := (wf,i, wf,o).

3. Compute honest proof πF for (ci, c
′,xf ,wf ) ∈ R̂f where c′, ρ′ ← CS.Commit(ck, wf,o) and ci, ρi ←

CS.Commit(pp, wf,i).
4. Sample dummy commitment co, ρo ← CS.Commit(ck, 0̄), run the simulator Sg on (msg, c′, co,xg).

The proofs of zero-knowledge w.r.t. the two simulators follow similarly to the proof of zero-knowledge in the
third statement. In particular, in both cases, we first switch to simulated proofs for Πg and then use the
hybrid argument that use a combination of the hiding property and the witness indistinguishability property.
Also to prove simulation extractability we proceed similarly to the proof of the third statement. We omit
the details as the proof is almost identical.

6.2 Discussion and Applications

We note that, if we disregard the aspects of commitment malleability (see Definition 13), the compilers
for functional composition are more general than those for conjunction. Specifically, we could think of the
function f as computing the relation RA and passing the witness, unchanged, to the next function g, which
in turn computes the relation RB .

We chose to present two distinct types of compilation (conjunctions and functional compositions) be-
cause this approach arguably makes it easier to present our results. Additionally, the simpler compiler (for
conjunction) allows us to handle the commitment malleability aspects more directly.

In terms of assumptions, the third and fourth results trade the (additional) efficient witness sampleability
property (see Definition 14) for weaker assumptions on the security of the arguments of knowledge. While
the assumption of efficient witness sampleability might seem strong, for functional composition, we can omit
this assumption by requiring a structural property on f . This is another reason why we include the fourth
result, even though in the following discussion on zkVM in Section 7, we only require the compilers for
conjunction.

7 Simulation extractability of zkVMs

7.1 Preliminaries on SNARK VMs

Here we provide an abstract treatment of virtual machines. We start from this general definition:
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The virtual machine VMExecute(Pcode,x, z):

Set (sregs, regs)← 0k+4,mem← x∥z.
Iterate for t times the following:
– Update Program-Counter: sregs[0]← regs[0].
– Fetch: sregs[1]← Pcode[sregs[0]].
– Read-and-Write Operations:
• sregs[2]← mem[regs[1]], //read from memory
• sregs[3]← regs[3], //load to special register
• mem[regs[2]]← sregs[3], //write to memory

– Execute: regs← Execute(sregs)
Output y = mem[0 : o].

Fig. 18. The VM with parameters the instruction set Execute and a time bound t. The inputs are the program code
Pcode, a public input x and a private input z, the output of the VM is y. The machines load on the memory the
inputs and executes t steps, the output y of the machine is the state of the memory after t steps. There are four
special registers: sregs[0] stores the current program counter, sregs[1] stores the next instruction, while sregs[1] and
sregs[2] store the (two) operands for the next instruction, in particular, sregs[1] stores data fetched from the main
memory and sregs[2] stores data from the result of the previous instruction. The instructions in Execute do not change
the content of the special registers and update the program counter for the fetch of the next instruction in regs[0].
The VM, at any iteration, writes in memory at location regs[2] the content of sregs[3] and at sregs[3] the content of
regs[3], these are (somewhat arbitrary) operations to allow flow of information from regs to sregs and from sregs to
memory: notice that different architectures performing additional reading/writing operations are theoretically (and
practically) equivalent.

Definition 16 (Instruction Set (Execution)). Let γ, k ∈ N. An instruction set for a virtual machine
with k registers and codewords of size γ is an efficiently computable function Execute : {0, 1}γ·(k+4) →
{0, 1}γ·k.

We want to describe the relation which describes a virtual machine execution. Consider the circuit in
Fig. 18. This is parameterized by an instruction set Execute, an execution bound t, a bound on the number
of register k, codewords of size γ, and a bound on the output size o. We denote the circuit thus parametrized
as VMExecute,t,o. (For simplicity, we hide all the parameters but Execute, and simply write VMExecute whenever
the parameters are clear from the context.) Following [2], we define the commit-and-prove relation:

RExecute
zkVM ((t, o), (Pcode,x,y), z) ⇐⇒ VMExecute(Pcode,x, z) = y (†)

Splitting RzkVM in its logical components. We now show how to approach proving the relation RzkVM

from a modular perspective. The way we “split” relation RzkVM will roughly follow the lookup-singularity
approach in [2]. For this reason we will isolate an execution component (which in [2] is performed through
the lookup argument Lasso) and “anything else” (in relation R⋆) roughly consisting of instruction fetching
(which we abstracted out in our VM model) and memory checking. For simplicity we do not break this
second part further; our goal is to showcase the modular flavor of zkVMs and to provide a blueprint that
can be specialized in follow-up works16. We thus define the commit-and-prove relation below:

RExecute(wregs,wsregs) ⇐⇒ ∀i ∈ [t− 1] : Execute(wsregs[i]) = wregs[i+ 1]

Here (wsregs[i],wregs[i]) is the state of the registers of the virtual machine at the i-th step of computation.
Looking ahead, we associate the tuple (wsregs,wregs) with the trace of the virtual machine in the computation
of the program Pcode on input (x, z).

16 The work in [2] actually logically separates memory checking and instruction fetching. Both the components they
use for these modules can be thought of more or less specialized versions of Spartan. Therefore, in spirit, our the
instantiations we present in Section 7.4 are still applicable to the original presentation in [2].
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Definition 17. The zkVM-complementary relation is the relation R⋆ such that for any execution set Execute,
and for any input (Pcode,x,y), z:

RExecute
zkVM ((Pcode,x,y), z) ⇐⇒ ∃(wregs,wsregs,wmem) :

RExecute(wregs,wsregs) ∧
R⋆(Pcode,x,y, (wregs,wsregs,wmem))

where RExecute
zkVM is the relation defined as in Eq. (†).

Intuitively, the relation R⋆ needs to handle the logic of the virtual machine and make sure that the memory
accesses, during the execution of the program, are consistent (namely, that we read the correct instructions
from Pcode, we perform the read and write operations, and that if the virtual machine reads from the memory
the value v at location i, it means that the last time the virtual machine wrote at location i, it wrote the
value v).

7.2 A General Theorem on the Non-Malleability of SNARK VMs

We say that a commit-and-prove argument of knowledge for R⋆ has separate commitments (for CS) if the
witnesses wregs,wsregs and wmem are committed separately. Namely, the witness w := (wregs,wsregs,wmem) for
R⋆ is committed as cX , ρX ← Commit(ck,wX) for X ∈ {regs, sregs,mem} and c := (cregs, csregs, cmem).

Theorem 6. For any instruction set Execute, let Π be a zero-knowledge argument of knowledge for RExecute

that is simulation extractable, and let Π⋆ be an argument of knowledge for R⋆ that has separate commitments.
There exists a simulation-extractable zkVM if one of the following holds:
1. Π⋆ is simulation-extractable and zero-knowledge.
2. Π⋆ is witness-hiding and Π is a signature-of-knowledge.

The theorem follows as an application of Theorem 5. The interesting case is when Π⋆ is WI. In this case, we
additionally need to prove efficient witness sampleability by showing an altered instruction set that simply
prints the output y into memory.

Proof (of Theorem 6). The theorem follows as an application of Theorem 5 and in particular of the first
statement assuming the conditions in item (1) and third statement assuming the condition in item (2). We
start with the more interesting case where we combine a knowledge-sound and witness-hiding scheme for R⋆

with a simulation-extractable scheme for RExecute. We can assume that the witness w := (wregs,wsregs,wmem)
for R⋆ is committed separately, namely cX , ρX ← Commit(ck,wX) for X ∈ {regs, sregs,mem} and c :=
(cregs, csregs, cmem).

We define the functions Mc(csregs, cregs, cmem) = (csregs, cregs), and similarly, M(w) = (wsregs,wregs) and
Mρ(ρsregs, ρregs, ρmem) = (ρsregs, ρregs). It is trivial to show that the commitment for Π⋆ is M -malleable and
M(w) is a witness for RExecute as required by the third statement of Theorem 5. We define the simulation-
extractable zkVM as the composition Π̄∧ in Theorem 5 with M -malleable commitment between Π and Π⋆.
We need to show that R⋆ is efficiently witness sampleable and always satisfiable. For the former, consider
the following “altered” virtual machine VM′Execute:

– Run for (t− o) iterations the code of VMExecute(Pcode,x, z) with z← 0̄ .
– For i ∈ [o] runs the following:
• Update Program-Counter: sregs[0]← regs[0].
• Fetch: sregs[1]← Pcode[sregs[0]].
• Read-and-Write Operations:

* sregs[2]← mem[regs[1]], //read from memory
* sregs[3]← regs[3], //load to special register
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* mem[regs[2]]← sregs[3], //write to memory

• Execute: regs← (0, 0, i,yi, 0̄)

– Output y = mem[0 : o].

We can compute the trace w := (wsregs,wregs,wmem) associated with the execution of the altered virtual
machine VM′Execute. In the code of VM′Execute, the only difference w.r.t. an execution of VMExecute(Pcode,x, 0̄) is
that at the end we force to write to the first o locations of the memory the value y, thus forcing the output
of VM′Execute to y. Notice that w is a valid witness for R⋆ on instance (Pcode,x,y), this is because R⋆ does
not enforce the consistency of the registers regs between two consecutive steps and, in particular, during the
last o iterations.

Additionally, we notice that, if the commitment scheme is perfectly hiding, then language LR̂⋆ is always
satisifiable because we can execute the procedure above to create a valid witnessw and, although inefficiently,
we can always find ρ such that the commitment opens to w with opening ρ.

If we assume (2) we can define the simulation-extractable zkVM as the composition in Theorem 5 between
Π and Π⋆. ⊓⊔

7.3 Signature-of-Knowledge with delayed message

Theorem 5 highlights that, in many scenarios, we can obtain simulation extractability even when one of the
components of the composed argument is malleable. However, the caveat is that we need to require that
the second component is not only simulation extractable but also a signature of knowledge. It is rather
easy to instantiate a signature of knowledge from a FS-based simulation extractable argument of knowledge,
by including the message to the hashed view. However, there is an efficiency bottleneck in doing so in our
compilers from Theorem 5. In fact, for example in the third statement, the message contain the proofs πA,
which enforce a sequentiality in the proofs’ generation by the prover, namely πA needs to be generated before
πB .

To mitigate such a bottleneck, we describe a notion of signature of knowledge where, roughly speaking,
the message can be fed at the very end of the prover’s computations. We refer to this as a signature of
knowledge with delayed message. Informally, the prover’s algorithm P can be divided into two procedures P1

and P2: the first procedure P1 takes as input the instance and witness (thus it is independent of the message),
while P2 receives the internal state of P1 and the message, namely P(pp,msg,x,w) = P2(msg,P1(pp,x,w)).
The efficiency property we are interested in is that non-trivially t(P2) < t(P1) where, very roughly speaking,
t(A) is the computational complexity of the algorithm A.

Fiat-Shamir-based Approach. We show that in Fiat-Shamir-based signature-of-knowledge the message
does not need to be hashed until the round k where k-zero-knowledge and k-unique-response hold. This
might enable for delayed message when the index k is the last (or more generally, when all the commitments
have been computed and sent).

Theorem 7. Let Π be a (2r + 1)-message public-coin interactive argument. Let ΠFS∗,k be the Fiat-Shamir
transform where the k-th challenge is derived as H(pp,msg,x, π|k) for an input message msg. If there is
k ∈ [r] such that ΠFS∗,k satisfies knowledge-soundness, k-zero-knowledge and k-unique response, then ΠFS∗,k

is a signature of knowledge.

Proof (Sketch.). The proof proceeds exactly as Theorem 3.4 in [16]. In particular we can define a knowledge-
sound adversary B for ΠFS∗,k from the sim-ext adverary A for ΠFS∗,k by internally program the random
oracle only on the input defined by the k-th round when running the zero-knowledge simulator and reply all
the other queries using the random oracle interface.

Eventually A outputs its forgery. Such a forgery is considered valid for B if the verifier does not need
to query the random oracle at the input programmed by B when verifying the forgery. When such an event
happens we say that π̃ contains a critical RO-query.

Let (m̃sg, x̃, π̃) be the forgery of A and (m̃sg, x̃, π̃) ̸∈ Qsim, we can proceed with a case analysis:
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– If (∗, x̃, ∗) ̸∈ Qsim then π̃ does not contain any critical queries and we can reduce directly to the knowledge
soundness.

– Otherwise, if π̃|k = π|k and m̃sg ̸= msg for simulated (msg, x̃, π), then we can break k-UR since
H(m̃sg, π|k) ̸= H(msg, π|k) with overwhelming probability.

– Finally if (m̃sg, x̃, ∗) ∈ Qsim but π̃|k ̸= π|k then π̃ does not contain any critical queries and we can reduce
directly to the knowledge soundness.

⊓⊔

Black-box approach. A second, black-box approach is based on a technique (which we believe to be
folklore) relying on one-time signature.

Definition 18. We say that Σ = (KGen,Sign,Vf) is a one-time signature iff:

– Syntax. The three algorithms are PPT where KGen(1λ) returns a pair pk, sk of public and secret keys,
Sign(sk,msg) with msg ∈ {0, 1}λ returns a signature σmsg, and Vf(pk,msg, σ) returns a decision bit.

– Correctness. For any (pk, sk) ∈ KGen(1λ) and any msg ∈ {0, 1}λ we have Vf(pk,msg,Sign(ss,msg)) =
1.

– One-time unforgeability. For any PT adversary A that upon input the public key and an adaptively
chosen message msg (and a signature σ for it) outputs (m̃sg, σ̃), with (m̃sg, σ̃) ̸= (msg, σ):

Pr
[
Vf(pk,A(pk,Sign(sk,msg))) = 1 : (pk, sk)← KGen(1λ)

]
∈ negl(λ)

Let Π be a signature of knowledge for R and Σ a one-time signature, consider the protocol Π ′ := (P,V)
for R where:

– P(pp,msg,x,w) samples (pk, sk)← KGen(1λ), computes π ← Π.P(pp, pk,x,w) and σ ← Sign(sk,msg∥x),
returns π′ := (π, pk, σ).

– V(pp,msg,x, π′) returns Π.V(pk,x, π) and Vf(pp, pk,x, σ).

Theorem 8. If Π is a signature-of-knowledge for R and Σ is a one-time signature then Π ′ is a signature-
of-knowledge for R.

Proof (sketch). The event that there exist two simulation queries that have the same public key for the one-
time signature scheme is negligible, as otherwise we can break one-time unforgeability. Let (m̃sg, x̃, (p̃k, π̃, σ̃))
be the forgery of the adversary. If p̃k is not fresh, i.e., there exists a simulated proof (pk, π, σ) such that
pk = p̃k, then it must be (m̃sg, σ̃) = (msg, σ), as otherwise we break one-time unforgeability, but then
(x̃, π̃) ̸= (x, π) which implies that (m̃sg, x̃, π̃) is a valid forgery for the inner-scheme Π. On the other hand,
when p̃k is fresh, (p̃k, x̃, π̃) is a valid forgery for Π independently of the signed message m̃sg.

7.4 The Lookup-Singularity is Non-Malleable (or, Joltish is SIM-EXT)

As already mentioned in this section, we can realize an argument of knowledge for RExecute using a lookup
argument. The basic idea is to consider the truth table of the instruction set Execute as the table, and the exe-
cution trace wExecute as the subvector. Although the truth table of the instruction set Execute is exponentially
large, [2] shows that the truth table for the instruction set of RISC-V is decomposable (Definition 11).

Below we use the concept that an instruction set is decomposable if it can be described by a decomposable
table (Definition 11), that is

Theorem 9. If Execute is a decomposable instruction set, then zkLasso (see Section 5) implies a simulation-
extractable argument of knowledge and a signature of knowledge with delayed message for RExecute.

Proof. Fixed Execute, we can define the argument system for RExecute that runs the prover and verifier of
zkLasso with parameter a table E that encodes the truth table of Execute. Namely, E is the table such
that E[sregs] = Execute(sregs) for any sregs ∈ {0, 1}3·γ . Recall that the truth table of Execute, namely E, is
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decomposable. To prove RExecute(wsregs,wregs) we prove that Rlookup(E,wsregs,wregs) where wsregs defines the
committed indexes and wregs the committed sub-table.

Additionally, we notice that Theorem 4 and Theorem 7 imply we can apply the FS-transform to zkLasso
to create a signature-of-knowledge with delayed messages and thus a signature-of-knowledge with delayed
messages for RExecute.

Definition 19 (Joltish). Let Execute be a decomposable instruction set and let Π⋆ be an argument of
knowledge for R⋆. We call Joltish (instantiated with Π⋆) the argument for RExecute

zkVM derived from the one of
the compilers for conjunction in Fig. 17 and Theorem 6 where ΠExecute for RExecute is zkLasso.

An efficient SIM-EXT zkVM for RISC-V Following [2], and as a corollary of Theorems 4 and 6, we
have the following:

Corollary 2. Let Execute be a decomposable instruction set, then there exists Π⋆ as in Definition 19 s.t.
Joltish instantiated with Π⋆ is simulation-extractable zkVMs for RzkVM yielded by Execute.

To argue that Jolt, or more precisely its zero-knowledge version, is simulation-extractable, it remains to
show that the hypotheses of Theorem 6 hold for Jolt’s implementation of the argument of knowledge for R⋆.

In detail, in [2], Arun, Setty, and Thaler show how to realize a succinct argument of knowledge for R⋆

using a commit-and-prove argument of knowledge for R1CS (they use Spartan [41]) and a commit-and-prove
argument of knowledge for memory consistency based on the grand-product argument and memory checking
techniques from [7].

More specifically, the latter parses wmem as a list of memory operations of the form (M, τ, o, l, v), where
M ∈ {Pcode,mem} indicates which of the memories17 to read from or write to, τ is a timestamp, o is the
operation (e.g., read or write), l is a location, and v is a value. The former proves that, assuming the
memory accesses are consistent, the logic of the virtual machine is executed correctly; namely, the fetch and
read-and-write operations (on the registers) are executed and iterated t times.

In Fig. 14, we show a zero-knowledge variant of the grand-product argument, which allows us to state
that the sub-scheme for R⋆ in Joltish is both knowledge-sound and zero-knowledge, thus enabling us to use
the result from our theorem Theorem 5.

Acknowledgements

This work has received funding from the CHIST-ERA project PATTERN (ANR-23-CHR4-0008). The au-
thors would like to thank Justin Thaler for innumerous clarifications about Jolt and Lasso and for general
discussions about this work. We also thank Ben Livshits for insightful conversations about non-malleability
and about this work in general. We thank Mahak Pancholi for providing feedback on early drafts on this
work and for occasional oracle access on the topic of simulation-extractability. This work was partly carried
out while some of the authors were at Matter Labs.

17 The Pcode is a read-only memory, thus additional optimizations are available, while mem is a read-and-write memory.

37



References

1. Diego F. Aranha, Emil Madsen Bennedsen, Matteo Campanelli, Chaya Ganesh, Claudio Orlandi, and Akira
Takahashi. ECLIPSE: Enhanced compiling method for pedersen-committed zkSNARK engines. In Goichiro
Hanaoka, Junji Shikata, and Yohei Watanabe, editors, PKC 2022, Part I, volume 13177 of LNCS, pages 584–614.
Springer, Cham, March 2022.

2. Arasu Arun, Srinath T. V. Setty, and Justin Thaler. Jolt: SNARKs for virtual machines via lookups. In Marc
Joye and Gregor Leander, editors, EUROCRYPT 2024, Part VI, volume 14656 of LNCS, pages 3–33. Springer,
Cham, May 2024.

3. Thomas Attema, Ronald Cramer, and Lisa Kohl. A compressed Σ-protocol theory for lattices. In Tal Malkin and
Chris Peikert, editors, CRYPTO 2021, Part II, volume 12826 of LNCS, pages 549–579, Virtual Event, August
2021. Springer, Cham.

4. Eli Ben-Sasson, Alessandro Chiesa, Daniel Genkin, Eran Tromer, and Madars Virza. SNARKs for C: Verifying
program executions succinctly and in zero knowledge. In Ran Canetti and Juan A. Garay, editors, CRYPTO 2013,
Part II, volume 8043 of LNCS, pages 90–108. Springer, Berlin, Heidelberg, August 2013.

5. Eli Ben-Sasson, Alessandro Chiesa, and Nicholas Spooner. Interactive oracle proofs. Cryptology ePrint Archive,
Report 2016/116, 2016.

6. Daniel Benarroch, Matteo Campanelli, Dario Fiore, Kobi Gurkan, and Dimitris Kolonelos. Zero-knowledge proofs
for set membership: Efficient, succinct, modular. In Nikita Borisov and Claudia Dı́az, editors, FC 2021, Part I,
volume 12674 of LNCS, pages 393–414. Springer, Berlin, Heidelberg, March 2021.

7. Manuel Blum, William S. Evans, Peter Gemmell, Sampath Kannan, and Moni Naor. Checking the correctness
of memories. In 32nd FOCS, pages 90–99. IEEE Computer Society Press, October 1991.

8. Jonathan Bootle, Andrea Cerulli, Jens Groth, Sune K. Jakobsen, and Mary Maller. Arya: Nearly linear-time
zero-knowledge proofs for correct program execution. In Thomas Peyrin and Steven Galbraith, editors, ASI-
ACRYPT 2018, Part I, volume 11272 of LNCS, pages 595–626. Springer, Cham, December 2018.

9. Benedikt Bünz, Jonathan Bootle, Dan Boneh, Andrew Poelstra, Pieter Wuille, and Greg Maxwell. Bulletproofs:
Short proofs for confidential transactions and more. In 2018 IEEE Symposium on Security and Privacy, pages
315–334. IEEE Computer Society Press, May 2018.

10. Matteo Campanelli, Antonio Faonio, Dario Fiore, Anäıs Querol, and Hadrián Rodŕıguez. Lunar: A toolbox for
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11. Matteo Campanelli, Dario Fiore, and Anäıs Querol. LegoSNARK: Modular design and composition of succinct
zero-knowledge proofs. In Lorenzo Cavallaro, Johannes Kinder, XiaoFeng Wang, and Jonathan Katz, editors,
ACM CCS 2019, pages 2075–2092. ACM Press, November 2019.

12. Matteo Campanelli, Nicolas Gailly, Rosario Gennaro, Philipp Jovanovic, Mara Mihali, and Justin Thaler. Testudo:
Linear time prover SNARKs with constant size proofs and square root size universal setup. In Abdelrahaman
Aly and Mehdi Tibouchi, editors, LATINCRYPT 2023, volume 14168 of LNCS, pages 331–351. Springer, Cham,
October 2023.

13. Ran Canetti. Universally composable security: A new paradigm for cryptographic protocols. In 42nd FOCS,
pages 136–145. IEEE Computer Society Press, October 2001.

14. Ran Canetti, Oded Goldreich, and Shai Halevi. The random oracle methodology, revisited (preliminary version).
In 30th ACM STOC, pages 209–218. ACM Press, May 1998.

15. Alessandro Chiesa, Yuncong Hu, Mary Maller, Pratyush Mishra, Psi Vesely, and Nicholas P. Ward. Marlin:
Preprocessing zkSNARKs with universal and updatable SRS. In Anne Canteaut and Yuval Ishai, editors, EU-
ROCRYPT 2020, Part I, volume 12105 of LNCS, pages 738–768. Springer, Cham, May 2020.

16. Quang Dao and Paul Grubbs. Spartan and bulletproofs are simulation-extractable (for free!). In Carmit Hazay
and Martijn Stam, editors, EUROCRYPT 2023, Part II, volume 14005 of LNCS, pages 531–562. Springer, Cham,
April 2023.

17. Alfredo De Santis, Giovanni Di Crescenzo, Rafail Ostrovsky, Giuseppe Persiano, and Amit Sahai. Robust non-
interactive zero knowledge. In Joe Kilian, editor, CRYPTO 2001, volume 2139 of LNCS, pages 566–598. Springer,
Berlin, Heidelberg, August 2001.

18. Christian Decker and Roger Wattenhofer. Bitcoin transaction malleability and MtGox. In Miroslaw Kutylowski
and Jaideep Vaidya, editors, ESORICS 2014, Part II, volume 8713 of LNCS, pages 313–326. Springer, Cham,
September 2014.

38



19. Cyprien Delpech de Saint Guilhem, Emmanuela Orsini, Titouan Tanguy, and Michiel Verbauwhede. Efficient
proof of RAM programs from any public-coin zero-knowledge system. Cryptology ePrint Archive, Report
2022/313, 2022.

20. Antonio Faonio, Dario Fiore, Markulf Kohlweiss, Luigi Russo, and Michal Zajac. From polynomial IOP and
commitments to non-malleable zkSNARKs. In Guy N. Rothblum and Hoeteck Wee, editors, TCC 2023, Part III,
volume 14371 of LNCS, pages 455–485. Springer, Cham, November / December 2023.

21. Antonio Faonio, Dario Fiore, and Luigi Russo. Real-world universal zkSNARKs are non-malleable. Cryptology
ePrint Archive, Report 2024/721, 2024.

22. Sebastian Faust, Markulf Kohlweiss, Giorgia Azzurra Marson, and Daniele Venturi. On the non-malleability of
the Fiat-Shamir transform. In Steven D. Galbraith and Mridul Nandi, editors, INDOCRYPT 2012, volume 7668
of LNCS, pages 60–79. Springer, Berlin, Heidelberg, December 2012.

23. Uriel Feige and Adi Shamir. Witness indistinguishable and witness hiding protocols. In 22nd ACM STOC, pages
416–426. ACM Press, May 1990.

24. Ariel Gabizon, Zachary J. Williamson, and Oana Ciobotaru. PLONK: Permutations over Lagrange-bases for
oecumenical noninteractive arguments of knowledge. Cryptology ePrint Archive, Report 2019/953, 2019.

25. Chaya Ganesh, Hamidreza Khoshakhlagh, Markulf Kohlweiss, Anca Nitulescu, and Michal Zajac. What makes
fiat-shamir zkSNARKs (updatable SRS) simulation extractable? In Clemente Galdi and Stanislaw Jarecki, editors,
SCN 22, volume 13409 of LNCS, pages 735–760. Springer, Cham, September 2022.

26. Chaya Ganesh, Claudio Orlandi, Mahak Pancholi, Akira Takahashi, and Daniel Tschudi. Fiat-shamir bullet-
proofs are non-malleable (in the algebraic group model). In Orr Dunkelman and Stefan Dziembowski, editors,
EUROCRYPT 2022, Part II, volume 13276 of LNCS, pages 397–426. Springer, Cham, May / June 2022.

27. Ashrujit Ghoshal and Stefano Tessaro. Tight state-restoration soundness in the algebraic group model. In Tal
Malkin and Chris Peikert, editors, CRYPTO 2021, Part III, volume 12827 of LNCS, pages 64–93, Virtual Event,
August 2021. Springer, Cham.

28. Lior Goldberg, Shahar Papini, and Michael Riabzev. Cairo – a Turing-complete STARK-friendly CPU architec-
ture. Cryptology ePrint Archive, Report 2021/1063, 2021.

29. Shafi Goldwasser, Silvio Micali, and Charles Rackoff. The knowledge complexity of interactive proof-systems
(extended abstract). In 17th ACM STOC, pages 291–304. ACM Press, May 1985.

30. Jens Groth. On the size of pairing-based non-interactive arguments. In Marc Fischlin and Jean-Sébastien Coron,
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