Fully Succinct Arguments over the Integers
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Matteo Campanelli and Mathias Hall-Andersen

Abstract. In this work we construct fully succinct arguments of knowledge for computations
over the infinite ring Z. We are motivated both by their practical applications—e.g. verifying
cryptographic primitives based on RSA groups or Ring-LWE; field emulation and field “switch-
ing”; arbitrary precision-arithmetic—and by theoretical questions of techniques for constructing
arguments over the integers in general. Unlike prior works constructing arguments for Z or Zsx,
we circumvent most of the complexities of arithmetizing or extracting over these rings directly.
Instead, we introduce a general and arguably simpler theoretical framework for building succinct
arguments over Z, one which allows protocol designers to reuse existing SNARK techniques. This
is possible thanks to our key technique—fingerprinting, a form of arithmetic hashing—for “boos-
trapping” protocols over the integers from existing systems over prime fields (e.g., multilinear-
flavored ones, such as Spartan). The resulting protocol can then be compiled into a cryptographic
argument via a novel kind of polynomial commitment allowing queries to a multivariate integer
polynomial modulo an arbitrary prime q. We show how to instantiate our framework and obtain
a concrete scheme, Zartan. This is the first construction in literature being fully succinct over
integer computation, i.e., with short proofs and fast verification even when the witness consists
of very large integers.
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1 Introduction

Succinct arguments of knowledge allows an untrusted prover P to convince a verifier V that they
possess a witness w for some statement x in a NP relation (w,x) € R, with verifier complexity poly-
logarithmic in the (bit)length of the witness. To further allow the verifier to be poly-logarithmic in
the size of the description of the relation (e.g. an arithmetic circuit), many such argument systems
are so-called preprocessing succinct arguments of knowledge, where the description of the relation is
compressed cryptographically into a small commitment by a seperate ”indexer” or ”setup” algorithm.
Throughout this work, unless stated otherwise, we will be referring to preprocessing succinct arguments
of knowledge, simply as succinct arguments.

Succinct Arguments over Finite Fields. Most efficient succinct arguments in the literature prove satis-
fiability of relations over finite fields, e.g. satisfiability of arithmetic circuits over . for a prime p. The
focus on finite fields is a largely a side-effect of the structure afforded by finite fields which enables very
efficient succinct arguments to be constructed, e.g. every non-zero element has an inverse, fields with
smooth (additive/multiplicative) groups can easily be constructed and elliptic curves enables efficient
homomorphic commitments, pairings and Fourier transforms [BSCKL21] for any (sufficiently large)
finite field. In contrast, the focus of this work is to explore succinct arguments which directly prove
computations over the integers, an infinite integral domain whose only invertible elements are =+1,
which often complicates extraction.

Motivating Computations over Z. By computation over the integers we refer to arithmetic circuits
with multiplication and addition gates (over Z) where wires carry integers of arbitrary sizeﬂ In this
context, proving a computation means proving knowledge of a wire assignment satisfying the circuit.
Besides the obvious applications in proving computations over the integers, such circuit also allows
very efficient computation over integer rings Z/(nZ), such as: k-bit arithmetic Zyx, prime fields (of any
size) F,, and RSA groups Z: by operating over the integers and allowing the prover to witness the
reductiorﬂ Because integer circuits also allow very efficient range checks using Lagrange’s four-square
theorem, the circuits also allows very efficiently “switching” between different integer rings, e.g. em-
bedding a Zy. element into Z,. Applications include proving operations on RSA operations (e.g. signa-
tures and accumulators [CLO2/BCF T 21JCFH"22]), ideal class group operations, homomorphic encryp-
tion [Bral2lBGVI2IFV12], equivalence of discrete logarithm in different groups [BCET21JOKMZ24].
Finally, circuits over Z can be used to compute over Q and algebraic number fields, by represent-
ing rational numbers as pairs of integers. We refer the reader to Section for further details and
applications.

Comparison with Emulation. Since existing succinct arguments already exists for NP-complete rela-
tions, it is possible to use existing succinct arguments for machine emulation [GPR21] over finite fields
IF,, to prove satisifiability of a circuit over the integers, by emulating the integer arithmetic over F,: pro-
cessing the circuit gate-by-gate using subroutines for addition and multiplication on arbitrary elements
of Z. Such an approach incurs a substantial overhead both asymptotically and concretely, similarly to
how emulating arbitrary precision arithmetic using a fixed word size machine incurs overhead outside
the domain of succinct arguments. In practice, such techniques are used to emulate “foreign ﬁelds”ﬂ
and operations in RSA groups, however the resulting circuits/machine execution trace is significantly
larger than the original computation, e.g. the overhead for RSA signature verification is 5000x [KPST§]
(see also discussion in Section .

Challenges for Arguments over Z. The construction of succinct arguments over finite field is sub-
stantially better understood than over rings. Among the challenges in designing arguments over the
integers is that the invertible elements are just £1, this issue sometimes shows up in extraction where
the extractor must invert a matrix of challenges for different transcripts. A smaller challenge include
the lack of Lagrange interpolation and the lack of smooth subgroups for the integers, which makes

! But of course, ultimately, bounded by a polynomial in the security parameter, for any malicious prover (and
therefore the honest one) will have to run in O(poly(})).

2 Note that we do not need to ensure that the prover fully reduces the integer: at worst he picks a larger
representative of the equivalence class.

3 A field different from the ”native field” of the argument over which circuit satisfiability is proved.



arithmetizations relying on such structure impossible [GWC19] [BBHR18] [COS20], making GKR-~
inspired [GKROS8] [CBBZ23] techniques a natural choice. The multilinear sum-check is known to work
over a large class of rings [Sor22], however, our approach will only require the indexer (preprocessing)
to be executed over the integers: which just depends on multilinear interpolation.

Resolving an Open Question: Succinctness over Z. Our goal in this work is to propose succinct argu-
ments for integer computations, meaning that the verifier complexity should be poly-logarithmic in the
size of the witness. For finite alphabets, like the finite fields, this is equivalent to being poly-logarithmic
in the dimension N of the witness vector @ € FY. However, for computations over the integers, the
witness vector @ € Z may have elements of arbitrary size, hence there is a distinction between being
succinct in the dimension N and the bitlength of the witness N -log, ||| . Using Bulletproofs-inspired
IBBBT18] techniques, existing work by Towa and Vergnaud [TV2(] constructs a succinct arguments
over Z with proof size that is logarithmic in N but linear in log, |||, while having verifier run-
ning linear in N. The work in [TV20] leaves succinctness in the bitlength of the witness as an open
question. In this work, we will propose a succinct argument with poly-logarithmic verification time
(and hence communcation) in N - log,||@||,—the bitlength of the wire assignments in the circu
We believe that the techniques in this paper, namely the reverse Kronecker substitution (Section
and Appendix , can also be applied to this work of Towa and Vergnaud to achieve communication
logarithmic in N - log, ||| ., but with linear verification time in N.

Our Contributions. In this paper we initiate the study of SNARKSs whose underlying computational
model is defined over the ring of integers and that are fully-succinct. We identify a general paradigm
through which to construct efficient SNARKSs over Z, introduce key abstractions, and show how they
can be used to obtain concretely efficient SNARKS over the integers. More in detail, our contributions
are:

— Reducing The Integer Case to the Prime Field Case. We identify a simple information-
theoretic technique—a form of arithmetic hashing—that, when applied over relations, can let us
bootstrap arguments for Z from existing SNARKSs over large prime fields. This central observation
forms the basis and motivation for our other contributions.

— A Framework for Building Arguments over the Integers. We generalize to the integers a
framework that mirrors an approach by-now established in literature: the one based on i) idealized
protocols (AHP/PIOP/PHPED and ) polynomial commitments [KZGI0] to build SNARKs. We
introduce respective analogues for these primitives on which we elaborate in the technical overview.
We provide a compiler that constructs a knowledge-sound argument over the integers from our new
building blocks (see also Fig. [1)).

— The first fully succinct ZNARK. As a result of instantiating our framework, we obtain
Zaratarﬂ the first native argument for R1CS satisfiability over the integers with both proof size
and verification time sublinear in the total witness size (that is, both in its size as a vector and
the bit-length of the largest integer in it). The construction can be instantiated using ideal class
groups to obtain a transparent setup. A summary of efficiency properties is in Table

— A Case Study: Integer Spartan. We showcase our framework through a prominent proto-
col in literature, Spartan [Set20]. Through our approach, we bootstrap the information-theoretic
backbone of Zaratan with Spartan and prove its security with minimal effort. Our approach is
plug-and-play: future works can do the same with different proof systems.

— New Perspective on DARK techniques. We show how techniques from DARK ([BFS20]
and [BHR™21]), previously used for commitments over finite fields, can construct integer polyno-
mial commitments of our introduced flavor where an integer polynomial can be opened modulo an
arbitrary prime after sending the commitment.

4 We will occasionally refer to this property, sublinearity in log,||W|| - as norm-succinctness, to distinguish
it from “succinctness” in |w]. While we choose this phrase because we believe it can intuitively carry the
right meaning, we also stress that, if interpreted literally, is slightly imprecise: we are actually requiring
sublinearity in the logarithm of the norm (not just the norm itself); see, e.g., Table

5 Algebraic Holographic Proofs [CHM™20|, Polynomial Interactive Oracle Proofs [BEFS20] and Polynomial
Holographic I0Ps [CFET21].

6 Zaratan (za-ra-tdn) is a mythological sea turtle, allegedly of incredible size, appearing in the work of Jorge
Luis Borges [BGTT57] and in Arabic folklore.
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Table 1: Efficiency summary for our constructions.

Notation: For mod-PC, the quantities refer to the case of multilinear polynomials. The witness w is assumed
to be a vector of integers of N elements (for mod-PC is the number of coefficients of a multilinear polynomial);
m = log,||W||s is the size in bits of the norm of the witness vector (resp. coefficients vector, for mod-PC);
v := logm. Notice that mN is essentially the size of the witness/polynomial (and the prover is quasi-linear in
it). For simplicity, above, we use A as both a computational and statistical parameter. Oy (f) is a shortcut for
O(p(A) - f) where p(+) is a fixed (and small) polynomial. In addition to the above the verifier’s time requires
the time to read the public input.

— A toolbox of constructions and techniques for computations over Z. We show how to gener-
ically obtain norm-succinctness and efficiency for sparse polynomials in polynomial commitments
of the flavor we introduce.

1.1 Technical Overview

Our Approach in a Nutshell. Our whole approach can be summarized as follows: we identify the
technique of fingerprinting through a random primdﬂ as a tool to map a relation over the integers to one
over a finite field; we then observe that some existing SNARK constructions have features that make
them easy to pair with fingerprinting. The bulk of our technical challenges consisted in identifying
formal properties and efficient building blocks in order to carry out this plan.

Let us briefly recall what ﬁngerprintingﬂ consists in through a standard example. Consider a multi-
variate polynomial f over Z expressed as a polynomial-sized circuit and imagine to want to test whether
it is identically zero. A first line of attack exploits Schwartz-Zippel for a simple probabilistic check:
sample random inputs for f and see if the result of the evaluation yis zero. If the sampling domain is
large enough relative to the total degree of f, we can be fairly confident of the polynomial being zero or
not from the result of the test. But there is a catch: since f is expressed as a circuit its concrete degree
may be exponential, making yand the intermediate results of the evaluation simply too large. Finger-
printing comes to the rescue though: sample a (large enough) prime q and carry out the evaluation of
f over Z, instead of over the integers.

Let us now move back to our focus in this work: succinct arguments for non-deterministic relations
over the integers. How can we leverage the technique above to our advantage? A first intuitive attempt
for a blueprint for succinct arguments over Z would be the following. On input a computatiorﬂ C over
Z:

1. Let the prover commit to the witness w over the integers.

2. Apply fingerprinting: sample a large prime q and consider the “reduced computation mod ¢”
(which we denote by [C],);

3. Use a succinct argument for computations over Z, to verify HCHQE

7 Similar techniques have naturally been used in complexity theory and randomized algorithms (in settings
completely unrelated to ours); see e.g., [ABOG, §7.2.3].

8 In this work we consider a specific type of fingerprinting: sampling a random number n (specifically a prime)
to then reduce a “problem over large objects” to a problem on “objects modulo n”. There are other types of
fingerprinting techniques in literature, but we will always implicitly assume those with this specific flavor.

9 In this part, we vaguely refer to a “computation” over Z. For concreteness, the reader can think of the
computation being expressed as a Rank-1 Constraint Satisfiability (R1CS) with integer coefficients. An
R1CS is described by matrices A, B,C; here we aim at showing knowledge of Z € Z" (each element of

bounded size, albeit potentially large), s.t. (@, 2) o <5, Z’> — (¢, Z) = 0 for each row @, b,& in the respective
matrices.

10 We warn the reader that this blueprint is for didactic purposes only. Later, when presenting our framework,
we will slightly deviate from some of the intuitions we used in this part of the overview. For example, while we



We are far from done since the sketch above leaves several questions unanswered. (3) What are
arguments we can apply in step (3.) and what properties should we require from them? (i7) What
does it precisely mean to reduce a computation “mod ¢”? (ii) If the witness is committed over Z,
how can we efficiently switch to something modulo q afterwards (which would probably be required by
the argument for [C],)? The bulk of our technical contributions consists in providing formally rigorous
answers to these questions and making design choices that would make our formal treatment as general
as possible.

We now provide some intuitions about how we address questions (i) and (ii); we will provide
additional details throughout this technical overview.

First we turn to recent efficient constructions of succinct arguments and we notice that several of
them work over a finite field of prime order F,. This suggests that sampling a prime q might be the
right approach above (rather than sampling an arbitrary integer). But we need even more properties
from the argument at step (3.): in particular the latter should be able to “work effectively” even if
the order q of the field is not known at the beginning of the protocol. For the sake of this technical
overview, we call such constructions “fingerprinting-friendly” E

Examples in this sense are constructions mainly based on multivariate techniques such as Spar-
tan [Set20] and HyperPLONK [CBBZ23|. Here, one can, in principle, compute and commit encodings
of the relations and the witness (through their multilinear extensions (MLE); see Section [2) over the
integers and only later run the protocol over F,. This is the case because MLEs allow us to perform
useful encodings of the witness even over Z, in contrast to other approaches. (See also Remark

Let us now address question (7): how to go from a relation over the integers to one over Z, and
when would that preserve soundness? The first part is easy to answer. Consider a computation over
the integers expressed as a Rank-1 Constraint Satisfiability (R1CS). After the prover has committed

to a witness w, instead of checking each constraint through the equation (@, ) o <l;, Z> —{&z)=0

over the integers, we check instead (@, Z) o <E, 2'> —(¢,Z) =0 (mod g). What we are checking now is

satisfiability of a standard R1CS over F, for which we can use a fingerprinting-friendly argument!

The previous observation gives us correctness, but we also need to argue why we are not losing
soundness when in approach above. One intuition for the case of R1CS over the integers is this: each of
the constraint equations is testing whether a polynomial evaluated in 2’ is zero. What is crucial is that
this polynomial is of relatively low degree (an R1CS encodes a quadratic polynomial) and hence we can
apply arguments similar to the ones we use to show the soundness of the standard fingerprinting-based
approaches for zero-testing of polynomials. We stress that our core framework will not be limited to
R1CS and we will provide general sufficient conditions for computations to be “fingerprinting-friendly”
(through the notion of “good test” defined in Definition |4} the reader can see a formal version of the
proof we just sketched in the proof of Lemma [3]in the appendix).

In the remainder of this technical overview we describe our general framework, how we instantiate
its building blocks and how we apply them to obtain our final construction, Zaratan.

Our General Framework: mod-AHP 4+ mod-PC = SNARKSs for Z. We now describe the
general ideas behind our framework. Our starting point is the modular recipe used in the construction
of recent SNARKSs where the core construction is described as an idealized protocol with algebraic
properties, or Algebraic Holographic Proof (AHP) [CHM™20]. This type of constructions assume a
finite field F and their flow looks roughly as follows: a prover (P), on input a statement and a witness,
sends some oracle polynomials in each round to the verifier (V), who responds with a random challenge;
afterwards, during a query stage, V can query an oracle polynomial f with an evaluation point & to
obtain v = f(&). V can iterate this process for several different polynomials and evaluation points (all
arithmetic being performed in F). Finally, V outputs a decision bit indicating “accept” or “reject”,
based on the result of the evaluation queries. An AHP can be turned into an argument system by
replacing the oracles and the query phase with a polynomial commitment scheme (PC) [KZG10]: the

mentioned committing to an integer witness as a first step of the blueprint, we will never do that (explicitly)
in our framework. In any event, our formalism still morally captures the same principles and intuitions we
are providing on fingerprinting-friendliness in this part of the text.

' Examples of constructions that are not fingerprinting-friendly include those such as the original
PLONK [GWC19]. These may require the field to have additional properties, e.g., being DLOG- and FFT-
friendly, or having one or more additive/multiplicative subgroups of predetermined sizes. We refer the reader
to the excellent discussion in a context other than fingerprinting in |[GLS™23].



prover can commit to the oracle polynomials and later, upon receiving an evaluation point &, can send
an evaluation proof to convince the verifier that evaluation v = f(Z) is done correctly (again, both the
polynomial and evaluation are over ). For them to be combined effectively, both the AHP and the
PC need to satisfy some extractability-flavored properties.

Recall that our key idea is to leverage fingerprinting, i.e., in some stage of the protocol, to sample
a prime q and then continue the evaluation of the protocol “over F,”. The counterpart for AHP we
introduce is called a AHP over Z with modular remainder queries (or mod-AHP, Definition and it
is thus called because it works this way: P and V interact with P sending oracle polynomials over Z;
at the end of this stage a prime q is sampled; the verifier can now request an evaluation point Z for a
polynomial f but will be constrained to obtain only f(#) mod ¢. That is, the stage where oracles are
sent is “more expressive”, while the query stage is still constrained to work over a finite field. We say
that a mod-AHP is (full) knowledge-sounﬂ if, intuitively, we are able to extract a witness over the
integers from a prover who is able to successfully convince the verifier.

At this point the reader can probably already imagine a polynomial commitment notion that would

be a good match for mod-AHPs: it should be able to commit to polynomials over the integers, yet
it will not need to support full-fledged integer evaluations. This type of PC, which we dub mod-PC
(Definition , in fact just needs to support evaluation queries modulo q, for a prime q unknown at
commitment time. The type of extractability property for mod-PC that we need, however, requires
us to be able to extract a polynomial over Z (not just over F,) from an adversary providing valid
proofs. With these two notions under our belt we are able to provide an abstract compiler from a
knowledge-sound mod-AHP and a secure mod-PC to arguments for non-deterministic relations over
Z(see Fig. . We stress that, while we used univariate polynomials for our examples above, all our
primitives are defined over multivariate polynomials.
Intermezzo: let us talk about succinctness. Recall that our goal is to obtain a proof and verifier succinct
in both N = |@| and m = log||wW||s where o is a witness. Our succinctness in N is, in a sense, directly
inherited from the AHP+PC approach where a few polynomial evaluations (with adequately succinct
proofs) “guarantee knowledge” of a witness of size N. While the case of succinctness in m is a little
different, we are able to anticipate why we would be able to achieve it: all our evaluations in this
approach are modulo g, a prime of Abits (where Ais a security parameter). We can conclude that
as long as we are able to keep the commitment and the size/verification of the evaluation proofs in
the modPC succinct in m, the final proof and verifier will be as well. Now that we defined what the
requirements for our building blocks are, let us discuss how to instantiate them.

From DARK to mod-PC constructions. We use techniques from the DARK compiler [BES20)]
to construct mod-PCs. The original construction of Biinz et al. [BFS20] is not directly applicable to
our setting, because the binding notion is too weak. Instead we rely on a protocol by Block et. al
IBHR™21] which allows extraction of an integer polynomial. To reduce the verifier computation of
this protocol we compose it with an Argument-of-Knowledge for the language of accepting last round
messages. The result is a mod-PC with linear commitment/opening time for the prover in the size of
the polynomial and polylogarithmic verification time. The commitment is a single group element from
a group of unknown order. For further details, see the more specific technical overview in Section [7] In
the same section we describe some general techniques to obtain norm-succinctness in such schemes.

Towards a “plug-and-play” framework In order to populate our framework through existing
constructions, we look for the weakest possible requirement on them. This is not just for theoretical
interest; it will in fact make it significantly easier for us to prove these properties hold for prior
constructions. Our compiler requires what is arguably th most natural notion of soundness in this
setting, i.e., what we earlier called “full” knowledge soundness (Full KSND)—where we should be able
to extract an integer witness; however, it turns out we can actually do with a weaker property: a form of
KSND where we require to extract only the “fingerprint” (modulo q) of a potential witness. With a very
idealized example: consider w* = 4290, the integer witness satisfying the equation w90 — 4215000 — (.
after sampling a prime, sayﬁ 13, we need to be able to only extract the witness fingerprint wj; €
{0,...,12} s.t. the “fingerprinting variant” of the original relation is satisfied, i.e. w} = 42'% (mod 13).

2 One intuition on why “full”: it allows us to extract the “full” integer witness. Later, we will be able to
weaken this property and show that a mod-AHP not “fully” extractable can still yield an argument over Z
(with a few extra requirements).

'3 This is just an example—we sample primes of A bits in our constructions.



We precisely formalize these properties and show that, for the case of R1CS over the integers, this
type of weaker form of extractability can be lifted to its full counterpart. In fact, our results are not
limited to R1CS: we provide a general set of definition and properties expressing when this type of
lifting is possible.

Spartan as a mod-AHP We are able to show that the argument for R1CS Spartan [Set20], at its
core, is a mod-AHP with the aforementioned weak extraction property. The original Spartan works over
a finite field and, at a high level, works by: having the prover send an oracle polynomial to a multilinear
extension of the witness vector w (a polynomial encoding of the vector) and then run two sumcheck
protocols [GKROS] for appropriately crafted equations; after the last round, the verifier queries w on
a random point and performs some consistency checks. We are able to observe that the first oracle
message w does not require a finite field to be defined. We modify Spartan to sample the (prime)
order of the field throughout the interaction. We can then argue that the core proof of knowledge
soundness of [Set20] can be leveraged for the case of w as a polynomial over the integers. Our general
approach, which we describe in Section should be applicable with minimal modifications to other
multivariate-flavored schemes, such as HyperPlonk [CBBZ23].

mod-PC for sparse polynomials In the presentation above we deliberately omitted that the verifier,
at the end, needs to also query polynomials A,B,C encoding the R1CS matrices. What we sketched
so far does give us a version of Spartan over Z, but gives us an efficient verifier only for the case where
the computation is “highly regular” and thus A, B, C can be evaluated very efficiently (this is the case
for example of data-parallel circuits [CGG™23]). Our goal for our final protocol, Zaratan, is to support
an efficient verifier for arbitrary computations. In order to do this we need to solve an additional
challenge: obtaining an efficient mod-PC for sparse polynomialﬂ Our approach works by showing
that the SPARK compiler in [Set20] (which lifts a polynomial commitment for dense polynomials
into one for sparse ones) can be recast as a mod-AHP for deterministic computations with specific
properties. In this part of our work we are able to reuse some of the abstractions we used to define
“weak” knowledge soundess. Although we do not cast them explicitly under this light, our techniques
have at their heart a recipe to construct general succinct functional commitments with “fingerprinting
properties” (a natural generalization of our mod-PC notion) and hence we believe them to be of
independent interest (see Section .

Weak “prime-only” KSND Full KSND mod-AHP
mod-AHP (Definition (Definition
N

Fully-succinct
arguments for Z
(Theorem

mod-PC
(Definition

Fig. 1: Relationships among some of our core abstractions.

1.2 Related Work

Poly. Comm from Groups of Unknown Order. Several works, starting with Biinz et. al [BFS20] [BES19)
and Block [BHR™21| have constructed polynomial commitments over prime fields from groups of
unknown order, by lifting the evaluation to the integers or rational functions of bounded norm. Related
families of techniques have been leveraged in the works Dew |[AGL™23] and Behemoth [SB23]. All these
works obtain polynomial commitments over finite fields, not the integers.

14 The reason we need this is that it will be used to commit to (and prove evaluations of) to A, B, C. These
are of quadratic size but they have a sparse representation in that only have a linear number of non-zero
elements.



Arguments for Rings. The work in [GNS23| constructs a family of SNARKs for computations over
finite rings, called Rinocchio. Rinocchio relies on new “linear-only” assumptions in rings which have
not received scrutiny; it also requires a trusted setup specific to the circuit being proved; to the best
of our knowledge Rinocchio is not succinct in the size of the elements of the underlying ring. We
have already mentioned the work of Towa and Vergnaud [TV20] who constructed a Bulletproofs-
inspired argument [BBBT18] for Diophantine equations over the integers. Their construction has a
non-succinct verifier but, differently from our scheme, achieves zero-knowledge. We leave as future
work how to introduce zero-knowledge in our work. In [Sor22] Soria-Vazquez constructs interactive
proofs for deterministic computations expressed over infinite and non-commutative rings. Our works
differs in several respects. Our focus are non-deterministic computations over the ring of integers.
While the rings considered in [Sor22] are more general, the constructions proposed in it do not apply
to the non-deterministic case.

Other Works The sampling a random primes in proofs the exponentiation in [Wes19] can be seen as
a form of fingerprinting for a very specific relation. In this paper we show how to use it over integer
RI1CS in general; our abstract treatment directly allows future work to extend these observations in
other types of constraint systems (see Section and the notion of “Good Test” Definition [4)).

1.3 More on Motivation for Native Arguments over Z

HavinngI native arguments over Z is important from an engineering perspective, simplifying circuits,
making for a better developer experience and reducing the probability of bugs. From a practical
perspective we believe there are several scenarios where native arguments over Z may offer interesting
tradeoffs (see also Appendix [L| where we discuss more settings, including range checks with O(1)
constraints and computations on rational numbers). We remark that some of these settings have not
been pointed out in prior literature.

Checking RSA signatures The case of RSA signatures is mentioned here, not only because of its
practical value, but also because it is instructive to see some of the concrete costs of emulation
over fields. A valid RSA signature [RSATS| o € Z should verify the following equation:

c°=m (mod N)

where e,m, N € Z are respectively a fixed constant (typically e € {3,216 4 1}), the message (in
practice, the hash of the message) and the RSA modulus (the public key, whose typical size is of
the order of thousands of bits). Expressed as an integer relation this can be expressed as showing
knowledge of ¢, q € Z such that

o —gN—-m=0

It is easy to convince oneself that, for the case e = 2'¢ + 1, this can be expressed in 16 R1CS
constraints over the integers (we assume that N and m are public inputs, but a different choice
would be of little consequence). When expressing the same computation over a standard field
choice (254-bit prime) and through state-of-the-art tools (that is, highly optimized to obtain small
circuits on this type of computations) the resulting emulation-based R1CS has = 90K constraints,
a 5000x blowup (see Table IIT in [KPS18§]). While it would not be a fully apple-to-apple comparison
to just compare the two numbers, this does provide reasonable evidence of lost opportunities for
optimizations: for example, the information-theoretic backbone of our protocol, Zaratan, the prover
effectively runs linearly in IV, the number of constraints in the R1CS, i.e., 16 (')|E|
Arbitrary-precision arithmetic Our work directly enables rational numbers arithmetic (see Ap-
pendix . With this tool under our belt, we can perform arbitrary-precision arithmetic. This can
be of interest when proving computations in the realms of engineering and natural science which
may require high levels of precision (which makes full succinctness an ideal feature in this setting).

15 We expand on the points in this section in Appendix

16 This includes all the “non-oracle” interactions of the prover. In the final protocol, these be accounted for
by require a polynomial commitment and opening (in the flavor of Section ; there the prover’s running
time will also depend on the size of the integer coefficients. This suggests, in any event, that improving the
efficiency of mod-PCs is a reasonable avenue to more efficient proofs for integer computations, alternative
to field emulation.



Machine learning SNARKSs over Z also offer a natural avenue to machine learning settings: quan-
tization to integers is, in fact, used in commercially available chips specialized for machine learn-
ing [SY]. Further evidence for why this may be a viable approach comes from recent works showing
how integer computations can be sufficient to obtain reasonable precision in ML [L.S24]

Future Work There are a few interesting questions stemming from our work. Obvious future direc-
tions include exploring zero-knowledge and instantiations of mod-AHPs besides Spartan. The latter
provides a blazing fast information-theoretic backbone for SNARK over Z. Our mod-PC, however, has
relatively large constants due to using unknown-order groups and the extra sub-protocols from Block
et al. [BHR™21]. Could one prove its soundness without relying on [BHR*21]? What are some other
light-weight tools (e.g., hashing) on which to build mod-PCs?

2 Preliminaries

Notation We write f € Z<p[X1,...,X,] to denote that f is a polynomial over the integers in s
variables X7,..., X, such that the individual degree of each variable X; is at most D, usually D = 1.
For a positive integer n we write [n] to denote the set {1,...,n}. We define the following notations
related to vectors. We denote by o the Hadamard (i.e., entry-wise) product between vectors. We write
0 to denote vector with entries equal to the additive identity in a ring that will be made obvious
from the context. Given a vector of integers @ € Z™ and a prime ¢, we denote by [¢], the vector
¥ € Fy such that for all ¢ € [n] v; = u; mod ¢. For a matrix M and vector ¥ we denote by M - ¥ the
matrix-vector multiplication operation. We denote by M; the i-th row of a matrix M. We denote by
|7]| ., = max;{v;} where ¥ € Z vector of integers, its infinity norm. We sometimes abuse notation and,
given a polynomial f we denote by | f|| ., the infinity norm of its vector of coefficients. Denote by #,,
the n-dimensional Boolean hypercube over the integers H,, = {0,1}" C Z".

Prime Sampling We denote by P, the set of \-bit primes, i.e. Py C [22~1 2*). We use random prime
sampling as done in previous works, e.g. [WesTOBFS20lBCF™21|. By the prime number theorem it is

easy to show that |Py| = © (%)

Indexed Relations An indexed relation R is a set of triples (i,x,w) where i is the index, x is the
instance, and w is the witness. Intuitively the index describes the computation we are checking through
the relation. For instance, for the case of circuits, the index will describe the circuits itself. We say
that a relation is deterministic is it a set of pairs index—instance rather than triples (or equivalently if
w is always 1 ). For any indexed relation we will define a function | - | which associates to each index
its size (a natural number). Given a size bound n € N, we denote by R, the restriction of R to triples
(i,x,w) with |i| < n.

Multilinear Extensions We observe that the usual definition of multilinear extension (MLE) extends
directly to the case of rings. Below we define MLE for integer-valued function on the boolean hypercube.
We refer the reader to [Tha23] for a broader discussion of multilinear extensions.

Definition 1. Let f : H,, — Z be a function. The multilinear extension of f (which we denote by
MLE(f) or f) is the unique polynomial f(X) € Z1[X1, ..., X, such that for all ¥ € H,.f(T) = f(7).
This polynomial can be constructed as

FX) =3 x (%) 1)
beH,,
where x3(5) = [, (si-bi+(1—s3) - (L—b;)) € Zy1[Xy,...,X,] is the multilinear polynomial that
equals 1 if and only if b= §, and 0 otherwise.

We often consider a vector ¥ of size n as the function f(i) := v; with domain {0,1}!°#™ and we
abuse notation writing MLE(V) to denote MLE(f). We will use this result whose proof is immediate
from the construction of MLE(f). It essentially states that, for a function f, the MLE of f evaluated
modulo ¢ “matches” the evaluation modulo ¢ of MLE(f).
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Lemma 1. Let f : H, — Z be a function and let ¢ € Nsq. Define fq : H,, — Z as fq(f) = f(Z)
mod gq. Then for each ¥ € Z* we have that

MLE(fq)(X) = MLE(f)(X) mod q

Dense and Sparse MLEs We recall some of the observations on sparse/dense representations of
MLEs from [Set20]. A multilinear polynomial f : Z* — Z can be represented uniquely by the list of
evaluations of f over the boolean hypercube H,,. We denote this representation as the dense represen-
tation of f, or DenseRepr(f). It is easy to show that if f(Z) is zero on any point & € H,,, this does not
need to be included in DenseRepr(f).

We say that a multilinear polynomial is sparse if the size of its dense representation is o(2#). Else we
say it is dense. An example of sparse MLEs that is relevant for us is from R1CS matrices (Deﬁnition:
the MLE of each matrix A, B, C has 2?* coefficients where N := 2 is the size of the R1CS; however,
its dense representation is of size O(2").

Succinct Arguments with Universal SRS

Definition 2 (Preprocessing Argument with Universal SRS [CHM™20]). A Preprocessing
Argument with Universal SRS is a tuple ARG = (S,Z,P,V) of four algorithms. S is a probabilistic
polynomial-time setup algorithm that given a bound n € N samples a (potentially structured) reference
string srs supporting indices of size up to n. The indexer algorithm T is deterministic and, given as
input the srs produces a proving index key and a verifier index key, used respectively by P and V. The
latter two are PPT interactive algorithms.

Completeness For all size bounds \,n € N, (i,x,w) € R,

Pr| (P (ipk,x,w),V (ivk,x)) =1 : srs + S(14,1") )} .

(ipk, ivk) < Z(srs, i

Knowledge Soundness For every A,n € N and efficient adversary P = (731, 772) there exists a (possibly

non-uniform) efficient extractor Ext such that

. srs «+ S(12,1M)
} (i,x,w) & Rn A ~ (i,x,st) < Py(srs)
<7>2 (st), V (ivk, x)> =17 w ¢ Ext(srs)
(ipk, ivk) < Z(srs, i)

Pr < negl(\)

Above the extractor takes in input the same random tape as the malicious prover.

Plain Interactive Protocols In some of our definitions (e.g., Definition we will require a public-
coin interactive sub-protocol. With the exception of constraining one of the parties to sending only
random challenges, we will only need the syntactic properties of this interaction and the resulting
view. We call a plain interactive protocol an interaction between two parties Pjj, Vi, such that they
both take in input a security parameter A € N; the party P;, also takes as input an an arbitrary
string aux. The security parameter is passed implicitly to both parties as a unary string. We denote
by tr < transcript, ((Pip(aux), Vip)) the result of the interaction between the two parties. We can parse
tr as a pair (m, p) such that (mq,p1,...,m., p,) is the transcript of the interaction throughout the r
rounds of the protocol. Each m; (resp. p;) is a message (resp. random challenge) sent by Pi, (resp.
Vip). Each message is assumed to be of size poly(A).

3 Relations over Z and their Fingerprint

In this section we provide a set of definitions that will later allow us to capture when a standard
interactive argument for prime finite fields can be lifted to an argument over the integers. For that, we
need to build a vocabulary for what it means to map a relation to its “associated fingerprinting” over
a prime q.
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3.1 Fingerprinting Relations

Definition 3 (Associated fingerprinting relation). Let R be a an indexed relation over the
integers. An associated fingerprinting relation for R is a mapping [-] parametrized by a prime, such
that for all primes q and positive integers n associates to R, an efficiently computable relation [Ry]q.
This associated relation takes as input triples of the form (i, %4, W,) where i is in the same domain
as the indices for R, and Z,,w, € F,. We require that a fingerprinting relation is “admissible” if it
preserves valid statement—witness pairs, that is: for all indices i, integer vectors ¥ and W

(i,7,@) € Rn = (i, [7]q, [@],) € [Rnlq

At times we will require that relations satisfy an additional property that will be key for some of our
“lifting” results. This property intuitively states that a fingerprinting relation provides a reasonable
probabilistic test for checking whether something is in the relation. This will be true for example for
the case of R1CS structures and a natural associated fingerprinting relation for them.

Definition 4 (Good test). An associated fingerprinting relation for R is said to provide a good
test (for R) if for all n, X\ € N, for all input triples (i, Z,w) € R, the following holds:

Pr [ G [0, [],) € [Rall| < negl()

q<sPy

3.2 RI1CS over Z and its Fingerprint

We provide a general definition of Rank-1 Constraint Satisfiability (R1CS) over arbitrary commutative
rings.

Definition 5 (Rank-1 Constraint Satisfiability). Let A be a commutative ring. An R1CS triple
over A (or A-R1CS) of size N consists of three matrices A, B,C € AN*N each having at most O(N)
non-zero entries. A pair statement—witness for an R1CS triple consists of vectors (&, W) with elements
in A such that |Z| + |W| = N. We say that (&, W) satisfies the R1CS if

(A-Z)o(B-Z)—C-2=0 (1)

In this paper, when we consider an F-R1CS over some field F we always implicitly assume that F
is of prime order.

Definition 6 (R1CS Relation over the Integers). We denote by R'*! the relation that on input
an index i (describing an R1CS triple A, B, C over Z of size N ), a statement x and a witness w returns
1 if and only if: (i) Eq. ({f) is satisfied; and (ii) x and w are such that ||x||w| ., < 2°®) for a fived bound
function b implicitly parametrizing the relatio@. The size of the index is given by N-log, (|| A||B||C||)-

From now on we refer to an R1CS structure as “R1CS” for short. We write F-R1CS to refer to an
R1CS over some prime-order field F. We write Z-R1CS to refer to an R1CS in the sense of Definition [5}

Definition 7 (Fingerprinting for R1CS). We define the associated fingerprinting relation for
R1CS as the one that checks the R1CS constraint equations over Fy for a prime g, i.e. if i encodes
R1CS matrices A, B,C then

(i, [@] 4, [@],) € [RE1OS), <= for alli (A;,Z) 0 (B, 2) — (Ci,2) =0 mod ¢
where Z := (Z||wW).
It is easy to check that the fingerprinting relation defined above is admissible. It also provides a

good test; we formalize this statement in Lemma [3] whose proof uses the following technical lemma
(proven in the appendix):

7 We require this bound function to be polynomial in .
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Lemma 2 (Probabilistic Vanishing of Integer Polynomials). Let f(X) € Z[X] be a polynomial
of total degree d with less than 2¢ non-zero coefficients. Fiz & € Z* and denote by m the smallest m
st. || %], < 2™. Then f(Z) # 0 implies:

. A-(l+m-d)
= < ——
qi;%x [f(#) =0mod ¢q] < A1

which is negligible for any £, m,d polynomial in .

Lemma 3. The associated fingerprinting relation for integer R1CS in Definition [ provides a good
test.

Proof. Consider (i, %, W) ¢ R,. If the statements are such that the bound b in Definition [6] then we are
done. Otherwise let us proceed as follows and let us bound the probability that:

for all 7, <Aj75>0<Bj75>7<ijg>EO mod ¢ (1)
for a randomly sampled prime ¢ of A bits and Z:= (1, Z, &@). Since (i, &, W) € R,, there must exist index

7% such that .
<é:a2>0<b72> - <a2> #O

where the operations in the last equality are over the integers and @ := Aj-,b := Bj,&:= C;-. Let
y:={a,z)o <g, Z) — (€, Z). The probability that Eq. holds is bounded from above by the probability
that ¢ divides y. We can bound this probability by a quantity negligible in A through a straightforward
invocation of Lemma [2| seeing y as the evaluation of low degree polynomial in Z' (notice that for that
we use the norm bound requirements from Definition @ |

3.3 Multilinear Polynomial Evaluation and its Fingerprint

We also define another indexed relation that will be useful for our results in Appendix [[}-—polynomial
evaluation—as well as its straightforward associated fingerprinting. For simplicity we define it only for
the multilinear case.

Definition 8. The deterministic relation RP°% takes as input an index describing a multilinear poly-
nomial f in p variable, a statement consisting of a pair (¥ € Z*,y € Z). It returns 1 if and only if
f(@) = y. The size of the index described by a multilinear polynomial f is its mazimum number of
non-zero coefficients, i.e., 2*.

Definition 9 (Fingerprinting for Polynomial Evaluation). We define the associated finger-
printing relation for polynomial evaluation as the (deterministic) relation that checks the polynomial
evaluation over F, for a prime q, i.e.,

(i = £ 1@ 1)]g, L) € [RPY]y <= f(@) =y mod g

4 Idealized Protocols for Arguments over Z

4.1 Algebraic Holographic Proofs with Modular Remainder Queries

An AHP over Z with modular remainder queries (or mod-AHP) is like a standard AHP-like proto-
col [CHM™20,CFET21/BFS20] with the following core differences: the oracles, both in the indexing
and online stage, are (multivariate) polynomials over the integers (rather than over a finite field); at
a prespecified round the verifier samples a random prime g and the interaction continues as a stan-
dard interactive proof; after the interaction, the verifier can receive evaluations of the oracle (integer)
polynomials modulo q.

Definition 10 (AHP over Z with modular remainder queries (mod-AHP)). An Algebraic
Holographic Proof (AHP) over Z with modular remainder queries (or mod-AHP) for an indezed relation
R is given by the following tuple:

modAHP = (k,k',v,s,d,Z, P, V)

13



where k,k',v,s,d : {0,1}* — N are polynomial-time computable functions; Z,P,V are the indezer,
prover, and verifier algorithms; k is the number of oracle polynomial rounds; k' is the number rounds
of “plain interaction” (see below); v denotes the number of variables in the multivariate oracle polyno-
mialﬂ' s denotes the number of polynomials in each round; d specifies degree bounds (in each variable)
on these polynomials.

The protocol proceeds as follows:

— Indexing phase The indexer T receives as input a security parameter 1* and the index i for R,
and outputs s(0) polynomials po,1, ..., Poso) € Z[)?] of degrees at most d(, |i|,0,1),...,d(}A,[i],0,s(0))
respectively; \X| = v(\ |i[,0). This phase does not depend on the public input or witness and simply
consists of encoding the given index i. We require that each po ; is such that ||po ;|| is bounded w.r.t
to b as in Definition [6

— Online phase The prover P receives (1*,1,x,w), for an instance x and witness w such that (i,x,w) € R.
The verifier V receives 1%, x and oracle access to the polynomials output by I(lA,i . The prover P
and the verifier V interact over a number of rounds as follows:

e Integer Oracle Polynomials Phase: In the i-th round, i € {1,...,k(\,|i|)}, the verifier V sends
messages i € {0,1PYN 1o the prover P; the prover P responds with s(i) oracle polynomials
Dil,- - Pisti) € Z[X'] where each is respectively of degree at most d(, |i|,4,1),...,d(A,li|,1,s(¢))
and | X| = v\, i, 9).

e Prime Sampling Phase: After k rounds, the verifier samples a prime q < Px and sends it to
P.

e Plain Interaction Phase: The prover and verifier engage in a plain interactive protocol (see
Section@ for k' rounds:

trrse := (M, Prst) < transcripty ((Prat(P1, - -, fi, @), Vist))

(Recall that by convention Mirst and prst denote the concatenation of respectively all the messages and
challenges sent during the interaction)

— Query phase Let p = (Dij)ic{o,1,...k}.jels(i)) be a vector consisting of all the polynomials sent by the
indexer Z and prover P. The verifier V executes a subroutine Qv that receives (1>‘,x; DOy -y Py trrst, )
and outputs a query set Q consisting of tuples ((,7), z) that are interpreted as “query p;; at z € F‘éﬂil) 7
where q is the prime sampled earlier. We denote the vector consisting of the answers to these queries
as p(Q)-

— Decision phase The verifier outputs accept or reject based on the answers received to the queries and
its randomness. That is, V executes a subroutine Dy which outputs a decision bit on input (IA7 x, p(Q);

Py Py trrst, @)

The function d determines what kind of provers are considered for the completeness and sound-
ness properties of the proof syste. A (potentially malicious) prover P is considered admissible for
modAHP if, in an interaction with the verifier V, it holds with overwhelming probability that for ev-
ery round i € k] and oracle index j € [s(i)], variable index t € [v(]A,]i],i)] we have deg(p; ;, X:) <
d(\,il,4,5). We also require that each p; ; is s.t. that ||p; ;|| is bounded w.r.t to b as in Definition @
The honest prover P is required to be admissible under this definition. A mod-AHP should always satisfy
completeness as defined below.

Completeness A mod-AHP is complete if for any A € N, (i,x,w) € R, the output returned by
VI(IA’i)(l)‘,x) interacting with the honest P(1*,i,x,w) is 1.

The following notion states that we can extract an integer witness interacting with a successful
AHP prover. This is the type of knowledge soundness we would like to require from any “secure” AHP
over the integers. We dub it “full” to stress the difference with the weaker “fingerprint-only” definition
in Definition We will later show (Theorem [§]) that weaker knowledge soundness can at times be
immediately lifted to obtain full knowledge soundness.

18 We assume for simplicity that the number of variables is the same for all the polynomials provided at the
same round and that s depends only on the round index.
20 We will call a mod-AHP multilinear if d is the constant function equal to 1.
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Definition 11 (Full Knowledge Soundness). We say that a mod-AHP has (full) knowledge error
€ if there exists a probabilistic polynomial-time extractor Ext such that for any admissible prover P*,
for every A € N, (i,x), and auxiliary input aux:

(i,x,w) € R A

P . :
PP (1, i, x, aux), VIO (12 x)) =1

W Extp*(l)‘, i,x,aux)| <e

Here the notation Ext” means that the extractor Ext has black-boz access to each of the next-message
functions that define the interactive algorithm P*. (In particular, the extractor can “rewind” the
prover.)

4.2 Weak Knowledge Sound mod-AHPs

In this section we prove basic properties of mod-AHPs so to make our framework more “plug-and-
play”. We define a “weaker”—and easier to prove—notion of extractability for AHP over Z with
modular remainder queries and we later show that this notion implies the stronger one in Definition [I0]
This result is interesting when combined with our results in Section [5.2] Together with the result of
Theorem [2] this section shows that, in order to obtain a succinct interactive argument for Z all we
need is to to show an AHP with the weaker property in this section. This is advantageous because this
is easier to prove directly for a given protocol (and will allow the very simple proof of the statement
of Theorem .

For notational convenience, in Definition [I3] we restrict the mod-AHP interaction to be “simple”,
i.e., to send a single oracle polynomial.

Definition 12 (Simple mod-AHP). We say that a mod-AHP is simple (or, “it has a simple
prover”) if there is a single round in which the prover sends oracle polynomials, that is if k(A,N) =1

(see Definition [10)).
Remark 1 (Notation for simple mod-AHPs). Let tr transcript((P(lA,i,x,aux),VI(lkvi)(lA,x»), be

— —

the interaction transcript. We can parse tr as (g(X ), q, trrst)) where g(X) is the oracle sent during the

interaction and ¢ is the sampled prime. A simple prover P can always be split into a pair of (stateful)
algorithms (Poyel, Prst)

This weaker notion informally states that we can extract in a straight-line manner a “witness
modulo a prime” (in the sense of Deﬁnition@ when receiving as input the oracle polynomials from the
prover. Notice that this is a weaker notion because we are not requiring to extract an integer witness
for the original integer relation, rather for its restriction. Below we use the terminology “decoding”
for this since we are not extracting a proper witness for R. We require this weak extractor/decoder to
be “partly” straight-line in that we give it as input the oracle polynomial from the prover. Intuitively,
this is necessary to make sure that the extractor is always dealing with the same integer witness. Also
notice, and this is crucial, that the oracle polynomial committed by the prover is still over the integers,
not over the field F,.

Definition 13 (Weak (“fingerprint-only”) Knowledge-Soundness). Consider a mod-AHP with
a simple prover (Deﬁm'tion and Definition @) for an indezxed relation R. Let [-] be an associated
fingerprinting relation for R (Definition @ We say the mod-AHP has weak knowledge error € over R
and [-] if there exists an efficient deterministic decoding algorithm Dec such that for any admissible
prover P*, for every \,n € N, index i, statement x, and auzxiliary input aux:

i’ Xlg» [Wlg Rn q . _
o [ <P*(1E‘,i[€>3],aL[l[X)]1 \31%1£[J)(]1]/\,/>\<)>:1 PwWe Dec(l/\”’g*(X))} <e

(g*()_(‘),q7 . ) <+ transcript ((P*(l’\, i,x,aux)7VI(1A’i)(1)‘,x)>) is as by Remark.

The following theorem states that weak knowledge soundness can be lifted to obtain full knowledge
soundness if its associated fingerprinting relation provides a good test (Definition . By applying
Lemma [3| we can interpret this as a lifting theorem for weak knowledge sound mod-AHPs for R1CS.

Theorem 1. Let modAHP be a mod-AHP with negligible weak knowledge soundess error over R and
] (Deﬁnition. If [-] provides a good test (Deﬁnition then modAHP has negligible full knowledge
soundness error (Definition|11)).
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5 Integer Polynomial Commitments with Evaluation Opening over 7Z,

Here we first define and then show how to apply a special form of polynomial commitment that can
commit to polynomials with integer coefficients but that can be efficiently prove evaluation modulo a
random prime ¢q. We will use this flavor of commitment to compile a mod-AHP into an argument for
integer computations.

Remark 2 (Difference with field-agnostic commitments). A field-agnostic polynomial commitment is
one that can work over arbitrary (sufficiently large) finite fields [GLS™23|. The commitments defined
in this section are in general more powerful than field-agnostic ones because they can commit to a
polynomial with arbitrary integer coeflicients and later open its evaluation over any prime-order field;
in contrast, field-agnostic commitments must receive a description of the field at commitment time
already.

5.1 Model

Definition 14. A polynomial commitment with modular remainder opening (or mod-PC) consists of
a tuple (Setup, Com, Prv, Vfy) such that:

Setup(1*) — pp: on input a security parameter A € N outputs public parameters of the scheme.

Com(pp, f) — (c,opn): on input public parameters, a multilinear polynomial over the integers f €
Z[)?], it outputs a commitment ¢ and an additional opening string opn (used as auziliary input for
opening).

Prv(pp, g, c,opn, &) — m: on input public parameters pp, prime q, commitment ¢, opening opn and
& € ZM, it outputs a proof m certifying the value y = f(Z) mod gq.

Vy(pp, ¢, ¢, Z,y, 7, 1) — b: on input public parameters, prime q, commitment ¢, claimed value y € Z,,
proof 7, and number of variables u, it outputs a bit accepting or rejecting the proof.

Correctness. For any p, A € N, f()?) of individual degree at most 1, prime ¢ < 2* and & € ZH, the
following probability is overwhelming:

pp + Setup(1?)

(c,opn) < Com(pp, f)
7 < Prv(pp, ¢, ¢, opn, T)

y = f(Z) mod ¢

Pr [Vfy (pp,q,c,y,m,p) =1 :

Weak evaluation binding. The following property is the analogue for mod-PCs of weak evaluation bind-
ing for functional commitments (see, e.g., [CET22|CFK24]). It intuitively states that for an honestly
generated commitment (hence the relative “weakness” of the property), it should not be feasible to
provide a convincing false proof. We define it formally in the appendix.

Knowledge soundness (with knowledge error ¢ ). This notion follows its counterpart in [CHM™20).

Definition 15. For any A, p € N and PPT A = (Acom, Apr) there exists a non-uniform polynomial
time extractor Ext such that for any efficient query algorithm (with random tape independent from that
of the adversary) Q auxiliary string aux € {0, 1}p°'y(’\), the following probability is at most €:

pp < Setup(l’\)

(f()?) ¢ Zai[X1,. ., X, V ((e, 1) ,st) < Acom(pp, aux)
3 . d q s Py
pr | 3j€m]. f(Z;) #y; mo q) A ((fj)je[m] ’auxg) — Q(pp, aux, q)

(yj’ﬂ-j)je[m] — .Apm(st, q, (fj)j ,auxQ)

—

f(X) + Ext(pp, aux)

/\ny(ppvqacvfjvijﬂjaﬂ) =1
J

where above the extractor has access to the random tape of the adversary.
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Remark 3 (Interactive Openings). All our definitions in this sections involve a non-interactive opening
stage. We point out they can be adapted straightforwardly for the interactive setting. We do not provide
explicit formal variants of our definitions since we will use mod-PCs with weak evaluation binding and
interactive opening only in Theorem [9]

Definition 16 (mod-PC for sparse polynomials). We say that mod-PC is “for sparse (multilin-
ear) polynomials” (Sectz'on@) if the running time of the Prv stage is linear in £ -logy| f||,, where € is
the number of non-zero coefficients of the dense representation of f.

5.2 mod-PCs in Action: compiling mod-AHPs into SNARKSs over Z

To build SNARKS from idealized protocols, we follow the approach “commit to oracles; prove query re-

sponses” [Kil92], that is also the blueprint beneath standard compilers in this space (see [CHM™20ICFFT21JABC™22]).
Concretely, this means that we use a polynomial commitment to commit to each of the oracle poly-

nomials; at the end of the interaction the prover responds to the oracle queries and “certifies” them

through the polynomial commitment opening. The key difference with prior works is that here we need

to follow the more nuanced query semantics of mod-AHPs: all the queries will depend on (and occur

after) a prime sampled during the interaction. For this, we rely on our special flavor of polynomial

commitment. The compiler we just sketched is fully described in Fig. [2] The arguments from the next

theorem can be heuristically made non-interactive through Fiat-Shamir.

Setup(1* PPpc < PCprj.Setup(1?) Return srs = (1%, pppc)

N):
Indexer(srs, i): Run the AHP indexer on input the index i and the security parameter 1* to obtain s(0) poly-
nomials (gg]) 1 each in Z[X]. Compute, for j = 1,...,s(0): (co,4,0PNg ;) = PCpyj.Com (pppc, go,5)-

Output (ipk, ivk) where ipk = ( (Op”oj,co,])]( 1>7 ivk = (Co ])s(O)
Interaction: This consists of several rounds of interaction between the prover and the verifier of the
underlying AHP, i.e., P (i,x,w) and V (i, x):
— Integer Polynomial Oracle phase: For each “oracle” round i € [K]|:
1. V receives random challenges p; from V and forwards them to P.

2. P forwards p; to P which replies with polynomials (gm)s( 9
3. P compute commitments

(Cim opnm-) = PCpyj.Com (ppPO gij)s J=1,...,s(i)
and sends (¢ij);_; ) to V.

— Prime sampling: After k rounds, V obtains a prime ¢ and sends it to P.
Plain-Interaction phase: here P,V follow exactly the mod-AHP protocol:

trese := (Mirst, Prst) < transcripty ((Post (01, - - -, Pks @), Vist))

Query Phase:
1. P uses the query algorithm of V to compute the query set @ := Qv (1)‘,x; D1y Py trrst, q).
Recall from Definition |10 that each entry in Q is of the form ((, j), 2).
2. P computes and sends v := g(Q) and m where

8(Q) = (g:,(z) mod g ((1,9),2) € Q)

(PCpu Prv (pppc, 4, ¢ijsopn, 5, 2) : ((i,7), 2) € Q)
— Decision Phase: V accepts if and only if all the following conditions hold:
e the decision algorithm of V accepts the answers, that is Dy (1)‘ Xy Vy Py e« 5 Phy trrst, q) =1.

e the evaluation proofs verify, i.e. PCprj.Vy (PPpc, ¢ Cij, v, ™) = 1 for each ((i,7),2) in @ and
corresponding value v in v and proof 7 in 7.

Fig. 2: Compiler from multilinear mod-AHPs to succinct arguments over Z. Calligraphic letters, P and
V, denote the prover and verifier of the final interactive argument. (The setup algorithm of preprocess-
ing requires a size parameter N, but our compiler can ignore it: the setup for mod-PCs can work for
polynomials of any size (polynomial in A) regardless of how N affects their size)
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Theorem 2. Let modAHP be a multilinear AHP over Z with modular remainder queries (Defini-
tion @) for R, let PC,y; be a mod-PC (Definition satisfying weak-evaluation binding and with
negligible knowledge error, then the construction in Fig.[is an interactive argument with preprocessing

for R.

One may also use two different types of commitments when compiling, an extractable one for the
online oracles and a “weaker” one for indexing polynomials (indexing is run honestly). We discuss this
further in Appendix [G]

6 From Multilinear Sumchecks to mod-AHPs

The point of this section is two-fold. On the one hand, it will provide a concrete mod-AHP on which
to instantiate our final construction. At the same time, however, it will showcase how our method-
ology can port existing SNARK technique into the world of integer computations (and do that in a
modular way). We will use Spartan [Set20] as a case-study for information theoretic protocols that
are also mod-AHPs. While we will discuss only Spartan in detail, our observations here can be ap-
plied to any protocol that at its essence relies on multilinear sumchecks (see also Remark . Besides
Spartan, such protocols include all the “non-deterministic” variants of GKR [GKRO8] such as those
in [ZGKT18ICFQ19/CBBZ23ICGG23/STW24/CFG25]. We leave it as a future work how to formalize
these other works as mod-AHPs.

Remark 4 (Why are multilinear techniques special?). Multivariate techniques suit our fingerprinting
approach well since multilinear interpolation works over integers, allowing the indexer and prover to
send well-defined integer-coefficient polynomial oracles. In contrast, univariate interpolation faces a
fundamental hurdle, as Lagrange interpolation requires division and, as a consequence, fields.

6.1 Background on Spartan

In this section we review Spartan [Set20], a transparent SNARK for R1CS. The first step in Spartan is to
encode the R1CS matrices A, B, C, and the vector Z = Z||w via their multilinear polynomial extensions.
Let u© = log N. Consider the matrix A, which corresponds to the unique multilinear polynomial in 24
variables, A such that A(iy, ..., ., 71,---,ju) = A(i, ), where (iy,...,i,) is the binary expansion of 4,
and (ji,...,J,) is the binary expansion of j. The polynomials B and C are defined similarly, as is the
polynomial Z where Z(iy,...,i,) = 2(i). The satisfiability condition then translates to the following
polynomial F'(t1,...,t,) being zero at all points of the boolean hypercube:

Ft)y={ Y A@aza@|-| Y BE§zZ@ |- Y CEa)Z@

we{0,1}# ae{0,1}# ae{0,1}+

Now consider the MLE of F'(-), i.e., Q(5) = > e (0,13» F(t)-x#3) where  is as in Deﬁnition Since
F(t) vanishes on the boolean hypercube, by the Schwartz-Zippel lemma, Q(5) is identically the zero
polynomiaﬂ This condition can be verified by evaluating Q(5) at a random point. Spartan provides
an efficient way to check this evaluation. Specifically, to verify the original R1CS, Spartan performs the
following over a field F:

1. Prove that Q(7) = 0 for a random point #* € F#. Thanks to the definition of Q(-), this can be done
using a sumcheck protocol (Appendix .

2. This sumcheck reduces to proving that ¢ = F(p) for a random g € F*. Due to the structure of F,
this is reduced to proving the value of three summations:

Y. Apoz@, Y, BE@Z@, ), CEaZa
we{0,1}# we{0,1}# we{0,1}#
These can also be proven using a sumcheck protocol each; in Spartan, these three sumchecks are
aggregated into one.

21 NB: we can make this observation in our setting only if we have already sampled a prime at that point, but
this will be the case.

18



3. Finally, the sumchecks reduce to proving the values of the multilinear extensions at random points,
Le., A(rg,ry), B(rz,ry), C(rz,ry), and Z(ry).

The final step is achieved through the use of polynomial commitments. The prover commits to the
polynomials A, B, and C' and Z. In the next subsection we will explicitly formalize these as oracle
polynomials in a mod-AHP.

6.2 Spartan as a mod-AHP

The protocol we just described requires a field only for the sumchecks, but not for the oracle polynomial
encoding the witness (or for the indexing polynomials). As a result, we can sample a prime after sending
this polynomial. We are able to prove that our variant satisfies weak knowledge soundness by relying
on the security of Spartan and by simple properties of MLEs (namely Lemma |1)).

We describe the resulting AHP over Z with modular remainder queries from Spartan in Fig. [3
Compared to the presentation above we made a few changes, some to remain close to the original
treatment in [Set20] (e.g., w is morally what we described as Z before). G, » is a polynomial related
to F' as described above, fl,é,é’ are related to A, B,C we described above, M, is a polynomial
intuitively used for batching the sumchecks on the partial evaluations on the indexing polynomials.
The syntax e < (Psc (...),Vsc (...)) (...) refers to the invocation of a sumcheck returning e as final
challenge. We refer the details to [Set20] for details. To maintain visual similarity with [Set20] we do
not use the notation @' for vectors in most of the figure.

Theorem 3. The protocol in Fig. [3 is a multilinear mod-AHP with negligible weak knowledge sound-
ness over RS and [-] as from Definition @ For an R1CS of size N it has O(log N) rounds and a
prover linear in the total witness size, or Ox(mN).

7 How to Build mod-PCs: Core Schemes and Compilers

In this section we first provide a core construction and then two general compilers. The first compiler
allows transforming any mod-PC into one that is succinct in the bit-length of the coefficients of the
polynomial, at the price of increasing the number of variables by a logarithmic additive factor. The
second compiler lifts a mod-PC into one that is efficient for sparse integer polynomials.

7.1 A Core Construction from a New Perspective on DARK

Our construction of mod-PC derives from techniques originally proposed by Biinz et. al [BFS20] which
construct polynomial commitments for polynomials f ()? ) eF, [)Z ] from groups of unknown order.
The resulting commitment scheme is in [BFS20] is for finite fields. However, their techniques already
have a foot in Z: at their heart, their scheme works by lifting polynomials f € [, [)? ] over the field to
polynomials f € Z[X] over the integers (with bounded coefficients), then committing to the integer
polynomials. Because honest DARK commitments are commitments to integer polynomials it seems a
natural starting point for our application (the non-honest case, as we discuss below, will require more
care).

DARK Commitment. To commit to a multi-linear integer polynomial f(X) € Z[X], it is evaluated a
point (q1,...,q,) € Z* where the q;’s are sufficiently large compared to the norm of the coefficients of
f ()_(' ) to ensure that the evaluation uniquely determines the polynomial: letting q; = q2i for a sufficient
large odd value q € Z, has the effect of embedding the coefficients of the polynomial as ”q’nary”
digits of small norm, in a single very large integer. The polynomial commitment is simply an integer
commitment [FO97] [DF02] to this evaluation: Com(pp, f(X)) = [f(qu,...,q,)] - G € Gy in a group
of unknown order Gy. Furthermore, this commitment is (bounded) linearly homomorphic: Com(pp,
Fo(X)) 4 [v] - Com(pp, f1(X) = Com(pp, fo(X) + v - f1(X)) assuming the q;’s are large enough relative
to the coefficients on the polynomial fo(X) +v - f1(X) € Z[X].
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P(z,w) V-(m)

(X) < MLE(w)

Ty :=0, p1 :=1logN, ¢1:=3

q s Py// prime sampling

s RN, s

T,Tx

// Run first sumcheck
< (Psc (Gio,r) , Vsc (r2)) (n1, 61, T1)

va = A(ry)
vp = B (rz
ve =C (ry)

VA, VB, VUC

Ty :=ra-va+rp-ve+rc-vCc
=logN, {3 :=2
rA,TB,Tc +8Fy
ry <5 F4?

TA,TB,TC,Ty

// Run second sumcheck
— <PSC (Mrz) , Vsc (Ty)> (/’L2,Z27 TZ)

vz :=(1—ry1)- v+
Ty1 - T (Ty,i>1)
’
ez = (va - vB —v0) - Xr, (T)

?
e:=(ra-vi+rp-va+rc-v3) vz

Fig.3: Spartan as as an AHP over Z with modular remainder queries. The parameter N
denotes the (known) size of the witness. In - we denote the integer oracle polynomi-
als and queries to them. Notice that w,A,B,C are all oracle polynomials over the integers.
All the final evaluation queries to the oracles are implicitly modulo ¢ (and so are the final checks).
Above 7y 1 is the first element of the vector r, and 7y ;~1 := (7y,2,..., 7y u,). The figure above simply
consists of the online stage; indexing simply returns A, B, C.

20



Soundness of DARK. The original DARK paper shows how to construct an interactive protocol for
proving openings of the commitments above, however the soundness proof of the protocol in the
Eurocrypt DARK paper [BES20] had a significant flaw which was subsequently uncovered by Block et.
al [BHR™21]. A new preprint of the DARK paper [BFS19] was posted to remedy this proof gap in the
original DARK extractor, however the updated proof shows a weaker notion of binding, which suffices
for constructing polynomial commitments over large prime fields, but is insufficient for our application.
We explore this now. The DARK extractor recovers a rational function from the set:

{FE)YN | 1(X) € ZIIAN € ZAIfll < B AN < Bp }

Where the denominator NV is an integer of small norm. In the construction of polynomial commitments
over fields, this suffices, since we may view a commitment to the rational polynomial as a commitment
to the following polynomial over the prime field: f’ ()? )= f ()_(' ) - N~' mod q. However an issue
arises over the integers, because there exists relations satisfied by rational functions for every prime
but which are not satisfied over the integers: consider for instance the relation N - w — 1 = 0 with
N # 1. This relation has no satisfying assignment w € Z however letting w = 1/N yields a satisfying
assignment over every prime field F, since N (1/N)—1=N-1-N~"1—1=0 mod g. Hence without
a binding commitment to integer polynomials we cannot hope to extract an integer witness from our
fingerprinting technique outlined earlier.

Block et. al. Fortunately the paper of Block et. al [BHR 21| proposes an alternative construction which
allows the extractor to recover an integer polynomial with coefficients of bounded norm. Their scheme
circumvents the issue by using matrixes with {0,1} entries as challenges (rather than integers) which
are invertible over the integer ring with overwhelming probability. The drawback is that the complexity
of the scheme is increased by a factor of A\. The only difference between the scheme of Block et. al
IBHR21] compared to the original by Biinz et. al is the evaluation proof — the commitment procedure
remains the same. We outline their protocol (with our notation) in Appendix D}

Com(pp, f)

// Compute the coefficient size and the evaluation points:

1o m = [logs(|lfllee)]
2: q=2mHPYN p1ey

) ai—1
3: foriel,...,ul:q,=q

// Evaluate f at qi,...,q, over Z
4: C=[f(a1,---,au)] G € Gy
5: return (m,C)

Prv(pp,g € P,c=(m e N,C € Gg),opn = f,Z € FY,)

1: y=f(&@
2:  Run Xope(pp, C, T, y, m, q; f)

Viy(pp, g, ¢ = (m, C), &, y, )
1: Run Xopen(pp, C, T, y,m, q; f)

Fig.4: Our construction of modPC. The setup is simply pp = (G, G) where Gy + G(1*) and G +s
G- The polynomial poly(A) is derived from the knowledge soundness parameter of the opening proof
(see Appendix @ for details).

7.2 A Compiler for Norm-Succinct Polynomial Commitments

In Section we outlined the construction Block et. al [BHR™21] which also give rise to a mod-
PC, unfortunately, the final round of the protocol has the prover sending a vector Z € Z* with
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1Z]l < 2™ - (2X)" where m = [log,| f]|,] is the bit-size of the largest coefficient in the original
multilinear integer polynomial f € Z[X,...,X,]. As a result the verification depends linearly on m
and as a consequence our verifier would not be poly-logarithmic in the size of the witness.

Reducing The Norm via Reverse Kronecker Substitution. We avoid this issue with a generic technique
to reduce the norm of the coefficients of a polynomial f at the cost of increasing the number of
variables in the polynomial: allowing the prover to commit to a polynomial with potentially (very)
large coeflicients, by instead committing to a polynomial of constant norm 77, but with more variables.
In more detail, suppose the polynomial f(X) € Z[X] has coefficients of norm | f loo < 2™, then we
instead commit to a polynomial g(X, Z) € Z[X, Z] with coefficients of norm gl <2m™:

ird —.

X)) =Y - XezX] oX.2)= ¢(2)- X eczX, 2]
i€H, €M,

Where: . - . . P
g(Z2) =Y g:7- 72 €Z[Z] V] gz (272"
jeHu

Picked such that g;(1,2™, 227" . ., 22('1_””%) = ¢;. By constructing the polynomial this way, when we
apply Kronecker substitution to the Z variables in g(X, Z) it recovers the original polynomial f(X):

v % N 92h SRR
F(X) = g(X,(1,2m, 22 . 22 )

Note that such a decomposition can be computed very efficiently, e.g. if . = 64, then the coefficients
of g;(Z) are simply the (possibly negative) 64-bit limbs of the coefficients of c;. The next observation is
that during evaluation, after the prime ¢ is sampled, the verifier can efficiently perform the Kronecker

substitution during evaluation:

F(@) = g(&, (1,277,222 ™)) mod ¢
Vgq.
g

f(&@) = g(Z, (1 mod ¢, 2™ mod ¢,2?™ mod g, ..., 22" 7" mod q)) mod ¢

i—1 = . a—1
Since computing 2% = (2’”)2 mod ¢ requires only poly-logarithmic time in the original m using
repeated squaring, where m is the bit-size of the largest coefficient in the original polynomial f.

Corollary 1 (Reverse Kronecker mod-PC). There exists a mod-PC with weak evaluation binding
secure in the GGUO where for any multilinear polynomial f in u variables with coefficients bounded
by [ fll < 2™, the prover runs in time O(2* - m - poly(A,log(m))) while the verifier runs in time

O(poly (A, log(m), 11)).

We explain this technique in detail in Appendix [E] along with a more exact version of the complexity
analysis outlined in Corollary

7.3 A Compiler Obtaining Prover-Efficiency for Sparse Polynomials

In this section we discuss a general transformation from a mod-PC for dense polynomials into one
where the prover can run efficiently for sparse polynomials (see Section [2| and Definition . This
transformation is useful to obtain a mod-PC which we can apply to the indexing polynomial repre-
senting the sparse R1CS matrices in Fig. [3| Our starting point will be another compiler in literature to
obtain standard (for finite fields) sparse polynomial commitments: the SPARK compiler in [Set20]. Our
approach to porting the ideas from SPARK will consist of seeing it as a modAHP for a (deterministic)
relation, that of polynomial evaluation. While the specific details of SPARK will not be crucial for all of
the technical points in this section, but it can provide a slightly more concrete frame for our problem
and make our discussion more self-contained.

Brushing up on SPARK: For concreteness we describe the high-level idea behind SPARK for our case of
interest: the (sparse) multilinear encoding M of a sparse N x N matrix M. In order to commit to M,
the scheme applies the dense polynomial commitment over a constant number of dense polynomials
that encode M (and which intuitively encode the non-zero values in M in relation to their position
and work as “advice” for later stages of the protocol). These dense polynomialscan be thought of as
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the index for the deterministic relation M (&) = y (mod q) (¢ being the prime order of the field, which
is fized and known before hand in SPARK) and committing to them can be thought of as the indexing
stage of the corresponding argument After the public input—consisting of (Z,y)—becomes available,
the prover commits to additional polynomials which will depend on the newly available input. The
scheme then continues as an interactive protocol, at the end of which the verifier will query all the
polynomials it received access to.

Trying not to reinvent the wheel —SPARK as a mod-A HP? Intuitively, if we could see the protocol above
as a mod-AHP for the right relation our job would be then. In fact, we could just apply our compiler
from Section (instantiated with a dense polynomial commitment) and the resulting SNARK would
be the polynomial commitment we were looking for: one for the relation M (&) = y (mod ¢) (this time,
with ¢ randomly sampled) and with a “sparse” efficiency profile.

This intuitive plan, however, cannot work directly for a somewhat essential 1reasoﬂf|7 that is: in a
mod-PC—the object we want to realize—the challenger in its soundness experiment first samples a
prime ¢ and then receives the input (Z,y); however, in the soundness definition of mod-AHPs this
is impossible because the adversary can see the sampled prime only after it has provided an (alleged)
oracle polynomial encoding to the integer witness—and therefore definitely after it has declared its
public input.

When looking at general relations, this feature of the soundness of mod-AHPs is not optional and
therefore, in this sense, is not some type of technical artifact we could do without through different
deﬁnitionﬁ Nonetheless, in the more limited setting of deterministic relation with integer indices (e.g.,
the polynomial M ) but with public inputs “modulo the freshly sampled prime” (e.g., the evaluation
input # and output y), we can show that a different form of soundness can be achieved (and that SPARK
satisfies it). We are thus able to extend our framework with the notion of delayed-input deterministic
soundness and, as a consequence, to import the techniques in SPARK. More importantly, once done
the formal work in the framework, showing the soundness of the resulting protocol is trivial. We thus
have the following resul

Corollary 2. There exists a mod-PC for sparse polynomials with weak evaluation binding secure in
the GGUO model (Appendix@ and with knowledge error €. In particular, for a sparse multilinear
polynomial g in 2u variables and dense representation of size O(2"), the prover runs in time Oy (2* -

10g5|9llo0)-

Remark 5 (A note on functional commitments “modulo q¢”). We believe that the “deterministic” ver-
sion of our framework discussed in this section (and developed in Appendix [I)) can be of independent
interest: it provides a language and basic results to bootstrap functional commitments over integer
inputs with opening to any “modular remainder” restriction of a function f—that is, a generalization
of our notion of mod-PC (where f is polynomial evaluation). In this section we used it specifically to
bootstrap sparse mod-PCs from mod-PCs for dense polynomials. A potential object of interest could
be for example subvector commitments [LMI9] for Z™ where arbitrary subvectors can be opened in
Zq for a sampled ¢. Such a subvector commitment could in principle be useful to compile an IOP
counterpart ([BCS16]) of our mod-AHPs). We leave this as an interesting open problem.

8 Putting it All Together: Zaratan

Our final construction Zaratan is the result of compiling the mod-AHP in Section [f] with the compiler
from Section We instantiate the polynomial commitment for compilation through our construction

22 There is actually one more reason why this cannot work immediately, but it is more superficial and very
easy to fix: that, in addition to integer oracle polynomials, we now also have polynomials with field coef-
ficients (sent after sampling the prime). It is straightforward to extend our framework in this sense (see
Appendix ,

23 Otherwise, after we sampled the prime, the adversary could convince a verifier it knows non-existing integer
witnesses (as in the equation w? = —1 over Z) just by strategically providing the right oracle polynomial on
the basis of the sampled prime.

24 A formal treatment of this section is in Appendix

%5 The resulting verification time/proof size from SPARK has an additional logarithmic factor (in the number
of coeflicients of the polynomial) compared to the construction in Section as shown in Table This is
not inherent and works following up SPARK [SL20] remove this factor; we leave as future work to bring these
results to our settings.

23



for reference): we compile the witness oracle

and compilers in Section [7|, more specifically (see Fig

polynomial . with the construction from Corollary |1} we apply the sparse polynomial commitment

from Corollary [2[ to compile the indexing polynomials ., , . Zaratan is secure in the generic
group model for unknown-order groups (GGUO) and heuristically through Fiat-Shamir in the ROM.
The cost of the final verifier is dominated by our polynomial commitment, in particular the sparse
ones for indexing (the verifier does not pay this cost in the case of uniform computations where the
R1CS has a “nice” encoding that the verifier can compute directly). The final efficiency is described
in Table [1I

We stress that the prover has a linear dependency (not quasi-linear) w.r.t. m := log,||@||oc. This
is because in our mod-PC from Section [, we do not perform any operations over Z on the integers
witness coefficients; the dominating operations using those coefficients are exponentiations in the group
of unknown order, whose complexity is O(m - poly(A)). On the other hand, due to the transformation
from Corollary [I} the prover does have a quasi-linear dependency in N, the number of constraints in
the R1CS.
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Supplementary Material

A  Further Preliminaries

A.1 The Sumcheck Protocol

Let p(xy ..., x,) be a multivariate polynomial in n variables defined over a field F. Consider the value
a= Zie{o’l}n p(4), i.e., the sum of the value of p on all the vertices of the Boolean hypercube. This
computation takes N = 2" time and the sumcheck protocol [LFKN90] described in Figure [5] is a way
for a Prover to convince a Verifier that a is correct in O(n) time, plus a single query to the polynomial
p on a random point in F™.

P sends the polynomial pi(z) = 216{0 1yn-1 P, i).

V checks that p1(0) + p1(1) = a and sends back r1 €g F.

P sends the polynomial p2(x) = Zze{o,l}n_g p(r1, z,1).

V' checks that p2(0) + p2(1) = p1(r1) and sends back r2 €r F.

At round j P sends the polynomial p;(x) =3 ;c (g 1305 P(T1, .- 751, @, 7).
V' checks that p;(0) 4+ p;(1) = pj—1(rj—1) and sends back r; €g F.

At the last round P sends the polynomial p,—1(x) = p(r1,...,7n=1,2).
V checks that pp—1(0) + prn—-1(1) = prn—2(rn—2), selects r,, €r F and checks that pr—1(rn) = p(r1,...,7)
via a single query to p.

Fig.5: The Sumcheck Protocol

B Generic Group of Unknown Order (GGUO) Model

A generic group of unknown order G is an idealized model where the operations are performed via
oracles, without access to the actual representation of elements to the parties. The model consists of
two oracles: one that samples random group elements and another that performs the group operation.

Definition 17 (Generic Group of Unknown Order (GGUO) Model [DKO02]). The parties
have access to two oracles, one which produces random group elements and the other which computes
the group operation. Initially n = 0.
01() J

—n+<n+l

— Sample x,, <$Zn

— Output o(zy,)
O4(i,j,b) : takes two indexes and a sign bit:

—n+<n+l

— Define z, < x; + (—1)° - z;

— Output o(x,)

C Wesolowski’s Proof-of-Exponentiation

The subprotocol Xpog is used in the YXpyurieval to reduce the computation of the verifier: in a naive
protocol the verifier would have to compute B = [qQ‘} <A € GJ)‘Q where g2’ is linear in the number
of coefficients of the original polynomial f. This would prevent the verifier from being succinct, the
solution is to outsource the computation to the prover and use Xpog (see Fig. @ to verify the correctness
of the computation. Note that the only dependency between the verifier’s running time in X'pog and the
exponent A is the time required to compute A mod p which for A = q2t can be done in polylogarithmic
time. The protocol relies on the adaptive root assumption (Definition in the group G
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Definition 18 (Adaptive Root Assumption [Wes19]|). Let (Ap, A1) be arbitrary PPT algorithms.
The adaptive root assumption states:

Gy < G(1Y)
(H,st) < Ao(Gg)
p <5 Py
R+ Ai(p, H,st)

negl(A) > Pr [[p] - R=H #0c Gy

For some negligible function negl(\).

d d
ZPoE(A S GN’B S GN’ A)

1: V samples p <s Py, and sends p to P

2: P computes:
Ba) < [A/p);Q « [Ba)] - A € G
P sends (¥(4),Q) to V

V checks: [p] - Q + [A mod p] - A < B

> W

ot

Fig. 6: The Proof-of-Exponentiation Protocol [WesI9] by Wesolowski.

Lemma 4 (Soundness of Ypoe [Wes19]). Assuming the Adaptive Root Assumption holds in Gy,
Xproe (Fig. @ is an argument system for relation R, :

Rrwe = {(A,B,A), 1) : B=[A]- A€ Gy}
With negligible soundness error.

Observe that the relation is in P; membership can be verified in log(A) time using a double-and-add
algorithm.

D Protocols of Block et al.

In this section we include a brief overview of the protocols Xevai/ Zmunieval (Fig. by Block et al.
[BHR"21]. We include the protocols for completeness and to unify the notation with the rest of the
paper. Besides replacing the Xpog used in Block et al. with the Wesolowski Xpoe (see Appendix, the
section contains no original contributions. We refer the reader to the original paper for further details.
The use of the Wesolowski Xp.g does not affect extraction as the PoE relation R, . has no witness.

Notation. Define the multi-linear evaluation:
“w
ML(f,Z) = Z fr Hxﬁ mod ¢
te{0,1}n i=1
Note that these protocols use A-dimensional integer commitments C = (Cy,...,C)) € G;\\?’ we denote
these in bold. Addition on these commitments is done component-wise and scalar multiplication is
done component-wise as well:

A+[s]-B= (A1 +[s]-Bi,...,Ax +[s]- Bx) € G},

Generalizing, denote by M % C the commitment resulting from applying the matrix M € Z*** to the
commitment C € GJ)‘\7 in the natural way.
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isValid(pp = (G, G),C € Gy, T € ZF,q € Py € Z, f € Z*")
1: if ||f]|,, > B then return 0

if C # [Encq(f)] - G then return 0

y # ML(f, Z) mod ¢ then return 0

return 1

Bw N

Fig. 7: Binding notion for the multi-linear commitment scheme.

= = —r+1
EMultiEval(pp, C, r,r,y,m,q; = Z)\XZ“ )

1: output:accept or reject

2 ifr=up:

3:  Psends Z€Z toV

4: V Checks:

5 1Z]] e <27 - (2X0)"

6: gj’éZmodq

7 C = ([2]-G,...,17]-G)
8: else

// Prover computes the evaluation over each subcube over the field:

// One for z, = 0 and one for z, = 1

9: P Computes:
p—r—1
10 g Y. Zeow- [ x(t@ise1) modg
te{0,1}p—r-1 Jj=1
p—r—1
11: :ljR < Z Z(*J”t) . H X(tjaijrfJﬁl) mod q
te{0,1}p—r—1 j=1

// Prover commits to the ”split polynomials”

12 : P Computes:
13 : Cr« [[]-Gwhere l« > q" Z o
te{o,1}p—r—1
14 : Cr + [r] - G where r + Z q{~ ARRID)
te{0,1}p—r-1
15 : P sends (y,%r) and (Cr,Cgr) to V
/| Verifier checks the decomposition using the Zpoe protocol.
16 : V : Check 3]; gL - (1 — Zrg1) + YR - Trg1
17: Ypoe(Cr,C—Cpr,q"™"™")
/| Verifier samples random binary matrices Ur, Ur and sends them to the prover.
18 : V:U = [UL||Ug] s {0,1}**** where Uy, Ug € {0,1}**
19 : V sends U to P
20 : P and V:
21 : 7 UL +Ur-ijr
22 C' + (U, *CL) + (Ur % Cg)
231 P:For Zp,Zr € ZV® " such that Z = [Z1||ZR]
24 : Z' '« Uy - Zr+Ur-Zr
25 : return Swvurieval(C',r + 1, 2,9 ,m,q,; Z)

Fig. 8: MultiEval protocol by Block, Holmgren, Rosen, Rothblum and Soni [BHR™21], included here
for completeness and to unify notation.
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Yeal(pp.C € Gy, & € Flhy € Fy,m, q; f € Z%)
10 g=(y,...,y) €F,

2: CZ(C,...,C)GG’\

3: Z:(f,...,f)EZ)‘><2H

41 Dvunieval(C,r = 1, &, 4,m,q; Z)

Fig. 9: Evaluation protocol by Block, Holmgren, Rosen, Rothblum and Soni [BHR™21], invoking the
YMultieval Protocol on A parallel instances.

D.1 Evaluation Protocol

The binding notion (unlike that of the original DARK paper) is defined for an integer polynomial with
coefficients in the range [—B,B] C Z, this is captured by a procedure isValid which defines a valid
opening (see Fig. [7)).

Theorem 4 (Knowledge Soundness of Xg,, ). The protocol Xey is an argument-of-knowledge
protocol for the relation:

R sumen = L(C,Z,y), f) isValid(pp, C, Z, f) Ay = ML(f,Z) mod ¢}

Proof. See the original paper [BHR™21].

D.2 mod-PC from Block et al.

Definition 19 (mod-PC from Block et al.). Define the modPC = (Setup,Com, Prv,Vfy) as in
Fig.[I0 Then modPC is a secure mod-PC.

Proof. Follows from Theorem

Prv(pp, ¢, ¢, opn, 7) Setup(1*) — pp
1: y+ f(&) modq 1: Gy« g1
2:  Run Xe.i(pp, ¢, £ mod g, m, 2: G+sGy
q; Coeff(f)) 3: return (Gg,G)
Vfy(pp, ¢, ¢, opn, ', y) Com(pp, f) — ¢

1:  Run Xew(pp,c, & mod ¢, m,q) 1: opn<« f
2: c+ [Enc(f)] -G

3: return (c,opn)

Fig. 10: The mod-PC from Block et al. [BHR21|. Here Coeff(f) denotes the coefficients of the poly-
nomial f: a vector with indices in H, and values in Z.

Theorem 5 (Complexity of X, ). Let m* = m 4 logy(X) - u. The complezity of the modPC (see

Fig. @) 18:

Ceom(m, A, u) = O (2% - m)
Cpro(m, A, ) = O (2 - X% - m*)
Copy(m, A1) = O (- X2+ X-m")

Measured in group operations (addition/subtraction/negation) in Gy .

30



Proof. The complexity arises from the following operations:

Com : The prover performs a single multi-scalar multiplication (MSM) of 2# coefficients with bit-size
m, requiring O(2" - m) group operations. The verifier simply receives one group element.

Prv : Each round of folding reduces p by one and increases the norm of the coefficients by at most A;
each new coefficient is a {0, 1}-combination of A coefficients. This means m’ = m + log,(\) and
@' = p — 1 in the next round. Computing Uy, x Cr, + Ug x Cg takes O(A\?) group operations per
round. Committing to the cross terms [, 7 and running Xpoe requires O(\ -2 -m) group operations
per round. If we bound the bitsize of the coefficients in any rounds by m* = m + log,(A) - , then
we obtain claimed complexity.

Vfy : In each round, the verifier sends {0, 1}-matrices Uy, Ug of size A x A (requiring O(A\?) time),
computes a vector-matrix multiplication Uy, - i, + Ur - ¥r (O(A2?) group operations), runs Xpog
(O(A\?) group operations), and processes each commitment coordinate (O()) group operations).
The final prover message has bit-size at most m* = m + logy(A) - ¢ and dimension A, requiring
O(X - m*) group operations. This gives the claimed complexity.

Observe that the verifier complexity Cy¢, is linear in m, the bitsize of the largest coefficient. This
implies that the protocol is not succinct when the witness has large norm. We tackle this issue in the
next section with a generic transformation.

E Reverse Kronecker Substitution

The following states that the complexity of a mod-PC in the norm of the coefficients can be reduced
to logarithmic at the cost of increasing the number of variables.

Theorem 6 (Reverse Kronecker Substitution). Let m € Nsg be an arbitrary constant. Given
a modPC = (Setup, Com, Prv, Vfy) with complezity Ceom(m, A, 1), Cpro(m, A, 1), Copy(m, A, ) for the
operations Com, Prv, Vfy respectively. Then there exists a modPC* = (Setup®, Com™, Prv*, Vfy™) with
complezity:

Czom(ma )‘7 N’) = CCOm(mﬂ /\7 Hw + [1’) +c-m

C;W(m, A ) = Cprp(, A, o+ ) + ¢ - i - logy (m)

Copy(my A, i) = Copy (i, A, pu+ ) + ¢+ fu - logy(m)

For some constant ¢, where i = |logy(m)/m| is logarithmic in the number of bits m of the largest
coefficient. Assuming field operations in Fq are unit cost (g < 21 ).

Proof. The proof is by construction and the new protocol is defined in Fi . Note that v mod q can
be computed in O(i) operations in F, by repeated squaring v = (v* )2 mod ¢, from which we see
that computing Z = (22" mod @)ie[n) in the way done in Prv* and Vfy" requires O(7i - 1) operations
in [Fy.

— Com™ consists of: decomposing coefficients into limbs and committing to the new polynomial. This
takes ¢ - m and Ceom (1, A, 1t + 1) time respectively.

— Prv* consists of: computing Z, running Prv on the new polynomial and Z. This takes c - 7 - i and
Cporv (172, A, pt + 1) time respectively.

— Vfy™ consists of: computing Z, running Vfy on the new polynomial and Z. This takes c - m - i and
Coy (11, A, o + f) time respectively.
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Setup*(1*) — pp Prv*(pp,q,c,opn,T) = 7

1: return Setup(1’) 1: 2z < 2™ mod q

. N 2"
Com* (pp, f) — (¢, opn) for i € [2,/]. zi < zi—1~ modgq

// Split every coefficient into 2" 1h-bit limbs
1: o fi 4= [logy(m)/mh]
2: foricH,:
3: (9700 - 95,20 _1y) < Limbs(fz, 7, 1) Vfy*(pp,q,c,Z,y, 1) = b
// Commit to the coefficients
) [N o F
4 gX, 2y« > g 72X
€M, TEH,

2
3 5%(51772;2)

4: w<+ Prv(pp,g, (%, 2),q)
5

return 7

1: 21+ 2" modgq

2: forie[2,0]: 2z + zi,12ﬁh mod ¢
3: 2(—(51,...,2?‘&)

5: ¢, opn) < Com(pp, oL
7 (c, opn) (pp-9) 4: return Viy(pp, 7, (%, 2),q)
6: return (c,opn)

Fig.11: New modPC* obtained by reverse Kronecker substitution. The definition of Limbs, which ex-
tracts the rm-bit limbs from an integer, is given in Fig.

Limbs(v € Z,m € N, 1)

// Take the absolute value of v

1: if v <0 then sign +— —1 else sign + 1
// Write v as limbs in [0, 2™)

2: for i€ [0,2"].l; « (sign - v) mod 2"
// Negate the limbs if v was negative

3: return sign- (lo,...,lz-1)

Fig. 12: Procedure extracting m-bit limbs from an integer, handling both positive and negative inputs.
Note that on a RAM machine with a constant wordsize, the time complexity of this procedure is
O(log(v)) as it corresponds to reading off the bits of v into 7-bit chunks.
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Corollary 3 (Complexity of mod-PC). For an arbitrary constant 1 € Nsq, let i = |logy(m)/m].
There exists a modPC with complexity:

Ceom(m, A, 11) (2u+ﬂ . m)
-0 (2#+log )
=0(2"-m)
Coro(m, A, ) = O (2477 - X2 (1 + log(N) - (1 + 1))
=0 (2# 2108(m) )2 . Jog(\) - (11 + log(m))>
=0 (2" -m- A -log(A) - (1 + log(m)))
Copy(m, A ) = O ((+ 1) - A+ A+ (i +log(A) - (1 + 1))
= O ((log(m) + p) - (log(X) - log(m) +A) - A)

Where complexity is measured as the number of group operations (additions / subtractions / negations)
in Gg. In particular, the complexity of the verifier (Cyp,) is poly-logarithmic in the description of
the polynomial f()?) both the number of the coefficients 2* and their bitlength m. Meanwhile, the
complezity of the prover (Ceom + Cpry) is linear in the number of coefficients 2 and quasi-linear in the
bitlength of the largest coefficient m.

Proof. Follows from composing Theorem |§| with the protocol of Fig. [8| by Block et al. [BHR™21] (see
Theorem .

F Fingerprinting of Polynomial Evaluation

Theorem 7 (Number of Primes [Ros41]). Let w(z) denote the prime-counting function, i.e. the
number of primes less than or equal to x. Then:

x x

W<W(m)<m, for x > 55

Proof (Proof of Lemma @ The evaluation y = f(#) has a norm |jy||, < 2™ it is a summation
of at most 2¢ non-zero terms, each of norm at most 2™¢. Now consider the set P(y) of distinct prime
factors of y and observe that y = 0 mod ¢ <= ¢ € P(y). Therefore the probability that y = 0
mod ¢ for a uniformly sampled prime ¢ € P, is:

. [P(y)| _ logy(y)  £+m-d {+m-d
oo, (B = 0mod d] = B < T 7 < o™ = 70 —n @)
L+m-d L+m-d X-(L+m-d)
S _ o1 S iy = A1
In(2*)+2 In(2*—1)—4 A

For any A\ with 2* > 55.

G Reducing the Requirements for Indexing Commitments in our
Compiler

We observe that in the proof of Theorem [2] we do not really need to invoke the extractability of the
commitments to the indexing polynomials. All that is required for them is that weak evaluation binding
holds. This suggests the following modified compiler:

— Let modPCigx and modPC,, be two mod-PCs satisfying respectively weak evaluation binding and
knowledge soundness.

— Apply the compiler in Fig. with the only difference that we use modPC,4y for the indexing
polynomials and modPC,, for the oracle polynomials.

The following theorem follows from the proof of Theorem

Theorem 8. Let modAHP be a knowledge-sound mod-AHP. Let modPC;4, and modPC,, be two mod-
PCs satisfying respectively weak evaluation binding and knowledge soundness. Then applying the variant
of the compiler in Fig.|14] described above yields a complete, full knowledge-sound interactive argument.
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H Missing Proofs

H.1 Proof of Theorem [1]

We propose only a sketch of the proof since it is easy and formal versions of some of these observations
are in the proof of Theorem

Let P* = (P*

* ols Pase) and consider the following extractor:

Ext” (1)‘, i,x,aux)

Obtain polynomial g*(X) from P,
Run Decoder on g*(X) to obtain w

Return w

Now assume by contradiction that the following event has a non-negligible probability: the output
of the extractor above is not a witness for the original (full) integer relation R and yet the verifier
accepts when interacting with P*. Now consider the prime ¢ sampled during the interaction. Either w
is a witness for [Ra], or it is not. The probability that the extracted string w is a “fingerprint” witness
modulo ¢ (while being not a witness for the integer relation) is negligible because of the assumptions
on the good testing property. If it is not a fingerprint witness, however, we can invoke weak knowledge
soundness (Definition and conclude we reached a contradiction. O

H.2 Proof of Theorem 2|

To argue completeness we need to argue that for an honestly generated proof, the decision algorithm
will accept. The latter consists of two checks: those from underlying mod-AHP and the mod-PC
verification. Invoking completeness of the two primitives suffices to claim completeness of the overall
argument.

We now show knowledge soundness for our compiler. Our proof strategy is standard and resembles
the one used in previous papers with AHP-like compilers, such as [ABCT22|CFFT21[BFS20,CHM™20).
Consider an adversary P producing an accepting transcript with probability p. We show an extractor
for P in Fig. Our approach at the high level:

— The extractor works by invoking the mod-AHP extractor which interacts with a mod-AHP prover
P*.

— P* is related to P and, intuitively, is the prover that, at each round i* before the prime is sampled
returns the polynomials “behind” the commitments returned by P at the same round. For the
later rounds it simply follows the prover of the plain interactive protocol part of the mod-AHP.

— To define such a P* we need to invoke the extractor of the mod-PC. Formally, in order to do this
we need to define an adversary for each of the polynomial/commitment that will be exchanged
during the interaction. Such a family of adversaries is defined in Fig.

Consider the knowledge soundness game for interactive arguments. Below we bound the probability
that the extractor Extarg fails to output a witness (event Extarg X) while P successfully produces
an accepting transcript in the knowledge soundness game (event PV ). In order to do this, we make
observations related to events for Extf;*HP and P* in the context of the AHP knowledge soundness
game; denote by Exti*Hp X the event where Eth*HP fails to produce a valid witness and by P* v
the event where P* succeeds in producing outputting oracle polynomials that make the AHP verifier
accept. Below when expressing conjunctions, we consider the correlated events where there is only one
sampling of the random coins of P and the random coins of the AHP and argument verifiers (for P*
and P respectively) uses the same random tape.
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We can then observe:

Pr[Extarc X AP V]

Pr[Ext’yyp X AP V] (2)

PrlExthyp X APV AP* /] +Pr[Exthyp X APV AP X| (3)

Pr (4)
(5)

r[Extlygp X AP* V] +Pr[P* XAP V]
negl(A) + negl()\)

IN A

— Eq. follows by construction of Extagrg.
In Eq. we apply a simple marginalization.
4

— In Eq. (4) we apply the elementary fact X - Y — Pr[X]| < Pr[Y].
We bound the left-hand summand in Eq. by simply invoking knowledge soundness of the
underlying mod-AHP. For the right-hand summand we invoke Lemma

This concludes the proof. a

Extara (srs;rnds)

(i,%,5t) < P1(srs;rnd )
aux := (st, rnds, srs)

Output w + ExtPAHP(lx, i, X, aux)

P* (st, tri=, aux)

Retrieve i from the state
If i* < k then invoke P} st, try=, aux) // defined below

oret (
Else invoke P

rst (St tri=,aux) // from plain interactive protocol in underlying mod-AHP

Pra (st, p1, ..., pi=,aux = (st,rnd, srs = (1%, pppc)))

Retrieve i from the state

If i* = 0 then return (g0,5);eps(0y < Z(171)
For j=1,...,s(:") :
Invoke Extpc’i’*’j(pppc, aux = (st, rndp, P4, ..., Pix)) to obtain g;
Abort if g; € Z<q[X1,...,X,] where d :=d(A, |i], i*,j), wo=v(A i, i*)

return (g;);_1, )

Fig. 13: Extractor for proof of Theorem For each i, j the extractor Ext’C7 is defined as the poly-

nomial commitment extractor for adversary AF®%J according to the knowledge soundness property in
Definition We assume that the prover P* obtains as initial state the index i.
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AL (pppc, aux = (st,mdp, 71, - ., i)

Let srs = (1%, pppc)
Run EmulateArgTranscript(srs, st, rnds, 51, ..., §i, L, L) to obtain transcript 7

Retrieve the commitment c¢; ; from T ; Save pppc,aux as state st

Return ((es,g,d, fil 3, 5), vO\ il 9), 5t)

Qiyj(ppPC7 q,aux = (§t7 rnd75, ﬁlv e aﬁl))
Let srs = (1%, pppc)

Sample p;4 1, ., Pk, Prst Where k = k(A, [i])
Run EmulateArgTranscript(srs, st, rnds, 51, . - ., Pk, Prst, ¢) to obtain transcript 7 w/ queries Q
Let 25 := (2:(i',5',2) € Qi=1',j=3")
Return (25,3-, auxg = (ﬁi+1’ cey Pk ﬁrst))
‘Agrcf,i’j (Stv Z,ja g,auxg = (ﬁ'ﬁrla ceey ﬁky ﬁrst))
// st contains aux = (st, mds, p1, .-, i)
Run EmulateArgTranscript(srs, st, mdz, §1, - -, Pk, Prst; ¢) to obtain transcript T
// NB: queries Z; ; in transcript are the same as the ones in input to AFChd

prf
For each z € Z; ; retrieve corresponding proof 7. and evaluation y. from T

Return (y., Wz)zefi ;

EmulateArgTranscript(srs, st, rnd 3, 01, - . . , P, Prst, q)

// Notice that by convention we have prst = ¢ = L if i~ < k(A i|)
If prst = ¢ = L run an interaction with P till round * (included)
Else run a full interaction

(in both cases run P (resp. V) w/ state/randomness (st, mdz) (resp. (P1,. .., Pi*,Q, Prst) ))

Return the transcript from the interaction 7

Fig. 14: Auxiliary algorithm definitions for Fig. 13 We assume each APC#7 = (Afocrr;i’j , Appg’i’j ) has

embedded the parameter |i|.
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Lemma 5. In the proof of Theorem the quantity Pr[P* X A PV ] in Eq. is negligible.

Proof. By inspection of P* we can observe that there are two ways the event P* X may occur: some of
the polynomials g;« ; may:

(i) have the wrong degree or number of variables after extraction (for some i* > 1 ); or
(ii) disagree with the output of P in the following way (recall that we consider the same verifier’s
challenges for both the AHP and argument interaction):
— Let z be some challenge point for g;- ; in the transcript.
— Let y be the evaluation output y claimed by P for the polynomial opening ¢;~ ; when evaluated
on z taking the value mod ¢ (the prime from the transcript).
— We say that the event Bad(g;~ ;) occurs if g;« j(2) # y mod g for some challenge z and corre-
sponding output y claimed by P.
The event above intuitively means that the oracle polynomial output g;- ; by P* “does not agree”
with the claims by P. Notice that, if condition (i) does not occur but P* X and P do, then it must
be the case that condition (i) occurred (otherwise the decision algorithm would have accepted for
P* as well).

We can easily observe that the probability that (ii) occurs is negligible because of the negligible
knowledge soundness error of the polynomial commitment (we will show a more formal reduction below
for a similar case). Therefore, by applying the observations above and a simple union bound we can
conclude that Pr[P* X AP v | is at most:

> Pr[P v A Bad(go,) : (90,5); + Z(IAD)] +
J
> Pr[P v A Bad(gi- ;) : gir ;< Ext” PO + negl())
1*#£0,5

If we assume, for sake of contradiction, that Pr[P* X AP v ] is non-negligible then at least some
term in the two sums above must be non-negligible. We now show that we can recast the event encoded
by the Bad predicate as a knowledge soundness game of the polynomial commitment or as a weak-
evaluation binding game (for the case of the polynomials from the indexer).

By knowledge soundness of the mod-PC we know the following probability is at most negligible:

pp + Setup(1?)
(gi* 7 ¢ Z<1[)(1; .. ,X[L] V ((Ci*aja ,LL) 7St) A AfOCI:I;i 7j(pp7 aux)
7 B q s Py

pr | 3k €[m] gi- j(2k) # yr mod q) A ((Zk)ke[m] ,au><Q) + 9(pp, aux, q)

val
/\ny (pp,qaci*,jvzkaykaﬂ—](: )) =1 ( (eval)
k

Yk, Ty, — Aprv(5t7 q, (Zk)k ) aUXQ)

)ke[m]
PC,i*,j(

gi=; + Ext pp, aux)

Now, for a more succinct notation, let us define the following event:

pp «+ Setup(1?)

(cir 32 1) 5t) + A9 (pp, aux)
q <$ ]P’)\

Eadv,ksnD 1= ((Zk)ke[m] ,auxQ) + 9(pp,aux, q)

(yk, Trl(geval))ke[m] P Aprv(st, q, (Zk)k ,auxg)

PC,i*,j(

gi=; < Ext pp, aux)

and let us observe that, by how we defined Bad, we have:

Bad(g;- ;) <= (gi*,j € Z<1[X1,...,X,) vV 3k €[m] g+ j(2) #yr mod q)
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By observing that the coin tosses in E,qv,ksnp are distributed exactly as in an interaction with an
honest argument verifier, we can then conclude that:

negl(\) > Pr

Bad(g:- 1) A AV (pp. . e g2z ™) = 1
k

Eadv,KSND‘|

> Pr [Bad(gi*,j) AP ./]

Now for the indexer polynomials, assume that Pr[P v A Bad(go ;) : (90.4); « Z(1%,1)] is non-
negligible for some j. Consider some evaluation proof 7 from P with respect to commitment co,; and
some evaluation point z with claimed output y (modulo ¢). By is definition, if the event Bad(go,;)
occurs then go ;(2) # y mod g. Let p the probability = passes the verification and Bad(g ;) occurs.
This probability should be negligible by definition of weak-evaluation binding because ¢y ; is generated
honestly from go j; however, this probability is at least Pr[P v A Bad(go,;) : (90,4); Z(1%,i)], which
we assumed to be non-negligible. Absurd. O

H.3 Proof of Theorem [3

It is immediate to see that Fig. [3| satisfies the syntactic properties of the mod-AHPs (oracles, prime
sampling, subsequent interactive argument) and that it has a simple prover (Deﬁnition. Notice that
the multilinear encoding of the witness, w € Z[X7, ..., Xiog n], can be computed over the integers.

We need to show weak knowledge soundness, that is, informally, that for any efficient adversary
there is a decoder such that for any prime g € Py with overwhelming probability we are able to extract
a witness for the associated fingerprinting relation. (see Definition ) or the prover fails to pass the
verification checks. Here we can easily invoke the results from [Set20]. We observe that after the prime
is sampled the protocol in Fig. [3] is exactly the one in the original description of Spartan. The only
difference is in the language used to describe since we use the language of AHP over Z with modular
remainder queries@

We now show how we can invoke results from the proof of Theorem 5.1 from [Set20], which shows
the knowledge soundness of Spartan. The proof (which is phrased in the language of witness-extended
emulation) essentially proves that Spartan is an extractable AHP (in the standard sense). All we need
to bridge this fact into our proof is:

1. to show that the proof in Spartan is not impacted by the polynomial ’(I}(X) being over the integers
instead of in the finite field at the start of the protocol;
2. to show that what is extracted is actually a witness for [RR!];

Let ¢ be some prime and let Ext, be the Spartan extractor for the field F,. Such an extractor exists
as by Theorem 5.1 in [Set20]. This extractor works by looking at the polynomial W, evaluating it on
the boolean hypercube and returning the resulting vector. The security result we cite above shows that
this produces a valid witness in I, with overwhelming probability.

We define our decode exactly as the extractor above. We want to claim that this algorithm will
produce a vector w such that (i, [x]q, [w]g) € [Rn]q unless the adversary does not pass verifier with
substantial probability.

To argue the above we proceed as follows. Let (A, B,C) be a Z-R1CS and let g be a prime. For
any adversary A’ for the relation yielded by (A, B, C) against the experiment in Definition we can
observe that there exists an adversary A for the original Spartan for the “fingerprinted” R1CS (which
is a valid F-R1CS and therefore a valid constraint system for the original Spartan) that engages in
the knowledge soundess game with the original extractor Ext with the same success probability. We
first observe that in our protocol the indexing polynomials are MLE(A), MLE(B), MLE(C) but all the
evaluations of those multilinear extensions at the end of protocol are modulo ¢. Therefore, by Lemmall]
these evaluations are the same as the evaluations of the multilinear extensions corresponding to the
R1CS fingerprinted relation (see Definition . This guarantees correspondence between the R1CS as
described above.

26 Tt has already been observed in other works that Spartan is essentially an algebraic holographic proof (in the
standard sense of “finite-field” AHPs) over multivariate polynomials [CBBZ23].
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Then we can construct A as the adversary that internally runs A’ but provides oracle access to
the polynomial w, that behaves exactly the same as w in Z,. Because of the observations on the MLE
of the matrices, we can finally observe that the output of a verifier having access to only evaluations
modulo ¢ of an integer polynomial w(X) (as it is the case in Fig. |3)) would be the same of that of a
verifier having access to 1,. This proves the claim above and concludes the proof. a

H.4 Proof of Theorem

Consider the compiler in Fig.|2|and apply modPC to the indexer oracle polynomials (recall that we have
no other oracle polynomials). We construct modPC* from the argument obtained from the compiler as
follows:

— The setup consists of the setup of mod-PC for dense polynomial.

— The commitment stage consists of the indexing stage: it receives as input the index description (a
polynomial) and the output commitment is the vector of commitments from the indexing stage.

— The opening stage (recall we consider interactive opening) takes as input a randomly sampled
prime q as well as the commitment and the pair point—evaluation and it consists of the online stage
of the argument after the sampling of the prime.

Now we need to argue this construction satisfies weak evaluation binding. Assume that, by sake of
contradiction, it is not. That is, there exists an efficient adversary A that:

— outputs a multilinear polynomial g;

— after seeing a random prime ¢, outputs Z and y such that g(Z) # y;

— with non-negligible probability gets to convince the verifier g(Z) =
commitment cg.

y w.r.t the honestly generated

Consider the opening transcript of A. Intuitively it is either containing false claims for the output of
the indexing polynomials (which would entail breaking the delayed-input soundness of the underlying
mod-AHP) or it is producing convincing mod-PC proofs for false outputs of the indexing polynomials
(breaking weak-evaluation binding of modPC). We thus reach a contradictiorﬂ O

H.5 Proof of Theorem [10]

The core efficiency properties of the construction are argued in [Set20]; the resulting efficiency of our
construction follow straightforwardly from those observations. For what concerns security, we can also
easily rely on the security arguments in [Sef20]: The proof of Lemma 7.6 in [Set20] essentially argues
that the construction in Fig. is an interactive argument with negligible soundness if PC,qy, is an
extractable polynomial commitment. The original proof also assumes that the indexing polynomials are
not provided through oracle access but are instead committed and then evaluated through the opening
of a polynomial commitment (with weak evaluation binding properties). The only significant change
with the proof is then the fact that we are assuming oracle access instead of polynomial commitments
opening but this can clearly only strengthen the claims in the original proof.

The proof of Lemma 7.6 in [Sef20] argues for soundness of the protocol as an argument for RPOY;
this translates directly to delayed-input soundness for mod-AHPs. a

I Building mod-PCs for Sparse Polynomials and Delayed-Input Soundness

In this section we show how to build efficient mod-PCs for sparse integer polynomials. The result of
this section can be used to instantiate the polynomial commitments for the indexing R1CS polynomials
in Zaratan.

2T A formal version of these last steps is analogous to the ones in the proof of Theorem [2| to which we refer
the reader.

39



1.1 Delayed-Input (Deterministic) Soundness

A mod-AHP with delayed-input soundness can be thought of as the deterministic analogue of a
“fingerprint-only” knowledge sound mod-AHP (Definition . The latter notion states informally
states that, from a prover with good success probability during a mod-AHP interaction, we are able
to “extract” a valid witness for the associated fingerprinting relation (Definition [3] The definition we
provide in this section is very similar but it will focus on deterministic relations (there is no witness,
just an index and a statement). What we require is that if a prover is successful during a mod-AHP
interaction related to index i and statement x, then the input’s fingerprint should be a valid statement
for the associated fingerprint relation, i.e. [R]4(i, [x]q) = 1. The reason why this form of soundness
is “delayed-input” is because we want its security to hold even if the statement were to be provided
after the prime is sampled. This is crucial in order to obtain secure polynomial commitments over the
integers (as we define them in Section [5).

The following definition is, from a syntactical standpoint the same as that for mod-AHP. For this
reason we do not define it completely from scratch.

Definition 20. We say a mod-AHP is “for deterministic relations only” if the prover sends no oracle
polynomials before the prime is sampled. We denote the behavior of the interactive verifier after the
prime is sampled as Vpost

Notice that our next definition is well-formed since the verifier in any mod-AHP is public coin and
therefore it does not need to know the public input before sampling the prime or producing any other
challenge.

Definition 21. Consider a mod-AHP for deterministic relations only (Deﬁm’tz’on@) for an indexed
(deterministic) relation R. Let [-] be an associated fingerprinting relation for R (Definition @) We
say the mod-AHP has delayed-input soundness error € if for all \,;n € N, indezx i and auxiliary input
aux, for all PPT adversaries A= (Ainp, Apost):

Pr (i, [[X]]qa J—)f_ [[Rnﬂq A . q s Py <e
(Aposi(st), Vst V(12 x,q)) =1~ (x,5t) ¢ Aimp(17,i,aux,q) | =

The following theorem shows that delayed-input soundness can be lifted to obtain weak evaluation
binding for functional commitments. Notice that in the following result we do not require the associated
fingerprinting relation to be a good test as in Theorem 8]

Remark 6. While we state the following theorem for polynomial commitments for integer polynomials
with modular remainder opening it is immediately possible to show this result (and define equivalent
notions) for functional commitments over integer vectors with opening to any “modular remainder”
restriction of a function f. An easy example in such sense is commitments to vectors in Z™ where each
element can be opened in Z, for a sampled g.

The next definition formalizes what we mean for AHP over Z with modular remainder queries to
be an efficient protocol for sparse polynomial evaluation. It intuitively states that the prover can run
linearly the number of non-zero entries of a sparse polynomial.

Definition 22. We say that a mod-AHP modAHP over RP°Y is efficient for sparse polynomial eval-
uation if all of the following conditions hold. Let g be the sparse polynomial (see Section@) describing
some index for the relation and let cu be the number of variables over which g is defined (for a pa-
rameter p € N and a constant ¢ > 1), then: 1) The output of the indexing step consists of a constant
number of oracle multilinear polynomials each in u variables. 2. The total running time of the prover

is Ox(2" - 1ogs||gll )

Theorem 9 (Delayed-Input Soundness = Sparse mod-PC). Assume: (a) a mod-PC modPC
with weak evaluation bindmﬂ' (b) a multilinear mod-AHP modAHP for RP°W that: (i) is efficient for
sparse polynomial evaluation (Definition @); (ii) has negligible delayed-input soundness. Then there
exists a weak evaluation binding mod-PC modPC* for sparse polynomials with interactive opening (see

Definition|16] and Remark @

28 We stress that this mod-PC is for dense polynomials only.
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I.2 A construction from SPARK [Set20]

In this section we reinterpret another building block from [Set20] as a mod-AHP. In particular the
SPARK construction to lift a dense polynomial commitment to a sparse one. SPARK as a mod-AHP
will require not only indexing oracle polynomials over the integers but also others (see next remark).

Remark 7 (Augmenting mod-AHPs). The results in this section will apply a natural generalization of
the mod-AHPs we described in Definition [T0] where we allow for oracle polynomials defined over F, for
a sampled prime ¢. These can be compiled through a “field-agnostic” polynomial commitment (that
can take in input the field at commitment time), which we show that we can build from our modPC.

Indexing stage: Given in input a sparse multilinear polynomial M in 2p variables, output multilinear
polynomials in O(u) variables

as defined in [Set20] Section 7.2].
Opening stage: To claim that M(f) =y mod ¢:
— Compute multilinear polynomials in O(u) variables €,ow, €cor as defined in [Sef20), Section 7.2.1] (notice
that these polynomials are defined over Zg).

— Send oracles .
— Continue the protocol as described for PCspark in [Set20] with two nuances:
e Whenever the prover provides an opening proof for one of the indexing polynomials, simply let
the mod-AHP verifier query that polynomial through its oracle access (as we did in our variant
of Spartan in Fig. [3]).
e Ditto for each of the polynomial commitment openings for €row, €cor during the execution of
Hyraﬂ

Fig.15: A variant of the SPARK construction from [Set20] as an augmented mod-AHP for RPOY.

—

For oracle polynomials we use the color conventions: indexing polynomials in Z[X] in -; prime-

dependent polynomials in Zg [X] in - For additional details on SPARK, see [Set20), Section
7.2]

Theorem 10. The construction in Fig. is an (augmented) mod-AHP for RP°Y with negligible
delayed-input soundness; it is efficient for sparse polynomials.

Corollary[2]is implied by our construction of mod-PC for dense polynomials, Theorem|[9], Theorem[I0]
and by the security of our modPC.

29 Like in [Sef20], we do not need Hyrax’s zero-knowledge compiler [WTsT18]. For us this is crucial because
otherwise this would require hardness of DLOG for a group of order ¢ for a freshly sampled prime ¢ (which
we would not be able to instantiate, at least efficiently; see, e.g. Footnote 1 in )
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J Additional Definitions for mod-PCs

J.1 Weak Evaluation binding

Definition 23 (Weak Evaluation Binding). For any PPT adversary A, A € N, u € N:

pp Setup(lA)

(f,st) < Ai(pp)
(¢,opn) <= Com(pp, f)
negl(\) > Pr |Vfy (pp,q,c,y,m) =1 : q+sPy

(2,y,m) < As(st, q)
y# f(x) modq
f€la[X,...,X,)

For a negligible function negl()\).

J.2 (Strong) Knowledge Soundness over Adversarial Primes

Below we define a stronger version of the knowledge soundness we provide in Definition It is easy
to see that the latter is implied by the one in Definition [24]

Definition 24 ((Strong) Knowledge soundness for mod-PC over adversarial primes). We
say a mod-PC has strong knowledge soundness error € over adversarial primes if for any A\, M € N
and PPT A = (Acom, Apry) there ezists a non-uniform polynomial time extractor Ext such that for
any efficient query algorithm (with random tape independent from that of the adversary) Q auziliary
string aux € {0, 1}PYN) the following probability is at most e:
(f#zalXi,. . X v pp = Setup(1”)

((c, 1, 9) ,st) <= Acom(pp, aux)

Jj € m] f(z) #y; mod q) A <(Zj)j€[m] ,auxg> « O(pp,aux, q)

Pr
qePy A fevat)
eva y;?ﬂ_?va ) < .A ) St, Zj)s,auXx
/\ny (pp7q7ca ijyj,ﬂ']( l)) =1 ( A j€[m] pr ( ( J)] Q)
J f + Ext(pp, aux)

where above the extractor has access to the random tape of the adversary.

K Oracle Polynomials over F in mod-AHP

K.1 Augmented model

In Fig. [16|augment the model of mod-AHP presented in Definition [L0|with an additional rounﬂ after
prime sampling where the prover can send oracle polynomials which do depend on the sampled prime
and are defined over [Fy. Below we mark in blue the extra steps in the protocol. We also mention that
the protocol is now parametrized by three additional functions s*, d*, v* for the number of polynomials,
degree and number of variables respectively.

30 For simplicity we provide a presentation for one round only, but this is an arbitrary choice—one round is
sufficient for us to model the setting in Appendixm

42



— Indexing phase The indexer Z receives as input a security parameter 1* and the index i for R, and
outputs s(0) polynomials po1,...,Posw) € Z[X] of degrees at most d(A,]i],0,1),...,d(},li,0,s(0))
respectively; | X| = v(), i, 0).

— Online phase The prover P receives (1)‘7 i,x, w), for an instance x and witness w such that (i, x,w) € R.
The verifier V receives 1%, x and oracle access to the polynomials output by I(lA, iﬂ The prover P
and the verifier V interact over a number of rounds as follows:

e Integer Oracle Polynomials Phase: In the i-th round, ¢ € {1,...,k(),|i|)}, the verifier V sends
messages p; € {0, 1}p°'y(A) to the prover P; the prover P responds with s(¢) oracle polynomials
Dis- - Dis) € Z|X] where each is respectively of degree at most d(X, |i|,4,1),...,d(X, |i],,s(i))
and |X| = v(\, i],4).

e Prime Sampling Phase: After k rounds, the verifier samples a prime ¢ «<$ P and sends it to
P.

e Prime-Dependent Oracle Round: The verifier sends random challenge p*; the prover responds
with s* := s*(), |i|) oracle polynomials p%,...,pl € Fy[X] all of degree d*(, |i|) and number of
variables v*(\, |i|)

e Plain Interaction Phase: The prover and verifier engage in a plain interactive protocol (see
Section [2) for k' rounds:

trese 1= (Mrest, Prst) <— transcript, ((Prst (Piy---yPksq), Vrst>)

— Query phase Using the whole transcript, the verifier outputs a set of queries for the oracle polyno-
mials. The verifier outputs a query set @ for the integer oracle polynomials as well as a set Q* for the
oracle (pj);e[s+] which consists of pairs (j, z € Fy), the response to which is pj(z).

— Decision phase The verifier outputs accept or reject based on the answers received to the queries Q
and Q*, its randomness and the whole transcript.

Fig. 16: Augmented mod-AHP

K.2 Prime-Agnostic Polynomial Commitments

A field-agnostic polynomial commitment is like an ordinary polynomial commitment but it is not
restricted to work within a specific finite field fixed at setup time. We will use this type of polynomial
commitments to compile the augmented mod-AHP described in Appendix

Below, whenever we write F we mean the finite field F, for a prime ¢ that will be obvious from the
context. All the arithmetic in this subsection is over F.

Definition 25. A field-agnostic polynomial commitment consists of a tuple PC g4y, = (Setup, Com, ProveEval, VfyEval)
such that:

Setup(1*) — pp: on input a security parameter A € N it outputs public parameters of the scheme.

Com(pp,q,9 € F<1[X1,...,X,]) — (c,opn): on input public parameters, a prime ¢ a multilinear
polynomial g, it outputs a commitment ¢ and an additional opening string opn (used as auzxiliary
input for opening).

ProveEval(pp, ¢, ¢,opn, z) — m: on input public parameters pp, prime q, commitment ¢, opening opn
and z € F, it outputs a proof ™ certifying the value g(z).

VfyEval(pp, q, ¢, z,y,7) — b € {0,1}: on input pubic parameters, prime q, commitment c, claimed
value y € F, and proof m, it outputs a bit accepting or rejecting the proof.

Correctness. For any A € N, p € N, prime ¢ € Py, g € F<1[X1,...,X,] and z € F, the following
probability is overwhelming:

pp < Setup(l)‘)

(c,0pn) < Com(pp, ¢, )
" 7 + ProveEval(pp, g, ¢, opn, z)

y:=g(2)

Pr | VfyEval (pp, ¢, ¢, y,m) =1
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Knowledge soundness (with knowledge error €). For any A € N and PPT A = (Acom, Aprv) there exists
a non-uniform polynomial time extractor such that for any efficient query algorithm (with random tape
independent from that of the adversary) Q auxiliary string aux € {0, 1}P°Y(V) | the following probability
is at most e:

(g gFalXy,... X v pp « Setup(1%)
7 »St Acom ,aux
3 € m] g(z)) # ) 1 ((q: 1) ) & Acom (- 20)

JEPy A ((Zj)je[m] 73UXQ) « Q(pp,aux,q)

i) — Apv(st, g, (25) ., aux
j g <+ Ext(pp, aux) |

Pr

where above the extractor has access to the random tape of the adversaryiﬂ

Remark 8 (Existing constructions). We remark that field-agnostic constructions such as Brakedown |[GLS™ 23]
and Orion [XZS22| satisfy our definition.

Constructions from mod-PCs with Strong Extractability It is rather straightforward to pro-
duce a field-agnostic polynomial commitment from a mod-PC: at commitment stage we ignore the
prime ¢ in input (since the mod-PC’s commitment algorithm is for polynomials over the integers); the
other algorithms follow the same syntax and can be trivially in a straightforward manner. In order
to argue security, however, we need the mod-PC to satisfy the stronger form of knowledge soundness
where the prime can be provided by the adversary (Definition . Showing security of the resulting
construction is trivial.

Theorem 11. If there exists a mod-PC with negligible strong knowledge error (Definition then
there exists a field-agnostic polynomial commitment with the same efficiency with negligible knowledge
error.

From the fact that our construction satisfies Definition [24] (see Remark [8) we have the following
corollary.

Corollary 4. There exists a field-agnostic polynomial commitment with negligible knowledge error
secure in the GGUO.

K.3 Extending the compiler

In Fig. [I7] we present an extended version of the compiler in Fig. 2] to apply to the augmented
mod-AHPs defined in Fig. [[6] The approach we use is straightforward and consists of applying a
field-agnostic polynomial commitment to the extra round of oracle polynomials in F,. In a sense,
this stage of the protocol is compiled almost exactly as done in standard AHP compilers in finite
fields [CFET21,CHM™20JABC™22|. As a consequence the proof of security of Theorem [12]also follows
directly from a minor variant of the proofs of security from these works and the one we present for
Theorem [

Theorem 12. Let modAHP be an agumented AHP over Z with modular remainder queries (Defini-
tion (10| and Fig. @) for R, let PC,.; be a mod-PC (Deﬁm’tion satisfying weak-evaluation binding
and with negligible knowledge soundess error, let PCyqy be a field-agnostic PC,qy with negligible knowl-
edge soundness error then the construction in Fig. is an interactive arqgument with preprocessing
(Definition[d) for R.

32 And therefore does not need to get g as input.
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Setup(1*,N): . - PPagn & PC.gn.Setup(1*) Return srs = (1’\, PPpcs ppagn)
Indexer(srs,i): ...
Interaction:
— Integer Polynomial Oracle phase: ...
— Prime sampling: After k rounds, V obtains a prime ¢ and sends it to P.
— Prime-dependent Oracle round:
1. V receives random challenges §* from V and forwards them to P.
2. P forwards p* to P which replies with polynomials (g*)j;l.
3. P compute commitments

(6;7 opnj*-) = PCagn’Com (ppagm q? g;) ) ] = 17 R} 8*
'and send§ (cj)j:
— Plain-Interaction phase: ...
— Query Phase:
1. ...compute query set Q*. Recall from Fig. that each entry in Q* is of the form (7, 2).
2. ...
3. P computes and sends v* := g*(Q*) and 7* where

g'(Q) = (g)(2): (1,2 € Q")
= (PCagn.ProveEvaI (PP.gn @ €5, 0PN}, 2) : (4, 2) € Q*)

— Decision Phase: V accepts if and only if all the following conditions hold:
e ...

e ...the evaluation proofs verify including the ones from n* (using PCagn.VfyEval)

Fig. 17: Compiler for augmented mod-AHPs. In blue are additions to Fig.

We observe that, in general, the other results we have on mod-AHPs, including those in Ap-
pendix extend immediately to the setting mod-AHPs augmented as we do in Fig. The result
we need the most among these is the following (which we use Appendix [If).

Theorem 13 (Delayed-Input Soundness = Sparse mod-PC). Assume: (a) a mod-PC modPC
with weak evaluation binding; (b) a field-agnostic polynomial commitment PC,g, with negligible knowl-
edge soundness (for dense polynomials); (¢) a (possibly augmented) multilinear mod-AHP modAHP for
RPOW that: (i) is efficient for sparse polynomial evaluation (Definition ; (ii) has negligible delayed-
input soundness. Then there exists a weak evaluation binding mod-PC modPC* for sparse polynomials
with interactive opening (see Deﬁnition and Remark @)

Proof. The proof is almost completely the proof for Theorem[J} The fact that we have additional oracle
polynomials does not change the essence of the proof above. Instead of applying the compiler from
Fig. 2| we apply its extended variant in Fig. The remaining observations follow mutatis mutandis.

O

L More on Motivation of Native SNARKSs over Z

From a theory perspective, moving beyond finite fields enables broader expressivity. In fact, satisfia-
bility of diophantine equations (what Z computations are at their essence) cannot be reduced to the
satisfiability of arithmetic circuits over a finite field. This is because field emulation requires the intro-
duction of a maximum norm bound on the witness. Examples include proving the existence of integer
points on elliptic curves which may have surprisingly large norms.

Having native arguments over Z is also important from an engineering perspective. Emulating
arithmetic over the integers is commonly done through emulation in the field. The latter has a sub-
stantial effect over circuit size (a 5000% increase for RSA signature verification for example; see later
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in this section). This increases the complexity of real-world proof systems in several ways. If done “by
hand”, this is detrimental to developer experience and can be an additional source of bugs (contrast
designing a 16-wires circuit to one with 90K wires). Automatic tooling (e.g., [KPS1§]) can help but
they still need to be design, developed, documented and maintained. They may also depend on specific
assumptions over the underlying cryptographic parameters (e.g., specific features of the field order)
not applicable everywhere; these parameters may also change over time.

Other applications of SNARKs over the integers:

Range checks through “range gates” We can apply known techniques to embed range checks in
our framework with a small constant number of constraints (regardless of the range size). Consider
a computation over the integers that can be expressed as showing knowledge of a witness such that
some arbitrary set of constraint is satisfied plus some of the wires are required to be in the range
{1,...,U} where U is some publicly known (potentially large) upper bound. A little more formally,
this setting would reduce to showing knowledge of 7 € Z", @ € Z" s.t. C(||@) A Vi € [n] v; € [U]
where C' is some arbitrary set of constraints. The full constraint system will then consist of the
constraints to check C(¥]|w) extended with 4n extra wires «y, B8;, vi, 0; for i € [n], and with n extra
constraints of the form:

o + 87+ + 0 =vi = U

Above we are effectively building a range gate through Lagrange’s four squares theorem (which
states that an integer is positive if and only if it can be written as the sum of four squareﬂ. We
observe that U might even be supplied on the fly as a public input (without having to be encoded
in the R1CS). This could be achieved thanks to the homomorphic properties of our mod-PC and
with some simple adaptation of our protocol in Fig.
Computations on rational numbers We can represent rationals as pairs of integers in the natural
way and perform computations over the rationals by introducing the following constraints:
— addition: § + ¢ — ? = e=ad+bcA f=10d,
— multiplication: ¢ - § — ? = e=acA f=bd.

If we need to check equality between two rational numbers 3 z < we can simply add two constraints
by letting the prover show ca = B¢ and ab = d for two additional integer wires «, 5. For rational
arithmetic to work we also need to check that some of the quantities provided by the prover are
non-zero (this is true of « and 8 in the equality check, as well as the denominators of “input”
wires, those that are not the output of any other rational gate); we describe a non-zero gate for
integers with a constant number of constraints in Appendix

L.1 Non-Zero Gates for Integers

Consider a wire v whose value we want to guarantee to be different than zero. Then we can add the
following constraint over Z with additional wires o, o, 5,7, d:

ov=a’+p2+~72+5%+1

Notice that the right-hand side is guaranteed to always be positive. As a consequence, if v = 0 there
is no way to satisfy this constraint. On the other hand, if v # 0 it is easy to find a “sign wire” o to
make the quantify ov positive; a, 8,7, can be found through algorithms for Lagrange’s four squares
theorem as described in the introduction.

An alternative approach A common technique to show that a value v is non-zero in finite fields is to
simply provide a non-deterministic wire w such that wv = 1 (i.e. w = v~1!). Since in our family of
constructions we sample a prime g at a specific point of the protocol, we can perform the same trick
after the prime is sampled by working over the finite field F,. This requires a little bit of care and to
slightly adapt our constructions to do the following: the prover would commit to the integer value(s)
v before q is sampled (as usual); after sampling ¢ the prover would send additional commitments (or

m ) steps [PTIS].

33 For a number of m bits, such a representation can be found in expectation in ~ m - (logm

Notice that this is not necessarily a dominating factor: even just computing the witness of a standard integer
computation may require quadratic time (this is the case, depending on the implementation, for standard
multiplication, which in any event will require superlinear time).
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oracle polynomials) to the inverse(s) w as defined above; the protocol would then use these additional
wires to guarantee the constraints of the form above (we leave this step unspecified since its concrete
description would depend on the specific of the protocol itself; similar techniques to “extend a witness”
have been used before in the MLE world, e.g., in [ZGK™17, §I1-C]). Formally describing this approach
(which we will not do in this work) can be seen as a further application of the augmented model in

Appendix [K]
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