
Bit t-SNI Secure Multiplication Gadget for Inner
Product Masking

John Gaspoz and Siemen Dhooghe

COSIC, ESAT, KU Leuven, Leuven, Belgium
{john.gaspoz,siemen.dhooghe}@esat.kuleuven.be

Abstract. Masking is a sound countermeasure to protect against differential power
analysis. Since the work by Balasch et al. in ASIACRYPT 2012, inner product
masking has been explored as an alternative to the well known Boolean masking. In
CARDIS 2017, Poussier et al. showed that inner product masking achieves higher-
order security versus Boolean masking, for the same shared size, in the bit-probing
model. Wang et al. in TCHES 2020 verified the inner product masking’s security
order amplification in practice and proposed new gadgets for inner product masking.
Finally, Wu et al. in TCHES 2022 showed that this security amplification comes
from the bit-probing model, but that Wang et al.’s gadgets are not higher-order bit-
probing secure reducing the computation’s practical security. The authors concluded
their work with the open question of providing an inner product multiplication
gadget which maintains the masking’s bit-probing security, and conjectured that such
gadget maintains the practical security order amplification of the masking during its
computation.
In this paper, we answer positively to Wu et al.’s open problems. We are the
first to present a multiplication gadget for inner product masking which is proven
secure in the bit-level probing model using the t-Strong Non-Interference (SNI)
property. Moreover, we provide practical evidence that the gadget indeed maintains
the security amplification of its masking. This is done via an evaluation of an
assembly implementation of the gadget on an ARM Cortex-M4 core. We used this
implementation to take leakage measurements and show no leakage happens for orders
below the gadget’s bit-probing security level either for its univariate or multivariate
analysis.
Keywords: Inner Product Masking · Masking · Non-interference · Probing Security
· Side-channel Analysis · Software

1 Introduction
Cryptographic primitives implemented in hardware and software are known to be vulnerable
to side-channel attacks such as Differential Power Analysis (DPA) [KJJ99] where an
adversary exploits leaked information from the device (e.g., the power consumption) in
order to extract secret information. Masking is one of the most prevalent countermeasure
against side-channel attacks. In its essence, a dth-order Boolean masking encodes the
sensitive processed values into d + 1 shares by adding random values such that the
observation of up to d shares is independent of the sensitive variables. In addition,
masking transforms the elementary operations of the primitive’s circuit into, so-called,
masked gadgets which operate over the shares and provide the same functionality as the
unmasked gadgets. In line with the concept of randomizing a secret value, a collection of
masking types has been introduced over the past two decades. Maskings, such as the widely
deployed and investigated Boolean masking [GP99, CJRR99], exploit simple encodings that

https://orcid.org/0000-0002-1626-6175
https://orcid.org/0000-0003-0591-7355
mailto:john.gaspoz@esat.kuleuven.be,siemen.dhooghe@esat.kuleuven.be

2 Bit t-SNI Secure Inner Product Masking

facilitate efficient masked implementations. Alongside Boolean masking, maskings such
as Inner Product Masking (IPM) [BFG+17], multiplicative masking [Gol02], polynomial
masking [GM11], or the more general code-based masking such as (orthogonal) direct sum
masking [BCC+14] have been investigated. While suffering from a typically larger overhead
compared to Boolean masking, these other forms of masking benefit from enhanced security
properties. In inner product masking, an n-sharing of a secret value x is computed given
a public vector L = (1, L1, . . . , Ln−1) as (x0 = x ⊕

∑n−1
i=1 Lixi, x1, . . . , xn−1) ∈ Fn

2k . In
contrast to Boolean masking, where each bit of the random values are directly XOR’d
with the secret data, inner product masking XOR’s various bits of the shares together
via multiplication with the public vector L. As shown by Balasch et al. [BFG+17], inner
product masking is secure against transition-based leakages and has a higher statistical
security order (also known as ‘security order amplification’).

While the link between the type of masking and its security order was already observed
by Balasch et al. [BFG+17], Poussier et al. [PGS+17] provide a formal reasoning of the
security order amplification by introducing the bit-probing model and connecting inner
product masking to direct sum masking. Inner product masking is rewritten from an error
correction code viewpoint on the bit-level as Z = XG + Y H where the sensitive data
X ∈ Fm

2k is masked into Z ∈ Fn
2k by the randomness Y ∈ Fℓ

2k after being transformed into
code words using their respective generator matrices G and H constructed as follows

G =
(

1 0 . . . 0
)

, H =


Lm−1

...

L1

0

...

1

. . .

. . .

. . .

1

...

0
 .

The bit probing security of inner product masking can be related to the minimal dual
distance of the H code in its direct sum masking representation. As a result, the best
probing security leading to the security order amplification effect can be obtained by
choosing an L vector such that the dual distance d⊥

H is maximized.
Concerning the practical verification of the bit probing model, Wu et al. [WCG+22]

showed that previous inner product masking gadgets did not maintain their security
order amplification during their computation in practice and that these gadgets were not
higher-order bit probing secure. They concluded with the open problem of providing
gadgets for inner product masking maintaining their bit-probing security order.

1.1 Previous Works
Independently to this work, Wang et al. [WYS19] introduced the first code-based masking
scheme with provable secure order amplification which employs a construction based
on the re-masking of tensor products to securely compute the multiplication of shares.
This approach allows for optimization in computation through the use of precomputed
tables. However, while the bit-probing security of their gadgets is formally proven,
the composability of their gadget is only supported by an informal security analysis.
Additionally, Wang et al.’s security claim remains theoretical and no practical side-channel
leakage evaluations support the theoretically predicted security order of the masked
gadgets on a real-world device. In 2020, Wang et al. [WMCS20] introduced new gadgets to
compute masked linear and nonlinear operations for a code-based masking (which includes
inner product masking) which were proven to satisfy the Strong Non-Inference (SNI)
security property by Barthe et al. [BBD+16]. The proposed multiplier follows a three-step
procedure in which the inputs are first transformed into a matrix via a typical Boolean
masking product-then-refresh operation followed by a temporary switch between code-
based masking and additive sharing (e.g., Boolean masking) and a multiplication with a
pre-computed matrix. Next, the additive sharings are transformed back into codewords and

J. Gaspoz, S. Dhooghe 3

a final compression step is performed to obtain the final codewords outputs. Unfortunately,
the multiplication gadget suffers from a flaw. Wu et al. [WCG+22], by assessing an AES
implementation based on this multiplication gadget, show that there is leakage in its
implementation during the temporary transformation from code-based masking to additive
masking. Moreover, the authors show that although the gadget satisfies word-level strong
non-inference where probes view entire field elements, the multiplication gadget does not
guarantee bit-level strong non-inference. This makes the authors conclude that there is
a need for a masked multiplier that is able to maintain a consistent bit-probing security
order through its computation.

1.2 Contributions
We positively answer the open question by Wu et al. [WCG+22] from TCHES 2022. Namely,
we provide a new multiplication gadget for inner product masking which maintains the
bit-probing security level of the masking. Namely, we show that the gadget is t-Strong
Non-Interference (t–SNI) using the bit-probing model.

Moreover, we show that the implementation of our masked gadget also practically
maintains the statistical order amplification of inner product masking’s encoding therefore
acknowledging the findings by Wu et al.. More specifically, we provide an ARM assembly
implementation of our secure multiplier. This implementation is put on an ARM Cortex-M4
core where we performed practical leakage tests which show that the implementation does
not leak (univariate or multivariate) in statistical orders not surpassing its bit-probing
security level. More precisely, we evaluate a two-share four-bit assembly implementation
with an expected second-order security given the best parameters for the inner product
masking and show its successful practical results against first and second-order bivariate
analysis. The assembly implementation is provided in the supplementary material of this
submission and will be made public after publication.

Finally, we provide efficiency results of the inner product multiplication gadget and
compare them to the results of using Boolean masking. We show that on top of inner
product masking providing higher orders of security while using less memory for each
sharing, it also outperforms Boolean masking in terms of the number of online operations
or cycles on a microprocessor, however, it requires a significant prepossessing phase. While
optimized inner product gadgets are not the focus of our work, we indicate the importance
of research on secure inner product masking from a practical perspective.

2 Preliminaries
2.1 Notations
We represent elements of a field or vector space (in this work F2k and Fk

2 , respectively) by
lower-case letters while we indicate matrices by bold uppercase letters. With ⊕, we denote
the field addition in some binary field F2n , and + denotes the arithmetic addition. We
represent the n-share masking of a secret x ∈ F2k as x̄ = (x0, . . . , xn−1) ∈ Fn

2k and use the
notation x̄[i] to indicate the ith bit of x̄ ∈ Fnk

2 . Individual shares are labeled as si
j ∈ F2k

to denote the jth share of the shares vector s̄i = (si
0, . . . , si

n−1). Given a positive integer n,
we denote by [n] the set {0, ..., n − 1}.

In this work, we denote vectors as rows. For a matrix A and a vector m, A = [A; m]
is the concatenation of the rows of A and m. We write A[i, ∗] (resp., A[∗, i]) to denote
the ith row (resp., column) of A. Note that the indexing of the matrix’s columns increases
from right to left in order to mimic standard binary representation ranging from the least
significant bit to the most significant bit. Given two matrices A and B we denote A ⊙ B
the element-wise multiplication (or the Hadamard multiplication). We define the function

4 Bit t-SNI Secure Inner Product Masking

v : F2k → Fk
2 such that given x ∈ F2k , v(x) produces the Fk

2 representation of x in a
polynomial basis. We provide the definition of a dual code C⊥.

Definition 1 (Dual Code). The dual code of a linear code C ⊂ Fn
2k is the linear code

defined by
C⊥ = {x ∈ Fn

2k | ⟨x, c⟩ = 0, ∀c ∈ C}

where ⟨x, c⟩ =
∑n

i=1 xici is a scalar product.

Finally, given a linear code C, we denote the dual minimal distance d⊥
C , meaning the

minimum Hamming weight of non-zero codewords in C⊥.

Definition 2 (Dual Distance). The dual distance d⊥
C of a linear code C ⊂ Fn

2k is the
minimum Hamming weight of any non-zero codeword in the dual code C⊥, e.g.,

d⊥
C = min{wt(x) | x ∈ C⊥, x ̸= 0}

where wt(x) denotes the Hamming weight of x.

2.2 Boolean Masking
Boolean masking is a widely-deployed countermeasure against side-channel analysis which
was introduced by Chari et al. [CJRR99] and Goubin-Patarin [GP99]. As a mean to
conceal a secret Boolean variable x ∈ F2, a (n − 1)th-order Boolean masking splits such a
variable into n shares x̄ = (x0, x1, . . . , xn−1) where shares x1, . . . , xn−1 are drawn from a
uniform distribution and x0 is computed such that x0 = x ⊕

∑n−1
i=1 xi.

2.3 Inner Product Masking
Inner product masking was first introduced by Balasch et al. [BFG15, BFG+17] as an
alternative to Boolean masking. Inner product masking is defined as follows.

Definition 3 (L-IPM). An L-IPM of x ∈ F2k with a freely chosen public parameter
L = (1, L1, ..., Ln−1) ∈ Fn

2k \{0}, is a vector (x0, ..., xn−1) ∈ Fn
2k such that x =

∑n−1
i=0 Lixi.

Given the definition of inner product masking, we highlight the definition of a uniform
masking.

Definition 4 (Uniform L-IPM). Denote the set of all L-IPM vectors of x ∈ F2k by

IPML(x) = {(x0, ..., xn−1)|(x1, ..., xn−1) ∈ Fn−1
2k s.t. x0 = x ⊕

n−1∑
i=1

Lixi} .

We call an IPM masking “uniform” when the stochastic vector (x0, ..., xn−1) is uniformly
randomly drawn from IPML(x), i.e., where x1, ..., xn−1 are uniformly random distributed.

2.4 Security Definitions
We recall the security models and notions considered in this paper. We differentiate between
two types of security orders based on the level of granularity of probed information, namely
word-level and bit-level probing models.

We begin with the definition of the probing adversary and security model by Ishai,
Sahai and Wagner [ISW03].

J. Gaspoz, S. Dhooghe 5

Definition 5. (Probing Model) A tth-order probing adversary A can learn a bounded
number t of wires (called probes) of a circuit. A circuit is said to be t-probing secure if any
set of at most t probes can be perfectly simulated by a simulator S without any knowledge
of the input shares of the circuit (i.e., the distribution of the probed values is independent
of any secret value).

We distinguish two types of probes, namely word-level probes and bit-level probes.
Definition 6. (Word-level Probe) A word-level probe reveals an element over Fpk (e.g., a
byte in the case of F28).

In a word-level probing model, an n-share inner product masking has a security order
tw = n − 1 [BFG+17]. Similarly, Boolean masking (which can be seen as a special case of
IPM with public values Li = 1) guarantees the same word-level probing security order.
Definition 7. (Bit-level Probe) A bit-level probe (bit-probe) reveals a single bit element
regardless of the original field in which the shares are encoded.

In the works by Poussier et al. [PGS+17] and Cheng et al. [CGC+21], it is observed
that inner product masking achieves higher-orders of security in the bit-level model versus
Boolean masking (or versus the word-level model). This increase in security is called the
‘security order amplification’ effect.

The Non-Interference (NI) and Strong Non-Interference (SNI) definitions introduced
by Barthe et al. [BBD+16] are used to quantify the security of gadget’s composition. We
adapt these definitions such that they work with bit-probes.
Definition 8. (t-Non-Interference) A gadget is called t–NI if for any set of tin bit-probes
on intermediate variables and every set of tout bit-probes on output shares such that
tin + tout ≤ t, the totality of the probes can be simulated by t bit-probes on each input.
Definition 9. (t–Strong Non-Interference) A gadget is called t–SNI if for any set of tin

bit-probes on intermediate variables and every set of tout bit-probes on output shares such
that tin + tout ≤ t, the totality of the probes can be simulated by only tin bit-probes on
each input.

Note that throughout the work the t–NI and t–SNI properties are evaluated at bit-level
instead of the usual word level. In the usual word-level NI definitions, the bit-level probes
are replaced by word-level probes.

2.5 Security Order Amplification of IPM
Certain parameters for inner product masking (and more generally code-based masking)
have been shown to provide a beneficial impact on their security order. Poussier et
al. [PGS+17] formalized this effect by identifying IPM as a particular case of Direct Sum
Masking (DSM). In DSM, a sensitive variable X ∈ Fm

2k is encoded as Z = XG + Y H with
a masked data Z ∈ Fn

2k after being transformed into code words from C and D thanks to
their respective generator matrices G and H for which the bit-probing security is given as
follows.
Proposition 1 ([PGS+17]). Let C and D be two codes of generator matrices G and H
defining a DSM encoding. Let k and m, respectively, be the dimensions of C and D. The
bit-probing security of the DSM encoding defined by C and D is equal to the minimal
distance of the dual code (called the dual minimal distance) of D minus 1.

Thus, the best bit-probing security tb of an inner product masking is achieved by
selecting a public vector L such that the dual minimal distance d⊥

L (abusing the notation
where we denote L also as the code with generator matrix (I|L)) is maximized. This
minimal distance also has an effect on the distribution of the bits in a uniform inner
product masking as observed by Poussier et al. [PGS+17, Proposition 2].

6 Bit t-SNI Secure Inner Product Masking

Lemma 1. For a uniform n-share L-IPM of x ∈ F2k given a public vector L ∈ Fn
2k , all

sets of t = d⊥
L − 1 bits are jointly uniform distributed.

Following this coding-theoretic approach, Cheng et al. [CGC+21] proposed a framework
based on the dual minimal distance and the kissing number to choose optimal codes
for inner product maskings maximizing the security in the bit-probing model. Table 1
summarizes the optimal expected security order tb given the number of shares n and k the
bit size of the field.

Table 1: Some optimal parameters tb for an IPM [CGC+21] for tb the bit-probing order
and tw the word-probing order.

F2k d⊥
L tb tw

n = 2 k = 4 3 2 1
k = 8 4 3 1

n = 3 k = 4 6 5 2
k = 8 8 7 2

3 Multiplication Gadget
In this section, we introduce our t-SNI multiplication gadget tailored for inner product
masking. Given two n-share inner product maskings x̄, ȳ ∈ Fn

2k of the secrets x, y ∈ F2k ,
respectively, the gadget outputs a single n-share masking z̄ such that x × y = z ∈ F2k .

3.1 Design Rationale
In order to preserve the security order amplification of the masking, a secure multiplication
gadget must be proven secure in the bit-probing model. Let us first observe that a cross
product xiyj ∈ F2k is constructed as

xiyj =
(

k−1∑
u=0

xi[u]2u

)
×

(
k−1∑
u=0

yj [u]2u

)
.

Such a multiplication introduces an overflow of some binary cross products which are
then reduced by the irreducible polynomial q(x) defining the field F2k . However, such
a multiplication fails to provide the simple t-NI property (recall that we work in the
bit-probing model) as the simulation of, for example, the most significant bit of xiyj would
require more than one bit of each shared input. Thus, in order to ensure the t-SNI security
property, whenever nonlinear operations are performed between inner product maskings in
F2k , the multiplication needs to be operated securely at the binary level. To do so, each
binary cross product needs to be securely re-masked while preserving the correctness and
t-SNI security after the recomposition from Fk

2 to F2k . As illustrated in Figure 1, for every
share xi, yj ∈ F2k , the multiplication gadget computes all cross products zi,j = xiyj ∈ F2k

using a bitwise multiplication schoolbook algorithm placing every required binary cross
products into a matrix C̃. Overflowed cross products are managed using the irreducible
polynomial q(x). Hence, the binary cross products are placed into the matrix such that
the XOR of all the elements at column k would result into one bit zi,j [k]. Once the matrix
is composed, a first layer of masking is applied to all binary components of the matrix in
order to keep the value y secret using a uniform inner product masking of zero. Then, a
second layer of re-masking is performed in order to keep the value x secret in a similar
fashion. Finally, each cross product is mapped from Fk

2 to F2k by summing the masked bits

J. Gaspoz, S. Dhooghe 7

at each column resulting in the masked share zi,j . To clarify, while security and coding
properties are considered over F2, multiplication is performed over F2k .

 C̃[0, k − 1] . . . C̃[0, 0]
...

. . .
...

C̃[k(k+1)
2 − 1, k − 1] . . . C̃[k(k+1)

2 − 1, 0]

 xi = [xi[k − 1], . . . , xi[0]]
yj = [yj [k − 1], . . . , yj [0]]

Binary cross products

∑
= xiyj [k − 1]

∑
= xiyj [0]

Refresh: S

⊕
 IPM(0)

...
IPM(0)

 ⊕
 IPM(0) 0

...



 C̃[0, k − 1] . . . C̃[0, 0]
...

. . .
...

C̃[k(k+1)
2 − 1, k − 1] . . . C̃[k(k+1)

2 − 1, 0]


∑

= z[k − 1]
∑

= z[0]

Fk
2 → F2k

zi,j = [zi,j [k − 1], . . . , zi,j [0]]

Figure 1: Illustration of Gadget-2

3.2 Detailed Description
Consider the inner product masking x̄ = (x0, . . . , xn−1) and ȳ = (y0, . . . , yn−1) ∈ Fn

2k such
that x =

∑n−1
i=0 Lixi (resp., with y), and q(x) the irreducible polynomial of the field F2k .

The gadget is preceded by a preprocessing gadget (Gadget-1 or Algorithm 1) which
generates mask matrices S, Ri, and helper matrices Vp for the reduction mod q(x). While
the mask matrices S, Ri need to be re-masked for each multiplication gadget, the helper
matrices Vp can be re-used over all multiplication gadgets. This gadget also needs a
secure generation of IPM sharings of zero (denoted IPMfree(0)) which is discussed in
Section 3.4. After preprocessing, the multiplication is divided in two parts.

1. The first part (Gadget-2 or Algorithm 2) computes every cross product zi,j = xiyj ∈
F2k . The multiplication follows the schoolbook F2k algorithm where every bit of xi is
sequentially multiplied with every bit of yj followed by a shift operation. Afterwards,
every overflowing cross product (e.g., at index greater or equal to the bit size k) is
reduced by the irreducible polynomial q(x). Note that given the bit size k, the list
of indices of binary cross products which are reduced (which overflow) is known and
deterministic. Every required binary cross product is computed and placed in the
matrices (C0, . . . , Ck) where C0 contains the non-overflow binary cross products
whereas Cp for p ≥ 1 are made of k copies per row of the overflowed binary cross
products xi[i′]yj [j′]. The reduction mod q(x) is ensured using the element-wise
multiplication of the matrices Cp>0 and Vp>0 . The end result is a cross product zi,j

which is the F2k multiplication of xi and yj .

2. The second part (Gadget-3 or Algorithm 3) compresses the cross products zi,j . It
multiplies the zi,j with Lj and sums them over the indices j to generate the output
shares zi.

3.3 Example
We illustrate a concrete example of the multiplication gadget over a two-share masking
x̄ = (x0, x1) and ȳ = (y0, y1) over a field F23 ≡ F2[x]/x3 + x + 1.

8 Bit t-SNI Secure Inner Product Masking

Gadget-1 Given the irreducible polynomial q(x) = x3 +x+1, the helper matrices V1 and
V2 are constructed and filled with v(q(x)) = (0, 1, 1) and v(xq(x)) = (1, 1, 0), respectively.
These matrices enable the reduction over F23 .

V1 =
[
0 1 1
0 1 1

]
V2 =

[
1 1 0

]
The algorithm then generates 12 two-share IPMs of zero (s̄0, . . . , s̄11) and 6 two-share

IPMs of zero (r̄0, . . . , r̄5), each individual share consisting of three bits, from which the
mask matrices are constructed as follows.

S0,0 =



s0
0 ⊕ r0

0

s1
0 ⊕ r1

0

s2
0 ⊕ r2

0

s3
0 ⊕ r3

0

s4
0 ⊕ r4

0

s5
0 ⊕ r5

0


S0,1 =



s0
1

s1
1

s2
1

s3
1

s4
1

s5
1


S1,0 =



s6
0 ⊕ r0

1

s7
0 ⊕ r1

1

s8
0 ⊕ r2

1

s9
0 ⊕ r3

1

s10
0 ⊕ r4

1

s11
0 ⊕ r5

1


S1,1 =



s6
1

s7
1

s8
1

s9
1

s10
1

s11
1



Gadget-2 The second gadget takes as input some shares xi, yj ∈ F2k , the pre-computed
matrices V1, V2 and the matrix Si,j . As this gadget is called for every cross product, we
only detail the multiplication of x0 and y0. The multiplication follows the schoolbook F2k

algorithm where every bit of xi is sequentially multiplied with every bit of yj followed by a
square operation. The reduction to the irreducible polynomial is computed in two stages.
First, binary cross products are stored in different matrices C0, C1, and C2 depending on
the need to reduce them by the irreducible polynomial. Namely, C0 holds binary cross
products which do not require a reduction, C1 holds duplicates of binary cross products
which require reduction by q(x), and C2 holds duplicates of binary cross products which
require reduction by xq(x). The reduction by the irreducible polynomial is achieved via
the element-wise multiplication between the matrices Cp and Vp.

C0 =

x0[0]y0[2] x0[0]y0[1] x0[0]y0[0]
x0[1]y0[1] x0[1]y0[0] 0
x0[2]y0[0] 0 0


C1 =

[
x0[1]y0[2] x0[1]y0[2] x0[1]y0[2]
x0[2]y0[1] x0[2]y0[1] x0[2]y0[1]

]
C1 ⊙ V1 =

[
0 x0[1]y0[2] x0[1]y0[2]
0 x0[2]y0[1] x0[2]y0[1]

]
C2 =

[
x0[2]y0[2] x0[2]y0[2] x0[2]y0[2]

]
C2 ⊙ V2 =

[
x0[2]y0[2] x0[2]y0[2] 0

]
The binary cross products from C0, C1, and C2 are gathered into a single matrix C̃

for which the XOR of every row would yield x0y0 ∈ F2k .

C̃ =


x0[0]y0[2] x0[0]y0[1] x0[0]y0[0]
x0[1]y0[1] x0[1]y0[0] 0
x0[2]y0[0] 0 0

0 x0[1]y0[2] x0[1]y0[2]
0 x0[2]y0[1] x0[2]y0[1]

x0[2]y0[2] x0[2]y0[2] 0


Having constructed the binary cross product matrix for the correct computation, we

describe how it is refreshed. Let us first detail the matrix S0,0 in its binary representation.

J. Gaspoz, S. Dhooghe 9

Algorithm 1 (Gadget-1) - Mask Matrices and Helper Matrices
Input: q(x)
Output: S ∈ F

nk(k+1)
2 ×nk

2 , Vp ∈ F(k−p)×k
2

▷ Construct the matrices Vp ∈ F(k−p)×k
2 (can be pre-computed once for all)

for p = 1 to k do
for i = 0 to k − p do

Vp[i, ∗] = v(xp−1q(x))
end for

end for
▷ Compute s̄i = (si

0, . . . , si
n−1) n-share IPMs of 0

for i = 0 to nk(k+1)
2 do

s̄i = IPMfree(0) ∈ Fn
2k

end for
▷ Compute r̄j = (rj

0, . . . , rj
n−1) n-share IPMs of 0

for j = 0 to k(k+1)
2 do

r̄j = IPMfree(0) ∈ Fn
2k

end for
▷ Compute matrices Si,j

for i = 0 to n do
for j = 0 to n do

for ℓ = 0 to k(k+1)
2 do

Si,j [ℓ, ∗] = s
i

k(k+1)
2 +ℓ

j

end for
end for

end for
▷ Compute matrices Ri and update Si,0
for i = 0 to n do

for j = 0 to k(k+1)
2 do

Ri = [Ri; rj
i]

end for
Si,0 = Si,0 ⊕ Ri

end for

Recall that this matrix is constructed with the shares (s0
0, . . . , s5

0) and (r0
0, . . . , r5

0).

S0,0 =


s0

0[2] ⊕ r0
0[2] s0

0[1] ⊕ r0
0[1] s0

0[0] ⊕ r0
0[0]

s1
0[2] ⊕ r1

0[2] s1
0[1] ⊕ r1

0[1] s1
0[0] ⊕ r1

0[0]
s2

0[2] ⊕ r2
0[2] s2

0[1] ⊕ r2
0[1] s2

0[0] ⊕ r2
0[0]

s3
0[2] ⊕ r3

0[2] s3
0[1] ⊕ r3

0[1] s3
0[0] ⊕ r3

0[0]
s4

0[2] ⊕ r4
0[2] s4

0[1] ⊕ r4
0[1] s4

0[0] ⊕ r4
0[0]

s5
0[2] ⊕ r5

0[2] s5
0[1] ⊕ r5

0[1] s5
0[0] ⊕ r5

0[0]


Next, every binary cross product of C̃ is refreshed with the matrix S0,0.


x0[0]y0[2] ⊕ s0

0[2] ⊕ r0
0[2] x0[0]y0[1] ⊕ s0

0[1] ⊕ r0
0[1] x0[0]y0[0] ⊕ s0

0[0] ⊕ r0
0[0]

x0[1]y0[1] ⊕ s1
0[2] ⊕ r1

0[2] x0[1]y0[0] ⊕ s1
0[1] ⊕ r1

0[1] s1
0[0] ⊕ r1

0[0]
x0[2]y0[0] ⊕ s2

0[2] ⊕ r2
0[2] s2

0[1] ⊕ r2
0[1] s2

0[0] ⊕ r2
0[0]

s3
0[2] ⊕ r3

0[2] x0[1]y0[2] ⊕ s3
0[1] ⊕ r3

0[1] x0[1]y0[2] ⊕ s3
0[0] ⊕ r3

0[0]
s4

0[2] ⊕ r4
0[2] x0[2]y0[1] ⊕ s4

0[1] ⊕ r4
0[1] x0[2]y0[1] ⊕ s4

0[0] ⊕ r4
0[0]

x0[2]y0[2] ⊕ s5
0[2] ⊕ r5

0[2] x0[2]y0[2] ⊕ s5
0[1] ⊕ r5

0[1] s5
0[0] ⊕ r5

0[0]



10 Bit t-SNI Secure Inner Product Masking

Algorithm 2 (Gadget-2) - Binary Cross Products

Input: x, y ∈ F2k , Vp ∈ F(k−p)×k
2 , S ∈ F

k(k+1)
2 ×k

2
Output: z = xy ∈ F2k

▷ Compute C0 ∈ Fk×k
2 initialized at 0

for i = 0 to k do
for j = 0 to (k − i) do

C0[i, i + j] = x[i]y[j]
end for

end for
▷ Compute matrices Cp ∈ F(k−p)×k

2 initialized at 0
for p = 1 to k do

for i = p to k do
m = (x[i]y[j], . . . , x[i]y[j])∈ Fk

2 , with j = (k − 1 − i) + p
Cp = [Cp; m]

end for
Cp = Cp ⊙ Vp

end for
▷ Compute C̃ initialized at 0
for p = 0 to k do

C̃ = [C̃; Cp]
end for
C̃ = C̃ ⊕ S
▷ Compute z

z =
∑ k(k+1)

2 −1
i=0 C̃[i, ∗]

Lastly, every row of C̃ is XOR’d together and the k bit vector is mapped from Fk
2 to

its field representation F2k to obtain the masked cross product

z0,0 = x0y0 ⊕ (s0
0 ⊕ . . . ⊕ s5

0) ⊕ (r0
0 ⊕ . . . ⊕ r5

0) ∈ F2k .

Algorithm 3 (Gadget-3) - Secure Multiplication

Input: x̄, ȳ ∈ Fn
2k , Vp ∈ F(k−p)×k

2 , S ∈ F
nk(k+1)

2 ×nk
2

Output: z̄ ∈ Fn
2k such that

∑
i Lizi = (

∑
i Lixi) (

∑
i Liyi)

▷ Compute zi,j

for i = 0 to n do
for j = 0 to n do

zi,j = Gadget-2(xi, yj , Si,j , V)
end for

end for
▷ Computation of the output shares zi

for i = 0 to n do
zi =

∑n−1
j=0 Ljzi,j (over F2k)

end for

Gadget-3 The last gadget receives the generated matrices from Gadget-1 and iteratively
calls Gadget-2 to compute the intermediate masked cross products.

z0,0 = Gadget-2(x0, y0, S0,0, V) = x0y0 ⊕ (s0
0 ⊕ . . . ⊕ s5

0) ⊕ (r0
0 ⊕ . . . ⊕ r5

0)

J. Gaspoz, S. Dhooghe 11

z0,1 = Gadget-2(x0, y1, S0,1, V) = x0y1 ⊕ (s0
1 ⊕ . . . ⊕ s5

1)
z1,0 = Gadget-2(x1, y0, S1,0, V) = x1y0 ⊕ (s6

0 ⊕ . . . ⊕ s11
0) ⊕ (r0

1 ⊕ . . . ⊕ r5
1)

z1,1 = Gadget-2(x1, y1, S1,1, V) = x1y1 ⊕ (s6
1 ⊕ . . . ⊕ s11

1)

It then compresses the cross products to compute the output shares z0 = z0,0 ⊕ L1z0,1,
z1 = z1,0 ⊕ L1z1,1.

3.4 Securely Generating IP Mfree(0)
Algorithm 1 requires the generation of inner product maskings of zero which are used to
refresh shared values. We explain how this can be done securely. We first provide a security
notion for a gadget generating a zero-sharing by the work of Belaïd et al. [BCRT23].
We slightly adapt this notion such that it works for non-Boolean maskings following
Definition 4.

Definition 10 (Free Encoding of Zero [BCRT23]). Let G be a gadget without input and
a single n-shared output z where any set of k bits are uniformly distributed. G is said
to be t-free if for every set W of (internal and output) probed wires of G with |W | ≤ t,
there exists a set V of cardinality |V | ≤ |W | such that for every set O ⊊ [1 : n]/V , any set
of k − |W | bits of z|O is uniformly distributed and mutually independent of the probed
values on W and the outputs z|V .

The above definition needs to hold for the gadget generating the IPMfree(0) sharing
from Algorithm 1 as it is used in the bit-probing SNI proof in Section 4.

In this work, we propose a specific t-free secure IPM sharing of zero. Namely, we use
the work by Ishai et al. [IKL+13] and create t + 1 regular IPM(0) sharings and then XOR
them. For clarity, we call the t-free gadget IPMfree(0) (which is the XOR of IPM(0)
sharings) and the regular generation we denote as IPM(0). We show that this method is
t-free.

Lemma 2. The XOR of t + 1 generated IPM(0) is t-free from Definition 10.

Proof. We assume that each regular generated IPM(0) has the property that any set of k
bits are uniformly distributed. We need to show that given t′ ≤ t probes, there exists a set
V of output bits such that any set of k − t′ bits of the XOR of t + 1 IPM(0) sharings is
uniformly distributed and mutually independent of the probed values and the V outputs.

The set V is simply constructed by either adding nothing to V when a simple IPM(0)
is probed or when the XOR between the IPM(0) is probed, that XOR’s output leads
to a single output bit of the gadget which is thus added to V . Given that t + 1 IPM(0)
are XORed and that there are only t bit-probes, there is at least one IPM(0) which is
not probed and which provides the uniformity of the output following Definition 4 of the
non-probed outputs of V .

Since solely probing the creation of an IPMfree(0) sharing does not provide secret
information (at least one probe should be placed on secret information), we only require
a (t − 1)-free generator. Nevertheless, the secure creation of a single secure IPMfree(0)
sharing now requires t times the cost over the naive insecure approach.

4 Correctness and t-SNI Security Proofs
In this section, we provide formal proofs of correctness and security for the multiplication
gadget (Algorithm 3) where we show that the gadget has compositional security in the
t-strong non-interference framework with the bit-probing model.

12 Bit t-SNI Secure Inner Product Masking

Lemma 3. Algorithm 2, with inputs xi, yj and Si,j, outputs z = xiyj ⊕ sj ⊕ ri ∈ F2k for
j = 0 and z = xiyj ⊕ sj ∈ F2k for j > 0 with ri the ith share of some IPMfree(0) and sj

the jth share of some IPMfree(0).

Proof. We find the following equalities

z[ℓ] =

k(k+1)
2 −1∑
t=0

C̃[t, ℓ] =
k−1∑
t=0

C̃0[t, ℓ] ⊕
k−1∑
p=1

k−1−p∑
t=0

C̃p[t, ℓ] ⊕

k(k+1)
2 −1∑
t=0

S[t, ℓ]

=
ℓ∑

t=0
xi[t]yj [ℓ − t] ⊕

k−1∑
p=1

k−1∑
t=p

(xi[t]yj [k − 1 − t + p])v(xp−1q(x))[ℓ] ⊕

k(k+1)
2 −1∑
t=0

S[t, ℓ]

= (xiyj)[ℓ] ⊕

k(k+1)
2 −1∑
t=0

S[t, ℓ] =

(xiyj)[ℓ] ⊕
∑ k(k+1)

2 −1
t=0 (si

k(k+1)
2 +t

j [ℓ] ⊕ rt
i [ℓ]) j = 0 ,

(xiyj)[ℓ] ⊕
∑ k(k+1)

2 −1
t=0 s

i
k(k+1)

2 +t
j [ℓ] j ̸= 0 ,

where the second-to-last equation comes from the schoolbook multiplication over F2k .
Since the sum of separate inner product maskings of zero remains an inner product

masking of zero, we have that
∑ k(k+1)

2 −1
t=0 s

i
k(k+1)

2 +t
j [ℓ] is the jth share of an inner product

masking of zero. Similar, for
∑ k(k+1)

2 −1
t=0 rt

i [ℓ] which is the ith share of some other inner
product masking of zero.

Theorem 1. Algorithm 3 is a correct gadget for masked inputs, providing a masking of
the multiplication of the secrets over F2k .

Proof. Given Lemma 3, we know that zi,0 = xiy0 ⊕ s0 ⊕ ri and zi,j = xiyj ⊕ sj for j > 0
and sj the jth share of some inner product masking of zero (resp, ri the ith share of another
one). As a result, we find that

zi =
n−1∑
j=0

Ljzi,j = xiy0 ⊕ s0 ⊕ ri ⊕
n−1∑
j=1

(Ljxiyj ⊕ Ljsj)

= xi(y0 ⊕
n−1∑
j=1

Ljyj) ⊕ (s0 ⊕
n−1∑
j=1

Ljsj) ⊕ ri = xiy ⊕ ri .

Notice then that

z0 ⊕
n−1∑
i=1

Lizi = x0y ⊕ r0 ⊕
n−1∑
i=1

Li(xiy ⊕ ri) = (x0 ⊕
n−1∑
i=1

Lixi)y ⊕ (r0 ⊕
n−1∑
i=1

Liri) = xy .

Thus, Algorithm 3 correctly implements an inner-product masked multiplication.

Theorem 2. Algorithm 3 is t-SNI with t = d⊥
L − 1.

Proof. The security proof essentially follows from the potential observations the adversary
can make, which are depicted in Figures 4a and 4b, and the shape of the refreshing matrix
S, which is depicted in Figures 2 and 3a, which consists of both horizontal and vertical
inner product maskings of zero. In the security proof, we show that the Ri matrices,
together with the Si,j matrices, refresh the input shares and that each probe can only
observe a single bit of the Ri’s independent IPMfree(0) maskings. Due to Lemma 1 which
shows that up to t bits in an inner product masking with dual minimal distance t + 1 are
jointly uniform distributed, the multiplication gadget is shown to be tth-order SNI secure.

J. Gaspoz, S. Dhooghe 13

Let Ω = (I,O) be a set of t observations on the internal and on the output bits,
respectively, where |I| = t1 such that t1 + |O| ≤ t. We construct a perfect simulator S of
the adversary’s bit-probes, which can make use of at most t1 bits of x̄ and ȳ. Let w1, . . . , wt

be the set of probed wires. We classify the internal wires in the following groups:

(1) x̄[i], ȳ[i] (the ith-bit of the masking)
(2) s̄i[j], r̄j [i], Si′,j′ [i, j], Ri′,j′ [i, j]
(3) A wire in IPMfree(0) for s̄i.
(4) A wire in IPMfree(0) for r̄j .

(5) C̃∗[∗, ∗] = x̄[i]ȳ[j] ⊕ S∗,∗[∗, ∗]
(6) Any sum of C̃[∗, ℓ] to create zi,j [ℓ]
(7) (Ljzi,j)[ℓ]
(8) Any sum of (Ljzi,j)[ℓ] to create zi[ℓ]

We define two sets of indices I and J with |I| ≤ t1, |J | ≤ t1, such that the values of
the probed wires, denoted wh with h = 1, . . . , t, can be perfectly simulated given only the
knowledge of x̄[i]i∈I and ȳ[j]j∈J . The sets are constructed as follows.

– Initially I and J are empty.
– For every wire as in the group (1) add i to I and J .
– For every wire as in the group (2) and (5) add i to I and j to J .
– For every wire as in group (3) following Definition 10, the set V (of cardinality at

most the number of probed wires) is added to J and i to I.
– For every wire as in group (4) following Definition 10, the set V (of cardinality at

most the number of probed wires) is added to I and j to J .
– For every wire as in the group (6), (7), and (8) nothing is added to I and J .

Since the adversary is allowed to make at most t1 internal probes, we have that |I| ≤ t1
and |J | ≤ t1.

We now show that the simulator S is able to simulate any internal wire wh as follows.

1. For each observation as in category (1), then i ∈ I, J and by definition the simulator
has access to x̄[i] or ȳ[i]. Hence the values are perfectly simulated.

2. For each observation as in category (2), the simulator assigns a random and indepen-
dent value to the observed wire. For a probe on Si′,0[i, j] the simulator assigns two
random and independent values for s

i′ k(k+1)
2 +i

0 [j] and for ri
i′ [j].

3. For each observation as in categories (3) or (4), following Definition 10, the simulator
assigns a random and independent value to the observed wire and the output specified
by the set V . We then know that the other shares of that IPMfree(0) are still
uniform and independent of the observed values, thus acting as independent uniform
randomness.
We note that in case categories (2)-(4) were probed t times, the simulator can simply
generate all probed values as random following the algorithm since no input shares
are needed for this generation. Thus, we assume that categories (2)-(4) are probed
at most t − 1 times.

4. For each observation as in category (5), by definition the simulator has access to
x̄[i] and ȳ[j]. The value x̄[i]ȳ[j] can be computed as in the real algorithm and the
randomness S∗,∗[∗, ∗] is either freshly generated or repeated if it was already probed
in categories (2)-(4).

5. For each observation as in category (6), if one of the C̃[∗, ℓ] or their respective
randomness in S composing zi,j [ℓ] has already been probed, then we can simulate it
as in the previous steps. Otherwise, from viewing the bits C̃[∗, ℓ], a probe in this
category views only one column in an Si,j block. Furthermore, from Figure 2, we

14 Bit t-SNI Secure Inner Product Masking

observe that a single column of the Si,j block constitutes single bits of separate
and independent (horizontal) IPMs of zero. As a result, a single column of Si,j is
jointly uniform random. Thus, all the C̃[∗, ℓ] in the sum of zi,j [ℓ] are jointly uniform
random and can be simulated as such.

S =
⊕

R0 . . . 0

R1 . . . 0
...

. . .
...

Rn−1 . . . 0





S0,0 . . . S0,n−1

S1,0 . . . S1,n−1
...

. . .
...

Sn−1,0 . . . Sn−1,n−1





IPM(0)IPM(0)

Figure 2: The shape of the S matrix. The shares of the IPMfree(0) from the Ri matrices
are stored in their rows.

r0
i [k − 1] . . . r0

i [0]

r1
i [k − 1] . . . r1

i [0]

...
. . .

...

r
k(k+1)

2
i [k − 1] . . . r

k(k+1)
2

i [0]





ith-share of an IPM(0)

(a) Ri block.

sim
j [k − 1] . . . sim

j [0]

sim+1
j [k − 1] . . . sim+1

j [0]

...
. . .

...

s
(i+1)m−1
j [k − 1] . . . s

(i+1)m−1
j [0]





jth-share of an IPM(0)

(b) Si,j block with m = k(k+1)
2 .

Figure 3: Layout of the bits in a Ri or Si,j block.

6. For each observation as in category (7), we assume a worst case scenario where such
a probe reveals every bit of zi,j (unless j = 0) since, in the worst case, Lj is such
that it combines all bits of z(i,j) (e.g., if the representation of Lj ∈ F2k as a Fk×k

2
matrix has a row full of ones). Thus, for j > 0, we assume a probe in this category
views a full Si,j block. In case j = 0, then L0 is the identity matrix and only one
column of Si,0 is observed.
The adversary only has t probes and each probe either views one Si,j block for
j > 0 or a single column of Si,0. Since a row of blocks of the S matrix consists of
(horizontal) inner product maskings of zero, from Definition 4 we know that all Si,j

blocks for j > 0 are jointly uniform distributed. From the addition of the Ri matrix
(which is one share of vertical IPMs of zero following Figure 2), the Si,0 block is
jointly uniform with all Si,j blocks for j > 0. Since the adversary can only place t
probes and each probe views at most one bit of each (vertical) inner product masking
from the Ri matrices (see Figure 3a), it follows from Lemma 1 that all the bits from
the Ri are jointly uniform random. As a result, the observations in category (7)
can be simulated as joint uniform randomness unless one of the values was already
probed before. More specifically, in case any bit Ri[ℓ0, ℓ1] was already probed, as
in categories (2)-(4), the simulator was given the indices ℓ0 ∈ I, ℓ1 ∈ J to simulate
x[ℓ0]y[ℓ1].

7. For each observation as in category (8), following Figure 4b, a probe observes all
blocks Si,j for j > 0 and a column of Si,0.
The proof follows the same steps as in category (7), namely all blocks Si,j for j > 0
together with a column from Si,0 are jointly uniform random due to the Si,0 block
being masked with Ri. Since each probe in this category only views a single column
of Si,0, each probe only views a single bit of the inner product maskings of zero that

J. Gaspoz, S. Dhooghe 15

are placed in the Ri matrices (see Figure 3a). From Lemma 1 and the restriction
of the adversary to maximally place t probes, it follows that the probed bits of the
Ri matrices are jointly uniform random. As a result, up to t rows of blocks S∗,j for
j > 0 with t columns from the blocks S∗,0 are jointly uniform random and can be
simulated as such. In case any bit Ri[ℓ0, ℓ1] was already probed, as in categories
(2)-(4), the simulator was given the indices ℓ0 ∈ I, ℓ1 ∈ J to simulate x[ℓ0]y[ℓ1].

one column or all bits

S0,0 S0,1 . . . S0,n−1

S1,0 S1,1 . . . S1,n−1
...

...
. . .

...

Sn−1,0 Sn−1,1 . . . Sn−1,n−1




(a) Probing category (6) or (7).

one column all bits

S0,0 S0,1 . . . S0,n−1

S1,0 S1,1 . . . S1,n−1
...

...
. . .

...

Sn−1,0 Sn−1,1 . . . Sn−1,n−1




(b) Probing category (8).

Figure 4: The observed bits of S when probing category (6)-(8). For category (6)-(7), the
adversary either gets one bit column in Si,0 (one column shown in Figure 3b) or all bits in
Si,j with j > 0. For category (8), we get one bit column and all bits in Si,j with j > 0.

Since the simulation of category (8) added no extra information to the simulator, we also
proved that the output of the gadget can be simulated using no additional information.

5 Efficiency
In this section, we discuss both the algorithmic and practical performances of Gadget-3
and compare it with the standard multiplication gadget for Boolean masking proposed by
Ishai et al. [ISW03] (referred to as ISW in the rest of the paper).

5.1 Algorithmic Efficiency
For a given number of shares n in a field F2k , the comparison uses the number of random
bits as well as the number of AND and XOR gates as metrics. ISW requires n2 field
multiplications. Given that we want to provide asymptotic metrics, we translate each field
multiplication of ISW into a number of binary gates. Following the results of [RH04], we
provide the optimistic estimation that a multiplier in F2k requires k2 AND gates and k2

XOR gates. The number of gates in Gadget-3 corresponds to the count of (unoptimized)
assembly instructions utilized in the algorithm. At first sight, the results in Table 2 appear
to indicate lower metrics for the ISW multiplication gadget. However, keep in mind that,
due to the security order amplification by inner product masking, Gadget-3 can achieve a
higher security order while keeping n relatively small compared to Boolean masking where
the number of shares increases with the security order.

Figure 5a shows the results obtained for the field F24 with colored full and dashed
lines corresponding to ISW and Gadget-3, respectively. Similarly, Figure 5b shows the
results obtained for the field F28 . The expected security order for inner product masking
follows the metrics provided in Table 1 where two-share and three-share maskings reach a
maximum bit-level security order of three and seven, respectively. Thus, in terms of gate
count, we observe that both implementations utilize a fairly similar number of gates for
third-order security. However, for fifth-order security for the field F24 (resp. sixth-order
security for the field F28) achieved with a three-share inner product masking, the ISW
multiplier exhibits a higher number of gates compared to our Gadget-3 multiplier. The

16 Bit t-SNI Secure Inner Product Masking

major limitation of Gadget-3 is the large number of random bits required compared to
ISW. As observed in Figure 6, Gadget-1 generates numerous secure IPMfree(0) instances
(detailed in Section 3.4), each necessitating multiple random bits and encoding via inner
product masking, which involves a substantial number of XOR gates.

Table 2: Algorithmic cost in the number of XOR gates, AND gates, and fresh random
bits of Gadget-1 (without the generation of Vp) and Gadget-3 compared to the ISW
multiplication in F2k for n (word-level) shares. We denote t the bit-probing security level
of the gadget.

#ANDs #XOR’s #Random bits

ISW n2k2 k2n2 + 2nk(n − 1) 1
2 kn(n − 1)

Gadget-3 1
2 k(k + 1)2n2 1

2 kn(k2n + 3kn − 2) -

Gadget-1 - 1
2 k2(k + 1)(kn2t − kt + n) 1

2 t(n2 − 1)k2(k + 1)

1 2 3 4 5
0

200

400

600

800

Bit security order

N
um

be
r

of
ga

te
s

ANDs (BM)
XORs (BM)
RAND (BM)

ANDs (Gadget-3)
XORs (Gadget-3)

(a) For the field F24 .

1 2 3 4 5 6 7
0

2,000

4,000

Bit security order

N
um

be
r

of
ga

te
s

ANDs (BM)
XORs (BM)
RAND (BM)

ANDs (Gadget-3)
XORs (Gadget-3)

(b) For the field F28 .

Figure 5: Comparison between the number of gates and random bits required in ISW and
Gadget-3 over the same security orders (where its security order increases with the number
of shares n) over different fields.

5.2 Practical Efficiency

We present in Table 3 a clock cycles comparison of Gadget-3’s implementation with the
standard ISW multiplication gadget for Boolean masking in F24 . Since our gadget follows
a schoolbook algorithm in order to compute a multiplication between two shares, we
first compare it to ISW which also uses a schoolbook Galois Field multiplication. We
observe that the second-order secure Gadget-3 outperforms the schoolbook ISW for a
similar degree of security. This confirms the numbers from the algorithmic efficiency in
Table 2. Nevertheless, ISW benefits from software implementation optimizations, such
as the utilization of log-a-log tables to calculate the cross products which computes in
fewer cycles than Gadget-3 for the two-share case. However, the three-share variant of
Gadget-3 enables a bit security order up to 5 and results in the minimal number of cycles –
surpassing even the log-a-log optimized ISW algorithm. Nevertheless, these positive results
must be tempered by the high cost of randomness generation required for Gadget-1, which
is currently the bottleneck of the multiplication gadget. We believe that optimizations
might be applicable to Gadget-3 and Gadget-1 and leave them as future work.

J. Gaspoz, S. Dhooghe 17

1 2 3 4 5 6 7
102

103

104

105

Bit security order

N
um

be
r

of
ga

te
s

RAND (k = 4)
XORs (k = 4)
RAND (k = 8)
XORs (k = 8)

Figure 6: The number of gates and random bits required in Gadget-1 for different fields
F2k over its provided security orders.

Table 3: Cycle count of Gadget-1 and Gadget-3 ARM Cortex-M4 implementation compared
to the ISW multiplication in F24 for a similar bit-probing security order. Note that,
following Table 1 for F24 , inner product masking achieves second-order security for n = 2
and fifth-order security for n = 3.

Bit security order 1 2 3 4 5 6

Cycle count ISW log-a-log 663 1472 2618 4101 5921 8078
Schoolbook 1803 4037 7178 11226 16181 22043
Gadget-3 2387 2387 5408 5408 5408 -
Gadget-1 8973 8973 32803 32803 32803 -

6 Practical Side-Channel Leakage Evaluation

In the previous sections, we showed the theoretical security of Gadget-1 (e.g., the secure
randomness generation) and Gadget-3 and proved them to be t-SNI secure in the bit-
probing model. In this section, we complement this analysis with a practical side-channel
leakage evaluation on a real-world device and confirm these theoretical results.

In order to reduce the number of sample points in the traces, our evaluation targets an
ARM assembly implementation tailored specifically for two-share inner product maskings
over a field F24 ≡ F2[x]/x4 + x + 1. In an attempt to avoid unexpected interactions
between the shares, we place each binary variable in a separate register. Based on
this implementation, we evaluate the multiplication gadget with inner product maskings
encoded from different values for the public vector L ranging from best to worst bit probing
security and show the resulting practical security impact.

6.1 Measurement Setup

Measurement tests are conducted on a CW308T-STM32F target board which embeds
a STM32F415RG Cortex-M4 microcontroller running at an internal 24 MHz operating
frequency. For trace acquisition, we used a NewAE CW308 UFO board and a Tektronix
DPO70404C oscilloscope with a sample rate of 125MS/s. In addition, an external 8 MHz
clock frequency was used for the Cortex-M4 core. All our measurements are synchronized
by aligning the oscilloscope with the external clock. Finally, the Arm GNU toolchain1 is
used for compiling the Cortex-M4 assembly implementation.

1gcc-arm-11.2-2022.02-x86_64-arm-none-eabi

18 Bit t-SNI Secure Inner Product Masking

6.2 Leakage Assessment
The side-channel security evaluation focuses on leakage detection via the widely used Test
Vector Leakage Assessment (TVLA) [GJJR11] methodology using a non-specific, fixed vs.
random t-test statistic. This procedure provides metrics of potential leakage independently
of a specific attack scenario. In such a procedure, traces are first collected from the target
device operating on a fixed or a random input plaintext and placed in two respective
sets namely Sfixed and Srandom. In order to avoid unexpected influences, traces from
the two sets are captured in a random fashion. Next, the Welch’s (two-tailed) t-test is
computed. This test is computed on every sample point to determine the validity of the null
hypothesis, which is that the samples in both sets were drawn from the same population
(i.e., the mean of the two sets are similar). From a side-channel analysis viewpoint, the
indistinguishability of the sets means that the masking is secure. In the literature, to
determine if the null hypothesis is rejected (i.e., that the masked implementation leaks)
the threshold value is usually defined at t = ±4.5 (which provides a confidence of roughly
0.99999). This value is, however, not universal and could be adapted to a higher value
(see [DZD+17, Table 1], [BGG+14, Appendix A]) as long traces will, with high probability,
exceed the ±4.5 threshold due to false positives.

Since software implementations split the computation over multiple clock cycles, higher-
order evaluation of a software implementation needs to be performed in a multivariate
setting. In this setup, the general methodology consists of preprocessing each trace using a
combination function and then conducting a first-order attack on the preprocessed traces.
As summarized in Table 1, a two-share inner product masking defined over F24 with
optimal parameters is expected to resist a second-order attack. Hence, we need a bivariate
t-test for which we use the SCALib [CB23] library which utilizes the optimal combination
function (i.e., the centered product [PRB09]) to merge each trace at two specific time
points. However, this approach significantly increases computational complexity, making it
impractical for traces with many sample points. Therefore, we downsample, keeping only a
subset of points before preprocessing. Downsampling carries the risk of missing significant
leakages and the test may provide a false sense of security. Hence, the downsampling value
needs to be carefully selected. With the secure IPMfree(0) randomness generation taken
in account, our assembly implementation results in a trace of 60000 sample points from
a sampling rate of 125MS/s, and knowing that 6808 assembly instructions are used, we
obtain that the number of sample points per assembly instruction is approximately equal
to 8.8. Thus, a downsampling of at most 8.8 would not skip any point of interest. In
practice, we chose to retain one every five sample points from the original traces resulting
in a reasonable 12000 total sample points. While this allows for a bivariate analysis to
be evaluated in a reasonable time, it still results in a large number of individual t-tests
which requires adjusting the threshold th value utilized in the bivariate analysis. For this,
we follow the methodology by Ding et al. [DZD+17] and obtain a th = 6.416 for 120002/2
sample points for an α = 0.01.

6.3 Results
First, we discuss the univariate first-order t-test result for one million measurements shown
in Figure 7a. Two-share software masked implementations based on Boolean masking
usually struggle to guarantee their first-order security due to unintended interactions
between values in the microcontroller [BGG+14, PV17, MPW22, GHP+21]. Transition
leakage is a typical leakage source where an overwrite of one share (e.g., x1 = r) in a register
(or a memory cell) currently holding another share (e.g., x0 = x ⊕ r) may reveal the secret
information (HD(x ⊕ r, r) = HW (x)). As a result, two-share implementations require
additional fixes to guarantee first-order security [GHP+21, GD23, SSB+21]. However, first-
order implementations based on inner product masking benefit from a natural protection

J. Gaspoz, S. Dhooghe 19

against transition leakage. Assuming L1 ̸= 1, the Hamming distance between two inner
product shares is still uniformly distributed [BFG+17, Section 6.3].

Next, we discuss the second-order bivariate t-test results. Figure 8d shows the evaluation
result of both Gadget-3 and Gadget-1 (e.g., the secure randomness IPMfree(0) generation)
with the optimal value L = (1, 6) for which tb = 2. Figure 10a shows the evolution of the
maximum peak value with an increasing number of traces evaluated up to one million.
These results confirm our theoretical expectations from Section 4 as no significant evidence
of leakage was detected for one million measurements and the maximum threshold value
does not show any increase through the evaluation. Figure 8c displays the evaluation of the
same parameters but with the randomness deactivated (i.e., the masking is deactivated).

Lastly, we display the results of the evaluation of Gadget-1 with weaker parameters
for which tb = 1 namely: L1 = 2 and L1 = 1 (i.e., Boolean masking) in Figure 8b and
Figure 8a, respectively. As expected, we observe second-order leakage in both evaluations.
However, for L1 = 2, the results in Figure 8b show less evidence of leakage. Similarly to the
optimal parameter configuration where L = (1, 6), we show the evolution of the maximum
threshold values for L1 = 2 and L1 = 1 in Figure 10b where we observe increasing values
as more traces are evaluated. For the sake of completeness, we evaluate the existing
code-based multiplication gadget introduced by Wang et al. [WMCS20]. As observed in
Wu et al.’s practical analysis [WCG+22], due to an internal switch from a code-based
to an additive sharing and a security based on word-level probing (instead of bit-level)
the multiplication gadgets fails to maintain the security order amplification effect during
its computation. This is shown in Figure 9 where a second-order secure inner product
masking multiplication breaks in a bivariate analysis.

6.4 Evaluation Tools Limitations
In an attempt to reinforce theoretical and practical results, two tools were considered. To
complement the SNI security proof in Section 4, the utilization of the formal verification
tool MaskVerif [BBFG18] was attempted. Unfortunately, MaskVerif is not suitable for this
task. MaskVerif does not support custom encoding functions as it is designed to work
exclusively with input and output shares specifically constructed using Boolean masking.
Consequently, one would need to transform the Boolean input shares into inner product
masking shares, which is not feasible with this tool. While Boolean masking can be trivially
constructed from inner product masking (e.g., by defining Li = 1), the process of mixing
multiple bits of randomness to each sensitive bit —from Boolean masking input shares—
cannot be easily accomplished. Next, to guarantee the first and second probing security
and to accompany the practical side-channel leakage evaluation, the leakage simulator
PROLEAD_SW [ZMM23] was used. While first order security was easily verified on the
assembly implementation, the bivariate analysis requires an excessive amount or RAM
(e.g., more than 1TB) which prevented the completion of the evaluation.

0 20000 40000 60000
Samples

−4

−2

0

2

4

t-
st

at
is

tic

(a) L = (1, 6)

0 20000 40000 60000
Samples

80

100

120

140

S
am

pl
ed

 S
ig

na
l

(b) Mean

Figure 7: First-order t-test non-specific, fixed vs. random t-test results of the ARM assembly
multiplication Gadget-3 and randomness generation Gadget-1. The ±4.5 threshold is
marked by red lines. Experiments are done using 1M traces.

20 Bit t-SNI Secure Inner Product Masking

(a) L = (1, 1) (b) L = (1, 2)

(c) L = (1, 6) RNG-off (d) L = (1, 6)

Figure 8: Second-order bivariate non-specific, fixed vs. random t-test results of the ARM
assembly multiplication. The experiments with L = (1, 6) use 1M traces evaluate both
Gadget-1 and Gadget-3, the other tests use 100k traces on Gadget-1. Figures 8a-8c are
expected to leak and Figure 8d is expected to be secure.

7 Conclusion and Future Work
In this work, we detailed a new secure multiplication gadget tailored for inner product
masking which preserves the security order amplification (i.e., bit-probing security order)
during its computation. Namely, we designed a gadget where the bit-level probing security
is preserved throughout the computation by leveraging inner product maskings of zero
as randomness distributed to every binary cross product. We showed that for a similar
security order —thanks to the security order amplification effect— our multiplier exhibits
a lower number of gates than the standard ISW multiplication gadget for Boolean masking.
In addition, we compared the practical efficiency of our multiplication gadget against a
Boolean masked gadget. We find that the preprocessing phase is much heavier compared
to Boolean masking. However, the gadget’s online phase shows promising results which
could improve over Boolean masking in certain security orders. Finally, we conducted

Figure 9: Second-order bivariate non-specific, fixed vs. random t-test results of the ARM
assembly CodeL and CodeMuL gadgets from [WCG+22] with L = (1, 91).

J. Gaspoz, S. Dhooghe 21

(a) L = (1, 6) (b) L = (1, 1) and L = (1, 2)

Figure 10: Evolution of the maximum value for the second-order bivariate t-test of the
ARM implementation with increasing number of traces. The red line is the 4.5 threshold
and the dashed red line represents the adjusted threshold 6.416 obtained in Section 6.2.
The experiment with L1 = 6 is done with 1M traces and the others with 100k traces.

practical side-channel leakage evaluation on an ARM assembly implementation where no
significant evidence of leakage was detected for one million measurements. While we took
significant steps forward in inner product masking, we list some potential future works.

Reduced randomness Given the significant number of random bits required by our
multiplier, we believe it is possible to optimize the gadget for general parameters (meaning,
any field, any parameter L, and any number of shares) with respect to its randomness
requirement. In the security proof in Section 4, we note that the simulator is given
no additional input shares for categories (4), (5), and (6). This indicates that some of
the randomness could be removed while preserving the bit-level probing security. In
addition, we rely on secure generation of IPMfree(0) sharings which comes at a high cost.
Immediately integrating random bits into Gadget 2 and 3 would reduce the overhead.

Implementation efficiency We did not place efficiency as a primary priority, opting to
leave potential improvements for future work. Our multiplication gadget may benefit from
bit-slice or vectorized techniques that we leave as future work.

Extension to code-based masking We detailed a multiplication gadget which preserves
the bit-probing security level of its masking even in a composable secure setting, however,
the function of the gadget could be generalized to maintain the bit-probing security level
of any code-based masking scheme. To be clear, the current multiplication gadget is not
correct for an arbitrary code-based masking since it first calculates the F2k multiplication
of the shares xiyj before multiplying the cross products with the L matrix. For the
correctness of Algorithm 3, we need the property that xi(Lyj) = L(xiyj) which does not
hold when L is an arbitrary bit matrix. Instead, for a code-based masking gadget, one
needs to first securely calculate the multiplication of a share with the matrix L before
calculating cross products. We leave this interesting generalization as future work.

References
[BBD+16] Gilles Barthe, Sonia Belaïd, François Dupressoir, Pierre-Alain Fouque, Ben-

jamin Grégoire, Pierre-Yves Strub, and Rébecca Zucchini. Strong non-
interference and type-directed higher-order masking. In Edgar R. Weippl,
Stefan Katzenbeisser, Christopher Kruegel, Andrew C. Myers, and Shai Halevi,
editors, Proceedings of the 2016 ACM SIGSAC Conference on Computer
and Communications Security, Vienna, Austria, October 24-28, 2016, pages
116–129. ACM, 2016.

22 Bit t-SNI Secure Inner Product Masking

[BBFG18] Gilles Barthe, Sonia Belaïd, Pierre-Alain Fouque, and Benjamin Grégoire.
maskverif: a formal tool for analyzing software and hardware masked imple-
mentations. IACR Cryptol. ePrint Arch., page 562, 2018.

[BCC+14] Julien Bringer, Claude Carlet, Hervé Chabanne, Sylvain Guilley, and Houssem
Maghrebi. Orthogonal direct sum masking - A smartcard friendly computation
paradigm in a code, with builtin protection against side-channel and fault
attacks. In David Naccache and Damien Sauveron, editors, Information
Security Theory and Practice. Securing the Internet of Things - 8th IFIP WG
11.2 International Workshop, WISTP 2014, Heraklion, Crete, Greece, June
30 - July 2, 2014. Proceedings, volume 8501 of Lecture Notes in Computer
Science, pages 40–56. Springer, 2014.

[BCRT23] Sonia Belaïd, Gaëtan Cassiers, Matthieu Rivain, and Abdul Rahman Taleb.
Unifying freedom and separation for tight probing-secure composition. In
Helena Handschuh and Anna Lysyanskaya, editors, Advances in Cryptology -
CRYPTO 2023 - 43rd Annual International Cryptology Conference, CRYPTO
2023, Santa Barbara, CA, USA, August 20-24, 2023, Proceedings, Part III,
volume 14083 of Lecture Notes in Computer Science, pages 440–472. Springer,
2023.

[BFG15] Josep Balasch, Sebastian Faust, and Benedikt Gierlichs. Inner product masking
revisited. In Elisabeth Oswald and Marc Fischlin, editors, Advances in Cryp-
tology - EUROCRYPT 2015 - 34th Annual International Conference on the
Theory and Applications of Cryptographic Techniques, Sofia, Bulgaria, April
26-30, 2015, Proceedings, Part I, volume 9056 of Lecture Notes in Computer
Science, pages 486–510. Springer, 2015.

[BFG+17] Josep Balasch, Sebastian Faust, Benedikt Gierlichs, Clara Paglialonga, and
François-Xavier Standaert. Consolidating inner product masking. In Tsuyoshi
Takagi and Thomas Peyrin, editors, Advances in Cryptology - ASIACRYPT
2017 - 23rd International Conference on the Theory and Applications of
Cryptology and Information Security, Hong Kong, China, December 3-7, 2017,
Proceedings, Part I, volume 10624 of Lecture Notes in Computer Science, pages
724–754. Springer, 2017.

[BGG+14] Josep Balasch, Benedikt Gierlichs, Vincent Grosso, Oscar Reparaz, and
François-Xavier Standaert. On the cost of lazy engineering for masked soft-
ware implementations. In Marc Joye and Amir Moradi, editors, Smart Card
Research and Advanced Applications - 13th International Conference, CARDIS
2014, Paris, France, November 5-7, 2014. Revised Selected Papers, volume
8968 of Lecture Notes in Computer Science, pages 64–81. Springer, 2014.

[CB23] Gaëtan Cassiers and Olivier Bronchain. Scalib: A side-channel analysis library.
Journal of Open Source Software, 8(86):5196, 2023.

[CGC+21] Wei Cheng, Sylvain Guilley, Claude Carlet, Sihem Mesnager, and Jean-Luc
Danger. Optimizing inner product masking scheme by a coding theory approach.
IEEE Trans. Inf. Forensics Secur., 16:220–235, 2021.

[CJRR99] Suresh Chari, Charanjit S. Jutla, Josyula R. Rao, and Pankaj Rohatgi. Towards
sound approaches to counteract power-analysis attacks. In Michael J. Wiener,
editor, Advances in Cryptology - CRYPTO ’99, 19th Annual International
Cryptology Conference, Santa Barbara, California, USA, August 15-19, 1999,
Proceedings, volume 1666 of Lecture Notes in Computer Science, pages 398–412.
Springer, 1999.

J. Gaspoz, S. Dhooghe 23

[DZD+17] A. Adam Ding, Liwei Zhang, François Durvaux, François-Xavier Standaert,
and Yunsi Fei. Towards sound and optimal leakage detection procedure. In
Thomas Eisenbarth and Yannick Teglia, editors, Smart Card Research and
Advanced Applications - 16th International Conference, CARDIS 2017, Lugano,
Switzerland, November 13-15, 2017, Revised Selected Papers, volume 10728 of
Lecture Notes in Computer Science, pages 105–122. Springer, 2017.

[GD23] John Gaspoz and Siemen Dhooghe. Threshold implementations in software:
Micro-architectural leakages in algorithms. IACR Trans. Cryptogr. Hardw.
Embed. Syst., 2023(2):155–179, 2023.

[GHP+21] Barbara Gigerl, Vedad Hadzic, Robert Primas, Stefan Mangard, and Roderick
Bloem. Coco: Co-design and co-verification of masked software implemen-
tations on cpus. In Michael Bailey and Rachel Greenstadt, editors, 30th
USENIX Security Symposium, USENIX Security 2021, August 11-13, 2021,
pages 1469–1468. USENIX Association, 2021.

[GJJR11] Gilbert Goodwill, Benjamin Jun, Joshua Jaffe, and Pankaj Rohatgi. A
testing methodology for side channel resistance, 2011. https://csrc.nist.
gov/csrc/media/events/non-invasive-attack-testing-workshop/
documents/08_goodwill.pdf. Retrieved on March 31th, 2022.

[GM11] Louis Goubin and Ange Martinelli. Protecting AES with shamir’s secret
sharing scheme. In Bart Preneel and Tsuyoshi Takagi, editors, Cryptographic
Hardware and Embedded Systems - CHES 2011 - 13th International Workshop,
Nara, Japan, September 28 - October 1, 2011. Proceedings, volume 6917 of
Lecture Notes in Computer Science, pages 79–94. Springer, 2011.

[Gol02] Jovan Dj. Golic. Multiplicative masking and power analysis of AES. IACR
Cryptol. ePrint Arch., page 91, 2002.

[GP99] Louis Goubin and Jacques Patarin. DES and differential power analysis
(the "duplication" method). In Çetin Kaya Koç and Christof Paar, editors,
Cryptographic Hardware and Embedded Systems, First International Workshop,
CHES’99, Worcester, MA, USA, August 12-13, 1999, Proceedings, volume
1717 of Lecture Notes in Computer Science, pages 158–172. Springer, 1999.

[IKL+13] Yuval Ishai, Eyal Kushilevitz, Xin Li, Rafail Ostrovsky, Manoj Prabhakaran,
Amit Sahai, and David Zuckerman. Robust pseudorandom generators. In
ICALP (1), volume 7965 of Lecture Notes in Computer Science, pages 576–588.
Springer, 2013.

[ISW03] Yuval Ishai, Amit Sahai, and David A. Wagner. Private circuits: Securing
hardware against probing attacks. In Dan Boneh, editor, Advances in Cryptol-
ogy - CRYPTO 2003, 23rd Annual International Cryptology Conference, Santa
Barbara, California, USA, August 17-21, 2003, Proceedings, volume 2729 of
Lecture Notes in Computer Science, pages 463–481. Springer, 2003.

[KJJ99] Paul C. Kocher, Joshua Jaffe, and Benjamin Jun. Differential power analysis.
In Michael J. Wiener, editor, Advances in Cryptology - CRYPTO ’99, 19th
Annual International Cryptology Conference, Santa Barbara, California, USA,
August 15-19, 1999, Proceedings, volume 1666 of Lecture Notes in Computer
Science, pages 388–397. Springer, 1999.

[MPW22] Ben Marshall, Dan Page, and James Webb. MIRACLE: micro-architectural
leakage evaluation A study of micro-architectural power leakage across many
devices. IACR Trans. Cryptogr. Hardw. Embed. Syst., 2022(1):175–220, 2022.

https://csrc.nist.gov/csrc/media/events/non-invasive-attack-testing-workshop/documents/08_goodwill.pdf
https://csrc.nist.gov/csrc/media/events/non-invasive-attack-testing-workshop/documents/08_goodwill.pdf
https://csrc.nist.gov/csrc/media/events/non-invasive-attack-testing-workshop/documents/08_goodwill.pdf

24 Bit t-SNI Secure Inner Product Masking

[PGS+17] Romain Poussier, Qian Guo, François-Xavier Standaert, Claude Carlet, and
Sylvain Guilley. Connecting and improving direct sum masking and inner
product masking. In Thomas Eisenbarth and Yannick Teglia, editors, Smart
Card Research and Advanced Applications - 16th International Conference,
CARDIS 2017, Lugano, Switzerland, November 13-15, 2017, Revised Selected
Papers, volume 10728 of Lecture Notes in Computer Science, pages 123–141.
Springer, 2017.

[PRB09] Emmanuel Prouff, Matthieu Rivain, and Régis Bevan. Statistical analysis of
second order differential power analysis. IEEE Trans. Computers, 58(6):799–
811, 2009.

[PV17] Kostas Papagiannopoulos and Nikita Veshchikov. Mind the gap: Towards
secure 1st-order masking in software. In Sylvain Guilley, editor, Construc-
tive Side-Channel Analysis and Secure Design - 8th International Workshop,
COSADE 2017, Paris, France, April 13-14, 2017, Revised Selected Papers,
volume 10348 of Lecture Notes in Computer Science, pages 282–297. Springer,
2017.

[RH04] Arash Reyhani-Masoleh and M. Anwar Hasan. Low complexity bit parallel
architectures for polynomial basis multiplication over gf(2ˆ{m}). IEEE Trans.
Computers, 53(8):945–959, 2004.

[SSB+21] Madura A. Shelton, Niels Samwel, Lejla Batina, Francesco Regazzoni, Markus
Wagner, and Yuval Yarom. Rosita: Towards automatic elimination of power-
analysis leakage in ciphers. In 28th Annual Network and Distributed System
Security Symposium, NDSS 2021, virtually, February 21-25, 2021. The Internet
Society, 2021.

[WCG+22] Qianmei Wu, Wei Cheng, Sylvain Guilley, Fan Zhang, and Wei Fu. On
efficient and secure code-based masking: A pragmatic evaluation. IACR Trans.
Cryptogr. Hardw. Embed. Syst., 2022(3):192–222, 2022.

[WMCS20] Weijia Wang, Pierrick Méaux, Gaëtan Cassiers, and François-Xavier Standaert.
Efficient and private computations with code-based masking. IACR Trans.
Cryptogr. Hardw. Embed. Syst., 2020(2):128–171, 2020.

[WYS19] Weijia Wang, Yu Yu, and François-Xavier Standaert. Provable order amplifica-
tion for code-based masking: How to avoid non-linear leakages due to masked
operations. IEEE Trans. Inf. Forensics Secur., 14(11):3069–3082, 2019.

[ZMM23] Jannik Zeitschner, Nicolai Müller, and Amir Moradi. Prolead_sw - probing-
based software leakage detection for ARM binaries. IACR Cryptol. ePrint
Arch., page 34, 2023.

	Introduction
	Previous Works
	Contributions

	Preliminaries
	Notations
	Boolean Masking
	Inner Product Masking
	Security Definitions
	Security Order Amplification of IPM

	Multiplication Gadget
	Design Rationale
	Detailed Description
	Example
	Securely Generating IPM(0)

	Correctness and t-SNI Security Proofs
	Efficiency
	Algorithmic Efficiency
	Practical Efficiency

	Practical Side-Channel Leakage Evaluation
	Measurement Setup
	Leakage Assessment
	Results
	Evaluation Tools Limitations

	Conclusion and Future Work

