
More Efficient Lattice-based OLE

from Circuit-private Linear HE with Polynomial Overhead

Leo de Castro1, Duhyeong Kim2, Miran Kim3,
Keewoo Lee4, Seonhong Min5, and Yongsoo Song5

1 MIT, Cambridge, MA, USA.
ldec@mit.edu

2 Intel Labs, Hillsboro, OR, USA.
duhyeong.kim@intel.com

3 Hanyang University, Seoul, Korea.
miran@hanyang.ac.kr

4 UC Berkeley, Berkeley, CA.
keewoo.lee@berkeley.edu

5 Seoul National University, Seoul, Korea.
{minsh, y.song}@snu.ac.kr.

Abstract. We present a new and efficient method to obtain circuit pri-
vacy for lattice-based linearly homomorphic encryptions (LHE). In par-
ticular, our method does not involve noise-flooding with exponetially
large errors or iterative bootstrapping. As a direct result, we obtain a
semi-honest oblivious linear evaluation (OLE) protocol with the same
efficiency, reducing the communication cost of the prior state of the art
by 50%. Consequently, the amortized time of our protocol improves the
prior work by 33% under 100Mbps network setting. Our semi-honest
OLE is the first to achieve both concrete efficiency and asymptotic quasi-
optimality. Together with an extension of the recent zero-knowledge
proof of plaintext knowledge, our LHE yields actively-secure OLE with
2.7x reduced communication from the prior work. When applied to Over-
drive (Eurocrypt ’18), an MPC preprocessing protocol, our method pro-
vides 1.4x improvement in communication over the state of the art.

Keywords: Homomorphic encryption · Circuit privacy · Oblivious lin-
ear evaluation · Secure multi-party computation.

1 Introduction

Homomorphic encryption (HE) [50, 32], which is a cryptosystem that supports
computation on encrypted data, is a versatile tool in cryptography. This is still
true even when homomorphic computation of linear functions is supported. So-
called linearly homomorphic encryption (LHE) has found use in various con-
texts [25, 47, 8, 41, 20].

However, when designing cryptographic protocols with HE, we often need
to guarantee not only the data privacy but also the circuit privacy. That is,
we want the resulting ciphertext of homomorphic evaluation not to leak any

information about the evaluated circuit other than the output of the circuit.
For lattice-based HE schemes, several methods to achieve circuit-privacy have
been proposed, but they are unsatisfactory in the aspect of practical efficiency.
They either (i) use the noise-flooding technique that adds exponentially large
noise to resulting ciphertexts [32] or (ii) repeat exhaustive fully homomorphic
encryption (FHE) bootstrapping [29].6

In this work, we introduce a new and efficient technique to achieve circuit-
private LHE from the BFV scheme [15, 31]. Our technique does not involve
noise-flooding or FHE bootstrapping, allowing us to maintain low computation
costs while our ciphertext modulus is only polynomial in the security parame-
ter. To demonstrate the performance, we apply our efficient LHE to construct
oblivious linear evaluation (OLE) protocols and a general-purpose multi-party
computation (MPC) protocol.

Oblivious Linear Evaluation. Oblivious linear evaluation (OLE) [46] is an arith-
metic analog of oblivious transfer. OLE is a two-party protocol between a sender
with a, b ∈ R and a receiver with x ∈ R, where R is some finite ring. At the
end of the protocol, the receiver obtains the value of ax + b ∈ R while learn-
ing nothing about a and b, and the sender learns nothing about x. OLE is a
fundamental building block in various cryptographic protocols: general-purpose
secure multi-party computation (MPC) [39, 4, 28, 37, 21, 30], zero-knowledge
proof (ZKP) [12, 52, 53], and private set intersection (PSI) [35, 49, 22].

A circuit-private LHE directly can lead to a two-round OLE protocol with
passive security. We exploit this idea to construct the OLE protocol and then
leverage ideas from the recent zero-knowledge proof system of Kim, Lee, Seo,
and Song [42] to achieve malicious security. Both the semi-honest and malicious
protocols inherit the compact HE parameters from the LHE scheme, resulting
in lower communication costs than the noise-flooding approach [20].

Furthermore, our semi-honest OLE is asymptotically quasi-optimal (AQO)7

[19]. Our protocol is concretely much more efficient and arguably more intuitive
than the previous AQO-OLE of [19], which relies on correlation extractor of [10].

MPC Preprocessing. A popular approach in modern MPC protocols is the pre-
processing model. Such protocols are divided into offline phase and online phase.
In an offline phase, before input values or a circuit to compute is determined,
parties generate correlated randomnesses (e.g., Beaver’s triples [7]). Then, in an
online phase, the parties consume these correlated randomnesses to carry out
the secure computation. The main point of the preprocessing model is to push
heavy cryptographic machinery into the offline phase so that the online phase
enjoys high efficiency.

In this work, we focus on preprocessing for SPDZ-style protocols [27, 26],
which is secure against actively corrupted majority. By utilizing our efficient

6 One exception is [11]. See Sec. 1.3.
7 We say a cryptographic scheme is asymptotically quasi-optimal (AQO) if it solves a
size-n cryptographic problem with Õ(n+λ) cost, where λ is the security parameter.

2

circuit-private LHE scheme, we substantially improve the communication cost
of the state-of-the-art preprocessing protocol.

1.1 Our Contribution

In this work, we construct a circuit-private linear HE scheme from the RLWE-
based BFV scheme [15, 31]. The existing method relies on either bootstrap-
ping [29] or noise flooding [32], which introduces significant overhead in terms
of space or time complexity. Our method is based on a simple observation that
there is still room for further randomizations in the conventional homomorphic
evaluation algorithm beyond noise flooding. More precisely, we observe that the
coefficients of a linear function in the plaintext space have several correspond-
ing elements in the ciphertext space so that any of them can be used in the
evaluation while preserving the correctness of homomorphic computation. Our
algorithm is surprisingly simple in that it only requires one more Gaussian sam-
pling and a single encryption compared to the conventional (non-circuit-private)
linear evaluation algorithm for BFV. Furthermore, its overhead in parameter
size is very small, in terms of both concrete and asymptotic manners.

We also extend this idea to design efficient OLE and MPC preprocessing pro-
tocols. A semi-honest OLE protocol is directly derived from our circuit-private
linear evaluation technique, while a maliciously secure version can be obtained
by adding some proof-of-knowledge techniques. In particular, we modify a proof
technique of [42] and apply it to our protocol for minimizing the parameter and
communication costs without rejection process. Finally, we improve a state-of-
the-art MPC protocol for generating authenticated triples by substituting its HE
part with our method. Our analysis shows that the amortized communication
cost is reduced by a factor of about 1.4 compared to the prior work.

1.2 Technical Overview

Circuit-private Linear Evaluation in BFV. For a polynomial ringR = Z[X]/(Xn+
1) and a plaintext modulus t, suppose that we are given a linear function
f(z) = az + b over the residue ring Rt := Zt[X]/(Xn + 1) for a, b ∈ Rt and
a BFV encryption c := Enc(x, e) ∈ R2

q of a message x ∈ Rt and an encryption
randomness e ∈ R3. In BFV, the conventional way of homomorphically eval-
uating the linear function f is to compute c′ = r · c + (∆b, 0) (mod q) where
r = [a]t ∈ R and ∆ = q/t ∈ Z. However, this method does not guarantee cir-
cuit privacy since the second component of c′ completely reveals the information
about r = [a]t, and therefore b is also fully recovered. To achieve circuit privacy,
prior works adopted a method to add an encryption of zero with an exponen-
tially large randomness e′ to the resulting ciphertext c′, so-called noise-flooding,
so that the information of a and b are statistically obliterated. However, this
method yields an exponentially large ciphertext modulus, which significantly
increases computation and communication costs.

This work starts with the following observations: (i) r does not necessarily
need to be exactly [a]t but can be any small element in the coset a + tZn to

3

guarantee the correctness, and (ii) the addition of two discrete Gaussians over
the coset a + tZn and Zn with a proper width parameter can be statistically
close to a discrete Gaussian distribution over Zn, which is notably independent
of a. From these observations, we construct a new linear evaluation algorithm as
follows. We first sample r and e′ from discrete Gaussian distributions Da+tZn,σ

and D3
Zn,τ respectively, for some width parameters σ, τ > 0. Then, we compute

a ciphertext c′ as

c′ := r · c+ Enc(b, e′) (mod q).

Interestingly, our algorithm computes an essentially identical formula to the
previous method; however, the difference in the sampling procedure of r results
in a significant reduction of the size of e′. Technically, by setting σ = O(t)
and τ = O(σn‖e‖∞), the distribution of the convolved noise term r · e + e′

of c′ is statistically indistinguishable from the discrete Gaussian distribution
D

Z3n,κ,
√
Σ where both κ and Σ are independent of r (refer to Theorem 1). This

fact directly implies that the BFV scheme with our linear evaluation algorithm
is circuit private, since c′ = r · Enc(x, e) + Enc(b, e′) = Enc(ax + b, r · e + e′)
(mod q) and the only information dependent on a and b in c′ is the resulting
message ax+ b.

When we compare the correctness condition of our linear evaluation algo-
rithm (Lem. 10) and not circuit private conventional algorithm, we can easily
verify that our algorithm only requires Õλ(1) additional bits on the ciphertext
modulus q for the width parameters σ = O(t) and τ = O(σn‖e‖∞). Therefore,
our linear evaluation algorithm provides circuit privacy almost for free.

Application to OLE and MPC Preprocessing. We remark that the semi-honest
OLE protocol can be directly obtained from a homomorphic linear evaluation al-
gorithm with circuit privacy. To achieve active security against malicious sender
and receiver of the OLE protocol, we adopt some proof of knowledge (PoK)
protocols so that both sender and receiver can be ensured that the informa-
tion from the other is contained in the proven language. To be precise, the
receiver first sends an encryption c of the plaintext x through the PoK proto-
col for the plaintext knowledge. We adopt the state-of-the-art proof of plaintext
knowledge protocol, recently proposed by Kim, Lee, Seo, and Song [42], whose
security is guaranteed under the hardness assumption of the Ring Learning with
Errors (RLWE). In the evaluation phase, the sender sends the ciphertext c′ ob-
tained from our homomorphic linear evaluation algorithm on the linear function
f(z) = az + b through the PoK protocol for the knowledge of the coefficients
a and b. In contrast to the first PoK, the second PoK does not require any
computational hardness assumption (refer to Lem. 14).

In the case of MPC preprocessing, we observe that the LowGear protocol of
Overdrive [41], which is the state-of-the-art preprocessing for SPDZ-style proto-
cols [27], can be instantiated with any circuit-private LHE and a corresponding
protocol for zero-knowledge proof of plaintext knowledge (ZKPoPK). Whereas
the original LowGear protocol leverages noise-flooding for circuit privacy, we
plug in our efficient circuit-private LHE to achieve better performance.

4

1.3 Related Work

Circuit Privacy. While most approaches to achieving circuit privacy for lattice-
based HE leverage noise-flooding [32] or iterative FHE bootstrapping [29], Bourse-
DelPino-Minelli-Wee [11] presented a new efficient method to achieve circuit pri-
vacy through randomized gadget decomposition. However, their approach only
applies to the GSW-style encryptions [34]. We note that the GSW-style encryp-
tions suffer from significantly larger ciphertext size and higher computation costs
compared to the BFV encryption, hindering the practical usage.

Oblivious Linear Evaluation. Several prior works [6, 20] have attempted to op-
timize OLE protocols while still relying on the noise-flooding technique. The
work of Baum et al. [6] constructs a one-round (simultaneous message) protocol
for generating random OLE correlations. However, the ciphertexts in this pro-
tocol require either one or two applications of noise flooding, resulting in high
communication costs. The work of de Castro, Juvekar, and Vaikuntanathan [20]
optimized the “folklore” noise-flooding approach by removing the need to sam-
ple the flooding noise. While this saves computation time, the communication
remains identical to that of the noise-flooding approach.

As a point of theoretical interest, the work of de Castro et al. [19] con-
structed AQO-OLE protocols. We observe that our semi-honest OLE protocol
also achieves the same asymptotic performance without requiring the compu-
tationally expensive machinery of correlation extractors [10] as in the previous
work.

A recent category of the OLE protocols generates random correlations with
communication that is asymptotically sublinear in the length of the correla-
tions [14, 23]. For the task of generating random OLE correlations, these proto-
cols will eventually outperform our work. However, even beyond this crossover
point, these protocols require a substantial amount of seed OLEs to expand out
to the full protocol output. Therefore, our protocol remains applicable even in
the setting where the overall sublinear correlation generator outperforms any
linear-time OLE protocol.

There are previous works [18, 16] that achieve OLE protocols with appealing
properties. For instance, [16] achieves rate-1 OLE. However, they are mostly
theoretical results, and analysis of their concrete efficiency is not provided. On
the other hand, we aim to achieve concretely efficient OLE protocol.

MPC Preprocessing. Our main point of comparison for our MPC preprocessing
protocol is the LowGear protocol of Overdrive [41], which follows the approach
of [8] and SPDZ [27]. It is the state-of-the-art general-purpose MPC protocol in
the setting of an actively corrupted majority when the number of participating
parties is fairly small (e.g., 2-party computation).

A few optimizations for the LowGear protocol have been proposed up to
date, such as TopGear [5] and LowGear2.0 [36]. These optimizations are orthog-
onal to our techniques, and therefore can be applied to our protocol, yielding
performance improvements at similar rates. Thus, we describe and compare our
protocol to the original LowGear protocol for simplicity.

5

Meanwhile, pseudorandom correlation generator (PCG) can also be used for
MPC preprocessing [13, 14]. However, the secure setup of PCG itself requires a
substantial amount of authenticated triples, which is a goal of our MPC prepro-
cessing. Our protocol can be used to generate such triples for the initial setup
of PCG.

1.4 Organization

The rest of the paper is organized as follows. Section 2 reviews some preliminaries
on lattice and RLWE, and describes OLE-related functionalities. In Section 3, we
present a new idea to construct a circuit-private HE scheme for affine functions
over a polynomial ring. In Section 4, we present efficient OLE protocols against
passive and malicious adversaries, together with correctness proof and security
analysis. In Section 5, we apply our circuit-private LHE to MPC preprocessing.

2 Preliminary

2.1 Basic Notations and Terminology

For two distributions D1 and D2 over a countable domain Ω, the statistical
distance between D1 and D2 is defined as 1

2

∑

x∈Ω |D1(x) − D2(x)|. For a dis-
tribution D over Ω, we denote by x ← D sampling x from D. When D is the
uniform distribution over Ω, then we simply denote the sampling by x ← Ω.
For two vectors u, v with the same size, we denote the point-wise multiplication
(Hadamard multiplication) by u⊙ v.

LetR := Z[X]/(Xn+1) be the (2n)-th cyclotomic ring andRq := Zq[X]/(Xn+

1) be the residue ring of R modulo an integer q. We identify a =
∑n−1

i=0 aiX
i in R

(or Rq) with the vector of its coefficients a = (a0, · · · , an−1). Hence, ‖a‖∞ and
‖a‖1 denote the infinity norm and ℓ1-norm of a, respectively. We also identify a

ring element a =
∑n−1

i=0 aiX
i ∈ R with a negacyclic matrix A, where

A =











a0 −an−1 . . . −a1
a1 a0 . . . −a2
...

...
. . .

...
an−1 an−2 . . . a0











.

For any a, b ∈ R, it holds that ‖ab‖∞ ≤ ‖a‖∞ ‖b‖1 ≤ n‖a‖∞‖b‖∞. Moreover, the
vector representation of ab is obtained as Ab where A is the negacyclic matrix
of a and b is the coefficient vector of b.

A symmetric real matrix Σ ∈ Rn×n called positive-definite, if x⊤Σx >
0 holds for all 0 6= x ∈ Rn. Equivalently, positive-definite matrices can be
characterized by their spectral decomposition of the form Σ = QD2Q⊤, where
Q ∈ Rn×n is an orthogonal matrix (i.e., Q−1 = Q⊤) and D is a diagonal matrix
with positive diagonal entries. Thus, any positive-definite Σ is invertible and
Σ−1 is also positive-definite.

6

We say that matrix A ∈ Rn×n is a square root of Σ ∈ Rn×n, written
A =

√
Σ, if AA⊤ = Σ holds. We use the notation

√
Σ when specific choice of

square root is irrelevant. Note that every positive-definite matrix has a square
root by the above spectral decomposition.

For a matrix A ∈ Rm×n, we define the matrix norm of A as:

‖A‖ = sup
0 6=x∈Rn

‖Ax‖2
‖x‖2

.

We denote by smax(A) and smin(A) the largest and smallest singular values of
A, respectively. Note that ‖A‖ = smax(A).

[a]t denotes the residue of a modulo t, i.e., [a]t = a (mod t).

2.2 Discrete Gaussians on Lattices

The n-dimensional Gaussian function ρ : Rn 7→ (0, 1] is defined as

ρ(x) = exp(−π · ‖x‖22).

For a non-singular matrix A ∈ Rn×n and a vector µ ∈ Rn, we define ρµ,A(x) as
ρ
(

A−1(x− µ)
)

. Note that, for a positive-definite Σ, we have

ρ
µ,
√
Σ
(x) = exp

(

−π(x− µ)⊤Σ−1(x− µ)
)

.

When µ = 0, we omit µ and denote it by ρ√
Σ
(x), for simplicity. If Σ is also

σ2I for some σ > 0, we denote it by ρσ(x).
A lattice Λ is a discrete additive subgroup of Rn. The dual lattice of a lattice

Λ ⊂ Rn is defined as Λ∗ = {v ∈ Rn|∀u ∈ Λ, 〈u,v〉 ∈ Z}. For a lattice Λ ⊂ Rn, a
vector µ ∈ Rn and a positive-definite matrix Σ ∈ Rn×n, we define the discrete
Gaussian distribution over Λ centered at µ and of covariance Σ as

DΛ,µ,
√
Σ
(x) =

ρ
µ,
√
Σ
(x)

ρ
µ,
√
Σ
(Λ)

.

It is simply denoted by DΛ,µ,σ(x) When Σ = σ2I for some σ > 0. When µ = 0,
we omit µ and denote by DΛ,

√
Σ
(x) (or DΛ,σ(x)).

Definition 1 (Smoothing parameter [44]). For an n-dimensional lattice Λ
and positive real ǫ > 0, the smoothing parameter ηǫ(Λ) is the smallest s such
that ρ1/s(Λ

∗\{0}) ≤ ǫ.

Lemma 1 ([33, Lem. 4.2]). For any c ∈ R, any ǫ > 0, any σ ≥ ηǫ(Z), and
any κ > 0, the following inequality holds.

Pr
x←Dc+Z,σ

[|x− c| ≥ κ · σ] ≤ 2e−πκ
2 · 1 + ǫ

1− ǫ

7

The following lemma states that the total Gaussian measures over cosets of
a given lattice are essentially the same when the covariance is sufficiently large
regarding the smoothing parameter.

Lemma 2 (Simplified Convolution Lemma [48]). Let σ1, σ2 > 0 be reals
such that σ−23 := σ−21 + σ−22 satisfies σ3 ≥ ηǫ(Z

n) for some 0 < ǫ < 1/2. Then
for an arbitrary c ∈ Zn, the distribution

{x1 + x2 | x1 ← DZn,σ1
, x2 ← DZn,c,σ2

}

is within statistical distance 2ǫ of D
Zn,c,
√

σ2
1
+σ2

2

.

Lemma 3 ([1, Lem. 4]). Let Λ be a full-rank n-dimensional lattice. For any
real ǫ ∈ (0, 1), vector c ∈ Rn, and non-singular matrix A ∈ Rn×n such that
smin(A) ≥ ηǫ(Λ),

ρA(Λ+ c) ∈
[

1− ǫ

1 + ǫ
, 1

]

· ρA(Λ).

Finally, we note a useful bound on smoothing parameters.

Lemma 4 ([44, Lem. 3.3]). For any n-dimensional lattice Λ and ǫ > 0,

ηǫ(Λ) ≤
√

ln(2n(1 + 1/ǫ))

π
· λn(Λ)

where λn(Λ) is the n-th successive minimum of Λ. That is, λn(Λ) is the smallest
real number r > 0 such that dim(span(Λ∩rB)) = n where B is the n-dimensional
unit ball centered at the origin.

The following is a direct corollary of Lem. 4.

Corollary 1. For any t > 0 and ǫ > 0, the following inequality holds.

ηǫ(tZ
n) ≤ t ·

√

ln(2n(1 + 1/ǫ))

π

2.3 RLWE

Definition 2. Let n be a power of two, q > 0 be an integer and ρ > 0 be a real
number. The Ring Learning with Errors (RLWE) distribution with parameter
(n, q, ρ) and a secret s ∈ R is a distribution over R2

q obtained as sampling a← Rq

and e← DZn,ρ, then returning (b, a) where b = as+ e (mod q). For a secret key
distribution χ over R, the decisional RLWE problem denoted by RLWE(n, q, ρ, χ)
is to distinguish the RLWE distribution for a secret s ← χ from a uniform
distribution over R2

q.

Throughout the paper, we assume that the secret is chosen from the ternary
distribution, which means to select each coefficient from {−1, 0, 1}. When χ is
a discrete Gaussian distribution with width parameter σ, we simply denote the
RLWE problem by RLWE(n, q, ρ, σ).

8

2.4 Oblivious Linear Evaluation

The oblivious linear evaluation (OLE) is a secure computation protocol of a
linear function between two parties: the receiver and the sender. A standard
OLE over a field F allows the sender with a, b ∈ F to securely compute ax + b
and send the output to the receiver who holds x ∈ F [46, 39]. As an extension
of the conventional OLE protocol, there exist two variants of the OLE protocol,
namely Batch OLE (BOLE) and Vector OLE (VOLE). In BOLE, the receiver
can learn a set of values ai · xi + bi where the sender holds ai, bi ∈ F and the
receiver holds xi ∈ F for 1 ≤ i ≤ n. To put it in other way, BOLE enables
the receiver to perform multiple oblivious linear evaluations through a single
protocol. In VOLE, the receiver learns a vector ax + b where a,b ∈ Fn and
x ∈ F . VOLE can be viewed as a special case of a BOLE protocol in which the
receiver sends only one input x.

More generally, the standard OLE functionality can be extended over a (fi-
nite) ring, referred to as ring-OLE [22]. Throughout the paper, we concentrate on
the ring-OLE protocol over the residue ring Rt, since it is amenable to parallelism
for VOLE and BOLE (when the ring dimension n and the plaintext modulus t
satisfy the condition 2n|t − 1). The formal descriptions of the functionalities of
the key generation and OLE are given in Fig. 1 and Fig. 2, respectively.

Functionality FKeyGen

Input: a public parameter pp = (n, q, ρ) and a secret key distribution χ.
Output:

1. Sample a secret key s ← χ. Sample a ← Rq and e ← DZn,ρ, and set the
public key as p = (−as+ e, a) ∈ R2

q .
2. Send s and p to the receiver.
3. Send p to the sender.

Fig. 1. The KeyGen functionality.

3 Circuit-private Linear Evaluation from BFV

In this section, we present a novel idea to build a circuit-private HE scheme for
affine functions over a polynomial ring. Our approach is quite simple but offers a
randomized evaluation method with only small overhead compared to the näıve
approach.

We start with describing the RLWE-based BFV scheme as a linearly homo-
morphic encryption and present a new linear evaluation algorithm. Then, we
provide correctness and security proofs for our algorithm.

9

Functionality FOLE

Input:

1. A message x ∈ Rt from the receiver
2. Coefficients a, b ∈ Rt of a linear function f(z) = az + b from the sender.

Output:

1. Send f(x) = ax+ b ∈ Rt to the receiver.
2. The sender receives nothing.

Fig. 2. The OLE functionality.

3.1 The BFV Scheme

In this section, we provide a brief description of the RLWE-based BFV encryp-
tion scheme [15, 31].

• Setup(1λ): Given a security parameter λ, choose a power-of-two integer n, a
ciphertext modulus q, a plaintext modulus t, an error parameter ρ > 0, and a
key distribution χ over R. Return the public parameter pp = (n, q, t, ρ, χ).

• KeyGen(pp): Sample a secret key s ← χ. Sample p1 ← Rq and ep ← DZn,ρ,
and set a public key as p = (p0, p1) where p0 = −p1 · s+ ep (mod q).

• Encp(x): For a message x ∈ Rt, sample e← D3
Zn,ρ, return c = Encp(x, e).

• Encp(x, e): For a message x ∈ Rt and an encryption randomness e = (e0, e1, e2) ∈
R3, return c = e2 · p+ (∆ · x+ e0, e1) (mod q).

• Decs(c): For c = (c0, c1), return ⌊(c0 + c1s)/∆⌉ (mod t).

Throughout this paper, we suppose that the plaintext modulus t divides the
ciphertext modulus q. This assumption simplifies the construction of our algo-
rithms and protocols, as well as their security analysis. We provide the security
analysis of general case where t does not divide q in Appendix B. We also denote
by ∆ = q/t the scaling factor.

Two BFV encryption algorithms are presented above. By default, the BFV
encryption algorithm samples an encryption randomness internally as described
in the first algorithm. However, we also exploit the second algorithm where the
randomness for encryption is given specifically.

Note that the BFV encryption is semantically secure: Encp(x) is indistin-
guishable from a uniform random variable over R2

q under the RLWE assumption
of parameter (n, q, ρ, χ). In addition, a fresh BFV encryption c = (c0, c1) ∈ R2

q

satisfies that

c0 + c1s = e2 · (p0 + p1s) + (∆ · x+ e0 + e1s) = ∆ · x+ e (mod q)

10

where e = e0 + e1s+ e2ep denotes the encryption error.
Finally, we describe a linear evaluation algorithm for the BFV scheme. For

an affine function f(z) = az + b defined over Rt and a given BFV encryption
c of x ∈ Rt, it homomorphically evaluates f to obtain an encryption of y =
f(x) ∈ Rt. However, it cannot be simply done by computing f over the input
ciphertext c ∈ R2

q since the coefficients a, b ∈ Rt cannot be directly used in the
computation over the ring Rq. Hence, these coefficients in Rt are embedded into
elements of R and Rq via a 7→ r := [a]t ∈ R and b 7→ ∆ · b ∈ Rq, so that the
scalar multiplication and addition are well defined over Rq. A formal description
is given below.

• LinEval(c; a, b): Given a ciphertext c ∈ R2
q and coefficients a, b ∈ Rt, let

r = [a]t ∈ R and output c′ = r · c+ (∆b, 0) (mod q).

The correctness of this algorithm can be shown as follows: if c = Encp(x, e)
is a BFV encryption for some x ∈ Rt and e ∈ R3, and a, b are elements of Rt

with r = [a]t, then we get

c′ = r · c+ (∆b, 0) = Encp(y, re) (mod q),

where y = rx+ b = ax+ b ∈ Rt.

3.2 Circuit Private Linear Evaluation

As described in the previous section, it is possible to homomorphically evaluate
an arbitrary affine function f(x) = ax+ b using the BFV scheme; however, the
basic linear evaluation algorithm does not guarantee the privacy of the evaluation
circuit f . To be precise, for a ciphertext c = (c0, c1) ∈ R2

q and a, b ∈ Rt, the linear
evaluation algorithm returns c′ = (c′0, c

′
1)← LinEval(c; a, b) which satisfies c′1 =

rc1 (mod q) for r = [a]t. Therefore, anyone can recover a, b ∈ Rt by computing
a = c−11 · c′1 (mod t) and b = ∆−1 · (c′ − [a]t · c) (mod t) from a pair of input
and output ciphertexts. Similarly, it is also possible to recover r (and thereby
a = r (mod t)) using the error terms of two ciphertexts: if c0 + c1s = ∆ · x+ e
(mod q), then c′0 + c′1s = ∆ · y + e′ (mod q) for e′ = re ∈ R.

Due to this problem, the notion of circuit privacy was introduced [38]. Briefly
speaking, an evaluation algorithm is called to be circuit-private, if there is only
negligible information leakage about the evaluation circuit from the output ci-
phertext. Since this work focuses on linear circuits, the notion of circuit privacy
can be formally defined as follows.

Definition 3 (Linear Circuit Privacy). A linearly homomorphic encryption
scheme (Setup, KeyGen, Enc, Dec, Eval) is called circuit private for linear circuits
if there exists a PPT simulator algorithm Sim such that for any x ∈ Rt, a, b ∈ Rt

and a PPT algorithm A,

|Pr[A (Evalpk(c; a, b), c, sk, pk)]− Pr [A (Sim(sk, pk, c, y), c, sk, pk) = 1]|

is negligible where pp ← Setup(1λ), (sk, pk) ← KeyGen(pp), c ← Encpk(x) and
y = ax+ b ∈ Rt.

11

To achieve the circuit privacy, the noise-flooding technique [32] has been
mostly used in prior work. This method randomizes a ciphertext by adding an
encryption of zero with a noise from a wide distribution so that the initial noise
is overwhelmed by a newly introduced error. To be specific, a circuit private
version of the linear evaluation algorithm can be obtained by modifying the
previous evaluation algorithm as c′ = LinEval(c; a, b) + Encp(0, e

′) where e′ is
sampled from a discrete Gaussian distribution with an exponentially large width.

Although the noise flooding technique enables us to achieve the circuit pri-
vacy, it introduces a significant overhead since the ciphertext modulus q should
be exponentially large to support a correct decryption of the resulting ciphertext
c′, thereby affecting both computation and communication costs.

In this work, we propose a new idea to achieve the circuit privacy with much
smaller overhead compared to the noise flooding approach. We first remark that
the output ciphertext of the previous method can be written as

c′ = LinEval(c; a, b) + Encp(0, e
′) = Encp(y, ẽ) (mod q)

where r = [a]t and ẽ = r ·e+e′ ∈ R. Consequently, the noise flooding technique
was inevitable to statistically obliterate the information of r · e.

Our main observation is that there is still room for further randomization in
the evaluation algorithm. When we embed the coefficient a into an element r ∈ R
before multiplying it to c, an arbitrary small element of R which is congruent to
a modulo t can be chosen instead of setting r exactly as [a]t. The correctness of
linear evaluation still holds if r is reasonably small since the plaintext space is Rt.
Based on this idea, we propose a novel randomized linear evaluation algorithm
which samples r from a discrete Gaussian over the coset a + tZn, the set of
elements r ∈ R such that r = a (mod t). A formal description is given below:

• RandLinEvalp(c; a, b): Given a ciphertext c ∈ R2
q and ring elements a, b ∈ Rt,

sample r ← Da+tZn,σ and e′ ← D3
Zn,τ . Compute and output c′ := r · c +

Encp(b, e
′) (mod q).

This surprisingly simple algorithm enables us to use much smaller (asymp-
totically optimal) parameters, and therefore achieve substantial performance im-
provements. In the next section, we will analyze the algorithm and explain how
the parameters σ, τ > 0 for discrete Gaussian distributions should be chosen to
meet the correctness and security requirements.

3.3 Correctness and Security

In this section, we show the correctness and security of our linear evaluation
algorithm. We will use Bρ, Bσ and Bτ to denote essential upper bounds of
distributions DZn,ρ, Da+tZn,σ and DZn,τ , respectively, where a is an arbitrary
element in Rt. To put it in another way, a sample from each distribution is
bounded by the corresponding bound with overwhelming probability. We remark
that these bounds can be obtained explicitly from Lem. 1.

12

Lemma 5 (Correctness). Let c← Encp(x) for some x ∈ Rt. Then, the algo-
rithm RandLinEval(c; a, b) outputs a BFV encryption of f(x) = ax+ b if

(nBρBσ +Bτ)(1 + n+ nBρ) < ∆/2.

Proof. From the definition, we have c = Encp(x, e) and

c′ = r · Encp(x, e) + Encp(b, e
′) = Encp(y, r · e+ e′) (mod q) (1)

for some e← D3
Zn,ρ, r ← Da+tZn,σ and e′ ← D3

Zn,τ .
Let ẽ = (ẽ0, ẽ1, ẽ2) = r · e + e′. Then, the output ciphertext c′ = (c′0, c

′
1)

is equal to Encp(y, ẽ) and satisfies that c′0 + c′1s = ∆y + e∗ (mod q) with an
error e∗ = ẽ0 + ẽ1s + ẽ2ep. Note that the key s is sampled from a ternary
distribution and each coefficient of ẽ is bounded by n · BρBσ + Bτ . Therefore,
‖e∗‖∞ ≤ (nBρBσ + Bτ)(1 + n + nBρ) < ∆/2 and the resulting ciphertext c′

decrypts to y = ax+ b correctly. ⊓⊔
We now show that our randomized evaluation algorithm achieves the circuit

privacy property. We start with some useful lemmas to analyze the distribution
of encryption randomness.

Lemma 6. Let t > 0 be an integer, E ∈ Zm×n a matrix, and σ, τ > 0 reals such
that

1

σ2
+

1

τ2
‖E‖2 ≤ 1

ηǫ(tZn)2

for some 0 < ǫ ≤ 1/2. Then, for arbitrary a, µ ∈ Rn and ν ∈ Rm, the following
distribution over Zm

D :=
{

Er+ e′ : r← Da+tZn,µ,σ, e
′ ← DZm,ν,τ

}

is within statistical distance 4ǫ of D
Zm,κ,

√
Σ

where κ = Eµ + ν and Σ = σ2 ·
EE⊤ + τ2 · Im.

Proof. For x ∈ Zm, the probability that D outputs x can be written as follows:

D(x) = Pr[Er+ e′ = x | r← Da+tZn,µ,σ, e
′ ← DZm,ν,τ]

=
∑

y∈a+tZn

Da+tZn,µ,σ(y) ·DZm,ν,τ (x−Ey)

∝
∑

y∈a+tZn

ρσ(y − µ) · ρτ (x− ν −Ey)

=
∑

y∈a−µ+tZn

exp

[

− π

(

1

σ2
‖y‖2 + 1

τ2
‖(x− κ)−Ey‖2

)]

.

Then, we have

1

σ2
‖y‖2 + 1

τ2
‖(x− κ)−Ey‖2

= y⊤Σ−11 y − 1

τ2
(

y⊤E⊤(x− κ) + (x− κ)⊤Ey
)

+
1

τ2
(x− κ)⊤(x− κ)

=

(

y − 1

τ2
Σ1E

⊤(x− κ)

)⊤
Σ−11

(

y − 1

τ2
Σ1E

⊤(x− κ)

)

+ (x− κ)⊤Σ−1(x− κ),

13

where Σ−11 := 1
σ2 In + 1

τ2E
⊤E. This implies that

∑

y∈a−µ+tZn

ρ√
Σ1

(

y − 1

τ2
Σ1E

⊤(x− κ)

)

· ρ√
Σ
(x− κ)

= ρ√Σ1

(

a− µ− 1

τ2
Σ1E

⊤(x− κ) + tZn

)

· ρ√
Σ
(x− κ)

∈
[

1− ǫ

1 + ǫ
, 1

]

· ρ√Σ1
(tZn) · ρ√

Σ
(x− κ) ∝

[

1− ǫ

1 + ǫ
, 1

]

·D
Zm,κ,

√
Σ
(x)

where the last inclusion is derived from Lem. 3 and the condition

smin(
√

Σ1) =
1

∥

∥Σ−11

∥

∥

≥ 1
√

1
σ2 + 1

τ2 ‖E‖2
≥ ηǫ(tZ

n).

As a result, we obtain

D(x) ∈
[

1− ǫ

1 + ǫ
,
1 + ǫ

1− ǫ

]

·D
Zm,κ,

√
Σ
(x) ⊆ [1− 4ǫ, 1 + 4ǫ] ·D

Zm,κ,
√
Σ
(x),

and conclude that the statistical distance between D and D
Zm,κ,

√
Σ

is bounded
by 4ǫ. ⊓⊔

Corollary 2. Let e = (e0, e1, e2) be an element of R3 with ‖e‖∞ ≤ Bρ. If

1

σ2
+

3n2B2
ρ

τ2
≤ 1

ηǫ(tZn)2

for some 0 < ǫ ≤ 1/2, then for any µ ∈ R and ν ∈ R3, the distribution of
ẽ = r · e + e′ over R3 defined by r ← Da+tZn,µ,σ and e′ ← DZ3n,ν,τ is within
statistical distance 4ǫ of D

Z3n,κ,
√
Σ

for κ = µ ·e+ν and Σ = σ2 ·EE⊤+τ2 ·I3n,
where Ei ∈ Zn×n is the negacyclic matrix corresponding to ei for j = 0, 1, 2 and

E =





E0

E1

E2



 ∈ Z3n×n.

Proof. Note that the coefficient representation of r · ei can be written as Eir
where r is the coefficient vector of r. Hence, this corollary is directly derived
from the fact ‖E‖2 ≤ 3n2B2

ρ and Lem. 6. ⊓⊔

Theorem 1 (Linear Circuit Privacy). The BFV scheme, together with the
randomized linear evaluation algorithm RandLinEval(c; a, b) under parameters
σ and τ , is circuit-private for all affine functions over Rt if

1

σ2
+

3n2B2
ρ

τ2
≤ 1

ηǫ(tZn)2

for some negligible ǫ > 0.

14

Proof. Let c = Encp(x, e) be an encryption of x ∈ Rt for some e ← D3
Zn,ρ. Let

f(z) = az + b be an affine function over Rt for some coefficients a, b ∈ Rt, and
y = ax+ b ∈ Rt. We define the simulator Sim for the output ciphertext c′ of our
linear evaluation algorithm as RandLinEvalp(c; 0, y), i.e.,

Sim(s,p, c, y) = {c′ = r · c+ Encp(y, e
′) ∈ R2

q : r ← DtZn,σ, e
′ ← D3

Zn,τ}.

We use a hybrid argument to show that the distributions of c′ from RandLinEval(c;
a, b) and Sim(s,p, c, y) are statistically indistinguishable.

Let us consider the following distribution:

H := {c′ = Encp(y, ẽ) : ẽ = (ẽ0, ẽ1, ẽ2)← D
Z3n,
√
Σ
}

where Σ = σ2 ·EE⊤+ τ2 · I3n and Ei is the negacyclic matrix corresponding to

ei for i = 0, 1, 2 and E =





E0

E1

E2



 ∈ Z3n×n.

We first claim that the real algorithm RandLinEval and H are statistically
indistinguishable for any a and b. As shown in the proof of Lem. 5, the output
ciphertext from RandLinEvalp(c; a, b) can be written as c′ = Encp(y, ẽ) for some
r ∈ R sampled from Da+tZn,σ and ẽ = re + e′. Therefore, the distribution of
RandLinEval(c; a, b) is within statistical distance 4ǫ of the distribution of H
from Cor. 2.

Secondly, we claim that H and Sim(s,p, c, y) are also statistically indis-
tinguishable. This can be shown by using the same argument as above, since
Sim(s,p, c, y) is just a special case of RandLinEvalp(c; a, b) where a = 0 and
b = y. Hence, the statistical distance between H and Sim(s,p, c, y) is bounded
by 4ǫ.

Combining two claims, we conclude that RandLinEvalp(c; a, b) and Sim(s,p,
c, y) are within a negligible statistical distance ≤ 8ǫ. ⊓⊔

It is worth noting that we do not use the secret key s when building the
simulator in this theorem. In addition, the hybrid game H relies on the fact
that c can be written in the form of Encp(x, e) and the randomness e is used
to set the covariance matrix Σ, but the simulator can be defined without this
information.

Now, we discuss the optimality of our algorithm from Thm. 1. Recall that
the main condition on parameter selection is:

1

σ2
+

3n2B2
ρ

τ2
≤ 1

ηǫ(tZn)2
.

Roughly speaking, the error parameters can be chosen so that σ and τ/ ‖E‖
have a small bitsize comparable to the smoothing parameter η(tZn). It is worth
noting that these values can be bounded by 8t in practical parameter sets (see
Table 1). As a result, the random variables r ← Da+tZn,σ and e′ ← D3

Zn,τ

from the actual algorithm exhibit a comparable size to a and t · e with only

15

Õλ(1) bit differences. Now, recall that the final noise of RandLinEval, denoted
by r · e+ e′, possesses an asymptotic size of a · e, which corresponds to the final
noise from LinEval, the linear evaluation without noise-flooding. Consequently,
our linear evaluation algorithm can effectively manage asymptotically optimal
sized parameters, resulting in only a few bit difference compared to the optimal
case.

4 Oblivious Linear Evaluation Protocols

In this section, we build efficient OLE protocols against passive and malicious ad-
versaries by leveraging our circuit-private linear evaluation technique presented
in the previous section.

4.1 Passively Secure OLE

Our OLE protocol in the semi-honest model Πpassive
OLE is directly derived from the

circuit-private evaluation technique in the previous section. Its formal description
is described in Fig. 3.

Protocol Πpassive
OLE

Receiver’s input: A message x ∈ Rt

Sender’s input: The coefficients a, b ∈ Rt of a linear function f(z) = az + b

Setup Phase: The receiver generates a secret key s ∈ R and a public key p =

(p0, p1) ∈ R2
q .

Encryption Phase: The receiver generates a ciphertext c ← Encp(x) and sends
it to the sender.

Evaluation Phase: The sender performs c′ = RandLinEvalp(c, a, b) and sends it
to the receiver.

Decryption Phase: The receiver outputs y = Decs(c
′).

Fig. 3. Semi-honest OLE protocol.

Lemma 7 (Correctness). Suppose that both the receiver and the sender act

honestly. Then, the protocol Πpassive
OLE correctly computes the functionality FOLE

with an overwhelming probability if (nBρBσ +Bτ)(1 + n+ nBρ) < ∆/2.

Proof. The proof of this lemma directly follows from Lem. 5.

16

We now prove that Πpassive
OLE (Fig. 3) securely computes FOLE (Fig. 2) in the

presence of a static passive adversary.

Lemma 8 (Security Against Sender). The protocol Πpassive
OLE satisfies receiver

privacy against an honest-but-curious sender if the underlying BFV encryption
scheme is semantically secure.

Proof. We define SReceiver as a simulator which outputs a ciphertext c = Encp(0, e)
with e← D3

Zn,ρ, independent of the receiver’s input x. Since the BFV encryption
scheme is IND-CPA secure under the RLWE assumption of parameter (n, q, ρ),
the simulated view from SReceiver is computationally indistinguishable from the
sender’s view in the real protocol Πpassive

OLE . ⊓⊔

Lemma 9 (Security Against Receiver). The protocol Πpassive
OLE is secure against

an honest-but-curious receiver if

1

σ2
+

3n2B2
ρ

τ2
≤ 1

ηǫ(tZn)2
(2)

for some negligible ǫ > 0.

Proof. To show the security against the receiver, it suffices to show that the
ciphertext c′ is simulatable. The proof directly follows from Thm. 1. ⊓⊔

Theorem 2. The protocol Πpassive
OLE securely realizes the functionality FOLE in the

presence of static passive adversaries in the FKeyGen-hybrid model if the condi-
tions of Lem. 7, 8, and 9 hold.

We remark that our scheme enjoys asymptotic optimality in terms of the
communication cost and practical efficiency. As discussed in Sec. 3.3, the under-
lying linear evaluation algorithm in our protocol achieves asymptotic optimality
for the noise parameters, which extends to our OLE protocol as well. Therefore
our scheme can leverage a small ciphertext modulus, which only needs to ac-
commodate the optimal-sized noise, thereby resulting in a low communication
cost. We also present the recommended parameter sets which support 16, 32,
64, 80 and 128 bit of the plaintext modulus for our semi-honest OLE protocol in
Table 1. A more comprehensive analysis and comparison of communication and
computation costs of our protocol will be provided in the end of this section.

4.2 Maliciously Secure OLE

We now extend our passively-secure OLE protocol (Sec. 4.1) to a maliciously se-
cure OLE via the Proof of Knowledge (PoK). To accomplish this goal, we exploit
an efficient PoK protocol of [42] for the BFV cryptosystem. The high-level idea
of [42] is to measure the leakage of the secrets when the transcripts are disclosed
to the adversary during the PoK protocol by analyzing the conditional distribu-
tion of the secrets for given transcripts. Their main result is that it is possible
to conceal the distribution of the noise with sub-linear sized additional noise,

17

Table 1. Recommended parameter sets for the semi-honest OLE with security level
λ = 128.

log t n log σ log τ log q

16 212 19 36 72

32 212 35 52 104

64 213 67 85 170

80 213 83 101 202

128 214 131 150 300

instead of super-polynomial sized noise. To elaborate further, let us consider the
scenario where the prover holds the encryption Encp(x, e) for the message x and
the noise e, and the verifier learns the distribution of αi · e + fi for the i-th
challenge αi during the PoK protocol. Instead of hiding the distribution of e by
noise-flooding with fi, one can measure the conditional distribution of e when
(e, α1 · e+ f1, . . . , αℓ · e+ fℓ) is given and choose the small-yet-sufficient size of
fi (1 ≤ i ≤ ℓ). In a similar manner, we construct a secure OLE protocol for
malicious adversaries by measuring an information leak of the message x, a and
b using the convolution lemma [48].

The formal description of our maliciously secure OLE protocol Πactive
OLE is

described in Fig. 4. Here, the first PoK protocol for the encryption phase, de-
noted by ΠPoK1 is described in Fig. 5 and the second PoK protocol for the

Protocol Πactive
OLE

Receiver’s input: A message x ∈ Rt

Sender’s input: The coefficients a, b ∈ Rt of a linear function f(z) = az + b

Setup Phase: The receiver generates a secret key s ∈ R and a public key p =

(p0, p1) ∈ R2
q .

Encryption Phase: The receiver and sender engage in the protocol ΠPoK1 as the
prover and verifier, respectively. If it succeeds, the sender accepts a ciphertext
c ∈ R2

q from the receiver. Otherwise, the parties abort.

Evaluation Phase: The receiver and sender engage in the protocol ΠPoK2 as the
verifier and prover, respectively. If it succeeds, the receiver accepts a ciphertext
c′ ∈ R2

q from the sender. Otherwise, the parties abort.

Decryption Phase: The receiver outputs y ← Decs(c
′).

Fig. 4. Maliciously secure OLE protocol.

18

Protocol ΠPoK1

Receiver (Prover)’s input
A message x ∈ Rt

A public key p = (p0, p1) ∈ R2
q

Sender (Verifier)’s input

A public key p = (p0, p1) ∈ R2
q

Encryption Phase

1. The receiver samples an encryption randomness e← D3
Zn,ρ1

.

2. The receiver sends c = Encp(x, e) ∈ R2
q to the sender.

Commitment Phase

1. The receiver samples zi ← Rt and fi ← D3
Zn,ρ2

, then computes di =

Encp(zi, fi) ∈ R2
q for 1 ≤ i ≤ ℓ.

2. The receiver sends comm = (d1, . . . ,dℓ) to the sender.

Challenge Phase

1. Upon receiving comm = (d1, . . . ,dℓ), the sender samples α1, . . . , αℓ ← C.
2. The sender sends chal = (α1, . . . , αℓ) to the receiver.

Response Phase

1. Upon receiving chal = (α1, . . . , αℓ), the receiver computes gi = fi+αie ∈ R3

and wi = zi + αix ∈ Rt for 1 ≤ i ≤ ℓ.
2. The receiver sends resp = ((w1,g1), . . . , (wℓ,gℓ)) to the sender.

Verification Phase

1. Upon receiving resp = ((w1,g1), . . . , (wℓ,gℓ)), the sender checks whether the
following holds for all 1 ≤ i ≤ ℓ:

Encp(wi,gi) = di + αic (mod q),

‖gi‖∞ ≤ Bρ1
+Bρ2

.

2. The sender outputs accept if all checks pass, otherwise reject.

Fig. 5. The first PoK protocol for the encryption phase.

19

Protocol ΠPoK2

Receiver (Verifier)’s input

A public key p = (p0, p1) ∈ R2
q

A ciphertext c = (c0, c1) ∈ R2
q

Sender (Prover)’s input

A public key p = (p0, p1) ∈ R2
q

A ciphertext c = (c0, c1) ∈ R2
q

The coefficients a, b ∈ Rt of a linear function f(z) = az + b over Rt

Evaluation Phase

1. The sender samples r ← Da+tZn,σ1
.

2. The sender samples e′ = (e′0, e
′
1, e
′
2)← D3

Zn,τ1
.

3. The sender computes c′ = (c′0, c
′
1)← r · c+ Encp(b, e

′) ∈ R2
q and sends it to

the receiver.

Commitment Phase

1. The sender samples ui ← DZn,σ2
, hi ← Rt and f ′i = (f ′i,0, f

′
i,1, f

′
i,2)← D3

Zn,τ2
,

then computes d′i = ui · c+ Encp(hi, f
′
i) ∈ R2

q for 1 ≤ i ≤ ℓ.
2. The sender sends comm′ = (d′1, . . . ,d

′
ℓ) to the receiver.

Challenge Phase

1. Upon receiving the commitment, the receiver samples α′1, . . . , α
′
ℓ ← C.

2. The receiver sends chal′ = (α′1, . . . , α
′
ℓ) to the sender.

Response Phase

1. Upon receiving chal′ = (α′1, . . . , α
′
ℓ), the sender computes vi = ui +α′ir ∈ R,

ki = hi + α′ib ∈ Rt, and g′i = f ′i + α′ie
′ ∈ R3 for 1 ≤ i ≤ ℓ.

2. The sender sends resp′ = ((v1, k1,g
′
1), . . . , (vℓ, kℓ,g

′
ℓ)) to the receiver.

Verification Phase

1. Upon receiving resp′ = ((v1, k1,g
′
1), . . . , (vℓ, kℓ,g

′
ℓ)), the receiver checks

whether the following holds for all 1 ≤ i ≤ ℓ:

vi · c+ Encp(ki,g
′
i) = d′i + α′ic

′ (mod q),

‖vi‖∞ ≤ Bσ1
+Bσ2

,

‖g′i‖∞ ≤ Bτ1 +Bτ2 .

2. The receiver outputs accept if all checks pass, otherwise reject.

Fig. 6. The second PoK protocol for the evaluation phase.

20

evaluation phase, denoted by ΠPoK2 is described in Fig. 6. Analogous to our
semi-honest oblivious linear evaluation protocol, we introduce the notions of
Bρ1

, Bρ2
, Bσ1

, Bσ2
, Bτ1 and Bτ2 , which denotes the essential upper bound of

DZn,ρ1
, DZn,ρ2

, Da+tZn,σ1
, DZn,σ2

, DZn,τ1 and DZn,τ2 , for an arbitrary a ∈ Rt,
respectively. Note that we set the challenge space as C = {0, 1} for a fair com-
parison with one of the previous state-of-the-arts in MPC preprocessing called
LowGear (See Sec. 5).

Security Proof. Here, we provide a security analysis of our maliciously secure
OLE protocol Πactive

OLE . We first show that our parameters incorporate slackness
of our PoKs, then show that our PoKs are indeed proper PoKs and compile into
a maliciously-secure OLE protocol.

In the encryption and evaluation phases, the receiver and sender generate c
and c′, respectively, each of which is given with a proof of knowledge to guar-
antee its well-formedness. As is usual in lattice-based PoKs, there is a difference
between honest and proven languages.

We define the witness relations for PoK1 as follows:

R1 = {(c, x, e) | c = Encp(x, e), ‖e‖∞ ≤ Bρ1
} ,

R′1 =
{

(c, x, e) | c = Encp(x, e), ‖e‖∞ ≤ B′ρ
}

,

where B′ρ = 2(Bρ1
+ Bρ2

). Then, (x, e) can be viewed as a witness for the
statement about the ciphertext c. The honest and proven languages are

L1 =
{

c ∈ R2
q | ∃(x, e) ∈ Rt ×R3, (c, x, e) ∈ R1

}

,

L′1 =
{

c ∈ R2
q | ∃(x, e) ∈ Rt ×R3, (c, x, e) ∈ R′1

}

,

respectively.
Similar to PoK1, the witness relations for PoK2 are defined as follows:

R2 = {(c′, b, r, e′) | c′ = rc+ Encp(b, e
′), ‖r‖∞ ≤ Bσ1

, ‖e′‖∞ ≤ Bτ1} ,
R′2 = {(c′, b, r, e′) | c′ = rc+ Encp(b, e

′), ‖r‖∞ ≤ B′σ, ‖e′‖∞ ≤ B′τ} ,

where B′σ = 2(Bσ1
+Bσ2

) and B′τ = 2(Bτ1 +Bτ2). Then, the honest and proven
languages are

L2 =
{

c′ ∈ R2
q | ∃(b, r, e′) ∈ Rt ×R×R3, (c′, b, r, e′) ∈ R2

}

,

L′2 =
{

c′ ∈ R2
q | ∃(b, r, e′) ∈ Rt ×R×R3, (c′, b, r, e′) ∈ R′2

}

,

respectively. In other words, the sender provides a proof of knowledge that c′

is honestly generated by evaluating a linear function. We also note that PoK2
relies on the proven language of PoK1.

Lemma 10 (Correctness). If both the sender and the receiver honestly follow
the protocol and (nBρ1

Bσ1
+ Bτ1)(1 + n + nBρ1

) < ∆/2, Πactive
OLE realizes the

correct OLE functionality.

21

Proof. See Appendix A.

We now provide a simplified lemma from [42] and show that our protocol
achieves security against both a malicious sender and a malicious receiver.

Lemma 11 ([42, Simplified Lemma 7]). Let σ1, σ2 > 0 be reals and α1, . . . , αℓ ∈
{0, 1} for an integer ℓ ≥ 0. Let σ′0 > 0 be such that 1

σ′2
0

= 1
σ2
1

+ ℓ′

σ2
2

where ℓ′ is the

number of i’s with αi = 1. Then, for any coset a+ tZn, the following procedures
produce statistically identical distributions over (a+ tZn)× Zn × · · · × Zn :

(i) Sample r ← Da+tZn,σ1
. Sample ui ← DZn,σ2

and let vi = ui + αir for
1 ≤ i ≤ ℓ. Return (r, v1, . . . , vℓ).

(ii) Sample r ← Da+tZn,σ1
. Sample ui ← DZn,σ2

and let vi = ui + αir for
1 ≤ i ≤ ℓ. Sample r̂ ← Da+tZn,(σ′2

0
/σ2

2
)·
∑

ℓ
i=1

αivi,σ′

0
and return (r̂, v1, . . . , vℓ).

Note that the statistical identity still holds even when the coset a + tZn is sub-
stituted by Zn.

Proof. See Appendix A.

Lemma 12. Assuming that we are provided with the same conditions as stated
in Lem. 11, if σ′0 ≥ ηǫ(tZ

n) for 0 < ǫ ≤ 1/2, then the distribution of (v1, . . . , vℓ)
is within statistical distance 2ǫ of a distribution which is independent of a.

Proof. See Appendix A.

The security proof of ΠPoK1 directly follows from [42, Theorem 2].

Lemma 13 (PoK1). Let ρ0 > 0 be a real such that 1
ρ2
0

= 1
ρ2
1

+ ℓ
ρ2
2

. If ρ0 ≥
2 · ηǫ(Zn) for a negligible ǫ > 0 and 2−ℓ is negligible, then ΠPoK1 is a secure
proof-of-knowledge protocol for the pair of languages (L1,L

′
1) under hardness

assumption of RLWE(n, q, ρ, χ) and RLWE(n, q, ρ0√
2
, ρ0√

2
).

Proof. See Appendix A.

Lemma 14 (PoK2). Let σ0, τ0 be reals such that 1
σ2
0

= 1
σ2
1

+ ℓ
σ2
2

and 1
τ2
0

=
1
τ2
1

+ ℓ
τ2
2

. If σ0 ≥ ηǫ(tZ
n) and τ0 ≥ ηǫ(Z

n) for a negligible ǫ > 0, then the protocol

Πactive
OLE achieves security against a malicious sender. Moreover, ΠPoK2 is a secure

proof-of-knowledge protocol for the honest language L2 and the proven language
L′2 if 2−ℓ is negligible.

Proof. See Appendix A.

In Table 2, we provide five parameter sets that support various bit lengths of
the plaintext modulus for the malicious OLE. These parameter sets correspond
to 16, 32, 64, 80 and 128 bits of plaintext modulus. While we initially chose the
challenge set C = {0, 1} in our security proof, we utilize the monomial challenge
space to optimize the number of the challenges, following the prior works such

22

Simulator SPoK2

Input

Public key p ∈ R2
q

Encryption randomness e ∈ R3

Ciphertext c ∈ R2
q

Output y ∈ Rt

1. Sample α′i ← C for 1 ≤ i ≤ ℓ and let chal′ = (α′1, . . . , α
′
ℓ). Let ℓ′ be the

number of 1 ≤ i ≤ ℓ such that α′i = 1.
2. Sample r ← DtZn,σ1

and e′ ← D3
Zn,τ1

. Compute c′ = rc+ Encp(y, e
′).

3. Sample ui ← DZn,σ2
, ki ← Rt and f ′i ← D3

Zn,τ2
for 1 ≤ i ≤ ℓ. Let vi =

ui + α′ir and g′i = f ′i + α′ie
′. Set resp′ = ((v1, k1,g

′
1), . . . , (vℓ, kℓ,g

′
ℓ)).

4. Compute d′i = vic + Encp(ki,g
′
i) − α′ic

′ for 1 ≤ i ≤ ℓ. Set comm =
(d′1, . . . ,d

′
ℓ).

5. Output (c′, comm′, chal′, resp′).

Fig. 7. The simulator SPoK2 for PoK2

Table 2. Recommended Parameter Sets for Malicious OLE, when λ = 128.

log t n ρ0 log σ0 log τ0 log q

16 212 11.15 18 38 77

32 213 11.19 34 55 111

64 213 11.19 66 87 175

80 213 11.19 82 103 207

128 214 11.23 130 152 305

as [9, 42]. It is worth noting that our security proof can be naturally extended
to accommodate the monomial challenge set, with two additional conditions of
q being an odd prime number, and the encryption randomness multiplied by 2.
These modifications guarantee the correctness of the argument for the knowledge
extractor. As a result, the size of the challenge space becomes 2n, and thus we
can set ℓ = ⌈ λ

log2(2n)
⌉ for the security parameter λ.

4.3 Performance Analysis

Here we provide the analysis of the performance of our improved OLE protocol
and compare the performance of our protocol to the prior arts. For a detailed
discussion on parameter sets, we refer to Appendix D. We begin with a con-
cise explanation of how the communication cost of the protocol is affected by
the parameters. Recall that a bulk of communications during the protocol are

23

elements in the polynomial ring Rq = Zq[X]/(Xn + 1), whose elements can be
represented as a coefficient vector of size n with each component bounded by q.
Consequently, the communication cost for both semi-honest and malicious OLE
is roughly proportional to n log q. In order to minimize the communication cost
of the scheme, we first fix the plaintext modulus t and then set q and n as small
as possible.

Table 3. Parameter Comparison for the OLE protocols.

Security Scheme log t log q n

Passive
[20]

32
220 213

Ours 104 212

Active
[6]

64
480 214

Ours 176 213

Semi-honest OLE. In [20], the authors present a secure OLE protocol against
semi-honest adversaries, providing 80-bit security. In their parameter set, log t ≈
32, log q ≈ 220 and n = 213. On the other hand, in our construction, we can
leverage a smaller ciphertext modulus and the ring dimension of log q ≈ 104 and
n = 212 with the same size of plaintext modulus t, under 128-bit security.

Table 4. OLE performance comparison of our protocol and the protocol from [20]

log t n
Elapsed
Time

Communi-
cation Cost

Estimated Comm-
unication time

Time per
OLE

Ours 32 212 4.25ms 256.6KiB 20.0ms 5.92µs

[20] 32 213 4.89ms 768.6KiB 60.0ms 7.92µs

We also provide a proof-of-concept implementation of the semi-honest ver-
sion of our protocol, and compare it to the previous work [20]. The proposed
method and prior method [20] were implemented in Lattigo v5 [45], and all the
experiments were performed on a machine with Intel(R) Xeon(R) Platinum 8268
@ 2.90GHz CPU and 192GB RAM running Ubuntu 20.04.2 LTS. We estimate
the communication time assuming that the parties are connected by a network
with a bandwidth of 100Mbps (WAN). Table. 4 describes the benchmark results.
Our protocol achieves ciphertext size which is 3 times more compact than the
construction from [20], as discussed above. Moreover, the amortized time of our

24

protocol improves the prior work by 33%. It is worth noting that the main bot-
tleneck of our method is Gaussian sampling, while rescaling operation is also a
time-consuming operation in the construction of [20]. In fact, this can bring a lot
more efficiency in the real world setting since the sender can pre-compute Gaus-
sian samples during the communication while rescaling cannot be performed
until the sender receives the ciphertext from the receiver. In our implementa-
tion, a rounded Gaussian Sampler was utilized instead of discrete Gaussian for
sampling from D3

Zn,τ . Note that the statistical distance between the rounded
Gaussian and discrete Gaussian is small enough since τ is sufficiently large in
our parameters (≥ 36 bits).

Malicious OLE. During the OLE protocol against malicious adversaries, the
most resource-intensive communication operation is the transmission of the BFV
ciphertext. It is because the challenge, commitment, and the response are ring
elements residing in the polynomial ring R, which can be represented with a
single-limb integers while the BFV ciphertext consists of multi-limb integers.
Therefore, we mainly focus on the size of the BFV encryption used in the pro-
tocol. Baum et al. [6] provides a secure OLE protocol against malicious adver-
saries, achieving 116-bit security. Their recommended parameter set is as follows:
log t ≈ 64, log q ≈ 480 and n = 214. In contrast, our protocol employs a 176-bit
ciphertext modulus q and smaller ring dimension n = 213, achieving 128 bit of
security. Hence, the ciphertext size of our construction is 5.5x more compact
than that of [6]. Similar to the case of Malicious OLE, our protocol achieves
2.7x lower (amortized) communication cost during the protocol, compared to
the prior work.

5 MPC Preprocessing

In this section, we apply our circuit-private LHE (Sec. 3) to MPC preprocessing.
In particular, we describe how our LHE can improve the communication cost of
the LowGear protocol in Overdrive [41]. We only give a very brief overview of
LowGear here. For a more detailed description, please refer to the Appendix C.

5.1 LowGear with Reduced Communication

One of the most important settings in MPC is the security against actively
corrupted majority. The dishonest majority setting encompasses the significant
case of two-party computation. And modeling the security threat as passive
(honest-but-curious) adversaries is often unsatisfactory in real-life scenarios.

The LowGear protocol of Overdrive [41], which follows the framework of
SPDZ8 [27], is a state-of-the-art general-purpose MPC protocol in this setting.
It is the fastest protocol (modulo follow-up optimizations9) when the number of

8 Refer to Appendix C for an overview of the SPDZ framework.
9 A few optimizations for LowGear have been proposed [5, 36]. See Sec. 1.3.

25

participating parties is small, especially in the case of 2-party computation.10

The LowGear protocol leverages the LHE version of the BGV scheme [17] to pre-
process so-called (authenticated) Beaver’s triples. It also deploys noise-flooding
and ZKPoPK11 upon BGV in order to achieve claimed security. Meanwhile, the
roles of the BGV scheme and noise-flooding in LowGear can be abstracted in
terms of circuit-private LHE. That is, we can plug in any circuit-private LHE
in place of BGV and noise-flooding. (Refer to the Appendix C for a generic
description of LowGear in terms of circuit-private LHE.) The performance of
the resulting protocol depends on the underlying LHE scheme and accompanied
ZKPoPK.

Our approach to improving the LowGear protocol is straightforward: we plug
in our circuit-private LHE from Sec. 3 and deploy ZKPoPK from [42]. While
still enjoying high parallelism as the BGV scheme, our scheme allows us to
use smaller parameters by avoiding noise-flooding. This directly improves the
communication cost of the protocol.

5.2 Comparison

We compare the communication cost of our improved LowGear with the original
LowGear from [41]. As the total communication of LowGear is dominated by the
exchanges of LHE ciphertexts, it is sufficient to compare the LHE parameters.
We give LHE parameters for the following three versions of LowGear in Table 5.
For each plaintext modulus bit-size log |F|12 and desired statistical security pa-
rameter sec, we list the smallest possible pair of ring dimension n and ciphertext
modulus bit-size log q.13

1. The original LowGear [41]. It leverages noise-flooding for circuit-privacy and
deploys ZKPoPK from [27], which is based on the rejection sampling tech-
nique of [43].

2. LowGear with our circuit-private LHE but with ZKPoPK from [27].
3. LowGear with our circuit-private LHE and with ZKPoPK from [42].

Comparing the original LowGear with ours plus [42], the ciphertext size is
reduced from 4.1MB to 1.4MB for log |F| = 128 and sec = 128, which gives
2.9x improvement in total communication cost. Considering that we preprocess
n triples in parallel using a single ciphertext via packing, ours plus [42] (resp.,
[27]) shows 1.4x (resp., 1.3x) improvement in amortized communication cost. A
similar level of improvement is obtained in the case of log |F| = 64 and sec = 64.
10 Another nice feature of the LowGear approach is that it requires only PKI (public

key infrastructure) for underlying LHE. On the other hand, protocols based on SHE
(somewhat HE), such as the original SPDZ protocol [27] or HighGear protocol of
Overdrive [41], require the parties to securely generate distributed SHE secret key,
which is already a highly non-trivial task [51].

11 Zero-Knowledge Proof of Plaintext Knowledge. An encryptor can prove that cipher-
text is honestly generated through ZKPoPK.

12 LowGear supports secure computations of arithmetic circuits over a prime field F.
13 All parameters are set for the case where we apply the technique of [24] for amortized

proofs.

26

Table 5. LHE Parameters for LowGear-style MPC Preprocessing.

log |F| sec n log q

LowGear [41]
64 64 214 294
128 128 215 524

Ours + [27]
64 64 214 226
128 128 214 392

Ours + [42]
64 64 213 201
128 128 214 365

References

1. Agrawal, S., Gentry, C., Halevi, S., Sahai, A.: Discrete gaussian leftover hash lemma
over infinite domains. In: International Conference on the Theory and Application
of Cryptology and Information Security. pp. 97–116. Springer (2013)

2. Albrecht, M., Chase, M., Chen, H., Ding, J., Goldwasser, S., Gorbunov, S., Halevi,
S., Hoffstein, J., Laine, K., Lauter, K., et al.: Homomorphic encryption standard.
In: Protecting Privacy through Homomorphic Encryption, pp. 31–62. Springer
(2021)

3. Albrecht, M.R., Player, R., Scott, S.: On the concrete hardness of
learning with errors. Cryptology ePrint Archive, Paper 2015/046 (2015),
https://eprint.iacr.org/2015/046

4. Applebaum, B., Damg̊ard, I., Ishai, Y., Nielsen, M., Zichron, L.: Secure arithmetic
computation with constant computational overhead. In: Katz, J., Shacham, H.
(eds.) Advances in Cryptology – CRYPTO 2017. pp. 223–254. Springer Interna-
tional Publishing, Cham (2017)

5. Baum, C., Cozzo, D., Smart, N.P.: Using TopGear in overdrive: a more efficient
ZKPoK for SPDZ. In: International Conference on Selected Areas in Cryptography.
pp. 274–302. Springer (2019)

6. Baum, C., Escudero, D., Pedrouzo-Ulloa, A., Scholl, P., Troncoso-Pastoriza, J.R.:
Efficient protocols for oblivious linear function evaluation from ring-lwe. In: Se-
curity and Cryptography for Networks: 12th International Conference, SCN 2020,
Amalfi, Italy, September 14–16, 2020, Proceedings. pp. 130–149 (2020)

7. Beaver, D.: Efficient multiparty protocols using circuit randomization. In: Feigen-
baum, J. (ed.) Advances in Cryptology — CRYPTO ’91. pp. 420–432. Springer
Berlin Heidelberg, Berlin, Heidelberg (1992)

8. Bendlin, R., Damg̊ard, I., Orlandi, C., Zakarias, S.: Semi-homomorphic encryption
and multiparty computation. In: Paterson, K.G. (ed.) Advances in Cryptology –
EUROCRYPT 2011. pp. 169–188. Springer Berlin Heidelberg, Berlin, Heidelberg
(2011)

9. Benhamouda, F., Camenisch, J., Krenn, S., Lyubashevsky, V., Neven, G.: Better
zero-knowledge proofs for lattice encryption and their application to group signa-
tures. In: International Conference on the Theory and Application of Cryptology
and Information Security. pp. 551–572. Springer (2014)

10. Block, A.R., Gupta, D., Maji, H.K., Nguyen, H.H.: Secure computation using leaky
correlations (asymptotically optimal constructions). In: Theory of Cryptography:

27

https://eprint.iacr.org/2015/046

16th International Conference, TCC 2018, Panaji, India, November 11–14, 2018,
Proceedings, Part II. p. 36–65. Springer-Verlag, Berlin, Heidelberg (2018)

11. Bourse, F., Del Pino, R., Minelli, M., Wee, H.: Fhe circuit privacy almost for free.
In: Advances in Cryptology–CRYPTO 2016: 36th Annual International Cryptology
Conference, Santa Barbara, CA, USA, August 14-18, 2016, Proceedings, Part II.
pp. 62–89. Springer (2016)

12. Boyle, E., Couteau, G., Gilboa, N., Ishai, Y.: Compressing vector ole. In: Proceed-
ings of the 2018 ACM SIGSAC Conference on Computer and Communications
Security. p. 896–912. CCS ’18, Association for Computing Machinery, New York,
NY, USA (2018), https://doi.org/10.1145/3243734.3243868

13. Boyle, E., Couteau, G., Gilboa, N., Ishai, Y., Kohl, L., Scholl, P.: Efficient pseu-
dorandom correlation generators: Silent ot extension and more. In: Boldyreva,
A., Micciancio, D. (eds.) Advances in Cryptology – CRYPTO 2019. pp. 489–518.
Springer International Publishing, Cham (2019)

14. Boyle, E., Couteau, G., Gilboa, N., Ishai, Y., Kohl, L., Scholl, P.: Efficient pseudo-
random correlation generators from ring-lpn. In: Annual International Cryptology
Conference. pp. 387–416. Springer (2020)

15. Brakerski, Z.: Fully homomorphic encryption without modulus switching from clas-
sical GapSVP. In: Annual Cryptology Conference. pp. 868–886. Springer (2012)

16. Brakerski, Z., Branco, P., Döttling, N., Pu, S.: Batch-ot with optimal rate.
In: Dunkelman, O., Dziembowski, S. (eds.) Advances in Cryptology - EU-
ROCRYPT 2022 - 41st Annual International Conference on the Theory and
Applications of Cryptographic Techniques, Trondheim, Norway, May 30 -
June 3, 2022, Proceedings, Part II. Lecture Notes in Computer Science, vol.
13276, pp. 157–186. Springer (2022). https://doi.org/10.1007/978-3-031-07085-3 6,
https://doi.org/10.1007/978-3-031-07085-3_6

17. Brakerski, Z., Gentry, C., Vaikuntanathan, V.: (leveled) fully homomorphic encryp-
tion without bootstrapping. ACM Transactions on Computation Theory (TOCT)
6(3), 1–36 (2014)

18. Branco, P., Döttling, N., Mateus, P.: Two-round oblivious linear evaluation
from learning with errors. In: Hanaoka, G., Shikata, J., Watanabe, Y. (eds.)
Public-Key Cryptography - PKC 2022 - 25th IACR International Conference
on Practice and Theory of Public-Key Cryptography, Virtual Event, March 8-
11, 2022, Proceedings, Part I. Lecture Notes in Computer Science, vol. 13177,
pp. 379–408. Springer (2022). https://doi.org/10.1007/978-3-030-97121-2 14,
https://doi.org/10.1007/978-3-030-97121-2_14

19. de Castro, L., Hazay, C., Ishai, Y., Vaikuntanathan, V., Venkitasubramaniam,
M.: Asymptotically quasi-optimal cryptography. In: Annual International Confer-
ence on the Theory and Applications of Cryptographic Techniques. pp. 303–334.
Springer (2022)

20. de Castro, L., Juvekar, C., Vaikuntanathan, V.: Fast vector oblivious linear eval-
uation from ring learning with errors. In: Proceedings of the 9th on Workshop on
Encrypted Computing & Applied Homomorphic Cryptography. pp. 29–41 (2021)

21. Chase, M., Dodis, Y., Ishai, Y., Kraschewski, D., Liu, T., Ostrovsky, R., Vaikun-
tanathan, V.: Reusable non-interactive secure computation. In: Boldyreva, A., Mic-
ciancio, D. (eds.) Advances in Cryptology – CRYPTO 2019. pp. 462–488. Springer
International Publishing, Cham (2019)

22. Chongchitmate, W., Ishai, Y., Lu, S., Ostrovsky, R.: Psi from ring-ole. In: Pro-
ceedings of the 2022 ACM SIGSAC Conference on Computer and Communications
Security. p. 531–545. CCS ’22, Association for Computing Machinery, New York,
NY, USA (2022)

28

https://doi.org/10.1145/3243734.3243868
https://doi.org/10.1007/978-3-031-07085-3_6
https://doi.org/10.1007/978-3-031-07085-3_6
https://doi.org/10.1007/978-3-030-97121-2_14
https://doi.org/10.1007/978-3-030-97121-2_14

23. Couteau, G., Rindal, P., Raghuraman, S.: Silver: Silent vole and oblivious transfer
from hardness of decoding structured ldpc codes. In: Annual International Cryp-
tology Conference. pp. 502–534. Springer (2021)

24. Cramer, R., Damg̊ard, I.: On the amortized complexity of zero-knowledge proto-
cols. In: Halevi, S. (ed.) Advances in Cryptology - CRYPTO 2009. pp. 177–191.
Springer Berlin Heidelberg, Berlin, Heidelberg (2009)

25. Cramer, R., Gennaro, R., Schoenmakers, B.: A secure and optimally efficient multi-
authority election scheme. In: Fumy, W. (ed.) Advances in Cryptology — EURO-
CRYPT ’97. pp. 103–118. Springer Berlin Heidelberg, Berlin, Heidelberg (1997)

26. Damg̊ard, I., Keller, M., Larraia, E., Pastro, V., Scholl, P., Smart, N.P.: Practical
covertly secure mpc for dishonest majority – or: Breaking the spdz limits. In:
Crampton, J., Jajodia, S., Mayes, K. (eds.) Computer Security – ESORICS 2013.
pp. 1–18. Springer Berlin Heidelberg, Berlin, Heidelberg (2013)

27. Damg̊ard, I., Pastro, V., Smart, N., Zakarias, S.: Multiparty computation from
somewhat homomorphic encryption. In: Annual Cryptology Conference. pp. 643–
662. Springer (2012)

28. Döttling, N., Ghosh, S., Nielsen, J.B., Nilges, T., Trifiletti, R.: Tinyole: Efficient
actively secure two-party computation from oblivious linear function evaluation.
In: Proceedings of the 2017 ACM SIGSAC Conference on Computer and Commu-
nications Security. p. 2263–2276. CCS ’17, Association for Computing Machinery,
New York, NY, USA (2017), https://doi.org/10.1145/3133956.3134024

29. Ducas, L., Stehlé, D.: Sanitization of fhe ciphertexts. In: Advances in Cryptology–
EUROCRYPT 2016: 35th Annual International Conference on the Theory and
Applications of Cryptographic Techniques, Vienna, Austria, May 8-12, 2016, Pro-
ceedings, Part I 35. pp. 294–310. Springer (2016)

30. Escudero, D., Goyal, V., Polychroniadou, A., Song, Y., Weng, C.: Superpack: Dis-
honest majority mpc with constant online communication. In: Hazay, C., Stam,
M. (eds.) Advances in Cryptology – EUROCRYPT 2023. pp. 220–250. Springer
Nature Switzerland, Cham (2023)

31. Fan, J., Vercauteren, F.: Somewhat practical fully homomorphic encryption. Cryp-
tology ePrint Archive (2012)

32. Gentry, C.: Fully homomorphic encryption using ideal lattices. In: Proceedings
of the forty-first annual ACM symposium on Theory of computing. pp. 169–178
(2009)

33. Gentry, C., Peikert, C., Vaikuntanathan, V.: Trapdoors for hard lattices and new
cryptographic constructions. In: Proceedings of the fortieth annual ACM sympo-
sium on Theory of computing. pp. 197–206 (2008)

34. Gentry, C., Sahai, A., Waters, B.: Homomorphic encryption from learning with er-
rors: Conceptually-simpler, asymptotically-faster, attribute-based. In: Advances in
Cryptology–CRYPTO 2013: 33rd Annual Cryptology Conference, Santa Barbara,
CA, USA, August 18-22, 2013. Proceedings, Part I. pp. 75–92. Springer (2013)

35. Ghosh, S., Nilges, T.: An algebraic approach to maliciously secure private set inter-
section. In: Ishai, Y., Rijmen, V. (eds.) Advances in Cryptology – EUROCRYPT
2019. pp. 154–185. Springer International Publishing, Cham (2019)

36. Hasler, S., Krips, T., Küsters, R., Reisert, P., Rivinius, M.: Overdrive lowgear
2.0: Reduced-bandwidth mpc without sacrifice. Cryptology ePrint Archive, Paper
2023/462 (2023), https://eprint.iacr.org/2023/462

37. Hazay, C., Ishai, Y., Marcedone, A., Venkitasubramaniam, M.: Leviosa:
Lightweight secure arithmetic computation. In: Proceedings of the 2019 ACM
SIGSAC Conference on Computer and Communications Security. p. 327–344.

29

https://doi.org/10.1145/3133956.3134024
https://eprint.iacr.org/2023/462

CCS ’19, Association for Computing Machinery, New York, NY, USA (2019),
https://doi.org/10.1145/3319535.3354258

38. Ishai, Y., Paskin, A.: Evaluating branching programs on encrypted data. In: The-
ory of Cryptography: 4th Theory of Cryptography Conference, TCC 2007, Amster-
dam, The Netherlands, February 21-24, 2007. Proceedings 4. pp. 575–594. Springer
(2007)

39. Ishai, Y., Prabhakaran, M., Sahai, A.: Secure arithmetic computation with no
honest majority. In: Theory of Cryptography: 6th Theory of Cryptography Con-
ference, TCC 2009, San Francisco, CA, USA, March 15-17, 2009. Proceedings 6.
pp. 294–314. Springer (2009)

40. Keller, M., Orsini, E., Scholl, P.: Mascot: Faster malicious arithmetic se-
cure computation with oblivious transfer. In: Proceedings of the 2016 ACM
SIGSAC Conference on Computer and Communications Security. p. 830–842.
CCS ’16, Association for Computing Machinery, New York, NY, USA (2016),
https://doi.org/10.1145/2976749.2978357

41. Keller, M., Pastro, V., Rotaru, D.: Overdrive: making SPDZ great again. In: An-
nual International Conference on the Theory and Applications of Cryptographic
Techniques. pp. 158–189. Springer (2018)

42. Kim, D., Lee, D., Seo, J., Song, Y.: Toward practical lattice-based proof of knowl-
edge from hint-mlwe. In: Annual International Cryptology Conference. pp. 549–
580. Springer (2023)

43. Lyubashevsky, V.: Fiat-shamir with aborts: Applications to lattice and factoring-
based signatures. In: International Conference on the Theory and Application of
Cryptology and Information Security. pp. 598–616. Springer (2009)

44. Micciancio, D., Regev, O.: Worst-case to average-case reductions based on gaussian
measures. SIAM Journal on Computing 37(1), 267–302 (2007)

45. Mouchet, C.V., Bossuat, J.P., Troncoso-Pastoriza, J.R., Hubaux, J.P.: Lattigo:
A multiparty homomorphic encryption library in go. In: Proceedings of the 8th
Workshop on Encrypted Computing and Applied Homomorphic Cryptography.
pp. 64–70 (2020)

46. Naor, M., Pinkas, B.: Oblivious transfer and polynomial evaluation. In: Proceedings
of the thirty-first annual ACM symposium on Theory of computing. pp. 245–254
(1999)

47. Ostrovsky, R., Skeith, W.E.: A survey of single-database private information re-
trieval: Techniques and applications. In: Okamoto, T., Wang, X. (eds.) Public Key
Cryptography – PKC 2007. pp. 393–411. Springer Berlin Heidelberg, Berlin, Hei-
delberg (2007)

48. Peikert, C.: An efficient and parallel gaussian sampler for lattices. In: Annual Cryp-
tology Conference. pp. 80–97. Springer (2010)

49. Rindal, P., Schoppmann, P.: Vole-psi: Fast oprf and circuit-psi from vector-ole.
In: Canteaut, A., Standaert, F.X. (eds.) Advances in Cryptology – EUROCRYPT
2021. pp. 901–930. Springer International Publishing, Cham (2021)

50. Rivest, R.L., Adleman, L., Dertouzos, M.L.: On data banks and privacy homomor-
phisms. Foundations of secure computation 4(11), 169–180 (1978)

51. Rotaru, D., Smart, N.P., Tanguy, T., Vercauteren, F., Wood, T.: Actively secure
setup for spdz. Journal of Cryptology 35(1), 5 (2022)

52. Weng, C., Yang, K., Katz, J., Wang, X.: Wolverine: Fast, scalable, and
communication-efficient zero-knowledge proofs for boolean and arithmetic circuits.
In: 2021 IEEE Symposium on Security and Privacy (SP). pp. 1074–1091 (2021)

30

https://doi.org/10.1145/3319535.3354258
https://doi.org/10.1145/2976749.2978357

53. Yang, K., Sarkar, P., Weng, C., Wang, X.: Quicksilver: Efficient and affordable
zero-knowledge proofs for circuits and polynomials over any field. In: Proceedings
of the 2021 ACM SIGSAC Conference on Computer and Communications Security.
p. 2986–3001. CCS ’21, Association for Computing Machinery, New York, NY, USA
(2021), https://doi.org/10.1145/3460120.3484556

A Proofs

Proof of Lemma 10

Proof. We show that both ΠPoK1 and ΠPoK2 work correctly if the sender and
the receiver are honest during the protocol.

• ΠPoK1 : In the encryption phase, the ciphertext c generated by the receiver
satisfies the honest language L1 with c = Encp(x, e) and ‖ei‖∞ ≤ Bρ1

(i =
0, 1, 2) with overwhelming probability. On the other hand, the linearity of the
BFV encryption implies that di+αic = Encp(zi+αix, fi+αie) = Encp(wi,gi).
It remains to show the boundedness of ‖gi‖∞. Since αi is either zero or one, we
have ‖gi‖∞ = ‖fi + αie‖∞ ≤ ‖fi‖∞ + ‖e‖∞ ≤ Bρ1

+ Bρ2
with overwhelming

probability. Hence, the sender outputs accept when both the sender and the
receiver honestly follow the protocol ΠPoK1.

• ΠPoK2 : In the evaluation phase, the ciphertext c′ computed by the sender
satisfies the honest language L2 since c′ = r · c + Encp(b, e

′) with ‖r‖∞ ≤ Bσ1

and ‖e′‖∞ ≤ Bτ1 with overwhelming probability. Similar to the case of ΠPoK1,
we have d′i+α′ic

′ = vi·c+Encp(ki,g
′
i) by the linearity of the BFV encryption. We

now check the boundedness of ‖vi‖∞ and ‖g′i‖∞. Since α′i is either 0 or 1, we have
‖vi‖∞ ≤ ‖ui‖∞ + ‖r‖∞ ≤ Bσ1

+Bσ2
and ‖g′i‖∞ ≤ ‖f ′i‖∞ + ‖e′‖∞ ≤ Bτ1 +Bτ2

with overwhelming probability. Therefore, the receiver outputs accept when both
the sender and the receiver honestly follow the protocol ΠPoK2. ⊓⊔

Proof of Lemma 11

Proof. We first note that two procedures generate v1, . . . , vℓ in the same way.
Hence, to prove the first statement, it suffices to show that Pr[r = x | v1 =
y1, . . . , vℓ = yℓ] in the first procedure is equal to Pr[r̂ = x | v1 = y1, . . . , vℓ = yℓ]
in the second procedure for any x ∈ a+ tZn and y1, . . . , yℓ ∈ Zn.

For any fixed y1, . . . , yℓ ∈ Zn, we have

Pr[r = x | v1 = y1, . . . , vℓ = yℓ]

∝ ρσ1
(x) ·

ℓ
∏

i=1

ρσ2
(yi − αix) = exp

[

− π

(

1

σ2
1

‖x‖2 + 1

σ2
2

ℓ
∑

i=1

‖yi − αix‖2
)]

∝ exp

[

− π

σ′20

∥

∥x− σ′20
σ2
2

ℓ
∑

i=1

αiyi
∥

∥

2
]

= ρσ′

0

(

x− σ′20
σ2
2

ℓ
∑

i=1

yi

)

∝ Pr[r̂ = x | v1 = y1, . . . , vℓ = yℓ],

as desired. ⊓⊔

31

https://doi.org/10.1145/3460120.3484556

Proof of Lemma 12

Proof. For y1, . . . , yℓ ∈ Zn, the probability of vi = yi is

Pr[v1 = y1, . . . , vℓ = yℓ]

∝
∑

r∈a+tZn

ρσ1
(r) ·

ℓ
∏

i=1

ρσ2
(yi − αir)

=
∑

r∈a+tZn

exp

[

− π
(1

σ2
1

‖r‖2 + 1

σ2
2

ℓ
∑

i=1

‖yi − αir‖2
)

]

∝
∑

r∈a+tZn

exp

[

− π
(1

σ′20

∥

∥r − σ′20
σ2
2

ℓ
∑

i=1

αiyi
∥

∥

2)
]

∈
[

1− ǫ

1 + ǫ
, 1

]

· ρσ′

0
(tZn),

where the last inclusion is obtained from Lem. 3. This completes the proof since
ρσ′

0
(tZn) is independent of a. ⊓⊔

Proof of Lemma 13

Proof. We mainly focus on the soundness of PoK1, since the completeness and
simulatability are exactly same to those of [42, Theorem 2]. We refer the reader
to [42, Sec. 2.6] for the formal security definition of PoK.

Soundness: Since the soundness error 2−ℓ is negligible, it suffices to show that
there exists an efficient knowledge extractor E , which generates (x′, e′) satisfying
(c, x′, e′) ∈ R′1 from given two accepting transcripts with different challenges. Let
(c, comm0, chal0, resp0) and (c, comm1, chal1, resp1) be two accepting transcripts
with different challenges denoted by chali = (αi,j)1≤j≤ℓ for i = 0, 1. Since chal0 6=
chal1, there exist an index j such that α0,j 6= α1,j , and we can set α0,j = 0 and
α1,j = 1 without loss of generality. The extractor E computes x′ := w1,j − w0,j

(mod t) and e′ := g1,j − g0,j , and outputs (x′, e′). Then, we can easily check
that

Encp(x
′, e′) = Encp(w1,j ,g1,j)− Encp(w0,j ,g0,j) = (dj + c)− dj = c (mod q),

and ‖e′‖∞ ≤ ‖g0,j‖∞ + ‖g1,j‖∞ ≤ 2(Bρ1
+ Bρ2

) = B′ρ. Therefore, E is an
knowledge extractor for PoK1. ⊓⊔
Proof of Lemma 14

Proof. If the sender outputs reject in ΠPoK1, the protocol is obviously secure
against a malicious receiver since the receiver obtains no information from the
sender. Otherwise, if the encryption phase is succeeded, we describe a simulator
SPoK2 for the protocol ΠPoK2 in Fig. 7, which is in fact identical to the real
protocol with input a = 0 and b = y.

From Lem. 14, the receiver has x ∈ Rt and e ∈ R3 such that c = Encp(x, e)
and ‖e‖∞ ≤ B′ρ. If the sender is honest, the receiver’s view can be written as a

tuple (c′, comm′, chal′, resp′) where

c′ = rc+ Encp(b, e
′) = r · Encp(x, e) + Encp(b, e

′) = Encp(y, ẽ)

32

for y = ax+ b ∈ Rt and ẽ = re+ e′ ∈ R3.
Now we prove that the output distributions of ΠPoK2 and SPoK2 are compu-

tationally indistinguishable using the hybrid argument. We define some proce-
dures H′0,H′1,H′2 and H′3, each of which generates a transcript tr′ of the form
(c′, comm′, chal′, resp′). In these procedures, the challenge chal′ = (α′1, . . . , α

′
ℓ)

is generated in the same way α′i ← C. We will denote by ℓ′ the number of

1 ≤ i ≤ ℓ satisfying α′i = 1, and σ′0, τ
′
0 > 0 the reals such that 1

σ′2
0

= 1
σ2
1

+ ℓ′

σ2
2

and 1
τ ′2
0

= 1
τ2
1

+ ℓ′

τ2
2

. Note that σ′0 ≥ σ0 ≥ ηǫ(tZ
n) and τ ′0 ≥ τ0 ≥ ηǫ(Z

n).

In addition, comm′ = (d′1, . . . ,d
′
ℓ) can be obtained from chal′ and resp′ as

d′i = vi · c+ Encp(ki,g
′)− α′ic

′ (mod q). Hence, we will not describe how chal′

and comm′ are generated in each procedure.

H′0: This procedure has the same distribution as the real protocolΠPoK2(p, c, a, b).
– c′ = r · c+ Encp(b, e

′) for r ← Da+tZn,σ1
, e′ ← D3

Zn,τ1
.

– ui ← DZn,σ2
, hi ← Rt and f ′i ← D3

Zn,τ2
for 1 ≤ i ≤ ℓ.

– vi = ui + α′ir, ki = hi + α′ib and g′i = f ′i + α′ie
′ for 1 ≤ i ≤ ℓ. resp′ =

((v1, k1,g
′
1), . . . , (vℓ, kℓ,g

′
ℓ)).

H′1: This procedure is similar to H′0 but c′ is generated in a different way.
– r ← Da+tZn,σ1

, e′ ← D3
Zn,τ1

.

– ui ← DZn,σ2
, hi ← Rt and f ′i ← D3

Zn,τ2
for 1 ≤ i ≤ ℓ.

– vi = ui + α′ir, ki = hi + α′ib and g′i = f ′i + α′ie
′ for 1 ≤ i ≤ ℓ. resp′ =

((v1, k1,g
′
1), . . . , (vℓ, kℓ,g

′
ℓ)).

– c′ = r̂ · c + Encp(b, ê
′) for r̂ ← Da+tZn,µ,σ′

0
and ê′ ← DZ3n,ν,τ ′

0
where µ =

(σ′20 /σ2
2) ·

∑ℓ
i=1 α

′
ivi and ν = (τ ′20 /τ22) ·

∑ℓ
i=1 α

′
ig
′
i.

H′2: Compared to H′1, the distribution of r is changed and ki is directly sampled
without using hi. In addition, c′ is generated in a different way so that there
is no dependency on a and b in H′2.

– r ← DtZn,σ1
, e′ ← D3

Zn,τ1
.

– ui ← DZn,σ2
and f ′i ← D3

Zn,τ2
for 1 ≤ i ≤ ℓ.

– vi = ui + α′ir, ki ← Rt and g′i = f ′i + α′ie
′ for 1 ≤ i ≤ ℓ. resp′ =

((v1, k1,g
′
1), . . . , (vℓ, kℓ,g

′
ℓ)).

– c′ = Encp(y, ẽ) for ẽ ← D
Z3n,κ,

√
Σ

for κ = µ · e + ν and Σ = σ′20 · EE⊤ +

τ ′20 · I3n, where µ and ν are defined as in H′1, Ei ∈ Zn×n is the negacyclic

matrix corresponding to ei for i = 0, 1, 2, and E =





E0

E1

E2



 ∈ Z3n×n.

H′3: This is our simulator SPoK2 whose distribution is the same asΠPoK2(p, c, 0, y).
– c′ = r · c+ Encp(y, e

′) for r ← DtZn,σ1
, e′ ← D3

Zn,τ1
.

– ui ← DZn,σ2
and f ′i ← D3

Zn,τ2
for 1 ≤ i ≤ ℓ.

– vi = ui + α′ir, ki ← Rt and g′i = f ′i + α′ie
′ for 1 ≤ i ≤ ℓ. resp′ =

((v1, k1,g
′
1), . . . , (vℓ, kℓ,g

′
ℓ)).

33

Claim 1: Transcripts tr′ from H′0 and H′1 are statistically identical.

From Lem. 11, the distributions of (r, v1, . . . , vℓ) and (e′,g′1, . . . ,g
′
ℓ) from H′0

is identical to that of (r̂, v1, . . . , vℓ) and (ê′,g′1, . . . ,g
′
ℓ) from H′1. Therefore, the

distributions of (c′, resp′) are identical in H′0 and H′1.
Claim 2: Transcripts tr′ from H′1 and H′2 are statistically indistinguishable.

First of all, the distributions of (v1, . . . , vℓ) from H′1 and H′2 are within statistical
distance 2ǫ from Lem. 12. Then, we observe that c′ = r̂ · c + Encp(b, ê

′) =
Encp(y, ẽ) in H′1 where ẽ = r̂e+ ê′. From Lem. 6, the distribution of ẽ is within
statistical distance ≤ 2ǫ of D

Z3n,κ,
√
Σ
. Finally, it is obvious that the distribution

of ki is uniformly random over Rt in both procedures. Therefore, the statistical
distance between distributions from H′1 and H′2 is bounded by 4ǫ.

Claim 3: Transcripts tr′ from H′2 and H′3 are statistically indistinguishable.

We showed that H′0 follows the same distribution as ΠPoK2(p, c, a, b), which is
statistically within distance at most 4ǫ of H′2. In addition, H′2 is independent
from a and b but depends only on y. Hence, we can reverse our proofs for
Claims 1 and 2 to show that H′2 is statistically within distance at most 4ǫ of
ΠPoK2(p, c, 0, y), which follows the same distribution as the simulator SPoK2.

Extractability. For the second statement, we construct an efficient knowledge
extractor E ′ as follows. Suppose that (c′, comm′0, chal

′
0, resp

′
0) and (c′, comm′1, chal

′
1,

resp′1) are two accepting conversations such that chal′0 = (α′0,1, . . . , α
′
0,ℓ) 6=

chal′1 = (α′1,1, . . . , α
′
1,ℓ). Without loss of generality, we can assume that α′0,i = 0

and α′1,i = 1 for some i. Then, we have

(v1,i − v0,i) · c+ Enc(k1,i − k0,i,g1,i − g0,i) = (α′1,i − α′0,i) · c′ (mod q),

and the extractor E can recover (r, b, e′) by r = v1,i−v0,i ∈ R, b = k1,i−k0,i ∈ Rt

and e′ = g1,i − g0,i ∈ R3 satisfying the proven language c′ = rc + Enc(b, e′),
‖r‖∞ ≤ B′σ and ‖e′‖∞ ≤ B′τ . ⊓⊔

Proof of Theorem 1

B Randomized Linear Evaluation when t ∤ q

In this section, we discuss how one can achieve a security for OLE protocol when
the plaintext modulus t does not divide the ciphertext modulus q.

In fact, it can be achieved with only a slight modification to our randomized
linear evaluation algorithm. Our key observation is, given a ciphertext c ∈ Rq

and the public key p ∈ Rq, one can simply exploit our novel linear evaluation over
Rtq instead of Rq. Suppose that we are given a BFV encryption c = (c0, c1) ∈ R2

q

of x ∈ Rt. Observe that t · c = (t · c0, t · c1) ∈ R2
tq is a BFV encryption of x with

scaling factor q. Similarly, t · p ∈ R2
tq is a zero-encryption and thus can serve as

a public key. Then, new ciphertext modulus tq is a multiple of t, our randomized

34

linear evaluation algorithm can be applied to t · c with public key t · p. Finally,
the modulus can be switched back to q for consistency. Note that the resulting
ciphertext of the linear evaluation is simulatable, and thus the final output is
also simulatable. However, this näıve method requires modular arithmetic over
Ztq instead of Zq. Therefore, we provide an optimized variant of this method,
which operates over Zq.

• ModiRandLinEvalp(c; a, b): Given a BFV ciphertext c ∈ R2
q and ring elements

a, b ∈ Rt, sample r ← Da+tZn,σ and (e′0, e
′
1, e
′
2) ∈ R3 ← D 1

t
Zn×Z2n,τ . Compute

and output c′ = r · c+ Encp(b, e
′) where

e′ =
(⌊

(
q

t
−
⌊q

t

⌉

) · b+ e′0

⌉

, e′1, e
′
2

)

∈ R3.

Now we provide a correctness and security proof below.

Lemma 15 (Correctness). Let c ← Encp(x) for some x ∈ Rt. Then, the
algorithm RandLinEvalp(c; a, b) outputs a BFV encryption of f(x) = ax+ b if

(nBρBσ +Bτ)(1 + n+ nBρ) +
t+ 1

2
<

∆

2
.

Proof. From the definition, we have c = Encp(x, e) and

c′ = r · c+ Encp(b, e
′) (mod q)

= Encp(y, r · e+ e′) (mod q)

where e′ = (⌊(q/t− ⌊q/t⌉) · b+ e′0⌉ , e′1, e′2) for some e ← D3
Zn,ρ, r ← Da+tZn,σ

and (e′0, e
′
1, e
′
2)← D 1

t
Zn×Z2n,τ . Then, the only difference to t | q case is ⌊(q/t− ⌊q/t⌉) · b+ e′0⌉

term, which is bounded by 1/2 · t + Bτ + 1/2 = Bτ + (t + 1)/2. Therefore, it
directly follows that the final noise is bounded by ‖e∗‖∞ ≤ (nBρBσ + Bτ)(1 +
n+nBρ)+(t+1)/2 < ∆/2 from the proof of Lem. 5, and the resulting ciphertext
c′ decrypts to y = ax+ b correctly. ⊓⊔

We remark that the additional (t+1)/2 term is almost negligible compared to
the first term. To prove that our modified randomized linear evaluation algorithm
achieves linear circuit privacy, we first prove a modified form of Corollary 2.

Lemma 16. Let t > 0 be an integer, E ∈ Z3n×n a matrix, and σ, τ > 0 reals
such that

1

σ2
+

1

τ2
‖E‖2 ≤ 1

ηǫ(tZn)2

for some 0 < ǫ ≤ 1/2. Then, for arbitrary a, µ ∈ Rn and ν ∈ R3n, the following
distribution over 1

tZ
n × Z2n

D :=
{

Er+ e′ : r← Da+tZn,µ,σ, e
′ ← D 1

t
Zn×Z2n,ν,τ

}

is within statistical distance 4ǫ of D 1
t
Zn×Z2n,κ,

√
Σ

where κ = Eµ + ν and Σ =

σ2 ·EE⊤ + τ2 · I3n.

35

Proof. For x ∈ Zm, the probability that D outputs x can be written as follows:

D(x) = Pr[Er+ e′ = x | r← Da+tZn,µ,σ, e
′ ← D 1

t
Zn×Z2n,ν,τ]

=
∑

y∈a+tZn

Da+tZn,µ,σ(y) ·D 1
t
Zn×Z2n,ν,τ (x−Ey)

∝
∑

y∈a+tZn

ρσ(y − µ) · ρτ (x− ν −Ey).

Then, the rest of the proof directly follows from the proof of Lemma. 6. ⊓⊔

Theorem 3 (Linear Circuit Privacy). The modified randomized linear eval-
uation algorithm ModiRandLinEvalp(c; a, b) under parameters σ and τ , is circuit-
private for all affine functions over Rt if

1

σ2
+

3n2B2
ρ

τ2
≤ 1

ηǫ(tZn)2

for some negligible ǫ > 0.

Proof. Let c = Encp(x, e) be an encryption of x ∈ Rt for some e = (e0, e1, e2)←
D3

Zn,ρ, and f(z) = az+b be an affine function over Rt for some coefficients a, b ∈
Rt. Then, we define the simulator Sim for the output ciphertext c′ of our linear
evaluation algorithm as ModiRandLinEvalp(c; 0, y) where y = ax+ b. We use a
hybrid argument to show that the distributions of c′ from RandLinEvalp(c; a, b)
and Sim(s,p, c, y) are statistically indistinguishable. First, observe that the dis-
tribution is ModiRandLinEvalp(c; a, b) is essentially identical to the following
distribution.

H1 =

{

c′ =

(⌊

1

t
c0

⌉

,

⌊

1

t
c1

⌉) ∣

∣

∣

∣

(e′0, e
′
1, e
′
2) ∈ R3 ← D 1

t
Zn×Z2n,τ , r ← Da+tZn,σ,

(c0, c1) = t · r · c+ t · p · e′2 + (q · b+ t · e′0, t · e′1)

}

This can be shown easily, since

c′ = r · c+ p · e′2 +
(⌊q

t
· b+ e′0

⌉

, e′1

)

= r · c+ p · e′2 +
(

∆b+
⌊(q

t
−∆

)

· b+ e′0

⌉

, e′1

)

= r · c+ Encp

(

b; e′ =
(⌊

(
q

t
−

⌊q

t

⌉

) · b+ e′0)
⌉

, e′1, e
′
2

))

.

Now, consider the following distribution:

H2 :=

{

c′ =

(⌊

1

t
c0

⌉

,

⌊

1

t
c1

⌉) ∣

∣

∣

∣

(ẽ0, ẽ1, ẽ2) ∈ R3 ← D 1
t
Zn×Z2n,

√
Σ
,

(c0, c1) = t · ẽ2 · p+ (q · y + t · ẽ0, t · ẽ1)

}

where Σ = σ2 ·EE⊤+ τ2 · I3n and Ei is the negacyclic matrix corresponding to

ei for i = 0, 1, 2 and E =





E0

E1

E2



 ∈ Z3n×n.

36

Then, by Lem. 16, H1 and H2 are within statistical distance 4ǫ. This can be
shown easily with an analogous logic to the proof of Lemma 1. Now, with an
idential argument as above, we can show that the statistical distance of H2 and
the following distribution H3 is bounded by 4ǫ since H3 is essentially a special
case of H1 where a = 0 and b = y.

H3 =

{

c′ =

(⌊

1

t
c0

⌉

,

⌊

1

t
c1

⌉) ∣

∣

∣

∣

(e′0, e
′
1, e
′
2) ∈ R3 ← D 1

t
Zn×Z2n,τ , r ← DtZn,σ,

(c0, c1) = t · r · c+ t · p · e′2 + (q · y + t · e′0, t · e′1)

}

Finally, Sim(s,p, c, y) outputs an identical distribution as H3 as discussed
above. To sum up it all, we conclude that the statistical distance between two
distributions ModiRandLinEvalp(c; a, b) and Sim(s,p, c, y) is bounded by 8ǫ. ⊓⊔

We remark that this modified randomized linear evaluation algorithm can be
easily extended to the malicious setting, by simply replacing RandLinEval with
ModiRandLinEval. It is also worth noting that linear circuit privacy for BGV
cryptosystem [17] can be achieved utilizing this modified randomized linear eval-
uation algorithm. To be precise, a BGV ciphertext can be converted into a BFV
ciphertext by simply multiplying a constant (q− 1)/t ∈ Z where q and t denotes
the ciphertext and plaintext modulus, respectively. Then the affine function can
be securely computed efficiently using our algorithm, and the resulting BFV ci-
phertext can be converted back to a BGV ciphertext by multiplying a constant
−t.

C Appendix to Sec. 5

C.1 Basic Functionalities: FRand, FCommit, FPKI

In the following subsections, we use the following basic functionalities when
describing protocols: FRand that outputs a uniform random element from a
given set, FCommit for an ideal commitment scheme, and FPKI that generates
secret/public key pair for each party and distributes public key to all other
parties, with respect to an underlying cryptosystem (LHE).

C.2 SPDZ Framework

The SPDZ protocol [27] is the first practical protocol that can securely compute
arbitrary circuits in the presence of an actively corrupted majority. Under the
blueprint of SPDZ, a long line of works proposed variants and optimizations [8,
26, 40, 41, 5, 36].

SPDZ is based on secret-sharing over a moderate-sized (e.g., 64-bit) finite
field F. But in order to detect malicious behaviors of adversaries, SPDZ authen-
ticates the shares with information-theoretic (linear) MAC. That is, each party
Pi keeps an additive share [α]i of MAC key α ∈ F, while nobody knows the
actual value of α =

∑n
i=1[α]i. And, whenever data x is additively secret-shared

37

as [x]i’s during the protocol, secret-shares [αx]i of its MAC value αx are accom-
panied to provide authenticity. We denote the authenticated share of party Pi

for a secret value x ∈ F as JxKi = ([x]i, [αx]i).

Another important feature of SPDZ is that they take advantage of the pre-
processing model. The protocols are divided into offline phase, which can be run
before input values or circuit to compute is determined, and online phase. Heavy
cryptographic machinery is pushed into the offline phase, and thus parties can
carry out secure computation efficiently in the online phase.

Offline Phase. The goal of the offline phase is to generate a sufficient amount of
correlated randomnesses. In particular, parties generate (i) input mask JrK, which
is an authenticated share of random r whose value is only known to a designated
party, and (ii) authenticated triple (JaK, JbK, JcK), which are authenticated shares
of random a, b, c subject to a× b = c. A formal description of functionality FPrep

for the MPC preprocessing is given in Fig. 8. For a cleaner presentation, we
introduce a macro Auth (Fig. 9) and leverage it in functionality descriptions.

Online Phase. In the online phase, the parties jointly compute a circuit, con-
suming correlated randomnesses. For instance, party PI can input his secret
value xI ∈ F to the circuit, consuming an input mask JrK whose value r is only
known to PI : he adds (xI−r) to his share [r]I and broadcasts (xI−r). Then, all
parties can update their MAC shares accordingly. To output a result of computa-
tions, parties can reconstruct their additive secret shares, and protocolΠMACCheck

(Fig. 10) enables parties to check the authentication of the reconstructed value
without revealing the MAC key shares.

Additions of two shared values or multiplications between a shared value and
a public value can be done locally, thanks to the linearity of authenticated shares.
Additions between a shared value and a public value also can be easily done: a
designated party adds the public value to his share, and all parties update their
MAC shares accordingly. Finally, multiplications of two shared values can be
carried out with renowned Beaver’s trick [7], consuming a fresh authenticated
triple.

Since most protocols following the SPDZ framework share the same online
phase, we omit a formal description and security proof for the online phase.
For a more detailed discussion, please refer to other papers under the SPDZ
framework, e.g., [26, 40].

C.3 LowGear from Circuit-Private LHE

We give a description of the LowGear protocol of Overdrive [41]. While the
original LowGear protocol is based on the particular BGV scheme [17] and relies
on the noise-flooding technique to guarantee its circuit-privacy, we present in a
bit more generic way with our syntax of circuit-private LHE.

38

Functionality FPrep

Parameters:

– F: a finite field
– P1, · · · , Pn: the participating parties
– A ⊂ {1, · · · , n}: the set of indices of the corrupted parties

Initialize: On input (Init) from all parties,

1. Sample [α]i
$← F for all i /∈ A.

2. Wait for inputs [α]i ∈ F for all i ∈ A from the adversary.
3. Set α =

∑n
i=1[α]i.

4. Output [α]i to Pi, for all i /∈ A.

Input Mask Generation: On input (Input, PI , N) from all parties,

1. If I /∈ A, sample [r]i
$← FN for all 1 ≤ i ≤ n.

If I ∈ A, wait for inputs [r]i for all 1 ≤ i ≤ n from the adversary.
2. Run Auth([r]1, · · · , [r]n).
3. Output ([r]1, · · · , [r]n) to PI .

Triple Generation: On input (Triple, N) from all parties,

1. Sample [a]i, [b]i
$← FN for all i /∈ A.

2. Wait for inputs ([a]i, [b]i, [c]i) ∈ FN×3 for all i ∈ A from the adversary.
3. Set a =

∑n
i=1[a]i, b =

∑n
i=1[b]i, and c = a⊙ b.

4. Sample uniform random [c]i ∈ F for all i /∈ A, subject to c =
∑n

i=1[c]i.
5. Run Auth([a]1, · · · , [a]n), Auth([b]1, · · · , [b]n), and Auth([c]1, · · · , [c]n).

Fig. 8. Functionality FPrep

Macro Auth()

When Auth([x]1, · · · , [x]n) is called, where [x]i’s are in FN , do the following:

1. Set x =
∑n

i=1[x]i.
2. Wait for inputs [αx]i ∈ FN for all i ∈ A from the adversary.
3. Sample uniform random [αx]i ∈ FN for all i /∈ A, subject to αx =

∑n
i=1[αx]i.

4. Output JxKi = ([x]i, [αx]i) to Pi, for all i /∈ A.

Fig. 9. Macro Auth()

39

Protocol ΠMACCheck

Each party Pi with input (x, [αx]i, [α]i) ∈ F3 does the following:

1. Commit to δi = [αx]i− [α]i ·x (using FCommit). Wait until all parties commit.
2. Open δi (using FCommit). Wait until all parties open.
3. Check

∑n
i=1 δi = 0 and abort if the check fails.

Fig. 10. Protocol ΠMACCheck

High-Level Sketch. Recall that the main goal of the preprocessing is to generate
random authenticated triples (JaK, JbK, JcK) = ([a], [b], [c], [αa], [αb], [αc]) satis-
fying a × b = c. The LowGear protocol begins with each party Pi randomly

sampling [a]i, [b]i
$← F which constitute secret share of random values a =

∑

[a]i
and b =

∑

[b]i. Here, we describe a high-level idea of how to get random secret
share [c] = [a · b] from [a] and [b] using LHE. We can do the similar to get [αa],
[αb], [αc] from [a], [b], [c], and [α].

First, consider the following equality.

a× b =
n
∑

i=1

[a]i ·
n
∑

i=1

[b]i =
n
∑

i=1

[a]i · [b]i +
∑

i6=j

[a]i · [b]j

Having this equation in mind, we can reduce the task of generating random [c]
into a two-party protocol between Pi and Pj to securely secret share [a]i · [b]j . In
other words, it is sufficient to show how Pi and Pj can respectively get random
sij and rij satisfying sij + rij = [a]i · [b]j , without any leakage on [a]i and [b]j .
This is because then each party Pi can set [c]i = [a]i · [b]i +

∑

j 6=i(sij + rji).

Meanwhile, LHE naturally yields such two-party protocol as follows: (1) Pi

sends Enc([a]i) to Pj . (2) Pj samples rij
$← F and returns a ciphertext encrypting

([a]i · [b]j − rij) via homomorphic linear evaluation. Note that circuit-privacy
of the underlying LHE is crucial here. Otherwise, the response ct′ij may leak
information about [b]j or rij (and thus [c]j).

Full Protocol. Although the high-level idea is quite straightforward, the full
protocol is much more complex to deal with every possible malicious behavior of
adversaries. In particular, we must guarantee (i) that the same [a] is used when
computing [c] and [αa] and (ii) well-formednesses of ciphertexts.

For requirement (i), the so-called sacrifice technique (Fig. 14) is employed.
And for requirement (ii), whenever a ciphertext is sent from one party to an-
other, zero-knowledge proof of plaintext knowledge (ZKPoPK) is accompanied.
It proves that the ciphertext is honestly generated by the sender. The function-
ality FR

ZKPoPK for ZKPoPK is formally described in Fig. 11. As zero-knowledge
proofs for lattice-based encryptions usually come with unwanted slackness, we

40

define the functionality to allow such slackness and be parameterized by a rela-
tion R.

A full description of the LowGear’s preprocessing protocol ΠPrep is given in
Fig. 14. For cleaner presentation, we first define functionality FAuth (Fig. 12),
realize it as protocol ΠAuth (Fig. 13), and then describe ΠPrep in FAuth-hybrid
model.

Theorem 4. Protocol ΠAuth implements functionality FAuth in the (FPKI,FRand,
FCommit,FR

ZKPoPK)-hybrid model in the presence of actively corrupted majority, if
the underlying circuit-private LHE is enhanced-CPA secure14 and also supports
ciphertexts satisfying R. That is, if R(ct, pk,m) = true:

1. Decsk ◦ Evalpk(ct, a, b) = a ·m+ b holds for all a and b,
2. and Evalpk(ct, a, b) can be simulated from ct, pk, and a ·m+ b.

Proof. Implicit in [41].

Theorem 5. Protocol ΠPrep implements functionality FPrep in the (FAuth,FPKI,
FR

ZKPoPK,FRand)-hybrid model in the presence of actively corrupted majority, if
the underlying circuit-private LHE is enhanced-CPA secure and also supports
ciphertexts satisfying R.

Proof. Implicit in [41].

Functionality FR
ZKPoPK

On input (ZKPoPK, pk,m) from Pi and (ZKPoPK, pk) from Pj ,

1. If Pi is not corrupted, compute ct← Encpk(m).
Otherwise, wait for input ct such that R(ct, pk,m) = true from adversary.

2. Output ct to Pj .

Fig. 11. Functionality FR

ZKPoPK

D OLE Parameter Selection

D.1 Semi-honest OLE Parameter Selection

Parameter selection for our OLE protocol starts with security parameter λ and
the plaintext modulus t, both of which are given by the application. The only

14 Enhanced CPA security is a bit stronger version of IND-CPA security, introduced by
Overdrive [41] to give a security reduction of LowGear protocol. As in Overdrive, we
use RLWE parameters with large security margins to hinder attacks on enhanced-
CPA security. Please refer to [41] for a detailed discussion.

41

Functionality FAuth

Parameters: Same as in FPrep

Initialize: On input (Init) from all parties, do the same as in FPrep.

Authenticate: On inputs (Auth, [x]i) from each party Pi’s where [x]i ∈ FN ,

1. Run the macro Auth([x]1, · · · , [x]n).

Fig. 12. Functionality FAuth

Protocol ΠAuth

Parameters: Same as in FAuth

Initialize: On input (Init) from all parties,

1. Parties jointly call FPKI. Denote Pi’s public and secret key by pki and ski.

2. Each party Pi samples [α]i
$← F.

3. Each party Pi sends ctij ← Encpki([α]i) to Pj via FR
ZKPoPK, for all i 6= j.

Authenticate: On inputs (Auth, [x]i) from each party Pi’s where [x]i ∈ FN ,

Multiplication

1. Each party Pi does the following:

(a) Sample [x0]i
$← F.

(b) Parse [x]i = ([x1]i, · · · , [xN]i) and set [x̃]i = ([x0]i, [x1]i, · · · , [xN]i).
2. Each (ordered) pair of distinct parties (Pi, Pj) does the following:

(a) Pj samples r̃ij = (rij0, · · · , rijN)
$← FN+1.

(b) Pj sends ct′ij ← Evalpki(ctij ; [x̃]j ,−r̃ij) to Pi.
(c) Pi computes s̃ij ← Decski(ct

′
ij) and sets s̃ij = (sij0, · · · , sijN).

3. Each Pi computes [αxk]i = [α]i[xk]i +
∑

j 6=i(sijk + rjik), for all 0 ≤ k ≤ N .

MAC Check

1. Parties jointly sample γ1, · · · , γN $← F (using FRand).
2. Each party Pi does the following:

(a) Compute and broadcast [x̂]i = [x0]i +
∑N

j=1 γj [xj]i.

(b) Compute x̂ =
∑n

k=1[x̂]k.

(c) Compute [αx̂]i = [αx0]i +
∑N

j=1 γj [αxj]i.
3. Parties jointly call ΠMACCheck with inputs (x̂, [αx̂]i, [α]i), respectively.
4. Each party Pi stores JxjKi = ([xj]i, [αxj]i) as the output, for all 1 ≤ j ≤ N .

Fig. 13. Protocol ΠAuth

42

Protocol ΠPrep

Parameters: Same as in FPrep

Initialize: On input (Init) from all parties,

1. Parties jointly initialize FAuth with inputs (Init).
2. Parties jointly call FPKI. Denote Pi’s public and secret key by pki and ski.

Input Mask Generation: On input (Input, PI , N) from all parties,

1. For each 1 ≤ i ≤ n, PI samples [r]i
$← FN and sends it to Pi.

2. All parties jointly call FAuth with respective inputs (Auth, [r]i) from Pi.

Triple Generation: On input (Triple, N) from all parties,

Multiplication & Authentication

1. Each party Pi samples [a]i, [b]i, [b
′]i

$← FN .
2. Each (ordered) pair of distinct parties (Pi, Pj) does the following:

(a) Pi sends ctij ← Encpki([a]i) to Pj via FR
ZKPoPK.

(b) Pj samples rij
$← FN and sends ct′ij ← Evalpki(ctij ; [b]j ,−rij) to Pi.

(c) Pi computes sij ← Decski(ct
′
ij).

3. Each party Pi computes [c]i = [a]i ⊙ [b]i +
∑

j 6=i(sij + rji).
4. Repeat Step 2 and 3 with ([b′]i, r

′
ij , s

′
ij) in place of ([b]i, rij , sij) to get [c′]i.

5. Parties jointly call FAuth; each party Pi sends (Auth, ([a]i, [b]i, [c]i, [b
′]i, [c

′]i))
and receives JaKi, JbKi, JcKi, Jb′Ki, and Jc′Ki.

Sacrifice

1. Parties jointly sample γ
$← F (using FRand).

2. Each party Pi does the following:
(a) Compute ([u]i, [αu]i) = γ · JbKi − Jb′Ki.
(b) Broadcast [u]i and compute u =

∑n
k=1[u]k.

(c) Compute ([v]i, [αv]i) = γ · JcKi − Jc′Ki − u⊙ a.
(d) Broadcast [v]i and compute v =

∑n
k=1[v]k.

(e) Check v = 0 and abort if the check fails.

3. Parties jointly sample γu, γv
$← FN (using FRand).

4. Each party Pi computes:
(a) w = 〈γu,u〉+ 〈γv,v〉.
(b) [αw]i = 〈γu, [αu]i〉+ 〈γv, [αv]i〉.

5. Parties jointly call ΠMACCheck with inputs (w, [αw]i, [α]i), respectively.
6. Each party Pi stores (JaKi, JbKi, JcKi) as the output.

Fig. 14. Protocol ΠPrep

43

restriction on the plaintext modulus is that t = 1 (mod 2n) where n is the
degree of the polynomial modulus. This condition is necessary to support packing
plaintext values into elements in the ring Rt, as explained Section 2.4. The value
of n is chosen to be the smallest power of 2 allowed by the ciphertext modulus;
a larger ciphertext modulus requires a larger n to maintain security. Parameter
selection begins with n as a small power of 2 (usually n = 212 at the start),
and then if the resulting ciphertext modulus is too large, the parameters are
recomputed with a larger n. In practice, we never consider n beyond 214.

Given the plaintext modulus t and the polynomial modulus degree n, the
next parameters to select are the Gaussian variances σ2 and τ2. Note that the
initial error variance is set to be ρ2, where ρ is fixed to be 3.2 [2]. The remaining
two variances must satisfy Inequality 2.

Since the Gaussian sampling is the most computationally intensive piece of
the protocol, we minimize these variances by setting these two terms to be equal.
In other words, we have σ =

√
2ηǫ(tZ

n) and τ =
√
6nBρηǫ(tZ

n).
Once we have these values, the only remaining parameter is the cipehrtext

modulus q. In order to guarantee correctness, we require that

(nBρBσ +Bτ)(1 + n+ nBρ) < ∆/2 = q/2t.

If the resulting bound on q is larger than allowed by the current value of n, then
we restart the parameter selection process with n ← 2n. We make use of the
lattice estimator [3] to verify the largest q associated with n.

D.2 Malicious OLE Parameter Selection

In order to establish the parameters for the zero-knowledge proof, several fac-
tors should be considered, including the size of the challenge space, the indistin-
guishability of the simulators SPoK1 and SPoK2, and the gap between the honest
language and the proven language. This gap is often referred to as the soundness
slack and it represents how much cost do we pay in order to achieve security
against a malicious adversary compared to an honest adversary. Firstly, we start
from setting ℓ = ⌈ 128

log(2n)⌉ so that |C|−ℓ ≥ 2−128 and the soundness security is

guaranteed for both the proofs of the ciphertext knowledge.
On the other hand, we require ρ0 ≥ 2ηǫ(Z

n), σ0 ≥ ηǫ(tZ
n) and τ0 ≥ ηǫ(Z

n)
to achieve indistinguishability of the simulators SPoK1 and SPoK2 with respect
to the real protocol, respectively. For the best performance, we initially set ρ0
to be the lowest possible value, namely ρ0 = 2ηǫ(Z

n).
Next, we determine the values ρ1 and ρ2 to minimize the soundness slack of

PoK1. To measure the soundness slack, we adopt a methodology similar to [42]
since our construction is similar to theirs. Leveraging their approach, we use
B′ρ/Bρ0

= 2(ρ1 + ρ2)/ρ0 as a measurement to the soundness slack. It is worth
noting that when ρ0 is fixed, the soundness slack is solely proportional to ρ1+ρ2.
Given 1

ρ2
0

= 1
ρ2
1

+ ℓ
ρ2
2

, it can be easily shown that ρ1 + ρ2 is minimized when

ρ1 =
√
ℓ1/3 + 1 · ρ0 and ρ2 = ℓ1/3 · ρ1. Now, similar to the semi-honest version,

44

the following inequalities should hold to guarantee the passive security and the
correctness of our protocol.

1

σ2
1

+
3n2B2

ρ1

τ21
≤ 1

ηǫ(tZn)2
,

(nBρ1
Bσ1

+Bτ1)(1 + n+ nBρ1
) < ∆/2 = q/2t.

As discussed in the parameter selection for semi-honest OLE, we can set t, σ1

and τ1 in relation to ρ1. With σ1 and τ1 fixed, we select the error parameters
σ0, σ2, τ0 and τ2 to minimize the soundness slack of our scheme. Notably, the
honest language L2 and the proven language L′2 of PoK2 have almost identical
form to those of PoK1, allowing us to set σ1 =

√
ℓ1/3 + 1 ·σ0, σ2 = ℓ1/3 ·σ1, τ1 =√

ℓ1/3 + 1 · τ0 and τ2 = ℓ1/3 · τ1. Similarly, it minimizes the soundness slack for
PoK2. We remark that the conditions σ0 ≥ ηǫ(Z

n) and τ0 ≥ ηǫ(Z
n) are satisfied

naturally.

45

