
Bitwise Garbling Schemes
A Model with 3

2
κ-bit Lower Bound of Ciphertexts

Fei Xu1, Honggang Hu1,2(B), and Changhong Xu1

1 School of Cyber Security and Technology, University of Science and Technology of
China, Hefei 230027, China

{xf555233,xuchangh}@mail.ustc.edu.cn
2 Hefei National Laboratory, Hefei 230088, China

hghu2005@ustc.edu.cn

Abstract. At Eurocrypt 2015, Zahur, Rosulek, and Evans proposed the
model of Linear Garbling Schemes. This model proved a 2κ-bit lower
bound of ciphertexts for a broad class of garbling schemes. At Crypto
2021, Rosulek and Roy presented the innovative "three-halves" garbling
scheme in which AND gates cost 1.5κ + 5 bits and XOR gates are free.
A noteworthy aspect of their scheme is the slicing-and-dicing technique,
which is applicable universally to all AND gates when garbling a boolean
circuit. Following this revelation, Rosulek and Roy presented several open
problems. Our research primarily addresses one of them: “Is 1.5κ bits
optimal for garbled AND gates in a more inclusive model than Linear
Garbling Schemes? ”

In this paper, we propose the Bitwise Garbling Schemes. Our key
revelation is that 1.5κ bits is indeed optimal for arbitrary garbled AND
gates in our model. Moreover, we prove the necessity of the free-XOR
technique: If free-XOR is forbidden, we prove a 2κ-bit lower bound. As
an extension, we apply our idea to construct a model for fan-in 3 gates.
Somewhat unexpectedly, we prove a 7

4
κ-bit lower bound. Unfortunately,

the corresponding construction is not suitable for 3-input AND gates.
This construction may be of independent interest.

Keywords: Garbled circuit · 2PC · Linear garbling scheme

1 Introduction

Since Yao introduced Garbled Circuits (GC) in [30], they have gained significant
attention. It is believed that GC are the simplest construction when realizing
secure two-party computation (2PC). Up to now, garbled circuit is still the
primary technique in the 2PC setting due to their efficiency.

The main reason of their high efficiency is that both parties only use fast
symmetric-key operations. Since necessary computation can be finished apace,
the actual bottleneck of GC lies in the communication overhead. There are a
continual line of works [18,20,21,23,26,27,31] aiming to reduce the length of data
required to encrypt individual gates, as this data will subsequently be transmit-
ted from the garbler to the evaluator. We distinguish between additional bits

2 F. Xu, H. Hu and C. Xu

which are used to control the evaluator’s behavior and ciphertexts which are di-
rectly used to compute the output wire label. In addition, we refer to these two
parts collectively as material [19]. For example, the material of an AND gate in
the “three-halves” garbling scheme [27] contains three 0.5κ-bit ciphertexts and 5
additional bits.

Zahur, Rosulek, and Evans proposed the half-gates scheme and the model
of Linear Garbling Schemes in [31]. As we mentioned above, they proved there
exists a 2κ-bit lower bound of ciphertexts in this model. Meanwhile, the half-
gates scheme ensures that the communication cost per AND gate is 2κ bits.
Hence, this scheme is optimal in this model. However, Rosulek and Roy [27]
then proposed the state-of-the-art “three-halves” garbling scheme, which totally
breaks this lower bound. The novel slicing technique, in which different halves
of the output wire label can be computed via different linear combinations, lies
outside this model, introducing more possibilities. Intuitively, since the “three-
halves” garbling scheme improves the size of material by slicing the output wire
label into halves, a further slicing could potentially yield even better outcomes.
For example, we may require only 4

3κ bits, 5
4κ bits, or potentially even fewer.

Therefore, Rosulek and Roy [27] proposed an open question:

Is 1.5κ bits optimal for garbled AND gates in a more inclusive model than
than Linear Garbling Schemes?

We discuss this model and technique later in Sect. 3.

1.1 Our Contributions

We propose a model called Bitwise Linear Garbling Schemes, which builds
upon the foundation of the traditional Linear Garbling Schemes model. This
means that all practical garbling schemes captured by the old model are naturally
included in our new model. The primary improvement of our model is our focus
on the slicing technique. We consider the most extreme case where the κ-bit
wire label can be sliced into κ bits. As a result, in our new model, each bit
of the output wire label can be computed via a different linear combination.
As we mentioned, this model is bitwise. One may argue that this idea is only
implied by the slicing technique, short of inclusiveness. However, it is necessary
for a garbling scheme to guarantee the security of each bit of the output wire
label. Hence, we believe that our bitwise processing is hard to circumvent, which
reflects the inclusive nature of our model.

In response to this open question, we consider the garbling of an arbitrary
AND gate, rather than just a single isolated AND gate. In this case, based on our
classification of oracle responses, we prove a 3

2κ-bit lower bound in our model
achieved with free-XOR. Inspired by [10], we also deal with non-linear actions
by proposing the model of Bitwise Garbling Schemes, in which the 3

2κ-bit
lower bound still holds.

Meanwhile, we also discover the importance of free-XOR. It is quite interest-
ing that free-XOR plays a crucial role in both XOR gates and AND gates. When

Title Suppressed Due to Excessive Length 3

constructions similar to free-XOR (see Sect. 6.1) are forbidden, we can prove a
2κ-bit lower bound. We show that sacrificing compatibility with free-XOR does
not provide any advantage in our model, even under the gate-hiding assumption
[27].

The lower bounds in our models on a fan-in 2 gate merely match state-of-the-
art “three-halves” garbling scheme. Therefore, we extend our models into fan-in
3 gates. In this case, we prove the 7

4κ-bit lower bound of ciphertexts with the
corresponding construction. However, this construction is only suitable for fan-in
3 gates whose truth table is of even parity, so it does not work on a 3-input AND
gate. Hence, this idea alone is not practical.

Techniques for proving lower bounds. Our starting point is Bitwise Linear
Garbling Schemes, inspired by Linear Garbling Schemes and the slicing technique
naturally. In short, each bit of the output wire label, which can be computed via a
different linear combination, must be private. It is easy to find that privacy comes
from the non-linearity of the queries to the random oracle in Linear Garbling
Schemes.

Therefore, we propose a pivotal observation: The queries to the random ora-
cle can be classified. To the best of our knowledge, all known practical garbling
schemes align with this observation. For simplicity, let’s consider a garbled AND
gate which takes wire labels Ai, Bj where i, j ∈ {0, 1} as inputs with a ran-
dom oracle H. We use Ei,j to represent the evaluator with wire labels (Ai, Bj).
Assuming each input wire label is independently sampled from {0, 1}κ, it is intu-
itive to exemplify with the following forms: H(Ai), H(Bj) and H(Ai, Bj). What
is different is we view H(A0) as oracle responses which can be computed by
{E0,0, E0,1}, while {E1,0, E1,1} can only guess them. Obviously, we can not list
all oracle responses, but we can consider all subsets of {E0,0, E0,1, E1,0, E1,1}. We
require that every oracle response be computed by at least one evaluator, and
we associate this response with a subset containing corresponding evaluators.
In light of the limited number of subsets, we finitely classify oracle responses.
For the sake of presentation, we choose a common form to represent all ora-
cle responses associated with a subset. For example, in the free-XOR setting,
A0 ⊕ B1 = A1 ⊕ B0, so we choose H(A0 ⊕ B1) to represent oracle responses
associated with {E0,1, E1,0} in our discussion and proofs of lower bounds. We
insist that the random oracle is not necessarily queried in this form.

Furthermore, oracle responses are in charge of ensuring security. Each bit of
the output wire label needs a linear combination of all possible oracle responses
(Q1, Q2, . . . , Qq) to keep private, which allows us to build a matrix. Roughly
speaking, in order to compute the k-th bit of the output wire label of the eval-
uator with (Ai, Bj), we allocate a vector to compute the inner product of this
vector and (Q1, Q2, . . . , Qq). We study the rank of this matrix by considering
the security, and prove the lower bound. This technique was presented in Linear
Garbling Schemes [31].

In [10], Fan, Lu and Zhou viewed the mapping from bases (which are simi-
lar to oracle responses) and ciphertexts to the output wire label as a function.
Considering a linear function which performs linear combinations of oracle re-

4 F. Xu, H. Hu and C. Xu

sponses and ciphertexts, the model of Linear Garbling Schemes is included. By
considering non-linear functions, they dealed with non-linear mapping. Inspired
by their idea, we then propose the Bitwise Garbling Schemes, which also allows
non-linear actions.

Finally, the model for a fan-in 3 gate is more complicated, considering three
input labels Ai, Bj , Ck and more types of responses used by {Ei,j,k|i, j, k ∈
{0, 1}}. Hence, we choose a different way to prove the lower bound: Fixing on
the view of E0,0,0, we show that 7

4κ oracle responses are necessary, and prove
that the lower bound of ciphertexts is also 7

4κ.

1.2 Related Works

GC are widely regarded as the most common approach to 2PC in many cases.
Moreover, the foundational concept behind GC is pivotal even when the number
of involved parties exceeds two [12,24,25]. GC are also employed with respect
to different network conditions and application scenarios [2,8,13,14,15], through
diverse ideas and techniques. Concurrently, a multitude of studies [9,17,28] have
emerged to adapt GC for malicious secure 2PC. A seminal advancement in the
GC domain is the introduction of a key framework named garbling schemes
by Bellare, Hoang, and Rogaway [6]. This framework not only standardized a
series of related works but also solidified the description and security properties
of GC, making it more convenient to elaborate formally. Additionally, there
are two prominent techniques in this area. Many garbling schemes utilize these
techniques, optimizing either computational or communicational efficiency.

The point-and-permute technique [5] requires the garbler to sample a random
permute bit per wire. Although each permute bit needs to be secret, the garbler
can utilize the XOR operation between this bit and the actual logic value to
produce two contrasting color bits. Each color bit corresponds to a specific wire
label, while only one of them is revealed to the evaluator. In the majority of
garbling schemes employing this technique, the evaluator can take advantage of
color bits of wire labels to choose the corresponding ciphertexts for all gates,
as the garbler has arranged ciphertexts based on color bits by convention. This
technique avoids the evaluator’s need for multiple attempts to decide on the
right ciphertexts, leading to a reduction in computational cost. However, some
methods [3,18,27,29] also show that it is possible to circumvent the 2κ bits lower
bound if the evaluator’s behavior is not totally decided by color bits. In line with
this, our model does not impose such a constraint. Note that this technique itself
costs 1 bit of each wire label, which technically reduces the security parameter
by 1. Nevertheless, this decrement is typically overlooked in general discourse.

The free-XOR technique introduced by Kolesnikov and Schneider [21] has
been playing an important role in GC acceleration. The garbler chooses a global
and secret XOR-difference ∆, and two wire labels of the same wire always keep
this difference. In the context of XOR gates, this technique simplifies the opera-
tions for both parties involved. They merely have to perform the XOR operation
on two input wire labels to determine the output wire label, and the commu-
nication cost of XOR gates is reduced to zero. It is also worth noting that this

Title Suppressed Due to Excessive Length 5

technique mandates a distinct security requirement for hash functions [7,27]. Be-
cause output wire labels are also restricted to maintain the XOR-difference ∆,
Rosulek and Roy [27] also proposed another question: Does it help to sacrifice
compatibility with free-XOR? In this paper, we also answer this question.

1.3 Comparison with Previous Works

Recently, similar results about the lower bound were also presented in [4,10]. We
start with [10].

In [10], Fan, Lu and Zhou presented the (1 + 1/w)κ lower bound where
w ≥ 1, not the exact 3

2κ lower bound. Their result is deduced by applying
column correlations on the model of Linear Garbling Schemes. More specifically,
the “three-halves” garbling scheme can be viewed as correlate columns in two
kinds of half-gates garbling design (see Sect. 3.2): Columns in the first need two
ciphertexts while columns in the second need one ciphertext. They directly follow
this method to correlate w columns, in which one column needs 2 ciphertexts
while the remaining w − 1 columns needs 1 ciphertexts. Hence, they obtain the
(1+1/w)κ-bit lower bound. Because the output wire label is sliced into w pieces,
this is actually a simple generalization of the slicing technique. Even though they
showed that correlate more than 2 columns is infeasible, they can not provide
a complete proof like ours, because we carefully consider the security of each
bit. Note that they also mentioned the garbling of an AND gate with multiple
inputs, but their research and the corresponding lower bound are slightly rough.

In [4], Baek and Kim exploit algebraic techniques to obtain the 3
2κ lower

bound. However, the description of the model in [10] is similar to [4]. Both of
them follow the slicing technique completely, leading to the similar generaliza-
tion. There is a discussion about oracle responses in [4], restricting oracle re-
sponses in their model and proof. However, our classification of oracle responses
is different in nature. In consider of numerous available forms of oracle queries,
our classification is based on subsets of {E0,0, E0,1, E1,0, E1,1}, making itself more
convincing (see Sect. 4).

Our results. To sum up, our work differs in a variety of ways. Firstly, we rely on
our key and novel observation to classify oracle responses. Secondly, although it
is the idea of slicing that paves the way for the 3

2κ-bit construction, our bitwise
handling remains new. While previous works and our intuition is based on the
slicing technique, our lower bounds hold once a scheme ensures the security of
each bit. Moreover, we extend our model into fan-in 3 gates with the 7

4κ-bit
lower bound.

2 Preliminaries

2.1 Notations

x
$←− X means that x is uniformly sampled from the uniform distribution X. The

notation [n] denotes the set {1, . . . , n}. We use bold symbols to denote vectors,

6 F. Xu, H. Hu and C. Xu

e.g., e,X,Y . Calligraphic fonts are used to denote sets, e.g., E ,Z. In the context
of garbling schemes, we may also refer to the garbler or evaluator using pronouns
he or she. κ denotes the computational security parameter.

We mainly focus on how to garble an arbitrary AND gate g. Two input wires a
and b of g are encoded as wire label pairs (A0, A1) and (B0, B1). Each wire label is
uniformly sampled from {0, 1}κ. During GC evaluation, the actual logic value on
wire a is denoted as xa. We use Ai

0 to denote the i-th bit of A0. One wire label in a
pair (A0, A1) represents the logic value 1 on this wire, while the other represents
0. The evaluator obtains one of them, based on xa. The output wire c is encoded
as wire label pair (C0, C1). We denote the concatenation of two wire labels
Ai, Bj by Ai ∥ Bj . To make the evaluator with two wire labels (Ai, Bj) from
two label pairs obtain her corresponding output wire label correctly, the garbler
also arranges ciphertexts G1, . . . , Gm where m is the number of ciphertexts.

Note that the evaluator only has one element of the set {(Ai, Bj)|i, j ∈
{0, 1}}, while the garbler has to consider all of them. For simplicity, we re-
gard Ei,j as the evaluator with (Ai, Bj). This suggests that four distinct types
of evaluators coexist simultaneously. When considering the security property,
we hope to protect Ei,j from each of {Eī,j , Ei,j̄ , Eī,j̄} because an adversary may
possess one of them and threat privacy. (We sometimes use ī instead of 1− i.)

2.2 Garbling Schemes

We use the definition of garbling schemes from [27].

Definition 1. A garbling scheme consists of four algorithms as below.
(M, e,D) ← Garble (1κ, f): Output the material M of GC, encoding infor-

mation e and decoding strings D on parameter 1κ and the description of the
boolean circuit f .

X :=Encode(e,x): Transform the cleartext input x to the garbled input X
with encoding information e.

Y :=Eval(M,X): On the input (M,X), evaluate the garbled output Y .
y :=Decode(D,Y): Transform the garbled output Y to the cleartext output

y with decoding strings D.
A garbling scheme satisfies the following security properties.
Correctness: After getting (M, e,D)←Garble (1κ, f) for the boolean circuit

f and cleartext input x, Decode(D,Eval(M,Encode(e,x)))= f(x) always holds.
Privacy: The output of a simulator with input (1κ, f,y) is indistinguishable

from (M,X,D) generated in the usual way. This means that (M,X,D) should
not reveal any information about x except y = f(x).

Obliviousness: The output of a simulator with input (1κ, f) is indistinguish-
able from (M,X) generated in the usual way. This means that (M,X) should
not reveal any information about x since decoding information is unknown.

Authenticity: Given the collection (M,X,D), the probability of producing
Y ′ ̸=Eval(M,X) such that Decode(d,Y ′) ̸=⊥ is negligible. In other words, no
PPT adversary A can somehow produce a garbled output which can be decoded
as a cleartext output different from y with non-negligible probability.

Title Suppressed Due to Excessive Length 7

In [27], garbling schemes are not required to have perfect correctness, because
for two wire labels A0, A1, it is possible that H(A0) = H(A1). However, within
the random oracle model, we leave out this negligible probability for ease of
analysis.

3 Technical Overview: Garbling Schemes

In this section, we review the Linear Garbling Schemes model and the slicing-
and-dicing technique in the “three-halves” garbling scheme. We offer a more
detailed review of the old model, as our novel model builds upon it. While
the model of Linear Garbling Schemes includes all known practical garbling
schemes at that time, several works [3,18,27,29] pointed out its shortcomings.
Such insights paved the way for the development of a new model.

3.1 Linear Garbling Schemes

In the Linear Garbling Schemes model, parties are viewed as computationally
unbounded entities which can make polynomially many queries to a random
oracle. This standard setting about Minicrypt is also a fitting description of
practical garbling schemes. We follow the concept of ideal security in this
model, which requires that no adversary has advantage better than poly(κ)/2κ.
3 Readers are referred to this model in [31]. When garbling an AND gate, this
model is as follows:

Garble: This algorithm is parameterized by integers m, r, q and vectors A0, A1,
B0, B1, {Ca,b,0|a, b ∈ {0, 1}}, {Ca,b,1|a, b ∈ {0, 1}}, and {G(i)

a,b|a, b ∈ {0, 1}}.
Each vector has length of r + q, and consists of entries in GF (2κ).

1. For i ∈ [r], choose Ri
$←− GF (2κ).

2. Make q distinct queries to the random oracle (which can be chosen as
a deterministic function of the Ri values) and get responses Q1, . . . , Qq.
We place these values on which the algorithm can act linearly in S =
(R1, . . . , Rr, Q1, . . . , Qq).

3. Choose two permute bits a, b
$←− {0, 1} for two input wires.

4. For i ∈ {0, 1}, compute Ai = ⟨Ai,S⟩, Bi = ⟨Bi,S⟩ and Ci = ⟨Ca,b,i,S⟩.
Then two input wire labels are (A0 ∥ 0, A1 ∥ 1). As we state above, these
subscripts denote the public color bits. Aa and Bb correspond to FALSE. Let
C0 correspond to FALSE.

5. For i ∈ [m], compute Gi = ⟨G(i)
a,b,S⟩. These values comprise the garbled

circuit.
3 Clearly, a garbling scheme on security parameter κ − 1 also provides security

poly(κ)/2κ. However, we consider the concrete parameter κ. In other words, we
do not allow to degrade the security parameter.

8 F. Xu, H. Hu and C. Xu

Encode: On input xa, xb ∈ {0, 1}, set color bits α := xa⊕ a and β := xb⊕ b. The
evaluator gets Aα ∥ α and Bβ ∥ β.
Eval: Parameterized by q′ and vectors {V α,β |α, β ∈ {0, 1}} of length q′ +m+2.

1. The evaluator has wire labels Aα ∥ α, Bβ ∥ β, and ciphertexts G1, . . . , Gm.
2. Make q distinct queries to the random oracle and get responses Q′

1, . . . , Q
′
q′ .

We also place these values on which the algorithm can act linearly in T =
(Aα, Bβ , Q

′
1, . . . , Q

′
q′ , G1, . . . , Gm).

3. Output the inner product ⟨V α,β ,T ⟩.

To ensure the correctness, the equation C(a⊕α)∧(b⊕β) = ⟨V α,β ,T ⟩ must hold.
T is divided into a public part and a private part. T pub consists of wire labels
and responses. Note that {Q′

1, . . . , Q
′
q′} must be a subset of {Q1, . . . , Qq}, since

the garbler has to be able to anticipate it. Hence, T pub is a linear function of S
which only depends on α, β. We denote it by T pub = Mα,β×S⊤. Similarly, T prv

which consists of ciphertexts is also a linear function of S which only depends
on a, b. Assume a matrix Ga,b whose rows are G

(1)
a,b, . . . ,G

(m)
a,b , we denote it by

T prv = Ga,b × S⊤.
Then we divide V α,β similarly, and get the following condition:〈

Ca,b,(a⊕α)∧(b⊕β),S
〉
=

〈
V pub

α,β ,T
pub

〉
+

〈
V prv

α,β ,T
prv

〉
=

〈
V pub

α,β ,Mα,β × S⊤
〉
+
〈
V prv

α,β ,Ga,b × S⊤
〉

= ⟨Zα,β ,S⟩+
〈
V prv

α,β ×Ga,b,S
〉
,

where Zα,β = V pub
α,β ×Mα,β is a vector depending on α, β.

The vector S is uniformly distributed. Hence, the following equation must
hold:

Ca,b,(a⊕α)∧(b⊕β) = Zα,β + V prv
α,β ×Ga,b. (1)

Zahur, Rosulek, and Evans proved three pivotal claims:

– Claim 1: Matrices {Ga,b|a, b ∈ {0, 1}} are all distinct.
– Claim 2: Vectors {Zα,β |α, β ∈ {0, 1}} are pairwise linearly independent.
– Claim 3: Vectors {V prv

α,β |α, β ∈ {0, 1}} are pairwise linearly independent.

In our opinion, Claim 2 is crucial, so we give their proof of Claim 2. Suppose
that it is violated by Z0,1 = σZ0,0, where σ is a scalar. Then E0,0 can also
compute ⟨V 0,1,T ⟩ = σ⟨V pub

0,0 ,T
pub⟩+ ⟨V prv

0,1 ,T
prv⟩. Therefore, E0,0 has output

wire labels for two different cases, which is not allowed.
To prove the lower bound, we get four equations by considering (α, β) ∈

{(0, 0), (0, 1)} and (a, b) ∈ {(0, 0), (0, 1)} for Equation (1). By combining these
equations appropriately, we get:

(V prv
0,1 − V prv

0,0)× (G0,1 −G0,0) = 0.

Title Suppressed Due to Excessive Length 9

Based on Claim 1 and Claim 3, we can find that V prv
0,1 − V prv

0,0 is a nonzero
vector and G0,1 − G0,0 is a nonzero matrix. So G0,1 − G0,0 must have at least
2 rows. This implies that Ga,b has at least 2 rows, resulting in ciphertexts that
are at least 2κ bits in length.

3.2 Slicing-and-Dicing

The “three-halves” garbling scheme [27] uses the slicing-and-dicing technique to
beat the old lower bound. In the Linear Garbling Schemes model, {V α,β |α, β ∈
{0, 1}} are fixed. However, the dicing technique enables the garbler to send
additional bits apart from 1.5κ-bit ciphertexts. These bits are generated by en-
crypting control bits. In this scheme, control bits are used to determine how to
combine different parts of input wire labels to compute the output wire label,
i.e., V α,β . Moreover, these control bits are sampled by a randomized algorithm,
ensuring that the evaluator learns nothing from them. This idea, which first ap-
peared in [18], is outside of the old model. We choose a trivial approach where
the evaluator is assumed to know how to compute her output wire label, allowing
us to overlook these bits.

Our major concern is the slicing technique which enables the evaluator to ex-
ploit more linear combinations. As noted by Rosulek and Roy [27], it increases
the linear-algebraic dimension in which the scheme operates. An intuitive differ-
ence between this scheme and previous schemes is that this scheme can operate
on a 4× 2 sub-construction (see Table 1). To explain how this technique works,
we examine the half-gates scheme in a linear-algebraic perspective:

1 0 0
1 0 1
1 1 0
1 1 1

 C
G0

G1

 =

1 0 1 0
1 0 0 1
0 1 1 0
0 1 0 1

︸ ︷︷ ︸

MH

H(A0)
H(A1)
H(B0)
H(B1)

⊕

0 0
1 0
0 0
1 1

[
A0

∆

]
⊕

0
1
0
0

︸︷︷︸

t

∆.

The main reason for the 2κ-bit ciphertexts in the half-gates scheme is that
the rank of the matrix MH is 3. (These hash outputs collectively are regarded as
the oracle responses.) By setting the output wire label C as H(A0)⊕H(B0), we
only need two κ-bit ciphertexts to solve the mismatches between different rows.
Note that the fourth row can be obtained by XORing the top three rows, so it
is free in terms of ciphertexts.

If we slice the output wire label C into κ bits, we can approximate this
garbling as iterating a 4× 1 sub-construction κ times: A 4× 1 sub-construction
is used to compute one bit of the output wire label, e.g., C1 = H(A0)

1⊕H(B0)
1.

To compute each bit of the output wire label, both parties need to combine wire
labels, 1-bit oracle responses and ciphertexts linearly. This is how we include
half-gates when the output wire label is sliced.

We now consider the “three-halves” garbling scheme with a focus on the ora-
cle responses as presented in Table 1. One can easily check that each half follows

10 F. Xu, H. Hu and C. Xu

Table 1. The oracle responses used in different halves of the output wire label. These
oracle responses are of length κ/2 and free-XOR technique is used.

Input wire labels Oracle responses
Left half Right half

(A0, B0) H(A0)⊕H(A0 ⊕B0) H(B0)⊕H(A0 ⊕B0)
(A0, B1) H(A0)⊕H(A0 ⊕B1) H(B1)⊕H(A0 ⊕B1)
(A1, B0) H(A1)⊕H(A0 ⊕B1) H(B0)⊕H(A0 ⊕B1)
(A1, B1) H(A1)⊕H(A0 ⊕B0) H(B1)⊕H(A0 ⊕B0)

the above half-gates construction. Therefore, both halves need two 0.5κ-bit ci-
phertexts. It still does not provide any improvement since 2κ bits are needed.

However, from a linear-algebraic perspective, we can formulate a matrix of
rank 5 to multiply the vector of these oracle responses. Specifically, let us consider
CL

i,j and CR
i,j as the oracle responses for the left and right half of Ci,j . The

formulation is as follows:

CL
0,0

CR
0,0

CL
0,1

CR
0,1

CL
1,0

CR
1,0

CL
1,1

CR
1,1

=

1 0 0 0 1 0
0 0 1 0 1 0
1 0 0 0 0 1
0 0 0 1 0 1
0 1 0 0 0 1
0 0 1 0 0 1
0 1 0 0 1 0
0 0 0 1 1 0

︸ ︷︷ ︸

M′
H

H(A0)
H(A1)
H(B0)
H(B1)

H(A0 ⊕B0)
H(A0 ⊕B1)

 .

The half-gates construction points out that each half needs two 0.5κ-bit cipher-
texts after combining the halves of input wire labels. However, we find that it
is possible to use three 0.5κ-bit ciphertexts by choosing these halves skillfully,
since the rank of M′

H is 5. That is to say, one of the ciphertexts on the left is
the same as the one on the right.

3.3 Intuition

We argue that it is the slicing instead of dicing technique that plays a crucial role
in beating the old lower bound. Actually, this argument has been reflected in the
“three-halves” garbling scheme [27]. Initially, the slicing technique is essential for
creating the possibility to save a ciphertext. However, if the evaluator uses her
color bits to directly compute the output wire label (involving input wire label
halves, oracle responses and ciphertexts), the truth table supported by this fixed
linear combination is not sufficient. This is where the dicing technique comes
into effect.

This leads us to an intuitive idea of our first model: we take into account
of all possibilities introduced by the slicing technique, and sideline the dicing

Title Suppressed Due to Excessive Length 11

technique. Obviously, the most extreme case caused by the slicing technique is
that every bit of the output wire label can be computed by a different linear
combination. Moreover, maximizing the linear-algebraic dimension in which a
scheme can operate, this idea is convenient for us to consider the security of all
bits.

Because these two models merely matches the “three-halves” garbling scheme,
we extend our model into fan-in 3 gates. Considering the complexity of 3 input
wire labels, we present another method to prove the 7

4κ lower bound.

4 Key Observation

To analyze the lower bound of our model, we need a key observation. Till now,
the 4κ linear combinations caused by our intuition are too complicated. Note that
the Linear Garbling Schemes model simply lists q responses Q1, . . . , Qq and the
evaluator is assumed to obtain a subset of it. This gives the evaluator capability
beyond those available in a garbling scheme. For instance, the evaluator with
(Ai, Bj) should not have access to H(A1−i).

Observation: For an arbitrary garbled AND gate with input wire labels (A0, A1)
and (B0, B1), define the function l : {A0, A1}×{B0, B1} → {0, 1}∗. For (Ai, Bj)
where i, j ∈ {0, 1}, l(Ai, Bj) generates a bit string of length not less than κ, en-
suring at least κ bits of entropy. Then, we propose Definition 2 for representative
form of a type of oracle response.

Definition 2. For (Ai, Bj) where i, j ∈ {0, 1}, and oracle responses of the form
H(l(Ai, Bj)), if we can construct a set El(Ai,Bj) (not ∅) such that:

1. For any evaluator in the set El(Ai,Bj), she obtains H(l(Ai, Bj)) with proba-
bility 1;

2. Any adversary A that makes polynomially many queries to the random oracle
and even possesses Ei′,j′ outside of El(Ai,Bj) cannot learn H(l(Ai, Bj)) with
an advantage better than poly(κ)/2κ;

then we regard H(l(Ai, Bj)) as a representative form of oracle response for the
set El(Ai,Bj). In short, H(l(Ai, Bj)) is associated with El(Ai,Bj).

As far as we know, all previous garbling schemes follow this observation. As
noted by Definition 1, we require that garbling schemes have perfect correctness.
Therefore, we restrict that oracle responses must be able to be computed by at
least one evaluator Ei,j . At the same time, we know that evaluators exploit oracle
responses to ensure ideal security. Hence, two requirements in Definition 2 are
necessary.

Since we choose H(l(Ai, Bj)) as a representative form, we represent all 1-bit
oracle responses associated with El(Ai,Bj) as H(l(Ai, Bj))1, H(l(Ai, Bj))2, . . .

Note that there are only four evaluators in {Ei,j |i, j ∈ {0, 1}}, so El(Ai,Bj)

containing these evaluators are also finite. Concretely, there are only 24 = 16

12 F. Xu, H. Hu and C. Xu

possible constructions of this set. Moreover, we rule out {Ei,j |i, j ∈ {0, 1}} and ∅.
Hence, oracle responses associated with corresponding sets are finitely classified.

For example, let El(Ai,Bj) = {E0,0}. Clearly, E0,1 has A0 and E1,0 has B0.
To ensure that E0,1 and E1,0 fail to get oracle responses, E0,0 uses A0 and
B0 to query the random oracle. There are numerous available forms, such as
H(A0, B0)1, H ′(A0 + B0)1 and H(A0, B0, ν)2 where ν is a gate-specific nonce.
Nevertheless, we only concern whether they can be computed by evaluators
in (or outside of) this set. Hence, we choose H(A0, B0) to represent all oracle
responses associated with {E0,0}. Note that we do not require that the random
oracle must be queried in this form. In short, we say H(A0, B0) is associated with
{E0,0}.

In our proofs of lower bound, we also use specific forms to represent oracle
responses associated with sets of evaluators. Readers can verify that our proofs
depend on that sets of evaluators, rather than requiring that the random oracle
must be queried in a specific form. Hence, we argue that this representation
method is reasonable.

Choosing specific forms. We choose a form H(Ai, Bj) associated with {Ei,j}.
A form H(Ai) (resp. H(Bj)) is associated with {Ei,j , Ei,j̄} (resp. {Ei,j , Eī,j}).
The free-XOR technique finds a set EAi⊕Bj

= {Ei,j , Eī,j̄} for the form H(Ai ⊕
Bj). We rule out the empty set ∅ and trivial E = {E0,0, E0,1, E1,0, E1,1}, and
those sets containing three elements are still out of consideration. Without loss
of generality, suppose there is a set El(Ai,Bj) = {E0,0, E0,1, E1,0}. We need to
ensure that both E0,0 and E0,1 obtain H(l(Ai, Bj)), while B0 and B1 remain
independent from their perspective. This implies that l(Ai, Bj) = l′(A0), which
E1,0 can only make a guess about. Thus, constructing such a set is impossible.

In short, when free-XOR is enabled, we choose these representative forms:
H(Ai), H(Bj), H(Ai⊕Bj) and H(Ai, Bj) respectively associated with {Ei,j , Ei,j̄},
{Ei,j , Eī,j}, {Ei,j , Eī,j̄} and {Ei,j}.

Making a distinction. Without loss of generality, we consider two cases:
{E0,0, E0,1} ∩ {E0,0, E1,0} and {E0,0}. The former can be realized by H(A0) ⊕
H(B0), while the latter can be realized by H(A0, B0). In our proofs, we choose
the former to obtain the lower bound since it allows linear dependence between
different evaluators (see Sect. 5.3). To make a distinction, with H(A0, B0),
we default to the latter case. Furthermore, for the rest of the paper, we say
H(A0)⊕H(B0) is also associated with {E0,0} for brevity.

5 Two New Models and Lower Bounds

In this section, we introduce new models of Bitwise Linear Garbling Schemes
and Bitwise Garbling Schemes. As our main focus, we consider garbled AND
gates with free-XOR in this part. From now on, we keep three positive integers
q, t, u. As mentioned in Sect. 4, oracle responses are finitely classified. Each
type of oracle response is a vector of q different responses, e.g., the form H(A0)

Title Suppressed Due to Excessive Length 13

is a vector containing q oracle responses: (H(A0)1, H(A0)2, . . . ,H(A0)q). The
garbler has t types of oracle responses, while the evaluator has u types based on
her input wire labels. 0 denotes the zero vector of length q.

5.1 The First Model: Bitwise Linear Garbling Schemes

We define this model by presenting three procedures.

Garble: This algorithm is parameterized by integers m, r, q, t and vectors A0, A1,
B0, B1. Each vector has length r, with entries in GF (2κ). Meanwhile, vectors
{Cj

a,b,0|a, b ∈ {0, 1}, j ∈ [κ]}, {Cj
a,b,1|a, b ∈ {0, 1}, j ∈ [κ]}, and {G(i)

a,b|a, b ∈
{0, 1}} are all of length r + tq, with entries in GF (2κ).

1. For i ∈ [r], choose Ri
$←− GF (2κ) to get R = {R1, . . . , Rr}.

2. For i ∈ {0, 1}, compute Ai = ⟨Ai,R⟩, Bi = ⟨Bi,R⟩.
3. Choose two permute bits a, b

$←− {0, 1} for two input wires.
4. For t types of oracle responses, make tq distinct queries to the random oracle

and get tq bits Qi
1, . . . , Q

i
q, i ∈ [t]. We place these values on which the

algorithm can act linearly in S = (R1, . . . , Rr, Q
1
1, . . . , Q

t
q).

5. We compute Cj
i = ⟨Cj

a,b,i,S⟩κ where i ∈ {0, 1}, j ∈ [κ]. Let C0 (comprising
C1

0 , . . . , C
κ
0) correspond to FALSE. 4

6. For i ∈ [m], compute Gi = ⟨G(i)
a,b,S⟩κ. These values are ciphertexts of the

garbled circuit.

Encode: On input xa, xb ∈ {0, 1}, set color bits α := xa⊕ a and β := xb⊕ b. The
evaluator gets Aα ∥ α and Bβ ∥ β.
Eval: Parameterized by m, q, u and vectors {V i

α,β |α, β ∈ {0, 1}, i ∈ [κ]} of length
uq +m+ 2.

1. The evaluator has input wire labels Aα ∥ α, Bβ ∥ β, and ciphertexts
G1, . . . , Gm.

2. Define a function f : [u]→ [t]. For u types of oracle responses, make uq dis-
tinct queries to the random oracle and get responses Qf(j)

1 , . . . , Q
f(j)
q , where

j ∈ [u], f(j) ∈ [t]. As we mention above, these oracle responses construct a
subset of {Qi

1, . . . , Q
i
q|i ∈ [t]}. Therefore, {f(1), . . . , f(u)} ⊂ [t]. In fact, f(j)

depends on input wire labels, but we neglect them for simplicity. Therefore,
we get these values T = (Aα, Bβ , Q

f(1)
1 , . . . , Q

f(u)
q , G1, . . . , Gm) on which the

algorithm can act linearly.
3. Output the inner product ⟨V i

α,β ,T ⟩κ, i ∈ [κ].

Because all oracle responses computed by (A0, A1, B0, B1) construct sub-
sets of {Q1

1, . . . , Q
t
q}, we argue that {Qj

i |i ∈ [q], j ∈ [t]} are obtained by using

4 Note that we use 1-bit responses of the form Qj
i where i ∈ [q], j ∈ [t] and Ri ∈ GF (2κ)

to compute one bit of the output wire label. Hence, we use ⟨·, ·⟩κ instead of ⟨·, ·⟩.
The realization of ⟨·, ·⟩κ depending on actual schemes is omitted.

14 F. Xu, H. Hu and C. Xu

(A0, A1, B0, B1) to make queries. Therefore, compared to the old model in Sect.
3.1, we no longer use oracle responses in S to compute input wire labels Aα ∥ α
and Bβ ∥ β.

Moreover, considering practical schemes, we enforce the same correlation
of wire labels, e.g., the same XOR-difference in free-XOR. Through this way,
existing methods [3,18,29] for a single isolated AND gate are excluded.

5.2 New Claim

Now we consider different parts of some vectors. We maintain the division of
V i

α,β and T into public parts and private parts, and get the following equations:

Ci
a,b,(a⊕α)∧(b⊕β) = Zi

α,β + V prv,i
α,β ×Ga,b, i ∈ [κ].

When the context is clear, we use Ci
α,β to represent Ci

a,b,(a⊕α)∧(b⊕β) for sim-
plicity. We can find that some entries in these vectors are used to multiply wire
labels in GF (2κ), while others are used to multiply oracle responses in {0, 1}.
We divide each of these vectors into a wire label part and an oracle response
part. Considering oracle responses, we need to ensure:

Cres,i
α,β = Zres,i

α,β + V prv,i
α,β ×Gres,i

a,b , i ∈ [κ].

The superscript res denotes the part which corresponds to oracle responses. We
also get the oracle response part of S, i.e., Sres = (Q1

1, . . . , Q
t
q). Entries of these

vectors are in {0, 1}. By this means, we can make use of our observation.
Let us consider Zres,i

α,β more carefully. Actually, Zres,i
α,β represents how the

evaluator with (Aα, Bβ) acts on her oracle responses linearly when she computes
the i-th bit of the output wire label. All possible sets of uq oracle responses in
Eval are subsets of the set of tq oracle responses in Garble. We can measure all
of them by vectors of length tq in which every q entries corresponds to a type
of oracle response. Hence, we can view these vectors as the concatenation of t
vectors of length q.

As an example, we represent a type of oracle response H(A0) as follows:

Q1 = (H(A0)1, . . . ,H(A0)q).

We define Zi
α,β,1 ∈ {0, 1}q to represent the actions on Q1. Concretely, Eα,β

computes ⟨Zi
α,β,1,Q

1⟩ when computing the i-th bit of the output label.
Note that H(A0) is associated with {E0,0, E0,1}. If the evaluator Eα,β is

outside of this set, she sets Zi
α,β,1 to 0 since she has no access to this type

of response. To simplify notation, we define Zres,i
α,β = (Zi

α,β,1, . . . ,Z
i
α,β,t) be a

vector of length tq, where for j ∈ [t], each component Zi
α,β,j is a vector of length

q corresponding to a type of oracle response.
As described in Sect. 4, all oracle responses satisfy one of these forms: H(Ai),

H(Bj), H(Ai⊕Bj), and H(Ai, Bj). We rule out H(Ai, Bj) in this situation, and
prove its appropriateness later in Sect. 5.3. Then, we get t = 6 and arrange

Zres,i
α,β = (Zi

α,β,1, . . . ,Z
i
α,β,6),

Title Suppressed Due to Excessive Length 15

in which components correspond to forms H(A0), H(A1), H(B0), H(B1), H(A0⊕
B0), H(A0 ⊕B1).

We define a sign function, denoted as v : Zq
2 → Z2, as follows:

v(V) =

{
0, if V = 0;
1, otherwise.

Briefly speaking, this function is used to indicate whether a vector of length
q is a zero vector. Let Zres,i

α,β = (Zi
α,β,1, . . . ,Z

i
α,β,6), we define another function

sum : Z6q
2 → Z as follows:

sum(Zres,i
α,β) =

6∑
j=1

v(Zi
α,β,j).

It is easy to find that sum is used to indicate how many types of oracle
responses are used. On the basis of this function, we propose Claim 4 as follows:

- Claim 4: Given a pair (α, β), any vector L constructed by a non-trivial linear
combination of vectors in {Zres,i

α,β |i ∈ [κ]} satisfies sum(L) ≥ 2.

Proof. Without loss of generality, assume that E0,0 only uses an oracle response
H(A0)i to compute the i-th bit of the output wire label. Hence, sum(Zres,i

0,0) = 1,
because ⟨Zres,i

0,0 ,Sres⟩κ = H(A0)i. Note that E0,1 also obtains H(A0)i. Once E0,0

and E0,1 have the same output wire label, E0,1 learns information about B0. ⊓⊔

Eα,β has three types of oracle responses: H(Aα), H(Bβ) and H(Aα ⊕ Bβ).
Vectors which correspond to H(A1−α), H(B1−β) and H(Aα⊕B1−β) are all zero.
Zres,i

α,β is used to compute the i-th bit of the output wire label Cα,β . Therefore,
non-trivial linear combinations of vectors in {Zres,i

α,β |i ∈ [κ]} can be used to
compute non-trivial linear combinations of κ bits of Cα,β . Based on Claim 4,
at least two types of oracle responses are required to compute any non-trivial
linear combination of κ bits of Cα,β . All in all, we ensure that oracle responses
are associated with {Eα,β}.

5.3 Proof of a Lower Bound in the First Model

With the help of Claim 4, we can prove a lower bound of our model. Precisely
speaking, we consider a large class of practical garbling schemes, which work on
arbitrary AND gates and are compatible with free-XOR.

We concentrate on a set of 4κ vectors {Zres,i
α,β |α, β ∈ {0, 1}, i ∈ [κ]}. Note that

when free-XOR is supported, the output wire labels C0 and C1 satisfy C1 = C0⊕
∆. Hence, given permute bits a, b and i, elements in the set {Cres,i

α,β |α, β ∈ {0, 1}}
are the same. Therefore, the garbler needs to arrange 1-bit ciphertexts to ensure
that evaluators with different input wire labels can transform different Zres,i

α,β

into the same Cres,i
α,β . 5

5 Ciphertexts are used to transform ⟨Zres,i
α,β ,Sres⟩ into the same ⟨Cres,i

α,β ,Sres⟩. Our
statements have been simplified for brevity.

16 F. Xu, H. Hu and C. Xu

In the half-gates garbling scheme, we find that for a given i, elements in
{Zres,i

α,β |α, β ∈ {0, 1}} could be linear dependent. The “three-halves” garbling
scheme also shows linear dependence between elements of {Zres,i

α,β |α, β ∈ {0, 1}}
and {Zres,j

α,β |α, β ∈ {0, 1}} for i ̸= j. Crucially, both situations lead to the saving
of ciphertexts.

Lemma 1. For two matrices M1,M2 ∈ {0, 1}i×j, then rank(M1 + M2) ≤
rank(M1) + rank(M2).

Proof. rank(M1) and rank(M2) are the dimension of subspaces S1, S2 spanned
by vectors in M1 and M2 respectively. rank(M1 +M2) is the dimension of sub-
spaces S3 spanned by vectors in M1 + M2. Since vectors in S3 can be linearly
represented by vectors in S1, S2, rank(M1 +M2) ≤ rank(M1) + rank(M2).

Lemma 2. In the model of Bitwise Linear Garbling Schemes, suppose free-XOR
is supported. If the rank of the set {Zres,i

α,β |α, β ∈ {0, 1}, i ∈ [κ]} is rk, then
m ≥ rk − κ.

Proof. Given α, β ∈ {0, 1} and i ∈ [κ], Cres,i
α,β = Zres,i

α,β + V prv,i
α,β × Gres,i

a,b . For a
given i, Cres,i

α,β where α, β ∈ {0, 1} are the same since free-XOR is supported.
{Cres,i

α,β |α, β ∈ {0, 1}, i ∈ [κ]} is of rank κ. −(Cres,i
α,β − Zres,i

α,β) +Cres,i
α,β = Zres,i

α,β .
Suppose the rank of {Cres,i

α,β −Zres,i
α,β |α, β ∈ {0, 1}, i ∈ [κ]} is r. Based on Lemma

1, r + κ ≥ rk. Since Cres,i
α,β −Zres,i

α,β = V prv,i
α,β ×Gres,i

a,b , m ≥ r ≥ rk − κ. ⊓⊔
To begin our proof of Theorem 1, we present Lemma 3 below.

Lemma 3. For a given set of linearly independent vectors Y i, i ∈ [l] with entries
in {0, 1}, where l is a positive integer, suppose a set of vectors Z such that
∀i ∈ [l], Y i ∈ Z. If there exists a vector L with entries in {0, 1} such that⊕l−1

i=0 Y i = L where ⊕ denotes addition modulo 2, then replacing any vector Yi,
i ∈ [l] with L or adding L into Z does not change the rank of Z.

Proof. Note that L can be linearly represented by vectors in Z. Adding L into
Z does not introduce new linearly independent vector. Therefore, the rank of Z
does not change in this situation.

Without loss of generality, we replace Y 1 with L and obtain Z ′ = (Z∪{L})\
{Y 1}. If Y 1 can be linearly represented by vectors in Z \{Y 1}, then L can also
be linearly represented, because

⊕l
i=1 Y i = L. Otherwise, neither Y 1 nor L can

be linearly represented. Hence, rank(Z ′) = rank(Z). ⊓⊔
Theorem 1. In the model of Bitwise Linear Garbling Schemes, suppose free-
XOR is supported. Let rk be the rank of {Zres,i

α,β |α, β ∈ {0, 1}, i ∈ [κ]}, the lower
bound of rk is 5

2κ, and therefore m ≥ 3
2κ.

Proof. We compute the lower bound of rk by counting, and this is where Claim 4
comes into play. We use a set Z to include vectors in {Zres,i

α,β |α, β ∈ {0, 1}, i ∈ [κ]}
gradually. Note that Zres,i

α,β has a length of 6q, with entries in {0, 1}. Recall that
components of Zres,i

α,β = (Zi
α,β,1, . . . ,Z

i
α,β,6) correspond to oracle responses of

the forms H(A0), H(A1), H(B0), H(B1), H(A0 ⊕B0), H(A0 ⊕B1).

Title Suppressed Due to Excessive Length 17

1) We add κ vectors in {Zres,i
0,0 |i ∈ [κ]} into the set Z to obtain rank κ. Based

on Claim 4, these vectors are linearly independent.
2) Now κ vectors in {Zres,i

0,1 |i ∈ [κ]} are also added into Z. Note that

Zres,i
0,0 = (Zi

0,0,1,0,Z
i
0,0,3,0,Z

i
0,0,5,0),

while
Zres,i

0,1 = (Zi
0,1,1,0,0,Z

i
0,1,4,0,Z

i
0,1,6).

Based on Claim 4, any non-trivial linear combination of Zres,i
0,0 (resp. Zres,i

0,1)
has nonzero Zi

0,0,3 or Zi
0,0,5 (Zi

0,1,4 or Zi
0,1,6). It is easy to check that the

rank of this set is 2κ.
3) We have to consider {Zres,i

1,0 |i ∈ [κ]} now. We try to add some vectors without
the increase of the rank, so we need Zres,i

1,0 which can be linearly represented
by vectors in Z. Given that

Zres,i
1,0 = (0,Zi

1,0,2,Z
i
1,0,3,0,0,Z

i
1,0,6),

Zi
1,0,2, Z

i
1,0,3 and Zi

1,0,6 respectively correspond to oracle responses of the
forms H(A1), H(B0) and H(A0 ⊕ B1). We consider Zres,i

1,0 where Zi
1,0,2 =

0, because Z does not contain nonzero vectors corresponding to H(A1).
Hence, suppose that γ vectors satisfy Zi

1,0,2 = 0, while the remaining (κ−γ)

vectors still have nonzero Zi
1,0,2. Note that if these nonzero Zi

1,0,2 are linearly
dependent, then we can construct another Zres,i

1,0 such that Zi
1,0,2 is zero by

Lemma 3. Hence, these nonzero Zi
1,0,2 are linearly independent. Certainly,

those (κ − γ) vectors are going to increase the rank by (κ − γ). Now, we
consider these γ vectors with zero Zi

1,0,2. Because of Claim 4,

Zres,i
1,0 = (0,0,Zi

1,0,3,0,0,Z
i
1,0,6)

must have nonzero Zi
1,0,3 and Zi

1,0,6. We require that vectors in Z can lin-
early represent them. The only way is to use (Zi

0,0,1,0,Z
i
1,0,3,0,0,0) and

(Zi
0,0,1,0,0,0,0,Z

i
1,0,6). By Lemma 3, we might as well assume that there

are γ vectors of each form in {Zres,i
0,0 |i ∈ [κ]} and {Zres,i

0,1 |i ∈ [κ]}. Conse-
quently, rank(Z) = 3κ− γ after we put these vectors into Z.

4) Finally, we need to add {Zres,i
1,1 |i ∈ [κ]}. Given

Zres,i
1,1 = (0,Zi

1,1,2,0,Z
i
1,1,5,Z

i
1,1,5,0),

we can also classify κ vectors in {Zres,i
1,1 |i ∈ [κ]} based on whether Zi

1,1,2

is nonzero or not. We suppose that δ vectors satisfy Zi
1,1,2 = 0, while the

remaining (κ− δ) vectors have nonzero Zi
1,1,2.

We get δ vectors of the form:

Zres,i
1,1 = (0,0,0,Zi

1,1,5,Z
i
1,1,5,0).

18 F. Xu, H. Hu and C. Xu

The two nonzero vectors Zi
1,1,4 and Zi

1,1,5 correspond to H(B1) and H(A0⊕
B0). To ensure that these Zres,i

1,1 do not increase the rank, we hope that there
are already δ vectors of the form (Zi

0,0,1,0,0,0,Z
i
1,1,5,0) in {Zres,i

0,0 |i ∈ [κ]},
and (Zi

0,0,1,0,0,Z
i
1,1,4,0,0)) in {Zres,i

0,1 |i ∈ [κ]}. However, in step 3), there
are γ vectors of the form (Zi

0,0,1,0,Z
i
1,0,3,0,0,0) in {Zres,i

0,0 |i ∈ [κ]} and
(Zi

0,0,1,0,0,0,0,Z
i
1,0,6) in {Zres,i

0,1 |i ∈ [κ]}.
Let us think about these (κ − δ) vectors which have nonzero Zi

1,1,2 corre-
sponding to H(A1). We glance at the set Z and find that it is only possible
to use (κ− γ) vectors

Zres,j
1,0 = (0,Zj

1,0,2,Z
j
1,0,3,0,0,Z

j
1,0,6)

where Zj
1,0,2 ̸= 0. Hence, to avoid the raise of rank(Z), we require that

Zi
1,1,2 can be linearly represented by these nonzero Zj

1,0,2. Meanwhile, even
if Zi

1,1,2 = Zj
1,0,2, we still have to consider

Zres,i
1,1 ⊕Zres,j

1,0 = (0,0,Zj
1,0,3,Z

i
1,1,4,Z

i
1,1,5,Z

j
1,0,6).

However, dealing with vectors of this form in the following analysis is com-
plex, so we assume that they either do not affect rank(Z) or they increase
rank(Z), and directly check that they can be linearly represented when
rank(Z) reaches its minimum. In this way, omitting these vectors does not
influence correctness.

Combining the above, we can find that rank(Z) consists of three parts: 3κ−γ,
those (κ− δ) vectors with nonzero Zi

1,1,2 and the remaining δ vectors with zero
Zi

1,1,2.
Firstly, let us consider all (κ−δ) vectors with nonzero Zi

1,1,2. Note that there
are (κ−γ) vectors with nonzero Zj

1,0,2 in Z. This means that if κ− δ ≤ κ−γ, it
is possible that these (κ− δ) vectors do not change rank(Z). Otherwise, γ > δ,
and these vectors increase the rank by at least (κ− δ) − (κ − γ) = γ − δ. Note
that these uncertainties come from neglected (0,0,Zj

1,0,3,Z
i
1,1,4,Z

i
1,1,5,Z

j
1,0,6).

Secondly, we need 2κ vectors in {Zres,i
0,0 |i ∈ [κ]} and {Zres,i

0,1 |i ∈ [κ]} to
linearly represent both δ vectors with zero Zi

1,1,2 and γ vectors with zero Zi
1,0,2.

This means that if δ + γ ≤ κ, these vectors do not change rank(Z). Otherwise,
δ + γ > κ, and these vectors increase the rank by δ + γ − κ.

1. If κ − δ ≤ κ − γ and δ + γ ≤ κ, then rank(Z) ≥ 3κ − γ. Since γ ≤ δ and
δ + γ ≤ κ, we get γ ≤ 1

2κ. Hence, when γ = δ = 1
2κ, rank(Z) reaches its

minimum 5
2κ in this case. We can easily check that when rank(Z) = 5

2κ,
those (κ− δ) vectors with nonzero Zi

1,1,1 can be linearly represented.
2. If κ−δ ≤ κ−γ and δ+γ > κ, then rank(Z) ≥ (3κ−γ)+(δ+γ−κ) ≥ 2κ+δ.

Since γ ≤ δ and δ + γ > κ, we get δ > 1
2κ. Hence, rank(Z) > 5

2κ in this
case.

Title Suppressed Due to Excessive Length 19

3. If κ− δ > κ− γ and δ+ γ ≤ κ, then rank(Z) ≥ (3κ− γ) + (γ − δ) ≥ 3κ− δ.
Since γ > δ and δ + γ ≤ κ, we get δ < 1

2κ. rank(Z) > 5
2κ in this case.

4. If κ−δ > κ−γ and δ+γ > κ, then rank(Z) ≥ (3κ−γ)+(γ−δ)+(δ+γ−κ) ≥
2κ + γ. Since γ > δ and δ + γ > κ, we get γ > 1

2κ. rank(Z) > 5
2κ in this

case.

All in all, we prove a 5
2κ lower bound of rank(Z), and a 3

2κ-bit lower bound
of ciphertexts by Lemma 2. ⊓⊔

Removed Forms. We consider the forms {H(Ai, Bj)|i, j ∈ {0, 1}} which have
been ruled out before we propose Claim 4. We insist that we let {H(Ai, Bj)|i, j ∈
{0, 1}} associate with {Ei,j}, rather than requiring that the random oracle must
be queried in this form.

In Sect. 4, we already make a distinction between H(Ai, Bj) and H(Ai) ⊕
H(Bj) or H(Ai)⊕H(Ai⊕Bj). Intuitively, considering {H(Ai, Bj)|i, j ∈ {0, 1}}
allows us to use H(Ai, Bj)k to replace H(Ai)k ⊕ H(Bj)k. Zres,k

i,j satisfying
⟨Zres,k

i,j ,Sres⟩ = H(Ai)k ⊕H(Bj)k can be linearly represented by other vectors.
For example, H(Ai)⊕H(Bj) = [H(Ai)⊕H(Ai⊕Bi−j)]⊕[H(Bj)⊕H(A1−i⊕Bj)]

in which Ai ⊕ Bi−j = A1−i ⊕ Bj . However, we set that (Zres,k
i,j)′ satisfying

⟨(Zres,k
i,j)′,Sres⟩ = H(Ai, Bj)k can not be linearly represented in Sect. 4.
According to the proof of Theroem 1, when rk reaches its minimum, every

vector in {Zres,i
α,β |α, β ∈ {0, 1}, i ∈ [κ]} can be linearly represented by other

vectors. Since (Zres,k
i,j)′ can not be linearly represented, considering the forms

{H(Ai, Bj)|i, j ∈ {0, 1}} does not beat the 3
2κ-bit lower bound.

5.4 The Second Model: Bitwise Garbling Schemes

In this subsection, we define the model of Bitwise Garbling Schemes.

Garble: This algorithm is parameterized by integers m, r, q, t, vectors A0, A1,
B0, B1, multivariate polynomial functions pki,j where i, j ∈ {0, 1}, k ∈ [κ]

and mapping functions Mapki,j where i, j ∈ {0, 1}, k ∈ [κ]. Each vector has
length r, with entries in GF (2κ).

1. For i ∈ [r], choose Ri
$←− GF (2κ) to get R = {R1, . . . , Rr}.

2. For i ∈ {0, 1}, compute Ai = ⟨Ai,R⟩, Bi = ⟨Bi,R⟩. Let Ai = Ai,1 ∥ · · · ∥
Ai,κ and Bi = Bi,1 ∥ · · · ∥ Bi,κ, and S′ = (A0,1, . . . , A1,κ, B0,1, . . . , B1,κ).

3. Choose two permute bits a, b
$←− {0, 1} for two input wires.

4. For t types of oracle responses, make tq distinct queries to the random oracle
and get tq bits Qi

1, . . . , Q
i
q, i ∈ [t]. We place these responses in S = S′ ∥

(Q1
1, . . . , Q

t
q).

5. For i, j ∈ {0, 1}, k ∈ [κ], compute Zk
i,j = pki,j(S). For the sake of discussion,

let Z = {Zk
i,j |i, j ∈ {0, 1}, k ∈ [κ]}.

20 F. Xu, H. Hu and C. Xu

6. Find m 1-bit ciphertexts in G = (G1, G2, . . . , Gm) such that

Map(Z,G) =

C0,0

C0,1

C1,0

C1,1

 ,

in which Map(Z,G) is defined as

Map(Z,G) ≜

Map10,0(Z

1
0,0,G) ∥ · · · ∥Mapκ0,0(Z

κ
0,0,G)

Map10,1(Z
1
0,1,G) ∥ · · · ∥Mapκ0,1(Z

κ
0,1,G)

Map11,0(Z
1
1,0,G) ∥ · · · ∥Mapκ1,0(Z

κ
1,0,G)

Map11,1(Z
1
1,1,G) ∥ · · · ∥Mapκ1,1(Z

κ
1,1,G)

and {Ci,j |i, j ∈ {0, 1}} are valid output wire labels. For the sake of brevity,
we let C = {Ck

i,j |i, j ∈ {0, 1}, k ∈ [κ]} and write as C = Map(Z,G).

Encode: On input xa, xb ∈ {0, 1}, set color bits α := xa⊕ a and β := xb⊕ b. The
evaluator gets Aα ∥ α and Bβ ∥ β.
Eval: Parameterized by pki,j ,Mapki,j , m, q, u and vectors {V i

α,β |α, β ∈ {0, 1}, i ∈
[κ]} of length uq.

1. The evaluator has input wire labels Aα ∥ α, Bβ ∥ β, and ciphertexts
G1, . . . , Gm. Aα = Aα,1 ∥ · · · ∥ Aα,κ and Bβ = Bβ,1 ∥ · · · ∥ Bβ,κ. For i ∈ [κ],
let A1−α,i = 0 and B1−β,i = 0. Let T ′ = (A0,1, . . . , A1,κ, B0,1, . . . , B1,κ).

2. Define a function f : [u] → [t]. For u types of oracle responses, make uq

distinct queries to the random oracle and get responses Q
f(j)
1 , . . . , Q

f(j)
q ,

where j ∈ [u], f(j) ∈ [t]. For i ∈ [κ], k ̸= f(j), let Qk
i = 0. T = T ′ ∥

(Q1
1, . . . , Q

t
q).

3. For i ∈ [κ], compute V i
α,β = pki,j(T).

4. Compute Ck
α,β = Mapkα,β(V

k
α,β ,G) for k ∈ [κ]. Take Cα,β = C1

α,β ∥ · · · ∥ Cκ
α,β

as the output wire label.

Compared to the model of Bitwise Linear Garbling Schemes, this model
utilizes polynomial functions to compute the output wire label. Our first model
is already included in this model. Meanwhile, this model deals with non-linear
operations.

5.5 Proof of a Lower Bound in the Second Model

Consider a multivariate polynomial function p10,0 : {0, 1}4κ+6q → {0, 1}. For
simplicity, denote inputs as xh where h ∈ [4κ + 6q] and xh is one bit of a wire
label or an oracle response. For any positive integer n, xn

h = xh. Hence, the
degree of p10,0 is not greater than 4κ+ 6q.

We consider degree-separated format such that p10,0 =
⊕4κ+6q

d=0 p1,d0,0, and leave
out the constant p1,00,0. Therefore, (

⊕4κ+6q
d=2 p1,d0,0)⊕ p10,0 = p1,10,0. For p1,20,0, xh1

· xh2

is equal to 0 with a probability of 75%. Similarly, p1,d0,0 where d ≥ 3 are not

Title Suppressed Due to Excessive Length 21

uniformly distributed on {0, 1}. Without loss of generality, suppose only one
type of response H(A0) is used in p1,10,0. Note that E0,1 obtains p1,10,0. Hence, from
the view of E0,1, (

⊕4κ+6q
d=2 p1,d0,0)⊕ p10,0 is known. Therefore, p10,0 is not uniformly

distributed on {0, 1}. 6 As a result, two types of responses are still needed in
p1,10,0. Hence, this model still follows Claim 4.

Note that we still consider the oracle response part, which allows to ignore the
XOR-difference. However, for brevity, we do not explicitly write the superscript
res in this subsection.

Lemma 4. In the model of Bitwise Garbling Schemes, suppose free-XOR is sup-
ported. Z is of rank at least 5

2κ.

Proof. We can place monomials used in pk,di,j (S) where d ∈ {0}∩ [4κ+6q] into S,
and replace pki,j(S) with ⟨Zk

i,j ,S⟩. This description is similar to our first model,
and we already show that Claim 4 still holds, because two types of responses
are still needed in pk,1i,j . Based on the proof in Sect. 5.3, the rank of Z is at least
5
2κ. ⊓⊔

Theorem 2. In the model of Bitwise Garbling Schemes, suppose free-XOR is
supported. The lower bound of m is 3

2κ.

Proof. Z = {Zk
i,j |i, j ∈ {0, 1}, k ∈ [κ]} is of rank at least 5

2κ. When free-XOR
is supported, output wire labels encoding logic values 0 and 1 keep a global
XOR-difference ∆ which is previously sampled. Therefore, C is of rank κ. List
{Z1, . . . ,Z22.5κ} as a part of the input domain. Let Zi

0,0 where i ∈ [22.5κ] denote
the part which belongs to E0,0. Let Z0,0 = {Zk

0,0|k ∈ [κ]}. Based on Claim 4,
Z0,0 is of rank κ.

Fixing Zi
0,0 to a given Z0,0, there are at least 21.5κ possible Z’s, contained in

{Z1, . . . ,Z21.5κ}. Moreover, given G ∈ {0, 1}m, we can fix C. Then, there must
exist Gi such that Map(Zi,Gi) = C where i ∈ [21.5κ].

If m < 1.5κ, there exist i, j ∈ [21.5κ] such that Map(Zi,Gi) = Map(Zj ,Gj)
and Gi = Gj . From the view of E0,0, Gi leaks information about Z. Conse-
quently, G should have a length of at least 1.5κ, i.e., m ≥ 3

2κ. ⊓⊔

Remark 1. Multiplication is rather common in garbling scheme design. Some
practical garbling schemes [26] based on polynomial interpolation perform stan-
dard addition and subtraction on wire labels, in which carries may be generated,
so we manage to include multiplication. However, compared to [10], it is a shame
that we only consider non-linear actions in the scope of multivariate polynomial
functions.

6 Note that from the view of E0,1, p1,20,0 can be statistically close to a uniform distri-
bution, e.g.,

⊕κ
i=1 B

i
0H(B0)i. However, this is equivalent to using H(B0) in p1,10,0 in

our model, because p1,20,0 are associated with {E0,0, E1,0}.

22 F. Xu, H. Hu and C. Xu

6 Compatibility with Free-XOR

We already prove the 3
2 -bit lower bound of our models when considering free-

XOR, and find that the XOR-difference ∆ plays a crucial role in reducing the
rank of Z. However, the output labels C0 and C1 are also restricted by free-XOR,
i.e., given i, all the elements in {Cres,i

α,β |α, β ∈ {0, 1}} are the same. If we do not
use the free-XOR technique, the output wire labels are not required to keep
the same XOR-difference. Hence, these elements are not necessarily the same.
Contrast with Lemma 2, we only need rk − 2κ ciphertexts. Consequently, we
explore whether giving up compatibility with free-XOR is a necessary sacrifice.

6.1 Similarity to Free-XOR

First of all, we must explain how to sacrifice compatibility with free-XOR. When
free-XOR is used, A0 ⊕B1 = A1 ⊕B0. Note that H(Ai ⊕Bj) is associated with
{Ei,j , E1−i,1−j} for i, j ∈ {0, 1}. One may think that if A0⊕A1 ̸= B0⊕B1, free-
XOR is forbidden. However, a garbling scheme may ensure that A1 = A0 + d

and B0 = B1−d, where d
$←− {0, 1}κ and “+” or “-” denotes standard addition or

subtraction. In this case, A0 +B1 = A1 +B0 and A0−B0 = A1−B1. Similarly,
we can construct forms H(A0 −B0) and H(A0 +B1) which are associated with
{E0,0, E1,1} and {E0,1, E1,0} respectively. It is easy to find that the lower bound
of this garbling scheme is also 3

2κ bits. Even though XOR gates are not free, we
still argue that this construction is similar to free-XOR.

To get rid of free-XOR, a garbling scheme should ensure that H(l(Ai, Bj))
associated with El(Ai,Bj) = {E0,0, E1,1} (and {E0,1, E1,0}) does not exist. We
propose Definition 3 for garbling schemes supporting quasi-free-XOR or not. 7

Definition 3. In a garbling scheme, for an arbitrary AND gate with input wire
labels (A0, A1) and (B0, B1), if and only if there are oracle responses associated
with {E0,0, E1,1} and {E0,1, E1,0}, this scheme supports quasi-free-XOR.

6.2 Lower Bound without Quasi-Free-XOR

We manage to give the lower bound of our first model without quasi-free-XOR.
It seems that when C0 and C1 are independent, the number of ciphertexts is
not necessarily rk−κ, because we can use different linear combinations of oracle
responses to compute Ci

0 and Ci
1.

Lemma 5. In the model of Bitwise Linear Garbling Schemes, suppose quasi-
free-XOR is forbidden. For given permute bits a, b ∈ {0, 1}, if the rank of the set
{Zres,i

α,β |(α, β) ∈ {0, 1}2 \ {(1− a, 1− b)}, i ∈ [κ]} is rk, then m ≥ rk − κ.

7 We can modify Theorem 1 and 2 by supposing quasi-free-XOR (instead of free-XOR)
is supported.

Title Suppressed Due to Excessive Length 23

Proof. Given permute bits a, b, evaluators in {Ei,j |(i, j) ∈ {0, 1}2\{(1−a, 1−b)}}
get the output wire label encoding logic value 0. Hence, {Cres,i

α,β |(α, β) ∈ {0, 1}2 \
{(1−a, 1−b)}, i ∈ [κ]} is of rank κ. We consider Cres,i

α,β −Z
res,i
α,β = V prv,i

α,β ×G
res,i
a,b .

Based on Lemma 1, m ≥ rk − κ. ⊓⊔

Without loss of generality, suppose a = 0 and b = 0. The output wire la-
bel of (A1, B1) is C1. E0,0 , E0,1 and E1,0 get the same output. Consequently,
given i ∈ [κ], Cres,i

0,0 = Cres,i
0,1 = Cres,i

1,0 . We still rule out oracle responses of
the form H(Ai, Bj). Without quasi-free-XOR, oracle responses associated with
{E0,0, E1,1} and {E0,1, E1,0} do not exist. Therefore, t = 4 and we arrange

Zres,i
α,β = (Zi

α,β,1, . . . ,Z
i
α,β,4)

which corresponds to forms H(A0), H(A1), H(B0), H(B1). It is obvious that
Claim 4 still holds. We can prove the 2κ-bit lower bound of ciphertexts, still by
counting.

Theorem 3. In the model of Bitwise Linear Garbling Schemes, suppose quasi-
free-XOR is forbidden. Then, m ≥ 2κ.

Proof. We use the set Z to include vectors.

1) Add κ vectors in {Zres,i
0,0 |i ∈ [κ]} into the set Z, to obtain rank κ.

2) {Zres,i
0,1 |i ∈ [κ]} are also added into Z. For the same reason as the proof of

Theorem 1, the rank of this set is now 2κ.
3) We have to consider {Zres,i

1,0 |i ∈ [κ]} now. Note that

Zres,i
1,0 = (0,Zi

1,0,1,0,Z
i
1,0,3).

Based on Claim 4, Zi
1,0,1 and Zi

1,0,3 are nonzero. We realize that rank(Z)
is 3κ. Reducing this rank is impossible, because these κ linearly indepen-
dent vectors Zi

1,0,1, which correspond to H(A1), are absent in the first two
steps. Compared to Sect. 5.3, we lack a form H(l(Ai, Bj)) associated with
El(Ai,Bj) = {E0,1, E1,0}.

4) Finally, it makes no difference whether vectors in {Zres,i
1,1 |i ∈ [κ]} can be

linearly represented by vectors in Z or not, because the garbler can arrange
that Ci

1,1 = Zi
1,1. The evaluator E1,1 needs no ciphertext to compute her

output wire label. (Certainly, it is also easy to check that {Zres,i
1,1 |i ∈ [κ]}

can be linearly represented by vectors in Z.) Consequently, we only consider
rank(Z) = 3κ at the end of step 3).

Based on Lemma 5, we need rank(Z)−κ ciphertexts, so m ≥ 2κ. This result
is true for any possible (a, b). Hence, the lower bound of m is 2κ. ⊓⊔

This proof can be regarded as the answer to another question in [27]: it is
helpless to sacrifice compatibility with free-XOR.

Bitwise Garbling Schemes. Again, we extend this result into our second
model.

24 F. Xu, H. Hu and C. Xu

Theorem 4. In the model of Bitwise Garbling Schemes, suppose quasi-free-
XOR is forbidden. The lower bound of m is 2κ.

Proof. Still, without loss of generality, assume a = 0 and b = 0. On this occasion,
{Zk

i,j |(i, j) ∈ {0, 1}2 \ {(1, 1)}, k ∈ [κ]} has a rank of at least 3κ. Meanwhile,
E0,0, E0,1, E1,0 have the same output wire label. Hence, {Ck

i,j |(i, j) ∈ {0, 1}2 \
{(1, 1)}, k ∈ [κ]} is of rank κ. Similar to Theorem 2, m ≥ 2κ when quasi-free-
XOR is forbidden. ⊓⊔

6.3 Gate-Hiding Garbling Schemes

Gate-hiding garbling schemes, which hide the type of gates from the evaluator,
play a role in private function evaluation [16,22]. The evaluator is only allowed to
know the circuit topology, while all gate functions remain unknown. Of course,
these garbling schemes need to support both AND and XOR gates, where the
evaluator’s actions do not differ. Some garbling schemes support more types of
gates, e.g., constant gates. In our model, the process of garbling an arbitrary kind
of gate has been well-defined, with or without quasi-free-XOR. Consequently, we
aim to propose a lower bound for gate-hiding garbling schemes.

Schemes with Quasi-Free-XOR. First of all, we consider gate-hiding garbling
schemes that support quasi-free-XOR constructions. Since garbling an AND gate
requires at least 1.5κ ciphertexts, the lower bound of these garbling schemes must
be at least 1.5κ. Then we check whether our proof for AND gates in Sect. 5.3
still holds when garbling an XOR gate. Note that Claim 4 does not hold on
exposed XOR gates, because the evaluator Ei,j is allowed to know the output
wire label of Eī,j̄ . However, in the gate-hiding setting, Claim 4 still holds.

With quasi-free-XOR, we require that all the elements in {Cres,i
α,β |α, β ∈

{0, 1}} be the same for a given i. Since we only focus on the oracle response
part in Sect. 5.3, the construction achieving 1.5κ ciphertexts also works on XOR
gates. Hence, the lower bound in this case is 3

2κ bits, even if all types of gates
are considered.

Schemes without Quasi-Free-XOR. We now assume that quasi-free-XOR
is forbidden. For a given i, elements in {Cres,i

α,β |α, β ∈ {0, 1}} may be different.
Without loss of generality, we assume a = 0 and b = 0. When garbling an AND
gate, the garbler needs to ensure that for all i ∈ [κ], Cres,i

0,0 = Cres,i
0,1 = Cres,i

1,0 .
However, the garbler has to guarantee that the output labels of E0,0 and E1,1 are
the same while the output labels of E0,1 and E1,0 are the same, when garbling an
XOR gate. That is to say, Cres,i

0,0 = Cres,i
1,1 and Cres,i

0,1 = Cres,i
1,0 . When garbling

an AND (resp. XOR) gate, let ZAND0 (resp. ZXOR0) and ZAND1 (resp. ZXOR1)
include vectors of C0 and C1.

Theorem 5. In the model of Bitwise Linear Garbling Schemes, suppose quasi-
free-XOR is forbidden. Under the gate-hiding assumption, the lower bound of m
is 2κ.

Title Suppressed Due to Excessive Length 25

Proof. Note that a = 0 and b = 0.

1) AND: We add κ vectors {Zres,i
0,0 |i ∈ [κ]} into the set ZAND0, to obtain rank

κ.
XOR: {Zres,i

0,0 |i ∈ [κ]} are put into ZXOR0, rank(ZXOR0) = κ.
2) AND: For the same reason as the proof in Sect. 6.2, {Zres,i

0,1 |i ∈ [κ]} are also
added into ZAND0 and the rank of this set is now 2κ.
XOR: However, to store {Zres,i

0,1 |i ∈ [κ]} when garbling an XOR gate, we
need ZXOR1 instead of ZXOR0. rank(ZXOR1) = κ.

3) AND: After adding {Zres,i
1,0 |i ∈ [κ]} into ZAND0, rank(ZAND0) = 3κ. At least

2κ ciphertexts are necessary.
XOR: The set ZXOR1 does not change anymore after containing {Zres,i

1,0 |i ∈
[κ]}, so it requires κ ciphertexts.

4) AND: Finally, add {Zres,i
1,1 |i ∈ [κ]} into the new ZAND1. ZAND1 can be viewed

as free in terms of ciphertexts.
XOR: ZXOR0 containing {Zres,i

1,1 |i ∈ [κ]} is of rank 2κ. Hence, both ZXOR0

and ZXOR1 require κ ciphertexts.

We need 2κ ciphertexts to garble an AND gate. Even if ZXOR0 and ZXOR1

use the same κ ciphertexts, we still need 2κ ciphertexts to keep the gate function
private.

However, one shall notice that garbling an AND gate may require ciphertexts
in a different step from garbling an XOR gate. We need to ensure that the
evaluator always has a view independent of gate functions. Roughly speaking,
we ensure that in the evaluator’s view, κ ciphertexts are always used in step 1)
or 4), and the other κ ciphertexts are always used in step 2) or 3). After that,
the 2κ-bit lower bound can be reached. ⊓⊔

We omit our second model here, due to its similarity with the first model
under the circumstances. It is easy to prove the 2κ-bit lower bound of ciphertexts.

7 Fan-in 3 Garbling

For a fan-in 2 gate, our lower bound merely matches the “three-halves” garbling
scheme. As an extension, we consider garbling of a fan-in 3 gate in our third
model. Because this model is similar to our first model, we only state differences
between two models. Then, we prove the 7

4κ lower bound of ciphertexts with
a corresponding construction. This construction is not suitable for gates whose
truth table is of odd parity. 8

7.1 The Third Model: Fan-in 3 Bitwise Garbling Schemes

With three input wire labels Ai, Bj , Ck, we denote the evaluator with Ai, Bj , Ck

as Ei,j,k where i, j, k ∈ {0, 1}. In our proof, we mainly fix on E0,0,0.
8 For example, the truth table of a∧ b∧ c is of odd parity, since it has one 1 and seven

0’s. The “three-halves” garbling scheme needs 3κ bits to garble it.

26 F. Xu, H. Hu and C. Xu

Oracle Responses. With free-XOR, Ai, Bj , Ck lead to more types of oracle re-
sponses. We start by listing 14 forms of responses: H(Ai), H(Bj), H(Ck), H(Ai⊕
Bj), H(Ai⊕Ck), H(Bj⊕Ck), H(Ai⊕Bj⊕Ck) where i, j, k ∈ {0, 1}. Again, we em-
phasize that we use each form to represent oracle responses associated with the
corresponding set, rather than requiring that the random oracle must be queried
in these forms. These forms are associated with sets of size 4. Similar to the first
model, there exist forms associated with sets of size 2 and 1. In our proof, we use
the intersection of two sets of size 4 (e.g., H(Ai)⊕H(Bj)) to replace the set of
size 2 (e.g., H(Ai, Bj)), and use the intersection of three sets to replace the set
of size 1. The distinction among H(Ai) ⊕H(Bj) ⊕H(Ck), H(Ai, Bj) ⊕H(Ck)
and H(Ai, Bj , Ck) has been mentioned in Sect. 4. Hence, we set t = 14 with
above 14 forms.

Modified Claim. Claim 4 of our first model requires two types of oracle re-
sponses. With respect to the ideal security, H(Ai)⊕H(Bj) can only be computed
by Ei,j . However, the third model does not simply require three types of ora-
cle responses. For example, H(Ai)⊕H(Bj)⊕H(Ai ⊕Bj) can be computed by
{Ei,j,0, Ei,j,1}. We need to analyze each set concretely.

To this end, we fix on E0,0,0 with access to H(A0), H(B0), H(C0), H(A0 ⊕
B0), H(A0⊕C0), H(B0⊕C0), H(A0⊕B0⊕C0). For simplicity, we number them as
H1,H2,H3,H5,H6,H7,H10. 9 Each form is a vector consisting of q elements.
For the i-th output bit, E0,0,0 uses Zj,i to act on Hj , i.e.,

〈
Zj,i,Hj

〉
. We still use

the sign function v : Zq
2 → Z2. v(V) outputs 1 when V is a nonzero vector, and

outputs 0 otherwise. Through the discontinuous numbering, we propose Claim
5.

- Claim 5: For j ∈ {1, 2, 3, 5, 6, 7, 10} and an arbitrary linear combination defined
by y1, y2, . . . , yκ ∈ {0, 1}, let Lj =

⊕κ
i=1 yiZ

j,i and vj = v(Lj). Then, there exist
j1, j2, j3 ∈ {1, 2, 3, 5, 6, 7, 10} such that:

1. j1 < j2 < j3;
2. j1 + j2 + 2 ̸= j3 and (j1, j2, j3) ̸= (5, 6, 7);
3. vj1 = vj2 = vj3 = 1.

Proof. Through j1 < j2 < j3, j1+ j2+2 ̸= j3 and (j1, j2, j3) ̸= (5, 6, 7), we avoid
that three types of responses can still be computed by another evaluator besides
E0,0,0. Hence, any non-trivial linear combination of all bits of the output label
follows ideal security. ⊓⊔

7.2 Proof of a Lower Bound in the Third Model

In view of the scale of three input labels and eight evaluators, we choose another
way to prove the lower bound.

9 For better readability, we prefer this discontinuous numbering instead of bitstring
numbering.

Title Suppressed Due to Excessive Length 27

Given q = 1, Hj consists of only one element Hj
1 , where j ∈ {1, 2, 3, 5, 6, 7, 10}.

For simplicity, let N = {1, 2, 3, 5, 6, 7, 10} and H1 = {Hj
1 |j ∈ N}. We list four

values V1 = H1
1 ⊕ H2

1 ⊕ H6
1 , V2 = H1

1 ⊕ H3
1 ⊕ H10

1 , V3 = H2
1 ⊕ H3

1 ⊕ H5
1 and

V4 = H2
1 ⊕H7

1 ⊕H10
1 , and present following lemmas.

Lemma 6. Consider different ji ∈ N , there are two conclusions:

1. For all ji where i ∈ [2], Hj1
1 ⊕H

j2
1 can be represented as a linear combination

of V1, V2, V3, V4 and R where R ∈ H1.
2. For all ji where i ∈ [3], Hj1

1 ⊕ Hj2
1 ⊕ Hj3

1 can be represented as a linear
combination of V1, V2, V3, V4 and R where R ∈ H1 or R = 0.

Proof. It is easy to check conclusion 1, while conclusion 2 can be inferred from
conclusion 1.

Lemma 7. Given different j1, j2, j3 ∈ N , there exists j4 ∈ N such that:

1. there exist different a, b, c ∈ [4] such that: ja + jb + 2 = jc or (ja, jb, jc) =
(5, 6, 7).

2. there exist different d, e, f ∈ [4] such that: Hd
1 ⊕He

1 ⊕Hf
1 can be represented

as a linear combination of V1, V2, V3, V4.

Proof. Based on exhaustive method.

Lemma 8. Given q = 1, if Claim 5 holds, then the upper bound of κ is 4.

Proof. We start by these 4 valid values: H1
1 ⊕H2

1 ⊕H6
1 , H1

1 ⊕H3
1 ⊕H10

1 , H2
1 ⊕

H3
1 ⊕H5

1 and H2
1 ⊕H7

1 ⊕H10
1 . It is easy to check that Claim 5 holds.

Suppose another value Hj1
1 ⊕Hj2

1 ⊕Hj3
1 . By the conclusion 1 of Lemma 6, it

can be transformed into H
j′1
1 where j′1 ∈ N or 0, which violates Claim 5.

When considering ji where i ∈ [k] (k ≥ 4), we can first transform Hj1
1 ⊕

Hj2
1 ⊕Hj3

1 to H
j′1
1 or 0. Then, we only need to consider ji where i ∈ [k − 2] or

[k−3]. Through this way, we check that any other value can be transformed into
H

j′1
1 or 0.

Next, we prove that no valid construction exists when κ ≥ 5. Suppose there
exist 5 valid values Uj where j ∈ {1, 2, 3, 4, 5}. As just noted, Uj can be rep-
resented by a linear combination of V1, V2, V3, V4 and Rj . Specifically, Uj =

(
⊕4

i=1 y
j
iVi)⊕Rj , where yji ∈ {0, 1}. Meanwhile, Uj1 ⊕Uj2 where j1 < j2 can be

transformed similarly. Uj1⊕Uj2 = (
⊕4

i=1 y
j1,j2
i Vi)⊕Rj1,j2 , where yj1,j2i ∈ {0, 1}.

Note that Rj1,j2 ∈ H1 or Rj1,j2 = 0, because of the conclusion 2 of Lemma 6. Af-
ter putting them together and renumbering them, we get Uj = (

⊕4
i=1 y

j
iVi)⊕Rj ,

where j ∈ [15] and yji ∈ {0, 1}.
Hence, we consider vectors (yj1, y

j
2, y

j
3, y

j
4) where j ∈ [15]. None of them are

equal to (0, 0, 0, 0), otherwise there exists a Uj equal to Rj which breaks Claim
5. Any two of them are not equal, otherwise a linear combination of these two
values is equal to Rj1 ⊕Rj2 , which breaks Claim 5. Hence, (yj1, y

j
2, y

j
3, y

j
4) where

j ∈ [15] construct a permutation of elements in {0, 1}4 \ {(0, 0, 0, 0)}. Clearly,
U1 ⊕ U2 ⊕ U3 with (y161 , y162 , y163 , y164) breaks Claim 5.

Based on proof by contradiction, the upper bound of κ is 4. ⊓⊔

28 F. Xu, H. Hu and C. Xu

Consider j ∈ J such that J ⊂ N and |J | = SJ . If Claim 5 holds, suppose
the upper bound of κ is κJ . One can verify that SJ

κJ
≥ 7

4 . For example, if we
rule out H10, then SJ = 6 and κJ = 3. Hence, for the rest of this section, we
assume that Hj where j ∈ N are of the same length.

Lemma 9. For the output label of appropriate length κ(= 128), if Claim 5 holds,
then q ≥ 1

4κ.

Proof. If q = 2, given Hj
1 , H

j
2 , we list 8 valid values V 1

i (= Vi), V
2
i (= Vi+4) where

i ∈ [4]. For k ∈ {0, 1}, values computed by Hk = {Hj
k|j ∈ N} can be represented

as (
⊕4

i=1 yiV
k
i)⊕R where R ∈ Hk or R = 0.

Therefore, we represent valid values computed byH1 andH2 as (
⊕8

i=1 yiVi)⊕
R1 ⊕ R2, where for k ∈ [2], Rk ∈ Hk or Rk = 0. Note that linear combinations
of these values are also of this form. We require that (y1, y2, . . . , y8) is nonzero,
otherwise Claim 5 breaks. Similar to the proof of Lemma 8, no valid construction
exists when κ > 8.

If q = 3, we have to consider Rk ∈ Hk where k ∈ [3]. If one of R1, R2, R3 is
0, R1⊕R2⊕R3 breaks Claim 5. Suppose R1⊕R2⊕R3 = Hj1

1 ⊕Hj2
2 ⊕Hj3

3 and
j1 < j2 < j3. If two of j1, j2, j3 are equal, Hj1

1 ⊕ Hj2
2 ⊕ Hj3

3 , which only needs
two types of responses, breaks Claim 5.

Therefore, we assume that j1, j2, j3 are different. Note that if j1+ j2+2 = j3
or (j1, j2, j3) = (5, 6, 7), R1 ⊕ R2 ⊕ R3 also violates Claim 5. If this case does
not happen, according to Lemma 7, we find a corresponding j4. Without loss
of generality, we assume that j1 + j2 + 2 = j4 while Hj1

3 ⊕ Hj3
3 ⊕ Hj4

3 can be
represented as a linear combination of V1, V2, V3, V4. Hence, Hj1

1 ⊕Hj2
2 ⊕Hj3

3 can
be represented as a linear combination of V1, V2, V3, V4 and Hj1

1 ⊕H
j2
2 ⊕H

j1
3 ⊕H

j4
3 .

Since j1 + j2 + 2 = j4, this value still breaks Claim 5. Therefore, valid values
represented as (

⊕12
i=1 yiVi)⊕R1⊕R2⊕R3 still require nonzero (y1, y2, . . . , y12),

so no valid construction exists when κ > 12.
Our transformation when q = 3 is applicable when q > 3, so κ ≤ 4q if q > 3.

Consequently, q ≥ 1
4κ. ⊓⊔

Theorem 6. In the model of Fan-in 3 Bitwise Garbling Schemes with quasi-
free-XOR, the lower bound of the number of ciphertexts (i.e., m) is 7

4κ.

Proof. Referring to the proof of Theorem 1, ciphertexts are used to transform
oracle responses held by {Ei,j,k|i, j, k ∈ {0, 1}} into the same responses. Based
on Lemma 9, q ≥ 1

4κ. Denote {Hj
i |i ∈ [q], j ∈ N} as H. The lower bound of |H|

is 7
4κ.
Given two different types of responses Hj1

i1
and Hj2

i2
, it is easy to check that

there exists an evaluator who can compute Hj1
i1

(resp. Hj2
i2

) but fails to compute
Hj2

i2
(resp. Hj1

i1
). Hence, Hj1

i1
and Hj2

i2
both need a ciphertext.

Therefore, if m < |H|, then there exist two different responses of the same
type Hj

i1
and Hj

i2
which only need one ciphertext. That is to say, when E0,0,0

uses Hj
i1

or Hj
i2

, she always uses the entire Hj
i1
⊕Hj

i2
. Note that Hj

i1
⊕Hj

i2
only

Title Suppressed Due to Excessive Length 29

needs one ciphertext. Replacing Hj
i1
⊕Hj

i2
with Hj

i1
does not affect the number of

ciphertexts. In this way, we finally get a construction in which m = |H|. Because
|H| ≥ 7

4κ, the lower bound of m is 7
4κ. ⊓⊔

Similar to our extension from the first model to the second model, we can
allow non-linear actions in the third model and obtain the 7

4κ lower bound.
However, when we achieve this lower bound, the corresponding construction
does not work on a fan-in 3 gate whose truth table is of odd parity. Hence, this
idea alone is not practical.

References

1. Acharya, A., Ashur, T., Cohen, E., Hazay, C., Yanai, A.: A new approach to garbled
circuits. Cryptology ePrint Archive, Paper 2021/739 (2021). https://eprint.iacr.
org/2021/739

2. Afshar, A., Mohassel, P., Pinkas, B., Riva, B.: Non-Interactive secure compu-
tation based on cut-and-choose. In: Nguyen, P.Q., Oswald, E. (eds.) EURO-
CRYPT 2014. LNCS, vol 8441, pp. 387-404. Springer, Heidelberg (2014). https:
//doi.org/10.1007/978-3-642-55220-5_22

3. Ball, M., Malkin, T., Rosulek, M.: Garbling gadgets for Boolean and arithmetic
circuits. In: Weippl, E.R., Katzenbeisser, S., Kruegel, C., Myers, A.C., Halevi, S.
(eds.) ACM CCS 2016, pp. 565-577. ACM Press, October 2016

4. Baek, C., Kim, T.: Can we beat three halves lower bound? (Im)Possibility of re-
ducing communication cost for garbled circuits. Cryptology ePrint Archive, Paper
2024/803 (2024). https://eprint.iacr.org/2024/803

5. Beaver, D., Micali, S., Rogaway, P.: The round complexity of secure protocols
(extended abstract). In: 22nd ACM STOC, pp. 503–513. ACM Press, May 1990

6. Bellare, M., Hoang, V.T., Rogaway, P.: Foundations of garbled circuits. In: Yu,
T., Danezis, G., Gligor, V.D. (eds.) ACM CCS 2012, pp. 784–796. ACM Press,
October 2012.

7. Choi, S.G., Katz, J., Kumaresan, R., Zhou, H.-S: On the security of the “Free-
XOR” Technique. In: Cramer, R. (eds.) TCC 2012. LNCS, vol 7194, pp. 39–53.
Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-28914-9_3

8. Cui, H., Wang, X., Yang, K., Yu, Y.: Actively secure half-gates with minimum
overhead under duplex networks. In: Hazay, C., Stam, M. (eds.) EUROCRYPT
2023, Part II. LNCS, vol. 14005, pp. 35–67. Springer, Cham (2023). https://doi.
org/10.1007/978-3-031-30617-4_2

9. Dittmer, S., Ishai, Y., Lu, S., Ostrovsky, R.: Authenticated garbling from sim-
ple correlations. In: Dodis, Y., Shrimpton, T. (eds.) CRYPTO 2022, Part IV.
LNCS, vol 13510, pp. 57-87. Springer, Cham (2022). https://doi.org/10.1007/
978-3-031-15985-5_3

10. Fan, L., Lu, Z., Zhou, H.: Column-wise garbling, and how to go beyond the linear
model. Cryptology ePrint Archive, Paper 2024/415 (2024). https://eprint.iacr.org/
2024/415

11. Frederiksen, T.K., Nielsen, J.B., Orlandi, C.: Privacy-free garbled circuits with
applications to efficient zero-knowledge. In: Oswald, E., Fischlin, M. (eds.) EURO-
CRYPT 2015, Part II. LNCS, vol. 9057, pp. 191–219. Springer, Heidelberg (2015).
https://doi.org/10.1007/978-3-662-46803-6_7

https://eprint.iacr.org/2021/739
https://eprint.iacr.org/2021/739
https://doi.org/10.1007/978-3-642-55220-5_22
https://doi.org/10.1007/978-3-642-55220-5_22
https://doi.org/10.1007/978-3-642-55220-5_22
https://doi.org/10.1007/978-3-642-55220-5_22
https://eprint.iacr.org/2024/803
https://doi.org/10.1007/978-3-642-28914-9_3
https://doi.org/10.1007/978-3-642-28914-9_3
https://doi.org/10.1007/978-3-031-30617-4_2
https://doi.org/10.1007/978-3-031-30617-4_2
https://doi.org/10.1007/978-3-031-30617-4_2
https://doi.org/10.1007/978-3-031-30617-4_2
https://doi.org/10.1007/978-3-031-15985-5_3
https://doi.org/10.1007/978-3-031-15985-5_3
https://doi.org/10.1007/978-3-031-15985-5_3
https://doi.org/10.1007/978-3-031-15985-5_3
https://eprint.iacr.org/2024/415
https://eprint.iacr.org/2024/415
https://doi.org/10.1007/978-3-662-46803-6_7
https://doi.org/10.1007/978-3-662-46803-6_7

30 F. Xu, H. Hu and C. Xu

12. Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game or a com-
pleteness theorem for protocols with honest majority. In: Aho, A. (eds.) 19th ACM
STOC, pp. 218–229. ACM Press, May 1987

13. Heath, D., Kolesnikov, V.: Stacked garbling. In: Micciancio, D., Ristenpart, T.
(eds.) CRYPTO 2020. LNCS, vol 12171, pp. 763–792. Springer, Cham (2020).
https://doi.org/10.1007/978-3-030-56880-1_27

14. Heath, D., Kolesnikov, V.: Stacked garbling for disjunctive zero-knowledge proofs.
In: Canteaut, A., Ishai, Y. (eds.) EUROCRYPT 2020. LNCS, vol 12107, pp. 569–
598. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-45727-3_19

15. Heath, D., Kolesnikov, V., Peceny, S.: MOTIF: (almost) free branching in GMW.
In: Moriai, S., Wang, H. (eds.) ASIACRYPT 2020. LNCS, vol 12493, pp. 3–30.
Springer, Cham (2020). https://doi.org/10.1007/978-3-030-64840-4_1

16. Katz, J., Malka, L.: Constant-round private function evaluation with lin-
ear complexity. In: Lee, D.H., Wang, X. (eds.) ASIACRYPT 2011. LNCS,
vol. 7073, pp. 556–571. Springer, Heidelberg (2011). https://doi.org/10.1007/
978-3-642-25385-0_30

17. Katz, J., Ranellucci, S., Rosulek, M., Wang, X.: Optimizing authenticated garbling
for faster secure two-party computation. In: Shacham, H., Boldyreva, A. (eds.)
CRYPTO 2018, Part III. LNCS, vol. 10993, pp. 365–391. Springer, Cham (2018).
https://doi.org/10.1007/978-3-319-96878-0_13

18. Kempka, C., Kikuchi, R., Suzuki, K.: How to circumvent the two-ciphertext lower
bound for linear garbling schemes. In: Cheon, J.H., Takagi, T. (eds.) ASIACRYPT
2016. LNCS, vol. 10032, pp. 967–997. Springer, Heidelberg (2016). https://doi.org/
10.1007/978-3-662-53890-6_32

19. Kolesnikov, V.: Free IF: how to omit inactive branches and implement S-universal
garbled circuit (almost) for free. In: Peyrin, T., Galbraith, S. (eds.) ASIACRYPT
2018, Part III. LNCS, vol. 11274, pp. 34–58. Springer, Cham (2018). https://doi.
org/10.1007/978-3-030-03332-3_2

20. Kolesnikov, V., Mohassel, P., Rosulek, M.: FleXOR: flexible garbling for XOR
gates that beats free-XOR. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014.
LNCS, vol. 8617, pp. 440–457. Springer, Heidelberg (2014) https://doi.org/10.
1007/978-3-662-44381-1_25

21. Kolesnikov, V., Schneider, T.: Improved garbled circuit: free XOR gates and appli-
cations. In: Aceto, L., Damgård, I., Goldberg, L.A., Halldórsson, M.M., Ingólfsdót-
tir, A., Walukiewicz, I. (eds.) ICALP 2008, Part II. LNCS, vol. 5126, pp. 486–498.
Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-70583-3_40

22. Mohassel, P., Sadeghian, S.: How to hide circuits in MPC an efficient framework for
private function evaluation. In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT
2013. LNCS, vol. 7881, pp. 557–574. Springer, Heidelberg (2013). https://doi.org/
10.1007/978-3-642-38348-9_33

23. Naor, M., Pinkas, B., Sumner, R.: Privacy preserving auctions and mechanism
design. In: Proceedings of the 1st ACM Conference on Electronic Commerce, New
York, NY, USA, pp. 129–139. ACM (1999)

24. Patra, A., Ravi, D.: On the exact round complexity of secure three-party computa-
tion. In: Shacham, H., Boldyreva, A. (eds.) CRYPTO 2018. LNCS, vol 10992, pp.
425-458. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-96881-0_15

25. Patra, A., Ravi, D.: Beyond honest majority: the round complexity of fair and
robust multi-party computation. In: Galbraith, S., Moriai, S. (eds.) ASIACRYPT
2019. LNCS, vol 11921, pp. 456-487. Springer, Cham (2019). https://doi.org/10.
1007/978-3-030-34578-5_17

https://doi.org/10.1007/978-3-030-56880-1_27
https://doi.org/10.1007/978-3-030-56880-1_27
https://doi.org/10.1007/978-3-030-45727-3_19
https://doi.org/10.1007/978-3-030-45727-3_19
https://doi.org/10.1007/978-3-030-64840-4_1
https://doi.org/10.1007/978-3-030-64840-4_1
https://doi.org/10.1007/978-3-642-25385-0_30
https://doi.org/10.1007/978-3-642-25385-0_30
https://doi.org/10.1007/978-3-642-25385-0_30
https://doi.org/10.1007/978-3-642-25385-0_30
https://doi.org/10.1007/978-3-319-96878-0_13
https://doi.org/10.1007/978-3-319-96878-0_13
https://doi.org/10.1007/978-3-662-53890-6_32
https://doi.org/10.1007/978-3-662-53890-6_32
https://doi.org/10.1007/978-3-662-53890-6_32
https://doi.org/10.1007/978-3-662-53890-6_32
https://doi.org/10.1007/978-3-030-03332-3_2
https://doi.org/10.1007/978-3-030-03332-3_2
https://doi.org/10.1007/978-3-030-03332-3_2
https://doi.org/10.1007/978-3-030-03332-3_2
https://doi.org/10.1007/978-3-662-44381-1_25
https://doi.org/10.1007/978-3-662-44381-1_25
https://doi.org/10.1007/978-3-662-44381-1_25
https://doi.org/10.1007/978-3-662-44381-1_25
https://doi.org/10.1007/978-3-540-70583-3_40
https://doi.org/10.1007/978-3-540-70583-3_40
https://doi.org/10.1007/978-3-642-38348-9_33
https://doi.org/10.1007/978-3-642-38348-9_33
https://doi.org/10.1007/978-3-642-38348-9_33
https://doi.org/10.1007/978-3-642-38348-9_33
https://doi.org/10.1007/978-3-319-96881-0_15
https://doi.org/10.1007/978-3-319-96881-0_15
https://doi.org/10.1007/978-3-030-34578-5_17
https://doi.org/10.1007/978-3-030-34578-5_17
https://doi.org/10.1007/978-3-030-34578-5_17
https://doi.org/10.1007/978-3-030-34578-5_17

Title Suppressed Due to Excessive Length 31

26. Pinkas, B., Schneider, T., Smart, N.P., Williams, S.C.: Secure two-party compu-
tation is practical. In: Matsui, M. (eds.) ASIACRYPT 2009. LNCS, vol. 5912, pp.
250–267. Springer, Heidelberg (2009) https://doi.org/10.1007/978-3-642-10366-7_
15

27. Rosulek, M., Roy, L.: Three halves make a whole? Beating the half-gates lower
bound for garbled circuits. In: Malkin, T., Peikert, C. (eds.) CRYPTO 2021, Part
I. LNCS, vol. 12825, pp. 94–124. Springer, Cham (2021). https://doi.org/10.1007/
978-3-030-84242-0_5

28. Wang, X., Ranellucci, S., Katz, J.: Authenticated garbling and efficient maliciously
secure two-party computation. In: ACM CCS 2017, pp. 21–37. ACM Press (2017)

29. Wang, Y., Malluhi, Q.M.: Reducing garbled circuit size while preserving circuit
gate privacy. Cryptology ePrint Archive, Report 2017/041 (2017). https://eprint.
iacr.org/2017/041

30. Yao, A.C.-C.: Protocols for secure computations (extended abstract). In: 23rd An-
nual Symposium on Foundations of Computer Science, pp. 160–164. IEEE Com-
puter Society Press, November 1982

31. Zahur, S., Rosulek, M., Evans, D.: Two halves make a whole-reducing data trans-
fer in garbled circuits using half gates. In: Oswald, E., Fischlin, M. (eds.) EURO-
CRYPT 2015, Part II. LNCS, vol. 9057, pp. 220–250. Springer, Heidelberg (2015).
https://doi.org/10.1007/978-3-662-46803-6_8

https://doi.org/10.1007/978-3-642-10366-7_15
https://doi.org/10.1007/978-3-642-10366-7_15
https://doi.org/10.1007/978-3-642-10366-7_15
https://doi.org/10.1007/978-3-642-10366-7_15
https://doi.org/10.1007/978-3-030-84242-0_5
https://doi.org/10.1007/978-3-030-84242-0_5
https://doi.org/10.1007/978-3-030-84242-0_5
https://doi.org/10.1007/978-3-030-84242-0_5
https://eprint.iacr.org/2017/041
https://eprint.iacr.org/2017/041
https://doi.org/10.1007/978-3-662-46803-6_8
https://doi.org/10.1007/978-3-662-46803-6_8

	Bitwise Garbling Schemes A Model with 32-bit Lower Bound of Ciphertexts

