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Abstract

We introduce two folding schemes for lookup instances: FLI and FLI+SOS. Both
use a PIOP to check that a matrix has elementary basis vectors as rows, with FLI+SOS
adding a twist based on Lasso’s [STW24] SOS-decomposability.

FLI takes two lookup instances {a1}, {a2} ⊆ {t}, and expresses them as matrix
equations Mi · tT = aTi for i = 1, 2, where each matrix Mi ∈ Fm×N has rows which are
elementary basis vectors in FN . Matrices that satisfy this condition are said to be in
Relem. Then, a folding scheme for Relem into a relaxed relation is used, which combines
the matrices M1,M2 as M1 + αM2 for a random α ∈ F. Finally, the lookup equations
are combined as (M1+αM2) ·tT = (a1+αa2)

T. In FLI, only the property that a matrix
is in Relem is folded, and this makes the FLI folding step the cheapest among existing
solutions. The price to pay is in the cost for proving accumulated instances.

FLI+SOS builds upon FLI to enable folding of large SOS-decomposable [STW24] ta-
bles. This is achieved through a variation of Lasso’s approach to SOS-decomposability,
which fits FLI naturally. For comparison, we describe (for the first time to our knowl-
edge) straightforward variations of Protostar [BC23] and Proofs for Deep Thought
[BC24] that also benefit from SOS-decomposability. We see that for many reason-
able parameter choices, and especially those arising from lookup-based zkVMs [AST24],
FLI+SOS can concretely be the cheapest folding solution.
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1 Introduction

Folding schemes have been an active area of research in the last few years [BGH19, BCMS20,
BCL+21, KST22, KS24, BC23, EG23, BC24]. Informally, these schemes can be described as
interactive proofs in which a Prover and a Verifier create a new instance-witness pair for a
certain relationR2 from two instances-witness pairs for relationsR1,R2. The validity of the
newly created instance-witness pair implies the validity of the two original instance-witness
pairs. The idea is that if this combination process is less expensive than directly proving
that the two instance-witness pairs belong to the relevant relations (in Prover time, memory
requirements, or proof size), one can save on costs by reducing the task of proving that many
instance-witness pairs belong to R1 to proving that a single pair belongs to R2. Initially,
these schemes were created with the intention of improving the construction of primitives
like Incrementally Verifiable Computation (IVC) [Val08] and Proof-Carrying-Data (PCD)
[CT10].

Another active area of research is that of lookup arguments: these are arguments that
allow a Prover to convince a Verifier that all elements in a vector a appear in a pre-
established vector t. The vectors t is often referred to as a lookup table, and we use the phrase
“look a into t” to mean engaging in the lookup argument to convince a Verifier that all
elements in a appear in t. Lookup arguments have become very popular within the context
of SNARKs [Kil92, Mic94], because they allow for an efficient treatment of operations that
are otherwise difficult to arithmetize. In SNARKs, these operations could be non-native field
arithmetic, elliptic curve operations, binary operations, and so on. With lookup arguments,
the Prover can use a lookup into a lookup table for the corresponding operation (this table is
usually pre-defined), instead of needing to represent the computation in the arithmetization
of the SNARK. Recent work in the field of lookup arguments can be essentially split between
lookup arguments that use matrix equations [ZBK+22, ZGK+22, STW24] and those that
use logarithmic derivatives [Hab22, EFG22, PH23]. Lasso [STW24] is the state-of-the-art
matrix-based lookup argument without pre-processing, provided that the lookup table t
has a specific structure, called SOS-decomposability. This informally says that to find an
entry of the lookup table t, one can evaluate a multilinear polynomial g at the entries of
smaller tables t1, . . . , tα in some structured way (for details, see Section 3.4). The typical
example is a range-check table. For instance, to show that a field element is smaller than
2256, one can break the element into 64 (or 32, or 16, and so on) bit parts, and perform a
range check for each of these parts. Note that it is not even possible to materialize the table
of all elements smaller than 2256. Hence SOS-decomposability gives the ability to perform
lookups into gigantic tables.

In a companion paper to Lasso, called Jolt [AST24], the authors construct a lookup-
based zero-knowledge Virtual Machine (zkVM). This realizes an idea sketched out in a
ZKResearch blogpost [bar22] called the lookup singularity, which pushes to the extreme the
idea of using lookup arguments for verifying computation: instead of only verifying those
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computations which are expensive or difficult to arithmetize with lookups, all operations
are verified with lookups. In [AST24] the authors show that almost all operations of the
RISC-V ISA are SOS-decomposable, and so using Lasso they are able to construct a lookup-
based zkVM for the RISC-V instruction set. In a follow-up blogpost and talk [Tha24,
AZ24], the authors express that one of the main steps in Jolt’s roadmap is to implement
continuations. This means breaking the CPU execution into chunks, and aggregating the
proof of correctness of each chunk. The motivation for doing so is to reduce the peak
memory consumption of generating a proof, but it comes at the cost of increasing the proof
size (since now there is a proof for each chunk). This also leads to the need for proving many
polynomial evaluations (several per chunk). As outlined in [Tha24], the authors plan to
avoid these problems in two ways (each with its own use cases): one by using recursion and
the polynomial commitment scheme from Binius [DP24, DP23], and the second by using
folding schemes to aggregate the chunks.

1.1 Our contributions

In this paper, inspired by the use case of continuations in lookup-based zkVMs, we develop
two folding schemes for lookup instances (see Definition 3.5) called FLI and FLI+SOS.
The latter is an extension of FLI that is capable of leveraging SOS-decomposability of the
lookup table t. We use two main technical ingredients: a variation of the way Lasso uses
SOS decompositions, and a PIOP and a folding scheme for the relation that a matrix has
elementary basis vectors as rows (i.e. each row consists entirely of 0, except for one entry
being 1).

Say we want to prove that the elements in a ∈ Fm appear in t ∈ FN . We refer to a as
the small table, and to t as the big table. There are two types of costs that we focus on:
the folding costs, and the cost of proving accumulated instances. The former is the Prover
and Verifier cost (in field/group operations, random oracle costs, and so on) associated
with the folding scheme, and the latter is the Prover and Verifier cost of a SNARK for the
accumulated relation.

Irrespective of whether t is SOS-decomposable (Definition 3.6) or not, FLI has the
cheapest folding Prover and Verifier (among the schemes described in Section 1.2), see
Tables 1 to 3 and Section 6. The Prover folding costs of FLI are linear on m, i.e. the size
of the small table a. However, as is the case with the rest of analysed schemes, proving an
accumulated instance requires incurring a cost of O(N) at least (recall N is the size of t).
Hence, FLI, as well as the rest of folding schemes for lookup instances, cannot reasonably
handle gigantic tables t.

With this in mind we consider the case when t is SOS-decomposable, and design a vari-
ation of FLI, called FLI+SOS, which leverages SOS-decomposability of t in a natural way.
This enables folding lookup instances where t is gigantic but SOS-decomposable, without in-
curring O(N) costs, neither in the folding step, nor when proving accumulated instances. To
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compare FLI+SOS, we describe straightforward variations of Protostar [BC23] and Proofs
for Deep Thought (abbreviated DT) [BC24] that make use of the SOS decomposability of
t. See Section 1.2 for more details. We emphasize that as is, neither Protostar nor DT
support SOS decompositions. To our knowledge, we are the first to describe the variations
of these schemes that are compatible with SOS decompositions, and we make a number of
favorable assumptions regarding their costs when comparing them to FLI+SOS. We call
these variations Protostar+SOS and DT+SOS.

When t is SOS-decomposable into α = k · c tables of size N1/c, we show in Section 6
that for choices of m,N, c, k that naturally arise in the context of lookup-based zkVMs,
FLI+SOS can overall be the cheapest folding scheme for lookup instances. Therefore it is
a candidate for implementing continuations by folding computation chunks. For instance,
we show that for m = 217, N = 21024, c ∼ 256, α = 2c (this particular choice seems to be
perfectly plausible in practice when using Jolt [AST24, Tha24]), with nf = 23 foldings then:

• FLI+SOS’s folding Prover is more than 4× cheaper than Protostar+SOS’s, and is
cheaper than DT+SOS’s (see Remark 6.1). In general if α = k · c, then FLI+SOS’s
folding Prover is more than 2 · k× cheaper than Protostar+SOS’s.

• FLI+SOS’s folding Verifier is comparable to (but slightly cheaper than) Protostar+SOS’s
Verifier, but much cheaper than DT+SOS’s.

• FLI+SOS’s folding Verifier has the lowest random oracle query costs. This is par-
ticularly relevant in the context of IVC [Val08], where the folding Verifier should be
represented recursively in a circuit. Each random oracle query could potentially repre-
sent numerous and complicated constraints, as some hash functions that heuristically
instantiate the random oracle are difficult to arithmetize.

We describe a custom SNARK for the accumulated/relaxed lookup relation in FLI+SOS,
namely RaccSOS (see Section 5.4). In our comparison, still with the same parameter values
for m,N, c and k, we find that:

• Putting opening proofs for multilinear polynomials to the side, the Prover for ac-
cumulated instances of FLI+SOS is around 1.2 times more expensive than that of
Protostar+SOS and around 1.3× more expensive than that of DT+SOS. However, in
this regime, DT+SOS’s folding Prover is prohibitively expensive. We emphasize that
this result is obtained while making a number of optimistic simplifications regarding
the cost of proving accumulated instances with Protostar+SOS and DT+SOS. The
improvement could be sharper, cf. Section 6 and in particular Remark 6.2.

• The polynomial opening proof cost of FLI+SOS is around 2× less than Protostar+SOS
and DT+SOS’s optimistic cost for proving accumulated instances. We emphasize
that this estimate assumes a naive curve-based (MSM) commitment scheme such as
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PST [PST13, CGG+23] (i.e. a “multilinear KZG”), and that one can choose alter-
native schemes which removes this overhead, at the expense of increasing the folding
Verifier work. For example, #2 in [Tha24] proposes using a tensor-like variation of
Zeromorph[KT23] or HyperKZG[Set24] which would make this step no longer be the
bottleneck in FLI+SOS, and would increase the Verifier work by O(N1/c) group op-
erations. With this, FLI+SOS’s Verifier would be comparable to DT+SOS’s and
more expensive than Protostar+SOS’s. However, FLI+SOS would be the cheapest
scheme both in terms of the folding Prover work and the cost of proving accumulated
instances.

For more details about the comparison, see Section 6 and Tables 1 to 4.

Potential usability in lattices. Finally, we remark that FLI is based solely on the
sumcheck protocol, and because of that, it could potentially be used in the context of
lattice-based cryptography. This is in contrast to Protostar and DT, which rely on field-
based identities involving logarithmic derivatives [Hab22, PH23] which do not seem to carry
over to lattices.

1.2 Related work

To the best of our knowledge, there are three available approaches to folding lookup in-
stances. Hypernova [KS24] describes one such scheme in which the Prover cost is O(N),
while the Verifier’s work is O(m log(N)), where here N is the size of the big table t, and m
is the size of the small table a. Protostar [BC23] describes a folding scheme based on the
logUp lookup argument [Hab22] with Prover’s costs O(m), with the concrete costs being
rather large due to the need of committing to 2 size-m vectors with entries of arbitrary
length. A related posterior work, Proofs for Deep Thought (DT in short) [BC24], presents
an alternative folding scheme for lookup instances in which the Prover’s costs depend only
on m. On the other hand, DT’s Verifier has a larger cost than Protostar’s, cf. Table 1. Since
we are interested in folding schemes with a Prover sublinear on N and a succinct Verifier,
we compare FLI mostly with Protostar and DT.

As we mentioned, FLI+SOS can naturally leverage the SOS decomposability of the big
table t, and as far as we are aware, FLI+SOS is the first of its kind in this sense. It is
easy, however, to envision ways in which the previously mentioned schemes (Hypernova,
Protostar, and DT) can also exploit SOS decomposability. Namely, one can first run the
first step of Lasso (see Section 2), which splits a lookup instance into α smaller lookup
instances, and then use either scheme to fold the α instances into α accumulated instances.
We refer to this variation as {Scheme} + SOS, where “Scheme” can be any folding scheme
for lookup instances, e.g. Protostar, or DT. For Protostar, we consider that the logUp
[Hab22] lookup argument is applied to the α instances, and for DT we consider that the
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Table 1: Comparison of FLI with other folding schemes for lookup instances. The costs
are organized in commitment, group exponentiation, and field multiplication costs. We also
display the number of rounds of each scheme. This coincides with the number of challenges
sent by the Verifier. m and N denote the size of the small table a on of the big table,
respectively. In the “commit” column, a pair (n, S) refers to a commitment of a vector
of size n with entries in the set S. FLI has two commitment cost profiles: one is average
case, while the other is worst case (cf. Section 2 for further details). Here nf we denote the
number of foldings performed so far, u is a small parameter (denoted c−1 in [BC24]), andM
denotes the maximum size of an entry in t. The cost Psps refers to the field operation cost of
running DT’s underlying special sound protocol. In Appendix D this cost is approximated
to α · 19max{m,N1/c} field multiplications. The cost L refers to the cost of computing the
coeffients of the polynomial e(X) in [BC24].
The efficiency of Protostar is displayed for their special-sound version of the logUp lookup
argument. The efficiency of Hypernova is displayed for the lookup argument nlookup in
[KS24]. When it comes to DT, we consider only the variant built upon logUp-GKR.

Scheme Prover work Verifier work Rounds

commit group field group field

Protostar [BC23] (2m,F), (m, [m]) 7 O(m) 3 O(1) 1

Hypernova [KS24] – – O(N) – O(m logN) log(m) +O(1)

Deep Thought [BC24] (3m, [M ]) u logN

{
O(m log(m))+

+ Psps + L
u logN u log(N) u log(N)

FLI (this work)

{
avg: (ρ,F), (m− ρ,B)
worse: (m,F)

4 O(m) 4 O(1) 1

ρ := min{mnf/N,m}

logUp-GKR [PH23] is applied to the α instances. We remark that proving accumulated
instances for these schemes (Protostar + SOS and DT+SOS) is not a straightforward task.
For the sake of comparison, we sketch a simplified method in Section 6. We compare our
folding scheme FLI with Hypernova, Protostar, and DT; and we compare FLI+SOS with
Protostar + SOS, and DT + SOS, cf. Tables 1 to 4 and Section 6.

Remark 1.1 (Using Protogalaxy). Protogalaxy [EG23] continues the line of work of Pro-
tostar, and focuses on building a (multi) folding scheme for special-sound protocols with
algebraic Verifiers in which the marginal folding Verifier work is really light. In particular,
the authors manage to remove the commitment to the cross-term.

It is also easy to imagine a version of Protogalaxy+SOS in our terminology. However,
in this particular case where we are using Protostar to fold logUp instances, Protostar is
able to update the commitment to the error term homomorphically. This makes it such
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Table 2: Comparison of the Prover in FLI+SOS with the Prover of other folding schemes
when the big table t is SOS-decomposable (Definition 3.6). “Protostar + SOS” and “Deep
Thought (DT) + SOS” both refer to first performing Lasso’s SOS reduction and then
applying Protostar or [BC24], respectively, to the resulting α lookup instances of a table of
size m into a table of size N1/c. We follow the same notation as in Table 1. N1/c is the
size of the SOS decomposed tables (cf. Section 3.4); α = k · c, where k is a small constant
(typically 1 or 2); and g is the multilinear polynomial providing the SOS decomposition
and |g| its arithmetic complexity.

Scheme Prover work

commit group field

Protostar+SOS α · (2m,F), α · (m, [m]) 7α mdeg(g)(α+ |g|)

Deep Thought+SOS α · (3m, [M ]) α · u log(N1/c)


O(αm log(m))

+mdeg(g)(α+ |g|)
+α · Psps + α · L

FLI+SOS

{
avg: c · (ρ,F), c · (m− ρ,B)
worse: c · (m,F)

4c+ 1 mdeg(g)(α+ |g|)

c · (m,B)

ρ := min{mnf/N
1/c,m}

that the dominant cost for the folding Prover both in Protostar and Protogalaxy is the
commitment to the witness. Since the constraint system is the same for Protostar and
Protogalaxy, the cost to prove accumulated instances is also the same. This is why we only
consider our variation of Protostar+SOS when comparing state-of-the-art folding schemes
with FLI+SOS.

1.3 Organization of the paper

Section 2 outlines the techniques used to develop FLI. In Section 3, we introduce lookup rela-
tions and SOS-decomposable tables. Additional definitions on folding schemes, IPs/(P)IOPs,
soundness, and the sumcheck protocol are in Appendix A. Section 4 constructs a PIOP and
folding scheme for relation Relem (stating that a matrix has elementary basis vectors as
rows), which is extended in Section 5 to build FLI, incorporating a variation on SOS de-
composition. Section 6 shows FLI’s efficiency for key parameters. Deferred proofs are in
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Table 3: Comparison of the Verifier in FLI+SOS with the Verifier of other folding schemes
when the big table t is SOS-decomposable (Definition 3.6). We follow the same terminology
and notation as in Tables 1 and 2

Scheme Verifier work Rounds

group field

Protostar+SOS 3α O(α log(m)) log(m) + α

Deep Thought+SOS αu log(N1/c) O(α · u log(N1/c) + log(m)) log(m) + α · u log(N1/c)

FLI+SOS 4c+ 1 O(α log(m)) log(m) + α

Appendix C, further comparisons in Appendix B, and Prover cost computations in Ap-
pendix D.

1.4 Acknowledgements

This work was partially funded by World Foundation’s (previously known as Worldcoin
Foundation) Wave0 Community Grants [Fou24].

2 Techniques

Let R and Racc be two instance-witness relations. A folding scheme from R×Racc to Racc

is an interactive protocol between a Prover and a Verifier. The Verifier takes as input a pair
of instances (x,xacc) ∈ R×Racc, and outputs a new instance x′

acc ∈ Racc at the end of the
protocol. One requires that if the Prover knows a valid witness w′

acc for x
′
acc, then it knows

(except with negligible probability) valid witnesses w and wacc for x and xacc, respectively.
Often, one speaks of folding schemes for R, omitting Racc.

Here we consider the lookup relation RLook. For a fixed field F, an instance-witness
pair (x;w) ∈ RLook has the form x = (m,N, t, cmt, cma), and w = (a), where m,N ∈ N,
t ∈ FN ,a ∈ Fm, and cmt, cma are vector commitments to the vectors t,a. These vectors are
often referred to as tables. The lookup instance is valid if {ai | i ∈ [m]} ⊆ {ti | i ∈ [N ]}, and
Commit(t) = cmt, Commit(a) = cma for a fixed commitment scheme Commit (for simplicity
we omit referring to the randomness used in the commitments). In other words:

RLook :=

{
(x;w) = (m,N, t, cmt, cma;a)

∣∣∣∣∣ {ai | i ∈ [m]} ⊆ {ti | i ∈ [N ]}
Commit(t) = cmt,Commit(a) = cma

}
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Table 4: Dominant costs of the protocols for proving accumulated instances with FLI and
FLI+SOS (cf. 5.4.2). We follow the same notation as in Tables 1 to 3. Besides that,
s ≤ mN1/c denotes the sparsity of the accumulated matrices Macc, Eacc,M

acc
i . The second

and third column shows the dominant Prover and Verifier cost in field multiplications. In
the Openings column, the notation v · (a-variate, b-sparse) refers to v opening proofs of
a-variate multilinear polynomials that are b-sparse (i.e. at most b of their evaluations in
{0, 1}log(a) are nonzero). The Verifier opening proof costs are not reflected in the table.
By “SOS” we mean that the multilinear polynomial is a small table resulting from a SOS
decomposition. These can often be evaluated in log(N1/c) time, and hence the opening can
be computed directly by the Verifier, rather than proved. By “dense” we mean that the
polynomial can potentially take nonzero values on all the hypercube.

Scheme Prover field work Verifier field work Openings

FLI (2m+ 1)N + s(log(m) + 3) O(log(mN))

1 · (log(mN)-var, ν-sparse)

1 · (log(N)-var,SOS)

1 · (log(m)-var,dense)

ν := min{nfm,mN}

FLI+SOS
(2m+ 5α+ 1)N1/c+

+(3α+ 2)s+ 2m
O(log(mN1/c))

1 · (log(mN1/c)-var, ν-sparse)

1 · (log(N1/c)-var, SOS)

1 · (log(m)-var,dense)

ν := min{nfm,mN1/c}

Informally, in this overview we sometimes denote elements in RLook by (t, cmt, cma;a) ∈
RLook, omitting any reference to the table sizes m and N . Typically, we assume m and N
to be powers of two, with N being much larger than m. Because of this, we often informally
call t the big table, and a the small table.

We next describe how FLI works at a high level. We first recall the now standard
observation [ZBK+22, ZGK+22] that a lookup instance (t, cmt, cma;a) ∈ RLook is valid if
and only if there exists a m×N matrix M ∈ Fm×N such that:

• M · tT = aT, where T denotes transposition and M · tT denotes matrix-vector multi-
plication.

• Each row of M is an elementary basis vector, i.e. it consists only of zeros, except for
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one entry, which is 1. We define a relation capturing this property:

Relem :=

{
(x;w) = (m,N, cmM ;M)

∣∣∣∣∣ All rows of M are elementary basis vectors,

Commit(M) = cmM

}

• Commit(t) = cmt and Commit(a) = cma.

One can then define:

RMLook :=


(
x;

w

)
=

(
m,N, t, cmt, cma, cmM ;

a,M

)
∣∣∣∣∣∣∣∣∣∣∣∣

M ∈ Fm×N

(m,N, cmM ;M) ∈ Relem

M · tT = aT

Commit(t) = cmt,

Commit(a) = cma


As with RLook, we will omit referring to m,N when talking about instance-witness pairs
from RMLook, and we proceed similarly with Relem. Let (xi;wi) = (t, cmt, cmai , cmMi ;ai,
Mi) (i = 1, 2 )be two instance-witness pairs from RMLook that we wish to fold. By definition,
we have M1 · tT = a1

T and M2 · tT = a2
T. We visualize such instances as:{

M1 · tT = aT1
(cmM1 ;M1) ∈ Relem

{
M2 · tT = aT2
(cmM2 ;M2) ∈ Relem

(1)

Note that, fixing t, the first part of the instances in (1) are linear constraints on the matrices
M1,a1 and M2,a2. Hence, a natural step towards folding the instances (1) is to have the
verifier send a random challenge α← F, and then merge (1) into a single claim of the form{

(M1 + αM2) · tT = aT1 + αaT2
(cmM1 ;M1), (cmM2 ;M2) ∈ Relem

(2)

The next natural step is to apply a folding scheme for the relation Relem, so that the two
claims above, namely (cmM1 ;M1) ∈ Relem and (cmM2 ;M2) ∈ Relem, can be folded into an
instance of an accumulated version of the relation Relem. One way to do this is by first
noting that (cmM ;M) belongs to Relem if and only if:

• M2
ij = Mij for all matrix entries Mij of M (i ∈ [m], j ∈ [N ]). This property is

equivalent to saying that all entries of M are either 0 or 1.

• M ·1T = 1T, where 1 is the N -dimensional vector consisting entirely of 1’s. Together
with the above property, this ensures that all rows of M are elementary vectors1.

1Here one needs to assume that the characteristic of F is larger than N
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• Commit(M) = cmM .

By looking at M as a mN -dimensional witness vector, we reformulate the above conditions
as a R1CS-type constraint. Then, we use a Nova-like approach [KST22] so as to obtain a
folding scheme for the relation Relem into a relaxed version of Relem, which we denote Racc

elem.
Namely Racc

elem incorporates a mN -dimensional error vector E, a slackness parameter µ, and
a commitment cmE to E. Then (µ, cmM , cmE ;M,E) ∈ Racc

elem if and only if M2
ij = Mij+Eij

for all i ∈ [m], j ∈ [N ], M · 1T = (1 + µ) · 1T , and the commitments cmM and cmE are
commitments to M and E. Formally,

Racc
elem :=


(
x;

w

)
=

(
m,N, µ, cmM , cmE ;

M,E

)∣∣∣∣∣∣∣
M ◦M = M + E

M · 1T = (1 + µ) · 1T,
Commit(M) = cmM ,Commit(E) = cmE


Here ◦ denotes the Hadamard (i.e. component-wise) product. Given (cmM ;M) ∈ Relem and
(µ, cmMacc , cmE ;Macc, E) ∈ Racc

elem:

1. The Prover computes a commitment cmT to an intermediate cross term T = 2(Macc ◦
M)−M and sends cmT to the Verifier;

2. The Verifier replies with a random challenge α← F;

3. Both Prover and Verifier output cmM ′
acc

= cmMacc + αcmM , cmE′ = cmE + αcmT +
α2cmM , µ′ = µ+ α;

4. The Prover additionally outputs M ′
acc = Macc + αM , E′ = E + αT + α2M .

As a result, FLI’s folding Verifier is very simple, only performing a handful of operations
with a given vector commitment. When using, say, curve-based commitment schemes, this
translates to 4 group additions and 4 scalar multiplications. Note that FLI only needs one
random oracle query. The folding proof size consist in one group and field elements (we
don’t count cmM ′

acc
, cmE′ as part of the proof).

When it comes to Prover costs, note that the matrix M ∈ Fm×N (which we look at as
a vector of size mN) is m-sparse, meaning that all its entries except m are 0. In fact, all
nonzero entries of M are 1. Consequently, the matrix Macc ◦M is also m-sparse, and so is
the vector T . As such, standard curve-based commitment schemes allow to commit to M
and to T in time O(m). For example, the PST2 [PST13, CGG+23] scheme can commit to
M with exactly m− 1 group additions.

On the other hand, in general, nonzero elements in T can have arbitrary size. This is
because Macc has entries that are computed from the Verifier’s previous folding challenges,

2Here we refer to the PST version from [CGG+23] which uses the Lagrange basis instead of the monomial
basis.
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which were sampled randomly in F. The concrete cost of committing to T in the worst case
can be relatively large, e.g. ≈ 28m or 29m when using PST and Pippenger’s algorithm to
compute Multi Scalar Multiplications (MSM) (see, for example, the benchmarks in Table 1
of [Hab22]). However, we remark that the above is a worst case. Since M ∈ Relem, if Macc

is very sparse (as is when not many folding steps have been performed), then Macc ◦M
is even more sparse with high likelihood. If we think of M as being randomly sampled
in Relem, then the number of nonzero elements in Macc ◦M is, in expectation, ≤ mnf/N ,
where nf is the number of folding steps performed so far. Thus, when nfm << N , we have
that Macc ◦M is essentially the zero vector, on average. In that case, FLI’s Prover only
commits to sparse vectors containing almost exclusively small entries.

Lasso’s SOS decomposability. We recall SOS-decomposability, one of the key ideas of
the Lasso and Jolt papers [STW24, AST24]. Formally, a table t ∈ FN is SOS-decomposable

if there exists α := k ·c tables t1, . . . , tα of size N1/c, i.e. ti ∈ FN1/c
for all i, and an α-variate

multilinear polynomial g such that:

∀y ∈ BlogN , t(y) = g

(
t1(y1), . . . , tk(y1), tk+1(y2), . . . , t2k(y2), . . .

. . . , tkc−1(yc), tα(yc)

)
(3)

Here, we let B = {0, 1}, and we index the entries of t with elements from the hypercube
BlogN , denoting t(y) the entry of t indexed by the element y ∈ Blog(N). Further, y1, . . . ,yc

are all vectors from Blog(N)/c such that y = (y1, . . . ,yc). For the applications mentioned
in Lasso and Jolt [STW24, AST24], α is c or a small multiple of c. As exemplified by the
Jolt paper [AST24], many natural tables t are SOS-decomposable (e.g., tables containing
RISC-V instructions). Importantly for this paper, c can be chosen as large as wanted.

FLI and its natural use of SOS decomposability (FLI+SOS). One of the contri-
butions of this work is a variation of SOS decompositions that blends seamlessly with our
folding approach. We emphasize that this does not simply consist in performing Lasso’s SOS
decomposition and then folding the resulting smaller lookup instances. The starting obser-
vation is that when t is SOS-decomposable, the statement that (t, cmt, cma;a) ∈ RLook is
equivalent (leaving aside the constraints involving cmt and cma) to the existence of m×N1/c

matrices M1, . . . ,Mc with elementary vectors as rows such that:

∀x ∈ Blog(m), a(x) = g

(∑
y

M1(x,y) · t1(y), . . . ,
∑
y

Mc(x,y) · tα(y)

)
(4)

where y runs over Blog(N1/c). Indeed, one has that (t, cmt, cma;a) ∈ RLook if and only if
for all x ∈ Blog(m), there exists a y ∈ Blog(N) such that a(x) = t(y). But Eq. (3) implies
that t(y) = g(t1(y1), . . . , tk(y1), tk+1(y2), . . . , tα(yc)), where y = (y1, . . . ,yc) ∈ Blog(N)/c.
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The matrices M1, . . . ,Mc respectively indicate, for each x ∈ Blog(m), the indices y1, . . . ,yc

such that a(x) = g(t1(y1), . . . , tk(y1), tk+1(y2), . . . , tα(yc)) holds, i.e. for each x ∈ Blog(m)

and i ∈ [c], the row of Mi indexed by the element x consists of zeros everywhere except for
a one in the column indexed by yi. This way,

∑
y Mi(x,y) · tj(y) = tj(yi), for all j ∈ [k].

Above and below, we look at a,Mi, ti as the multilinear extensions (MLE) (cf. Section 3.1)
of the corresponding vectors.

With (4) in mind, we describe an extension of FLI that can handle SOS decomposability.
Say we wish to fold two instances (t, cmt, cmai ;ai) ∈ RLook, i = 1, 2. The protocol, which
we call FLI+SOS, proceeds as follows:

• P starts off by committing to the m-sparse matrices M1,1, . . . ,M1,c and M2,1, . . . ,M2,c

such that (4) holds, respectively, for the instances (t, cmt, cma1 ;a1) and (t, cmt, cma2 ;a2).
Let cmMi,j be the commitments. Then (cmMi,j ;Mi,j) ∈ Relem.

• Next for both i = 1, 2, P and V run a sumcheck protocol to assert the equality:

∑
x∈Blog(m)

(
ai(x)− g

(∑
y

Mi,1(x,y) · t1(y), . . . ,
∑
y

Mi,c(x,y) · tα(y)

))
ẽq(β,x)

=0

where β ∈ Flog(m) is a random challenge from the Verifier. This equality ensures that,
except with negligible probability, (4) holds for i = 1, 2.

• At the end of the sumcheck protocol, P and V are left with evaluation claims of the
following form, for j ∈ [c], i ∈ {1, 2}, and (j − 1)k + 1 ≤ ℓ ≤ jk:

ai(r) = d,
∑
y

Mi,j(r,y) · tℓ(y) = cijℓ,

• The Verifier sends a random challenge α ∈ F, and the resulting folded instance is

(a1 + αa2)(r) = d′, (cmMi,j ;Mi,j) ∈ Relem∑
y

(M1,j + αM2,j)(r,y) · tℓ(y) = c′jℓ, j ∈ [c], (j − 1)k + 1 ≤ ℓ ≤ jk

for random r ∈ Flog(m) and some field elements d′, c′jℓ.

• As we explained, the claims (cmMi,j ;Mi,j) ∈ Relem can be expressed as R1CS in-
stances, and folded in a Nova-like fashion.
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This is a simplified description of FLI+SOS where both instances are lookup instances.
In practice, we fold lookup instances into a relaxed lookup relation that we describe in
Section 5. Further, we use a single matrix to accumulate all the claims of the form
(cmMi,j ;Mi,j) ∈ Relem, and in parallel we fold the evaluation claims. The folding Prover and
Verifier of FLI+SOS are still the cheapest (see Tables 2 and 3). We also show by using an
example that the cost of proving accumulated instances with FLI is the cheapest in relevant
scenarios (Section 6).

Proving accumulated instances. We describe custom PIOPs that allow to prove that
an instance accumulated with FLI+SOS (or FLI) is valid. These protocols are simple and
only consist in sumchecks, cf. Table 4, and Section 6. The dominant Prover cost for proving
accumulated instances with FLI+SOS is m(2N1/c + 1) + 3α ·m · nf field operations, with
the mN1/c cost being due to the fact that we treat the m × N1/c matrices Mi as dense
matrices, and the other cost is related to the sparsity of the accumulated matrices after
nf foldings. The fact that we can freely choose the parameter c makes this Prover cost
very similar to the other available options in some practical scenarios, which we discuss in
Section 6). This is considering very optimistic costs for the protocols that prove accumulated
instances with Protostar+SOS or DT+SOS (see Section 6, and Remark 6.2). The final step
in the protocols that prove accumulated instances is the opening of certain multivariate
polynomials in log(m) or log(mN1/c) variables at random vectors of field elements. While
these openings can be expensive, many of them are at the same vector of field elements
and can be batched. By choosing a polynomial commitment scheme carefully (like certain
variations [Tha24] of Zeromorph [KT23]), it is possible to reduce the cost of these openings
at the expense of a worse Verifier cost. We discuss this in Section 6.

3 Preliminaries

Throughout the document we fix a finite field F. Given an integer k ≥ 1 we let [k] := {1, . . . , n}.
We let Bk = {0, 1}k := {(b1, . . . , bk) | bi ∈ B, for all i ∈ [k]} be the hypercube of dimension
k, or, in other words, the set of all sequences of k bits. We next provide formal descriptions
pertaining multilinear polynomials, lookup relations, folding schemes, and SOS decompos-
ability. We refer to Appendix A for extended preliminaries on interactive proofs, and the
sumcheck protocol.

Let X = (X1, . . . , Xn) be a vector of variables. We let F[X] denote the ring of multi-
variate polynomials on variables X and with coefficients in F. By F≤d[X] we denote the set
of polynomials from F[X] whose variables have individual degree at most d. For example,
F≤1[X] is the set of multilinear polynomials on variables X.

We use λ to denote the security parameter. A function f(λ) is in poly(λ) if there exists
a c ∈ N such that f(λ) = O(λc). If for all c ∈ N, f(λ) = o(λ−c), then f(λ) is in negl(λ) and
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is said to be negligible.

3.1 Multilinear Polynomials

Let n ≥ 1 and let X = (X1, . . . , Xn) be a tuple of variables. It is well-known that a
multilinear polynomial f(X) ∈ F≤1[X] is uniquely defined by the multiset of the values it
takes on Bn, i.e. f(Bn) := {f(x) | x ∈ Bn}. In other words, any two f, g ∈ F≤1[X] such
that f(x) = g(x) for all x ∈ Bn are the same polynomial. Further, given a map f : Bn → F,
there always exist a unique multilinear polynomial on n variables, denoted f̃(X), such that
f̃(x) = f(x) for all x ∈ Bn. It is given by the expression

f̃(X) :=
∑
x∈Bn

f(x) · ẽq(x;X) (5)

where ẽq(x;X) is the unique multilinear polynomial on n variables that takes the value 0
on all points of the hypercube Bn, except at x where it takes the value 1. Precisely,

ẽq(x;X) :=
∏
i∈[n]

(xiXi − (1− xi)(1−Xi)) .

This unique multilinear polynomial f̃(X) is called the multilinear extension (MLE) of f .
Given a vector v = (v1, . . . , vN ) ∈ FN , we define the MLE of v (denoted by ṽ(X)) as the
MLE of the map v : Bn → F assigning to each element x ∈ Bn the element vx, where here
we interpret x as the natural number whose binary representation is x.

3.2 Multilinear Polynomial Commitment Schemes

In this paper we use multilinear polynomial commitments schemes (PCSs), a class of com-
mitment schemes that work with multilinear polynomials. As we explained, one can see
vectors in FN as multilinear polynomials Blog(N) → F, and in this way multilinear PCSs
allows a Prover to commit to vectors as well.

Definition 3.1 (Multilinear PCS). A multilinear polynomial commitment scheme PC over
a field F consists of a tuple of algorithms (Setup,Commit,Open,Eval):

• Setup(1λ, s)→ pp takes security parameter λ and s ∈ N (i.e. the number of variables
in the polynomials), and outputs public parameters pp.

• Commit(pp, f) → C takes a multilinear polynomial f ∈ F≤1[X1, . . . , Xs] and outputs
a commitment C.

• Open(pp, C, f)→ b takes a commitment C and a multilinear polynomial f ∈ F≤1[X1, . . . , Xs],
and outputs a bit b.
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• Eval(pp, C, z, y; f)⟨P,V⟩ → b is an interactive public-coin protocol between a PPT
Prover P and Verifier V with public input a commitment C, an evaluation point z ∈ Fs

and a value y ∈ F. P additionally knows a multilinear polynomial f ∈ F≤1[X1, . . . , Xs]
and P wants to convince V that f is an opening of C and f(z) = y. The Verifier
outputs a bit b at the end of the protocol.

A multilinear PCS PC is said to be succinct if the output of Commit is sublinear in 2s. It
is said to be binding if for all PPT adversaries A:

Pr

b0 = b1 = 1 ∧ f0 ̸= f1

∣∣∣∣∣∣∣∣∣
pp← Setup(1λ, s)

(C, f0, f1)← A(pp)
b0 ← Open(pp, C, f0)

b1 ← Open(pp, C, f1)

 ≤ negl(λ)

If Eval is an argument of knowledge, then the polynomial commitment scheme is said
to be knowledge-sound, or extractable. We define this notion formally.

Definition 3.2 (Extractable multilinear PCS). A multilinear PCS is said to be extractable
if Eval is an argument of knowledge in the following sense. Consider the relation:

REval,pp = {(x;w) = ((C, z, y); f) | f(z) = y ∧ Open(pp, C, f) = 1},

then, there is an extractor Ext such that for any PPT algorithm A where

Pr[Eval(pp, C, z, y; f)⟨A,V⟩ = 1 | (C, z, y, π)← A(pp)] ≥ ε(λ)

for some non-negligible function ε, ExtA(x) with black-box access to A can output a witness
f ∈ F≤1[X1, . . . , Xs] in expected polynomial time such that ((C, z, y); f) ∈ REval,pp with
overwhelming probability.

Lastly, we define the notion of additively homomorphic PCS. This is useful in the context
of folding as it allows one to update the commitment of a linear combination of polynomials
without needing to recompute the commitment.

Definition 3.3 (Additively homomorphic PCS). Let PC = (Setup,Commit,Open,Eval) be
a multilinear PCS, and suppose that the target set of the Commit algorithm is an additive
group G. PC is said to be additively homomorphic if for any f, g ∈ F≤1[X1, . . . , Xs], it holds
that:

Commit(pp, f + g) = Commit(pp, f) + Commit(pp, g)

Throughout the paper we fix a Polynomial Commitment Scheme (PCS) for multilinear
polynomials (Setup,Commit,Open,Eval) (cf. Section 3.2).
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3.3 Lookup relations

An indexed relation is a subset R ⊆ {0, 1}∗ × {0, 1}∗ × {0, 1}∗. Given (i,x;w) ∈ R, the
string i is called an index, x is called an instance, and w a witness. In this paper we
often interpret instances and witnesses as vectors of field elements and indices consisting of
tuples of natural numbers and field descriptions, but this need not always be the case. When
describing Polynomial IOPs for example (see Appendix A.1), the index and the instance
can contain oracles to polynomials, and the witness can contain polynomials.

Throughout the paper we let N denote a “large table” size and m ≤ N denote a “small
table” size. For simplicity, we assume both N and m are powers of 2. A vector v ∈ Fk is
said to be r-sparse if v has at most r entries different than 0.

Definition 3.4 (Lookup relation and big/small tables). The lookup relation RLook is de-
fined as:

RLook :=


 i = (F, N,m),

x = (a, t);

w = ∅

 ∣∣∣∣∣ N,m ≥ 1,

{a(x) | x ∈ Blogm} ⊆ {t(y) | y ∈ Blog(N)}.


We call a a small table, and t a lookup table (or big table).

Unless stated otherwise, we make no assumption on the number of repeated values in t.
I.e. t may have repeated values.

Definition 3.5 (Lookup instances). We call a tuple of the form ((F, N,m), (a, t)) with
t ∈ FN , a ∈ Fm a lookup instance. Sometimes the index (F, N,m) is omitted. An instance
may or may not belong to RLook.

Committed matrix lookup relations. A now standard observation [ZBK+22, ZGK+22]
is that a tuple ((F, N,m), (a, t)) is in RLook if and only if there exists a matrix M ∈ Fm×N

such that:

• M · tT = aT,

• The rows of M are vectors in the standard basis of FN . This second condition is
equivalent, when N < char(F), to the equations M ◦M = M (◦ denotes the Hadamard
product) and M · 1T = 1T.

It is convenient to translate these last two conditions and express them as relationships
between multilinear polynomials, by using the MLEs of the vectors a, t and M . A tuple
((F, N,m), (a, t)) is in RLook if and only if there exists a log(m)+log(N)-variate multilinear
polynomial M such that:
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•
∑

y∈Blog(N) M(X,y) · t(y) = a(X)

• For all x,y, M(x,y)2 = M(x,y) ; and
∑

y∈Blog(N) M(X,y) = 1. By abuse of notation,

we still write the first condition as M ◦M = M , and the second one as M · 1T = 1T.

Further, the situation is often such that the Prover commits to the tables a, t3, and has
additional witnesses for these commitments. We let PC = (Setup,Commit,Open,Eval) be
a multilinear PCS. For simplicity, we abbreviate Commit as cm. We define the committed
matrix algebraic4 lookup relation as follows:

RCmMAlLook :=



(F, N,m, t),

(a,M);

(a,M)



∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

N < char(F),
M ∈ F≤1[X1, . . . , Xlog(m), Y1, . . . , Ylog(N)],

a ∈ F≤1[X1, . . . , Xlog(m)],

t ∈ F≤1[Y1, . . . , Ylog(N)],

M = cm(M), a = cm(a),∑
y∈Blog(N)

M(X,y) · t(y) = a(X),

M ◦M = M, M · 1T = 1T


This rewriting of the lookup relation will be useful for us when formally describing our

folding scheme in Section 5.

3.4 SOS-decomposable tables

We recall the definition of SOS decomposition from [STW24].

Definition 3.6 (SOS decomposition). Let c, k ≥ 1, α = k · c, and let t ∈ FN be a table of

size N . Assume N1/c is a power of two. Let t1, . . . , tα ∈ FN1/c
be α tables of size N1/c. We

say that t admits a SOS decomposition with respect to the tables t1, . . . , tα if there exists a
multilinear polynomial g = g(Y1, . . . , Yα) ∈ F[Y1, . . . , Yα] in α variables such that:

∀y ∈ Blog(N), t(y) = g(t1(y1), . . . , tk(y1), tk+1(y2), . . . , tα(yc))

where y = (y1, . . . ,yc) ∈ (Blog(N)/c)c, and further each ti can be evaluated in O(log(N)/c)
field operations at any r ∈ Flog(N)/c.

3Unless t has a particular type of structure, e.g., the SOS structure.
4The term “algebraic” refers to the fact that the conditions relating M,a, t are expressed with multilinear

polynomials.
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3.5 Folding schemes

We recall the notion of a folding scheme in the sense of [EG23]. We use the convention that
if we say that the protocol has input (a; b), both the Prover and Verifier get a, but only
the Prover gets b. The definition is slightly adapted to our case, where the relation and the
accumulation relation share the index.

Definition 3.7. Fix indexed relations R and Racc. An (R → Racc)-folding scheme is a
public-coin interactive protocol P between a Prover P and a Verifier V such that:

1. The protocol input is (i,x,x′;w,w′)

2. When the protocol ends, V outputs x∗, and P outputs w∗

3. (Perfect) Completeness: If (i,x;w) ∈ Racc, (i,x
′;w′) ∈ R, and P,V are honest,

then (i,x∗;w∗) ∈ Racc with probability one.

4. Knowledge soundness: The following protocol P̃ between P̃, Ṽ for the relation
Racc ×R is knowledge sound with error negligible in the security parameter:

(a) Given inputs (i,x,x′;w,w′), P̃, Ṽ run P as P,V on the same inputs.

(b) Let (i,x∗;w∗) be the final output of P,V in P. Ṽ accepts if and only if (i,x∗;w∗) ∈
Racc.

We call instances for the relation Racc folded or accumulated instances.

This definition allows us to enlarge the relation RCmMAlLook to a slightly more general
one, so that we can apply the folding step. We state the following slight generalization of a
lemma in [KST22] in the sense that it need not be the case that Racc and R are identical,
but it follows by the same arguments as in [KST22].

Lemma 3.1 (Forking Lemma for Folding Schemes, Lemma 1 in [KST22]). Consider a
(2µ+1)-move (R→ Racc)-folding scheme Π. The protocol Π satisfies knowledge soundness
if there exists a PPT algorithm Ext such that for all input tuples (i,x,x′), outputs witnesses
(w,w′) such that (i,x;w) ∈ Racc, (i,x′;w′) ∈ R ; given global parameters gp and an
(n1, . . . , nµ)-tree of accepting transcripts and the corresponding folded tuples (i,x∗;w∗).
The tree comprises of n1 transcripts (and the corresponding index instance witness tuples)
with fresh randomness in the Verifier’s first message ; and for each such transcript, n2

transcripts (and the corresponding index instance witness tuples) with fresh randomness in
the Verifier’s second message ; and so on, for a total of

∏µ
i=1 ni leaves bounded by poly(λ).
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4 An IOP and a folding scheme for checking that all rows in
a matrix are elementary basis vectors

It is a now standard observation [ZBK+22, ZGK+22] that a tuple ((F, N,m), (a, t)) is in
RLook if and only if there exists a matrix M ∈ Fm×N such that:

• M · tT = aT,

• The rows of M are vectors in the standard basis of FN .

One way to build a folding scheme for lookups is to build a folding scheme for the second
condition above. Indeed, if as a result of folding the second condition we combine lookup
matrices as M1 +αM2, then the first condition can also be combined as (M1 +αM2) · tT =
(a1 +αa2)

T. By defining an adequate accumulated relation, we can ensure that this is also
the case when folding a lookup matrix into an accumulated matrix, one that is the result
of potentially many foldings. We let PC = (Setup,Commit,Open,Eval) be an extractable
multilinear PCS. For simplicity, we abbreviate Commit as cm. We want to show that a
matrix M seen as a log(mN)-variate multilinear polynomial is in Relem:

Relem :=

((F, N,m),M ;M)

∣∣∣∣∣∣∣
m ≤ N < char(F),
M ∈ F≤1[X1, . . . , Xlog(m), Y1, . . . , Ylog(N)],

M = cm(M), M ◦M = M, M · 1T = 1T

 (6)

The notations M ◦M = M and M · 1T = 1T are shorthand for:

∀(x,y) ∈ Blog(m)+log(N), M(x,y)2 −M(x,y) = 0 (7)∑
y∈Blog(N)

M(X,y) ≡ 1 (8)

These two properties are exactly what we need in order to enforce the fact that each
row of M has exactly one 1, and zeros otherwise. Clearly if that is the case, then Eq. (7)
and Eq. (8) hold. The converse is also true:

Lemma 4.1. Suppose N < char(F). If Eq. (7) and Eq. (8) hold, then for all x ∈ Blog(m),
there exists a unique yx ∈ Blog(N) such that M(x,yx) = 1, and M(x,y) = 0 for all
y ∈ Blog(N) with y ̸= yx.

Proof. Eq. (7) implies that for all (x,y) ∈ Blog(m)+log(N), M(x,y) = 0 or M(x,y) = 1.
Then Eq. (8) implies that for all x ∈ Blog(m),

∑
y M(x,y) = 1. But since N < char(F), we

have that:
1 =

∑
y∈Blog(N)

M(x,y) = |{y ∈ Blog(N) |M(x,y) = 1}|
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The PIOP we describe for the relation Relem
5 is as follows:

1. The Prover sends an oracle [[M ]] to a multilinear polynomial supposedly in Relem.

2. The Verifier samples uniform random elements β ∈ Flog(mN), r ∈ Flog(m).

3. The Prover and Verifier engage in two sumcheck protocols:∑
x∈Blog(m)

∑
y∈Blog(N)

(M(x,y)2 −M(x,y)) · ẽq(β;x,y) = 0

∑
y∈Blog(N)

M(r,y) = 1

4. During these sumchecks, the Verifier runs the sumcheck Verifier on each of the sum-
checks. It accepts if the sumcheck Verifier accepts both executions of the sumcheck,
and rejects otherwise. Note that in particular, the Verifier queries evaluations of the
form M(r1, r2), M(r, r3), for some random elements r1 ∈ Flog(m) and r2, r3 ∈ Flog(N)

determined during the sumchecks. The Verifier can evaluate ẽq(β; r1, r2) on its own.

Lemma 4.2. The above protocol is a perfectly complete and knowledge sound PIOP for the
relation Relem, as long as (4 log(mN) + 1)/|F| = negl(λ).

Proof. Appendix C.1

4.1 A folding scheme for Relem

We can now construct a folding scheme for Relem with ideas similar to Nova [KST22]. Note
however, that since our statement is particularly simple we are able to perform a simplifica-
tion of the cross-term that appears when folding. We let PC = (Setup,Commit,Open,Eval)
be a succinct, binding, extractable, additively homomorphic multilinear PCS. For simplicity,
we abbreviate Commit as cm. We define:

Racc
elem :=


(F, N,m),

(M,E, µ);

(M,E)


∣∣∣∣∣∣∣∣∣∣

m ≤ N < char(F),
M,E ∈ F≤1[X1, . . . , Xlog(m), Y1, . . . , Ylog(N)], µ ∈ F,

M = cm(M), E = cm(E)

M ◦M = M + E, M · 1T = (1 + µ) · 1T


and we now describe a (Relem → Racc

elem)-folding scheme, which we call P1 = (P1,V1). We
describe it as an interactive protocol, but it can be made non-interactive with the Fiat-
Shamir heuristic [FS86].

5This is slightly abusing notation: the PIOP we describe is for the oracle relation where we replace
commitments in Relem with oracles.
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Input. The protocol input is (Macc, Eacc,M, µ;Macc,M)6.

1. P1 computes and sends the commitment T to the cross term: T = 2(Macc ◦M)−M .

2. V1 sends uniformly random α ∈ F.

3. P1 and V1 output:

Macc ←Macc + α ·M, Eacc ← Eacc + α · T + α2 ·M, µ← µ+ α.

4. P1 outputs: Macc ←Macc + α ·M, Eacc ← Eacc + α · T + α2 ·M .

Lemma 4.3. Protocol P1 is a (Relem → Racc
elem)-folding scheme which is perfectly complete,

and knowledge sound.

Proof. Appendix C.2

Costs We see that in protocol P1:

• P1 performs m field doublings, and 8m+ 1 field operations. It also performs 3 group
operations, and 3 exponentiations of group elements to the α power. The Prover needs
to additionally commit to to m field elements (the cross term T ).

• V1 performs 3 group exponentiations to the α power, 3 group operations, and one
field addition.

4.2 A protocol for proving accumulated instances

To prove a statement of the form ((N,m),M,E, µ;M,E) ∈ Racc
elem, two sumchecks of the

form: ∑
x∈Blog(m)

∑
y∈Blog(N)

(M(x,y)2 −M(x,y)− E(x,y)) · ẽq(β;x,y) = 0

∑
y∈Blog(N)

M(r,y) = 1 + µ

are performed, for random β, r chosen by the Verifier. In particular in the end, the Veri-
fier needs to verify evaluations of the form M(r1, r2), E(r1, r2),M(r, r3) for some random
r1, r2, r3 determined during the sumchecks. Note that by the updating procedure of Macc

6We use the convention that both Prover and Verifier get what is before the semicolon, and only the
Prover gets what is after.
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and Eacc in P1, if we have folded M0, . . . ,Mnf
(where initially Macc = M0), then it holds

that at the end of these nf foldings, the support7 of Macc and of Eacc is included in the
union of the supports of the Mi (equality is possible), in particular they are both at most
nf ·m-sparse. Hence, we may consider that M,E are s-sparse where s ≤ min{nf ·m,mN}.
Provided that we have all the evaluations of (M(x,y)2−M(x,y)−E(x,y)) and of M(r,y)
over their respective hypercubes, [DT24] shows that we can perform the first sumcheck in
2mN+O(

√
mN) field multiplications and the second in N field multiplications. Computing

the evaluations of (M(x,y)2 −M(x,y) − E(x,y)) over Blog(mN) takes s field multiplica-
tions. Computing the evaluations of M(r,y) over Blog(N) can be done in at most s+m field
multiplications, which can be seen by first computing the table of values of ẽq(x; r) for all
x ∈ Blog(m) in m multiplications and writing M in the multilinear Lagrange basis.

Lemma 4.4. The protocol above is a perfectly complete, knowledge sound PIOP for the
relation Racc

elem. Suppose M and E are s-sparse (for s ≤ mN), then in this PIOP the
Prover performs at most 2mN + N + 2s + m + O(

√
mN) field multiplications, and the

Verifier performs O(log(mN)) field operations. The Verifier makes three oracle queries
M(r1, r2), E(r1, r2), M(r, r3).

Proof. The proof is very similar to Lemma 4.2.

5 FLI: Folding Lookup Instances

In this section, we describe a method to fold a lookup into a certain relaxed lookup relations
that we describe. Starting from the fact that a statement of the form ((F, N,m), (a, t)) ∈
RLook can be expressed as an equationM ·tT = aT where the rows ofM are elementary basis
vectors, we then use the folding scheme we have developed in Section 4. As we mentioned,
the random elements used to combine the claims that the matrices M have the correct form
will also allow us to fold the claim thatM ·tT = aT. We let PC = (Setup,Commit,Open,Eval)
be a succinct, binding, extractable, additively homomorphic multilinear PCS. For simplicity,
we abbreviate Commit as cm. Start by defining the relaxed relation:

Racc
1 :=



(F, N,m, t),

(a,M,E, µ);

(a,M,E)



∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

m ≤ N < char(F),
M,E ∈ F≤1[X1, . . . , Xlog(m), Y1, . . . , Ylog(N)],

t ∈ F≤1[Y1, . . . , Ylog(N)],

a ∈ F≤1[X1, . . . , Xlog(m)], µ ∈ F,
M = cm(M), E = cm(E),a = cm(a),∑

y∈Blog(N)M(X,y) · t(y) = a(X),

M ◦M = M + E, M · 1T = (1 + µ) · 1T


7The support of f is the set of x such that f(x) ̸= 0
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This is essentially the accumulated relation in the previous section augmented with the
lookup constraint M · tT = aT. By using our folding scheme P1 for Relem, we construct
folding schemes for the relation RCmMAlLook into Racc

1 .

5.1 FLI: a (RCmMAlLook → Racc
1 )-folding scheme

The folding scheme is described as an interactive protocol, but it can be made non-interactive
with the Fiat-Shamir heuristic [FS86]. We denote this folding scheme by F1 = (P̃1, Ṽ1).

Input. The protocol input is8

((N,m), t,aacc,Macc, Eacc, µ,M,a;aacc,Macc, Eacc,a,M).

1. P̃1 and Ṽ1 follow protocol P1 with input

((N,m),Macc, Eacc,M, µ;Macc, Eacc,M).

At the end of P1, P̃1 and Ṽ1 output:

Macc ←Macc + α ·M, Eacc ← Eacc + α · T + α2 ·M, µ← µ+ α

while P̃1 outputs:

Macc ←Macc + α ·M, Eacc ← Eacc + α · T + α2M

for some random element α ∈ F determined during the course of P1, and T := 2(Macc ◦
M)−M .

2. P̃1 and Ṽ1 output: aacc ← aacc + α · a; and P̃1 outputs: aacc ← aacc + α · a.

Lemma 5.1. Protocol F1 is a (RCmMAlLook → Racc
1 )-folding scheme that is perfectly com-

plete, and knowledge sound.

Proof. Appendix C.3

Costs We see that the Prover and Verifier work in F1 is almost the same as in P1. The
additional work is: one group exponentiation, one group multiplication for both the Prover
and Verifier. Further, the Prover makes 2m extra field operations.

8Still with the convention that both Prover and Verifier get what is before the semicolon, and only the
Prover gets what is after.
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5.2 A protocol for proving accumulated instances.

To prove a statement of the form((N,m), t,a,M,E, µ;a,M,E) ∈ Racc
1 , we use the same

protocol that proves accumulated instances for P1 (Section 4.2), together with an additional
sumcheck of the form: ∑

y∈Blog(N)

M(r,y) · t(y) = a(r)

for some random r. Again, we may assume M,E are s-sparse with s ≤ min{nf ·m,mN}
(nf the number of folding steps, see Section 4.2). Using [DT24], if we have all evaluations
of M(r,y)t(y) over Blog(N), this sumcheck costs 5N field multiplications for the Prover.
Computing all evaluations ofM(r,y)t(y) can be done in 2s+m field multiplications. We can
also save costs by batching this sumcheck with the sumcheck of the form

∑
y M(r′,y) = (1+

µ) from the protocol that proves accumulated instances for P1. The Verifier samples a single
random element r ∈ Flog(m) for both of these sumchecks, and an additional combination
random element γ ∈ F. All in all, the protocol performs the two following sumchecks:∑

x∈Blog(m)

∑
y∈Blog(N)

(M(x,y)2 −M(x,y)− E(x,y)) · ẽq(β;x,y) = 0

∑
y∈Blog(N)

M(r,y) + γ ·M(r,y) · t(y) = 1 + µ+ γ · a(r),

and reduces to the evaluations M(r1, r2), E(r1, r2),M(r, r3),a(r) for the random elements
r1 ∈ Flog(m) and r2, r3 ∈ Flog(N) determined during the sumchecks.

Lemma 5.2. The protocol above is a perfectly complete and knowledge sound PIOP for the
relation Racc

1 . Suppose M and E are s-sparse (for s ≤ mN), then in this PIOP the Prover
performs

2mN +N + 3s+m+O(
√
mN)

field multiplications, and the Verifier performs O(log(mN)) field operations. The Verifier
makes four oracle queries M(r1, r2), E(r1, r2), M(r, r3),a(r).

5.3 Extending SOS decompositions for folding

In Lasso [STW24], when t is SOS-decomposable (into α = k ·c tables t1, . . . , tα and polyno-
mial g, see Definition 3.6), one needs to verify that for all x ∈ Blog(m) the following condition
holds:

a(x) = g(E1(x), . . . ,Eα(x)) ∧ ∃y = (y1, . . . ,yc) ∈
(
Blog(N)/c

)c
, Ei(x) = ti(y⌈i/k⌉)

Where the Ei are vectors of length m. The first of these conditions is verified with a
sumcheck, and Lasso uses an offline memory-checking technique to certify that the second
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condition holds. Note however, that since the Ei are included in the ti, their entries could a
priori be arbitrary elements of F 9. As is remarked in Lasso, this can represent a significant
overhead when committing to the vectors Ei by using curve-based schemes.

As we remarked when discussing Eq. (4), we can express the same conditions in a
different way. When t is SOS-decomposable, the fact that for all x ∈ Blog(m) there exists
y ∈ Blog(N) such that a(x) = t(y) can be expressed as:

∀x ∈ Blog(m), ∃y ∈ Bn, a(x) = t(y) = g(t1(y1), . . . , tk(y1), tk+1(y2), . . . , tα(yc)) (9)

So we can think of Eq. (9) as needing to point, for each x ∈ Blog(m), to the correct indices
of the tables t1, . . . , tα that make the equation hold. Note that the ti have size N1/c, so we
know that we can point to the correct indices for all x ∈ Blog(m) by using matrices of size
m×N1/c that have elementary basis vectors as rows. Therefore Eq. (9) is equivalent to:

∀x ∈ Blog(m), a(x) = g (M1(x)t1, . . . ,M1(x)tk,M2(x)tk+1, . . . ,Mc(x)tα) (10)

for some matrices M1, . . . ,Mc of size m ×N1/c which have the special form we have been
talking about: each of their rows is a vector in the standard basis of FN1/c

. Importantly,
committing to the Mi with curve-based commitment schemes consists only in group oper-
ations. As we mentioned, one should think as the matrices Mi (for i ∈ [c]) as pointing to
the correct entries of t(i−1)k+1, . . . , tik such that Eq. (9) holds. For simplicity we use the
shorthand:

∀x ∈ Blog(m), ∀i ∈ [c], (i− 1)k + 1 ≤ j ≤ ik, Mi(x)tj :=
∑
y∈Bn

Mi(x,y) · tj(y) (11)

Note that the Mi(X)tj are log(m)-variate multilinear polynomials whose evaluations
over the hypercube can be computed by simply selecting entries from tj . We can verify
Eq. (10) with a sumcheck of the form:∑

x∈Blog(m)

(a(x)− g(M1(x)t1, . . . ,M1(x)tk,M2(x)tk+1, . . . ,Mc(x)tα)) · ẽq(β;x) = 0

for a random β ∈ Flog(m), which will reduce to claims of the form a(r) = d,Mi(r)tj = vi,j
for some random r ∈ Flog(m) and d, vi,j ∈ F (for i ∈ [c] and (i− 1)k+1 ≤ j ≤ ik). This will
allow us to use our folding scheme for the relation RCmMAlLook to fold these claims about
the evaluations of the Mi(r)tj = vi,j , as per the following remark.

9This is mitigated by the fact that in tables that arise in practice, for example in the RISC-V instruction
set, the entries in the tables appearing in the SOS decompositions are relatively small.
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Remark 5.3 (The M · tT = aT condition). In Section 5.1 we described a folding scheme
for the relation RCmMAlLook, in which the condition relating M , t and a is:∑

y∈Blog(N)

M(X,y) · t(y) = a(X)

We could equally have described the folding scheme for a ”randomized” version of this
condition, of the form: ∑

y∈Blog(N)

M(r,y) · t(y) = a(r)

for some random r ∈ Flog(m). The two folding schemes we have described translate mutatis
mutandis to this setting, provided that the random evaluation vector r is the same for the
accumulated claim and the new claim. We do not write this again as it is quite literally
the same folding scheme. The protocol that proves accumulated instances of the non-
randomized versions of our folding schemes starts precisely by randomizing the condition∑

y∈Blog(N) Macc(X,y) · t(y) = aacc(X) as
∑

y∈Blog(N) Macc(r,y) · t(y) = aacc(r). We still

refer to the folding scheme for this randomized condition M ·tT = aT as F1. The soundness
loss of this randomization is the probability that the randomized condition holds while the
condition on polynomials does not. This has probability at most log(m)/|F| by Schwartz-
Zippel, since all polynomials are multilinear. This will be useful in the next section, when
we use SOS decompositions in conjunction with the folding schemes we have constructed.

5.4 FLI + SOS

In this section, we combine SOS decompositions with FLI using our remarks from Sec-
tion 5.3: by modifying the SOS decomposition step from the Lasso paper [STW24] we
make it such that the Prover only needs to commit to sparse binary matrices. Recall from
the previous section that when we are looking up a into an SOS-decomposable table t we
can express the lookup condition as a sumcheck in log(m) variables:∑

x∈Blog(m)

(a(x)− g(M1(x)t1, . . . ,M1(x)tk,M2(x)tk+1, . . .Mc(x)tα)) · ẽq(β;x) = 0

for matrices M1, . . . ,Mc of size m×N1/c in Relem, and a random β ∈ Flog(m). The sumcheck
reduces to claims of the form a(r) = d,Mi(r)tj = vi,j for some random r ∈ Flog(m) and
d, vi,j ∈ F. We can now fold the claims about the matrices being in Relem using Protocol
P1, and in parallel fold the claims about the evaluations. The only important detail
(see Remark 5.3) is that the random evaluation point is the same, which we can always
enforce with a technique we call the point-shifting sumcheck. This is a quite standard
technique (see for example [KS24]), that allows to reduce the evaluation of two (or more)
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multilinear polynomials at different point to evaluations at the same point. It exploits
that for any multilinear polynomial f ∈ F≤1[X1, . . . , Xs] and any r ∈ Fs, it holds that
f(r) =

∑
x∈Bs f(x) · ẽq(x; r) (see Eq. (5)). Say we have two multilinear polynomials f, g in s

variables with purported evaluations f(r1) = c, g(r2) = d respectively (for some r1, r2 ∈ Fs),
we may apply the sumcheck protocol to certify that the following holds:∑

x∈Bs

f(x) · ẽq(x; r1) + γ · g(x) · ẽq(x; r2) = c+ γ · d

for a random uniform γ ∈ F. At the end of this sumcheck, the Prover needs to reveal
f(r), g(r) and ẽq(r; r1), ẽq(r, r2). In this way, we now have reduced the statements that
f(r1) = c, g(r2) = d to an evaluation of f and g at the same point.

Formally, we will obtain a folding scheme from the committed matrix lookup SOS rela-
tion:

RSOS :=


(F, N,m, t, α,

c, k, t1, . . . , tα, g),

(M1, . . . ,Mc,a);

(M1, . . . ,Mc,a)



∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

N < char(F), α = k · c ∈ N,
∀i ∈ [c], Mi ∈ F≤1[X[log(m)],Y[log(N)/c]],

a ∈ F≤1[X[log(m)]], t ∈ F≤1[Y[log(N)/c]],

t1, . . . , tα ∈ F≤1[Y[log(N)/c]],

∀i ∈ [c], Mi = cm(Mi), a = cm(a),

∀y ∈ Blog(N), t(y) = g(t1(y1), . . . , tα(yc)),

∀x ∈ Blog(m), a(x) = g(M1(x)t1, . . . ,Mc(x)tα),

∀i ∈ [c], Mi ◦Mi = Mi, Mi · 1T = 1T


(for brevity X[log(m)] = (X1, . . . Xlog(m)), Y[log(N)/c] = (Y1, . . . Ylog(N)/c)) into the accumu-
lated relation:

RaccSOS :=
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



(F, N,m, t, α,

c, k, t1, . . . , tα, g),

(M,M1, . . . ,Mc, E,a, r,

d, µ, c1, . . . , cα);

(M,M1, . . . ,Mc, E,a)



∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

N < char(F), α = k · c ∈ N,

r ∈ Flog(m), d, c1, . . . , cα, µ ∈ F,
M,M1, . . . ,Mc, E ∈ F≤1[X[log(m)],Y[log(N)/c]],

a ∈ F≤1[X[log(m)]], t ∈ F≤1[Y[log(N)/c]],

t1, . . . , tα ∈ F≤1[Y[log(N)/c]],

M = cm(M), E = cm(E),a = cm(a),

∀i ∈ [c], Mi = cm(Mi),

∀y ∈ Blog(N), t(y) = g(t1(y1), . . . , tα(yc)),

a(r) = d,M1(r)t1 = c1, . . . ,Mc(r)tα = cα,

M ◦M = M + E, M · 1T = (1 + µ) · 1T


We describe this next as an interactive protocol, but it can be made non-interactive

with the Fiat-Shamir heuristic [FS86]. We denote it by F SOS
1 = (PSOS

1 ,VSOS
1 ).

Input. The Protocol input is(F, N,m), α, c, k, t, t1, . . . , tα, g,Macc,Macc
1 , . . . ,

Macc
c , Eacc,aacc, racc, µ, dacc, cacc1 , . . . , caccα ,M1, . . . ,Mc,a;

Macc,Macc
1 , . . . ,Macc

c , Eacc,aacc,M1, . . . ,Mc,a


1. PSOS

1 and VSOS
1 engage in a sumcheck of the form:∑
x∈Blog(m)

ϕ(x) = γ · cacc1 + · · ·+ γα+1 · caccα + γα+2 · dacc

where

ϕ(x) =(a(x)− g(M1(x)t1, . . . ,Mc(x)tα))) · ẽq(β,x)
+γ ·Macc

1 (x)t1 · ẽq(racc,x) + · · ·+ γα+1 ·Macc
c (x)tα · ẽq(racc,x)

+γα+2 · aacc(x) · ẽq(racc,x)

for some random uniform β ∈ Flog(m) and γ ∈ F chosen by VSOS
1 . At the end of the

sumcheck, VSOS
1 needs to check a single equation involving the evaluations

ẽq(β, r), ẽq(racc, r),a(r),aacc(r),

M1(r)t1, . . . ,Mc(r)tα,M
acc
1 (r)t1, . . . ,M

acc
c (r)tα,

where the random challenge r ∈ Flog(m) is determined during the course of the sumcheck.
It evaluates the first two by itself.
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2. Now, for i = 1 to i = c:

• PSOS
1 computes and sends the commitments Ti to the cross term:

Ti := 2(Macc ◦Mi)−Mi

• VSOS
1 chooses a uniform random element ηi ∈ F. PSOS

1 and VSOS
1 output:

Macc ←Macc + ηi ·Mi, Eacc ← Eacc + ηi · Ti + η2i ·Mi

µ← µ+ ηi, Macc
i ←Macc

i + ηi ·Mi

and for all j ∈ {k(i− 1) + 1, . . . , ki}, caccj ←Macc
i (r)tj + ηi ·Mi(r)tj .

• PSOS
1 outputs:

Macc ←Macc + ηi ·Mi, Eacc ← Eacc + ηi · Ti + η2i ·Mi

Macc
i ←Macc

i + ηi ·Mi

3. VSOS
1 chooses uniform random element θ ∈ F. PSOS

1 and VSOS
1 output:

aacc ← aacc + θ · a, racc ← r, dacc ← aacc(r) + θ · a(r)

4. PSOS
1 outputs: aacc ← aacc + θ · a

Lemma 5.4. Protocol F SOS
1 is a (RSOS → RaccSOS

1 )-folding scheme that is perfectly com-
plete, and knowledge sound.

Proof. Appendix C.4

5.4.1 Costs

All in all, we see that in protocol F SOS
1 :

• The Prover needs to perform the initial sumcheck which costs
m·(max(deg(g), 2)+1)·(6α+|g|+12) field operations using the formula from [Hab22].
The Prover needs to perform 4c+1 group exponentiations, and 4c+1 group additions.
The Prover also needs to perform O(αm) field operations, where the constant is small.

• The Verifier needs to perform O(α log(m)) field operations in the sumcheck, 4c + 1
group exponentiations, and 4c + 1 group additions. It also needs to perform 2α + 2
field operations.
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5.4.2 Proving accumulated instances

To prove accumulated instances, we need to verify the following:

a(r) = d, M1(r)t1 = c1, . . . ,Mc(r)tα = cα

M ◦M = M + E, M · 1T = (1 + µ) · 1T

The first claim is proved with an evaluation query to a. The second and last claim are
solved with a single sumcheck of the form:∑

y∈Blog(N)/c

M(r′,y) + δ ·M1(r,y) · t1(y) + δα ·Mc(r,y) · tα(y) =

(1 + µ) + δ · c1 + · · ·+ δα · cα

for a randomly sampled δ ∈ F and r′ ∈ Flog(m). Similarly to Section 4.2 and Section 5.2,
we may assume that the M,Mi, E are s-sparse (s ≤ mN1/c). To apply the techniques
in [DT24], we need to compute the evaluations M(r′,y) and δ ·M1(r,y) · t1(y), . . . , δα ·
Mc(r,y) · tα(y) over Blog(N)/c. This can be done in no more than s + m field mul-
tiplications for M ′(r′,y), and 3αs + m field multiplications for all the other products.
Hence, the Prover in this sumcheck does no more than (5α + 1)N1/c + (3α + 1)s + 2m
field multiplications. At the end of the sumcheck the Prover needs to reveal evaluations
M1(r, r1), . . . ,Mc(r, r1),M(r′, r1), t1(r1), . . . , tα(r1) for r1 ∈ Flog(N)/c determined during
the sumcheck. By the SOS assumption the Verifier can evaluate the ti’s in O(α log(N)/c)
field operations. The remaining condition is also checked with a single sumcheck of the
form: ∑

x∈Blog(m)

∑
y∈Blog(N)/c

((M(x,y))2 −M(x,y)− E(x,y)) · ẽq(β;x,y) = 0

for a randomly sampled β. We already saw that in this sumcheck the Prover performs no
more than 2mN1/c + s + O(

√
mN1/c) field multiplications. At the end of this sumcheck,

the Prover needs to reveal evaluations M(r2, r3), E(r2, r3), ẽq(β; r2, r3) for r2 ∈ Flog(m), r3 ∈
Flog(N)/c determined during the sumcheck. The Verifier can evaluate ẽq(β; r2, r3) inO(log(m)+
log(N)/c) field operations.

Lemma 5.5. The protocol ΠaccSOS
1 we just described is a perfectly complete and knowledge

sound PIOP for the relation RaccSOS
1 . Suppose all Mi,M,E are s-sparse (for s ≤ mN1/c),

then in this PIOP the Prover performs no more than:

2mN1/c + (5α+ 1)N1/c + (3α+ 2)s+ 2m+O(
√

mN1/c)

field multiplications, and the Verifier performs O(log(mN1/c)) field operations. The Verifier
makes c+ 4 oracle queries M1(r, r1), . . . ,Mc(r, r1), M(r′, r1), M(r2, r3), E(r2, r3), a(r).
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5.5 Using Mova in FLI+SOS

Mova [DGMV24] is a recently published folding scheme for R1CS instances that eliminates
the need to commit to the cross-term in Nova [KST22]. Further, and contrary to Hypernova
[KS24], it does not use sumchecks and has only 3 rounds of interaction. This makes Mova
particularly lightweight, and to the best of our knowledge it is the cheapest folding scheme
for R1CS. The concrete Prover and Verifier work of Mova is as follows:

Table 5: Concrete Prover and Verifier costs of Mova [DGMV24]. Here the R1CS matrices
are m×m matrices with n = Ω(m) non-zero entries, and we assume that the public inputs
are a vector of size ℓ < m. We also assume that the commitment scheme for the witness
is curve-based. Prover work takes into account field multiplications (before the F symbol)
and group operations. Verifier work also takes into account field additions.

Prover work Verifier work Rounds

3n+ 12m+ 3 log(m)F 2ℓ+ 7 log(m) + 5F 3
1G exp., 1G op. 1G exp., 1G op.

One can use Mova as a black box in the construction of FLI+SOS (see Section 5.4).
Informally, the relation RaccSOS should be modified so that the commitment to E is replaced
with the supposed evaluation of the MLE of E at a vector of field elements r̃ ∈ Flog(m). The
second point in the construction of F SOS

1 needs to be modified as follows:

2. For i = 1 to i = c: PSOS
1 and VSOS

1 engage in the Mova protocol to combine Macc and
Mi and for all j ∈ {k(i− 1) + 1, . . . , ki}, caccj ←Macc

i (r)tj + ηi ·Mi(r)tj . The randomness
used to combine Macc and Mi is used to update the value of µ.

In our case, the R1CS matrices happen to all be the identity (the condition is a relaxation
of M ◦M = M), there are no public inputs, and the witnesses are of size mN1/c. This
means that the Prover and Verifier would incur costs dominated by:

• 15cmN1/c field multiplications and c group exponentiations for the Prover.

• O(c log(m)) field operations and c group exponentiations for the Verifier.

Further, the folding scheme would have log(m) + 3c rounds. As we explained, FLI+SOS
is particularly efficient when there have not been many folding steps, because in that case
the cross-term consists mostly of zeros. This variation where we use Mova in FLI+SOS
could be very useful when we know that we will applying the folding step a large number
of times. In that case, it is likely that FLI+SOS will eventually operate in the “worst case
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scenario” where the cross term is dense. If 15cmN1/c is less than the equivalent number of
field multiplications needed to compute a commitment to a vector of size m with arbitrary
entries in F, then one should use this variation of FLI+SOS.

6 Performance

In this section we discuss performance aspects of FLI+SOS. First, it is clear from Tables 2
and 3 that FLI+SOS has the most efficient folding Prover and Verifier compared to Pro-
tostar+SOS and DeepThought+SOS current state-of-the-art schemes. When it comes to
proving accumulated instances, FLI+SOS’s Prover incurs a cost with a term of the form
2mN1/c. While this is prohibitive in some parameter settings, we argue that for many
regimes of interest, FLI+SOS’s concrete costs for proving accumulated instances are com-
parable to all alternatives. In particular, this is the case when N1/c is small, and m is
relatively large. This scenario arises naturally in applications such as continuations in Jolt
[AST24, Tha24] (cf. Section 1). All in all, we argue that FLI+SOS can be the best scheme
“end-to-end”: for folding lookup instances, and proving the resulting accumulated instance.

We consider for example two concrete settings: one where m = 217, N = 21024, N1/c =
28, c = 128, and α = 2c ; and another where we keep the same values of m,N , but we take
the SOS decomposition into smaller tables with c = 256 and α = 2c. Recall m is the size
of the small table, N the size of the big table, which we assume is SOS-decomposable into
α tables of size N1/c (see Definition 3.6). This setting resembles some of the parameter
choices suggested in [AST24, Tha24]. Further, assume that we perform nf = 23 folding
steps, which would allow us to prove m · nf = 220 lookups. Based on these parameters, in
Table 6 and Table 7 we use Tables 2 to 4 and 8 to approximate the costs of the folding
Prover and the Prover for proving accumulated instances, counted in field multiplications
and polynomial openings. Afterward, we briefly discuss how these costs were obtained, and
mention possible variations in the schemes that would lead to other costs.

We discuss the setting where m is small and N1/c is relatively large in Appendix B. In
such setting, FLI essentially only requires committing to binary vectors, due to the average
case commitment cost of FLI (Tables 2 and 6).

Remark 6.1 (DT+SOS folding Prover cost). When it comes to DT+SOS, it is challenging
to estimate the concrete costs of the folding Prover. We expect α · L to be the dominant
cost, where recall L denotes the cost of computing the coefficients of e(X) in [BC24], which
has degree 9 in this case. Even using FFT’s in the simplified scenario discussed in the
footnote of Page 15 of [BC24], the cost would be about α · 270m (Since computing e(X)
requires composing 9 homogeneous polynomials of degree 1, . . . , 9 with a linear polynomial,
m times). To this, one must add the cost α times the cost (3m, [M ]) (committing to a
3m-sized vector with entries in [M ], where M is the largest entry in t) plus the cost α ·Psps
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of logUp-GKR’s Prover, and other costs. Because of this, we expect the final cost to be
higher than FLI+SOS.

Table 6: Approximate costs of Protostar+SOS, DT+SOS, and FLI+SOS when m =
217, N = 21024, N1/c = 28, and α = 2c = 256. For each scheme, we display the cost of
the folding Prover (in field multiplications) and of the Prover for accumulated instances
(in field multiplications and group operations, in columns 3 and 4). Regarding the latter,
we describe Provers for instances accumulated with Protostar+SOS and DT+SOS below
(Section 6). In the second and last column, we assume that a MSM-based PCS is used over
the Pallas curve, and use Table 1 in [Hab22] to estimate the cost of these MSMs.
*The costs of DT+SOS’s folding Prover are discussed in Remark 6.1
**These opening costs can be lowered, see the end of Section 6.

Scheme Folding Prover Acc. Prover Openings Rounds

Protostar+SOS ∼ α · 29.5 ·m 212.39 ·m ∼ 28.5 ·m log(m) + α

DT +SOS * 212.25 ·m ∼ 28.5 ·m log(m) + α · u · log(N1/c)

FLI +SOS

{
avg.: ∼ c · 28.6 · ρ

worse: ∼ c · 28.5 ·m
212.7 ·m ∼ 216 ·m** log(m) + c

ρ := min{mnf/N
1/c,m}

Table 7: Approximate costs of Protostar+SOS, DT+SOS, and FLI+SOS when m =
217, N = 21024, N1/c = 24, and α = 2c = 512. We use the same assumptions as in the
previous table.
*The costs of DT+SOS’s folding Prover are discussed in Remark 6.1
**These opening costs can be lowered, see the end of Section 6.

Scheme Folding Prover Acc. Prover Openings Rounds

Protostar+SOS ∼ α · 29.5 ·m 213.39 ·m ∼ 28.5 ·m log(m) + α

DT +SOS * 213.25 ·m ∼ 28.5 ·m log(m) + α · u · log(N1/c)

FLI +SOS

{
avg.: ∼ c · 28.6 · ρ

worse: ∼ c · 28.5 ·m
213.59 ·m ∼ 212 ·m** log(m) + c

ρ := min{mnf/N
1/c,m}

Note that if we were to use the Mova variation of FLI+SOS (see Section 5.5), the
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concrete cost of the folding Prover would be dominated by 15cmN1/c ∼ c · 27.9 · m field
multiplications. This is shaving a 20.6 ∼ 1.52 factor off the worst case. The protocol would
have log(m) + 3c rounds instead of log(m) + c. As we mentioned, this is useful if we know
that we are using the folding step a large number of times.

Provers for instances that were accumulated with Protostar+SOS or DT+SOS .
The protocols that prove accumulated instances for Protostar and DT are unspecified in
the original papers. Recall that in Section 1.2 we described variations of Protostar and DT
that first perform the SOS decomposition step of Lasso, which reduces the initial claim into
α lookup instances, and then folding each of the α instances with α accumulated instances,
using Protostar or DT, respectively. Accordingly, one can imagine a scheme for Protostar
or DT that proves each of the α accumulated lookup instances separately. In Protostar, the
accumulated claim is roughly a statement that the identities used in logUp hold (cf. [BC23]
or Lemma 5 in [Hab22]). In DT, the same occurs, but this time the GKR variant of logUp
is used [PH23]. For simplicity and for the sake of comparison, we assume that these claims
can be proved, respectively, with logUp [Hab22] and logUp-GKR [PH23]. We emphasize
that, to our knowledge, no actual protocols for proving accumulated instances have been
formally described, and that they may be more complex than the schemes we just sketched
(typically error terms would appear in the logUp equations). With this in mind, in Table 8
we lower bound Protostar’s and DT’s costs for proving accumulated instances as the cost
of running logUp (when using Protostar) or logUp-GKR (when using DT) on each of the
resulting α accumulated claims that arise when applying the decomposition step of Lasso.
We set the cost of logUp as 21max{N1/c,m} field multiplications, and of logUp-GKR as
19max{N1/c,m} field multiplications. We derive these costs for logUp and logUp-GKR
using [DT24] in Appendix D.

Remark 6.2. In their simplest forms, logUp [Hab22] and logUp-GKR [PH23] are lookups
designed to handle instances where both the “small” and the “large” table have the same
size. Both [Hab22, PH23] have more elaborate versions that handle m > N1/c by splitting
m into m/N1/c “columns” (following the terminology in [Hab22, PH23]). When using this
approach, as per [PH23], the Prover costs of Protostar and DT in Table 8 would incur a
multiplicative overhead of ≈ log(m/N1/c). Such a cost would make Protostar’s and DT’s
costs for proving accumulated instances really high, and FLI would clearly be the best
protocol. Because of this, and since it seems plausible, in our discussion we assume that
there is a method that allows to treat the case m > N1/c by using one single column. We
assume these improved protocols incur no overhead with respect to the original ones. The
cost reflected in Table 8 corresponds to the dominant costs of such schemes. Further, the
resulting cost for both Protostar and DT assume that we perform the sumchecks that prove
logUp/logUp-GKR in parallel. In practice, this would lead to way too many evaluations,
so the sumchecks would need to be batched. This results in an increase of concrete costs,
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though not significant.

Table 8: Dominant costs of the protocols for proving accumulated instances with Proto-
star+SOS, DT+SOS, and FLI+SOS. We follow the same notation as in Tables 1 to 3. The
opening costs refer to computing opening proofs of multilinear polynomials, possibly dense.
We assume polynomial evaluation claims are batched together using standard techniques,
hence, for each number of variables, there is only one opening proof to be generated. For
both Protostar and Deep Thought, the costs are approximative and based on a simplified
scheme, cf. Remark 6.2

Scheme Prover field mult Openings

Protostar +SOS 21αmax{m,N1/c} 1 · log(m)-variate, 1 · log(N1/c)-variate

Deep Thought + SOS 19αmax{m,N1/c} 1 · log(m)-variate, 1 · log(N1/c)-variate

FLI + SOS 2m(N1/c + 1) + 3αm · nf 1 · log(mN1/c)-variate

Prover for accumulated instances’ openings costs. FLI’s scheme for proving accu-
mulated instances requires proving an evaluation of a log(mN1/c)-variate (sparse) multi-
linear polynomial. We assume that a curve-based commitment scheme is used, and that
the opening proof bottleneck occurs when computing Multi-Scalar-Multiplication (MSM)
of size mN1/c 10. We remark that due to #2 in [Tha24], certain variations of Zeromorph
[KT23] or HyperKZG [Set24] might make this step not be a bottleneck anymore. The price
to pay is an increase of the folding Verifier work by O(N1/c) (which can be configured to
be small). Indeed, this is the approach planned by the Jolt team [Tha24]. In other words,
here we analyze the costs of a naive selection of commitment scheme, but we remark that
there are plausible alternatives.

10Following the benchmarks in Table 1 of [Hab22], we set the cost of this MSM when mN1/c > 218 to be
around 28mN1/c field multiplications, on the Pallas curve.
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A Extended preliminaries

A.1 Interactive Proofs and Interactive Oracle Proofs

We recall the concepts of Interactive Proofs and Interactive Oracle Proofs [BSCS16]. At a
high level, the former model is more suitable to describe our folding schemes. The latter
model will be very useful for us to describe intermediate protocols that make heavy use of
sumchecks (see Appendix A.2), which can be described as (polynomial) IOPs.

Following standard conventions, if R is an indexed relation, we call (x;w) such that
(i,x;w) ∈ R an instance-witness pair. We mean that x is the instance, and w is the
witness for x. The set of valid witnesses for an instance x is denoted by R(i,x) := {w |
(i,x;w) ∈ R}.

Definition A.1 (Interactive Proofs (IPs)). A 2µ+ 1-move, public coin IP
Π = (Setup, I,P,V) for an indexed relation R is an interactive protocol between two PPT
algorithms P,V. The algorithm gp← Setup(1λ) generates global parameters for the protocol
Π, and the deterministic indexer outputs Verifier and Prover parameters given an index
(vp, pp) ← I(gp, i). Both P and V take as input an instance x ; P additionally takes as
a private input a witness w ∈ R(i,x). At round i ∈ [µ], P sends a message mi, and V
replies with a random challenge ρi. All of the random choices made by V are made public.
At the last round, P sends a final message mµ+1 and V either accepts (returns 1) or rejects
(returns 0). The output of V is denoted by the random variable ⟨P(pp,w),V(vp)⟩(x).

The two standard security definitions that we use for the IPs in this paper are perfect
completeness and knowledge soundness. We recall their definition next.

Definition A.2 (Perfect completeness of an IP). An IP Π = (Setup, I,P,V) for the indexed
relation R is said to be perfectly complete if for all (i,x;w) ∈ R:

Pr

[
⟨P(pp,w),V(vp)⟩(x) = 1

∣∣∣∣∣ gp← Setup(1λ)

(vp, pp)← I(gp, i)

]
= 1

Definition A.3 (Knowledge soundness of an IP). An IP Π = (Setup, I,P,V) for the indexed
relation R is said to be knowledge sound with knowledge error ϵ : N → [0, 1] if there exists
a PPT algorithm Ext (it runs in time polynomial in |i|+ |x|) such that given oracle access
to any pair of PPT adversaries (A1,A2), the following holds:

Pr


⟨A2(i, st),V(vp)⟩(x) = 1)

∧
(i,x;w) ̸∈ R

∣∣∣∣∣∣∣∣∣∣
gp← Setup(1λ)

(i,x, st)← A1(gp)

(vp, pp)← I(gp, i)
w← ExtA1,A2(gp, i,x)

 ≤ ϵ(|i|+ |x|)
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An IP is said to be knowledge sound, or an argument of knowledge, if ϵ is negligible in
λ. If the adversaries are unbounded, then the IP is said to be a proof of knowledge.

We will use the notion of an accepting transcript for an IP when dealing with the forking
lemma for folding schemes (see Section 3.5). We recall their definition next:

Definition A.4 (Accepting transcripts). The set of 2µ+ 1 messages
τ = (m1, ρ1, . . . ,mµ+1), that is, µ + 1 Prover messages (m1, . . . ,mµ+1) and µ Verifier
messages (ρ1, . . . , ρµ) resulting from an interaction of P(pp,w),V(vp) in the IP is called a
transcript.

Such a transcript τ is said to be accepting if ⟨P(pp,w),V(vp)⟩(x) = 1.

Interactive Oracle Proofs (IOPs) [BSCS16] are information-theoretic proof systems that
combine aspects of Interactive Proofs and Probabilistically Checkable Proofs, and also gen-
eralize the notion of Interactive PCPs.

Definition A.5 (Interactive Oracle Proofs (IOPs)). A k-round public-coin IOP Π = (Setup, I,P,V)
is an interactive protocol between two PPT algorithms P,V. The algorithm gp← Setup(1λ)
generates global parameters for the protocol Π, and the deterministic indexer outputs Veri-
fier and Prover parameters given an index (vp, pp)← I(gp, i). Both P and V take as input
an instance x ; P additionally takes as a private input a witness w ∈ R(i,x). At round
i ∈ [k−1], P sends oracle access to a proof string πi and V replies with some public random
element ρi. At the last round, P sends oracle access to one last proof string πk. V then
makes some queries to the proof strings π1, . . . , πk and decides whether to accept (returns
1) or reject (returns 0).

Again, the security notions that we use in this paper are perfect completeness and
knowledge soundness.

Definition A.6 (Perfect completeness of an IOP). An IOP Π = (Setup, I,P,V) for an
indexed relation R is said to be perfectly complete if for all (i,x;w) ∈ R:

Pr

Vπ1,...,πk(vp,x, ρ1, . . . , ρk−1) = 1

∣∣∣∣∣∣∣∣
π1 ← P(pp,x;w)

...

πk ← P(pp,x;w, ρ1, . . . , ρk−1)

 = 1

Definition A.7 (Knowledge soundness of an IOP). An IOP Π = (Setup, I,P,V) for the
indexed relation R is said to be knowledge sound with knowledge error ϵ : N→ [0, 1] if there
exists a PPT algorithm Ext (it runs in expected polynomial time in |i|+ |x|) such that given
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oracle access to any pair of PPT adversaries (A1,A2), the following holds:

Pr



Vπ1,...,πk(vp,x, ρ1, . . . , ρk−1) = 1

∧
(i,x;w) ̸∈ R

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

gp← Setup(1λ)

(i,x, st)← A1(gp)

(vp, pp)← I(gp, i)
π1 ← A2(x)

...

πk ← A2(x, ρ1, . . . , ρk−1)

w← ExtA1,A2(gp, i,x)


≤ ϵ(|i|+ |x|)

An IOP is said to be knowledge sound if ϵ is negligible in λ.

A convenient idealized model of an IOP is given by Polynomial IOPs (PIOPs). These
are public-coin IOPs for a particular type of oracle relations: the indices i and instances
x can contain oracles to µ-variate polynomials over some field F with prescribed degree
in each variable. The oracles specify µ and the degree in each variable. These oracles
can be queried at arbitrary points in Fµ, the oracle returns the evaluation of the relevant
polynomial at that point. The actual polynomials corresponding to the oracles in i (resp.
x) are contained in pp (resp. w). The oracle to a polynomial f will be denoted by [[f ]].
At each round, the Prover sends oracles to µ-variate polynomials over F with a prescribed
degree in each variable, the Verifier still sends public randomness.

The notions of perfect completeness and knowledge soundness for PIOPs are the same,
mutatis mutandis, as the corresponding notions for IOPs. This model is particularly useful
because protocols are usually easily analyzed in the context where the Prover’s messages
consist of oracles to polynomials of prescribed degree.

We have focused on knowledge soundness as it is a stronger soundness notion, known
to imply standard soundness. The contrapositive is not true in general. However, in the
PIOP model the two notions are equivalent:

Lemma A.1 (Sound PIOPs are knowledge sound, Lemma 2.3 in [CBBZ23]). Consider a
ϵ-sound PIOP (meaning the PIOP has standard soundness error ϵ(|i|+ |x|)) for an oracle
indexed relation R such that for all (i,x;w) ∈ R, w consists only of polynomials such
that the instance contains oracles to these polynomials. Then the PIOP has ϵ knowledge
soundness, and the extractor runs in time O(|w|).

Remark A.2 (Knowledge extractors for PIOPs). The knowledge soundness extractor for
the PIOP simply queries the oracles to each witness polynomials (in µ variables, and of
degree at most d in each variable) at (d+1)µ distinct points, and this determines a unique
µ-variate polynomial of degree at most d in each variable.
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We end this section with a short informal discussion on compilations of IPs, IOPs and
PIOPs to other interactive and non-interactive arguments. A simple compilation from a
PIOP to an interactive argument of knowledge replaces all oracles with polynomial commit-
ments. Every query to an oracle is replaced with an invocation of the evaluation protocol
of the polynomial commitment scheme at that query point. It is now well-known that if the
polynomial commitment satisfies some extractability property, then this compilation turns
a PIOP into a secure interactive argument of knowledge:

Lemma A.3 (PIOP compilation [BFS20, CHM+20]). If the polynomial commitment scheme
is extractable (see Definition 3.2)11, and the PIOP is knowledge sound, then the interactive
protocol resulting from this compilation is a sound argument of knowledge.

Remark A.4. Note that the IP obtained through this compilation is an IP for a slightly
different relation than the PIOP oracle relation. It is the same relation, except that oracles
to polynomials are replaced with commitments. The relation enforces additionally that the
commitments to the polynomials in the Prover parameters/witness (supposedly those that
correspond to the oracles in the oracle relation) are indeed equal to the commitments in
the index/instance.

Compilations of IPs and IOPs to non-interactive arguments are related. The Fiat-
Shamir transform [FS86], where the Prover derives randomness for the challenge at round i
by evaluating a random oracle on the partial proof transcript (x,m1, ρ1, . . . ,mi), transforms
an IP into a non-interactive argument of knowledge (NIROA) in the Random Oracle Model
(ROM). Usually, one then heuristically instantiates the random oracle with a cryptographic
hash function. The way to transform an IOP into a NIROA is to replace the oracles
with commitments (this transforms the IOP into an IP), and then using the Fiat-Shamir
transform. This is called the BCS transformation (in [BSCS16], Merkle tree commitments
are used).

In this paper, we focus on the interactive variants of the protocols we describe. By using
the various compilations and heuristics, one can obtain non-interactive versions in practice.

A.2 The sumcheck protocol

For n ≥ 1 and d ≥ 0, we let F≤d[X] be the set of multivariate polynomials in the variables
X = (X1, . . . , Xn) with degree in each variable bounded by d. Let Rsumcheck denote the
following indexed oracle relation, which we call the sumcheck relation:

Rsumcheck :=


 i = (F, n, d),
x = (c, [[f ]]);

w = f(X)


∣∣∣∣∣∣∣
c ∈ F, f(X) ∈ F≤d[X],∑
x∈Bn

f(x) = c


11Note that we have defined extractable commitments only for multilinear polynomials, but this result

holds for multivariate polynomial commitments just as well.
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In words, indices in Rsumcheck are a field F, a number of variables n, and a degree bound d.
An instance x consists of an oracle [[f ]] to a polynomial f(X) on n variables over the field
F with degree in each variable bounded by d, and the sum c of its values over the boolean
hypercube Bn. The witness w consists of the polynomial f(X) corresponding to the oracle.
The sumcheck protocol is a now standard PIOP for the sumcheck relation (for details about
the construction, we refer to [Tha22, CBBZ23]). At a high level, the protocol proceeds in
rounds as follows:

1. The Prover sends an oracle [[f1]] to the univariate polynomial f1(X) :=
∑

x∈Bn−1 f(X,x)
The Verifier checks that c = f1(0) + f1(1).

2. For i = 1 to i = n− 1,

(a) The Verifier sends uniformly random ri ∈ F.
(b) The Prover sends an oracle [[fi+1]] to the univariate polynomial fi+1(X) :=∑

x∈Bn−i−1 f(r1, . . . , ri, X,x).

(c) The Verifier checks that fi(ri) = fi+1(0) + fi+1(1).

3. In the end, the Verifier makes a single query to [[f ]] at (r1, . . . , rn) and checks that it
agrees with fn(rn).

The sumcheck protocol is perfectly complete, and has the following knowledge soundness
error:

Lemma A.5. The sumcheck protocol is a perfectly complete PIOP for Rsumcheck with knowl-
edge soundness error ϵ = dn/|F|.

Now define the zerocheck relation as follows:

Rzerocheck :=


 i = (F, n, d),
x = [[f ]];

w = f(X)

∣∣∣∣∣ c ∈ F, f(X) ∈ F≤d[X],

f(x) = 0 for all x ∈ Bn

 .

This relation has the same indices as Rsumcheck, its instances are oracles to polynomials
on n variables that vanish over the hypercube Bn. The witness contains the polynomials
corresponding to these oracles. One can use the sumcheck protocol to obtain a reduction of
knowledge [KP23] from Rsumcheck to Rzerocheck. This stems from the following observation:

Proposition A.6 (See [BFL91]). Let n ≥ 1 and let f(X) ∈ F[X], where X = (X1, . . . , Xn).
Let r← Fn be uniformly sampled. Then, except with probability 1/|F|, we have that f(x) = 0
for all x ∈ Bn (i.e. ((F, n), [[f ]]; f(X)) ∈ Rzerocheck) if and only if∑

x∈Bn

f(x) · ẽq(r;x) = 0,

i.e., if and only if ((F, n), (0, [[f(X) · ẽq(r;X)]]); f(X) · ẽq(r;X)) ∈ Rsumcheck.
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Proof. Consider the multilinear polynomial f̃(X) :=
∑

x∈Bn f(x) · ẽq(x;X). By uniqueness

of MLEs, we have that f(x) = 0 for all x ∈ Bn if and only if f̃(X) equals the zero polynomial.
Further, if f̃(X) is the zero polynomial, then f̃(r) = 0 for r ∈ Fn. On the other hand, if
f̃(X) is note the zero polynomial, then by Schwartz-Zippel lemma, f̃(r) ̸= 0 for all but at
most |F|n−1 elements r ∈ Fn, and the result follows.

Remark A.7. Note that the oracle for f(X) · ẽq(r;X) can also consist simply of [[f ]],
because both the Prover and the Verifier can evaluate ẽq(r;X) at any field point efficiently.
This is what happens in practice, this does not change the knowledge soundness of the
protocol but affects the Prover and Verifier work.

We end this section by describing a small variation on the sumcheck protocol that
we will use repeatedly, and proving its knowledge soundness in the PIOP model. This
variation appears when the sum of a m+ n-variate polynomial over the boolean hypercube
Bn (contained in Bm+n) is identically equal to a constant, that is:∑

y∈Bn

f(X,y) ≡ c

The associated relation is as follows:

Ridsumcheck :=


 i = (F,m, n, d),

x = (c, [[f ]]);

w = f(X,Y)


∣∣∣∣∣∣∣∣∣

c ∈ F, f(X,Y) ∈ F≤d[X,Y],

X = (X1, . . . , Xm), Y = (Y1, . . . , Yn)∑
y∈Bn

f(X,y) = c


A simple PIOP for this relation can be described as follows:

1. The Verifier sends a random uniform r ∈ Fm.

2. The Prover and Verifier engage in the sumcheck protocol with instance (c, [[f ]]) and
witness f ′(Y) = f(r,Y). Queries to f ′ at y can be proved with oracle queries to [[f ]]
at (r,y).

3. The Verifier accepts if and only if the sumcheck Verifier accepts.

Lemma A.8. The protocol we just described is a perfectly complete PIOP for Ridsumcheck.
It has soundness error ϵ := d(m + n)/|F|, and therefore it also has knowledge soundness
error ϵ.

Proof. Perfect completeness follows from the perfect completeness of the sumcheck protocol.
Suppose

∑
y∈Bn f(X,y) ̸= c. Then except with probability dm/|F| over the choice of r, we

have that
∑

y∈Bn f(r,y) ̸= c. The soundness of the sumcheck protocol then implies that the
sumcheck Verifier accepts with probability at most dn/|F|. Knowledge soundness follows
from Lemma A.1.
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There is also a batched version of sumcheck. If we have sumcheck instances
∑

x∈Bn f1(x) =
c1, . . . ,

∑
x∈Bn fν(x) = cν , we can verify them all at once by performing a sumcheck of the

form: ∑
x∈Bn

∑
i∈[ν]

γi−1 · fi(x) = c1 + · · ·+ γν−1 · cν

for a randomly chosen γ ∈ F. The resulting protocol is also knowledge sound (this can be
expressed in the language of reductions of knowledge [KP23]). This is a standard technique,
and we omit the proof of knowledge soundness.

Remark A.9. We have mentioned that the sumcheck protocol can be considered as a
PIOP for the sumcheck relation, and this makes the analysis of its knowledge soundness
particularly simple. In practice, the sumcheck protocol is implemented with the Prover
sending (a representation of) the actual polynomial corresponding to the oracle at each
intermediate round. This does not change the analysis of the knowledge soundness of the
protocol, but does affect the field operation work (and the communication complexity) of
the Prover and Verifier. When we examine the costs of the sumcheck protocol, and the
strategies for reducing them, we mean the version of sumcheck where the Prover sends
actual polynomials at each intermediate round. In this paper, when we write the costs
of protocols using the sumcheck as a subroutine, we will consider the sumcheck IP that
is obtained from the sumcheck where the Prover sends full polynomials at intermediate
rounds, and where the oracle to the multivariate polynomial in the instance is replaced
with a polynomial commitment (that is extractable).

B Comparing other regimes for m and N

The case where m is small and N1/c is large. Assuming N1/c is large and bothm and
nf are small, then in general FLI’s commitment cost is very small (on average), coming from
committing to c vectors of, mostly, binary elements. In this scenario, we can reasonably
assume that FLI’s folding cost is dominated by mdeg(g)(α+ |g|) field operations. As shown
in Tables 2 and 3, in this parameter regime, FLI results in the most efficient folding scheme
available, for many parameter choices. Further, towards building an IVC/PCD scheme,
FLI’s Verifier is the cheapest among the schemes in Tables 2 and 3.

If nf is large, then ρ may degenerate to m, in which case FLI’s folding Prover must
commit to c size-m vectors of arbitrarily sized field elements. Still, Protostar must commit
to 2α = 2 · k · c size-m such vectors This is roughly 2k times more expensive than FLI’s
commitment costs. Further, we note that the overall number of commitments to large
elements over the n′

f folding steps is, in FLI, on average:

c
m

N1/c
(1 + 2 + . . .+ nf ) ≈

cn2
fm

2N1/c
,
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while in Protostar it is 2αnfm.

The case when both m and N1/c are large. So far, we have only discussed the case
when mN1/c is roughly our computation target. This limited our analysis to settings where
m and/or N1/c were “small”. The reason for this analysis is that FLI’s protocol for proving
accumulated instances has cost O(mN1/c), and thus cannot handle scenarios where both
m and N1/c are large. On the other hand, Protostar and Deep Thought do not present
the quadratic term mN1/c, and so it is only fair to remark that one may use them in this
regime, while FLI is not usable in this case.

We note however that, when dealing with SOS-decomposable tables as the ones from
Jolt, it is always possible to select c so that N1/c is small. Hence, when looking into such
tables, there is always the option of selecting parameters as in Section 6 and use FLI.

C Deferred proofs

C.1 Proof of Lemma 4.2

Proof of Lemma 4.2. Perfect completeness follows from the perfect completeness of the
sumcheck protocol.

Now suppose there are adversaries A1,A2 such that A1 consumes global parameters
and produces an index instance pair (i,x) ; A2 takes as input (i,x) and interacts with
the Verifier according to the PIOP we described. Note that the index instance pair is of
the form ((F, N,m), [[M ]]), with m ≤ N < char(F). Suppose additionally that the Verifier
accepts.

This means in particular that each sumcheck Verifier accepted. By knowledge soundness
of the sumcheck and of our variation on the sumcheck (Lemma A.8), there exists two efficient
extractors Ext1 (resp. Ext2) that given access to the global parameters, A1,A2 and on input
i,x output M1 ∈ F≤1[X,Y] (resp. M2 ∈ F≤1[X,Y]) such that∑

x∈Blog(m)

∑
y∈Blog(N)

(M1(x,y)
2 −M1(x,y)) · ẽq(β;x,y) = 0

(resp.
∑

y∈Blog(N) M2(X,y) ≡ 1), except with probability at most 3 log(mN)/|F| (resp.
log(mN)/|F|). But M1 and M2 are obtained by interpolating queries to the same oracle
[[M ]] (see Remark A.2), so that M1 = M2, call their common value M12. We have that:

∑
x∈Blog(m)

∑
y∈Blog(N)

(M(x,y)2 −M(x,y)) · ẽq(β;x,y) = 0

12This also means that we may run the extractor on any of the two sumcheck instances, for example we
may only run Ext2. Such an extracted witness will be a valid witness for the first sumcheck except with
probability at most 3 log(mN)/|F|.
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∑
y∈Blog(N)

M(X,y) ≡ 1

and the first equality implies Eq. (7) except with probability 1/|F| over the choice of β by
Proposition A.6. Therefore, we can extract a valid witness except with probability at most
(4 log(mN) + 1)/|F|.

C.2 Proof of Lemma 4.3

Proof of Lemma 4.3. We look at perfect completeness first. Let

(i,x;w) = ((F, N,m), (Macc, Eacc, µ); (Macc, Eacc)) ∈ Racc
elem

and
(i,x′;w′) = ((F, N,m),M ;M) ∈ Relem

be any tuples in each relation. Again, we suppose that both the Prover and Verifier have
access to (F, N,m), (Macc, Eacc, µ),M , and that the Prover has access to Macc, Eacc,M .
Suppose that at the end of the protocol honestly, an honest Prover and Verifier output
(M ′

acc, E
′
acc, µ

′) and the honest Prover outputs (M ′
acc, E

′
acc). We must prove that the follow-

ing holds:
E′

acc = cm(E′
acc)

M ′
acc = cm(M ′

acc)

∀(x,y) ∈ Blog(mN), M ′
acc(x,y)

2 = M ′
acc(x,y) + E′

acc(x,y)∑
y∈Blog(N)

M ′
acc(X,y) = (1 + µ′)

The first two equations hold by construction and by the homomorphic property of the
commitment scheme. For the next equalities, we have for all (x,y) ∈ Blog(mN):

M ′
acc(x,y)

2 = (Macc(x,y) + α ·M(x,y))2

= Macc(x,y)
2 + 2α ·Macc(x,y)M(x,y) + α2 ·M(x,y)2

= Macc(x,y) + Eacc(x,y) + 2α ·Macc(x,y)M(x,y) + α2 ·M(x,y)

= (Macc(x,y) + α ·M(x,y)) + Eacc(x,y)

+ α · (2Macc(x,y)M(x,y)−M(x,y)) + α2 ·M(x,y)

= M ′
acc(x,y) + E′

acc(x,y)

Finally, we have that:∑
y∈Blog(N)

M ′
acc(X,y) =

∑
y∈Blog(N)

Macc(X,y) + α ·
∑

y∈Blog(N)

M(X,y)
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≡ 1 + µ+ α = 1 + µ′

We now move on to knowledge soundness. The argument is similar to the one in [KST22].
Let (M1, E1, µ1) and M2 be two instances for Racc

elem and Relem, respectively. The idea
is to use Lemma 3.1 to show that an extractor can output satisfying witnesses for these
instances given a large enough tree of accepting transcripts for the folding protocol, and
the corresponding folded instance-witness pairs. More precisely, we show that the extractor
Ext can output a satisfying witness given three accepting transcripts (τ1, τ2, τ3) with the
same initial message from the Prover: the commitment to the cross term T . Note that a
transcript τi, for i = 1, 2, 3, additionally comes attached with a satisfying witness which
we denote by τi.(M,E), and the Verifier’s random element τi.α. Interpolating the points
(τ1.α, τ1.M), (τ2.α, τ2.M), Ext finds M1,M2 such that:

For i = 1, 2, M1 + τi.α ·M2 = τi.M

Similarly, interpolating (τ1.α, τ1.E), (τ2.α, τ2.E), (τ3.α, τ3.E), Ext finds E1, E2 and a cross
term T such that:

E1 + τi.α · T + τi.α
2 · E2 = τi.E, i = 1, 2, 3.

We now show that the witness elements we just found are valid openings to the commitments
in the instances. Because τi.M is part of a satisfying witness, by construction and the
homomorphic property of the commitment, we find that for i = 1, 2:

M1 + τi.α ·M2 = cm(τi.M)

= cm(M1 + τi.α ·M2)

= cm(M1) + τi.α · cm(M2)

and this implies that cm(Mi) = Mi for i = 1, 2. Similarly we must have for i = 1, 2, 3:

E1 + τi.α · T + τi.α
2 ·M2 = cm(τi.E)

= cm(E1 + τi.α · T + τi.α
2 · E2)

= cm(E1) + τi.α · cm(T ) + τi.α
2 · cm(E2)

and this implies that cm(E1) = E1, cm(T ) = T and cm(E2) = M2. By the binding property
of the commitment scheme, E2 = M2 except with probability negl(λ). We must now argue
that (M1, E1, µ1) and M2 satisfy the remaining conditions in their respective relations.
First, note the following chain of equalities:

cm(M1 + τ3.α ·M2) = cm(M1) + τ3.α · cm(M2)

= M1 + τ3.α ·M2

= cm(τ3.M)
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By the binding property of the commitment scheme, M1 + τ3.α ·M2 = τ3.M except with
probability negl(λ). Because (τi.M, τi.E) is a satisfying witness for i = 1, 2, 3, we have that:

τi.M ◦ τi.M = τi.M + τi.E (12)

τi.M · 1T = (1 + τi.µ) · 1T . (13)

From Eq. (12) we have, for i = 1, 2, 3,

(M1 + τi.α ·M2) ◦ (M1 + τi.α ·M2)

=(M1 + τi.α ·M2) + (E1 + τi.α · T + τi.α
2 ·M2)

which upon expanding and interpolating, shows thatM1◦M1 = M1+E1 andM2◦M2 = M2.
Similarly interpolating the equations given by Eq. (13), we find that M1 ·1T = (1+µ1) ·1T
and M2 · 1T = 1T .

C.3 Proof of Lemma 5.1

Proof of Lemma 5.1. We look at perfect completeness first. Let

(i,x;w) = ((F, N,m, t), (aacc,Macc, Eacc, µ); (aacc,Macc, Eacc)) ∈ Racc
1

and
(i,x′;w′) = ((F, N,m, t), (a,M); (a,M)) ∈ RCmMAlLook

be any tuples in each relation. Again, we suppose that both the Prover and Verifier
have access to (F, N,m), t, (aacc,Macc, Eacc, µ), (a,M), and that the Prover has access to
aacc,Macc, Eacc,a,M . Suppose that at the end of following the protocol honestly, the Prover
and Verifier output (a′acc,M

′
acc, E

′
acc, µ

′) and the Prover outputs (aacc,Macc, Eacc). By per-
fect completeness of P1 (Lemma 4.3), we know that ((F, N,m), (M ′

acc, E
′
acc, µ); (M

′
acc, E

′
acc)) ∈

Racc
elem, so we need only prove that:

a′acc = cm(a′acc),∑
y∈Blog(N)

M ′
acc(X,y) · t(y) = a′acc(X).

The first property follows by construction and the homomorphic property of the commit-
ment scheme. For the second property, we have by construction:∑

y∈Blog(N)

M ′
acc(X,y) · t(y) =

∑
y∈Blog(N)

(Macc(X,y) + αM(X,y)) · t(y)

= aacc(X) + α · a(X)
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= a′acc(X)

Knowledge soundness of F1 almost follows from knowledge soundness of P1. Let (a1,M1, E1, µ)
and (a2,M2) be any instances for the relations Racc

1 and RCmMAlLook respectively. We have
seen in Lemma 4.3 that an extractor Ext can output satisfying witnesses for Relem and Racc

elem

from three accepting transcripts (τ1, τ2, τ3) with the same initial message from the Prover
(the commitment to the cross-term). Here, transcripts additionally come attached with a
satisfying witness τi.(a,M,E). It remains to show that the extractor can output a1 and a2
such that (a1,M1, E1) and (a2,M2) are satisfying witnesses for their respective relations.
But from interpolating (τ1.α, τ1.a), (τ2.α, τ2.a), Ext finds a1,a2 such that for i = 1, 2:

a1 + τi.α · a2 = τi.a

By construction and by the homomorphic property of the commitment, we have that
cm(ai) = ai for i = 1, 2. Finally, because (a,M,E) form a satisfying witness, we find
that for i = 1, 2:

a1(X) + τi.α · a2(X) = τi.a(X) =
∑

y∈Blog(N)

τi.M(X,y) · t(y)

=
∑

y∈Blog(N)

M1(X,y) · t(y)+τi.α ·
∑

y∈Blog(N)

M2(X,y) · t(y)

Interpolating, we obtain
∑

y∈Blog(N) Mi(X,y) · t(y) = ai(X) for i = 1, 2.

C.4 Proof of Lemma 5.4

Proof of Lemma 5.4. Perfect completeness follows from perfect completeness of the sum-
check protocol and the homomorphic property of the commitment scheme.

For knowledge soundness, we use Lemma 3.1 again. Let

(Macc,Macc
1, . . . ,Macc

c, Eacc,aacc, r, µ, c1, . . . , cα) and (M1, . . . ,Mc,a2)

be two instances for RaccSOS and RSOS respectively. Suppose we have three accepting
transcripts τ1, τ2, τ3 that are identical until the Prover message where it sends the com-
mitment to the cross-terms (included). This means in particular that the sumcheck part
of each transcript is identical, as well as the commitments to the cross terms. The tran-
scripts additionally come attached with a satisfying witness for RaccSOS which we denote by
τi.(M

acc′,Macc
1

′, . . . ,Macc
c

′, E′
acc,a

′
acc), and the Verifier’s random element τi.ηj , for j ∈ [c].

Note that in protocol FSOS
1 , after the sumcheck, there are essentially two procedures

going on in parallel for i ∈ [c]:

• Mi is folded into Macc with protocol P1 (see Lemma 4.3).
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• Macc
i and Mi are linearly combined as Macc

i + τj .ηi ·Mi.

We know how to extract witnesses from the second point by interpolating, this gives
us witnesses Macc

i ,Mi that commit to the elements Macc
i ,Mi in the instance, respectively.

By applying the knowledge soundness extractor of P1 repeatedly (from i = c to i =
1), we are able to extract Macc and Eacc that commit to the elements Macc, Eacc in the
instances. Further Macc and Eacc satisfy the conditions in Racc

elem. Similarly because the
update procedure of the small table aacc is a simple linear combination, we can also extract
the relevant witnesses.

Finally, by the soundness of the sumcheck protocol, we know that except with negligible
probability in the security parameter, the witnesses we have found satisfy:∑

x∈Blog(m)

(a(x)− g(M1(x)T1, . . . ,Mc(x)Tα)) · ẽq(β,x) = 0

∀i ∈ [c], Macc
i (r) = ci

aacc(r) = d

and e.w.n.p. (Proposition A.6) the first equality implies that for all x ∈ Blog(m), a(x) −
g(M1(x)T1, . . . ,Mc(x)Tα) = 0.

D The cost of proving accumulated instances with Proto-
star+SOS and DT+SOS

As discussed in Section 6, we use an oversimplification and estimate the cost of proving
an accumulated instance with Protostar+SOS (resp. DT+SOS) by estimating the cost of
proving α sumchecks appearing in logUp (resp. logUp-GKR) when applied to a lookup of
a table of size max{m,N1/c} into a table of the same size. In turn, we estimate the cost of
proving a single such sumcheck using the new optimized costs in [DT24].

The cost of logUp [Hab22]. For logUp, the sumcheck for a lookup of a small table a
into a big table t (both of size M := max{m,N1/c}) is of the form:∑

x∈Blog(M)

h1(x) + h2(x) + γ · ẽq(x;β) · (h1(x) · (α+ t(x))−m(x)))+

γ2 · ẽq(x;β) · (h2(x) · (α+ a(x))− 1)) = 0 (⋆)

where α ∈ F and β ∈ Flog(M) are chosen at random, m is the ”multiplicity function” (c.f.
[Hab22], this functions indicates how many times each entry t(x) is looked up) and:

∀x ∈ Blog(M), h1(x) := m(x)/(α+ t(x))

55



h2(x) := −1/(α+ a(x))

To apply the sumcheck optimizations of [DT24], we need all the evaluations of h1, h2.
Batch inversion techniques allow to compute the vector of inverses of (α+t(x), α+a(x))x in
about 6M multiplications, and 1 inversion. We can then use M multiplications to compute
all evaluations of h1, h2 over the hypercube. Following [DT24], the Prover in sumcheck in
(⋆) performs:

• 2M field multiplications for the terms h1(x) and h2(x).

• 6M+O(
√
M) field multiplications for the term γ · ẽq(x;β) ·(h1(x) ·(α+t(x))−m(x))).

• 6M field multiplications for the term γ2 · ẽq(x;β) · (h2(x) · (α+ a(x))− 1)).

For a total cost of 21M +O(
√
M) field multiplications.

The cost of logUp-GKR [PH23]. For logUp-GKR, for a lookup of a small table a
into a big table t (both of size M := max{m,N1/c}), there are k sumchecks (for 1 ≤ k ≤
log(M)− 1) of the form:∑

x∈Bk

ẽq(x;β) · (pk+1(x, 1) · qk+1(x,−1) + pk+1(x,−1) · qk+1(x, 1)+

γk · qk+1(x, 1) · qk+1(x,−1)) = pk(β) + γk · qk(β) (†)

where α ∈ F and β ∈ Fk are chosen at random, and:

p(X, Y ) := Y ·m(X)− (1− Y )

q(X, Y ) := Y · (α− t(X)) + (1− Y ) · (α− a(X))

∀1 ≤ k ≤ log(M)− 1, ∀x ∈ Bk,
pk(x)

qk(x)
=

∑
y∈Blog(M)−k

p(x,y)

q(x,y)

At layer k, following [DT24] and assuming that we have all relevant values of pk+1, qk+1,
the Prover can perform the sumcheck in (†) in 16·2k+O(2k/2) field multiplications. Summing
over k, this leads to 16M +O(

√
M) field multiplications overall. To compute all necessary

values of the pk, qk for all k, we need 3M multiplications (this is because of the linear
relationships between pk, qk and pk+1, qk+1, see [PH23]). All in all, we estimate that the
Prover in logUp-GKR performs no more than 19M +O(

√
M) field multiplications.
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