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Abstract. We show that the widely-used Schnorr signature scheme
meets existential unforgeability under chosen-message attack (EUF-CMA)
in the random oracle model (ROM) if the circular discrete-logarithm
(CDL) assumption, a new, non-interactive and falsifiable variant of the
discrete-log (DL) problem we introduce, holds in the underlying group.
Notably, our reduction is tight, meaning the constructed adversary against
CDL has essentially the same running time and success probability as the
assumed forger. This is crucial for justifying the size of the underlying
group used in practice. To our knowledge, we are the first to exhibit such
a reduction. Indeed, prior work required interactive and non-falsifiable
assumptions (Bellare and Dai, INDOCRYPT 2020) or additional ideal-
ized models beyond the ROM like the algebraic group model (Fuchs-
bauer et al., EUROCRYPT 2020). We justify CDL by showing it holds
in two carefully-chosen idealized models that idealize different aspects of
it. Namely, we show that CDL is as hard as DL in these models.

Keywords: Schnorr signatures · tight security · ECDSA conversion
function

1 Introduction

1.1 Background and Main Results

Schnorr signatures and our focus. The Schnorr signature scheme [Sch90]
(recalled below), specifically in the form of EdDSA [BDL+12] implemented over
twisted Edwards curves, is one of the most widely used pieces of cryptogra-
phy today. For example, it is used in SSH/SSL, and in Bitcoin since the Tap-
root soft-fork upgrade in November 2021 [WNR20]. There is a rich theory be-
hind the scheme’s security, with tantalizing open questions. The initial result
of Pointcheval and Stern (PS) [PS96] showed the scheme meets existential un-
forgeability (EUF-CMA) in the random oracle model (ROM) [BR93] assuming
the discrete-logarithm (DL) assumption holds in the underlying group. However,
the PS result has the two major downsides, which have persisted despite much
follow-on work: (1) the proof relies on the artificial ROM, and (2) the reduction
given in the proof is lossy. In this work, we focus on overcoming (2).
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The problem of tight security. Given a forger against the Schnorr signa-
ture scheme in the ROM with success probability psucc, the PS result says there is
an adversary solving DL in the underlying group with similar running time and
having success probability Θ(p2succ/qH), where qH is the number of RO queries
made by the forger. Unfortunately, the discrepancy between the success probabil-
ities of the assumed forger and the constructed DL adversary makes the result
meaningless in practice. For example, suppose we implement the scheme over
twisted Edwards curves of 256-bit order, which are conjectured to have 128-bit
security for DL. Conservatively assuming at most 264 RO queries, the PS result
then tells us the scheme has 128/2− 64 = 0 bits of security for EUF-CMA! This
is despite the lack of any known attack on the scheme short of solving DL after
several decades of cryptanalysis.

Can we do better? Prior work [FPS20] showed tight security of Schnorr in
additional idealized models such as the ROM combined with the algebraic group
model (AGM) [FKL18], which makes assumptions on the adversary’s strategy.
Other work [NSW09, Sho23, CLMQ21] proved Schnorr secure directly in the
generic group model (GGM) [Nec94, Sho97], making specific assumptions on
the hash function. However, such idealized models are arguably better suited for
analyzing simpler assumptions rather than the scheme itself.3

On the other hand, another sequence of works [PV05, GBL08, Seu12, FJS19]
culminated in showing that there is no tight “generic” reduction in the ROM
(even under a minimal formulation of security) for Schnorr signatures under any
“representation-independent” non-interactive assumption (see below). Later, Bel-
lare and Dai (BD) [BD20] showed that there is a generic reduction that loses
only a qH factor, thereby surpassing the “square-root barrier” but still falling
short of a completely tight reduction.

This gap matters: going back to our previous example, we would get 128 −
64 = 64 bits of security for the scheme, which is insufficient for practical ap-
plications. BD also rely on a new interactive assumption4 they call multi-base
DL, which is a variant of the one-more discrete logarithm assumption [BNPS03].
Since the challenger must answer discrete-log queries by the adversary, multi-
base DL is not a falsifiable assumption [Nao03].

We ask whether we can eliminate both downsides of their result, namely:

Is there a completely tight reduction in the ROM proving EUF-CMA of
Schnorr signatures from a non-interactive and falsifiable assumption?

Due to the above-mentioned impossibility results, such an assumption has to be
representation-dependent, meaning depend on the specific group representation
(see further discussion below). It is a priori unclear (to us, at least) what such
an assumption would look like.

3 For example, these idealized models are subject to uninstantiability results [Den02,
Zha22], so must be used with caution. Complex and interactive problems shown to
hold in these models are more likely to fall prey to the reach of these results.

4 Note that the assumption is single-query, whereas directly assuming the security of
the signature scheme would be multi-query.
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Our results. We resolve the above question in the affirmative. To do so, our
central conceptual contribution is the circular discrete-logarithm (CDL) prob-
lem, a new, non-interactive, falsifiable (at least under a specific formulation of the
assumption), and representation-dependent variant of DL. We show that if CDL
holds then the Schnorr signature scheme is secure in the underlying group, with
a completely tight reduction in the ROM. Then, using carefully-chosen idealized
models that idealize differrent aspect of our assumption in appropriate elliptic-
curve groups (e.g., twisted Edwards curves), we show that breaking CDL has
essentially the same complexity as breaking DL. Consequently, if one believes in
these models for analyzing DL/CDL in appropriate elliptic-curve groups, then
the security level of the scheme in such groups shown by our results matches
that indicated by decades of cryptanalysis.

1.2 Technical Overview

The Schnorr signature scheme. The Schnorr signature scheme is defined
over a group G of prime order p generated by g ∈ G and uses a hash function
H : G×{0, 1}∗ → Zp. A secret key x is uniformly sampled from Zp, i.e., x←$ Zp,
and defines a public key h ← gx. A signature on a message m ∈ {0, 1}∗ is
computed by sampling r←$ Zp, setting R ← gr, computing c ← H(R∥m) and
returning (R, s) with s← (r+ cx) mod p. A signature (R, s) on m under public
key h is verified by checking (gs = R · hc), where c ← H(R∥m). We denote the
scheme by Sch[G, H] and usually drop H when working in the ROM.

The circular discrete-logarithm problem. Let G be as above. Let f : G→
Zp be an efficient function that we call a conversion function following the ter-
minology regarding ECDSA [oST13]. We say that the circular discrete-logarithm
(CDL) problem holds in G for f if, given uniformly sampled h ∈ G, it’s hard to
find (R, z) such that

gz = R · hf(R) (1)

and f(R) ̸= 0. One can think of f as a very simple function, not (necessarily) a
cryptographic hash function used to instantiate Schnorr. We say that CDL holds
for G if there exists f such that CDL holds in G for f . (We exclude the all-zeros
function, since CDL trivially holds for it.) We denote the CDL for f in G as
CDL[G, f ] and just CDL for G as CDL[G]. The “circularity” in CDL is that in
the solution equation R occurs both in the base and the exponent, mirroring this
peculiar property of Schnorr’s verification equation. An equivalent formulation
is, given h←$ G, find a, b ∈ Zp such that f(ga/hb) = b. Indeed, this immediately
yields a CDL solution with z = a and R = ga/hb.

It is easy to see that if CDL[G, f ] holds for some function f , then DL holds
in G. On the other hand, note that even for DL-hard G, CDL[G, f ] does cannot
hold for every function f . In particular, it is necessary that no value has a large
preimage under f : Suppose t ∈ Z∗

p does; then a uniform z←$ Z∗
p, together with

R := gz/ht breaks CDL if f(R) = t, which happens with probability proportional
to the size of f−1(t) in Z∗

p. In Section 4, we show that, when modelling G as an
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elliptic-curve generic group [GS22], this assumption on f is not only necessary
but also sufficient for CDL to hold. For an elliptic-curve group, a simple example
of a function f satisfying this assumption (as previously argued in [GS22]) is the
ECDSA conversion function [oST13], which maps a point P = (x, y) on the
curve to its reduced x-coordinate, i.e., f : (x, y) 7→ x mod p.

Tight reduction from Schnorr to CDL. Our main result is a completely
tight reduction in the ROM from EUF-CMA of Sch[G] to CDL[G]. Namely,
given a forger against Sch[G], we construct an adversary solving CDL[G, f ] with
essentially the same running-time and success probability as the assumed forger.
The only assumption we make on f is that |f−1(0)|, the number of elements f
maps to 0, is small. This is implied by the condition on f discussed above, which
is necessary for CDL[G, f ] to hold in the first place.

Given an instance h ∈ G of CDL[G, f ], the reduction sets h as the public key
for the forger, so it does not know the corresponding secret key. When run, the
forger makes hash queries and signing queries. Its signing queries are simulated
by the CDL adversary as in the standard proof of Schnorr in [PS96]. Namely, on
query mi, the reduction picks si, ci←$ Zp, sets Ri ← gsi/hci , and programs the
random oracle at Ri∥mi to be ci, returning (Ri, si) as the signature. (Since Ri is
uniform, the probability that the RO is already defined at Ri∥mi is negligible.)

To simulate the hash queries, the intuition is that we embed outputs of f
into the answers; at the same time, we need to ensure that the returned values
are uniformly distributed values in Zp, independent of the adversary’s view. For
this, on query R∥m, the reduction picks a, b←$ Zp and programs the RO at R∥m
to (f(R ·ha · gb)+a) mod p. We argue that no matter what f is, the hash values
satisfy are independent and uniform.

Now, consider a successful forgery (R, s) on some m, thus

gs = R · hc , (2)

where c is the RO response for R∥m. Since m is different from the queried
messages,5 the query R∥m was made explicitly (either by the adversary or the
game when verifying the forgery), that is, the RO was not programmed during a
signing query. Let thus a, b be the values chosen by the reduction when answering
this RO query, that is, c = f(R · ha · gb) + a (modulo p). Together with Eq. (2),

this yields gs = R · hf(R·ha·gb)+a, which implies

gs · gb = (R · ha · gb) · hf(R·ha·gb) .

Thus, (R∗ := R · ha · gb, z∗ := (s + b) mod p) is solution to CDL as long as
f(R∗) ̸= 0, which by our initial assumption on f holds with high probability.

Analyzing CDL in the EC-GGM. To gain confidence in a new computa-
tional hardness assumption in prime-order groups, it has become standard to

5 Note that we can actually show strong unforgeability, namely that it’s even hard
for the adversary to forge a new signature on an already-signed message, since
(R, s,m) ̸= (Ri, si,mi) for all i implies R∥m ̸= Ri∥mi for all i, since si is uniquely
determined by Ri and mi.
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analyze it in the generic group model (GGM) [Nec94, Sho97], where the adver-
sary only gets (random) labels of group elements and has access to an oracle to
compute the group operation. Concretely, given the labels of two group elements,
the oracle returns the label of the product of the group elements.

This model is however syntactically ill-defined when there is a function taking
as input group elements, for example the conversion function in ECDSA [oST13],
which we conjecture to be a suitable choice for CDL in such groups. To analyze
the security of ECDSA (and variants thereof), Groth and Shoup (GS) [GS22]
introduce the elliptic-curve GGM, where the labels are random group elements
from an elliptic curve (conditioned on preserving simple properties, namely the
identity element and inverses).

In Section 4 we analyze CDL[G, f ] for arbitrary G and f : G → Zp, where
p = |G|, in the EC-GGM model, which uses labels from G. We show that CDL
holds conditioned on the aforementioned (necessary) property of f : no element
in its range can have a large preimage. In particular, we show that the advantage
of any adversary is bounded by ((q+1)·MaxSizef+27q2+39q+15)/(p−1), where
MaxSizef := maxt∈Zq

{|f−1(t)|} is the largest preimage and q is the number of
group-oracle queries made by the adversary. Note that we use exactly the same
property as GS do on the conversion function to prove security of ECDSA in
the EC-GGM. As the ECDSA conversion function is 2-to-1, in this case the
bound for CDL is essentially the same as the bound for DL [Sho97, GS22]. In
other words, CDL in an appropriate elliptic-curve group and for the ECDSA
conversion function is about as hard as DL in the EC-GGM.

Analyzing CDL in the algebraic bijective ROM. We also consider ide-
alizing f . Particularly, we look at how the ECDSA conversion function is modeled
in security analyses of ECDSA that idealize the conversion function; however,
our analysis is again not tied to the ECDSA conversion function and works for
other functions that have similar structure but are more “random” than the
ECDSA conversion function. In fact, for such functions, this idealization is even
for meaningful than for the ECDSA conversion function. Thus, it seems reason-
able to use such an idealized model in our case.

Initial results on ECDSA’s security by Brown [Bro02] modeled the conver-
sion function as a RO (in addition to using the GGM), which ignores its ob-
vious structure. To better capture the structure, the bijective ROM was pro-
posed [FKP16, FKP17, HK23]. In this model f = ψ ◦Π ◦φ, where φ maps from
G to A := {0, 1}L, Π maps from A to B := [2L − 1], and ψ maps from B to Zp.
Here φ and ψ are standard-model functions, while Π is modeled as a bijective
RO.

In fact, CDL for the ECDSA conversion function is a special case of the
semi-logarithm problem (SLP) introduced by Brown [Bro05] and generalized by
Fersch, Kiltz, and Poettering (FKP) [FKP17, Definition 6] with ρ0(u, v) = u
and ρ1(u, v) = −v. FKP show a loose reduction from SDL to DL in the BROM
(and hence get a loose reduction for ECDSA). We would like a tight reduction
in the case of CDL. We manage to do this by additionally assuming that the
adversary is algebraic wrt. its queries to Π, i.e., we use the algebraic BRO model
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(ABROM) recently proposed to analyze blind ECDSA [QCY21]. Specifically, we
show that the advantage of any CDL adversary in the ABROM is bounded by
the hardness of DL in G plus (2q2 +2q+ q ·MaxSizeψ)/p, where q is the number
of queries made by the adversary. Our algebraic assumption on the adversary is
important here. If we showed a tight reduction from CDL to DL in the BROM,
that would imply (by our main result) a tight reduction from security of Schnorr
signatures to DL in the ROM, which would be surprising.

1.3 Discussion

Comparison to ratio-based tightness. While the focus of their work is on
the multi-user setting, Kiltz, Masny and Pan (KMP) [KMP16] give a two-link
chain of reductions going from single-user EUF-CMA of Schnorr signatures to
DL. The first reduction [KMP16, Lemma 3.5] goes from passive impersonation
of Schnorr’s identification protocol to DL, and the second goes from EUF-CMA
of Schnorr signatures to the former. While they claim the first reduction is tight,
their criterion for tightness is “ratio-based,” namely requiring roughly equal
time-to-success ratios of the assumed adversary and the constructed one. Un-
fortunately, as discussed by Bellare and Dai (BD) in [BD20, Appendix B], this
criterion is problematic and the aforementioned reduction (which, as in [PS96]
uses rewinding), has a substantial running-time blowup. As in [BD20], we em-
ploy a notion of tightness that requires roughly equal success probabilities and
running times individually, avoiding such problems.

The second reduction [KMP16, Theorem 1.1] loses a factor qH even under
ratio-based tightness. Overall, as already argued by [BD20], in the single-user
setting KMP do not improve on the required size of underlying group for Schnorr
signatures versus classical results.

Relation to instantiability. CDL is related to the problem of instantiating
Schnorr signatures (i.e., replacing its RO with a concrete hash function) under
a weak security notion called universal unforgeability under no-message attack
(UUF-NMA) used to show prior impossibility results [PV05, GBL08, Seu12,
FJS19]. In UUF-NMA, the forgery message is random and given to the adversary,
and the adversary gets no signing queries. As compared to instantiating Schnorr
signatures under UUF-CMA, CDL differs in that there is no message and f takes
solely a group element as input. We also stress that in the above-mentioned
impossibility results, UUF-NMA is only considered in the ROM.

Representation-dependence of CDL. Our reduction from EUF-CMA of
Schnorr signatures to CDL does not contradict prior impossibility results because
the most general of these results [FJS19] only applies to underlying problems
that are representation-invariant, i.e., an instance-solution pair remains valid
when the representation of the underlying group is changed. However, CDL is
representation-dependent. Indeed, Eq. (1) may hold for one group representation
but not another, as the value of f(R) depends on the representation.
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Falsifiability of CDL. For given G, f , CDL[G, f ] is a clearly a falsifiable as-
sumption in the sense of [Nao03]. For our main result, we can also rely on a
seeminly weaker, non-falsiable CDL[G] that there merely exists an f such that
CDL[G, f ] holds, even if we don’t know what it is. This is because we only use
the conversion function f in proofs, not in real life. (We do not require mod-
ification to Schnorr signatures at all.) There have been previous instances of
primitives occurring only in proofs, e.g. [BM14, GJO16, MOZ22], but to our
knowledge it is novel in the context of Schnorr signatures. Note that we will also
need that |f−1(0)| for such f is “small.” The advantage of the best adversary
breaking CDL[G, f ] for a given resource usage and the meaning of “small” then
determines our bound on the security of Schnorr signatures.

CDL as a stepping-stone. An important problem left open by our work is
whether for every group G of order p (or those of interest) there is a function
f : G→ Zp such that there is a reduction from CDL[G, f ] to some more-standard
assumption in G. For example, constructing f for which there is a tight reduc-
tion from CDL[G, f ] to DL in G would, by composition, yield a tight reduction
from EUF-CMA of Sch[G] to DL in G. Interestingly, this would not contradict
the above-mentioned impossibility results because our reduction is non-generic,
since it computes f . Even a loose reduction would be of interest to corrobo-
rate CDL. In general, a construction of f could introduce other assumptions.
We stress that Schnorr signatures themselves and their instantiation in practice
using cryptographic hashing would remain unaffected.

Extensions to Schnorr. Many recent works build upon Schnorr signatures,
particularly to achieve signature schemes with advanced functionalities such
as aggregate signatures [CGKN21], blind signatures [FW24], multisignatures
[NRS21], ring signatures [YEL+21], and threshold signatures [KG24]. (We give
some representative citations to recent work, not an exhaustive list.) Schnorr
signatures were also used to give adaptor signatures [AEE+21]. We leave it as
an open problem to extend our results to these settings.

2 Preliminaries

Notation. If −→v is a vector then |−→v | is its length (the number of its coordinates)
and vi is its i-th coordinate. Strings are identified with vectors over {0, 1}, so
that |Z| denotes the length of a string Z and Zi denotes its i-th bit. By ε we
denote the empty string or vector. By x∥y we denote the concatenation of strings
x, y. If S is a finite set, then |S| denotes it size and we let x←$ S denote picking
an element of S uniformly at random and assigning it to x.

Algorithms may be randomized unless otherwise indicated. If A is an al-
gorithm, we let y ← AO1,...(x1, . . . ;ω) denote running A on inputs x1, . . . and
coins ω, with oracle access to O1, . . ., and assigning the output to y. More-
over, by y←$AO1,...(x1, . . .) we denote picking ω at random and letting y ←
AO1,...(x1, . . . ;ω). We let Out(AO1,...(x1, . . .)) denote the set of all possible out-
puts of A when run on inputs x1, . . . and with oracle access to O1, . . .. Running
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time is worst-case, which for an algorithm with access to oracles means across all
possible replies from the oracles. We use ⊥ (bot) as a special symbol to denote
rejection, and it is assumed not to be in {0, 1}∗.

Let f : A → B be a function. We let Sizef (b) := |f−1(b)| for all b ∈ B,
MaxSizef := maxb∈B Sizef (b). For sets A,B such that |A| = |B|, we let Inj(A,B)
denote the set of injection from A to B.

Games. We use the code-based game-playing framework of BR [BR06]. By
Pr[G ⇒ y] we denote the probability that the execution of game G results in
this output being y. In games, integer variables, set variables, boolean variables
and string variables are assumed initialized, respectively, to 0, the empty set ∅,
the boolean false and ⊥.

2.1 Schnorr Signatures and Their Security

Signature schemes and their security. A signature scheme with message
space MS is a tuple of algorithms DS = (DS.K,DS.S,DS.V) that work as follows:
- DS.K: The key-generation algorithm outputs a key pair (vk, sk). (We sup-
press the security parameter for simplicity.)

- DS.S(sk,m): On inputs a signing key sk and a message m ∈ MS, the signing
algorithm outputs a signature σ.

- DS.V(vk, σ,m): On inputs a verification key vk, signature σ, and message,
m ∈ MS, the verification algorithm outputs a bit.
For correctness, we require that

Pr
[
DS.V

(
vk,DS.S(sk,m),m

)
⇒ 1

]
= 1

for all (sk, vk) ∈ Out(DS.K) and all m ∈ MS, where the probability is over the
coins for DS.S.

Game Geuf-cma
DS

Initialize:

1 (vk, sk)←$ DS.K
2 S ← ∅
3 Return vk

SignO(m): // m ∈ MS

4 σ←$ DS.S(sk,m)
5 S ← S ∪ {(m,σ)}
6 Return σ

Finalize(σ,m):

7 If (m,σ) ∈ S then return 0
8 Else return DS.V(vk, σ,m)

Fig. 1: Game defining (strong) EUF-CMA of DS.
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Game Gdl
G,g

Initialize:

1 x←$ Z∗
p

2 h← gx

3 Return h

Finalize(x′):

4 Return (x = x′)

Game Gcdl
G,g,f

Initialize:

1 x←$ Z∗
p

2 h← gx

3 Return h

Finalize(R, z):

4 Return
(
f(R) ̸= 0 ∧ gz = R · hf(R)

)
Fig. 2: Games defining DL and circular DL problems.

Schnorr signatures. Let G be a cyclic group of prime order p = |G|, gen-
erated by g. Let H : G × {0, 1}∗ → Zp be a hash function. The Schnorr signa-
ture scheme [FS87, Sch90] Sch[G, H] = (Sch.K,Sch.S,Sch.V) with message space
{0, 1}∗ works as follows. Algorithm Sch.K chooses x←$ Zp, sets X ← gx, and
returns (vk = X, sk = x). Algorithm Sch.S on input x,m chooses r←$ Zp, sets
R ← gr and c ← H(R∥m), then returns

(
R, (r + cx) mod p

)
. Algorithm Sch.V

on inputs X, (R, s),m returns
(
gs = R ·Xc

)
where c← H(R∥m). Correctness is

straightforward to check. In the ROM, we denote the scheme by Sch[G].

EUF-CMA. We define the (strong) existential unforgeability under chosen-
message attack (EUF-CMA). Let DS = (DS.K,DS.S,DS.V) with message space
MS. For an adversary A, we let its (strong) EUF-CMA advantage against DS be

Adveuf-cma
DS (A) = Pr

[
Geuf-cma,A

DS ⇒ 1
]
, where the game is in Figure 1.

2.2 Discrete-Logarithm Problem

We recall the discrete-logarithm (DL) problem. Let G be a group of prime order
p = |G|, generated by g. For an adversary A, we let its DL-advantage against

G, g be Advdl
G,g(A) = Pr

[
Gdl,A

G,g ⇒ 1
]
, where the game is in Figure 2.

3 Tight Security of Schnorr Signatures under CDL

We provide our new assumption then proceed to give a tight reduction of EUF-
CMA security of Schnorr signatures in the ROM to our assumption.

3.1 Circular Discrete-Logarithm Problem

We introduce the circular discrete-logarithm (CDL) problem. Let G be a group
of prime order p = |G|, generated by g. Let f : G → Zp. For an adversary A

we let its CDL-advantage against G, g, f be Advcdl
G,g,f (A) = Pr

[
Gcdl

G,g,f (A)⇒ 1
]

where the game is in Figure 2.
If we want to assume that there exists no efficient adversary that solves

CDL, the condition f(R) ̸= 0 in the Finalize procedure is essential. Otherwise,
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consider the adversary who has some R∗ ∈ G such that f(R∗) = 0 hard-coded
along with z∗ = DLogG,g(R

∗), and simply outputs (R∗, z∗) as a valid CDL
solution. This adversary would have advantage 1. The assumption would thus
be wrong, even though no one might know such an adversary. This is analogous
to collision-resistance of hash functions, for which an adversary always exists
(cf. [Rog06]). By adding the condition f(R) ̸= 0, we simply avoid such issues.
The assumption remains strong enough for all our applications.

3.2 Main Result

Theorem 1 Let G be a group of prime order p. Let A be an adversary against
the Schnorr signature scheme Sch[G] in the ROM and assume A makes at most
qs queries to the signing oracle and qh queries to the hash oracle. Let f : G→ Zp
be arbitrary and efficient. Then there exists an adversary B with running time
roughly the same as A plus simulation overhead proportional to qs and qh · Tf ,
where Tf is the time to compute f , such that

Adveuf-cma
Sch[G] (A) ≤ Advcdl

G,g,f (B) +
qs(qs + qh) + qh · Sizef (0)

p
. (3)

Remark 1. When Sizef (0) is small, the additive term in the RHS of Equation 3
is consistent with the quadratic lower-bound in the adversary’s probability of
(generically) solving DL in G. Indeed, for any f , one can break CDL[G, f ] by
computing DL of h.

Remark 2. The running-time of the adversary constructed in our reduction de-
pends on the running-time for f . Thus, if f is inefficient to compute, it will affect
tightness of our reduction. However, all candidate f ’s we consider in our work
are extremely efficient, e.g., they output some bits of the input.

Remark 3. It is standard practice in implementations of Schnorr signatures to
prepend the public key h to inputs to the hash function H. This ensures domain
separation between users and implies better bounds for multi-user security. For
simplicity we omit to do this, but our result readily extends to this setting.
Namely, in the reduction, the CDL adversary handles the hash queries h′∥R∥m
by checking if h = h′. If so, it handles the query as in our simulation below. If
not, it returns a random value (answering consistently across repeated queries).

Next, we prove the above theorem by formalizing the ideas laid out in the
Introduction (Section 1.2).

Proof. We consider a sequence of games defined in Figure 3. Games in boxes (G1

and G3) contain the boxed lines, whereas they are ignored for the other games.
Note that G0 is equivalent to Geuf-cma

Sch[G] .

G0 → G1. We start with analyzing how the probability of returning 1 changes
from G0 to G1. The probability of aborting in line 6 in G1 during any signing
query is at most (qs+ qh)/p since R is uniformly sampled and there are at most
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G0(G, g) G1(G, g)

Initialize:

1 T← ()

2 x←$ Z∗
p

3 h← gx

4 Return h

SignO(m):

5 r←$ Zp;R← gr

6
if T(R,m) ̸= ⊥:

Abort
7 c← HashO(R,m)

8 s← (r + cx) mod p

9 Return (R, s)

HashO(R,m):

10 If T(R,m) = ⊥ then

11 T(R,m)←$ Zp

12 Return T(R,m)

Finalize(m,R, s):

13 c← HashO(R,m)

14 Return gs = Rhc

G2(G, g)

Initialize:

1 T← ()

2 x←$ Z∗
p

3 h← gx

4 Return h

SignO(m):

5 s←$ Zp; c←$ Zp

6 R← gs/hc

7 If T(R,m) ̸= ⊥: Abort

8 T(R,m)← c

9 Return (R, s)

HashO(R,m):

10 If T(R,m) = ⊥ then

11 T(R,m)←$ Zp

12 Return T(R,m)

Finalize(m,R, s):

13 c← HashO(R,m)

14 Return gs = Rhc

G3(G, g, f) G4(G, g, f)

Initialize:

1 T← ()

2 x←$ Z∗
p

3 h← gx

4 Return h

SignO(m):

5 s←$ Zp; c←$ Zp

6 R← gs/hc

7 If T(R,m) ̸= ⊥: Abort

8 T(R,m)← c

9 Return (R, s)

HashO(R,m):

10 If T(R,m) = ⊥ then

11 a, b←$ Zp

12 R′ ← R · ha · gb

13 If f(R′) = 0: Abort

14 T(R,m)

← (f(R′)+a) mod p

15 Return T(R,m)

Finalize(m,R, s):

16 c← HashO(R,m)

17 Return gs = Rhc

Fig. 3: Games for the proof of Theorem 1. Changes are highlighted in blue.

qs + qh possible (·,m) pairs defined in T it could hit. By a union bound over all
signing queries, the probability of G1 aborting is at most qs(qs + qh)/p. Thus,
by the Fundamental Lemma of Game Playing [BR06] we have Pr

[
GA

0 ⇒ 1
]
≤

Pr
[
GA

1 ⇒ 1
]
+ qs(qs + qh)/p.

G1 → G2. In G2, we change the signing oracle so that it doesn’t require knowl-
edge of the secret key x. We claim these games are equivalent. This is because,
if T(R,m) has not been defined yet, the distribution of (R, s, c) in both games
is uniform in G × Zp × Zp conditioned on gs = R · hc. In other words, this hop
corresponds to a reordering of how these variables are defined. We thus have
Pr

[
GA

1 ⇒ 1
]
= Pr

[
GA

2 ⇒ 1
]
.

G2 → G3. In G3, we change how we answer hash queries. We argue that the
distribution of responses of the hash oracle in G3 is equivalent to the distribution
of responses in G2. In G2, the distribution of the value sampled in line 11 is
uniform in Zp. This is also the case in G3: Since a is uniform in Zp, so is the
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Adversary B(h)

1 T← (); i← 1
2 (m,R, s)←$ ASignO,HashO(G, g, h)
3 HashO(R,m) //ensure that value is defined
4 Let j be such that R = Rj and m = mj . If such j does not exist, abort
5 R∗ ← R · hajgbj ; s∗ ← (s+ bj) mod p
6 Return (R∗, s∗)

SignO(m):

7 s←$ Zp; c←$ Zp;R← gs/hc

8 If T(R,m) ̸= ⊥: Abort
9 T(R,m)← c

10 Return (R, s)

HashO(Ri,mi):

11 If T(Ri,mi) = ⊥ then
12 ai, bi←$ Zp

13 R′ ← Ri · hai · gbi
14 If f(R′) = 0: Abort
15 T(Ri,mi)← (f(R′) + ai) mod p
16 i← i+ 1
17 Return T(Ri,mi)

Fig. 4: CDL-adversary B for the proof of Theorem 1.

value (f(R′) + a) mod p. Moreover, conditioned on any fixed a, R′ = R · ha · gb
is uniform in G because b is uniform in Zp. Thus Pr

[
GA

2 ⇒ 1
]
= Pr

[
GA

3 ⇒ 1
]
.

G3 → G4. This hop introduces an abort whenever a hash query is made and
f(R′) = 0. Since R′ is independent and uniformly distributed (as was just
shown), the probability of any query aborting is |f−1(0)|/p. By a union bound
over all queries, the probability of aborting is at most qh · |f−1(0)|/p. Thus, we
get Pr

[
GA

3 ⇒ 1
]
≤ Pr

[
GA

4 ⇒ 1
]
+ qh ·MaxSizef (0)/p.

G4. Combining the hops above yields

Adveuf-cma
Sch[G] (A) ≤ AdvG4

G,g,f (A) +
qs(qs + qh) + qh ·MaxSizef (0)

p
, (4)

Finally, consider adversary B defined in Figure 4. To prove the theorem, it
remains to show that

AdvG4

G,g,f (A) ≤ Advcdl
G,g,f (B) ,

which combined with Eq. (4) completes the proof. To do so, we show that when-
ever A returns a strong forgery (m,R, s) in G4, then B returns a solution to the
given CDL instance. A wins if

gs = R · hc with c← T(R,m) . (5)
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We claim that T(R,m) must have been defined during some call to HashO,
which in turn means that if A wins, B does not abort in line 4. The reason is
that (m,R, s) is different from all (mi, Ri, si), which consist of the i-th query
mi to SignO together with its response (Ri, si). Since for a signature (R, s) on
m, the value s is determined by R and m, this condition is equivalent to R∥m
being different from all Ri∥mi. Thus T(R,m) was not defined during a call to
SignO and, if nowhere else, was defined via the call to HashO in line 3.

So let j be the HashO query that defined T(R,m), and let aj , bj be the
values that were sampled during the call; thus

c = T(R,m) =
(
f(R · haj · gbj ) + aj

)
mod p .

Together with Eq. (5), this yields gs = R · hf(R·haj ·gbj )+aj . Multiplying by gbj

yields gs+bj = (R · haj · gbj ) · hf(R·haj ·gbj ). We note that f(R · haj · gbj ) ̸= 0 as
assured by the abort condition added in G4. Together this shows that R∗ :=
R · haj · gbj , s∗ := (s + bj) mod p, the values returned by B, constitute a valid
solution to the given CDL instance. ⊓⊔

4 CDL in the Elliptic-Curve GGM

The EC-GGM. The Elliptic-curve generic group model (EC-GGM) [GS22] was
introduced to cover constructions (such as ECDSA) that define a function which
takes as input group elements. In contrast to Shoup’s [Sho97] original GGM, in
the EC-GGM, the “encodings” of the group elements are not random strings but
random points on a concrete elliptic curve E, which has a prime number p of
points. (Using multiplicative notation, we let 1E denote the identity element.)

In more detail, in security games defined in the EC-GGM, in the begin-
ning, the challenger chooses a random injective encoding function τ : Zp → E
which preserves trivial relations; in particular, τ(0) is the identity element and
if τ(i) = P then τ(−i) = P−1. To “compute” in the group, parties have two or-
acles: Map(i), for i ∈ Zp, returns τ(i); computing linear combinations of group
elements is done by calling Add(c1, P1, c2, P2) for ci ∈ Zp and Pi ∈ E, for
i = 1, 2, which returns τ(c1 · τ−1(P1) + c2 · τ−1(P2)).

Note that for schemes (and assumptions) defined over elliptic curve groups
(and in particular, if there is a function whose domain is the group), this model
is more realistic than the pure GGM (and makes sense syntactically). E.g., in
the GGM, one can show ECDSA strongly unforgeable – although it is malleable
– which is not possible in the EC-GGM.

Proof overview of CDL in the EC-GGM. To argue that CDL holds in the
EC-GGM, we follow the common approach for GGM proofs, also taken by Groth
and Shoup [GS22]: instead of randomly sampling τ in the beginning of the game,
we sample entries of the form (i, P ) on the fly as required; this does not change
the adversary’s view. The game is defined in Figure 5.

We then simplify the game and abort whenever the “lazy” sampling does not
succeed at the first try (including the boxes with a single frame in Figure 5). Let-
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Game Gec-ggm-cdl
E,f ; Gabrt-cdl

E,f ; Gsymb-cdl
E,f

Initialize:

1 τ ← {(0, 1E)}
2 g′ ←Map(1)

3 h←Map(X); Return (g′, h)

4 x←$ Z∗
p;h←Map(x)

5 Return (g′, h)

Map(i):

6 If i /∈ Dom(τ)
7 P ←$ E∗

8 if P ∈ Ran(τ) then abort
9 while P ∈ Ran(τ) : P ←$ E∗

10 τ ← τ ∪ {(−i, P−1), (i, P )}
11 Return τ(i)

Add(c1, P1, c2, P2):

12 For j = 1, 2: if Pj /∈ Ran(τ)
13 i←$ Z∗

p

14 if i ∈ Dom(τ) then abort
15 while i ∈ Dom(τ) : i←$ Z∗

p:
16 τ ← τ ∪

{
(−i, P−1

j ), (i, Pj)
}

17 Return Map
(
c1 · τ−1(P1) + c2 · τ−1(P2)

)
Finalize(R, z):

18 if R /∈ Ran(τ) or z /∈ Dom(τ) then return 0

19 Return
(
f(R) ̸= 0 ∧ Map(z) = Add(1, R, f(R), h)

)
Fig. 5: Original and variants of the EC-GGM game for the circular discrete-log problem.

ting q denote the number of the adversary’s group oracle queries, the difference
to the original game is O(q2/p). We next define a symbolic game where the secret
value x is represented by an indeterminate X and the domain of τ now consists
of (linear) polynomials in X (the game including all boxes in Figure 5). Again,
using a standard GGM argument that relies on the Schwartz-Zippel Lemma, the
difference to the previous game is O(q2/p). Finally, we argue that the adversary’s
probability in winning the symbolic game is bounded by MaxSizef/p.

We note that, compared to Groth and Shoup we avoid the use of asymptotics
and give a precise concrete analysis of our assumption in the EC-GGM. Addi-
tionally, the proof applies to much more general f than the ECDSA conversion
function [oST13], as we simply require a bound on the largest preimage set. (For
the ECDSA conversion function, this is two.)

Theorem 2 Let E be an elliptic curve of prime order p and f : E → Zp. Let A
be an adversary against CDL for f in the EC-GGM with E that makes at most
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q queries to any of its oracles. Then

Advec-ggm-cdl
E,f (A) ≤ (q + 1) ·MaxSizef + 27q2 + 39q + 15

p
.

Proof. We proceed via a sequence of games as defined in Figure 5 and analyze
their differences.

ec-ggm-cdl→abrt-cdl. First consider the boxed code in lines 8 and 14. Consider
the probability that in Gec-ggm-cdl

E,f , during any call to Map or Add, a value P or
i is sampled (uniformly at random) for which there is already an assignment in
τ (which we call a “collision”). Map is called once in lines 2 and 4 and at most
q times by the adversary, and Add is called at most q times by the adversary.
Each call to Map samples at most one value of P (for which either P, P−1 either
both already have an assignment in τ or both do not), and similarly each call
to Add samples at most two values i and possibly a value P when calling Map
in line 17. Now, the probability of a collision in line 2 is zero and in line 4 is
2/(p − 1). Then, in the worst case the adversary makes q Add queries. On the
first such call, the probability of a collision in line 13 (in either of its possible
executions) is at most 4/(p− 1) + 6/(p− 1) and in line 17 is at most 8/(p− 1).
If no collisions happened, then the probability of one happening in the second
call is bounded by 10/(p− 1) + 12/(p− 1) + 14/(p− 1), and so on.

By a union bound, the overall probability of a collision is thus bounded by

3q+1∑
j=1

2j

p− 1
=

(3q + 1)(3q + 2)

p− 1
=

9q2 + 9q + 2

p− 1
.

Finally, consider the boxed code in line 18. The probability that the adversary
wins in Gec-ggm-cdl

E,f although there is no assignment already in τ for one (or both)
of its output elements R and z is 1/(p− 1).

Thus, overall, the difference between the probabilities of the gamesGec-ggm-cdl
E,f

and Gabrt-cdl
E,f outputting 1 is bounded by (9q2 + 9q + 3)/(p− 1).

abrt-cdl→symb-cdl. Consider game Gsymb-cdl
E,f , but where we sample x (in line

4), as in Gabrt-cdl
E,f . If we furthermore replace the checks “if i ∈ Dom(τ)” (lines 6

and 14), where i is now a linear polynomial in X, by “if i(x) ∈ Dom(τ)” (as well
as all other occurrences of i by i(x)) then we obtain a game that is distributed
like the previous game Gabrt-cdl

E,f .

The difference between games Gabrt-cdl
E,f and Gsymb-cdl

E,f outputting 1 is thus
bounded by the probability C that for any two i ̸= i′ ∈ Dom(τ), we have i(x) =
i′(x). Initialize creates 4 polynomials (±1 and ±X), a call to Add creates up
to six polynomials (four in line 16 and two in line 10 when line 17 is executed),
while a call to Map creates fewer; and Finalize creates at most 2 different
polynomials (since it aborts if one of its arguments is not yet in τ). Note that,
as long as no collision occurs, all polynomials are independent of x. Thus, C is
upper-bounded by the probability that when sampling a random evaluation point
(out of p possible ones) any two out of 6q + 6 different polynomials (which are
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lines) intersect. Since 6q+6 lines intersect in at most
∑6q+6
i=1 (i−1) =

∑6q+5
i=1 i =

1
2 (6q + 5)(6q + 6) = (6q + 5)(3q + 3) points, we have

C =
(3q + 2)(6q + 6)

p− 1
=

18q2 + 30q + 12

p− 1
.

symb-cdl. Consider an output (R, z) by the adversary in game Gsymb-cdl
E,f that

makes Finalize return 1. Since R ∈ Ran(τ), there exist a, b ∈ Zp s.t.

τ−1(R) = a+ bX .

Moreover, Map(z) = Add(1, R, f(R), h)
)
implies

τ(z) = τ
(
τ−1(R) + t · τ−1(h)

)
with t := f(R) ̸= 0 .

Since τ is injective and τ(X) = h, this implies

τ−1(R) = z − tX ,

thus a = z and b = −t ̸= 0. Consider the point when R is added to the range
of τ . Any “fresh” input R to Add will be associated to a constant polynomial
in line 16. Since τ−1(R) is non-constant, R must have been added to τ during a
call to Map in line 10. Moreover this call to Map must have been made by the
experiment in lines 3 or 17, since the adversary can only call Map on constant
polynomials. When Map is called on some fresh i = a+bX, the value R is picked
uniformly and independently of a and b. The probability that any R satisfies
f(R) = −b is thus bounded by MaxSizef/p. As the adversary can create at most
q values this way, and moreover we could have f(h) = −1, the probability that
the adversary wins game symb-cdl is bounded by (q + 1) ·MaxSizef/p.

Adding to this the differences between the previous games yields the bound
of the theorem. ⊓⊔

5 CDL in the Algebraic Bijective RO Model

The Algebraic Bijective Random Oracle Model. The Algebraic Bijec-
tive Random Oracle Model (ABROM) [QCY21] is a combination of the bijective
random oracle (BRO) model [FKP16] and the algebraic group model (AGM)
[FKL18], originally introduced to analyze blind ECDSA. It idealizes the ECDSA
conversion function f : G∗ → Zp in a similar manner as the BRO, by decompos-
ing f into three independent functions f := ψ ◦Π ◦ φ, where φ maps from G∗

to A := {0, 1}L, Π maps from A to B := [2L − 1], and ψ maps from B to Zp.
Functions φ and ψ are standard-model (non-idealized), while Π is modeled as
a bijective random oracle. The forward direction Π and its inverse Π−1 are ac-
cessible via the BRO and BRO−1 oracles, respectively. The conditions imposed
on φ,Π,ψ in our result are meant to ensure f preserves the essential structure
of the ECDSA conversion function such as invertibility and being 2-to-1.

Like the AGM, the ABROM keeps track of all “seen” group elements in a
vector

−→
U . We make a slight tweak to the model such that the domain of f and φ
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is G instead of G∗, to better represent the CDL conversion function. The BRO
oracle now takes as a vector representation −→p where we let R =

∏
i U

pi
i and

outputs some β ∈ B corresponding to Π(φ(R)). In other words, to call Π on R,
the adversary needs to provide a representation for some preimage R of α under
φ. This preimage of α under φ is then added to

−→
U The BRO−1 oracle takes as

input some β ∈ B and outputs some α ∈ A corresponding to Π−1(β). Unlike the
AGM, we do not require the adversary to give representations for group elements
it outputs. Formally, for an adversaryA, the CDL game in the ABROM is defined
in Figure 6 as G0. We let A’s advantage be Advabro-cdl

G,g,φ,ψ (A) = Pr [G0 ⇒ 1 ].
We recall the following definition from [FKP16] before stating our result.

Definition 4. (Semi-Injective Function) Let G be a prime order group p and A
be a set. A function φ : G→ A is called semi-injective if (a) its range φ(G) ⊆ A
is efficiently decidable and (b) it is either injective or 2-to-1 with φ(X) = φ(Y )
always implying Y ∈ {X,X−1}.

Theorem 3 Let G be a group of prime order p. Let A be a CDL-adversary
in the ABROM making at most q queries to its oracles. Let A = {0, 1}L and
B = [2L−1] such that 2L ≥ p. Let φ : G→ A be semi-injective, and let ψ : B→ Zp
be arbitrary. Assume ϕ, ψ are efficiently computable. Then there exists a DL-
adversary B (shown in Figure 8) with running time roughly the same as A plus
simulation overhead proportional to q such that

Advabro-cdl
G,g,φ,ψ (A) ≤ Advdl

G,g(B) +
(q + 1) ·MaxSizeψ + q2 + 2q

p
. (6)

Proof. We show the result through a sequence of game hops shown in Figures 6
and 7. and proceed to analyze their differences.

G0 → G1. In G1, we lazily sample Π and introduce abort conditions in lines 11,
16, and 24. Note that the oracle responses in G0 are identically distributed
to the oracle responses in G1 if G1 does not abort. Thus, Pr

[
GA

0 ⇒ 1
]
≤

Pr
[
GA

1 ⇒ 1
]
+Pr

[
GA

1 aborts
]
. We now analyze the probability that G1 aborts.

On the i-th query (to either BRO or BRO−1), the probability of aborting is at
most (i− 1)/2L, and the probability of aborting in line 24 is q/2L. Thus,

Pr
[
GA

1 aborts
]
=

q∑
i=1

i

2L
=
q(q + 1)

2L+1
.

G1 → G2. In G2, in answering a BRO−1 query we resample α if the originally
sampled α is in the range of φ, so that this time we learn the representation.
We set R := gs

′
ht

′
where s′ and t′ are uniformly sampled from Z. Since g and

h are generators, this results in a uniformly random R. We then set α← φ(R).
Because φ is either injective or 2-to-1, any α ∈ φ(G) is equally likely to be
chosen, so this method of resampling maintains the uniform distribution on α.
Thus, Pr

[
GA

1 ⇒ 1
]
= Pr

[
GA

2 ⇒ 1
]
.
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Game G0(G, g, φ, ψ)

Initialize:

1 Π←$ Inj(A,B)
2 x←$ Z∗

p

3 h← gx

4
−→
U ← (g, h)

5 Return h

BRO(−→p ):
6 R←

∏
i U

pi
i

7
−→
U ←

−→
U ∥R

8 α← φ(R)
9 β ← Π(α)

10 Return β

BRO−1(β):

11 α← Π−1(β)
12 If α ∈ φ(G):
13 (R,R−1)← φ−1(α)

14
−→
U ←

−→
U ∥R∥R−1

15 Return α

Finalize(R, z):

16 α← φ(R)
17 β ← Π(α)
18 c← ψ(β)
19 Return (gz = Rhf(R))

Game G1(G, g, φ, ψ)

Initialize:

1 Π ← ∅
2 x←$ Z∗

p

3 h← gx

4
−→
U ← (g, h)

5 Return h

BRO(−→p ):
6 R←

∏
i U

pi
i

7
−→
U ←

−→
U ∥R

8 α← φ(R)
9 If (α, ·) ∈ Π: Return Π(α)

10 β←$ B
11 If (·, β) ∈ Π: Abort
12 Π ← Π ∪ {(α, β)}
13 Return β

BRO−1(β):

14 If (·, β) ∈ Π: Return Π−1(β)
15 α←$ A
16 If (α, ·) ∈ Π: Abort
17 If α ∈ φ(G):
18 (R,R−1)← φ−1(α)

19
−→
U ←

−→
U ∥R∥R−1

20 Π ← Π ∪ {(α, β)}
21 Return α

Finalize(R, z):

22 α← φ(R)
23 If (α, ·) ∈ Π then β ← Π(α)
24 Else β←$ B ; If (·, β) ∈ Π: Abort
25 c← ψ(β)
26 Return (gz = Rhc)

Fig. 6: Games G0, G1 for the proof of Theorem 3. Changes are highlighted in blue.

G2 → G3. In G3, the first change we make is to use vectors −→s and
−→
t to keep

track of each “seen” element Ui, so that Ui = gsihti . This change is purely for
bookkeeping and does not affect the behavior of the oracles. The second change
is that we add abort conditions in lines 15 and 23, which we will use later.

We now analyze the probability of G3 aborting. On each BRO query, the
probability of aborting in a given execution of line 15 is at most MaxSizeψ/p
since β is uniformly sampled. Thus, by union bound over all the queries, the
probability of aborting in line 15 during the execution of the entire game is at
most q ·MaxSizeψ/p. The probability of aborting in line 23 is at most q/p since
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Game G2(G, g, φ, ψ)

Initialize:

1 Π ← ∅
2 x←$ Z∗

p

3 h← gx

4
−→
U ← (g, h)

5 Return h

BRO(−→p ):
6 R←

∏
i U

pi
i

7
−→
U ←

−→
U ∥R∥R−1

8 α← φ(R)
9 If (α, ·) ∈ Π: Return Π(α)

10 β←$ B
11 If (·, β) ∈ Π: Abort
12 Π ← Π ∪ {(α, β)}
13 Return β

BRO−1(β):

14 If (·, β) ∈ Π: Return Π−1(β)
15 α←$ A
16 If α ∈ φ(G):
17 s′, t′←$ Zp

18 R← gs
′
ht′

19 α← φ(R)

20
−→
U ←

−→
U ∥R∥R−1

21 If (α, ·) ∈ Π: Abort
22 Π ← Π ∪ {(α, β)}
23 Return α

Finalize(R, z):

24 α← φ(R)
25 If (α, ·) ∈ Π then β ← Π(α)
26 Else β←$ B ; If (·, β) ∈ Π: Abort
27 c← ψ(β)
28 Return (gz = Rhc)

Game G3/G4 (G, g, φ, ψ)

Initialize:

1 Π ← ∅
2 x←$ Z∗

p

3 h← gx

4
−→
U ← (g, h)

5
−→s ← (1, 0);

−→
t ← (0, 1) // Ui = gsihti

6 Return h

BRO(−→p ):
7 R←

∏
i U

pi
i

8
−→
U ←

−→
U ∥R∥R−1

9 α← φ(R)
10 If (α, ·) ∈ Π: Return Π(α)

11 s′ ← ⟨−→s ,−→p ⟩; t′ ← ⟨−→t ,−→p ⟩ //R = gs
′
ht′

12
−→s ← −→s ∥ s′ ∥ −s′

13
−→
t ← −→t ∥ t′ ∥ −t′

14 β←$ B
15 If −t′ = ψ(β): Abort
16 If (·, β) ∈ Π: Abort
17 Π ← Π ∪ {(α, β)}
18 Return β

BRO−1(β):

19 If (·, β) ∈ Π: Return Π−1(β)
20 α←$ A
21 If α ∈ φ(G):
22 s′, t′←$ Zp

23 If −t′ = ψ(β): Abort
24

−→s ← −→s ∥ s′ ∥ −s′

25
−→
t ← −→t ∥ t′ ∥ −t′

26 R← gs
′
ht′

27 α← φ(R)

28
−→
U ←

−→
U ∥R∥R−1

29 If (α, ·) ∈ Π: Abort
30 Π ← Π ∪ {(α, β)}
31 Return α

Finalize(R, z):

32 α← φ(R)
33 If (α, ·) ∈ Π then β ← Π(α)
34 Else β←$ B ; If (·, β) ∈ Π: Abort
35 c← ψ(β)
36 If gz = Rhc

37 If R /∈
−→
U : Abort

38 Return 1
39 Else return 0

Fig. 7: Games G2 −G4 for the proof of Theorem 3. Changes are highlighted in blue.
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t′ is uniformly sampled. Thus,

Pr
[
GA

2 ⇒ 1
]
≤ Pr

[
GA

3 ⇒ 1
]
+ q/p+ q ·MaxSizeψ/p .

G3 → G4. In G4, we introduce an abort in line 37 if the value R in A’s output

is not in
−→
U . We have

Pr
[
GA

3 ⇒ 1
]
≤ Pr

[
GA

4 ⇒ 1
]
+ Pr

[
GA

4 aborts
]
.

We claim that Pr
[
GA

4 aborts
]
≤ MaxSizeψ/p. First, note that if (α, ·) ∈ Π in

line 33 then the abort in line 37 won’t be executed. This is because the BRO
and BRO−1 procedures always add preimages of α under φ to

−→
U . Thus, if the

game aborts in line 37, the value of α will be “fresh,” meaning (α, ·) /∈ Π. In
this case, β ∈ B is uniform and independent of A’s output (R, z). Thus, over
the choice of β, the probability that the if-check in line 37 evaluates to true is
at most MaxSizeψ/p because there is a unique c satisfying the equation.

The DL-Adversary. Finally, we show that there is a DL-adversary B (given in
Figure 8) such that

AdvG4

G,g,φ,ψ(A) ≤ Advdl
G,g(B) , (7)

which combined with the above completes the proof. Namely, we show that on
any run of G4 which outputs 1, B returns the discrete log of h. Note that G4

outputs 1 iff A returns a valid (R, z) pair and R ∈
−→
U . So, there exists some i

such that R = gsihti . Thus, gzh−f(R) = gsihti . Moreover, ti + f(R) is non-zero
as assured by the abort conditions in lines 15 and 23, so x := (z−si)/(ti+f(R))
is indeed the discrete log of h.

⊓⊔
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