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Abstract—ML-KEM and ML-DSA are NIST-standardized
lattice-based post-quantum cryptographic algorithms. In both
algorithms, KECCAK is the designated hash algorithm extensively
used for deriving sensitive information, making it a valuable
target for attackers. In the field of fault injection attacks, few
works targeted KECCAK, and they have not fully explored its
impact on the security of ML-KEM and ML-DSA. Consequently,
many attacks remain undiscovered. In this article, we first
identify various fault vulnerabilities of KECCAK that determine
the (partial) output by manipulating the control flow under a
practical loop-abort model. Then, we systematically analyze the
impact of a faulty KECCAK output and propose six attacks
against ML-KEM and five attacks against ML-DSA, including
key recovery, signature forgery, and verification bypass. These
attacks cover the key generation, encapsulation, decapsulation,
signing, and verification phases, making our scheme the first to
apply to all phases of ML-KEM and ML-DSA. The proposed
attacks are validated on the C implementations of the PQClean
library’s ML-KEM and ML-DSA running on embedded devices.
Experiments show that the required loop-abort faults can be re-
alized on ARM Cortex-M0+, M3, M4, and M33 microprocessors
with low-cost electromagnetic fault injection settings, achieving
a success rate of 89.5%. Once the fault injection is successful, all
proposed attacks can succeed with a probability of 100%.

Index Terms—Post-Quantum Cryptography, Fault Injection
Attack, KECCAK, ML-KEM, ML-DSA, ARM Cortex-M.

I. INTRODUCTION

THE National Institute of Standards and Technology
(NIST) Post-Quantum Cryptography (PQC) standard-

ization has selected two winners: CRYSTALS-Kyber and
CRYSTALS-Dilithium [1], [2]. In 2024, they were further
modified and standardized as ML-KEM and ML-DSA [3], [4].
ML-KEM is a lattice-based Key-Encapsulation Mechanism
(KEM) that can be used to establish a shared key over a
public channel between two parties. ML-DSA is a lattice-based
digital signature that can detect unauthorized changes to the
data and authenticate the signatory’s identity.

The security of ML-KEM and ML-DSA is based on the pre-
sumed hardness of the Module Learning-with-Errors (MLWE)
problem [5] (ML-DSA is also based on the MSIS problem).
The task of the MLWE problem is to solve a set of “noisy”
linear equations over a polynomial ring. Informally, it can be
described as: Assume A is an n×m matrix over a polynomial
ring, and s and e are vectors of lengths m and n, respectively.
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Given the equation system t = A · s + e, where A and t
are known, e is unknown, but its coefficients are known to be
small. The task of MLWE is to solve for s, which is believed to
be difficult even against adversaries with a quantum computer.

As standard cryptographic algorithms in the era of quantum
computing, ML-KEM and ML-DSA will be widely deployed
in scenarios like the Internet of Things (IoT), industrial
automation, and automotive electronics. However, although
these algorithms are currently believed to be secure, their
specific implementations may be compromised by physical
attacks, such as Fault Injection Attacks (FIA). FIA induces
faults during the execution of a cryptographic algorithm and
causes unexpected outputs that reveal sensitive information.
Especially for embedded devices often used in the above
scenarios, their frequent deployment in (semi-)public locations
makes them more physically accessible to FIA attackers.
Therefore, it is important to analyze the vulnerability of ML-
KEM and ML-DSA implementations to FIAs.

A. Related Works and Motivation

The existing FIAs on ML-KEM and ML-DSA (as well as
Kyber and Dilithium) can be roughly divided into four types.

The first type generates a weak MLWE instance that exposes
the secret key. Espitau et al. zeroize part of the noise e to
recover s [6]. Ravi et al. inject multiple faults during the
sampling of e to make it equal to s, resulting in a solvable
equation system t = A · s+ s [7].

The second type of attacks target specific critical operations.
For z = y+ c · s1 in ML-DSA, where z and c are part of the
signature, s1 is the private key, and y is the secret commitment
vector. Ravi et al. skip the addition with y [8], and Espitau
et al. set part of y to zero [6], exposing the private key s1.
Ulitzsch et al. optimized this method to make it applicable
to implementations with shuffle countermeasures [9]. Bruin-
derink et al. proposed a Differential Fault Analysis (DFA)
scheme that uses the same y to sign twice, with correct and
faulty c, respectively, to compare the two instances and solve
for s1 [10]. In addition, Xagawa et al. skip the comparative
checks to expose the secret key or bypass verification [11].

The third type includes Ineffective Fault Analysis (IFA) and
Fault Correction Attacks (FCA). Pessl et al. inject faults into
the decoding process of the decapsulation in Kyber and infer
information about the key based on whether the decryption
was successful (whether the fault is effective) [12]. Hermelink
et al. use FCA instead of IFA, inputting invalid ciphertext,
injecting bit flip faults, and observing whether the decryption
was successful (fault correction) [13]. Delvaux et al. improved
this attack and significantly increased the time window for
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fault injection [14]. Similar attacks are also proposed against
the signing phase of Dilithium [15]. Because each faulty
execution can only leak a small amount of information, such
attacks often require thousands of injections to recover the key.

The fourth type of attacks target general components or
primitives. Ravi et al. proposed a novel attack targeting the
Number Theoretic Transform (NTT) that accelerates multi-
plication on polynomial rings [16]. This attack achieves key
recovery, signature forgery, and verification bypass.

Compared to other types, the fourth type poses a broader
threat because it targets more generic components in ML-
KEM and ML-DSA, resulting in multiple attack points within
the algorithms. Table I summarizes the existing attacks. For
the key generation phase of ML-KEM and ML-DSA, the
encapsulation and decapsulation phases of ML-KEM, and the
signing and verification phases of ML-DSA, most other attacks
apply to only one or two phases, as their attack targets only
appear in these phases. In contrast, the fourth type applies
to most of them and has a larger attack surface that poses a
severe threat to more real-world instances. However, only one
such attack (the NTT attack) has been proposed [16].

In addition to NTT, KECCAK is a more widely used generic
component in all phases of ML-KEM and ML-DSA. KECCAK
is the hash function and extendable-output function specified
in ML-KEM and ML-DSA. It is extensively used for expand-
ing secret random numbers, sampling secret data, and hashing
secret information. Many KECCAK outputs derive sensitive
information, making it a valuable attack target. Despite the
attention given to KECCAK in Side-Channel Analyses (SCA)
related to ML-KEM and ML-DSA [17], [18], only a few works
have focused on it in the context of FIAs. Bruinderink et
al. injected faults into KECCAK, using it merely to disrupt
z = y+c·s1 to perform DFA, making it applicable only to the
signing phase [10]. Therefore, we categorize it as the second
type. Existing attacks have not explored KECCAK’s potential
as a generic component, remaining many attacks undiscovered.

Therefore, this article systematically analyze the impact of
a faulty KECCAK output on ML-KEM and ML-DSA and
propose multiple attacks that form a comprehensive scheme
applicable to all phases. This enables attackers to compro-
mise the security of either ML-KEM or ML-DSA regardless
of which phase is being executed on the target device. In
addition to a broader attack surface, this article also focuses
on the attacks’ practicality. First, our attacks avoid excessive
required faults (such as thousands for the third type) to reduce
costs. Second, the KECCAK attacks provide multiple optional
injection points to improve the success rate. Third, the required
faults are validated for feasibility on real devices.

B. Contributions

1) Customized KECCAK Attacks: We propose several KEC-
CAK attacks by manipulating the control flow using loop-abort
faults to set its (partial) outputs to pre-known values. Existing
attacks against KECCAK itself often recover intermediate states
through known outputs and require multiple executions with
the same input. However, in ML-KEM and ML-DSA, the
KECCAK output is usually unknown, and the input varies

TABLE I
FIAS ON ML-KEM AND ML-DSA AND THE PHASES THEY APPLY TO

Attacks Type KeyGen Encaps Decaps Sign Verify
[6] 1, 2 ✓ × × ✓ ×
[7] 1 ✓ ✓ × ✓ ×
[8] 2 × × × ✓ ×
[9] 2 × × × ✓ ×
[10] 2 × × × ✓ ×
[11] 2 × × ✓ × ✓
[12] 3 × × ✓ × ×
[13] 3 × × ✓ × ×
[14] 3 × × ✓ × ×
[15] 3 × × × ✓ ×
[16] 4 ✓ ✓ × ✓ ✓

This Work 4 ✓ ✓ ✓ ✓ ✓

between each execution, necessitating our customized attacks
aimed at output recovery. Furthermore, our attacks target the
control flow rather than the permutations, making them unaf-
fected by countermeasures such as shuffling the permutations.

2) New FIA Scheme on ML-KEM and ML-DSA: This article
proposes a new fault attack scheme targeting ML-KEM and
ML-DSA, the first to apply to all their phases. We utilize
(partially) known KECCAK outputs to solve for sensitive
information derived from or computed with it, enabling key
recovery, signature forgery, and verification bypass attacks. We
present six attacks against ML-KEM and five against ML-
DSA, forming a comprehensive scheme. These attacks require
injecting faults during only one single execution.

These attacks are quite different from the exploitation of
KECCAK SCA [17]. First, our attacks only utilize the re-
covered output, whereas existing SCA exploits the recovered
input. Second, our scheme includes multiple new attacks
targeting unanalyzed KECCAK instances. Some interesting
attacks only utilize partially recovered faulty outputs and their
unique relationship with the inputs. Third, our scheme enables
verification bypass attacks that SCA cannot achieve.

3) Practical Attacks on Real-World Devices: Firstly, we
demonstrated the practicality of loop-abort faults on five
ARM Cortex-M devices from four different series, achieving
a success rate of 89.5%. We measured the fault characteristics
of these devices under Electromagnetic Fault Injection (EMFI)
in terms of spatial location, time, and pulse intensity. We
also provide guidance on quickly determining fault injection
parameters and triggering faults. Secondly, we validated the
proposed attacks with the C implementation of ML-KEM and
ML-DSA from the PQClean library1. Once the fault injection
is successful, we can recover the key, forge signatures, or
bypass verification with a 100% probability. Our experimental
code is open source2.

C. Structure of the Paper

Section II introduces the background. Section III provides
an overview of our attack scheme. Section IV presents the
customized KECCAK attacks. Section V is the main focus,
detailing the attacks on ML-KEM and ML-DSA. Section VI

1https://github.com/PQClean/PQClean
2https://github.com/wyxsjtu/mind-the-faulty-keccak
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covers the experimental results. Section VII discusses the
countermeasures. Section VIII concludes the article.

II. BACKGOUND

A. Notation
In this article, Zq denotes the ring of integers modulo q.

Rq denotes the polynomial ring Zq[X]/(Xn +1). Tq denotes
the image of Rq under the NTT transform, the set of n tuples
over Zq . Rk

q and Rk×l
q denote the sets of length-k vectors

and shape-k × l matrices of polynomials in Rq . Polynomials,
vectors, and matrices over Rq are denoted by regular font
lowercase letters (e.g., a), bold lowercase letters (e.g., a), and
bold uppercase letters (e.g., A), respectively. Variables with
a “hat” (e.g., â and Â), whose elements are in Tq , denote
the NTT form of the corresponding polynomial vector or
matrix. aT and AT denote the transpose of vectors or matrices.
Symbol ← denotes assigning the value of the right side to the
left side variable, || denotes concatenation of two bit or byte
strings, ◦ denotes multiplication in ring Tq , · denotes other
multiplications in Z, Zq or Rq , and ⊥ means lack of output.

B. KECCAK and SHA-3
KECCAK is a family of sponge-based hash functions stan-

dardized by NIST as SHA-3. SHA-3 includes the hash func-
tions SHA3-224, SHA3-256, SHA3-384, and SHA3-512, and
the XOFs SHAKE128 and SHAKE256. SHA-3 operates on a
1600-bit state, which consists of two parts of sizes r (rate) and
c (capacity). The rate r is the size of input and output blocks,
and the capacity c determines the maximum security level.
SHA-3 consists of absorbing and squeezing. We introduce
their process based on the PQClean implementation below.

1) Absorbing Phase: As shown in Algorithm 1, the state
s is an array initialized to zero. Each input message block of
size r is XORed into the first part of the state. After each
block, the state is permuted using a 24-round KECCAK-f
permutation. This article focuses on the control flow rather
than the permutation, so KECCAK-f will not be elaborated
upon. For the remaining message with a length less than r,
copy it byte by byte into a helper array t (lines 7-9), and
then pad t according to the KECCAK padding rules. Then, t
is XORed into the state, eight bytes at a time. The absorbing
phase finally returns the updated state.

2) Squeezing Phase: As shown in Algorithm 2, data of
length r is read from the state each time until the output length
is reached. The loop in lines 2-7 processes the output blocks.
Each time, the state is first permuted using KECCAK-f , and
then the first part of it is appended to the helper array t′ in
line 5. Therefore, the length of t′ is a multiple of r. For the
final truncation process, a loop (lines 8-10) copies the required
length of t′ to the final KECCAK output o.

3) The Incremental API: ML-KEM and ML-DSA also
use the incremental APIs of SHAKE128 and SHAKE256
defined in SP 800-185 [19]. The Incremental API breaks the
complete absorb or squeeze process into multiple steps. In the
implementation, the state s includes an additional element to
record the number of bytes that have already been absorbed
or squeezed but not yet permuted. When this counter reaches
the rate, KECCAK-f is performed for permutation.

Algorithm 1 KECCAK absorbing
Input: Message m, rate r (in bytes)
Output: State s

1: s← [0, 0, . . . , 0] ▷ State (int64) initialized to zero
2: for complete message blocks (r bytes of m) do
3: State s XOR message block bitwise
4: Permute state s using the 24-round KECCAK-f
5: end for
6: t← [0, 0, . . . , 0] ▷ Helper byte array t
7: for i = 0 to (byte length of remaining message)− 1 do
8: Copy i-th byte of remaining message to t[i]
9: end for

10: Add the padding bits to t
11: for i = 0 to r/8 do
12: State s XOR t bitwise, 8 bytes at a time
13: end for
14: return s

Algorithm 2 KECCAK squeezing
Input: State s, output length olen (in bytes), rate r (in bytes)
Output: Hash result o (a byte array) of length olen

1: Define helper byte array t′

2: for output blocks (r bytes at a time) do
3: Permute state s using the 24-round KECCAK-f
4: for i = 0 to r/8 do
5: Append 8 bytes of s to byte array t′

6: end for
7: end for
8: for i = 0 to olen− 1 do
9: o[i]← t′[i] ▷ The length of t′ is a multiple of r.

10: end for
11: return o

C. ML-KEM

ML-KEM is a NIST standard KEM algorithm derived from
Kyber. The Public-Key Encryption (PKE) scheme called K-
PKE is constructed from the MLWE problem. Then, K-PKE is
converted into the ML-KEM using the Fujisaki-Okamoto (FO)
transform [20], which is believed to satisfy the IND-CCA2
security. Table II shows ML-KEM’s parameter sets, where n
and q are parameters of Rq . ML-KEM consists of three phases:
key generation, encapsulation, and decapsulation. Given their
complexity, we use a slightly simplified pseudocode, focusing
on the key operations and those involved in our attacks.

1) Functions: Expand expands seed into a k × k matrix.
SampleCBDη samples a ∈ Rq with coefficients in [−η, η].
NTT and NTT−1 convert matrices/vectors to and from the NTT
domain. ekEncode/dkEncode and ekDecode/dkDecode

TABLE II
PARAMETER SETS FOR ML-KEM

Parameter set n q k η1 η2 du dv
ML-DSA-512 256 3329 2 3 2 10 4
ML-DSA-768 256 3329 3 2 2 10 4

ML-DSA-1024 256 3329 4 2 2 11 5
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encode the keys of K-PKE into a byte string and vice versa.
K-PKE.Encrypt/Decrypt perform the K-PKE encryption
and decryption. mEncode encodes a bit string into a polyno-
mial. uEncodedu

and vEncodedv
compress and encode the

ciphertext components into byte strings using du and dv .
2) Key Generation: Generate the encapsulation key ek

and decapsulation key dk. The internal function shown in
Algorithm 3 takes two randomness, d and z, generated and
checked by the outer function as inputs. Firstly, hash d and k to
obtain seeds ρ and σ using SHA3-512. ρ is used to generate the
matrix Â (line 3), and σ is used to generate the secret vectors
s, e ∈ Rk

q (lines 4-11). For each polynomial, SHAKE256 is
first used to extend the seed σ and the integer N , and then
use SampleCBD to sample the coefficients in [−η1, η1]. Next,
compute the MLWE instance t̂ = Â ◦ ŝ+ ê (line 12). Finally,
encode and construct the key pair (ek, dk) (lines 13-15).

Algorithm 3 ML-KEM Internal Key Generation (Simplified)
Input: 32-byte randomness d, 32-byte randomness z
Output: encapsulation key ek, decapsulation key dk

1: (ρ, σ)← SHA3-512(d||k) ▷ ρ, σ are 32-byte seeds
2: N ← 0
3: Â←Expand(ρ) ▷ Sample ρ into a k × k matrix
4: for i = 0 to k − 1 do
5: s[i]←SampleCBDη1

(SHAKE256(σ||N, 128 · η1))
6: N ← N + 1
7: end for
8: for i = 0 to k − 1 do
9: e[i]← SampleCBDη1(SHAKE256(σ||N, 128 · η1))

10: N ← N + 1
11: end for
12: t̂← Â◦NTT(s)+NTT(e) ▷ MLWE instance
13: ekPKE ← ekEncode(̂t, ρ)
14: dkPKE ← dkEncode(̂s)
15: return (ek = ekPKE, dk = dkPKE||ek||SHA3-256(ek)||z)

3) Encapsulation: Generate the shared secret key K and
the ciphertext c given the encryption key ek. The internal
function shown in Algorithm 4 takes ek and randomness m as
inputs. Firstly, m and the hash of ek are used to generate K
and r using SHA3-512. K is the shared secret key, and r is
input to the K-PKE encryption algorithm with m and ekPKE
(equals ek) to generate the ciphertext c. Finally, return K and
c. For the K-PKE encryption (Algorithm 5), it first decodes
ekPKE and generates Â. In lines 4-12, vectors y, e1 ∈ Rk

q

and polynomial e2 ∈ Rq are sampled similarly to the key
generation phase, which involves hashing r and N using
SHAKE256 and further sampling using SampleCBD. Then,
compute u = AT · y + e1 and v = tT · y + e2 + µ, where µ
is the encoded m. The encoded u and v form the ciphertext.

Algorithm 4 ML-KEM Internal Encapsulation (Simplified)
Input: Encapsulation key ek, 32-byte randomness m
Output: 32-byte shared secret key K, ciphertext c

1: (K, r)← SHA3-512(m||SHA3-256(ek))
2: c← K-PKE.Encrypt(ek,m, r)
3: return (K, c)

Algorithm 5 K-PKE.Encrypt (Simplified)
Input: Encryption key ekPKE, 32-byte message m, 32-byte

randomness r
Output: Ciphertext c

1: N ← 0
2: (̂t, ρ)← ekDecode(ekPKE) ▷ Decode ekPKE
3: Â←Expand(ρ) ▷ Sample ρ into a k × k matrix
4: for i = 0 to k − 1 do
5: y[i]← SampleCBDη1

(SHAKE256(r||N, 128 · η1))
6: N ← N + 1
7: end for
8: for i = 0 to k − 1 do
9: e1[i]← SampleCBDη2(SHAKE256(r||N, 128 · η2))

10: N ← N + 1
11: end for
12: e2 ← SampleCBDη2

(SHAKE256(r||N, 128 · η2))
13: u←NTT−1(ÂT ◦NTT(y)) + e1
14: µ←mEncode(m) ▷ Encode m into a polynomial
15: v ←NTT−1(̂tT ◦NTT(y)) + e2 + µ
16: return c = (uEncodedu

(u)||vEncodedv
(v))

4) Decapsulation: This phase decapsulates the ciphertext c
to obtain the shared secret key K using the decryption key
dk. As shown in Algorithm 6, m′ is obtained by decrypting
c with dkPKE. Then, m′ and h are used to generate 32-byte
arrays K ′ and r′ using SHA3-512 (line 3). Next, generate
a pseudorandom array K̄ by hashing randomness z and
ciphertext c using SHAKE256 (line 4). The FO procedure also
involves a re-encryption step, which encrypts the recovered m′

with ekPKE and r′, obtaining c′. If c′ is not equal to c, perform
the “implicit rejection”: K ′ is replaced with the pseudorandom
K̄. This ensures security when the higher level protocols fail
to check the return value. Finally, return the shared secret K ′.

Algorithm 6 ML-KEM Internal Decapsulation (Simplified)
Input: Decapsulation key dk, ciphertext c
Output: 32-byte shared secret key K ′

1: (dkPKE, ekPKE, h, z)← dkDecode(dk) ▷ h is hash of ek
2: m′ ←K-PKE.Decrypt(dkPKE, c) ▷ Decrypt ciphertext
3: (K ′, r′)← SHA3-512(m′||h)
4: K̄ ← SHAKE256(z||c, 32) ▷ K̄ is pseudorandom
5: c′ ← K-PKE.Encrypt(ekPKE,m

′, r′) ▷ Re-encryption
6: if c′ ̸= c then
7: K ′ ← K̄ ▷ implicitly reject
8: end if
9: return K ′

D. ML-DSA

ML-DSA is a NIST standard digital signature algorithm
derived from Dilithium. The ML-DSA scheme uses the Fiat-
Shamir With Aborts construction [21]. The security of ML-
DSA is based on the MLWE problem. Table III shows ML-
DSA’s three parameter sets: ML-DSA-44, ML-DSA-65, and
ML-DSA-87, all of them use same n = 256 and q = 8380417
for Rq . ML-DSA has three phases: key generation, signing,
and verification. We also use the simplified pseudocode.
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TABLE III
PARAMETER SETS FOR ML-DSA

Parameter set (k, l) d τ λ γ1 γ2 η
ML-DSA-44 (4,4) 13 39 128 217 8380416/88 2
ML-DSA-65 (6,5) 13 49 192 219 8380416/32 4
ML-DSA-87 (8,7) 13 60 256 219 8380416/32 2

1) Functions: Expand function expands a 32-byte seed
into a k × l polynomial matrix. Sample, ExpandMask,
and SampleInBall are sampling fuctions based on
SHAKE256, generating polynomials or vectors with coef-
ficients in [−η, η], [−γ1 + 1, γ1], and {−1, 0, 1}, respec-
tively. They process XOF’s output to generate sampling re-
sults. NTT and NTT−1 convert matrices/vectors to and from
the NTT domain. pkEncode/skEncode/sigEncode and
pkDecode/skDecode/sigDecode encode public/secret
keys or signatures into a byte string and vice versa. Rounding
functions: Power2Round decomposes r into (r1, r0) s.t.
r = 2d · r1 + r0 modq. HighBits extracts the high bits of
the coefficients and UseHint adjusts them using a hint h.

2) Key Generation: This phase generates the public key pk
and secret key sk. The ML-DSA’s key generation is similar to
that of ML-KEM. The internal function (Algorithm 7) takes a
randomness ξ as input. Firstly, seeds ρ, ρ′, and randomness K
are generated using SHAKE256. ρ is used to sample the matrix
Â (line 2), and ρ′ is used to sample the secret polynomial
vectors s1 ∈ Rl

q and s2 ∈ Rk
q (lines 3-8). In the Sample

function, ρ′ and r are absorbed into the SHAKE256 state, and
the polynomials are generated using the squeeze output. Next,
compute the MLWE instance t = A ·s1+s2 in line 9. Finally,
decompose t into higher/lower bits and construct (pk, sk).

Algorithm 7 ML-DSA Internal Key Generation (Simplified)
Input: 32-byte randomness ξ
Output: public key pk, secret key sk

1: (ρ, ρ′,K)← SHAKE256(ξ||k||l,128) ▷ ρ, ρ′,K are 32,
64, 32 bytes long, respectively

2: Â←Expand(ρ) ▷ Sample ρ into a k × l matrix
3: for r = 0 to l − 1 do
4: s1[r]← Sample(ρ′||r) ▷ Based on SHAKE256
5: end for
6: for r = 0 to k − 1 do
7: s2[r]← Sample(ρ′||r + l) ▷ Based on SHAKE256
8: end for
9: t←NTT−1(Â◦NTT(s1)) + s2 ▷ MLWE instance

10: (t1, t0)←Power2Round(t) ▷ Split high/low-order bits
11: pk ←pkEncode(ρ, t1)
12: tr ←SHAKE256(pk, 64)
13: sk ← skEncode(ρ,K, tr, s1, s2, t0)
14: return (pk, sk)

3) Signing: Sign a signature σ for a message using the
secret key sk. The internal signing (Algorithm 8) takes sk,
formatted message M ′, and rnd as inputs. the hedged variant
of ML-DSA (default) uses a random rnd, while the determin-
istic variant uses a fixed value. First, decode sk and compute
Â and the message representative µ (lines 1-4). The private

random seed ρ′′ is the SHAKE256 hash value of K, rnd, µ
(line 5). The following is the abort loop of the Fiat-Shamir
construction (lines 7-16). For each iteration, a random y is
generated using the SHAKE256-based ExpandMask (line 8).
Then, c̃ is generated by hashing µ and encoded w1 (computed
in line 9) using SHAKE256 (line 10). c is sampled by the
SHAKE256-based SampleInBall function using c̃ (line
11). Next, compute z = y+c ·s1. Then, do the validity checks
and generate a hint h. If checks fail, update the counter κ and
re-execute the abort loop. Finally, σ consists of c̃, z, and h.

Algorithm 8 ML-DSA Internal Signing (Simplified)
Input: Secret key sk, formatted message M ′, per message

randomness or dummy variabel rnd
Output: Signature σ

1: (ρ,K, tr, s1, s2, t0)← skDecode(sk)
2: ŝ1, ŝ2, t̂0 ← NTT(s1),NTT(s2),NTT(t0),
3: Â←Expand(ρ) ▷ Sample ρ into a k × l matrix
4: µ←SHAKE256(tr||M ′, 64) ▷ Message representative
5: ρ′′ ← SHAKE256(K||rnd||µ, 64) ▷ Random seed
6: κ← 0 (z,h)←⊥ ▷ Init for the abort loop
7: while (z,h) =⊥ do
8: y ∈ Rl

q ←ExpandMask(ρ′′, κ) ▷ SHAKE256-based
9: w1 ←HighBits(NTT−1(Â◦NTT(y)))

10: c̃←SHAKE256(µ||w1Encode(w1), λ/4)
11: c←SampleInBall(c̃) ▷ Involving SHAKE256
12: ĉ←NTT(c)
13: z← y+NTT−1(ĉ ◦ ŝ1)
14: Generate hint h and do validity checks, set (z,h) =⊥

if checks fail
15: κ← κ+ l
16: end while
17: return σ = sigEncode(c̃, z,h)

4) Verification: As shown in Algorithm 9, this phase checks
whether a signature σ is valid for a message M ′. Firstly,
decode pk and signature σ, then recover Â, tr and µ (lines
1-6). Then, use c̃ to sample c through the SampleInBall
function based on SHAKE256 (line 7). After that, compute
w′

1 using the signature and public key (lines 8-9). In line 10,
hash µ and the encoded w′

1 using SHAKE256 to obtain the
recovered c̃′. Finally, return whether c̃′ = c̃ and z is valid.

Algorithm 9 ML-DSA Internal Verification (Simplified)
Input: Public key pk, formatted message M ′, signature σ
Output: Boolean verification result

1: (ρ, t1)← pkDecode(pk)
2: (c̃, z,h) ← sigDecode(σ)
3: Return False if h is ⊥
4: Â←Expand(ρ) ▷ Sample ρ into a k × l matrix
5: tr ←SHAKE256(pk, 64)
6: µ←SHAKE256(tr||M ′, 64)
7: c←SampleInBall(c̃) ▷ Involving SHAKE256
8: w′

Approx ←NTT−1(Â◦NTT(z)−NTT(c)◦NTT(t1 · 2d))
9: w′

1 ←UseHint(h,w′
Approx) ▷ Recover w1

10: c̃′ ←SHAKE256(µ||w1Encode(w′
1), λ/4)

11: return Whether c̃′ = c̃ and z is valid
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III. ATTACK SCHEME OVERVIEW

Overall, the proposed attack scheme manipulates the control
flow of KECCAK in ML-KEM or ML-DSA through loop-abort
faults, making its output known to the attacker. This allows
the attacker to subsequently perform key recovery attacks, sig-
nature forgery attacks, and verification bypass attacks through
further analysis, covering all phases of ML-KEM and ML-
DSA. The attack scheme consists of the following three layers:

1) Layer 0 (the attacker model): Inducing loop-abort faults
on a real device. Assume that the attacker has physical access
to the device. The algorithm running on the device can be any
phase of either ML-KEM or ML-DSA. Assume the attacker
can invoke the algorithm (the outer function) and inject a
loop-abort fault during execution. Loop-abort means entirely
skipping or prematurely ending a loop. Our experiments in
VI demonstrate that this type of fault can be induced with a
significant probability through EMFI.

2) Layer 1: Manipulating the control flow of KECCAK to
recover its output. The KECCAK implementations involve a
number of loops that copy data between arrays or update the
state. Applying loop-abort faults to them enables zeroizing
crucial arrays or leaving the state un-updated. For the zeroized
arrays, the attacker can compute the corresponding KECCAK
output derived from them, which are fixed values known in
advance. For the state not updated by KECCAK-f , the one-
way property is undermined, resulting in a partially recovered
faulty output with a unique relationship with the inputs.

3) Layer 2: Attacking ML-KEM and ML-DSA. The KEC-
CAK output is extensively used to derive or sample sensitive
information in ML-KEM and ML-DSA, such as the secret
random seeds, the polynomials of secret keys, and the shared
secret key. Therefore, the Layer 1 KECCAK attacks enable
multiple interesting new attacks against ML-KEM and ML-
DSA and provide new approaches for some existing attacks.

IV. LAYER 1: FAULT VULNERABILITIES OF KECCAK

This section presents the vulnerabilities of KECCAK under
the loop-abort model based on the PQClean software imple-
mentation and proposes the attacks shown in Figure 1.

1) Zeroizing Crucial Arrays: We discover that for the the
absorbing phase (Algorithm 1) of KECCAK instances with
short inputs, skipping critical assignments would zeroize the
state or other crucial arrays, resulting in deterministic outputs.
We suppose the input length is less than the rate r, a common
situation in ML-KEM and ML-DSA. For example, the input of
the KECCAK instance that expand the random seed is typically
32 bytes. This means the loop in lines 2-5 will not be executed.
One may also abort this loop to satisfy this situation. We
propose the following two attacks:

Attack 1: Abort the loop in lines 7-9 in Algorithm 1, setting
array t to zero. The state s is then determined since only the
padded t is XORed to it. Therefore, the KECCAK output is set
to a fixed value known in advance.

Attack 2: Abort the loop in lines 11-13 in Algorithm 1,
making t fail to be XORed to s. Therefore, the state s remains
the initial value (zero), resulting in a pre-known output.

Fig. 1. Attack points of proposed attacks on KECCAK.

2) Skipping the Permutations: We discover that skipping
permutations during the squeezing phase (Algorithm 2) results
in a partially recovered faulty output related to the inputs. We
suppose the input and output length are less than the rate r,
meaning that only one squeezing loop (lines 2-7) and one
KECCAK-f permutation is involved. All fixed-length output
KECCAK members and some SHAKE256 instances in ML-
KEM and ML-DSA have outputs shorter than r.

Attack 3: Skip the 24-round KECCAK-f permutation in line
3 of Algorithm 2, making the final state equal to the padded
input, with the remaining bits set to zero. This results in inter-
esting characteristics. First, part of the KECCAK output can be
recovered: the zero bits, padding bits, and bits corresponding
to the known input parts. Second, the unrecovered bits are
constrained to be equal to the input.

3) Other “Unstable” Attacks: These attacks skip the up-
date of an uninitialized array, keeping it at a random value.
Therefore, these attacks are less recommended and considered
as alternatives. However, in some implementations (e.g., those
using data structures with initialization) or under specific com-
pilation settings, these arrays may be set to zero, resulting in a
fixed, pre-known output. In the squeezing phase (Algorithm 2),
these attacks include aborting the outer squeezing loop in lines
2-7 (Attack 4), aborting the loop appending output blocks to
helper array t′ in lines 7-9 (Attack 5), and aborting the loop
copying data to the output buffer in lines 11-13 (Attack 6).

4) Attacking the Incremental API: For the Incremental
API, a single attack can only affect one call. The attacker
needs to target all absorbing or squeezing calls. However, in
practical scenarios, there are more clever handling methods.
For example, if there are two absorbing calls, and one of
them has a known input, the attacker can attack only the
unknown one. Alternatively, if there is only one absorbing
call but multiple squeeze calls (common in sampling), apply
the attacks on the absorbing phase.

5) Difference from Existing Attacks: The existing fault at-
tacks on KECCAK are mainly Differential Fault Attacks (DFA)
and Algebraic Fault Attacks (AFA), which aim to recover the
state by modifying the data through bitflips or byte faults
[22]–[25]. These attacks need to know the output and require
dozens of faulty executions with the same input. However, in
ML-KEM and ML-DSA, the randomness leads to different
KECCAK inputs in each execution, and the complete output
is usually not exposed to the attacker. Therefore, existing
attacks are not suitable for these scenarios. In contrast, the
proposed attacks are customized for ML-KEM and ML-DSA,
which aim to recover the KECCAK by manipulating the control
flow through loop-abort faults. Our attacks only need a single
execution and do not require knowledge of the output.
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V. LAYER 2: ATTACKS ON ML-KEM AND ML-DSA
This section is the core of our attack scheme. Based on the

Layer 1 attacks, we systematically analyze the C implemen-
tation of ML-KEM and ML-DSA in the PQClean library and
propose several interesting new attacks covering all phases.

A. Key Recoveries and Signature Forgeries on Key Generation
The key generation of ML-KEM and ML-DSA are similar,

so they share similar fault vulnerabilities.
1) ML-KEM Attack 1 & ML-DSA Attack 1: Perform the

KECCAK attacks on the SHA3-512 or SHAKE256 instance
that expands the initial randomness into several random seeds,
including the secret seed: σ in ML-KEM and ρ′ in ML-DSA
(see line 1 in Algorithm 3 and Algorithm 7). This instance has
not been analyzed in terms of both FIA and SCA. We provide
a new method for recovering secret seeds. The secret seed is
used to sample the secret vector in the MLWE instance and is
further derived into the private key. Therefore, recovering this
KECCAK output leads to key recovery, further enabling shared
secret key recovery and signature forgery attacks. The target
KECCAK instances’ input and output lengths are both less than
the rate, satisfying assumptions for all Layer 1 attacks.

For KECCAK Attacks 1 and 2, the KECCAK output and the
secret key derived from it are set to fixed, pre-known values.

For KECCAK Attack 3 that recovers partial output, the faulty
output equals part of the input after padding. Therefore, the
first 32 bytes are the initial randomness d or ξ. For ML-KEM,
the 33rd byte is parameter k, the 34th byte is a fixed 0x06
(related to SHA3-512), and the remaining bytes are 0. For
ML-DSA, the 33rd and 34th bytes are parameters k and l, the
35th is a fixed 0x1F (related to SHAKE256), and the rest are
0. Therefore, the KECCAK output has only the first 32 bytes
unknown, which are precisely the public seed, while the secret
seed starting from the 33rd byte is known. For example, for
ML-KEM 512, the secret seed is fixed at 0x020600...0.

2) ML-KEM Attack 2 & ML-DSA Attack 2: These attacks
target the SHAKE256-based sampling of the secret vectors s
and s1 (see lines 4-7 in Algorithm 3 and lines 3-5 in Algorithm
7). Unlike the SCA targeting these instances to recover the
input secret seeds [17], we set the output sampling results to
known values. These KECCAK instances use the incremental
API. Since only one absorbing call with short input is involved,
we target the absorbing phase using KECCAK Attack 1 and
2. This results in the polynomial sampled being set to a fixed
and pre-known value. To recover the complete secret vector
s or s1, k = 2 faults for ML-KEM-512 and l = 4 faults
for ML-DSA-44 are needed. For ML-KEM, the NTT form of
s is the decapsulation key, which can decrypt the ciphertext
and recover the shared secret key. For ML-DSA, s1 alone is
sufficient for signature forgery [10].

3) A New Approach of Existing e Attacks: The work of
Espitau et al. [6] zeroizes part of e of the MLWE instance
t = A · s + e, resulting in a weak MLWE instance t =
A·s+[e1 | 0] that exposes the secret vector s. By attacking the
KECCAK instances that sample the polynomials of e (line 9 in
Algorithm 3 and line 7 in Algorithm 7), we set the coefficients
to known values instead of zero. The secret key can be solved
using lattice reduction techniques.

Fig. 2. The process of ML-KEM Attack 3 based on KECCAK Attack 3.

B. Shared Key Recoveries on the Encapsulation of ML-KEM

1) ML-KEM Attack 3: This attack targets the SHA3-512
instance that generates the shared secret key K and random-
ness r in line 1 of Algorithm 4. For KECCAK Attacks 1 and
2, K and r are set to fixed and pre-known values that can be
directly obtained by the attacker. Unlike the SCA that analyzes
this instance to recover the sensitive input message m [17],
our fault attack directly recovers its output.

More importantly, as shown in Figure 2, we propose a novel
attack process that utilizes partially recovered faulty outputs
and their unique relationship with the inputs to recover the
shared key. The first step is to perform KECCAK Attack 3,
making the output of the SHA3-512 instance equal to the
padded input. Therefore, the 32-byte shared key K equals the
randomness m, the first 32 bytes of the input. The random
seed r equals the following 32 bytes of the input, which is the
hash of the encapsulation key ek (a known value). The second
step is to recover m from the ciphertext using the known seed
r. In the K-PKE encryption (Algorithm 5), the random seed r
is used to sample y (lines 4-7) and e2 (line 12), so their values
are also known. Then, we can recover µ, the encoded m, by:

µ = v − tT · y − e2 (1)

where v is part of the ciphertext, and t can be obtained from
the public encryption key. Next, decode µ to obtain m. Finally,
we recover the faulty shared secret key K that equals m.

2) ML-KEM Attack 4: Attack the SHAKE256-based sam-
pling of vector y in line 5 of Algorithm 5. Similar to ML-KEM
Attack 2, we set the polynomials of y to fixed and pre-known
values. The y of ML-KEM has 2 polynomials, requiring 2
faults. With the recovered y, we have:

µ′ = v − tT · y = µ+ e2 (2)

m can be then recovered by decoding µ′. Though a error of e2
is introduced, it is smaller than the error of a valid decryption,
so the recovered m is correct [26]. Finally, The shared secret
key K can be recovered by hashing m and the hash of ek.

3) Attack Scenarios: Assume that Alice and Bob wish to
use ML-KEM to establish a shared key K for symmetric
encryption of their subsequent communications. Alice first
generates the key pair (ek, sk), and sends the encryption key
ek to Bob. Bob executes the encapsulation phase. At the
same time, an attacker injects faults during the execution and
performs ML-KEM Attack 3 or 4, recovering the faulty shared
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secret key K∗. Bob then sends the faulty ciphertext to Alice.
The decapsulation of Alice fails since a re-encryption step
is involved, and the faulty ciphertext cannot pass the check
(line 6 of Algorithm 6). However, whether the decapsulation
succeeds or not, once Bob encrypts some secret message M
with K∗ using symmetric encryption (e.g., AES), the attacker
can decrypt the ciphertext and obtain M .

Another scenario is the fault-assisted Man-In-The-Middle
(MITM) framework proposed by Ravi et al. [16]. This scenario
additionally requires the attacker can impersonate as Alice and
Bob. The attacker first recovers the seed m and the faulty
shared secret key K∗ by faulting Bob’s encapsulation, and
then reconstructs a valid ciphertext and the shared key K
using m. Next, the attacker sends the ciphertext to Alice, who
decapsulates and obtains K. Finally, the attacker can decrypt
all the communications using K for Alice and K∗ for Bob.

C. Shared Key Recoveries on the Decapsulation of ML-KEM

We not only propose a method to recover the shared key
K ′ but also introduce an interesting ML-KEM Attack 6, which
exploits vulnerabilities of the implicit rejection mechanism.

1) ML-KEM Attack 5: Attack the SHA3-512 instance that
generates the shared secret key K ′ and randomness r′ in line 1
of Algorithm 6. We consider KECCAK Attacks 1 and 2, which
set K ′ and r′ to fixed and pre-known values. However, the
faulty r′ leads to decapsulation failure since the re-encryption
gets a c′ differnt from the original c. Therefore, we make use
of the attack proposed by Xagawa et al. [11] that skips the
equality check in line 6, making the recovered K ′ the final
shared secret key.

2) ML-KEM Attack 6: ML-KEM employs “implicit rejec-
tion” to enhance its security, meaning that a secret random
value K̄ is returned when decapsulation fails. However, this
makes the decapsulation party unable to determine whether the
shared key is valid or replaced by K̄, which could allow them
to encrypt secret messages with K̄. This is usually secure
since K̄ is secret. However, considering fault attacks, we
propose a novel attack, which performs KECCAK Attacks 1
or 2 on the SHAKE256 instance used to generate K̄ (line 4
of Algorithm 6), setting it to a fixed and pre-known value.
To handle the long input of this instance, we can inject faults
only during the incremental absorb process of the first part
z and recover the internal state of KECCAK since c can be
obtained. Additionally, it needs to make the decapsulation fail
and return K̄, which can be easily achieved by attacking any
KECCAK instance before the equality check in line 6.

3) Attack Scenario: Once the the shared secret key (or the
return of the implicit rejection) is used as a symmetric key
to encrypt a secret message M , the attacker can obtain the
ciphertext from the public channel and recover M .

D. Signature Forgeries on the Signing of ML-DSA

The core of the signing phase is computing z = y+ c · s1,
where z and c are parts of the signature, y is a random vector,
and s1 is the secret vector. Therefore, y and c are valuable
targets for fault attacks. Faulty y or c may lead to the explosure
of s1, thereby enabling signature forgery.

The existing y attacks abort the sampling of its polynomials
or skip the addition that adds y to c · s1 [6], [16], [27].
Their attack points are in the the abort loop of the Fiat-
Shamir construction (lines 7-16 of Algorithm 8). This requires
their faults to be induced in the last iteration; otherwise,
y is regenerated, rendering the attack ineffective. Therefore,
attackers must fault multiple executions (≈ 3 for [16]) or rely
on side-channel traces to assist in locating the last iteration.
To address this issue, we provide the following attack.

1) ML-DSA Attack 3: This attack targets the secret random
seed ρ′′ that derives y instead of y itself. Perform KECCAK
Attacks 1 or 2 on the SHAKE256 instance used to generate
ρ′′ (line 5 of Algorithm 8), setting it to a fixed and pre-known
value. The generation of ρ′′ is out of the abort loop (lines 7-
16), so this attack only needs faulting one execution. With the
known ρ′′, the attacker can guess the counter κ, calculate the
corresponding y offline, and then compute s1 = c−1 · (z−y).
We conducted 100 random tests; on average, the attacker can
obtain the correct s1 with 4.16 guesses.

2) Implementation Methods for DFA: Our KECCAK at-
tacks also provide more implementation options for the DFA
against the deterministic ML-DSA [10]. One can apply any
Layer 1 attack to the SHAKE256 instance in line 10 or the
SHAKE256-based sampling in line 11 to produce a faulty c∗

and the corresponding z∗. Finally, recover the secret vector by
computing s1 = (c∗ − c)−1 · (z∗ − z).

E. Verification Bypasses on the Verification of ML-DSA
Because the FIA can actively generate faulty intermediate

values, it enables verification bypass attacks that passive SCA
cannot achieve. Verification bypass attacks aim to force the
acceptance of an invalid signature for any message. Bindel et
al. [28] proposed an verification bypass attack against GLP
and BLISS by zeroizing the challenge c. The attack of Ravi et
al. [16] faults the NTT of c to zero in Dilithium. We propose
the following new verification bypass attacks.

1) ML-DSA Attack 4: Instead of zeroizing the c or NTT(c),
we zeroize the internal state of KECCAK using KECCAK At-
tacks 1 or 2, therby producing a fixed and pre-known value for
the challenge c. The target is the SHAKE256 instance within
the SampleInBall function (line 7 of Algorithm 9). With
the pre-known c, the attacker can compute the corresponding
c̃′ in line 10. Therefore, for a malicious signature (c̃, z,h), the
attacker sets c̃ to the pre-known c̃′, and z,h are any values
with valid norms. It can then pass the equality check and norm
check in line 11 when the fault is successfully induced.

The key to the attack is to tamper with the value of c̃′, so
the attack target is not limited to c. The generation process
of c̃′ itself is also an interesting target, yet no existing attacks
have targeted it. We propose the following attack.

2) ML-DSA Attack 5: Attack the SHAKE256 instance that
generates c̃′ (line 10 of Algorithm 9), setting it to a fixed
and pre-known value. This makes a malicious signature with
c̃ equal to the pre-known c̃′ bypass the verification. However,
a challenge of this attack is that the input length of the target
SHAKE256 exceeds the rate, which requires skipping the
loop that absorbs complete message blocks through faults in
addition to KECCAK attacks 1 or 2.
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(a) (b) (c)

(d) (e)
Fig. 3. Space and pulse intensity fault characterization for (a) STM32L073RZT6U, (b) STM32F103RCT6, (c) STM32F405RGT6, (d) STM32F407ZGT6,
and (e) LPC55S69JBD100. The left part of each subfigure represents the MCUs’ spatial fault characteristics. The red cells indicates that a loop-abort fault
can be induced at this location, with darker colors representing higher success rates. For cells with a “×”, there are only crashes or resets. The right part is
the pulse intensity map for the maximum fault rate. The numbers in the cells (measured in V) represent each position’s optimal pulse intensity.

VI. EXPERIMENTAL VALIDATION

ARM Cortex-M is one of the most common embedded pro-
cessor architectures. This section first demonstrates that loop-
abort faults can be induced through EMFI on devices from
various ARM Cortex-M series, indicating that our scheme
is a powerful attack against embedded ML-KEM and ML-
DSA instances. For practicality, we provide detailed fault
characterization, fault explanation, and inject point localization
guidance. Finally, we present experimental validation of the
attack scheme. Our experiment code is open source.

A. Experimental Setup
1) Target Implementation: Our experiments target the C

implementation of ML-KEM and ML-DSA in the PQClean
library (the “clean” implementation).

2) Devices Under Test (DUTs): We select five ARM
Cortex-M MCUs from four different series, covering devices
from low performance to high performance, single-core to
multi-core: the Cortex-M0+ STM32L073RZT6U, the Cortex-
M3 STM32F103RCT6, the Cortex-M4 STM32F405RGT6, the
Cortex-M4 STM32F407ZGT6, and the Cortex-M33 dual core
NXP LPC55S69JBD100.

3) Experimental Environment: We use EMFI to implement
our attacks. The environment consists of a controller PC, the
DUT, a NewAE ChipWhisperer, a NewAE ChipSHOUTER,
and an oscilloscope. The controller PC communicates with
the DUT using a UART connection, instructing it to execute
the target code. Before executing the target operation, the
DUT activates a trigger signal. The ChipWhisperer precisely
controls the time offset from the trigger signal, and the
ChipSHOUTER generates the EM pulse for fault injection.
The ChipSHOUTER is mounted on an XYZ table for fine-
grained spatial adjustments. We also use an oscilloscope to
assist in fault locating. The PC collects the final output.

B. Fault Characterization
This section presents the fault characterization of the five

DUTs in the spatial (different positions), time (different off-
sets), and pulse intensity dimensions. We adopt a simple
iterative array assignment from the PQClean KECCAK im-
plementation as the target. A trigger signal is activated right
before the target loop. We use a single pulse with a width of
100 ns for fault injection, and the EM probe is closely attached
to the MCU package.

1) Spatial and Pulse Intensity Fault Characterizations: We
divide the MCU package into 0.5mm square grid cells. We
first determine a time offset that can trigger a fault with a
considerable probability. For each grid cell, we inject faults
at this time point and adjust the intensity of the EM pulse
to achieve the highest success rate of loop-abort faults. The
pulse intensity of the ChipSHOUTER can be adjusted by
setting the voltage of the coil, ranging from 150V to 500V.
We first conduct 100 injection attempts at each intensity with
an interval of 10 V to find the optimal intensity and then
perform 1000 experiments at the optimal intensity. Figure
3 shows the results on the five DUTs. The left part of
each subfigure displays the fault rate at each position under
the optimal pulse intensity. Red cells mean that loop-abort
faults are observed, with darker colors representing higher
success rates. The optimal positions and their corresponding
success rates are marked in the figure, achieving 89.5% on
the STM32F103RCT6. Cells with “×” mean that only crash
or reset faults were observed at that position, while no color
represents no faults. The right part shows the optimal pulse
intensity for each cell that can induce loop-abort faults.

We summarize the following characteristics: First, the areas
that can induce loop-abort faults are generally concentrated
and relatively large, which means attackers do not need precise
spatial positioning. Second, the central part of the area does
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(a) (b) (c) (d) (e)
Fig. 4. The number of faults in 1000 injections at different pulse intensities in the optimal position, where the red parts represent loop-abort faults and blue
represents crashes or resets. (a) STM32L073RZT6U, (b) STM32F103RCT6, (c) STM32F405RGT6, (d) STM32F407ZGT6, and (e) LPC55S69JBD100.

(a) (b) (c) (d) (e)
Fig. 5. The number of faults in 1000 injections at different time offsets. (a) STM32L073RZT6U, (b) STM32F103RCT6, (c) STM32F405RGT6, (d)
STM32F407ZGT6, and (e) LPC55S69JBD100.

not necessarily have the highest success rate, as it may be
easier to crash or reset. Third, the central part of the area
requires a smaller pulse intensity than the edges, which may
suggest that the affected circuits are located there.

We also explore the impact of pulse intensity on the success
rate of loop-abort faults. We conducted 1,000 experiments for
each intensity with a 5 V interval at the optimal position,
and the results are shown in Figure 4. The red portion of
the bars represents loop-abort faults, while the blue represents
crashes or resets. We observe that greater intensity can lead
to more faults, but it also makes crashes or resets more likely.
The success rate of loop-abort faults exhibits an unimodal
distribution concerning the pulse intensity. Thus, it is necessary
to find a moderate intensity. For the STM32F405 DUT, the
pulse intensity corresponding to the peak may exceed 500 V.

2) Time Fault Characterization: We set the core frequency
of the DUTs to 16 MHz, select appropriate spatial positions
and pulse intensities, and explore the fault rate under different
time offsets. We use the Chipwhisperer’s 200 MHz clock to
achieve a precise time delay with 5 ns accuracy. We perform
1000 fault injection attempts for each offset, and the results
are shown in Figure 5. The faults are highly time-sensitive
and can only be induced within a 25-45 ns time window. It is
in the same order of magnitude as the 62.5 ns duration of a
single instruction at a 16 MHz clock frequency.

3) A Guide for Inducing Loop-Abort Faults: To enhance
the practicality of our attacks in real-world scenarios, we
provide a heuristic guide based on fault characterization for
quickly identifying fault parameters and inducing loop-abort
faults on ARM Cortex-M devices. Step 1: Scan spatially to
determine the boundaries of areas susceptible to EM pulses
since these areas are often concentrated and continuous. In this
step, we use the maximum pulse intensity and an approximate
offset (500-2500 ns). Step 2: Precisely locate the time offset.
Use moderate pulse intensity within the area and try different
offsets to induce a loop-abort fault. The intervals should be less

Fig. 6. The mechanism by which instruction skipping causes loop-aborts.

than the time for a single instruction. Step 3: Adjust the pulse
intensity to optimize the fault rate. Since the fault rate exhibits
an unimodal distribution concerning pulse intensity, the peak
can be quickly identified using a ternary search method.

C. Fault Explanation

We determined that the loop-abort faults induced are caused
by instruction skipping, which also explains why the time
window is close to the execution time of a single instruction.

Figure 6 illustrates the mechanism of loop-abort faults using
the assembly code of a loop that assigns values from one array
to another. The register r0 acts as the loop counter, initialized
as zero by the MOVS instruction. Then, a CMP instruction
compares the loop counter with the upper bound (0x40 in
the example). The BCC instruction jumps to the loop body
if the counter is less than the upper bound. Otherwise, the
loop terminates. The fault skips the MOVS instruction, and r0
remains the previous value, which may exceed the limit (e.g.,
an address), causing the loop to terminate without executing.

We validated this mechanism through experiments. We used
UART to output the value of the loop counter and found that it
was a faulty large value when the fault occurred. Additionally,
we confirmed that the faults induced are indeed loop-abort
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Fig. 7. The side-channel trace of the target SHA3-512 instance for ML-KEM
Attack 1 on the STM32F407ZGT6 DUT.

faults. We set and reset a GPIO signal before and after the
loop and observed that when the fault occurred, the target array
remained at its initial value, and the duration of the GPIO high
signal was much shorter than normal.

D. Fault Triggering

Our fault injection experiments are conducted under the
condition of inserting triggers before the loop, which can be
achieved using the PIFER framework proposed by Qu et al
[29]. It allows for modifying the binary and inserting triggers
at desired locations on ARM Cortex-M decives.

Additionally, we can leverage side-channel traces to assist in
locating the target KECCAK instance and fault injection points.
We used a near-field EM probe to measure the side-channel
traces of the target SHA3-512 instance for ML-KEM Attack
1 on the STM32F407ZGT6 DUT. As shown in Figure 7, the
distinctive features of KECCAK can be observed. We labeled
the corresponding operations for each part of the trace and the
target positions for the KECCAK attacks.

E. Validation of the Attack Scheme

Above, we have proved the practicality of loop-abort faults
on ARM Cortex-M devices (Layer 0). Next, we validate
our Layer 1 attacks targeting KECCAK and our Layer 2
attacks targeting ML-KEM and ML-DSA. Our experiments
are conducted on the STM32F407ZGT6 DUT using EMFI. We
fixed the EM probe’s spatial location at the optimal position
determined in the characterization (see Figure 3d). Since
the fault rate is more sensitive to time and pulse intensity,
and we found slight differences in the optimal parameters
corresponding to different loops and contexts, we fine-tuned
these two parameters to achieve a higher success rate.

1) Validation of the KECCAK Attacks: We targeted the
SHA3-512 implementation from the PQClean library and
validated the Layer 1 KECCAK attacks. We used a 64-byte
input for the function, same as the case of ML-KEM Attack
1 and ML-DSA Attack 1. We performed 1000 fault injection
attempts for each parameter setting. The maximum fault rates
and the corresponding parameter sets are shown in Table
IV. Our six attacks successfully obtained the expected faulty

TABLE IV
FAULT RATES AND OPTIMAL PARAMETERS OF THE KECCAK ATTACKS

KECCAK Attack Fault Rate Offset(ns) Intensity(V)
KECCAK Attack 1 56.7% 665 260
KECCAK Attack 2 20.9% 665 260
KECCAK Attack 3 12.4% 660 290
KECCAK Attack 4 49.8% 680 250
KECCAK Attack 5 36.3% 685 260
KECCAK Attack 6 65.1% 680 260

TABLE V
FAULT RATES AND OPTIMAL PARAMETERS OF THE ML-KEM AND

ML-DSA ATTACKS

Algorithm Name of Fault Offset Intens-
and Phase Attack Rate (ns) ity(V)

ML-KEM.KeyGen ML-KEM Attack 1 22.9% 665 260
ML-KEM.Encaps ML-KEM Attack 3 46.0% 660 270
ML-KEM.Decaps ML-KEM Attack 6 11.6% 660 270
ML-DSA.KeyGen ML-DSA Attack 1 18.5% 665 270

ML-DSA.Sign ML-DSA Attack 3 29.9% 660 260
ML-DSA.Verify ML-DSA Attack 4 25.1% 665 280

outputs, with success rates ranging from 12.4% to 65.1%. The
optimal time offset and pulse intensity are not significantly
different, proving that our loop-abort faults are highly repro-
ducible.

2) Validation of the ML-KEM and ML-DSA Attacks: In
our attack scheme, successfully attacking KECCAK and con-
trolling its output is approximately equivalent to successfully
performing our Layer 2 attacks. The attacker only needs to
target different KECCAK instances in ML-KEM and ML-DSA.
For the completeness of the practical attacks, we provide
experimental validation of the Layer 2 attacks below.

We targeted the ML-KEM-512 and ML-DSA-44 implemen-
tations of the PQClean library on the STM32F407ZGT6 DUT.

First, we selected an attack for each phase and conducted
practical fault injection experiments to demonstrate that our
scheme applies to all phases of ML-KEM and ML-DSA.
We used KECCAK Attack 2 as the Layer 1 attack for these
experiments. We also performed 1000 fault injection attempts
for each parameter setting to determine the optimal offset and
pulse intensity. As shown in Table V 3, our attacks success-
fully obtained the expected faulty outputs, with success rates
ranging from 11.6% to 46.0%. Once the fault is successfully
injected, we can achieve key recovery or signature forgery
with a 100% probability.

We also validated the multi-point fault attacks ML-KEM
Attack 2 (2 faults) and ML-DSA Attack 2 (4 faults). As shown
in Table VI, the success rates are 6.2% and 0.9%, respectively.
We found that consecutive faults are more likely to cause
crashes or resets, resulting in a lower success rate. Table VI
also shows the average interval between consecutive faults,
a few milliseconds sufficient for ChipSHOUTER to charge.
Despite the feasibility of these attacks, we recommend single-
point attacks with a higher success rate for fault injection.

3For ML-KEM Attack 6, we assume that we can successfully enter the
implicit rejection branch, as any fault during the re-encryption can easily
achieve this. We focus only on the KECCAK that generates the rejection value.
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TABLE VI
FAULT RATES FOR MULTI-POINT FAULT ATTACKS

Name of Attack No. Faults Fault Rate Interval (µs)
ML-KEM Attack 2 2 6.2% 2563.75
ML-DSA Attack 2 4 0.9% 10142.69

TABLE VII
OVERHEAD OF COUNTERMEASURES

Name of Code Size Stack Size Execution Time
Countermeasure (Bytes) (Bytes) (Cycles)
None (baseline) 15528 1392 30187

Redundancy 15608, +0.52% 1520, +9.20% 61135, +103%
Loop Counter 16104, +3.71% 1456, +4.60% 30259, +0.24%

Blacklist 16916, +8.94% 1824, +31.0% 30375, +0.62%
Time Checking 15576, +0.31% 1392, +0.00% 30209, +0.07%
Loop Unrolling 54712, +252% 1376, -1.15% 29493, -2.30%

For other attacks, including combinations of all Layer 2
strategies and Layer 1 attacks mentioned in section V, we
conducted simulation experiments demonstrating that once a
fault occurs, the attack is successful.

VII. COUNTERMEAURES

A. Discussion of Existing Countermeasures

Because KECCAK is an interesting target for side-channel
attacks, researchers have used shuffling and masking as coun-
termeasures [17], [30]. However, the shuffling and masking
in the literature mainly focus on the KECCAK-f permutation
process [31], [32], while our attack targets the higher-level
control flow, which cannot be effectively mitigated.

The “Verify after sign” countermeasure checks for invalid
signatures but is ineffective against y attacks (e.g., ML-DSA
Attack 3) [10], [17]. The (dynamic) loop counter that checks
the number of loop executions is an effective countermeasure
against loop-abort faults [6], [17]. It needs to be applied to
all vulnerable loops. Redundancy is a general countermeasure
and is also used to protect ML-KEM and ML-DSA [9], [12].
It performs multiple calculations and compares their results,
increasing the number of faults needed multiple times.

B. Targeted Countermeasures and Evaluation

Blacklist: Because some KECCAK attacks set the output to
a fixed pre-known value, these values can be blacklisted and
checked against the output. Time Checking: When a loop-
abort fault occurs, the execution time of KECCAK will be
shorter, so its execution time can be checked for fixed-length
input/output instances of KECCAK. Loop Unrolling: Replace
loops with code repetition to avoid the proposed attacks.

We implemented SHA3-512 instances enhanced by the
effective countermeasures on the STM32F407 DUT using
GCC 7.3.0 compiler with -O0 optimization. As shown in Table
VII, we evaluated the time (cycles of execution) and space
(code size and stack size) overhead. The redundancy counter-
measure doubles the execution time, so it is not recommended
for practical use. Though loop unrolling makes loop-abort
impossible, it significantly increases the code size. The other
three countermeasures do not introduce significant overhead.

VIII. CONCLUSION AND FUTURE WORK

This article demonstrates that manipulating control flow to
recover KECCAK outputs enables various novel key recovery,
signature forgery, and verification bypass attacks on practical
ML-KEM and ML-DSA implementations. The loop-abort fault
required for the attacks can be triggered on multiple series
of ARM Cortex-M devices, with a success rate of up to
89.5%. Once the fault is successfully injected, the attacks can
be carried out with a 100% success probability. For future
works, we plan to explore the potential of KECCAK attacks to
compromise the security of other post-quantum cryptographic
algorithms, such as BIKE [33] and HQC [34].
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