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Abstract. Datasets of side-channel leakage measurements are widely used in
research to develop and benchmark side-channel attack and evaluation methodologies.
Compared to using custom and/or one-off datasets, widely-used and publicly available
datasets improve research reproducibility and comparability. Further, performing
high-quality measurements requires specific equipment and skills, while also taking
a significant amount of time. Therefore, using publicly available datasets lowers
the barriers to entry into side-channel research. This paper introduces the SMAesH
dataset. SMAesH is an optimized masked hardware implementation of the AES with a
provably secure arbitrary-order masking scheme. The SMAesH dataset contains power
traces of the first-order protected version of SMAesH acquired on two FPGAs from
different generations, along with key, plaintext and masking randomness. A part of
the dataset use uniformly random key and plaintext to enable leakage profiling, while
another part uses a fixed key (still with uniformly random plaintext) to enable attack
validation or leakage assessment in a fixed-versus-random setting. We document the
experimental setup used to acquire the dataset and also discuss particular methods
employed to maximize the information content in the leakage traces, such as power
supply selection, fine-grained trace alignment and resolution optimization. We perfom
an in-depth leakage analysis for the two targets. Finally, we briefly discuss the known
attacks against the dataset.
Keywords: Side-channel · Power leakage · Dataset · Masking · FPGA

1 Introduction
Physical side-channel attacks have been a threat to the security of embedded devices
since their introduction [KJJ99]. Protecting a device against such attacks, as well as
evaluating its security, is a challenging task, which led to the continuous improvement
of countermeasures and attacks. In order to evaluate and compare attacks, the side-
channel research community has been using public datasets of side-channel traces. Besides
avoiding duplication of the measurement work, the usage of such datasets presents multiple
advantages. First, this improves replicability of results, and therefore eases subsequent
improvements of attacks. Further, the widespread use of public datasets in works designing
new attacks makes their result much easier to compare. This also lowers the barrier to
entry for the design of state-of-the-art attacks, sidestepping the need for equipment and
skills to perform the measurements.

Many side-channel datasets have been introduced over the years, often in the context
of side-channel attacks contests or challenges. Among these datasets, most of them
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correspond to fairly simple leakage structures such as non-protected implementations (such
as AES_HD [BJP20]), or present very strong leakage due to being software implementations
(e.g., DPA contest v41, ASCAD v1 [BPS+20] and v2 [MS21]). However, none of the widely
used datasets covers a protected hardware implementations, with the only ones covering
this design corner being (to the best of our knowledge) the AES_HD_MM [Fei14] dataset
and the Spook CTF [BBC+21] (CHES 2020 challenge) datasets. These datasets are not
very widely used, and it has been hypothesized that this is due to AES_HD_MM not
containing random key traces (preventing profiled attacks) [PPM+23] and being broken
within a low number of traces [WHJ+21], while the Spook dataset contains traces of an
uncommon cipher (Clyde-128) [BBC+20, BBB+20].

Contributions We propose a new power leakage dataset of a masked hardware imple-
mentation of the AES: the SMAesH dataset. This dataset aims at being useful to the
research community by being a realistic benchmark for attacks, while being not excessively
difficult to attack. While the latter goal may seem surprising, we believe that very hard
datasets have a limited interest to the research community: attacking such dataset re-
quires many traces and large computational resources, which increases attack development
iteration time and raises the barrier of entrance. In particular, care has been taken to
ensure that, beyond the intrinsic security brought by masking, the dataset is as easy as
possible to attack. Indeed, attacks requiring fewer traces are faster to run and require less
computational resources (all other parameters being equal), and are therefore easier to
work on.

These design goals are translated into the following dataset characteristics. First, the
target is SMAesH, an open-source masked hardware implementation of the AES which is
thoroughly documented. The implementation is reasonably simple to understand, but not
artificially simple or unoptimized. Second, the security is concentrated on the masking
countermeasure: we ensured that the masking has no big flaw, but did not add any other
countermeasure such as added noise or clock jitter. Third, we optimized the acquisition
setup parameters to maximize the amount of leakage, including power supply, clock signal,
measurement device. Fourth, the acquisition setup uses devices that are easy to procure
and are fully documented, with the aim of enabling its reproduction.

The SMAesH dataset contains measurements for two devices: a Xilinx Artix-7 FPGA
(XC7A100T) on a Chipwhisperer CW305 board (next denoted A7), and a Xilinx Spartan-6
(C6SLX75) on a Sakura-G board (next denoted S6), a more leaky (thus easier to attack)
target than A7. The dataset contains a total of 6 × 224 traces of respectively 4450 samples
for A7 and 4400 samples for S6, covering the execution of the first round of the AES.

The challenge associated to CHES 2023 was a side-channel analysis contest based on
the SMAesH dataset. The attacks against the A7 target were performed in a worst-case
setting (i.e., the design was fully public, including masking randomness for the profiling
and validation data), and improved down to 2.9 × 105 traces. On the other hand, for the
S6 target, the attack setting was more restricted (only the source code was public and not
the bitstream, while the masking randomness was not public), which led to the best attack
requiring 9.0 × 105 traces.

Organization We first introduce the SMAesH implementation used as the target for the
collection of our dataset. We then discuss the high-level dataset structure, the configuration
of the target chips, and the acquisition setup. We then perform an analysis of the structure
of the leakage and of its information content. Finally, we report and discuss the attacks
submitted during the CHES 2023 challenge.

1https://dpacontest.telecom-paris.fr/home/
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2 SMAesH
SMAesH2 is an open-source masked hardware implementation of the AES. In version 1.0.0
(the one used for this dataset), the core supports the encryption for the 128-bit key variant
of the AES algorithm. The implementation is based on the Hardware Private Circuits
(HPC2) masking scheme, which provides state-of-the-art guarantees in terms of resistance
against physical defaults (e.g., glitches) and composability. It is therefore provably secure
at arbitrary masking order and has been formally verified by the fullVerif tool [CGLS21].

As depicted in Figure 1, SMAesH relies on a pipeline 32-bit architecture. It in-
stantiates 4 masked S-boxes that are shared between the round operations (namely
AddRoundKey, SubBytes and MixColumns) and the key scheduling computations. The
module MSKaes_32bits_state_datapath is a 4 layers shift-register used to store the
masked 128-bits state across the different rounds executions. It embeds the combina-
tional logic (i.e., 32 XORs) performing the AddRoundKey layers sequentially in 4 cycles,
and forwarding the resulting masked 32-bit values through the bus sh_4bytes_to_SB.
Additionally, it implements the ShiftRows layers solely relying on routing (i.e., without
dedicated logic). Similarly, the module MSKaes_32bits_key_datapath is also a 4-stages
pipeline used to handle the key scheduling operations. In particular, it stores the masked
128-bit key and forward masked 32-bit key material to the AddRoundKey logic through the
bus sh_4bytes_to_AK. During the key scheduling operation, the key material are sent to
the S-boxes through the bus sh_4bytes_rot_to_SB. Finally, the module MixColumns is
a combinational logic block operating on a single masked column of 32 bits. It takes as
input the bytes coming from the S-boxes and forwards the results back to the state holder
(the module can be bypassed using a dedicated MUX during the computation of the last
round).

An single execution of SMAesH is performed by compute each round sequentially, with
the operands looping across the pipeline. As depicted for the first round of the execution
in Figure 2, a round starts (i.e., corresponding to the cycle where cnt_round = 0 and
cnt_fsm = 0) by sequentially computing the AddRoundKey operation, operating column
per column, and sending the results (denoted pAK) to the S-boxes. This process is done in
4 cycles, and each S-boxes execution has a latency of 6 cycles. Therefore, the resulting
values are valid at the S-boxes’ outputs spanning from the cycles 6 to 9. Eventually,
the MixColumns layers is applied to every column coming from the S-boxes before being
forwarded back to the state holder. In the same time, the key scheduling operation is
performed in parallel to the round computation. This process starts one cycle before
starting a new round (or during the very first cycle of the execution) by sending the key
material to the Sbox. The resulting values are then forwarded back to the key holder using
the dedicated port sh_4bytes_rot_from_SB. Overall, the latency of an execution equals
1 + 10 ∗ 10 + 4 = 105 cycles, where the term 1 is caused by the very first cycle required to
start the key scheduling and the 4 comes from the final key addition performed internally
to the state holder. As a final note, the randomness needed for masking is generated on
the fly by an embedded PRNG based on an instance of Trivium as supported by recent
work reported in [CMM+24].

The synthesis parameters of SMAesH are D, the number of shares and PRNG_MAX_UNROLL,
a limit on the unrolling of the Trivium PRNG (which allows adjusting the critical path
vs area trade-off), as proposed in [CMM+24]. We used D=2 and PRNG_MAX_UNROLL=128
(leading to the instantiation of two Trivium cores).

3 Dataset
Two datasets have been acquired for each target:

2https://github.com/simple-crypto/SMAesH
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Figure 1: Top level architecture of the SMAesH IP. Bold wires represent masked 128-bit
buses, and remaining wires (other than Muxes control, and randomness buses) depict
masked 32-bit buses.

Table 1: SMAesH v2 datasets

Namea Target Original Role Number of traces Trace length (ns)

SMAesH-A7_d2-vk0
Artix-7 (d = 2)

Profiling
224 4250SMAesH-A7_d2-fk0 Validation

SMAesH-A7_d2-fk1 Test
SMAesH-S6_d2-vk0

Spartan-6 (d = 2)
Profiling

224 4400SMAesH-S6_d2-fk0 Validation
SMAesH-S6_d2-fk1 Test

a The names are intended as unique dataset identifiers. Future dataset versions will
not reuse the same dataset names (except when re-packaging the exact same data).

• A training dataset that uses a fresh random key for each trace.

• A validation dataset that uses a single key for the whole dataset.

All datasets use a fresh random plaintext for each trace and make a correct use of the
SMAesH core: for each trace, the sharing of the key and of the plaintext is fresh. Moreover,
although not necessary for security, we reseed the core before each trace with a fresh
seed (the reseeding is not included in the trace), in order to ease the simulation of the
computations performed by the target. The dataset characteristics as summarized in
Table 1, The dataset is available at [CM23].

For each trace, the datasets contain the power leakage trace, as well as all the
data required to exactly replicate the measured execution, as shown in Table 2 (the
umsk_plaintext and umsk_key can be derived from msk_plaintext and msk_key respec-
tively, they are provided for convenience only).
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12 pSB15 pSB3 pSB7 pSB11

Figure 2: Timing diagram relative the S-boxes input/output behavior during the first
round of an execution of SMAesH.

Table 2: Dataset fields

Label Type Length Description

traces int16 ns Power trace.
umsk_plaintext uint8 16 Non-masked plaintext.
umsk_key uint8 16 Non-masked key.
msk_plaintext uint8 16d Plaintext shares (each 16-byte chunk is a share).
msk_key uint8 16d Key shares (each 16-byte chunk is a share).
seed uint8 10 PRNG seed.
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4 Target designs
4.1 Artix-7
The FPGA bitstream used to perform the acquisitions has been generated using the
Xilinx Vivado Toolset (v2022.1 64-bit) and the following modifications have been applied
compared to the default toolflow parameters:3

• HDL annotation:
– attribute DONT_TOUCH set for every module.
– attribute KEEP_HIERARCHY set for every module.

• Synthesis parameters:
– flatten_hierarchy set to none
– gated_clock_conversion set to off
– bufg set to 12
– directive set to Default
– no_retiming checked
– fsm_extraction set to auto
– keep_equivalent_registers checked
– ressource_sharing set to off
– no_lc checked
– no_srlextract checked

• Implementation parameters:
– opt_design related: is_enabled unchecked
– phys_opt_design related: is_enabled unchecked

The acquisition setup programs the microcontroller of the CW305 board with a tweaked
version of the newAE-provided firmware. The changes increase the flexibility in data sent
to the FPGA (such as seeds, shared values, etc.) and add the ability to perform quick
interleaved acquisition of multiple datasets. In more details, the microcontroller can run a
full “batch” of traces without interaction with the control computer. At each trace, the
microcontroller selects randomly a dataset to which the trace belongs (in our case, -fk0
or -vk0), generates the required inputs and sends them to the FPGA. All the operations
are performed in constant time, such that the FPGA traces are as similar to each other
as possible. The randomized interleaving ensures that there is no systematic bias in the
datasets, which allows using them for a fixed-vs-random TVLA. All the randomness of the
microcontroller is drawn from a PRNG seeded by the control computer, which allows it to
reconstitute the data sent to the FPGA.

4.2 Spartan-6
The FPGA bitstream used to perform the acquisitions has been generated using the Xilinx
ISE Toolset (v14.7 lin64) and the following modification have been applied to the default
toolflow parameter:

• HDL annotation:
– attribute DONT_TOUCH set for every module.
– attribute KEEP_HIERARCHY set for every module.

• Synthesis parameters:
3The Vivado project used to generate the bitstream is available at ANONYMIZED .
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– Optimization Effort set to Fast
– Keep Hierarchy set to Yes

• Map Properties:
– Placer Effort Level set to Standard
– Generate Detailed MAP report set to checked
– Use RLOC Constraints set to No
– Enable Multi-Threading set to 2

• Place & Route Properties:
– Place & Route Effort Level (Overall) set to Standard
– Enable Multi-Threading set to 4

The controller FPGA of the Sakura-G board has been designed in order to handle the
same interleaving feature as the one implemented on the CW305 controller used for the
Artix7 target.

5 Experimental setup
5.1 Artix-7
The power traces have been acquired by measuring the signal at the X4 point (directly
connected to the oscilloscope with a SMA cable), which corresponds to the voltage drop
across the 100 mΩ shunt resistor R27 amplified with a low-noise amplifier. The target
FPGA is powered through the dedicated banana connectors (with the SW1 accordingly set)
by an external low noise power supply Keysight E36102B set to a 1 V DC voltage. This
setup reduces the noise level compared to the on-board power supply derived from the 5 V
USB supply by a switching voltage converter.

The leakage is measured by a PicoScope 6242E digital oscilloscope. The target FPGA
and oscilloscope clocks are synchronized in order to reduce the level of noise induced by
clock jitter. This is achieved by configuring the CDCE906 PLL of the CW305 board to
generate two clocks signals based (derived from the 12 MHz crystal of the CW305). The
first is the FPGA clock, running at 1.5625 MHz generated by the PLL1 and fed to the port
N13 on the FPGA. The second is a 10 MHz signal generated by the PLL0 and fed routed to
the X6 SMA connector. It is then forwarded to the PicoScope 10 MHz clock reference input
port. A single measurement channel (channel A) is used to perform the measurement and
the trigger signal is fed from the onboard test point TP1 to the oscilloscope AUX trigger
port with a PicoScope probe (Picotech TA386, 1:1 ratio, 200MHz of bandwidth). The
power traces are sampled at 5 GS/s using a vertical resolution of 10 bits.

The clock configuration aims at minimizing the jitter between the target FPGA clock
and the oscilloscope sampling clock. In particular, the configured frequencies result in
exactly 3200 samples per target clock cycle, and the relative phase of the clocks are fixed
by the PLLs. While this setup has been observed to give a low clock jitter and therefore
an excellent alignment of consecutive traces, the relative phase of the clocks may drift
over time, resulting in slight misaligments of the traces when measured over a long time
span. This drift has been mitigated by increasing the sampling frequency to 5 GS/s, which
is beyond the useful signal bandwidth, but limits the possible clock drift to 200 ps. The
signal is then down-sampled with a moving average filter, with a decimation factor of 16,
leading to a final sampling frequency of 312.5 MS/s, an a vertical resolution of 14 bits.

The target clock frequency has been selected as the largest sub-multiple of the oscillo-
scope sample rate for which the leakage caused by both edges of the clock can be clearly
identified in the leakage trace, as recommended by [BUS21]. Then, the oscilloscope sample
rate is selected based on the perceived information [BHM+19, MCHS23] on the shares: in
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order to minimize the dataset size, we selected the lowest sample rate that does not result
in significantly degraded information content.

The acquisition has been performed in a room without accurate temperature control,
but with relatively stable temperature (air conditioning) and no direct sunlight. The total
duration for the acquisition of the Artix-7 datasets is 21 hours each (224 traces/s). In
order to minimize the dataset size, the samples selected in the final dataset cover only
the leakage of the first round of the AES (this has been determined by means of SNR
computation on all the variables of the first round: all the SNR peaks are kept in the
trace).

5.2 Spartan-6
The acquisition setup for the Spartan-6 target is similar to the one for the Artix-7 target.
We discuss the few differences below.

The datasets contain power traces that have been acquired by measuring the voltage
drop across a 2 Ω shunt resistor placed at on JP2. This voltage drop is amplified by the
on-board amplifier, and measured at the J3 point through a SMA cable. The whole
Sakura-G board is powered by an external low noise power supply Keysight E36102B set
to a 5 V DC voltage.

Regarding the oscilloscope configuration, the external trigger signal is connected to a
GPIO header of the board. Further, the clock synchronization is achieved by generating
the clock signal with the signal generator of the oscilloscope (1.5625 MHz square wave, 2V
peak-to-peak amplitude, 1V offset) and feeding it directly to the SMA connector J6P on
the board (i.e., clock-capable SMA for controller FPGA). This signal is directly used as a
clock by the target (clock buffers are used in the design, but no PLL is used). Finally, the
oscilloscope performs acquisition at 1.25 GS/s (resulting in 800 samples per target clock
cycle) using a vertical resolution of 12 bits, and the post-processing uses a decimation
factor of 4 to reduce this to 312.5 MS/s with 14-bit vertical resolution.

The clock generation method used for the Spartan-6 eliminates the drift observed on
the Artix-7 acquisitions, which can be explained by the absence of any PLL between the
oscilloscope acquisition clock and the target clock. Therefore, a very high sample rate was
not needed, and a lower sample rate was used (along with a higher vertical resolution) in
the interest of a faster acquisition. After downsampling, both targets’ datasets have the
same sample rate and resolution.

6 Worst-case security analysis
In this section, we peform a worst-case analysis (i.e., assuming complete knowledge of the
design) for both datasets. We begin with qualitative analysis of the collected traces, by
computing the Signal-to-Noise ratio for different variables of interest inside the first round
of the AES and complement our analysis with more quantitavie analysis by estimation
the Mutual Information for these variables, which leads us to approximate the attack
complexity of state-of-the art attack strategy.

6.1 Qualitative leakage analysis
Additive noise assumption and Signal-to-Noise Ratio A side-channel leakage trace
L = [t0, t1, ..., tns ] is a vector containing the ns power/EM measurements acquired with
the measurement aparatus during a single execution (denoted next the time samplesa),
representing the instantanous current consumption of the device. Under the classical
additive noise assumption, every time sample can be modelled as

ti(X) = δ(X) + N
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Figure 3: SNR for the bytes of the first and last column processed by SMAesH, after the
AddRoundKey, SubBytes and MixColumn layers for the A7_d2 dataset.

where δ is a deterministic function used to model the impact of the target variables X
on the global consumptions and N is the random noise. The latter typically models the
impact on the overal device consumption of the components not modelled by X as well
as the intrinsic physical noise. Next, we denote a set of q traces as L = [L0, L1, . . . , Lq]
where Lj∈[0,q−1] = [tj

0, tj
1, . . . , tj

ns
] is the j-th trace.

Under this additive assumption, the Signal-to-Noise Ratio (SNR) is a common tool
used to identify Point-of-Interest (POI) in side-channel traces [Man04]. Informally, it
consists in evaluating the ratio between the variation of the current consumpion relative
to the target variable and the random noise. It is computed as

SNRi = Varx (E [ti(X = x)])
Ex [Var (ti(X = x))]

where Var denotes the variance, E the mean and ti(X = x) is the vector containing the
i-th time sample of every possible traces under the assumption that X = x. In practice, it
is usually approximated taking the sample mean and variance considering a set of traces
of fixed size.

As a first step, we performed a SNR analysis for both the A7_d2 and S6_d2 as a
preliminary step in order to identify the most leaking points of the traces (our points of
interest – POIs). More particularly, we computed the SNR associated to both shares of every
state’s byte after the main steps performed in the first round, namely the bytes resulting
from the initial key addition denoted pAK, at the output of the Sboxes layer denoted pSB
and at the output of the MixColumn operation denoted pMC (as explained in the IP’s
documentation, the ShiftRows is implemented at the routing level without dedicated logic
and is therefore not of particular interest). Next, the SNR computation were made relying
on 224 traces of the variable-key dataset associated to both target (namely, SMAesH-
A7_d2-vk0 and SMAesH-S6_d2-vk0), using SCAlib’s SNR implementation [CB23].

In the remaining of the paper, we refer to the state’s byte manipulated by using
indexes ranging from 0 to 15. In order to simplify the results interpretation, the byte
indexing follows the ordering of the initial state and keys across the different steps of the
round, without considering the indexes change involved by the ShiftRows layer (e.g., when
referring to i-th byte of pSB, we refer to the byte resulting from the SubBytes operation
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Figure 4: SNR for the bytes of the first and last column processed by SMAesH, after the
AddRoundKey, SubBytes and MixColumn layers for the S6_d2 dataset.

of the i-th byte of pAK).
Starting with the Artix-7 target, the SNR results associated to the first and last columns

processed during an execution of SMAesH (i.e., byte indexes in [0,5,10,15] for the first and
[12,1,6,11] for the last) are depicted in Figure 3. As a first observation, we notice that all
the operation performed are leaking with somehow similar SNR withing localized area in
the traces. The initial key addition starts at time index 547, which we seems to correspond
to the second cycle of the execution (since it is the second cycle consuming a significant
amount current). Similarly, the key addition related to the last column happens at the
1047 time index, i.e., three cycles after the first one, which is coherent with the behavior
described in the IP’s documentation. Interestingly, SNR related to these operation are still
observable for the 7 cycles following their computation. We believe that these behavior are
caused by the bytes resulting from the key addition that are forwarded back to the data
pipeline at the same cycle they are entering in the Sbox (and are then manipulated for
following cycles until the completion of the MixColumn operation). The results of Sboxes
output for the first (resp. last) column appear at time index 1748 (resp. 2300) , or 6 cycles
after the key addition, which is once again coherent with the IP’s documentation. The
computation of the (combinational) MixColumns operation is synchronized with the Sboxes
results, and signal remain observable during several following cycle due to the fact that
some of them remain active in the data pipeline during the key addition of the following
round. Interestingly, the same discussions holds for the Spartan-6 target, as shown in
Figure 4. The main notable difference is that the SNR peaks are less pronounced and
appears more like decreasing plateau lasting a full clock cycle (probably due to capacitive
effects).

As a second step, we focused on the execution of the Sboxes, that are organized as
a 6 layers pipeline and therefore are targets of particular interest with multiple leaking
points. More particularly, each masked Sbox instance is a masked implementation of the
Boyard Peralta representation that internally manipulates 128 (shared) bit-wide variables
from which signal can be obtained. In particular, the Figure 5 and Figure 6 depict the
maximum SNR value obtained (taking into account both shares of all the variables but
excluding input and output) associating to the processing of the four columns of the state.
We observe the similar similar behavior for both target, with peaks starting at the same
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Figure 5: SNR for the bytes after the AddRoundKey, SubBytes and MixColumn layers for
the A7_d2 dataset.

location than the key addition. Interestingly, we observe that despite that Sboxes consist
in 6 layers pipeline, SNR are observable over 8 cycles. Without clear explanation relative
to the architecture, we note the in depth research of this signal’s source as an interesting
line for further works.

6.2 Quantitative leakage analysis

In this section, we perform an in depth analysis of the exploitable information that can
be extracted from the datasets. We perform a “worst-case evaluation” of the SMAesH
IP by trying to quantify the best attack complexity (i.e., the number of traces required
to successfully perform a key recovery), assuming complete knowledge of the design and
unrestricted leakage profiling capability (i.e., knowledge of all inputs during profiling,
including the seed of the mask’s PRNG). For the purpose of this section, the A7_d2-vk and
S6_d2-vk datasets were each randomly partitioned into a profiling set containing 224 − 221

traces and a validation set made of the remaining 221 traces.

Linear Subspace Template Attack The template attack [CRR02] is a powerful
profiled attack strategy when the values of the targeted intermediate variable is known at
profiling time. It works by modeling the leakage as a multivariate Gaussian distribution
whose mean depends on the intermediate variable (in pooled template attacks, the variance
is assumed to be independent of the intermediate variable). When the number of points
of interest is large, the method can be made more robust by using linear discriminant
analysis (LDA), which linearly projects the leakage into a space of lower dimension p before
fitting the templates [SA08]. This reduces greatly the dimensions of the means vectors and
covariance matrix to estimate, reducing the number of profiling traces required for reliable
estimation. The projection matrix itself is computed from the profiling data, in such a way
that the SNR along the projected dimensions is maximized (and the projected dimensions
must be orthogonal to each other). The likelihood of the leakage L (after selection of the
m POIs in the trace with the highest SNR) conditioned on the intermediate variable X is
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Figure 6: SNR for the bytes after the AddRoundKey, SubBytes and MixColumn layers for
the A7_d2 dataset.

thus estimated as

f̂ (L = l|X = x) = 1√
(2π)p det(Σ̂x)

exp
(

−1
2(Wl − µ̂x)T Σ̂−1

x (Wl − µ̂x)
)

where W is the p × m projection matrix, Σ̂x is the p × p estimated covariance matrix and
µ̂x is the p-dimensional mean vector. The estimated distribution for the intermediate
variable P̂r[X = x|L = l] (hereafter the “model”) can then be computed using Bayes law.

Information Theory Security Metrics The Mutual Information (MI) quantifies
the amount of information related to a target variable that can be extracted from a
single trace, and has been shown to be theoretically linked to the trace complexity of a
side-channel attack [dCGRP19]. However, computing it requires knowledge of the exact
leakage distribution, therefore surrogate metrics are used. In particular, the Perceived
Information (PI) [RSV+11] is a lower-bound for the MI [BHM+19] that can be efficiently
computed. Given a model built using the profiling set Lp and an independent validation
set Lv, the PI can be estimated as follows:

P̂I (L; X) = H (X) + 1
|Lv|

∑
(x,l)∈Lv

log2(P̂r[X = x|L = l])

where H is the Shannon entropy. Informally, the PI represent the amount of information
that a specific model can recover about the target variable. We also use the Training
Information (TI) [MCHS23] which is an upper bound to the PI and is computed similarly
to the PI, but using the training set in place of the validation set. Evaluating the gap
between the PI and the TI as a function of the amount of profiling traces is a way to
identify if the profiling phase of a model has converged, or if a higher PI could be exploited
by increasing the size of Lp.

Information leakage analysis We consider multiple choices for the parameters of the
LDA. We take m = 64, 128, . . . , 2048, which goes from a very small subset of the trace to
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Figure 7: Parameter selection for the first share of pAK bytes on A7_d2 (the plot
order follows AES input state byte order, e.g., first column is bytes 0 to 3). The lower
(respectively upper) triangles represent the PI (resp. TI), with the red square indicating
the best model (highest PI).
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Figure 8: PI (vivid) and TI (pastel) for the best model for the shares of each pAK byte
on A7_d2.
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follows AES input state byte order, e.g., first column is bytes 0 to 3). The lower (respectively
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(highest PI).
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Figure 10: PI (vivid) and TI (pastel) for the best model for the shares of each pAK byte
on S6_d2.
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Figure 12: Parameter selection for transition leakage on the first share of pAK bytes on
A7_d2 (the plot order follows AES input state byte order, e.g., first column is bytes 0
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square indicating the best model (highest PI).
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Figure 13: Distribution of the PI for the shares of the intermediate single-bit variables in
the S-boxes, for each byte. The distributions are represented as letter-value plots [HKW11],
where the largest horizontal line representing the median and then each rectangle above
(and below) representing ranges of exponentially-decaying probability (25 %,12.5 %,. . . ).
For each variable, the LDA parameters maximizing the PI are chosen.



16 Power leakage of a masked AES hardware implementation

almost half of the trace. Increasing the upper limit above 2048 would be computationally
very intensive and would likely not bring significant improvements given the number of
leaking points observed in Subsection 6.1. For the number of dimensions, we use p = 1, 2, 4, 8
since higher values do not seem very useful, as shown in previous works [BCS21, CDSU23].

The PI and TI for these parameters is shown in Section 6.2 for the first share of pAK on
A7_d2 and for S6_d2 in Figure 6.2. The results for both shares is represented in Figure 6.2
and Figure 6.2 for A7_d2 and S6_d2 respectively, using the best model parameters (i.e.,
the one with the highest PI). On these plots, we also represent the confidence intervals on
the value of the PI and the TI to validate that the validation/training (sub)set is large
enough (PI and TI are essentially means over a trace set).

The most noticeable characteristics of these plots is the higher leakage of the bytes
[1, 6, 11, 12], which correspond to the last column to be fed through the S-box in the round.
After this last column, the input of the S-box has both shares set to 0, which means that
the corresponding transition leakage only depends on the shares of the last column, leading
to a higher amount of leakage than for the other columns where the transition occurs
between two column (the first column is preceded by the round key update). We also
observe that the leakage for the S6_d2 dataset is higher and is best exploited using a
high number of POIs. This observation correlates with our observation about the SNR in
Subsection 6.1: the many POIs with high SNR lead to more information leakage, even
though the SNR peaks are not larger than A7_d2 (e.g., they may enable better noise
averaging). Further, on A7_d2, we can see that the first column fed to the S-box (bytes
[0, 5, 10, 15]) are also leaking more than the others, which may be due to higher leakage
signal coming from the multiplexer switching between the key storage and the state storage,
or to the lower noise level at the beginning of the execution (less activity in the circuit).
We see a similar effect on the transition leakage on the S-box input (i.e., considering the
XOR between the previous and current value of a byte as the target variable) in Figure 6.2
(which overall has higher leakage than the plain value model). Finally, still for A7_d2, we
see effects of the synthesis and routing: two out of the four hardware S-box instances are
less leaky than the others: the ones processing the bytes in the first two rows of Section 6.2.

Lastly, we look at single-bit variables inside the S-box in Figure 6.2. Given the large
number of intermediate values in the Boyar-Peralta S-box [BP12], we depict the distribution
of the variable’s PIs. We see that quite a few variables leak significantly, indicating that
these leakages may also be an attack vector. Similarly to pAK, we see that the bytes
[1, 6, 11, 12] leak more than the other columns.

6.3 Worst-case security bounds
In this section, we exploit the PI computed in Subsection 6.2 to derive bounds and estimates
on the attack trace complexity of various attack paths. For this purpose, we use the
2-shares version of the bound of Béguinot et al. [BCG+23, Corollary 1]: if (X0, X1) is a
Boolean sharing of X, then

MI(X; L) ≤ Hb

(
H−1

b (MI(X0; L)) ⋆ H−1
b (MI(X1; L))

)
where Hb(x) = −x log2(x) − (1 − x) log2(1 − x) is the binary entropy function with
H−1

b : [0, 1] → [0, 1
2 ] its inverse restricted to [0, 1

2 ], and ⋆ is the binary convolution:
x⋆y = (1−x)y+x(1−y). This allows us to bound the the leakage on bit and byte sharings,
which we then use to bound the number of traces needed for key recovery [dCGRP19,
Theorem 2]:

q ≥ 2n − (1 − Ps) log2(2n − 1) − Hb(Ps)
MI(X; L)

where q is the number of attack traces, n is the number of bits of the secret and Ps is
the success rate. Where multiple variable are used together, we further use the bound
MI((X, Y ), L) ≤ MI(X, L) + MI(Y, L).
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Table 3: Bound on PI and estimation of required number of attack traces for 50 % recovery
success rate for each of the A7_d2 key bytes, using the leakage on the S-box shared
input/output byte, or on all S-box shared bits.

pAK pSB SB bits

Byte PI Traces PI Traces PI Traces

0 4.37 × 10−5 68 670 2.11 × 10−5 142 649 3.53 × 10−5 85 122
1 3.36 × 10−4 8929 1.53 × 10−5 195 879 5.48 × 10−5 54 835
2 5.11 × 10−5 58 771 9.46 × 10−7 3 173 567 2.25 × 10−5 133 377
3 9.37 × 10−5 32 039 5.01 × 10−6 599 707 7.62 × 10−5 39 385
4 1.40 × 10−5 214 597 1.76 × 10−5 170 357 3.39 × 10−5 88 613
5 5.84 × 10−5 51 417 3.05 × 10−5 98 339 5.63 × 10−5 53 316
6 8.64 × 10−4 3474 3.48 × 10−7 8 630 911 1.82 × 10−4 16 481
7 9.18 × 10−5 32 709 4.27 × 10−6 703 587 6.65 × 10−5 45 164
8 1.18 × 10−5 253 525 2.15 × 10−5 139 800 3.09 × 10−5 97 252
9 7.48 × 10−6 401 631 2.64 × 10−5 113 732 5.48 × 10−5 54 749

10 1.11 × 10−4 27 116 9.01 × 10−7 3 334 332 2.73 × 10−5 109 884
11 6.58 × 10−4 4561 1.26 × 10−6 2 382 317 2.69 × 10−4 11 178
12 2.77 × 10−4 10 841 8.57 × 10−6 350 223 4.40 × 10−5 68 197
13 6.70 × 10−6 448 209 2.63 × 10−5 114 034 5.03 × 10−5 59 710
14 5.41 × 10−5 55 535 9.13 × 10−7 3 289 226 2.33 × 10−5 128 897
15 1.77 × 10−4 16 981 4.73 × 10−6 634 729 8.42 × 10−5 35 646

Table 4: Bound on PI and estimation of required number of attack traces for 50 % recovery
success rate for each of the S6_d2 key bytes, using the leakage on the S-box shared
input/output byte, or on all S-box shared bits.

pAK pSB SB bits

Byte PI Traces PI Traces PI Traces

0 8.55 × 10−4 3510 1.13 × 10−6 2 663 127 1.63 × 10−4 18 369
1 4.20 × 10−3 714 5.26 × 10−7 5 703 917 3.25 × 10−4 9246
2 3.14 × 10−4 9577 1.97 × 10−7 15 239 700 9.42 × 10−5 31 884
3 7.25 × 10−4 4144 1.44 × 10−6 2 085 394 1.83 × 10−4 16 390
4 7.47 × 10−4 4022 1.17 × 10−6 2 567 874 1.59 × 10−4 18 908
5 3.91 × 10−4 7688 3.28 × 10−7 9 143 616 3.99 × 10−5 75 267
6 2.30 × 10−3 1308 1.58 × 10−7 18 974 045 1.80 × 10−4 16 688
7 7.77 × 10−4 3865 1.21 × 10−6 2 479 407 1.81 × 10−4 16 608
8 8.48 × 10−4 3540 1.22 × 10−6 2 459 585 1.48 × 10−4 20 302
9 3.80 × 10−4 7912 4.70 × 10−7 6 383 554 4.35 × 10−5 69 046

10 5.37 × 10−4 5595 1.37 × 10−7 21 961 257 9.74 × 10−5 30 824
11 5.71 × 10−3 526 7.07 × 10−7 4 248 406 4.03 × 10−4 7456
12 7.54 × 10−3 398 1.12 × 10−6 2 670 956 4.03 × 10−4 7451
13 4.80 × 10−4 6255 3.94 × 10−7 7 615 405 4.98 × 10−5 60 321
14 3.56 × 10−4 8429 1.03 × 10−7 29 109 285 9.74 × 10−5 30 843
15 1.18 × 10−3 2539 1.47 × 10−6 2 044 868 1.89 × 10−4 15 889
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Table 5: Bound on PI and estimation of required number of attack traces for 50 % recovery
success rate for each of the A7_d2 rows (after the first round ShiftRows), using the leakage
on the shared MixColumns output bytes (pMC).

Key Bytes PI Traces

(0, 5, 10, 15) 9.29 × 10−4 16 143
(4, 9, 14, 3) 7.15 × 10−4 20 981
(8, 13, 2, 7) 1.65 × 10−4 90 827
(12, 1, 6, 11) 2.99 × 10−5 502 305

Table 6: Bound on PI and estimation of required number of attack traces for 50 % recovery
success rate for each of the S6_d2 rows (after the first round ShiftRows), using the leakage
on the shared MixColumns output bytes (pMC).

Key Bytes PI Traces

(0, 5, 10, 15) 6.83 × 10−4 21 976
(4, 9, 14, 3) 2.36 × 10−4 63 615
(8, 13, 2, 7) 4.72 × 10−4 31 796
(12, 1, 6, 11) 5.56 × 10−4 26 979

Our first series attack paths are based on the S-box value leakages, shown in Subsec-
tion 6.3 and Table 6.3. We can see that the two most interesting paths are the S-box
input and the S-box internal bits, while the S-box output does not leak much. This can
be explained by the architecture: the output S-box is not stored in any register and is
instead directly routed to MixColumns. Quantitatively, it seems that it should be possible
to recover most bytes of A7_d2 using about 105 traces, while the much higher leakage for
S6_d2 gives a bound closer to 5000 traces.

Another attack path is to exploit the outputs of MixColumns (which depend on 32 bits
of the key, therefore enumeration is still practical) as shown in Table 6.3 and Table 6.3.
This attack path is very promising for A7_d2, interesting reduction in number of required
traces, except for the last column (which is the easiest to recover using pAK leakage).

Finally, let us remark that we discussed only the attack paths that are the most obvious
and probably easiest to exploit. Other paths exists, such as exploiting the transition
leakage (which is a bit harder for exploitation, due to dependency on larger key chunks),
or the key schedule which can be more leaky than the state (e.g., up to 6 × 10−3 bit per
byte for A7_d2) at the cost of not being in a differential attack setting (i.e., the leakage
does not depend on the plaintext).

7 Attacks
During the CHES 2023 challenge, two main attacks have been introduced against the
SMAesH dataset. In this section, we present a brief overview of these attacks and compare
them to the bounds of the previous section.

Bit-level templates This first attack [Cri23] targets the intermediate variables ti,j ∈ F2
in the computation of the Boyar-Peralta S-box. Each such variable can be written as
ti,j = fj(ki ⊕ pi), where i ∈ {0, . . . , 15} identifies the S-box, and j ∈ {1, . . . , 258} identifies
the intermediate bit. In SMAesH, all these bits are masked: ti,j = t0

i,j ⊕ t1
i,j such that only

the shares t0
i,j and t1

i,j are computed in the circuit. At a high level, the attack is similar to
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the one described in [BCS21].
First, in the profiling stage, for each variable, the points of interest (POIs)4 are selected

as the points with the highest SNR for that variable. A linear disctiminant analysis (LDA)
model is then built from these POIs: if l is a leakage trace and li,j,k is its restriction
to the POIs for tk

i,j , then the LDA model is trained to approximate the probabilities
P k

i,j(0) = P̂r[tk
i,j = 0 | li,j,k] and P k

i,j(1) = P̂r[tk
i,j = 1 | li,j,k].

Second, at the attack stage, we apply the LDA models for every trace l in the attack
dataset, giving P k

i,j . We recombine the shares by computing the estimation distribution of
ti,j , using the equation ti,j = t0

i,j ⊕t1
i,j : Pi,j(0) = P̂r[ti,j = 0] = P 0

i,j(0)P 1
i,j(0)+P 0

i,j(1)P 1
i,j(1)

and Pi,j(1) = P̂r[ti,j = 1] = 1 −Pi,j(0). Then, for every key byte i = 0, . . . , 15, we compute
the key likelihood Pi(ki) = Pi,j(fj(ki ⊕ pi)) for ki = 0, . . . , 255, where the plaintext pi is
known (Pi(ki) should be normalized to 1 to be a proper distribution). Finally, multiplying
Pi(ki) across all traces in the attack dataset gives the finaly key byte distribution.

Given the 16 key byte distributions, we assume that the adversary can enumerate the
keys from the most likely to the least likely. Using an key rank estimation algorithm, the
number of keys to enumerate can be efficiently computed, showing that this attack succeeds
to bring the rank of the key below 268 using 290 000 traces on the A7_d2 dataset5 [CMS23].
This number is only a few time higher (≈ ×3) than the bounds of Subsection 6.3 for the
S-box bit attack path, which shows that this attack is quite efficient and that the bounds
are reasonably tight.

Byte-level transitions with deep-learning The second attack [Mar23] is based on a
multi-task deep learning model [MO24] and exploits leakage on the S-box input value, as
well as transition leakage on the S-box input.

More precisely, SMAesH [CC23] instantiates a column of four S-boxes, which sequentially
processes all necessary the key and state S-box computations for each round. For the first
round (the only one targeted by the attack), the S-box column is first used to compute the
key schedule: its input data is (k13, k14, k15, k12). Then, in the next four clock cycles, the
AES state is fed through the S-box after going through the ShiftRows permutation. Denoting
zi = ki ⊕ pi for i = 0, . . . , 15 (ki and pi are the key and plaintext bytes respectively), the
input columns to the S-box are therefore (z0, z5, z10, z15), (z4, z9, z14, z3), (z8, z13, z2, z7)
and finally (z12, z1, z6, z11). After these clock cycles, the input of the S-box column is kept
to 0 until the next round.

The attack exploits this sequence of inputs by training soft classification models (i.e.,
models that output distributions for the target value) to recover transitions on S-box
inputs: between the round key and the first state column (k13 ⊕ z0, k14 ⊕ z5, . . . ) and
between the consecutive state columns

(z0 ⊕ z4, . . . , z15 ⊕ z3) , (z4 ⊕ z8, . . . , z3 ⊕ z7) , (z8 ⊕ z12, . . . , z7 ⊕ z11) .

Finally, the value of the last column is also modelled (which is equivalent to the transition
with 0, the next input value): (z12, . . . , z11). Unlike the previous attack, these models
target the unmasked value which makes it possible to run the profiling without knowing the
randomness used for the shares: only the key and plaintext are needed.6 This restriction
however makes the training more difficult: given e.g. the transition between sharings
(z0

0 , z1
0) and (z0

4 , z1
4), a common assumption (Hamming Distance leakage [BCO04]) is that

the leakage relates to z0
0 ⊕ z0

4 and z1
0 ⊕ z1

4 . In order to recover the target transition leakage
4Between 1 and 645 POIs for each variable, with 107 POIs on average.
5For the sake of the CHES challenge, this was considered as the threshold of feasible enumeration,

based on the hash rate of the Bitcoin network.
6That was a restriction of the CHES 2023 challenge for the S6_d2 dataset, however the full SMAesH

dataset contains the masking randomness for both A7_d2 and S6_d2.
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z0 ⊕ z4, the model therefore has to infer the value of (z0
0 ⊕ z0

4) ⊕ (z1
0 ⊕ z1

4), which is similar
to breaking first-order masking, a non-trivial task in deep-learning [MCLS23].

Using these models, the attack processes the columns iteratively. First, the last column
(z12, z1, z6, z11) is attacked: from the distribution inferred by the model on these variable
for all traces in the attack dataset, and from the knowledge of the plaintext, the values
of k12, k1, k6 and k11 can be recovered. Then, the key corresponding to third column of
the state (z8, . . . , z7) is recovered in a similar manner, from knowledge of key for the last
column. For example, for the first byte of the column, the model gets a distribution for
z8 ⊕ z12. Since p8, p12 as well as k12 are known, a distribution for k8 can be inferred. The
attack proceeds similarly for the second column (z4, . . . , z3), except that the key of the
third column is not assumed to be exactly known anymore, and instead the distribution
of those key bytes (obtained at the previous step) are used in the computation. Finally,
for the first column (z0, . . . , z15), the attacks proceeds similarly to the second column,
exploiting the transition leakage with the second column. It however also builds another
estimator for those key bytes, using the transition with the leakage from the previous
computation (round key update): distributions for the key bytes of this column can be
built from the models for the leakage of k13 ⊕ z0, k14 ⊕ z5 and k12 ⊕ z15 and the knowledge
of (the distributions of) the ki from the other columns. The two estimators for the first
column (transitions with the second column and with the round key update) are merged
by multiplying distributions.

Finally, this attack produces a distribution for all key bytes, and key enumeration can
be applied similarly to the other attack, resulting in a key rank below 268 using 901 120
traces on the S6_d2 dataset [CMS23]. Unlike the previous attack, this attack is not at all
tight with the bounds of Subsection 6.3 (which, for pAK byte transitions on S6_d2 gives
number of attack traces in the range 50-5000). This gap can be explained in part by the
“black-box” modeling and by the more complex key recovery process due to dependencies
between columns.

8 Conclusion
We propose the SMAesH dataset as a challenge and benchmark for the research in side-
channel attacks and evaluation methodologies. This dataset comes with many useful and
interesting features: an AES implementation with first-order masking, public randomness,
well-aligned traces, random-key and fixed-key traces, measurements of the same HDL
source on two distinct FPGA platforms, a mixed serial-parallel architecture, etc. In this
paper, we perform a baseline leakage evaluation of the dataset, which indicates multiple
possible attack paths. We quantify the amount of leakage which, using quantitative
information metrics, allows us to bound the number of traces needed for an attack. Even
tough these numbers vary greatly with the targeted part of the key and with the attack
path, it seems that attacks below 105 traces should be feasible, and attacks below 104 traces
will be quite challenging for A7_d2, while an attack under 103 traces may be feasible
against the more leaky S6_d2. The initial attacks against the dataset use respectively
2.9 × 105 and 9.0 × 105 traces, however they were performed under the constraints of the
CHES 2023 challenge and they can probably be further optimized.

Since the SMAesH IP is open-source, it is possible to perform in-depth investigation of
the links between the observed leakage and the architecture. This is interesting not only
for exploring attack paths or shortcut evaluation methodologies, but also for IP designers.
Indeed, SMAesH is an overall simple design with masking as the sole countermeasure.
Despite this simplicity, it appears to still be able to protect some of its computations,
while others are much more leaky. We discussed how some of these differences can be
explained by architectural features, which hints at possible solutions to make all values
uniformly leaky. These observations could also be used to develop pre-silicon validation
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tools based on worst-case but quantitative leakage assumptions.
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Figure 14: Parameter selection for the first share of pAK (XOR-)transition on S6_d2
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Figure 15: Information distribution for the shares of the sboxes variables Sboxes considering
the model maximising the PI on S6_d2.
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Figure 16: Information distribution for the (XOR-) transition of shares of the sboxes
variables Sboxes considering the model maximising the PI on A7_d2.
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Figure 17: Information distribution for the (XOR-) transition of shares of the sboxes
variables Sboxes considering the model maximising the PI on S6_d2.
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