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Abstract

An important consideration with the growth of the DeFi ecosystem is the protection of clients who submit
transactions to the system. As it currently stands, the public visibility of these transactions in the memory
pool (mempool) makes them susceptible to market manipulations such as frontrunning and backrunning.
More broadly, for various reasons—ranging from avoiding market manipulation to including time-sensitive
information in their transactions—clients may want the contents of their transactions to remain private until
they are executed, i.e. they have pending transaction privacy. Therefore, mempool privacy is becoming an
increasingly important feature as DeFi applications continue to spread.

We construct the first practical mempool privacy scheme that uses a one-time DKG setup for n decryption
servers. Our scheme ensures the strong privacy requirement by not only hiding the transactions until they
are decrypted but also guaranteeing privacy for transactions that were not selected in the epoch (pending
transaction privacy). For each epoch (or block), clients can encrypt their transactions so that, once B
(encrypted) transactions are selected for the epoch, they can be decrypted by each decryption server while
communicating only O(1) information.

Our result improves upon the best-known prior works, which either: (i) require an expensive initial setup
involving a (special purpose) multiparty computation protocol executed by the n decryption servers, along
with an additional per-epoch setup; (ii) require each decryption server to communicate O(B) information;
or (iii) do not guarantee pending transaction privacy.

We implement our scheme and find that transactions can be encrypted in approximately 8.5 ms, inde-
pendent of committee size, and the communication required to decrypt an entire batch of transactions is
48 bytes per party, independent of the number of transactions. If deployed on Ethereum, which processes
close to 500 transactions per block, it takes close to 3.2 s for each committee member to compute a partial
decryption and 3.0 s to decrypt all transactions for a block in single-threaded mode. Compared to prior
work, which had an expensive setup phase per epoch, we incur < 2× overhead in the worst case. On some
metrics such as partial decryptions size, we actually fare better.
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1 Introduction

Decentralized Finance or DeFi is a financial ecosystem that leverages blockchains to provide various financial
services. The rapid growth of DeFi is best illustrated by the amount of capital that has made its way into
the ecosystem, with a peak value of over $250 billion in 2021. As the ecosystem evolves and grows, it
is important that the system implements protections for clients of this system to ensure they are not taken
advantage of. Unfortunately, as we illustrate below, there are several instances where such systems fall short.

Consider a scenario of a client interacting with the system and simply wants to submit a transaction.
For this transaction to be considered complete by the system, it must be “executed” by the blockchain. To
facilitate this, clients submit their transaction to a common memory pool, commonly known as mempool. It
is then the job of the miners (or builders) not only to select from the mempool the transactions that get
executed, but also the order in which the transactions are executed. In an ideal world, one would like every
transaction to be treated “fairly”, i.e. the details of the transaction would not influence whether it is selected
or the order in which it is executed. Ideally, miners/builders should be “blind” to the transaction details
when processing them.

Unfortunately, the large financial incentives in these systems make reality far from the desired ideal
world. Miners exploit the information asymmetry available to them to frontrun, backrun, or sandwich client
transactions to extract additional value from them - termed MEV or Miner Extractable Value [DGK+20]. While
the miners benefit financially from this asymmetry of information, it is at the expense of the clients. This has
been well documented both from a miner perspective in ways to benefit the most from this system (perhaps
rationally) [EMC19, ZQC+21, WCDW21, ZQT+21, AEC21], and also about the broad problems caused by
the ability of the miners to exploit such a system [GKW+16, QZG21, TC+21, JSSW21, CJW22]. In the most
extreme case, miners can effectively censor transactions from certain clients, an undesirable outcome for the
system.

Beyond simple transactions, clients may also submit updates to their existing smart contracts within their
“transaction.” Such updates may be crucial if, for instance, a client discovers a bug in their smart contract
that causes financial losses. In such a case, they would want to update the smart contract before others in
the system become aware of the issue. However, such an update might expose the bug, allowing miners to
exploit it before the transaction containing the update is executed. These vulnerabilities have led to active
efforts [BO22, PNS23, MS22, KLJD23, RK23, Shu21] aimed at addressing privacy concerns surrounding
transactions in the mempool.1

A natural cryptographic approach to reinstate the “blindness” of miners to the contents of the transactions
is by having clients encrypt the contents of their transactions before they submit the transactions to the
mempool. In this scenario, when the miners have to pick and order transactions, they must do so from an
“encrypted“ mempool, and thereby without knowledge of the contents of the transaction.2 But for such a
system to be of continued use, the transactions need to be executed in the clear. Requiring clients to return
and decrypt their own transactions is undesirable for several reasons: (i) it requires the clients to be online
more frequently for the system to function; and (ii) a misbehaving client may simply refuse to decrypt their
transaction after it has learned the contents of the other transactions.

Instead, we want clients to be able to encrypt directly to the system, allowing the system to decrypt
selected transactions without requiring further input from the clients. To distribute trust across the system,
we can envision it as consisting of a set of decryption servers. An ideal system implementing this approach
would proceed as follows: (1) The decryption servers run a one-time lightweight setup to generate a public
key for the system; (2) Clients encrypt their transactions using the public key; and (3) Once B transactions
for the block have been selected, each decryption server broadcasts a partial decryption of the ciphertexts,
enabling anyone in the system to decrypt the B selected transactions. Decryption should be possible as long
as a sufficient number of decryption servers broadcast their respective partial decryptions.

1We note that if the cost of transaction privacy is deemed too high, our system can be modified to support both encrypted and
unencrypted transactions. But for this work, we will stick to all transactions that are encrypted.

2Note that we are not demanding any “fair” ordering of the encrypted transactions, only that the ordering does not consider the
transaction contents.
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For this scheme to be practical, it must be concretely efficient: the setup should be lightweight, and
the size of each server’s partial decryption should be constant, independent of the number of ciphertexts B.
Intuitively, the ciphertexts should: (1) provide no information about their underlying contents until they are
decrypted; and (2) continue to reveal no information if the ciphertext was not included in the block. The
latter security property was formalized recently in [CGPP24] as pending transaction privacy. It is not hard to
see that in the context of our earlier examples, it is critical that pending transaction privacy is maintained.

Given the importance of the problem, several works have made progress toward constructing a solution
that achieves both mempool privacy and the stated efficiency goals [ElG86, CG99, BO22, DHMW23, Shu21,
CGPP24]. However, as we shall discuss shortly, none of these works are able to simultaneously achieve all
of the desired properties – some fail to meet certain efficiency goals, while others crucially fail to provide
pending transaction privacy.

1.1 Our Contribution

In this work, we present the first concretely efficient construction that guarantees mempool privacy and
simultaneously achieves the following efficiency requirement.

1. Only requires a single execution of a distributed key generation (DKG) protocol.

2. Uses O(1) communication per decryption server to decrypt a batch of B transactions.

3. Ensures pending transaction privacy.

4. Has O(1) sized ciphertexts.

We created a Rust crate for our scheme and benchmarked it. It takes < 8.5 ms to encrypt a ciphertext and
adds ≈ 466 bytes to the transaction size. For an Ethereum deployment, which processes ≈ 500 transactions
per block, it would take close to 3.2 s to compute a partial decryption and 3.0 s to reconstruct all messages
in single-threaded mode. We refer the readers to Section 6 for more details on the concrete efficiency of our
scheme.

1.2 Related Works

The de facto approach to the mempool privacy problem is by the use of threshold public key encryption
[DF90, Fra90, DDFY94]. In such an encryption scheme there is a single public key, and the decryption
servers hold shares of the decryption key such that a large fraction of them are required to decrypt any
ciphertext encrypted to the public key. In the context of mempool privacy, clients can encrypt to the public
key, and once the selected ciphertexts are determined, the decryption servers run the threshold decryption
algorithm to only decrypt the selected ciphertexts. While the decryption servers only need to execute a
DKG as a part of the setup, the total communication sent by the n decryption servers in order to decrypt B
encrypted transactions is O(nB).

In order to reduce the total communication during decryption, works such as [DHMW23, MGZ22] and
deployed systems such as [Shu21] introduce fine-grained encryption schemes where the clients can encrypt
to the epoch (or block) they want their transaction to be added to, and the total communication to decrypt
all such ciphertexts is O(n). In particular, this means that this information can be used to also decrypt
ciphertexts that were not selected to be in the block, thereby violating the crucial requirement of pending
transaction privacy.

Most closely related to our work is a recent scheme [CGPP24], which formalizes the security properties
needed to obtain a meaningful notion of mempool privacy. They further define, and construct, a crypto-
graphic primitive they term batched threshold decryption that suffices to obtain mempool privacy. While the
scheme in [CGPP24] has total decryption communication O(n) and guarantees pending transaction privacy,
the biggest limitation is the (epoch) setup. In particular, the n decryption servers must run an initial MPC
for setup, and then for every epoch (block), they must additionally run an epoch setup. Although one could
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design an optimized, special purpose MPC protocol, [CGPP24] only provided estimates using generic tech-
niques for honest majority with abort MPC protocols. In contrast our work only needs a one-time DKG setup
at the beginning of the protocol which been extensively studied [Sch99, GHL22, Gro21, KMM+23, CD24,
Kat24], simpler and concretely much more efficient than running a full-fledged MPC protocol. The above
described comparisons are summarized in Table 1.

We note that while heavy cryptographic machinery like general purpose witness encryption [GGSW13]
or indistinguishability obfuscation [BGI+01, ADM+24] can be used to derive a solution to mempool privacy,
the inefficiency of known constructions limits their applicability towards constructing concretely efficient
schemes. Likewise, timelock encryption [BBBF18] is also considered as a possible solution to mempool
privacy, but does not satisfy pending transaction privacy in addition to requiring wasteful computation to
perform decryption of the encrypted transactions.

Finally, while our focus in this work is more broadly mempool privacy, we note that for the specific case of
reducing MEV, non-cryptographic approaches have also been considered [KDL+21, KZGJ20, Kur20, MDF22,
HW22, CIMI+21, BDF21, ZQG21]. These broadly aim to either limit how transactions can be re-ordered, or
aim to provide game-theoretic defenses with both approaches resulting in reduced MEV. We refer the reader
to [CGPP24] for a more detailed exposition of these non-cryptographic approaches.

Scheme Comm.
Pending Tx

Privacy Setup

[ElG86, BO22, PNS23] O(nB) ✓ DKG

[DHMW23, MGZ22, Shu21] O(n) ✗ DKG

[CGPP24] O(n) ✓
MPC +

Epoch Setup

This Work O(n) ✓ DKG

Table 1: A comparison of this work against prior work in terms of communication to decrypt a batch of B
transactions and whether the scheme preserves the privacy of transactions that were submitted but may not
have been included in the batch. DKG refers to a distributed key generation protocol and MPC refers to a
(more expensive) multi-party computation protocol used during the setup phase and Epoch Setup refers to
a per-epoch setup that can be carried out well before the actual epoch takes place.

2 Technical Overview

This section presents the main ideas behind our construction. We start by recalling our objective.

Our Dream Goal. Assuming a lightweight one-time setup (e.g., standard DKG setup) among a committee,
we wish to achieve the following. For each epoch, users should be able independently (from other users)
sample a ciphertext encrypting their message. Among the ciphertexts from all users (say, ct1, . . . , ctm) in a
given epoch, once the committee agrees on a subset S ⊆ [m] of size ≤ B to decrypt, the committee sends
a constant-size partial decryption. Given more than a threshold T number of partial decryptions, one may
decrypt all the ciphertext in S. However, the ciphertexts outside S should remain hidden. As shown in
[CGPP24], constructing such a primitive suffices to obtain mempool privacy scheme. Thus, for the rest of
this overview, we focus on the underlying ideas for building such a primitive. Additionally, as referenced in
our discussion previously (Section 1.2), all prior works fail to achieve this dream goal in one way or another.

Witness Encryption for PPEs. To facilitate presenting our ideas, let us first introduce some minimal nota-
tions and a generic way of building witness encryption schemes [GGSW13] from pairing product equations
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(PPEs).3

Suppose we have a pairing-friendly group with pairing operation e(·, ·) and generators g, h, g⊺. Consider
the following set of pairing product equations

e(gA, hx) = gb⊺,
4 (1)

where A is a u × v matrix of field elements, and b and x are vectors of dimension u and v, respectively.
Here, we think of gA and gb⊺ as public group elements and hx as the secret group elements. Importantly this
facilitates building a witness encryption scheme for the statement,

I hold the secret group elements hx that will
pass the pairing product equations e(gA, ·) = gb⊺.

Specifically, to encrypt a message m for the above linear system, one samples a u-dimension random vector
of field elements α and computes the ciphertext as

ct = (ct1, ct2) =
(
gα·A, H

(
g⊺
⟨α,b⟩

)
⊕m

)
.5

Here H (·) is a random oracle. Note that the public group elements gA and gb⊺ are treated as the statement,
and anyone in possession of the witness (secret group elements) hx can decrypt by computing m as ct2 ⊕
H (e(ct1, h

x)). For security, one can prove that the ciphertext is computationally hidden as long as the witness
hx is hard to compute (see Theorem 2).

Several works (e.g., [KMW23, CGPP24, GKPW24]) show how WE for PPEs can be used to realize power-
ful applications. In these works, as in ours, the core contribution lies in casting the task at hand in the form
of appropriate PPEs satisfying the constraints above. This requires “special gymnastics” to get the problem
in the right format. We next explain the challenges involved in this for our work.

First Attempt. Let us start with a simple idea by applying WE for PPEs to BLS signature [BLS01]. Recall
that, in BLS signature, the public key is pk = gsk for a signing key sk, and the signature σ for a tag tg is
computed as σ = H(tg)sk. The signature verification check is

e(σ, h) = e(H(tg), pk)

conforming to a PPE system as described in (1). Henceforth, one may apply WE for PPEs to build an
encryption scheme.6 To extend this to multiple users while ensuring succinct batch decryption, one naturally
asks each user to sample their respective ciphertext under the same tag tg.7 In this way, the committee could
compute a (threshold) signature σ of tg as the witness to enable batch decryption of all ciphertext encrypted
under tg. This is essentially the scheme of McFly [DHMW23].

However, this simple approach above does not provide pending transaction privacy. Indeed, the (thresh-
old) BLS allows for decryption of all ciphertext encrypted under tg, not necessarily the B selected transaction.
Therefore, the challenge remains how one designs a PPE system that allows succinct decryption of only the
selected transactions.

3This general tool was observed in the literature under different names. For example, [BC16] observed this in the hash proof system
context; [GKPW24] observed this from the witness encryption perspective (which is what we present here). Moreover, this tool is
implicitly used in a less general manner in many existing works (e.g., [BF01, GS18, BL18, KMW23]).

4For a matrix/vector A of field elements, we use gA for a matrix/vector of group elements defined in a natural way. Moreover, for
two matrices A,B of group elements, e(A,B) stands for the standard matrix multiplication with multiplication operation replaced by
pairing operation.

5Note that ct1 is a vector of group elements.
6This is exactly the Boneh-Franklin IBE scheme [BF01].
7For example, this tag could be the epoch ID.
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Polynomial Encoding of a Set. To get around this challenge, [CGPP24] proposed using KZG polynomial
commitment [KZG10]. Let us recall KZG polynomial commitment first. To enable committing to a degree
(B − 1) polynomial, the KZG common reference string consists of the tuple (g, gτ , gτ

2

, . . . , gτ
B−1

), and the
commitment to a polynomial p is com = gp(τ).8 Given a pair (x, tg) ∈ F × F such that tg = p(x), the proof
of opening π = gq(τ) where q(X) is a polynomial such that q(X) = (p(X) − tg)/(X − x). The verification
equation is thus given by

e(π, hτ−x) = e(com/gtg, h).

An observant reader may note that the above verification equation is again compatible with (1).9 Indeed, in
[CGPP24] the authors was able to leverage this to build a batch threshold decryption in the following way.
For each epoch, a random group element com = gy will be sampled as the commitment and the committee
shall hold secret shares of y. Now, each user will sample its own (xi, tgi) and compute a witness encryption
for the KZG opening verification check for the aforementioned commitment com,

e(πi, h
τ−xi) = e(com/gtgi , h).

Now, suppose a set S of transaction is selected to be decrypted. For succinct batch decryption, instead of ask-
ing the committee to compute a opening proof πi for each ciphertext in S, the committee shall leverage the
equivocal property of the commitment com10 to explain it as the polynomial commitment of the polynomial
f(x) that interpolates all {(xi, tgi)}i∈S . Note that if f(x) becomes public, any one can generate the opening
proof and, henceforth, decrypt the ciphertexts in S. The crucial point here is that to communicate f(x), the
committee does not need to send the entire f(x), but only to publish an arbitrary point (x∗, f(x∗)) on f(x).11

While this idea gives an elegant solution, it unfortunately comes with several undesirable features.

• It necessitates a per-epoch setup — the committee needs to collectively sample a random group element
com for every epoch. In other words, com is not a reusable setup.

• Equivocating com = gy to a chosen polynomial requires the committee to hold the trapdoor τ . In fact,
the computation required for equivocation is a high-degree computation in τ . To enable a light-weight
decryption process, [CGPP24] asks for an expensive initial setup such that committee holds secret
shares of not only τ , but also τ2, τ3, . . . This setup requires an expensive tailor-made MPC protocol. For
instance, a simple DKG would not have sufficed.

Therefore, the question remains

Can we rely on the idea of polynomial commitment for batch decryption,
while only requiring a simple one-time setup?

First Core Idea: Commitment as Witness. The per-epoch setup is necessary in prior works due to the
sampling of the (equivocable) commitment com. To eliminate this requirement, we must allow the users to
do witness encryption without such a freshly sampled com. Towards this, we observe that: the KZG opening
check still conforms to the PPEs system even if the commitment is part of the witness. Namely,

e(πi, h
τ−xi) = e(com/gtgi , h).

In other words, if the users witness encrypts with respect to the above PPE system, the committee no longer
needs to sample a random commitment com per epoch — effectively removing the per-epoch setup. While
this idea works nicely, putting the commitment as a part of the witness, however, comes with significant
challenges as we explain next.

8This can be computed from the common reference string without knowledge of τ , which is a secret trapdoor for the scheme.
9Indeed, this property of the KZG commitment verification has been used recently in many works to construct witness encryption

for polynomial opening [CGPP24, FHAS24].
10In [CGPP24], it was shown that to achieve equivocation, one must use a randomized version of the KZG commitment scheme. For

the purposes of keeping this overview simple, we do not explain here the randomized version.
11Indeed, this enables a public reconstruction of f(x) by applying Lagrange interpolation on {(xi, tgi)}i∈S ∪ {(x∗, f(x∗))}.
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The “Intractability” Challenge. The core issue is the following. Since the committee does not sample the
commitment, it is now computationally easy to find a satisfying witness. Indeed, the decryptor can pick any
polynomial that interpolates (xi, tgi) as its witness and breaks the semantics security of the i-th ciphertext.
Therefore, the challenge becomes

How can we restore the critical property that
the witness is intractable to find?

One may naturally wonder if we can fix this issue by asking the committee to produce a signature on com to
authenticate the commitment com. That is, each user computes a witness encryption to the following PPEs
system,

e(σ, h) · e(com, pk)−1 = g0⊺,

e(π, hτ−xi) · e(com, h)−1 = e(gtgi , h)−1.

Although this idea appears to make the witness hard to compute, subtle attacks still persist. For instance,
consider the adversary that wants to break the i-th ciphertext. He may still use a constant polynomial as the
polynomial that interpolates (xi, tgi). In this case, the signature on com is still easy to compute since the
dLog of com is picked by the adversary.

Second Core Idea: Shifted BLS. We resolve the “intractability” challenge by using what we call a shift BLS
signature. Namely, we ask the committee to produce a signature, not on the commitment com itself, but on
com shifted by a public random group elements. Note that, unlike [CGPP24], the committee does not need
to hold any trapdoor related to this random group element and, hence, this random group element will not
require a per-epoch setup.

To elaborate, users will now encrypt to an epoch id eid12 that is publicly known ahead of time. We require
the committee to produce a signature on H(eid)/com. Specifically, the final PPEs that the users apply witness
encryption to is,

e(σ, h) · e(com, pk) = e(H(eid), pk),

e(π, hτ−xi) · e(com, h)−1 = e(gtg, h)−1.
(2)

In other words, the witness that decrypts the above ciphertext (from user i) states

I have a signature σ on a H(eid)/com,
where com has a proof of opening π at xi to tgi.

Intuitively, an adversary either needs to break the BLS signature scheme to generate a signature of its
choice for any commitment com′ of its choosing, or it needs to break the KZG polynomial commitment
opening to open a fixed com to any (x′, tg′) of its choosing. We formalize this intuition with a new assumption
(Definition 1). In the technical section, we show our new assumption reduces to more standard assumptions
in the algebraic group model [FKL18]. Intuitively, we show that the aforementioned two cases are the only
possible ways that an adversary can break the system. This allows us to argue that every ciphertext not
included in the B ciphertexts will never be decrypted.

Security Aspect. Finally, we note that we have ignored malleability issues so far for our ciphertext. These
issues arise since an adversarial user may maul an honestly generated ciphertext such that if the mauled
ciphertext is among the B ciphertexts selected, the witness for such a ciphertext can be converted to a
witness for the honest ciphertext that was not among the B selected. For instance, if an adversary were to
simply “copy” (x, tg) from an honest ciphertext ct when generating its own ciphertext ct′, it is easy to see
that the witness to decrypt ct′ also serves as a witness to decrypt ct. Our construction handles such non-
malleability issues in an identical manner to [CGPP24]. Specifically, the users must provide a non-interactive

12Each epoch will select B ciphertexts to decrypt, and the users whose ciphertexts are not chosen can encrypt to the next epoch, and
so on.
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proof of knowledge of the correct computation of the ciphertext. Further, to avoid the aforementioned copy
attack, tg is generated by each user as tg = H(gs), where the user outputs S and uses the non-interactive
proof of knowledge to prove knowledge of s such that S = gs. We refer the readers to the technical section
for details on this part.

Put Everything Together. To conclude, when a user wants to encrypt a message for an epoch eid, it applies
the witness encryption scheme (see (1)) to the PPEs system (2) to generate the ciphertext. Additionally,
it sends a non-interactive (zero-knowledge) proof of knowledge to attest to the correct computation of the
ciphertext. Once the B ciphertexts are chosen, the committee uses the (xi, tgi) from the selected ciphertexts
to interpolate and generate a polynomial commitment com. The committee then signs H(eid)/com and
broadcasts the signature in a threshold manner. Any user can now decrypt the B selected ciphertexts by
redoing the computation of com, and, in turn, computing the required polynomial commitment openings.
They finally use the broadcast signature to obtain the witnesses needed for decryption. Since the committee
only sends a single signature, it satisfies our efficiency requirements from the dream goal. Further, the
committee only needs to run a DKG at the start of the protocol to get Shamir’s sharing of the BLS signing
key.

3 Preliminaries

We use [n] to denote the set {1, 2, . . . , n}. The security parameter is denoted by λ ∈ N. A function f : N→ N
is said to be polynomial if there exists a constant c such that f(n) ≤ nc for all n ∈ N, and we write poly(·)
to denote such a function. A function f : N → [0, 1] is said to be negligible if for every c ∈ N, there exists
N ∈ N such that for all n > N , f(n) < n−c, and we write negl(·) to denote such a function. A probability
is noticeable if it is not negligible, and overwhelming if it is equal to 1 − negl(λ) for some negligible function
negl(λ). For a set S, we write s ← S to indicate that s is sampled uniformly at random from S. For a
random variable D, we write d ← D to indicate that d is sampled according to D. An algorithm A is PPT
(probabilistic polynomial-time) if its running time is bounded by some polynomial in the size of its input.
For two ensembles of random variables {D0,λ}λ∈N, {D1,λ}λ∈N, we write D0 ≈c D1 to indicate that for all
PPT A, it holds that ∣∣∣∣ Pr

d←D0,λ

[A(d) = 1]− Pr
d←D1,λ

[A(d) = 1]

∣∣∣∣ ≤ 1

2
+ negl(λ).

We use e to denote an efficiently computable non-degenerate bilinear pairing from the groups (G1,G2)
to a target group GT and use F to denote the associated field. The generators of G1 and G2 are fixed to
be g and h, respectively. We will represent the Shamir secret sharing of an element x as [x], with i-th share
represented as [x]i. We note that while we overload the previously discussed notation [n], the notation for
secret shares will be clear from the context.

The Random Oracle Model. In the random oracle model (ROM), parties are given oracle access to some
function H that is sampled uniformly at random from the space of all functions H : X → Y, where X and
Y are finite non-empty sets. That is, parties can query their oracle on an input x ∈ X and receive in return
H(x) ∈ Y. When proving the security of a protocol in the random oracle model, the simulator Sim is able to
“control” the oracle, observing queries made by the adversary and simulating responses.

Lagrange Polynomials. We will use Li(x) = Πd−1
j=0,j ̸=i

(x−xj)
(xi−xj)

to denote the i-th lagrange polynomial for
polynomials of degree ≤ d over a sufficiently large field, corresponding to a domain Ω = {x0, x1, . . . , xd}.
These polynomials have the property that f(τ) =

∑d
i=0 Li(τ)f(xi) for any point τ /∈ Ω in the field.

Non-interactive Zero-Knowledge proofs. Let L be an NP-language and R the corresponding NP-relation.
A Simulation Extractable-NIZK for R consists of the following algorithms:

• Setup(1λ)→ (crs, td): Takes as input a security parameter, and outputs a common reference string crs and
trapdoor td.
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• Prove(crs, x, w) → π: Takes as input crs and any pair (x,w) ∈ R and outputs a proof π for the statement
x ∈ L.

• Verify(crs, x, π) → b: Takes as input crs, statement x and proof π and outputs a bit b indicating whether
verification has passed or failed.

• SimProve(crs, td, x)→ π: Takes as input crs, trapdoor td and statement x and outputs a simulated proof π.

We will drop the crs term wherever implicit. A SE-NIZK satisfies the following properties:

• Perfect Completeness. An SE-NIZK satisfies perfect completeness if for any (x,w) ∈ R, we have

Pr

[
(crs, td)← Setup(1λ)
π ← Prove(crs, x, w)

: Verify(x, π) = 1

]
= 1.

• Proof of knowledge (and soundness). For every PPT adversary A, there is a PPT extractor Ext such that

Pr

(crs, td)← Setup(1λ)

(x, π)← A(crs)
w ← Ext(crs)

:
Verify(x, π) = 1

(x,w) /∈ R

 ≤ negl(λ).

• Computational Zero-knowledge. There exists a simulator Sim such that for all stateful distinguishers A
the following probabilities are equal:∣∣∣∣∣∣∣Pr

(crs, td)← Setup(1λ)

(x,w)← A(crs)
π ← Prove(crs, x, w)

:
(x,w) ∈ R
A(π) = 1

− Pr

 (crs, td)← Setup(1λ)

(x,w)← A(crs)
π ← SimProve(crs, td, x)

:
(x,w) ∈ R
A(π) = 1


∣∣∣∣∣∣∣ ≤ negl(λ).

• Weak Simulation-Extractability. For every PPT adversary A, there exists a PPT extractor Ext such that

Pr

(crs, td)← Setup(1λ)

(x, π)← ASimProve

w ← Ext

:

Verify(x, π) = 1

∧ (x,w) /∈ R
∧x /∈ Q

 ≤ negl(λ).

where A has oracle access to SimProve(crs, td, ·), and Q is a list of queries made by the adversary.

We will also demand that the proof is straight-line extractable. This means that the extractor can, on input
a valid proof and (potentially) the list of random-oracle queries made by the adversary (prover), extract a
witness with overwhelming probability without rewinding the prover.

Algebraic Group Model. We prove security in the algebraic group model [FKL18]. In this model, adversaries
are restricted to performing algebraic manipulation of group elements that they have seen so far. When an
adversary outputs a value Y ∈ G, it also produces a linear combination (e1, . . . , em) of elements (X1, . . . , Xm)
that it has seen so far, such that Y =

∏
Xei

i .

4 Model and Definitions

We use essentially the same security and efficiency requirements of batched-threshold encryption as defined
in [CGPP24], with one main difference — our definition does not involve an epoch setup.

• Setup(1λ, n, t, B)→ {pk, (sk1, . . . , skn)}: On input the threshold t for n parties and a batch size B, outputs
the public key pk along with secret keys for each party.

9



• Enc(pk, eid,m)→ ct: On input a message m, an epoch id eid, and a public key pk, outputs a ciphertext ct.

• BatchDec((ct1, . . . , ctB), ski) → pdi: On input B ciphertexts (ct1, . . . , ctB) and a secret key shares ski,
outputs a partial decryption pdi or ⊥.

• Combine(pk, eid, (ct1, . . . , ctB), {pdi}i∈S) → (m1, . . . ,mB) Takes as input the public key pk, epoch id eid
and t+ 1 partial decryptions where S ⊆ [n] and |S| = t+ 1, and outputs messages (m1, . . . ,mB) or ⊥.

Efficiency. We impose various efficiency constraints on the above algorithms. Setup must run in time
poly(n, t, B, λ). Enc must run in O(1) time. BatchDec must be non-interactive i.e., each party computes it’s
partial decryption independently. It must also run in time poly(B, λ), and the size of each partial decryption
must be sub-linear in the batch size (o(B)) and independent of the number of parties. Finally, Combine must
run in time poly(B,n, λ).

The ideal functionality. We now describe the ideal functionality (Fig. 1). Note that even though there is no
interactive epoch setup, ciphertexts are still encrypted to a particular epoch and the parties must agree on a
batch of ciphertexts to decrypt in each epoch. Again, our ideal functionality is identical to that of [CGPP24]
except for the omission of EpochSetup. However, the encrypt and decrypt methods still make use of an epoch
id eid.

FbTPKE

Parties: Clients who encrypt messages (U1, . . . , Um) and Servers (S1, . . . , Sn).
Parameters: Space of receipts C ⊂ {0, 1}∗, number of servers n, threshold 0 < t ≤ n, and batch size
B.

Setup. If all servers send (Setup, (S1, . . . , Sn)) then notify all servers that setup was successful, else,
send ⊥ to all servers. Adversary specifies a distribution Γ over C.

If the setup was successful:

Encryption. When a client U sends (Enc,m, eid), sample a receipt c ← Γ and store (c,m, eid).
Announce (c, eid) to all parties.

BatchDecryption. When t + 1 servers send (Dec, (c1, . . . , cB), eid), if tuples of the form
{(ci,mi, eid)}i∈[B] have been previously stored, and eid ∈ Lr, then send the corresponding mes-
sages {mi}i∈[B] to the servers. Remove eid from Lr and add it to Lc.

Figure 1: Ideal Functionality for a Batched Threshold Public-Key Encryption scheme.

5 Construction

We now present our construction of batched-threshold encryption. Note that we present an optimized version
of the protocol which uses a roots of unity domain to interpolate tags across ciphertexts. This allows us to
compute openings proofs of a KZG commitment at all points in the domain in O(B logB) time. However,
this also means that if two clients chose the same x̂, then only one of these ciphertexts can be included in
the block. This can be avoided by letting clients choose an arbitrary x̂ ∈ F at the cost of a more expensive
combine step. We prove that the latter securely emulates the ideal functionality Fig. 1.

Setup: Our setup is significantly simpler than that of [CGPP24]. We only require a single execution of a
distributed key generation protocol to establish shamir shares of a secret key sk ∈ F among n parties. The
public key is pk = hsk along with {h[sk]j}j∈[n]. We also require a powers-of-tau CRS – {g, gτ , gτ2

, . . . , gτ
B−1}
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– which can be sampled in a distributed manner as outlined in [NRBB24]. 13 Finally, the parties also run the
setup for a NIZK proof system (in a distributed manner if necessary) and publish the public parameters (if
any). In our concrete implementation, we will use sigma protocols, which are secure in the random oracle
model and do not require an interactive setup.

Encrypt: Clients sample a random value x̂ ∈ Ω = {1, ω, ω2, . . . , ωB−1}, where ω is a root of unity in
F of order B. Informally, they create a witness encryption to the following relation, using the compiler
from [BC16, GKPW24]:

I know an opening proof π for some KZG commitment [KZG10] com, at the point x̂ to the value
tg, and I know a BLS signature σ on δ = H(eid)/com,

where variables in red are part of the witness and those in blue are part of the statement. More formally the
set of PPE’s that need to be satisfied can be written as:

e(H(eid) · g−tg, h) = e(π, h(τ−x̂)) · e(δ, h)

e(δ, pk) = e(σ, h)

Or equivalently,
e(com · g−tg, h) = e(π, h(τ−x̂))

e(H(eid) · com−1, pk) = e(σ, h)

where terms in red denote the witness.

Adding CCA2 Security. To achieve security CCA2 security for our encryption scheme, we must a) prove
that ciphertext is well-formed and b) prevent an adversary from choosing the same tg as an honest party.

We require the former to ensure correctness for ciphertexts created by the adversary, which is crucially
used by the simulator to extract the underlying message as part of the security proof. The latter is necessary
to prevent a concrete attack that can launched by the adversary. Namely, the adversary first looks at an
honest party’s ciphertext encrypted to some string tg∗ and creates another “dummy” ciphertext which is
encrypted to the same statement – (x̂, eid, tg∗). The adversary then gets the dummy ciphertext decrypted by
including it in the next batch, and the partial decryptions will allow the adversary to not only decrypt the
dummy ciphertext but also the honest party’s ciphertext as they require the same witness. To prevent this,
we will choose tg∗ as the output of a one-way function f on a randomly chosen input s and demand a proof
of knowledge of s. Concretely, we use f(s) := gs as it allows us to use very efficient sigma protocols with
small proofs.

Batch Decryption: When choosing a batch of ciphertexts to decrypt, the committee must ensure that the
x̂ values across ciphertexts are distinct. The committee members first compute com = gp(τ), where p(X) is
the degree-(B − 1) polynomial interpolating the tags across the B ciphertexts. The j-th party then publishes
σj = (H(eid)/com)[sk]j as their partial decryption.

Combine: We first recover the commitment com = gp(τ), as done in the Batch Decryption step, and com-
pute opening proofs for all points in Ω using [FK23]. Given t partial signatures on H(eid)/com, we can
interpolate in the exponent to recover σ such that e(H(eid)/com, pk) = e(σ, h). Finally, we simply run the
witness encryption’s decrypt algorithm from [BC16, GKPW24] to obtain the underlying messages.

13We note that one can also use a powers of tau CRS that has been previously setup in a distributed manner. For instance, https:
//ceremony.ethereum.org has 141,416 contributions. Soundness holds as long as at least one party deleted the randomness they
used as part of their contribution.
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Batched-Threshold Encryption

Parameters: A pairing friendly group (G1,G2,GT ), and random oracles H : {0, 1}∗ → {0, 1}∗, HF :
{0, 1}∗ → F, and HG : {0, 1}∗ → G1.

• Setup(1λ, n, t, B): A trusted dealer provides the committee with (t, n)-shares of a random field el-
ement sk ←$ F and publishes the committee’s public key pk = hsk along with {h[sk]j}j∈[n] with

crsKZG = (g, gτ , . . . , gτ
B−1

, h, hτ ). They also run the setup for NIZK and publish crsNIZK.

• Enc(pk, eid,m): Clients first sample a random value x̂ ∈ Ω = {1, ω, ω2, . . . , ωB−1}, where ω is a root
of unity in F of order B. They also sample s ←$ F and compute S ← gs, and tg ← HF (S). The
ciphertext is set to be:

– ct(1) := H(e(HG(eid) · g−tg, h)α)⊕M

– ct(2) := hα(τ−x̂)

– ct(3) := hαpkβ

– ct(4) := hβ

– S

– x̂

– Φ = NIZK.Prove{α, β, s | S = gs ∧ ct(1) ∧ ct(2) = hα(τ−x̂) ∧ ct(3) = hαpkβ ∧ ct(4) = hβ}

• BatchDec((ct0, . . . , ctB−1), ski): A threshold number of parties agree on a batch of ciphertexts
{ct0, . . . , ctB−1} such that every ciphertext has a valid proof Φi and {ct0.x̂, . . . , ctB−1.x̂} = Ω.
Compute com = gp(τ) using crsKZG, where p(X) is a degree-(B − 1) polynomial such that
{p(cti.x̂) = tgi}i∈[B], where tgi = H(Si). The j-th party then publishes

σj = (HG(eid)/com)[sk]j

as the partial decryption.

• Combine(pk, (ct1, . . . , ctB), {σi}i∈S): Recover the commitment com = gp(τ), where {p(ct.x̂i) =

tgi}i∈[B] and compute opening proofs {πi = gqi(τ)}i∈[B], where qi(X) = (p(X) − tgi)/(X − ct.x̂i)
and tgi = HF (cti.S). Given t partial decryptions {σj | e(HG(eid)/com, pkj) = e(σj , h)}j∈S , where
S ⊆ [n] and |S| > t, interpolate in the exponent to recover σ such that e(HG(eid)/com, pk) = e(σ, h).
Output

{ct(1)i ⊕H(e(πi, ct
(2)
i ) · e(δ, ct(3)i ) · e(σ−1, ct

(4)
i ))}i∈[B].

Figure 2: Protocol for Batched-Threshold Encryption
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6 Implementation and Evaluation

To evaluate the concrete performance of our scheme, and to ensure a fair comparison against prior work,
we implemented a performant version of our scheme in Rust using the same libraries. We use arkworks

[ac22] for implementations of pairing-friendly curves and their associated algebra, and the merlin [dcc20]
library to handle the Fiat-Shamir transform. Our implementation is available at https://github.com/

guruvamsi-policharla/batched-threshold-pp

Setup. All of our experiments were run on a 2019 MacBook Pro with a 2.4 GHz Intel Core i9 processor and
16 GB of DDR4 RAM in single-threaded mode.

Algebra. We use BLS12-381 as our pairing friendly curve and the BLAKE3 hash function as our random
oracle.

Dealer. We assume a trusted dealer for the distributed key generation during the setup phase but this can
be emulated using any verifiable secret sharing scheme [Sch99, GHL22, Gro21, KMM+23, CD24, Kat24].

Evaluation. We now evaluate the performance of our scheme. We answer the following questions:

• How long does it take to encrypt a message? What is the size of the corresponding ciphertexts?

• How long does it take for a committee member to compute partial decryptions, and how does it vary
with batch/committee size?

• How long does it take to recover all messages given partial decryptions, and how does it vary with
batch size?

Batch size Partial decrypt (ms) Reconstruct (ms)

8 49.2 60.5

32 199.8 168.1

128 809.9 646.1

512 3203.9 3026.5

Table 2: Time taken to compute partial decryptions and to reconstruct messages with varying batch size.

Parameter [BO22] [MGZ22, Shu21] [CGPP24] This Work

Increase in Ciphertext size |G1|+ |G2| |G2| 2|G2|+ |G1| + 3|F|+ 2 3|G2|+ |G1| + 4|F|+ 2

|Partial Decryptions| nB|G1| (3 MB) n|G1| (6 KB) n(|G1|+ |F|) (10 KB) n(|G1|)(6 KB)

|Partial Decryptions|/|Block Size| 500% 1% 2% 1%

Table 3: Ciphertext size and total decryption broadcast size for n committee members, and B transactions
per block. Concrete numbers were obtained with the BLS12-381 curve, using the average transaction and
block size on Ethereum in 2023 for a committee size of 128 with a block of 512 transactions. We note
that the numbers of [MGZ22, Shu21] are for CPA-secure ciphertexts. Adding CCA security would increase
ciphertext size as shown in [DHMW23]. We compare against the most efficient schemes with weakest
security guarantees to highlight that despite the handicap given to prior work, our scheme is competitive.

Encryption. The ciphertext contains one G1 element, three G2 elements, 4 F elements, a two byte descrip-
tion of x̂, and a string proportional to the message length (32 bytes), resulting in a total size of 498 bytes.
Creating a ciphertext takes approximately 8.5ms, and is independent of committee/batch size. Our encryp-
tion time is ≈ 40% slower and ciphertexts are ≈ 35% larger than prior work [CGPP24]. In contrast, we
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only need a very simple one-time setup, whereas [CGPP24] required a complicated multi-party computation-
based setup and per-epoch setup. We view this as a clearly favorable trade-off for the setting of mempool
privacy.

Batch Decryption. Before issuing a partial decryption, each party must check that all ciphertexts in the
batch are valid by verifying the accompanying zero-knowledge proof. We find that this is the most expensive
step in the protocol, encompassing ≈ 99% of the times reported in Table 2. Each partial decryption is one
G1 element (48 bytes with compression), and 40% smaller than the partial decryptions in [CGPP24] but
computing them is ≈ 20% slower.

Reconstruct. Given sufficiently many partial decryptions, any party can recover the messages from the entire
batch of ciphertexts that were decrypted in that epoch. In the process, we need to produce KZG opening
proofs at all points in the domain Ω. Using the techniques from [FK23], we can produce all openings using
O(B logB) group operations and O(B) pairings. In Table 2, we provide numbers assuming that all parties
respond with partial decryptions, and each partial decryption is verified to be correct. We note here an
important distinction when comparing numbers reported in [CGPP24] with those in Table 2. [CGPP24]
reports “optimistic” timings and size, where they assume that the entire committee responds and that all
partial decryptions are correct. If an inconsistency is detected, they demand proofs that the partial decryption
was computed correctly. Hence, they exclude the time taken to generate these proofs and sizes of the these
proofs from the reported numbers. Our partial decryptions are publicly testable using a pairing check, and
hence malformed partial decryptions can be detected without incurring any additional communication. At a
batch size of 512, we are faster than [CGPP24] as we use an optimized implementation to compute pairing
product equation where the miller loop is evaluated only once instead of for every pairing. We also note that
increasing committee size does not have a noticeable impact on the reconstruction time as computing KZG
opening proofs takes a majority of the time – which is independent of committee size.

Committee Churn. Parties may leave/join the protocol for a variety of reasons. In such situations, we can
ensure the protocol can continue without interruption using techniques from the line of work on Proactive
Secret Sharing [HJKY95, CKLS02, DJ97, WWW02, ZSVR05, SLL08, MZW+19, GKM+22, VAFB22]. From
the benchmarks in [CGPP24], this could be completed in under 10 seconds for a committee size of 64 in a
simulated WAN on the Google Cloud Platform using the NetEm package with a delay time of 200 ms, jitter
time of 20 ms and a rate of 10 mbit per second.

7 Security Proof

We prove security with guaranteed output delivery against a fully malicious adversary corrupting up to
t < n/2 members of the committee and any number of users creating ciphertexts. In the process, we
introduce a new interactive assumption (Definition 1) and justify its hardness. We then prove Theorem 5
which shows that the protocol in Fig. 2 securely emulates the ideal functionality in Fig. 1.

We start by describing our new interactive assumption, that we term i− kzg, below.

Definition 1 (i-kzg Game). Let g and, h be the generators of G1, and G2, respectively. We define an oracle
Oa,t,x̃,{bi}i∈[m](j, f(X)) parametrized by t, a, x̃, {bi}i∈[m] ∈ F. It takes as input a degree-(B − 1) polynomial
f(X) and an index j, and if f(x̃) ̸= 0 it returns (gbj − gf(t+x̃))a, else it returns ⊥. Consider the following game
for B,m = poly(λ), where A is a non-uniform probabilistic polynomial time algorithm:

1. Sample a, t, u, v, x̃, and {bi}i∈[m] from F and send the following to A:

(x̃, g, gt, gt
2

, . . . , gt
B−1

, {gbi}i∈[m], h, h
t, ha, hv, htu, hu+av)

2. For each j ∈ [m], A can make one query of the form

Oa,t,x̃,{bi}i∈[m](j, fj(X)),

for any degree-(B − 1) polynomial fj(X) of its choice.

14



3. A wins if it outputs e(g, h)bju for some j ∈ [m].

The i-kzg game is said to be hard if for all non-uniform probabilistic polynomial time algorithms A, the proba-
bility that A wins the game is negligible.

While the above interactive assumption closely resembles the security properties required from our
scheme, we show below that the above assumption can be reduced to the standard (non-interactive) k-
discrete log assumption in the algebraic group model (AGM). To do so, we follow the analysis of algebraic
adversaries as presented in [BC16, GKPW24].

We first prove a master theorem for the compilers in [BC16, GKPW24] that will help simplify our analysis.
We use the following notation for convenience. Let X ∈ Gu×v, for some group G and e ∈ Fn. We will denote
the i-th row by Xi and Xi,j to denote the entry in the j-th column of the i-th row. We will write Xe

i to denote∏
j∈[u] X

ei
i,j . We will also use ◦ to denote matrix multiplication between two matrices with elements in G1

and G2, respectively, where the multiplication operation is replaced with a pairing and addition is replaced
with the group operation. Similarly, we will use · to denote multiplication between a matrix of field elements
and a matrix of group elements where the multiplication operation is replaced with group exponentiation
and addition is replaced by the group operation.

Theorem 2 (Master Theorem). Let L ∈ Gu×v1
1 , R ∈ Gv2×u

2 and b ∈ Gu
T , define a system of pairing product

equations, that are satisfied by wL ∈ Gv1
2 , and wR ∈ Gv2

1 iff Lj ◦wL · (R⊺)j ◦wR = bj for all j ∈ [u]. For all
non-uniform PPT algebraic adversaries A such that

Pr[A(L,R,b, {(L⊺)ri }i∈[v1], {R
r
i }i∈[v2])→ br | r ←$ Fu] = ε,

there exists a uniform PPT algebraic adversary A′A which outputs wL ∈ Gv1
2 , and wR ∈ Gv2

1 such that Lj ◦wL ·
(R⊺)j ◦wR = bj for all j ∈ [u], along with corresponding representations, with probability ε.

Proof. Let T denote the completion set of target group elements viz. all possible pairing combinations of
elements in G1 and G2 seen by A so far. Since A is an algebraic adversary, for any group element in the
target group that it outputs, it also attaches the specific linear combination α ∈ F|T | of elements in T that it
used to produce the output. The terms in T can be categorized into three different types:

• Degree-0: Terms obtained by pairing an element from L with and element from R or a term from b.

• Degree-1: Terms obtained by pairing an element from L with an element from {Rr
i }i∈[v2] or an element

from {(L⊺)ri }i∈[v1] with an element from R.

• Degree-2: Terms obtained by pairing an element from {Lr
i }i∈[v] with an element from {Rr

i }i∈[v].

Observe that the coefficients of Degree-0 and Degree-2 terms must be zero in the linear combination used to
produce br. If not, observe that we can solve for at least one of the ri’s and A can then be used to solve for
r∗ given (gr

∗
, hr∗) ∈ G1 ×G2 – a variant of the discrete logarithm problem.

We now describe the strategy of A′A. Let Rj denote the j-th row of R. We can then define Sj = {s |
e(s,Rr

j) ∈ T }, to be the terms where some element in G1 is paired with Rr
j . We also define αj ⊆ α to be the

corresponding coefficients of the elements in the set {e(s,Rr
j) | s ∈ Sj}, in the linear combination used to

produce br. It is now easy to see that A′A can produce a satisfying wR by setting the j-th element of wR to
be wR,j ← S

αj

j . Analogously for wL.

Definition 3 ((k)-dlog Assumption). Let g, and h be the generations of G1 and G2, respectively. Then for all
non-uniform PPT algorithm A, it holds that

Pr[A(g, ga, ga
2

, . . . , ga
k

, h, hk)→ k | a←$ F] ≤ negl(λ).

Lemma 4. The i-kzg game is hard in the algebraic group model provided the (B − 1)-dlog assumption holds.
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Proof. First observe that we can take any algebraic adversary A which produces e(g, h)bju for some j ∈
[m] and construct an adversary A′ which produces δ, π, and σ (and corresponding linear combinations of
elements in G1) such that:

e(gbj , h) = e(π, ht) · e(δ, h)

e(δ, ha) = e(σ, h)

This can be achieved by applying the master theorem with

R =

 h ha

ht 0
0 h

 , b =

[
0

e(g, h)bju

]
,

where a satisfying witness is of the form wR = (δ, π, σ−1). We can then redefine com = gbj − δ to obtain the
triple (com, π, σ) which satisfies:

e(com, h) = e(π, ht)

e(gbj , pk) = e(σ, h) · e(com, pk)

Suppose there existed an adversary A which succeeded in the i-kzg game with non-negligible probabil-
ity. Then we will construct an adversary A′ which can solve the (B − 1)-dlog problem with non-negligible
probability. We begin by describing m+2 types of strategies, and A′ will run one of these, chosen uniformly
at random. We will then show that for all non-uniform PPT machines A, at least one of these strategies will
succeed, and henceA′ will solve the (B−1)-dlog problem with non-negligible probability. Let the (B−1)-dlog
challenge be (g, gz, gz

2

, . . . , gz
B−1

, h, hz).

1. Set t := z and sample a, x̃, u, v, and bi’s uniformly at random. A′ then runs A with the challenge
instance

(x̃, g, gz, gz
2

, . . . , gz
B−1

, {gbi}i∈[m], h, h
z, ha, hv, hzu, hu+av)

and can simulate responses from the oracle using knowledge of a.

2. Similarly, Set a := z, and sample remaining variables uniformly at random. Responses to oracle queries
can be simulated using knowledge of bi’s and t.

3. We describe a strategy for each j ∈ [m]: Set bj := z and sample remaining variables uniformly at
random. Responses to oracle queries can be simulated using knowledge of a.

Since all witness variables are in G1 and hence expressed as a linear combination over

(g, gt, gt
B−1

, {gbi , (gbi − gfi(t+x̃))a}i∈[m]).

Let Q = {(i, fi, (gbi − gfi(t+x̃))a)}i∈[m] denote the query-response pairs for queries made by the adversary
to the oracle in the i-kzg game and A outputs (com, π, σ), along with their representation. Consider the
following events:

1. We denote by E1, the event that com is expressed as a linear combination of powers-of-t – (g, gt, . . . ,

gt
B−1

) – and no other elements.

2. We denote by E2, the event that there exists (j, fj , σ) ∈ Q such that com = gfj(t).
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Case ¬E1: SupposeA returned a representation of com where the coefficients of {gbi , (gbi−gfi(t+x̃))a}i∈[m]

are non-zero. Then we have coefficients pi, βi, β̃i, γi, γ̃i such that:

B−1∑
i=0

pi · ti +
m∑
i=1

βi · bi +
m∑
i=1

β̃i · bit+

m∑
i=1

γi · (bi − fi(t+ x̃))a+

m∑
i=1

γ̃i · (bi − fi(t+ x̃))at = 0.

We will now use these coefficients to solve the (B − 1)-dlog problem. Suppose

m∑
i=1

γi · (bi − fi(t + x̃))a +

m∑
i=1

γ̃i · (bi − fi(t + x̃))at ̸= 0

and. In the case where we set a := z, we can recover z as

z = −
∑B−1

i=0 pi · ti +
∑m

i=1 βi · bi +
∑m

i=1 β̃i · bit∑m
i=1 γi · (bi − fi(t+ x̃)) +

∑m
i=1 γ̃i · (bi − fi(t+ x̃))t

Thus, the following equations must hold:
B−1∑
i=0

pi · ti +
m∑
i=1

(βi + β̃i · t) · bi = 0

m∑
i=1

γi · (bi − fi(t+ x̃))a+

m∑
i=1

γ̃i · (bi − fi(t+ x̃))at = 0

Note that since E1 is false, at least one of βi, β̃i, γi, γ̃i must be non-zero. There are now two cases two
analyze:

1. If one of βi, β̃i is non-zero, and
∑m

i=1(βi + β̃i · t) · bi ̸= 0, then there must exist some i∗ ∈ [m] such
that (βi∗ + β̃i∗ · t) · bi∗ ̸= 0. We can then guess this i∗, uniformly at random, and set bi∗ := z. With
non-negligible probability we will be correct, and we can solve for z as:

z = −
∑B−1

i=0 pi · ti +
∑

i ̸=i∗(βi + β̃i · t) · bi
(βi∗ + β̃i∗ · t)

.

If instead
∑m

i=1(βi + β̃i · t) · bi = 0, but one of the βi, β̃i is non-zero, then we can set t := z, and recover
z as

z = −
∑m

i=1 βi · bi∑m
i=1 β̃i · bi

Hence, it must be true that all the βi, β̃i are zero.

2. If one of γi, γ̃i is non-zero, and
m∑
i=1

γi · (bi − fi(t+ x̃))a+

m∑
i=1

γ̃i · (bi − fi(t+ x̃))at = 0,

then we set t := z and solve for z by finding the roots of
m∑
i=1

(γi + γ̃i · z) · (bi − fi(z + x̃)) = 0.

We can then test all roots to see which one is consistent with the challenge instance. Hence, it must be
true that all the γi, γ̃i are zero.

Thus, E1 must be true.
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Case E1 ∧ ¬E2: Since E1 is true, com is a linear combination of (g, gt, . . . , gt
B−1

). Let f ′ be the degree-
(B − 1) polynomial that A provided as a representation of com in the powers-of-t basis viz. com = gf

′(t).
We then define f to be the degree-(B − 1) polynomial such that f ′(t) = f(t + x̃), effectively giving us a
commitment in the powers-of-(t + x̃) basis. This implies σ = g(bj−f(t+x̃))a. Furthermore, since E2 is false,
(j, f, ·) /∈ Q.

Suppose the j-th query was never made by the adversary viz. (j, ·, ·) /∈ Q, we then have a representation
of σ in the basis of (g, gt, . . . , gt

B−1

, {gbi}i∈[m], {g(bi−fi(t+x̃))}i∈[m];i ̸=j) which implies we have pi’s, βi’s and
γi’s such that

B−1∑
i=0

pi · ti +
m∑
i=1

βi · bi+

m∑
i=1,i̸=j

γi · (bi − fi(t+ x̃))a = (bj − f(t+ x̃))a.

If
∑m

i̸=j γi · (bi − fi(t+ x̃))− (bj − f(t+ x̃)) ̸= 0, then in the case where we set a := z, we can solve for z as

z =

∑B−1
i=0 pi · ti +

∑m
i=1 βi · bi

(bj − f(t+ x̃))−
∑m

i=1,i̸=j γi · (bi − fi(t+ x̃))

We are then left with the following two equations:

m∑
i ̸=j

γi · (bi − fi(t+ x̃))− (bj − f(t+ x̃)) = 0

B−1∑
i=0

pi · ti +
m∑
i=1

βi · bi = 0

In this case, if we had set bi := z, then we can solve for z as

z =

m∑
i ̸=j

γi · (bi − fi(t+ x̃)) + f(t+ x̃).

Therefore, A cannot win if it didn’t make the j-th query and there exists (j, fj , σj) ∈ Q. There are now two
cases:

1. f(t + x̃) = fj(t + x̃). Corresponding to the case where σ = σj , but recall that there does not exist
(j, f, ·) ∈ Q, and hence f ̸= fj . In the case where we set t := z, we can solve for z by finding the roots
of

f(z + x̃)− fj(z + x̃) = 0.

2. f(t + x̃) ̸= fj(t + x̃). Corresponding to the case σ ̸= σj . We have a representation of g(bj−f(t+x̃))a in
the basis of (g, gt, . . . , gt

B−1

, {gbi}i∈[m], {g(bi−fi(t+x̃)a)}i∈[m]).

B−1∑
i=0

pi · ti +
m∑
i=1

βi · bi+

m∑
i=1

γi · (bi − fi(t+ x̃))a = (bj − f(t+ x̃))a.
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If
∑m

i=1 γi · (bi − fi(t+ x̃))− (bj − f(t+ x̃)) ̸= 0, then in the case where we set a := z, we can solve for
z as

z =

∑B−1
i=0 pi · ti +

∑m
i=1 βi · bi

(bj − f(t+ x̃))−
∑m

i=1 γi · (bi − fi(t+ x̃))
.

On the other hand, suppose
∑m

i=1 γi · (bi− fi(t+ x̃))− (bj − f(t+ x̃)) = 0. Note that the case where all
γi’s are zero except for γj = 1 cannot occur as this would imply f(t+ x̃) = fj(t+ x̃). In all other cases
we could have set some bi∗ := z, where γi∗ ̸= 0, solved for z.

Hence, E2 must be true if E1 is true =⇒ E2 is true.

Case E1 ∧E2: Here A outputs a com = gfj(t+x̃) that has the representation of a polynomial fj(X) that was
queried, and used the same σ that it received. If we redefine t = τ + x̃, we see that com is a KZG [KZG10]
polynomial commitment to fj and the adversary output a proof π that corresponds to the opening of the
commitment com at the point x̃ to the value 0. Note that querying such a polynomial fj(X) is expressly
forbidden by the oracle. Hence, A violated the KZG binding property, which can then be reduced to solving
(B − 1)-dlog as shown in [CHM+20].

Theorem 5. The protocol in Fig. 2 securely emulates the FbTPKE ideal functionality Fig. 1 in the dealer model
against any static PPT adversary A corrupting up to t < n/2 parties, given any weakly simulation-extractable
NIZK, and provided the i-kzg game (Definition 1) is hard in the programmable random oracle model.

We begin by describing the simulator Sim, who simulated all interactions between the adversary and the
honest parties using only the ideal functionality.

Sim remembers all queries made to the Random Oracle. Unless specified, if the query has not been
previously made, it lazily samples the response and remembers it. If the query has been made previously,
Sim returns the same response.

During the Setup phase, Sim plays the role of the trusted dealer as (i) uses the NIZK simulator to sample
crsNIZK; (ii) samples elements of crsKZG honestly; and (iii) samples random field elements as the corrupt
parties’ shares of the secret key and then sets sk to be a random value. This fully determines the honest
parties’ shares of the secret key, and hence h

[sk]
j∈[n], which Sim publishes. Here, Sim also specifies Γ to be the

distribution of an encryption of a random message, under this public key.
For convenience, we will maintain a list of previously seen receipts for honest party ciphertexts L. Every

time the simulator sees a receipt ct from an honest party, it updates the set as L ← L∪{ct}. When simulating
the Encryption phase, there are two cases:

• Every time an honest party encrypts a message, Sim receives a receipt ct (say) from the ideal function-
ality. If ct ∈ L, Sim aborts. Else, Sim adds ct to L and forwards ct to the adversary.

• For any ciphertext ct = (ct(1), ct(2), ct(3), ct(4), S, x̂,Φ) created by corrupt parties, Sim verifies the NIZK
proof Φ and discards the ciphertext if it fails. Next, it checks whether there exists some ct′ ∈ L
such that H(ct.S) = H(ct′.S) and aborts if so. Otherwise, Sim runs the extractor and receives the
randomness (α, β) used by the adversary to create the ciphertext. Sim then extracts the message as
M = ct(1) ⊕H(e(H(eid) · g−tg, h)α).

Sim receives the entire batch of messages {M1, . . . ,MB} corresponding to the batch of ciphertexts
{ct1, . . . , ctB} that are decrypted in epoch number eid. Now, Sim computes the degree-(B − 1) polyno-
mial p(X) such that {p(i) = tgi}i∈[B], where tgi := HF (cti.S). It then computes com = gp(τ) using crskzg and
sets δ = H(eid)/com. Note that the partial decryptions are fully determined as {σi := δ[sk]i}i∈[B]. Sim can
compute partial decryptions that should have been sent by honest parties using the shares of the secret key
it create during Setup. It then recovers σ = δsk.

Finally, the simulator must program the random oracle to ensure that the simulated honest party ci-
phertexts remain consistent with the messages obtained from the ideal functionality. For every decrypted
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ciphertext cti that came as the receipt for an honest party’s ciphertext, Sim computes the KZG opening proof
πi as described in Fig. 2 and computes e(π, ct(2)i ) · e(δ, ct(3)i ) · e(σ−1, ct(4)i ). If this point has been previously
queried to the random oracle, Sim aborts. Otherwise, it programs the random oracle output to be Mi⊕ ct

(1)
i .

We now describe a sequence of hybrids that are indistinguishable from each other starting from the batch-
decryption protocol in Fig. 2 in the real world and ending in the ideal world where a simulator handles all
interaction between the parties and the ideal functionality.

H0: The real world where the adversary interacts with the honest parties who execute the protocol as
described in Fig. 2.

H1: The simulator emulates the trusted dealer and executes the Setup sub protocol faithfully. For all Ran-
dom Oracle queries made by the adversary, Sim queries the random oracle defined in the protocol and
forwards all responses. This hybrid has an identical distribution to the previous hybrid.

H2: This hybrid is identical to the previous hybrid, except for one change. When a corrupt party creates
a ciphertext, Sim first verifies the NIZK proof and discards the ciphertext if it fails. Additionally, it
maintains a list L of ciphertexts created by honest parties and checks if there exists some ct′ ∈ L such
that H(ct.S) = H(ct′.S) and aborts if so. If both the above checks pass, then Sim runs the extractor to
obtain the randomness (α, β) used by the adversary to create the ciphertext. Sim can then extract the
message as M = ct(1) ⊕H(e(HG(eid) · g−tg, h)α).
We will now argue that Sim aborts with negligible probability. From the knowledge soundness property
of the NIZK proof, if the proof verifies, then the statement must be true, and the adversary knows s such
that ct.S = gs, except with negligible probability. Furthermore, we have that HF (ct.S) = HF (ct

′.S).
This implies that either (i) ct.S = ct′.S, or (ii) the adversary has found a collision for the random
oracle, which occurs with negligible probability by definition. In the former case, we can use this
adversary to solve the discrete logarithm problem.

The reduction embeds the challenge instance from the discrete logarithm game as the S component
of some ciphertext created by honest parties. To generate the proof for this ciphertext, we can run
SimProve. Since S is a randomly chosen group element in the batch-threshold encryption protocol,
the distributions are computationally indistinguishable. With noticeable probability, the adversary will
create a ciphertext with the same S as the challenge instance. By running the extractor, we can compute
s = dlog(S) and hence solve the discrete logarithm problem. Hence, ct.S ̸= ct′.S with overwhelming
probability which implies Sim aborts with negligible probability. Thus, this hybrid is computationally
indistinguishable from the previous hybrid.

H3: In this hybrid, Sim begins to program the output of the random oracle as follows. For each eid, Sim
samples a random field element beid and sets HG(eid) = gbeid . For all other queries, Sim lazily samples a
response to the random oracle query. This hybrid has an identical distribution to the previous hybrid.

H4: This hybrid is identical to the previous hybrid, except Sim aborts when A queries the random oracle on
a bad point which allows it to break the semantic security of honest party ciphertexts.

More formally, for each ciphertext ct created by an honest party for epoch eid, let (α, β) denote the
randomness used to create the ciphertext and define Pct = e(HG(eid) · g−tg, h)α, where tg = HF (ct.S).
Let Beid = {ct1, . . . , ctB} denote the batch of ciphertexts that are decrypted in epoch number eid. If
a batch decryption for that particular epoch has not occurred yet, then we set Beid = ∅. We can then
define the set Peid = {Pct | ct ∈ Leid \ Beid}, where Leid is the set of honest party ciphertexts encrypted
to epoch eid. If A queries the random oracle at any point in Peid, Sim aborts. We will now argue that
Sim aborts with negligible probability.

Claim 6. If the i-kzg game (Definition 1) is hard, then for all PPT adversaries A, and any epoch eid,
Pr[A → p | p ∈ Peid] ≤ negl(λ).
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Proof. Suppose there exists an adversary A corrupting up to t < n/2 committee members and an arbi-
trary number of users. If A queries a point p ∈ Peid, for any epoch eid with non-negligible probability,
then we can useA to construct Sim′ that wins the i-kzg game with non-negligible probability. The high-
level idea is to embed the instance from the i-kzg game in a randomly chosen ciphertext c̃t created by
an honest party. With some non-negligible probability, A will query the point Pc̃t corresponding to c̃t,
as there are a polynomial (in security parameter) number of epochs and ciphertexts. We will then use
Pc̃t to produce a winning output in the i-kzg game. We now describe Sim′.

Let the challenge instance in the i-kzg game be

(x̃, g, gt, gt
2

, . . . , gt
B

, {gbi }i∈[m], h, h
t, ha, hv, htu, hu+av),

with access to an oracle Oa,t,x̃,{bi}i∈[m] and let C be the set of committee members corrupted by the
adversary.

During setup, Sim′ sets τ = t + x̃. It can then compute crskzg = (g, gτ , . . . , gτ
B

, h, hτ ) using linear
operations over (g, gt, gt

2

, . . . , gt
B

, h, ht). Sim′ sets the public key of the committee to be ha, and
samples random values {[a]i}i∈C for the shares of corrupt parties. Also note that ha and {h[a]i}i∈C , can
be used to compute {h[a]i}i∈[n]\C using linear interpolation such that {[a]i}i∈[n] forms a (t, n)-secret
sharing of a. Finally, Sim′ runs the setup for NIZK and publishes {crsKZG, crsNIZK, {h[a]i}i∈[n]} and
sends {[a]i}i∈C to the corrupt parties.

LetM be the space of messages. Sim′ samples s←$ F and computes S ← gs. It then sets c̃t to be:

• c̃t
(1) ←$ {0, 1}|M|

• c̃t
(2)

:= htu

• c̃t
(3)

:= hu+av

• c̃t
(4)

:= hv

• S

• x̃

• Φ̃ = NIZK.SimProve{α, β, s | S = gs ∧ ct(1) ∧ ct(2) = hα(τ−x̃) ∧ ct(3) = hαpkβ ∧ ct(4) = hβ}

By defining α := u, β := v, it is easy to see that the statement Φ attests to is indeed in the language,
but Sim′ does not know the witness values α, β and hence simulates the proof.

Let C(λ) be an upper bound on the number of honest party ciphertexts the adversary sees, which
depends on the run time of the adversary. Sim′ samples j ←$ [C(λ)] and replaces the j-th ciphertext
created by an honest party with c̃t.

For random oracle queries of the form HG(eid), where eid is the epoch id, Sim′ sets HG(eid) = gbeid+t̃g,
where t̃g ← HF (c̃t.S). We choose m large enough, based on the run time of the adversary, to ensure
Sim′ can respond to all queries.

For each batch decryption, Sim′ simulates partial decryptions as follows. Let Beid = {ct1, ct2, . . . , ctB}
be the set of ciphertexts that are decrypted in epoch eid. If c̃t ∈ Beid, then Sim′ aborts and restarts
A. Now, Sim′ queries the oracle as Oa,t,x̃,{bi}i∈[m](eid, feid(X) − t̃g), where feid(X) is the degree-
(B − 1) polynomial such that feid(cti.x̂) = tgi, where tgi = HF (cti.S). In response, it receives
σ := (H(eid)/gfeid(t+x̃))a = (gbeid+t̃g−feid(τ))a. Note that it could have also received ⊥ if feid(x̃) = t̃g, but
this can only happen in two cases i) c̃t was included in Beid or ii) the adversary created a ciphertext ct∗

such that HF (ct
∗.S) = HF (c̃t.S). In the former case, Sim′ would have already aborted and restarted

A. The latter case occurs with negligible probability, as argued in earlier hybrids. Hence, Sim′ does
not receive ⊥, except with a negligible probability. Sim′ can now simulate all partial decryptions in a
straightforward manner using {[a]i}i∈C .
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If A terminates before Sim′ has replaced a ciphertext, then Sim′ restarts A and tries again. If Sim′

manages to replace a ciphertext before A terminates, then Sim′ randomly samples one of the queries
made by A to the random oracle and outputs it as the response to the i-kzg game. This is a winning
output with non-negligible probability, as the adversary has queried a point in Peid with non-negligible
probability. Thus, Sim′ wins the i-kzg game with non-negligible probability, which contradicts the
hardness of the i-kzg game.

From Claim 6 Sim aborts with negligible probability provided the i-kzg game is hard. Thus, this hybrid
is computationally indistinguishable from the previous hybrid.

H5: This hybrid is identical to the previous hybrid, except Sim now simulates all honest party ciphertexts
as described in the previous hybrid. When an honest party’s ciphertext c̃t is included in the batch
of ciphertexts decrypted in that epoch, Sim programs the random oracle output to be M̃ ⊕ c̃t.ct(1),
where M̃ is the message the honest party received as input. The distribution of simulated honest
party ciphertexts c̃t is identical to the distribution of honestly generated ciphertexts, provided the point
Pc̃t is never queried by the adversary. Using a similar argument as in the previous hybrid, A queries
such points with negligible probability. Thus, this hybrid is computationally indistinguishable from the
previous hybrid.

H6: This hybrid is identical to the previous hybrid, except Sim computes the point to program using a
different strategy. Recall that in previous hybrids Sim controlled honest parties and hence has access
to the randomness used to create ciphertexts. In this hybrid, Sim uses its knowledge of the secret
key to simulate partial decryptions by faithfully following the protocol. This hybrid has an identical
distribution to the previous hybrid.

H7: In the final hybrid, Sim does not control any honest parties and only handles interaction between
the ideal functionality and the adversary. During setup Sim runs the setup sub-protocol from Fig. 2
faithfully to, and specifies the distribution Γ to be the encryption of a randomly chosen message under
the resulting public key. Instead of simulating honest party ciphertexts as in previous hybrids, it simply
forwards the receipts from the ideal functionality to the adversary. During batch decryption, Sim
receives the messages corresponding to the batch of ciphertexts. Here it programs the random oracle
after receiving the messages as described in previous hybrids.
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