
Black-Box Non-Interactive Zero Knowledge
from Vector Trapdoor Hash

Pedro Branco
Bocconi

Arka Rai Choudhuri
Nexus

Nico Döttling
CISPA

Abhishek Jain
NTT Research and JHU

Giulio Malavolta
Bocconi

Akshayaram Srinivasan
University of Toronto

Abstract

We present a new approach for constructing non-interactive zero-knowledge (NIZK) proof
systems from vector trapdoor hashing (VTDH) – a generalization of trapdoor hashing [Döttling et
al., Crypto’19]. Unlike prior applications of trapdoor hash to NIZKs, we use VTDH to realize the
hidden bits model [Feige-Lapidot-Shamir, FOCS’90] leading to black-box constructions of NIZKs.
This approach gives us the following new results:

– A statistically-sound NIZK proof system based on the hardness of decisional Diffie-Hellman
(DDH) and learning parity with noise (LPN) over finite fields with inverse polynomial noise
rate. This gives the first statistically sound NIZK proof system that is not based on either
LWE, or bilinear maps, or factoring.

– A dual-mode NIZK satisfying statistical zero-knowledge in the common random string mode
and statistical soundness in the common reference string mode assuming the hardness of
learning with errors (LWE) with polynomial modulus-to-noise ratio. This gives the first black-
box construction of such a dual-mode NIZK under LWE. This improves the recent work of
Waters (STOC’24) which relied on LWE with super-polynomial modulus-to-noise ratio and
required a setup phase with private coins.

The above constructions are black-box and satisfy single-theorem zero-knowledge property. Build-
ing on the works of Feige et al.(FOCS’90) and Fischlin and Rohrback (PKC’21), we upgrade these
constructions (under the same assumptions) to satisfy multi-theorem zero-knowledge property at
the expense of making non-black-box use of cryptography.

1

Contents

1 Introduction 3
1.1 Our Results . 4

2 Technical Overview 5
2.1 Vector Trapdoor Hash . 5
2.2 Recasting [Wat24] as a Vector Trapdoor Hash . 6
2.3 New Construction from Learning with Errors . 8
2.4 Construction from DDH+LPN . 10

3 Preliminaries 13
3.1 Resilient Functions . 14
3.2 Hardness Assumptions . 15

3.2.1 Learning with Errors . 15
3.2.2 Decisional Diffie-Hellman . 16
3.2.3 Learning Parity with Noise . 16

3.3 NIZKs in Hiddent Bit Model . 17
3.4 Hidden-Bits Generator . 17

4 Vector Trapdoor Hash 21
4.1 Vector Trapdoor Hash Imply Hidden Bits Generators 23

5 Vector Trapdoor Hash from LWE 24
5.1 Completeness . 25
5.2 Pseudorandomness of Hashing and Encoding Keys . 26
5.3 Statistical Hiding . 27
5.4 Statistical Binding . 27
5.5 Setting the Parameters . 29

6 Vector Trapdoor Hash from DDH and LPN 29
6.1 Hiding . 32
6.2 Statistical Binding . 37

A Blockwise Resilient Function 45

B Designated-Verifier Vector Trapdoor Hash from DDH 45
B.1 Hiding . 46
B.2 Statistical Binding . 48

1 Introduction

Zero-knowledge (ZK) proofs [GMR85] allow a prover to convince a verifier about the truthfulness
of a claim without leaking any other information. ZK proofs were originally envisioned as inter-
active protocols where the prover and the verifier exchange multiple messages with each other.
Subsequently, ZK proofs were studied in the more challenging non-interactive setting, where much
like standard mathematical proofs, the prover publishes a single message that can be verified by
anyone. To bypass trivial impossibility results in this setting, the prover and the verifier are given
access to a common reference string (CRS) sampled from some distribution. This notion is referred
to as non-interactive zero knowledge (NIZK) [DMP88, BFM88, FLS90] and is central to the popularity
of ZK.

While interactive ZK proofs for NP are long known to exist from one-way functions [GMW87],
NIZKs have proven to be significantly harder to construct even from number-theoretic assump-
tions.1 The celebrated work of Feige, Lapidot and Shamir [FLS90] proposed the first general ap-
proach to constructing NIZKs. Their approach involves two steps: first, unconditionally-secure
NIZKs are constructed in an idealized model referred to as the hidden bits model where the prover
has access to a large private random string and can choose to selectively reveal certain bits of the
string to the verifier. The second step involves a generic transformation from NIZKs in the hidden
bits model to NIZKs in the CRS model using a cryptographic object called hidden bits generator
(HBG) [QRW19].2 In the same work, [FLS90] gave the first construction of HBG based on certified
trapdoor permutations which can be instantiated from the RSA assumption. More than a decade
later, [CHK03, GOS06b, GOS06a] proposed instantiations based on bilinear maps. Constructions of
NIZKs from other standard assumptions known to imply public-key encryption, however, curiously
remained elusive for another decade.

In the late 2010s, researchers started to propose a new generation of NIZKs via the frame-
work of correlation intractable hash (CIH) [CGH04]. Informally speaking, CIH is a family of keyed
hash functions that allow for securely instantiating the Fiat-Shamir paradigm [FS87] for round-
collapsing interactive proofs into non-interactive proof systems. Over the last five years, this frame-
work has proven to be remarkably fruitful [CCRR18, HL18, CCH+19, PS19, CKU20, BKM20, JJ21,
DJJ24] leading to the first constructions of NIZKs from the learning with errors (LWE) assump-
tion [CCH+19, PS19], the joint hardness of decisional Diffie-Hellman (DDH) and learning parity
with noise (LPN) assumptions [BKM20], the sub-exponential DDH assumption [JJ21], and more
recently, the joint hardness of LPN and multivariate quadratic assumption [DJJ24]. Overall, this
line of work has significantly reduced the gaps in our understanding about the existence of NIZKs.

Conceptually, the above two approaches to NIZKs, namely, HBG and CIH, are quite different.
The latter approach, so far, has required powerful homomorphism techniques for realizing NIZKs
from LWE [CCH+19, PS19] and sub-exponential DDH [JJ21], or the seemingly unique low-depth
decryption property of LPN-based encryption [BKM20, DJJ24]. It is natural to ask whether such spe-
cialized techniques are necessary for constructing NIZKs (from the aforementioned assumptions), or
whether it is possible to obtain simpler constructions. Furthermore, all NIZK constructions achieved
via the CIH framework inherently require non-black-box use of cryptography.3 This poses a signif-

1In the Random Oracle model, NIZKs are known to exist unconditionally.
2This notion was implicit in [FLS90], but was first formalized in [QRW19]. See also [GO93] for the related notion of

invariant signatures.
3In particular, current constructions require computation of the decryption algorithm of a public-key encryption scheme

inside another cryptographic primitive.

3

icant barrier to the practical viability of NIZK constructions obtained via this approach. The HBG
approach, in contrast, does not seem to pose such a barrier. Thus, achieving new instantiations of
HBG is well-motivated from both theoretical and practical perspective.

A recent beautiful work of Waters [Wat24] tackled this challenge and presented a new con-
struction of HBG from LWE with super-polynomial modulus-to-noise ratio. This, in turn, yields a
black-box construction of NIZK satisfying single-theorem zero-knowledge property from the same
assumption. Notably, his construction does not rely on homomorphic encryption techniques, thus
seemingly opening a new door to simpler constructions of NIZKs. However, his construction cru-
cially relies on lattice trapdoors; as such, the generality of the underlying ideas towards constructing
HBG from other assumptions or the necessity of lattice trapdoors remain unclear.

1.1 Our Results

We provide a general approach for realizing the hidden bits generator (HBG) via a new notion
called vector trapdoor hash (VTDH). Vector trapdoor hash generalizes the previously studied notion
of trapdoor hash (TDH) [DGI+19]. Trapdoor hash was used in recent works [BKM20, JJ21, DJJ24]
to build NIZKs via the correlation intractability framework. As discussed earlier, however, this
framework inherently makes non-black-box use of cryptography. Our approach, in contrast, yields
black-box constructions (in the single-theorem zero-knowledge setting).

We give two instantiations of our approach. Some of the properties achieved by our construc-
tions (highlighted below) were not known previously even via non-black-box techniques.

1. Construction from DDH+LPN. We give the first construction of HBG based on the hard-
ness of DDH and LPN over finite fields with inverse polynomial noise rate. This gives the
first construction of NIZK (black-box or non-black-box) satisfying statistical soundness with-
out relying on LWE, or bilinear maps, or factoring. In contrast, the construction of Brakerski
et al. [BKM20] based on correlation intractability (and hence, non-black-box) could only
achieve computational soundness. The single-theorem zero-knowledge version of our con-
struction makes black-box use of cryptography. By relying on the transformation in [FLS90],
we get a multi-theorem version at the expense of making non-black-box use of a PRG.

2. Construction from LWE. We give a new construction of HBG with a transparent setup phase
based on LWE with polynomial modulus-to-noise ratio. The recent construction of Waters
[Wat24] relies on LWE with super-polynomial modulus-to-noise ratio and a non-transparent
setup that uses private coins. Our construction has a dual-mode property, yieldings NIZKs
that achieve statistical single-theorem zero-knowledge property in the common random string
mode and statistical soundness in the common reference string mode. This gives the first
black-box construction of such a dual-mode NIZK, matching the non-black-box construction
of Peikert and Shiehian [PS19] in terms of assumptions. An interesting aspect of our work
is that the construction and the proof of security do not rely on lattice trapdoors [GPV08],
which were crucially employed in [Wat24].

The transformation in [FLS90] from single-theorem to multi-theorem ZK does not preserve
statistical zero-knowledge property in the common random string model. Building on the
work of Fischlin and Rohrback [FR21], we give a single-theorem to multi-theorem transfor-
mation in the common random string model that preserves statistical zero-knowledge prop-
erty assuming LWE. As in the [FLS90] transformation, this too makes non-black-box use of
cryptography.

4

To show the versatility of our framework, in Appendix B, we show that Libert et al.’s construc-
tion [LPWW20] of NIZK in the designated verifier setting can be viewed in the framework of vector
trapdoor hash.

2 Technical Overview

In this section, we give an overview of our constructions of vector trapdoor hash (VTDH). We begin
with giving an overview of this new notion and how it implies hiddent bits generator (HBG) in
Section 2.1. In Section 2.2, we give our construction from LWE. This construction has the advantage
of having a transparent setup and its security can be based on LWE with polynomial modulus-to-
noise ratio. In Section 2.4, we provide another construction whose security relies on the DDH and
the LPN assumptions.

2.1 Vector Trapdoor Hash

Let us first recall the standard definition of a trapdoor hash function [DGI+19]. It consists of a stan-
dard (keyed) hash function Hash(hk,x)→ h, augmented with the following additional algorithms:

– A key generation algorithm Gen that generates an encoding key ek along with a trapdoor td,
on input a linear function f .

– An encoding algorithm Encode that uses the key ek to encode the input x, returning an en-
coding e.

– A decoding algorithm Decode that, given the trapdoor td and the hash h generates a decoding
d.

The fundamental property of a trapdoor hash is that e − d = f(x), and furthermore the encoding
key should not leak any information about the function f .

Vector Trapdoor Hash. In this work we consider a generalization of trapdoor hash functions, that
we refer to a vector trapdoor hash (VTDH) functions, with a few syntactical differences:

1. Setup. The setup phase takes as input the security parameter and another parameter k which
denotes the number of encoding keys to be produced. We will only consider encoding keys
for the zero function. As a result, the setup phase will output the hashing key hk along with k
sets of encoding keys ek1, . . . , ekk and trapdoors td1, . . . , tdk.

2. Local openings. The hashing algorithm now takes in a block vector x = (x1, . . . ,xk) as input.
We require the hashing algorithm to output the digest h, along with k local openings πi, one
for each block of the input x. We remark that the idea of local opening used here is slightly
different from the traditional notion which gives a short proof that the i-th block is equal to
xi. We consider a more general notion where a valid local opening is anything that passes the
following verification test.

3. Verification. We also consider a verification algorithm Verify that determines the validity of
each local opening πi, given the hash digest h and the key hk.

5

4. Encoding and Decoding. The encoding algorithm takes in an encoding key eki and the cor-
responding local opening πi and produces and encoding bit ei. The decoding algorithm takes
in the hash digest h and a trapdoor tdi and outputs the decoding bit di. As we only consider
the zero function, it follows that ei = di for each i ∈ [k] if they are honestly computed.

Completeness states that, for a honestly generated hash and local proofs, the verification always
succeeds. For succinctness, we require that the size of the hash digest to be a fixed polynomial in
the security parameter λ. As for security, we formalize two properties:

1. Hiding. For any index i∗ ∈ [k], Encode(eki∗ , πi∗) is pseudorandom even given all other local
openings {πj}j ̸=i∗ .

2. Statistical binding. No adversary (even an unbounded one) should be able to compute a
hash h, along with local openings π1, . . . , , πk such that the number of indices i for which
Encode(eki, πi) ̸= Decode(tdi, h) is more than kϵ for a universal ϵ < 1. In other words, we
allow for binding error in a small number of positions.

HBG from VDTH. A hidden bits generator consists of a setup phase that outputs a common ref-
erence string crs, a hidden bit generation phase that takes in the crs and outputs a commitment
com, k bits e1, . . . , ek along with proofs π1, . . . , πk, and a verification phase that takes in crs, com,
(ei, πi) and either accepts or rejects the proof. We require this to satisfy two properties: hiding and
binding. The hiding property requires that ei∗ is pseudorandom even given com and {πj}j ̸=i∗ . The
binding property requires that each crs is associated with a set V crs of k bit strings such that any
prover can only open to one of the strings in this set by giving valid proofs. Crucially, we require
the size of this set to at most 2k

ν

for some universal constant ν < 1.
The transformation from VTDH to HBG is quite natural. The CRS of the HBG will be composed

by the VDTH hash key hk and encoding keys {eki}i∈[k] for each of the indices. The prover samples a
random block vector x = (x1, . . . ,xk) and hashes it to obtain the digest h and the k local openings
π1, . . . , πk. The digest h will be the HBG commitment, whereas the proofs will be the local openings.
The i-th hidden bit is computed as ei = Encode(eki, πi). Finally, given a proof πi the verifier checks
if this corresponds to a local opening with respect to the hash value h using Verify and checks if
ei = Encode(eki, πi).

The completeness and the hiding properties of HBG follow directly from the completeness and
the hiding properties of VTDH. To prove binding, we need to show that for a randomly sampled
CRS, the number of possible strings that a corrupted prover could open to is at most 2k

ν

for a
universal constant ν < 1. Note that for a fixed CRS of the HBG and a hash digest h, the set of
decoded bits (d1, . . . , dk) is fixed. The statistical binding property of VTDH states that the prover
cannot open to (e1, . . . , ek) such that the number of positions i ∈ [k] where ei ̸= di is more than kϵ.
This means that the set of strings that can be opened by any prover is within the Hamming ball of
radius kϵ centered at (d1, . . . , dk). We show that the number of possible strings within this ball is at
most 2k

µ

for some constant 1 > µ > ϵ. Now, from the succinctness property of VTDH, the set of all
possible hash digests is at most 2poly(λ). Thus, the set of all possible strings that a prover can open
to is bounded by 2poly(λ) · 2kµ

< 2k
ν

for a universal constant ν < 1.

2.2 Recasting [Wat24] as a Vector Trapdoor Hash

Let us first explain how the recent construction of Hidden Bit Generator (HBG) from LWE due to
Waters [Wat24] can be adapted to give a vector trapdoor hash. For the sake of explaining the core

6

idea, we start with a simplified construction which doesn’t satisfy the binding property. We will
later explain how to add this property.

The hashing key hk comprises of a random LWE matrices A,B1, . . . ,Bk along with discrete
Gaussian matrices W1, . . . ,Wk such that BiWi = A for each i ∈ [k].4 This can be sampled by
first sampling a random LWE matrix A, then sampling matrices Bi along with their trapdoor, and
then using the trapdoor to sample Wi from the conditional discrete Gaussian distribution [GPV08].
Without going into the actual dimensions of these matrices, we would like to remark that the
number of rows in Bi is equal to the security parameter λ and the number of columns in A and
each Wi is k ·poly(λ) times the number of rows. The i-th encoding key eki is a random LWE sample
sTi Bi + eTi and the trapdoor tdi is the LWE secret si. This completes the description of the setup
phase.

The hashing algorithm on input a binary vector x sets the hash h to be Ax and the i-th local
opening πi to be Wix. Note that Wi is sampled according to the discrete Gaussian distribution and
hence, each entry of Wi is small with overwhelming probability. Therefore, πi = Wix is “short” as
x is binary. The verification of the local opening simply checks if πi is “short” and if Biπi = h. The
encode algorithm computes ⌈ekiπi⌋2. The decode algorithm takes in the hash h and the trapdoor si
and outputs ⌈sTi h⌋2.

The correctness of the verification procedure and the succinctness property follow directly
from the construction. The proof of hiding given in [Wat24] relies on LWE with super polyno-
mial modulus-to-noise ratio. Here, we present a different proof which only relies on polynomial
modulus-to-noise ratio. But as we will see later, the proof of correctness in [Wat24] still requires
a super polynomial modulus-to-noise ratio and we require new techniques to overcome this limita-
tion.

Let us now explain the new proof of hiding. Consider the following modified procedure for
sampling the hashing key hk. In this modified procedure, we first sample random LWE matrix Bi∗

without its trapdoor and a random discrete Gaussian matrix Wi∗ . We set A = Bi∗Wi∗ . For all i ̸=
i∗, we sample Bi along with the trapdoor. We then reverse sample Wi from the discrete Gaussian
distribution conditioned on BiWi = A using the trapdoor for Bi. The output of the modified
sampling procedure is statistically close to the original output from standard properties of sampling
from conditional discrete Gaussian distribution [GPV08]. This modified sampling procedure allows
to replace eki∗ with a randomly sampled vector under the LWE assumption. To complete the hiding
argument, observe that we can view the hash h and {πi}i ̸=i∗ as “leakage” on randomly chosen
binary vector x. If the length of x is large enough, then x has high min-entropy conditioned on
this leakage. This follows since the number of columns in A and Wi is k · poly(λ) factor more
than the number of rows. Observe that eki∗πi∗ = eki∗Wi∗xi∗ = uT

i∗xi∗ where the distribution of
ui∗ is statistically close to uniform.5 We can now use leftover hash lemma to show that uT

i∗xi∗ is
statistically close to random.

At a high-level, one would expect the binding property to follow from the fact that both eTi and
πi are short. In a bit more detail, ⌈ekiπi⌋2 = ⌈(sTi Bi + eTi)Wix⌋2 = ⌈sTi h + eTi πi⌋2 = ⌈sTi h⌋2.
However, this might not hold for an adversarially sampled πi. To fix this, [Wat24] introduces
an additional check as part of the verification procedure. Specifically, [Wat24] has an additional
parameter called the RoundingBound and checks if ⌈ekiπi−RoundingBound⌋2

?
= ⌈ekiπi⌋2

?
= ⌈ekiπi+

RoundingBound⌋2. This RoundingBound is chosen to be larger than the maximum absolute value that
eTi πi can take. If this check holds, then ⌈sTi h⌋2 = ⌈ekiπi − eTi πi⌋2 = ⌈ekiπi ± RoundingBound⌋2 =

4We slightly modify the notation here from [Wat24] for consistency within our work.
5This can be proved using one more application of the conditional discrete Gaussian sampling property [GPV08].

7

⌈ekiπi⌋2.
While the above fixes the issue with binding, it introduces an additional correctness error as

honestly computed πi might not satisfy this additional rounding check. To mitigate this, [Wat24]
introduces an additional randomly chosen element di as part of the encoding key and sets the
output of encode to be ⌈ekiπi + di⌋2 and that of decode to be ⌈sTi h+ di⌋2. If the modulus p is super
polynomial factor more than the noise bound, it follows that a randomly chosen di will make the
rounding check pass with overwhelming probability.

Drawbacks. The above [Wat24] construction suffers from a couple of drawbacks.

– Firstly, it requires the LWE modulus to be a super-polynomial factor more than the noise
bound for the correctness to hold.

– Secondly, the hashing key has a publicly testable structure. Specifically, one can test whether
BiWi = A for each i ∈ [k]. Intuitively, we can think of this structure in terms of k-sided
star graph. The center of the star is the matrix A and the k other nodes are labeled with
B1, . . . ,Bk. The k edges are labeled with W1, . . . ,Wk respectively. This structure intuitively
captures the relation that BiWi = A for every i ∈ [k].

This star structure is quite crucial in the construction. Specifically, it allows us to connect the
“short” hash given by Ax with the k local openings given by W1x, . . . ,Wkx. This connection
is used in the proof of binding. It also allows us to replace a single eki∗ with uniformly chosen
random string by “programming” one edge and sampling the other edges conditioned on this
edge.

Relying on polynomial modulus-to-noise ratio. We observe that the first drawback is relatively
easy to fix. If the modulus is only a polynomial factor more than the noise bound, we get an inverse
polynomial probability of error in the correctness. Importantly, we can set this inverse polynomial
error parameter arbitrarily. This allows us to union bound over all indices i ∈ [k] and still argue that
the probability that there exists an index i ∈ [k] such that the correctness error comes up in that
index is inverse polynomial. Thus, we can sample several sets of d1, . . . , dk. It follows that there
exists at least one set with overwhelming probability such that the correctness error does not occur
in that set. This set can be efficiently found and we can give the identity of this set as part of the
hash. This allows us to obtain a construction whose security can be based on LWE with polynomial
modulus-to-noise ratio.

However, overcoming the second drawback is more involved, and we discuss this next.

2.3 New Construction from Learning with Errors

We will now describe the ideas behind our new LWE-based instantiation.

Hashing and encoding keys. We give a new approach to remove the star structure in the hashing
key. Specifically, our hashing key has the structure of k-matching. The end of points of the i-th edge
in the matching are given by Bi,Ai and the edge is labeled with Wi. For each i ∈ [k], we have
BiWi = Ai. However, without the star structure it is unclear how to even define the hash and the
local openings while ensuring the succinctness property. Let us explain how we do it.

8

To create a hashing key hk we first sample uniform matrices

B1, . . . ,Bk,A1, . . . ,Ak

along with uniformly chosen binary matrices W1, . . . ,Wk such that BiWi = Ai for each i ∈ [k].
This can be efficiently done by first sampling Bi and Wi and setting Ai = BiWi. Here, the
number of rows in each Bi is the security parameter. Note that in the [Wat24] construction, it was
crucial that Wi were sampled from the discrete Gaussian distribution. Here, we do not place such
restrictions and looking ahead, we do not even employ lattice trapdoors in the construction or in
the proof of security.

To create the i-th encoding key eki we first sample a LWE secret si and set vi = (vi,1∥ . . . ∥vi,k)
where

– vT
i,j = sTi Bj + eTi,j where eTi,j is a short error vector, for all j ̸= i.

– vT
i,i = sTi Ai + eTi,iWi + ẽTi,i where eTi,i and ẽTi,i are short error vectors.

The hash key, encoding keys and trapdoors are given by

hk = {Bi,Wi}i∈[k] and eki = vi and tdi = si.

We first argue that the distribution of (hk, {eki}i∈[n]) is pseudorandom under the LWE assump-
tion, without using any lattice trapdoors. Note that it is enough to show that all vi are indistinguish-
able from uniform vectors as Bi,Wi are uniformly distributed. To show that vi is pseudorandom,
we first replace all vi,j with uniform vectors, for j ̸= i, and vi,i by uTWi+ ẽTi,i where u is uniformly
chosen. This change goes unnoticed assuming that LWE is hard since(

{sTi Bj + eTi,j}j ̸=i, s
T
i Ai + eTi,iWi + ẽTi,i

)
=

(
{sTi Bj + eTi,j}j ̸=i, (s

T
i Bi + eTi,i)Wi + ẽTi,i

)
≈c

(
{uj}j ̸=i,u

TWi + ẽTi,i
)

(assuming LWE)

where {uj}j ̸=i and u are uniformly chosen. And finally, we replace uTWi+ ẽTi,i with uniform under
the LWE assumption with binary LWE matrices [BLMR13].

Hash, Encoding, and Decoding. The hashing algorithm takes in k binary vectors x1, . . . ,xk and
the hash h is defined as

∑
i Aixi. h is thus a vector with λ rows, and thus the size of h is poly(λ)

ensuring that the scheme is succinct.
The i-th local opening is given by

πi = [W1x1∥ . . . ∥Wi−1xi−1∥xi∥Wi+1xi+1∥ . . . ∥Wkxk].

In other words, we provide xi in the clear in the i-th position and for every other position j ∈ [k], we
provide Wjxj . The encoding and the decoding procedures are same as before. Namely, encoding
is computed as ei = ⌈vT

i πi⌋2 and decoding as di = ⌈sTi h⌋2. Finally, the verification checks if (1) πi

is “short”; and (2) Ciπi
?
= h, where Ci = [B1∥ . . . ∥Bi−1∥Ai∥Bi+1∥ . . . ∥Bk]

9

Hiding and statistical binding. To argue that the scheme satisfies hiding at index i∗, we first
switch the encoding key eki∗ to a uniformly chosen string vi∗ arguing indistinguishability using the
same argument as above, under the LWE assumption. Now, we view Wi∗xi∗ as the leakage on
xi∗ .6 Since xi∗ is uniformly chosen, it has high min-entropy conditioned on this leakage. We can
now rely on leftover hash lemma to show that ⌈vT

i∗πi∗⌋2 is uniformly distributed from the fact that
vT
i∗,i∗xi∗ is uniformly distributed.

Finally, we sketch how to prove statistical binding. Since we want the modulus q to be polyno-
mial, we will have to employ a different strategy than the one in [Wat24].

First, note that if verification passes then Ciπi = h and π is short. This means that for all i ∈ [k]

ei = ⌈vT
i πi⌋2 = ⌈(sTi Ci + fTi)πi⌋2 = ⌈sTi h+ e∗i

T ⌋2

where fi = (ei,1∥ . . . ∥ei,iWi + ẽi,i∥ . . . ∥ei,k) and {ei,j}j∈[k] and ẽi,i are short vectors of norm at
most B. On the other hand di = ⌈sTi h⌋2. We have that ei = di iff sTi h is not in the set BadB , which
represents the set of elements close (i.e. at a distance B) of the rounding bound. When sTi h ∈ BadB
we cannot guarantee ei = di, i.e., there might be a binding error.

Second, recall that the definition of VTDH already allows for a sublinear number of binding errors.
Hence, we just have to show that the probability that a hash value h exists for which there are more
than kϵ binding errors is negligible over the random choice of hk, {eki}i∈[k], for some ϵ > 0. To
prove this, fix an hash value h. Then for an appropriate choice of parameters, there is a small
probability (but still inverse polynomial) of sTi h ∈ BadB .7 Applying a Chernoff bound, we can
make the probability of “having more than kϵ indices i such that sTi h ∈ Bad” to be negligible in k.
Finally, we can union bound over all possible choices of h. The resulting probability is negligible in
k as long as k >> |h|. This analysis is similar to [Wat24, Appendix B].

2.4 Construction from DDH+LPN

In this subsection, we give our construction of vector trapdoor hash from DDH+LPN. We start with
a natural adaptation of the LWE-based solution given above to the DDH setting and explain why
it fails to satisfy hiding. We will later use LPN to fix the issue. However, this introduces several
additional problems in proving binding and we finally explain how to overcome these issues.

Natural Attempt. Let us first consider the following adaptation of the LWE-based solution to
the DDH setting. The hash key hk consists of gB1 , . . . , gBk where each Bi is randomly sam-
pled from Zp and randomly chosen compressing matrices W1, . . . ,Wk in Zp. We define Ai =

BiWi. The i-th encoding key is given by eki = gs
T
i Ci where si is randomly sampled and Ci =

[B1∥ . . . ∥Bi−1∥Ai∥Bi+1∥ . . . ∥Bk]. The trapdoor tdi = si.
The hashing algorithm takes in k binary vectors x1, . . . ,xk and the hash h is defined as g

∑
i Aixi .

6Note that given this leakage, the hash value
∑

i Aixi can be efficiently computed.
7For simplicity, in this overview, we assume that the modulus q is prime. Thus, we can use LHL to show that sTi h is

uniform over Zq , over the random choice of si. In the main body, we show how to deal with arbitrary modulus.

10

The i-th local opening is given by

πi =



W1x1

...
Wi−1xi−1

xi

Wi+1xi+1

...
Wkxk


The verification checks if gCiπi

?
= h. The encode procedure outputs the first bit of gs

T
i Ciπi . The

decode procedure outputs the first bit of gs
T
i

∑
i Aixi .8

The correctness, succinctness, and the binding properties follow directly from the construction.
Unfortunately, this construction does not satisfy hiding. Specifically, as Wi is compressing, the
adversary can compute another matrix Vi such that WiVi is the identity. It follows that AiVi = Bi.
The adversary can use this relation to compute gs

T
i [B1∥...∥Bk] from gs

T
i Ci . Given this, the i-th hidden

bit is given by gs
T
i [B1∥...∥Bk]·X where X =

W1x1

...
Wkxk

. Note that the adversary can obtain X from

the other local openings.

LPN to the rescue. We now slightly modify the construction and additionally rely on LPN over
finite fields to make the hiding proof to go through. However, this will introduce additional issues
in proving binding. We will later explain how to overcome these issues.

We make two modifications to the above construction. First, instead of setting the i-th encoding
key eki as gs

T
i Ci , we do the following. We first sample an LPN error vector fTi whose dimension is

same as the number of columns in Ai. We then set eTi to be a vector of same dimension as sTi Ci

such that it has fTi in the i-th slot and zeroes everywhere else. We set eki to be gs
T
i Ci+eT

i . This
implies that eki will be equal to g[s

T
i B1∥...∥sTi Bi−1∥sTi BiWi+fTi ∥s

T
i Bi+1∥...∥sTi Bk]. Second, we sample

x1, . . . ,xk from the LPN error distribution instead of sampling them uniformly at random.
We now explain how we can show hiding with this modification. Note that the i∗-th encoding

key eki∗ can be generated as gs
T
i∗ [B1∥...∥Bk]·D+eT

i∗ where

D =



I 0 . . . 0
0 I . . . 0
...

...
...

...
0 . . . Wi∗ . . .
...

...
...

...
0 . . . I


.

We first rely on DDH to replace gs
T
i∗ [B1∥...∥Bk] with g[t1∥...∥tk] where ti is uniformly sampled for

each i ∈ [k]. We then rely on LPN over Zp with secret ti∗ , code matrix Wi∗ and error vector fTi∗ to

8If we were to output the first bit, then we need the property that the first bit is randomly distributed for a random group
element. To remove this assumption, we use an extractor in the main body.

11

switch eki∗ to g[t1∥...∥t
∗
i∗∥...∥tk] where t∗i∗ is randomly sampled. In other words, we used DDH and

LPN to replace eki∗ with a random vector of group elements. Now, consider the leakage Wi∗xi∗ that
is given to the adversary as part of the other local openings. Recall an earlier observation that this
value is sufficient to efficiently compute the hash h. Since Wi∗ is randomly sampled compressing
matrix, we can rely on dual LPN to replace Wi∗xi∗ with uniformly sampled Zp elements. Hence,
xi∗ has full min-entropy even conditioned on this leakage. Now, we can rely on leftover hash lemma
to replace the output of the encode for i∗-th position with a uniformly chosen bit.

Problem with Binding. While LPN allowed us to argue the hiding property of the construction, it
creates issues in arguing binding. Specifically, the output of the encode and the decode procedures
for the i-th position are the same only if fTi xi = 0. For a randomly sampled LPN error vectors fi,xi

this holds with inverse polynomial probability [Ale03]. However, note that xi is sampled by an
unbounded adversary. This adversary could break the LPN assumption, learn fi in the clear, and
sample a bad xi such that fTi xi ̸= 0. This completely breaks the binding property.

Our Solution: Reverse Randomization and Resilient Functions. To fix this issue, we apply the
technique of reverse randomization [DN00]. Specifically, for each position i, we sample multiple
encoding keys eki,1, . . . , eki,m (for some parameter m that is fixed later) using independently sam-
pled LPN secrets si,1, . . . , si,m and error vectors fi,1, . . . , fi,m. We force the adversary to use the
same πi for each one of these repetitions. By standard Chernoff bound followed by an union bound
over xi, we ensure that the adversary can only bias a small number of these repetitions. For a large
number of the repetitions, we have fTi,jxi = 0 with overwhelming probability. However, we are not
quite done.

Recall that the output of the encoding and the decoding procedures needs to be a single bit.
What we essentially have is a sequence of m bits e1, . . . , em and d1, . . . , dm as the output of the
encoding and decoding procedures respectively such that there is a small sized set S ⊂ [m] where
for every j ̸∈ S, ej = dj . We need a mechanism to derive a single bit out of this sequence such the
output remains the same for both inputs (e1, . . . , em) and (d1, . . . , dm). For this purpose, we make
use of resilient functions [BL85, AL93]. At a high-level, resilient functions are Boolean functions
such that for a randomly sampled input, a small set of toggled positions does not change the output
except with some small probability.

The work of Ajtai-Linial [AL93] gave a resilient function such that the probability that a set
of input bits of size s that is under adversarial control can change the value of the output on a
randomly sampled input is at most (log

2 m
m)s. From the reverse randomization procedure, we can

ensure that this s is at most mϵ for a constant ϵ < 1. This ensures that the probability that the
adversary is able to bias a single position i ∈ [k] is inverse polynomial.9 It now follows from
standard Chernoff bound that the adversary cannot bias more than kϵ positions among the set
[k] except with negligible probability. This would, in principle, complete the binding argument.
Unfortunately, the resilient function of Ajtai-Linial is not explicit.

Recent progress due to Meka [Mek17] and Chattopadhyay-Zuckerman [CZ16] have provided
explicit constructions that nearly match the non-explicit construction due to Ajtai-Linial. One draw-
back of these explicit constructions is that they are only “almost balanced”. Specifically, the prob-
ability that the output of the function is 0 on a randomly chosen input is 1/2 ± 1/10. However, to

9Note that to make use of resilient functions, we need to ensure that the input to the function is randomly chosen. To
argue that d1, . . . , dm are random for a fixed hash digest h, we rely on the fact that the LPN secrets are randomly chosen.

12

ensure that the hiding property holds, we need the output to be negligibly close to 1/2. To mitigate
this, we take multiple independent copies of the output of the resilient function for each position
and set the output of the encode to be the XOR of all these copies. By pile-up lemma, the output
will be unbiased except with negligible probability. We carefully choose the number of copies such
that the adversary still biases each position i ∈ [k] with inverse polynomial probability. This allows
us to use Chernoff bound to restrict the number of indices in [k] that the adversary can toggle to be
at most kϵ with overwhelming probability. This is sufficient to prove binding of VTDH.

We note that we have swept many details under the rug such as the choice of the number of
repetitions for the reverse randomization, for the resilient function, etc. We refer the reader to the
technical section for the details.

3 Preliminaries

Let λ denote the cryptographic security parameter. We assume that all cryptographic algorithms
implicitly take 1λ as input. A function µ(·) : N → R+ is said to be negligible if for any polynomial
poly(·) there exists sec0 such that for all λ > λ0 we have µ(λ) < 1

poly(λ) . We will use negl(·) to denote
an unspecified negligible function and poly(·) to denote an unspecified polynomial function.

Let X and Y be two distributions. Then i) X ≈c Y means that the distributions are compu-
tationally indistinguishable, ii) X ≈ϵ Y means that their statistical distance is at most ϵ and, iii)
X ≈s Y means that their statistical distance is at most negl(λ).

For a finite set S, we denote x← S as the process of sampling x uniformly from the set S.
We state here the Chernoff bound that will be required in this work.

Lemma 1 (Chernoff). Let X1. . . . , Xn be i.i.d. random variables with mean at most ε, then

Pr
[∑

Xi > 2εn
]
< e−εn/3.

Information theory. The following definition and lemmas are taken from [DORS08].

Definition 1 (Average Min-Entropy). For two jointly distributed random variables (X,Y), the average
min-entropy of X conditioned on Y is defined as

H̃∞(X|Y) = − log(Ey←$Y [maxx Pr[X = x|Y = y]]).

Lemma 2 (Average min-entropy chain rule). For random variables X,Y, Z where Y is supported
over a set of size T , we have

H̃∞(X|(Y, Z)) ≥ H̃∞((X,Y)|Z)− log(T) ≥ H̃∞(X|Z)− log(T).

Lemma 3 (Leftover hashing). Let X be a random variable supported on a finite set X such that
H̃∞(X) ≥ k. Let h : S × X → {0, 1}ℓ be a universal function, where ℓ ≤ k − 2 log(1/ϵ). Then for a
uniformly chosen S ← S

(h(X), S) ≈ϵ (z, S)

where z ← {0, 1}ℓ.
We will use the leftover hash lemma (LHL) over domains Zq where q is not necessarily prime.

The following Lemma (due to Regev [Reg05]) allows us to use the LHL if the input domain is binary.

Lemma 4 ([Reg05]). Fix a positive integer q and let A ←$ Zn×m
q be chosen uniformly at random.

Then the function h : Zn×m
q × {0, 1}m → Zn

q given by h(A,x) = Ax is a universal hash function.

13

Metric Spaces and Discrete Gaussians. Let ρs(x) be probability distribution of the Gaussian
distribution over Rn with parameter s and centered in 0.

We define the discrete Gaussian distribution DS,s over S and with parameter s by the probability
distribution ρs(x)/ρ(S) for all x ∈ S (where ρs(S) =

∑
x∈S ρs(x)).

We will use the following simple tail-bound for discrete gaussians, which follows from the fact
that centered discrete gaussians are 0-subgaussian (see e.g. [MP12] Section 2.4).

Lemma 5. Let x←$ DZn,s. Then it holds that ∥x∥ < s ·
√
λn, except with probability n · e−πλ.

We will also use the basic Cauchy-Schwartz inequality, which lets us bound the magnitude of an
inner product by the products of the norms of its arguments.

Lemma 6 (Cauchy-Schwartz Inequality). Let x,y ∈ Rn. Then it holds that |⟨x,y⟩| ≤ ∥x∥ · ∥y∥.

3.1 Resilient Functions

We define here the properties required for a Boolean function to be balanced, and resilient. We start
by defining a balanced function.

Definition 2 (Balanced Function). A Boolean function F : {0, 1}λ → {0, 1} is said to be balanced if

|Prx←{0,1}λ [F (x) = 0]− 1/2| = negl(λ).

We now define a resilient function. The influence of a set of input indices Q is defined to be
IQ(F) - denoting the probability that a Boolean function F ’s output can be changed by controlling
the inputs to the Q indices. Specifically, we denote by FQ(x, y) the function output of F when the
bits indexed by Q are set by x ∈ {0, 1}|Q| and the others by y ∈ {0, 1}λ−|Q|. We say that F is
determined by a partial assignment y ∈ {0, 1}λ−|Q| if there exists b ∈ {0, 1} such that FQ(x, y) = b
for every x.

Definition 3 (Resilient Function). For a Boolean function F : {0, 1}λ → {0, 1}, and Q ⊆ [λ], let
IQ(F) be the probability that F is not-determined by a uniformly random partial assignment to the
bits not in Q. Let Iq(F) = minQ⊆[λ],|Q|≤q IQ(F). We say that F is (q, δ)-resilient if Iq(F) ≤ δ.

We extend the above notion to a notion of a ‘blockwise’ resilient function. It extends the notion
to boolean functions that work over t ‘blocks’ of input. Here the function is only required to be
resilient for a bounded influence for each block. We define this notion formally below.

Definition 4 (Blockwise Resilient Function). For a boolean function F : {0, 1}λ·t → {0, 1}, let
Q = (Q1, · · · , Qt) where Qi ⊆ [λ] specifies the locations in the i-th input block. The blockwise influence
BIQ(F) is the probability that F is not determined by a uniformly partial assignment to the bits not in
Q. Further, BIq(F) = minQ=(Q1,··· ,Qt),∀i∈[t],Qi⊆[λ],|Qi|≤q BIQ(F). We say that F is (q, δ)-blockwise
resilient if BIq(F) ≤ δ.

We show that using resilient functions as an underlying primitive, we can indeed construct
blockwise resilient functions that are also balanced. Specifically, we prove the following theorem in
the Appendix A.

Theorem 1 (Balanced Blockwise Resilient). For some universal constant c′ ≥ 1 the following holds.
There exists a function F : {0, 1}n·t 7→ {0, 1} which can be computed in time t · nc′ such that,

14

– F is balanced: Prx←${0,1}n·t [F (x) = 0] = 1/2± 1/2t.

– BIq(F) ≤ tc′q(log2 n)/n.

Note that for our application, it will be sufficient that 1/2t is negligible in some parameter λ.

3.2 Hardness Assumptions

3.2.1 Learning with Errors

We now present the learning with errors assumption [Reg05].

Definition 5 (Learning with Errors). Let n, q ∈ Z. For all m = poly(n), we say that the LWE
assumption LWEn,q,σ is true if the following distributions are computationally indistinguishable:{

(A, sTA+ eT)
∣∣∣ A←$ Zn×m

q , s←$ Zn
q , e←$ Dm

Z,σ

}
{
(A,u)

∣∣∣ A←$ Zn×m
q ,u←$ Zm

q

}
where Dm

Z,σ is the discrete gaussian distribution with parameter σ.

When we consider σ = ζq ≥ 2
√
n, the LWE problem is at least as hard as solving the approximate

shortest independent vector problem to within a factor of Õ(n/ζ) [Reg05].
We will make use of the gadget-matrix [MP12]. For a modulus q, let g = (1, 2, 22, . . . , 2⌈log(q)⌉) ∈

Z1×⌈log(q)⌉ be the powers-of-two vector (as a row vector). For a dimension n, let I be the n × n
identity matrix. The gadget matrix G is given by

G = I⊗ g =


g

g
. . .

g

 ∈ Zn×n⌈log(q)⌉.

Define the g−1 : Zq → {0, 1}⌈log(q)⌉ as the function that computes the binary decomposition of
Zq elements (as a column vector). Note that it holds g · g−1(x) = x This induces a function
G−1 : Zn

q → {0, 1}n⌈log(q)⌉ given by

G−1(x) =

g
−1(x1)

...
g−1(xn)

 .

Note that it holds that G ·G−1(x) = x For a matrix A = (a1, . . . ,am) ∈ Zn×m
q we define G−1(A)

via
G−1(A) = (G−1(a1), . . . ,G

−1(am)).

Note finally that it holds that G ·G−1(A) = A.

15

3.2.2 Decisional Diffie-Hellman

In the following, let Gen be a (prime-order) group generator, that is, Gen is an algorithm that
takes as an input a security parameter 1λ and outputs (G, p, g), where G is the description of a
multiplicative cyclic group, p is the order of the group which is always a prime number unless
differently specified, and g is a generator of the group. In the following we state the decisional
version of the Diffie-Hellman (DDH) assumption.

Definition 6 (Decisional Diffie-Hellman Assumption). Let (G, p, g) ←$ Gen(1λ). We say that
the DDH assumption is true (with respect to Gen) if the following distributions are computationally
indistinguishable: {

(G, p, g), (ga, gb, gab)
∣∣∣ a, b←$ Zp

}
{
(G, p, g), (ga, gb, gc)

∣∣∣ a, b, c←$ Zp

}
.

For any matrix A ∈ Zn×m
p , the matrix of group elements is defined H = gA ∈ Gn×m, where the

(i, j)-th element of H is gAi,j where Ai,j is the corresponding (i, j)-th element of A in Zp. Further,
for any matrix of group elements H = gA ∈ Gn×m and any matrix B ∈ Zm×ℓ

p , HB = gAB ∈ Gn×ℓ.
We will additionally find it convenient to use the matrix DDH assumption assumption, which is

implied by the DDH assumption [BHHO08].

Definition 7 (Matrix Decisional Diffie-Hellman Assumption). Let (G, p, g) ←$ Gen(1λ). We say
that the matrix DDH assumption is true (with respect to Gen) if the following distributions are compu-
tationally indistinguishable:{

(G, p, g), (gA, gAu)
∣∣∣ A←$ Zn×m

p ,u←$ Zm
p

}
{
(G, p, g), (gA, gv)

∣∣∣ A←$ Zn×m
p ,v←$ Zn

p

}
.

3.2.3 Learning Parity with Noise

We start by defining the decisional version of the Learning Parity with Noise assumption over large
fields. For a finite field F, denote by Berτ (F) the Bernoulli distribution which is obtained by sampling
0 with probability 1−τ , and a uniformly random field element in F with probability τ . For simplicity
we write the definition in terms of Zp for some prime p, where Berτ (Zp) outputs a uniformly random
non-zero element in Zp with probability τ .

Definition 8 (Learning Parity with Noise over Zp). We say that LPNn,m,τ over Zp is true if the
following holds: For any constant ℓ > 0 such n = n(λ), m = m(λ), τ = τ(λ), a prime number
p = p(λ) of λℓ bits it holds that the following distributions are computationally indistinguishable,{

(A, u = sA+ e)
∣∣∣ A← Zn×m

p , s⊤ ← Zn
p , e← Berτ (Zp)

m
}
λ∈[N]{

(A, u)
∣∣∣ A← Zn×m

p ,u← Zm
p

}
λ∈[N]

16

Dual LPN. The corresponding dual version, which is equivalent to the above LPNn,m,τ assumption
states that the distribution eB is computationally indistinguishable from a random vector in Zm−n

p ,

where B ∈ Zm×(m−n)
p is the parity-check matrix of the matrix A ∈ Zn×m

p , i.e. AB = 0. In
the security game, a random matrix A is sampled, and a random parity-check matrix B for the
corresponding A is sampled. The adversary is given B along with either eB or a random v.

3.3 NIZKs in Hiddent Bit Model

We recall the definition of NIZKs in the hidden bit model.

Definition 9. Let L be an NP language and n be an integer. A Non-Interactive Zero-Knowledge Proof
in the Hidden-Bits Model for L is given by a pair of PPT algorithms (P, V), and a polynomial k(λ, n),
where:

– P (1λ, r, x, w): On input string r ∈ {0, 1}k(λ,n), a statement x of size |x| = n and a witness w,
output a set of indices I ⊆ [k] and proof π.

– V (1λ, I, rI , x, π): On input a subset I ⊆ [k], a string rI , a statement x and a proof π, outputs
accept or reject,

such that they satisfy the following properties:

– Completeness: We require that for all x ∈ L of size |x| = n with witness w we have:

Pr[V (1λ, I, rI , x, π) = accept : r ← {0, 1}k(λ,n); (I, π)← P (1λ, r, x, w)] = 1;

– Soundness: We require that for all polynomial n = n(λ), and all unbounded cheating provers
P̃ , we have:

Pr[V (1λ, I, rI , x, π) = accept∧x ̸∈ L∧|x| = n : r ← {0, 1}k(λ,n); (x, π, I)← P̃ (1λ, r)] ≤ negl(λ)

– Zero-Knowledge: We require that there exists an efficient simulator Sim such that for any ad-
versary A .the two following distributions are statistically indistinguishable:

(I, rI , π) ≈s (I
′, rI′ , π′)

where r ← {0, 1}k(λ,n), (I, π)← P (1λ, r, x, w), (I ′, rI′ , π′)← Sim(1λ, x).

The following theorem was proved in [FLS90].

Theorem 2 ([FLS90]). For some polynomial k′(λ, n) and for any polynomial q(λ, n), there exists
NIZK in the hidden bit model with k(λ, n) = k′(λ, n) · q(λ, n) and soundness error 2−q(λ,n) · negl(λ).

3.4 Hidden-Bits Generator

The following definition of Hidden-Bits Generator (HBG) [QRW19] is taken from [Wat24]. For a
string r ∈ {0, 1}k and a set of indices I ⊆ [k], we denote by rI the substring corresponding to the
bits of r indexed by I.

17

Definition 10 (Hidden-Bits Generator). A Hidden-Bits Generator (HBG) is given by a set of PPT
algorithms (GenSetup,GenBits,GenVerify):

– GenSetup(1λ, 1k) outputs a common reference string crs.

– GenBits(crs) outputs a triple (com, r, {πi}i∈[k]) where r ∈ {0, 1}k.

– GenVerify(crs, com, i, ri, πi) outputs 1 or 0, where i ∈ [k].

We require any Hidden-Bits Generator to satisfy the following properties.
Completeness. We require that for every polynomial k = k(λ) and for all i ∈ [k], we have:

Pr

[
GenVerify(crs, com, i, ri, π) = 1 :

crs← GenSetup(1λ, 1k)
(com, r, {πi}i∈[k])← GenBits(crs)

]
= 1.

Binding: For every crs in the support of the algorithm GenSetup(1λ, 1m), there exists a set V crs

with the following properties.

Output sparsity. There exists a universal constant γ < 1 and a fixed polynomial p(·) such
that for every polynomial k = k(λ), and every crs in the support of GenSetup(1λ, 1k),

|V crs| ≤ 2k
γ ·p(λ)

Statistical binding. For every (possibly inefficient) stateful adversary A

Pr

 rI /∈ V crs
I

∀i ∈ I, GenVerify(crs, com, i, ri, πi) = 1
:

1k ← A(1λ)
crs← GenSetup(1λ, 1k)
(com, I, rI , {πi}i∈I)← A(crs)

 = negl(λ).

By V crs
I we denote the set {rI : r ∈ V crs}. We say that hidden-bits generator satisfies

computational binding if the above is true only for computationally bounded adversaries.

Hiding. There is an alternate setup algorithm GenSetup∗ that satisfies the following properties:

CRS Indistinguishability. We have

{crs : crs← GenSetup(1λ, 1k)} ≈c {crs : crs← GenSetup∗(1λ, 1k)}

Pseudorandomness. We have that for all efficient and stateful adversaries A ,∣∣∣ Pr[A(crs, com, {ri, πi}i ̸=i∗ , ri∗)]− Pr[A(crs, com, {ri, πi}i ̸=i∗ , u)]
∣∣∣ = negl(λ).

where (1k, i∗) ← A(1λ), crs ← GenSetup∗(1λ, 1k), (com, r, {πi}i∈[k]) ← GenBits(crs)
and u← {0, 1}.

Definition 11. We say that hidden bits generator is dual-mode if the output of GenSetup∗ is identically
distributed to the uniform distribution and the pseudorandomness property holds against unbounded
adversaries.10

We give a sketch of the following theorem from [QRW19, KMY20] for the sake of completeness.

10We can also have the alternate version where we require the output of GenSetup to be identically distributed to the
uniform distribution.

18

Theorem 3 ([QRW19, KMY20]). Suppose there exists a (dual-mode) hidden-bits generator, then
there exists a publicly verifiable, single theorem (dual-mode) NIZK.

Proof. The construction is same as the one described in [QRW19] and uses a NIZK in the hidden
bits model from Theorem 2. Let k = k(λ, n) = k′(λ, n) · q(λ, n) where we will set q(λ, n) later. The
CRS of the NIZK proof system comprises of the output of GenSetup(1λ, 1k) denoted by crs and a
randomly sampled string s ← {0, 1}k. The prover first runs GenBits(crs) to obtain com, r, {πi}i∈[k].
It then runs P (1λ, x, w, r⊕s) to obtain (I, π). The proof includes (com, I, rI , πI , π). The verifier runs
GenVerify on (crs, com, i, ri, πi) for each i ∈ I. If all the checks pass, it runs V (1λ, I, rI ⊕ sI , x, π)
and accepts only if V accepts.

The completeness follows directly from the completeness of hidden bit generator and the com-
pleteness of the NIZK proof system in the hidden bit model.

We first prove soundness which follows nearly identically to the one described in [QRW19].
Recall that statistical binding property of the hidden bit generator guarantees the existence of a
set V crs of size at most 2k

ν ·poly(λ) such that the probability that any prover would be able to open
to some string rI ̸∈ V crs

I is negligible. Let us condition on this bad event not happening. Let us
call r ∈ {0, 1}k to be BAD if there exists (I, x, π) such that x ̸∈ L and V (1λ, I, rI , x, π) accepts. It
follows from the soundness of NIZK in the hidden bit model that Pr[r ∈ BAD] ≤ 2−q(λ,n) · negl(λ).
Fix any r∗ ∈ V crs. The probability over the random choice of s that r ⊕ s ∈ BAD is at most
2−q(λ,n) · negl(λ). By union bound over the set of all possible strings in V crs, the probability that an
adversary would be able to break soundness is at most negl(λ) + 2k

ν ·poly(λ)2−q(λ,n) · negl(λ) where
the first negl(λ) term is account for the adversary being able to open to some string not in V crs. We
set q(λ, n) = (k′(λ, n)poly(λ))

1
1−ν . Therefore,

kν · poly(λ) = (k′(λ, n)q(λ, n))ν · poly(λ) ≤ (q(λ, n))ν · (q(λ, n))1−ν

Thus, soundness follows.
To argue hiding, we consider the following sequence of hybrids.

– Hyb0 : This corresponds to the execution of the proof system with the honest prover using the
actual witness.

– Hyb1 : In this hybrid, we generate crs as the output of GenSetup∗. This switch is indistinguish-
able from the CRS indistinguishability of hidden bit generators.

– Hyb2 : We make a syntactic change. We sample a random string r∗ ← {0, 1}k and run
P (1λ, r∗, x, w). We compute r as before and set s = r ⊕ r∗. This hybrid is identical to
the previous hybrid.

– Hyb3 : In this hybrid, we switch r[k] ̸∈I with uniformly chosen random string. Indistinguisha-
bility follows from pseudorandomness property of hidden bit generator as shown in [Wat24,
Theorem 2.4]. The proof given in [Wat24] is for computationally bounded adversaries but if
pseudorandomness holds against unbounded adversaries, then the exact same proof extends
to showing that Hyb2 and Hyb3 are statistically close.

– Hyb4 : In this hybrid, we run the simulator Sim for the NIZKs in the hidden bit model to
obtain (I, r∗I , π). We use this to generate the proof as in the previous hybrid. This hybrid is
statistically close to the previous hybrid from the zero-knowledge property of NIZKs in the
hidden bits model.

19

This completes the proof of hiding. Note that the above proof shows that if the hidden bit generator
is dual-mode, then we get a single-theorem, dual-mode NIZK where the CRS is sampled as in
Hyb1.

Single-Theorem to Multi-Theorem in the Common Random String Model. The standard FLS
trick of using PRGs to transform single-theorem NIZKs to multi-theorem NIZKs does not preserve
the dual-mode property. Specifically, if the output of Setup∗ in the single-theorem case is identically
distributed to the uniform distribution, then the same does not hold for the multi-theorem NIZK.
Here, we give a different transformation that preserves this property under LWE.

First note that a single-theorem statistical NIZK is a statistically witness indistinguishable ar-
gument for any polynomial number of theorems, which follows by a simple hybrid argument. In
order to boost a WI argument to a multi-theorem NIZK via the OR-proof methodology, we will ad-
ditionally rely on a trapdoor language Lt ⊆ {0, 1}ℓ which will be used by the simulator to simulate
proofs. The trapdoor NP-language Lt will have the property that a uniformly chosen element from
{0, 1}ℓ will be in Lt with all but negligible probability. More precisely, we require that there is an
efficiently samplable distribution Z which outputs pairs (z, td), such that z is statistically close to
uniform on {0, 1}ℓ and td is a witness for z ∈ Lt. Furthermore, we will choose Lt such that there is
a pseudorandom distribution X on on its complement L̄t

Equipped with such a distribution, the FLS transformation for a language L can be sketched as
follows:

– The common reference string consists of a (uniformly chosen) CRS for the WI system as well
as a uniformly chosen z ← {0, 1}ℓ

– The simulator generates z via (z, td)←$ Z and keeps td as a simulation trapdoor.

– Given a statement x ∈ L together with a witness w, the prover uses w to compute a WI proof
for the statement ”x ∈ L or z ∈ Lt”

– The simulator uses the simulation trapdoor td to generate WI proofs for the statement ”x ∈ L
or z ∈ Lt”

Clearly, since the underlying WI system is statistically witness-indistinguishable, the output distri-
butions of a prover on input (x,w) and the simulator on input (x, td) are statistically close.

To establish computational soundness of this proof system, we sample z from X . As X is pseu-
dorandom this modification is undetectable for a computationally bounded prover. Next, we switch
the CRS of the underlying WI system to its statistically sound mode which also goes undetected by
a computationally bounded prover. However as now X is supported on L̄t, the statement z ∈ Lt is
now false, and hence the statement ”x ∈ L or z ∈ Lt” implies ”x ∈ L”. As the CRS of the underlying
WI system is in statistically sound mode, the probability of a malicious prover providing a verifying
proof for a false statement x is thus negligible. Hence we have estabilished soundness.

It remains to provide a suitable trapdoor language Lt together with suitable distributions Z and
X . Let δ > 0 be a distance parameter and A ∈ Zn×

q be a matrix. The language L is given as follows:

Lt = {A ∈ Zn×m
q | ∃T ∈ Zm×m s.t. T has full rank, ∥T∥ ≤ δ and A ·T = 0}.

Our distribution Z will be given by a lattice trapdoor generator.

20

Theorem 4 ([Ajt99, GPV08, MP12]). Fix a modulus q and dimensions n,m with m ≥ Ω(n log(q)).
There exists an efficient sampling algorithm TrapGen, which on input q, n,m outputs matrices A ∈
Zn×m
q and T ∈ Zm×m such that

– A is distributed negl(n) close to uniform over Zn×m
q

– T has full rank and it holds that ∥T∥ ≤ δ = O(m)

– It holds that A ·T = 0

First off, note that by the properties of the sampler TrapGen the distribution Z immediately
satisfies the required properties, i.e. it is supported on Lt and statistically close to uniform. It re-
mains to construct a pseudorandom distribution X which is supported on L̄t (except with negligible
probability). We can easily construct this distribution via by relying on the LWE assumption. Let
q ≥ λσ

√
mδ.

– Choose A′ ←$ Z(n−1)×m
q uniformly at random.

– Choose s←$ Zn−1
q , e← DZm,σ.

– Compute and output

A =

(
A′

sA′ + e

)
Pseudorandomness of X follows immediately from the LWE(q, n, σ) assumption. Further note that
matrices A generated by X are not supported on Lt, except with negligible probability: Assume
there exists a full-rank matrix T with ∥T∥ ≤ δ such that A ·T = 0. This means that

A′ ·T = 0

sA′T+ eT = 0.

But these two equations imply that e ·T = 0. But since

∥e ·T∥ ≤ ∥r∥ · ∥T∥ ≤ ∥e∥ · δ,

the event that e ·T = 0(mod q) can only happen if ∥e∥ ≥ q/δ ≥ λσ
√
m or e = 0. But both events

have negligible probability. Hence the claim follows.

4 Vector Trapdoor Hash

In this section, we give the formal definition of vector trapdoor hash (VTDH) and show how to
instanatiate the hidden bit generator (HBG) using this.

Definition 12 (Vector Trapdoor Hash). A vector trapdoor hash (VTDH) is a tuple of algorithms
(Setup,Hash,Encode,Decode,Verify) described as follows:

– Setup(1λ, 1k) takes as input a security parameter λ and an integer k ∈ N. It outputs a hash key
hk, and k pairs of encoding keys and trapdoors (ek1, td1), . . . , (ekk, tdk).

21

– Hash(hk,x) takes as input a hash key hk and an input x ∈ {0, 1}m(λ,k). It outputs a hash value
h and k local openings π1, . . . , πk.

– Encode(eki, πi) takes as input an encoding key eki and a local opening πi. It outputs an encoding
value ei ∈ {0, 1}.

– Decode(tdi, h) takes as input a trapdoor tdi and a hash value h. It outputs a decoding value
di ∈ {0, 1}.

– Verify(hk, h, i, πi) takes as input a hash key hk, a hash value h, an index i ∈ [k] and a local
opening πi. It outputs a bit b ∈ {0, 1}.

We require VTDH to satisfy the following properties:

– Completeness. We require that for every polynomial k = k(λ) and for all i ∈ [k], we have:

Pr

 Verify(hk, h, i, πi) = 1 :
hk, {(eki, tdi)}i∈[k] ← Setup(1λ, 1k)
x← {0, 1}m(λ,k)

(h, π1, . . . , πk)← Hash(hk,x)

 = 1− negl(λ).

– Succinctness: For all λ, k ∈ N and for every x ∈ {0, 1}m(λ,k), the size of h output by Hash(hk, x)
is at most poly(λ).

– Statistical Binding. There exists a universal constant 0 < ϵ < 1 such that for all λ, k ∈ N and
for all unbounded adversaries A , we have:

Pr

|i ∈ [k] : ei ̸= di| > kϵ · poly(λ) :

hk, {(eki, tdi)}i∈[k] ← Setup(1λ, 1k)
(h, {πi}i∈[k])← A(hk, {eki}i∈[k])

ei ← Encode(eki, πi) ∀i ∈ [k]
Verify(hk, h, i, πi) = 1 ∀i ∈ [k]
di ← Decode(tdi, h) ∀i ∈ [k]

 ≤ negl(λ).

– Hiding. There is an alternate setup algorithm Setup∗ that satisfies the following properties:

Mode Indistinguishability. We have

{(hk, {eki}i∈[k]) : (hk, {eki, tdi}i∈[k])← Setup(1λ, 1k)} ≈c

{(hk, {eki}i∈[k]) : (hk, {eki, tdi}i∈[k])← Setup∗(1λ, 1k))}.

Pseudorandomness. For all λ ∈ N, all k = poly(λ), i∗ ∈ [k], and all PPT adversaries A we
have∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

Pr

1← A(hk, h, {eki, πi}i̸=i∗ , (eki∗ , ri∗)) :

hk, {(eki, tdi)}i∈[k] ← Setup∗(1λ, 1k)
x← {0, 1}m(λ,k)

(h, π1, . . . , πk)← Hash(hk,x)
ri∗ ← Encode(eki∗ , πi∗)

−

Pr

1← A(hk, h, {eki, πi}i ̸=i∗ , (eki∗ , ri∗)) :

hk, {(eki, tdi)}i∈[k] ← Setup∗(1λ, 1k)
x← {0, 1}m(λ,k)

(h, π1, . . . , πk)← Hash(hk,x)
ri∗ ← {0, 1}



∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

≤ negl(λ).

22

Definition 13. We say that vector trapdoor hash is dual-mode if the output (hk, {eki}i∈[k]) of Setup∗

is identically distributed to the uniform distribution and the pseudorandomness property holds against
unbounded adversaries.

4.1 Vector Trapdoor Hash Imply Hidden Bits Generators

We show that a VTDH is sufficient to construct an HBG. We only state the theorem for the case
of publicly verifiable VTDH, resulting in a publicly verifiable HBG. The designated-verifier case is
identical, up to syntactical modifications.

Theorem 5. Let (Setup,Hash,Encode,Decode,Verify) be a (dual-mode) VTDH, then there exists a
(dual-mode) HBG scheme (GenSetup,GenBits,GenVerify).

Proof. We describe the algorithms in the following.

– GenSetup(1λ, 1k): Run

(hk, (ek1, td1), . . . , (ekk, tdk))← Setup(1λ, 1k)

and define the crs to be (hk, ek1, . . . , ekk).

– GenBits(crs): Sample x← {0, 1}m(λ,k) uniformly and compute

(h, π1, . . . , πk)← Hash(hk,x) and ei ← Encode(eki, πi) ∀i ∈ [k].

Set com := h and ri := ei.

– Verify(crs, com, i, ri, πi): Return 1 if

Verify(hk, h, i, πi) and Encode(eki, πi) = ri

and 0 otherwise.

Completeness is an immediate consequence of the completeness of the VTDH.
Similarly, crs indistinguishability and pseudorandomness follows from the corresponding prop-

erties of the VTDH, since for all indices i∗ it holds that:

(hk, h, {eki, πi}i ̸=i∗ , (eki∗ ,Encode(eki∗ , πi∗))) ≈c (hk, h, {eki, πi}i ̸=i∗ , (eki∗ , ui∗))

where ui∗ ← {0, 1} is uniformly sampled.
Next, we prove that the HBG is binding. Let crs be (hk, ek1, . . . , ekk) and the associated set of

trapdoors be {tdi}i∈[k]. We define V crs as follows.

V crs :=

{
r ∈ {0, 1}k : ∃ h s.t.

di = Decode(h, tdi) ∀i ∈ [k]
HW(r⊕ d) ≤ kϵ · poly(λ)

}
.

where HW denotes the Hamming weight.
Let us first bound the size of V crs. From succinctness property of VTDH, it follows that the

|h| = poly(λ). Fixing the hash h and the crs fixes the string d. To bound the size of V crs, we need to

23

bound the number of strings that are Hamming distance at most kϵ · poly(λ) from the fixed string
d. This number is equal to:

i=kϵ·poly(λ)∑
i=0

(
k

i

)
≤ kϵ · poly(λ)

(
k

kϵ · poly(λ)

)
≤ kϵ · poly(λ)(e k

kϵ · poly(λ)
)k

ϵ·poly(λ)

≤ kϵ · poly(λ)2k
µ

≤ 2k
ν

where 1 > ν > µ > ϵ. Thus, |V crs| ≤ 2poly(λ) · 2kν

and output sparsity follows.
The statistical binding property immediately follows since for every I ⊆ [k], eI that an adversary

can open to using valid proofs πI belongs to V crs
I .

Remark 1. Analogously, if (Setup,Hash,Encode,Decode,Verify) be a DV-VTDH, then there exists an
DV-HBG scheme (GenSetup,GenBits,GenVerify). The proof follows the same blueprint as the one pre-
sented above.

5 Vector Trapdoor Hash from LWE

In this section, we give our construction of vector trapdoor hash from LWE.

Parameters. Let q be a modulus, and let m ≥ n > 0 and k > 0 be positive integers and let
ℓ = n · log(q). Let G ∈ Zn×ℓ

q the gadget matrix of dimensions n× ℓ, and for a matrix A ∈ Zn×m
q let

G−1(A) ∈ {0, 1}ℓ×m be a binary matrix for which G ·G−1(A) = A holds (c.f. Section 3.2.1).

Construction. We now describe our VTDH from the LWE assumption.
Setup(1λ, 1k)

1. ∀i ∈ [k], sample Bi ← Zn×ℓ
q , Ui ← Zn×m

q , Wi = G−1(Ui) ∈ {0, 1}ℓ×m and δi ←$ Zq

uniformly random. Set Ai := BiWi ∈ Zn×m
q .

2. ∀i ∈ [k]

(a) Sample si ← Zn
q and ei ← D

(k−1)ℓ+m
Z,σ .

(b) Set Ci := B1∥ . . . ∥Bi−1∥Ai∥Bi+1∥ . . . ∥Bk ∈ Zn×((k−1)ℓ+m)
p .

(c) For j ∈ [k]\{i} set vi,j = siBj + ei,j where ei ←$ Dℓ
Z,σ

(d) Set vi,i = siAi + ei,iWi + e′i,i where ei,i ←$ Dℓ
Z,σ and e′i,i ←$ Dm

Z,σ

(e) Set vi = (vi,1∥ . . . ∥vi,k)

(f) Set eki = (vi, δi) and tdi = (si, δi)

3. Output hk = {Bi,Wi, eki}i∈[k] and {(eki, tdi)}i∈[k].

24

Hash(hk,x = x1∥ . . . ∥xk ∈ Zm×k
q)

1. Parse hk = {Bi,Wi, eki}i∈[k] and eki = vi.

2. Set A := A1∥ . . . ∥Ak where Ai = BiWi ∀i ∈ [k]

3. Set h := Ax =
∑k

i=1 Aixi ∈ Zn
q .

4. Set ∀i ∈ [k], yi = Wixi and zi := y1∥ . . . ∥yi−1∥xi∥yi+1∥ . . . ∥yk ∈ Z(k−1)ℓ+m
q .

5. Set πi = zi

6. Output (h, {πi}i∈[k]).

Encode(eki,πi)

1. Parse eki = vi and πi(zi = y1∥ . . . ∥yi−1∥xi∥yi+1∥ . . . ∥yk, δ).

2. Compute ri := ⌊v⊤i zi + δi⌉2.

Decode(tdi, h)

1. Parse tdi = si and h = (h, δ).

2. Compute di := ⌊sih+ δi⌉2.

Verify(hk,h, i,πi)

1. Parse πi = y1∥ . . . ∥yi−1∥xi∥yi+1∥ . . . ∥yk.

2. Check if ∀j ̸= i yj ∈ {0, . . . ,m}ℓ and x ∈ {0, 1}m.

3. Check if h = Ciπi.

4. Output 1 if all the checks verify.

5.1 Completeness

We will first establish the completeness property of our scheme.

Lemma 7 (Completeness). The scheme (Setup,Hash,Encode,Decode,Verify) provided above satisfies
the completeness property.

Proof. Clearly it holds that an honestly chosen xi is in {0, 1}m. Moreover, as each Wj ∈ {0, 1}ℓ×m
and xj ∈ {0, 1}m, it holds that yj = Wj · xj ∈ {0, . . . ,m}ℓ. Finally, it holds that

h = Ax =
∑
j

Ajxj

=
∑
j ̸=i

BjWjxj +Aixi

= Ciπi,

i.e. also the last check always passes. We conclude that the scheme satisfies the completeness
property.

25

5.2 Pseudorandomness of Hashing and Encoding Keys

We will now establish that he hashing and encoding keys are jointly pseudorandom.

Lemma 8. Let q be a modulus and assume that LWE(q, n, σ) holds. Then the tuple (hk, {eki}i∈[k]) is
pseudorandom.

Proof. First note that the Ai are chosen uniformly random. We will hence establish that the eki
are pseudorandom given the Ai. We will establish the claim via a hybrid argument, successively
replacing the eki = (vi, δi) by uniformly random strings. As the eki are generated independently,
it thus suffices to show that a single eki∗ is pseudorandom given the Ai. Consider the following
(sub-)hybrids.

Hyb0 : This is the real experiment. In this experiment vi∗ = (vi∗,1, . . . ,vi∗,k) is computed via
vi∗,j = siBj + ei∗,j for j ̸= i∗ and vi∗,i∗ = siAi + ei∗,i∗Wi∗ + e′i∗,i∗

Hyb1 : In this hybrid we modify the generation of the encoding key eki∗ = ((vi∗,1∥ . . . ∥vi∗,k), δi)
as follows. For all j ̸= i∗ we choose vi∗,j uniformly at random, and we compute vi∗,i∗ by
chosing a uniformly random u ∈ Zℓ

q and setting vi∗,i∗ = uWi + e′i∗,i∗ .

Hyb1 ≈c Hyb0. Computational indistinguishability of hybrids 0 and 1 follows from the LWE(q, n, σ)
assumption: In hybrid 0 we can write vi∗,i∗ as

vi∗,i∗ = (siBi + e′i∗,i∗)Wi + e′i∗,i∗ .

Hence, under the LWE(q, n, σ) we can replace all terms siBi + e′i∗,i∗ with uniformly random
vectors in Zℓ

q and the claim follows.

Hyb2 : This is identical to hybrid 1, except that we now choose vi∗,i∗ uniformly random instead of
generating it via vi∗,i∗ = uWi + ei∗,i∗ for a uniformly random u←$ Zℓ

q.

Hyb2 ≈c Hyb1. We claim that hybrids 1 and 2 are indistinguishable under the LWE(q, n, σ)
assumption. Assume towards contradiction that A distinguishes between hybrids 1 and 2
with non-negligible advantage.

The reduction R proceeds as follows. Given an LWE challenge (A, z), where A ∈ Zn×m
q is a

uniformly random matrix and z is either of the form sA+e or chosen uniformly, the reduction
proceeds as follows: It simulates hybrid 1 faithfully, except that it sets Wi∗ = G−1(A) and
sets vi∗,i∗ = z+u′Wi∗ , where u′ ←$ Zℓ

q is chosen uniformly random. It continues simulating
hybrid 1 and outputs whatever A outputs. Note that since A is random matrix in Zn×m

q , W∗
i

has the same distribution as in Hyb1, i.e. we have just set Ui∗ = A.

First assume that z = sA + e, i.e. z is an LWE sample. Then we can equivalently write z as
sG ·G−1(A) + e. That is, we can write vi∗,i∗ as

vi∗,i∗ = z+ u′Wi∗

= sG ·Wi∗ + e+ u′Wi∗

(sG+ u′)Wi∗ + e

≡ uWi∗ + e

26

where the second equality follows as Wi∗ = G−1(A) and the last line follows as sG + u′

is distributed uniformly random. We conclude that R ’s simulation is distributed identical to
hybrid 1. On the other hand, if z is distributed uniformly random, then so is vi∗,i∗ = z+u′Wi∗

and we conclude that R ’s simulation is distributed identical to hybrid 2. Thus, R distinguishes
LWE(q, n, σ) with non-negligible advantage and we arrive at the desired contradiction.

Thus, in Hyb2 the encoding key eki∗ is distributed uniformly random, which concludes this
proof.

5.3 Statistical Hiding

We will now establish the hiding property of the vector trapdoor hash (Setup,Hash,Encode,Decode,Verify).

Lemma 9. Let q = 2q′ be an even modulus. Further let ℓ ≤ (m− log(q)−2λ)/log(m). Assume that hk
and the {eki}i∈[k] are chosen uniformly random. Then (Setup,Hash,Encode,Decode,Verify) satisfies
the statistical hiding property.

Proof. Fix an index i∗ and let A be a PPT distinguisher against the hiding experiment. Consider the
following hybrids.

Hyb0 : This is the real experiment.

Hyb1 : This hybrid is identically distributed to hybrid 0, except that we choose ri∗ uniformly
random.

Hyb1 ≈s Hyb0. We claim that hybrid 1 is statistically close to hybrid 0. First observe
that xi∗ has high conditional min-entropy given Wi∗ and yi∗ = Wi∗xi∗ . Specifically, fix
any Wi∗ ∈ {0, 1}ℓ×m. As Wi∗ ·xi∗ is supported on {0, . . . ,m}ℓ (as both Wi∗ and xi∗ are
binary)
it holds by the min-entropy chain rule (Lemma 2) that

H∞(xi∗ |Wi∗xi∗) ≥ H∞(xi∗)− ℓ · log(m) = m− ℓ · log(m) ≥ log(q) + 2λ..

Consequently, as xi∗ is binary the leftover hash lemma (Lemma 3 and Lemma 4) yields
that

(vi∗,i∗ ,vi∗,i∗ · xi∗) ≈2−λ (vi∗,i∗ , u),

for a uniformly random u←$ Zq. It follows that the encoding ri∗ = ⌈vi∗,i∗ ·xi∗ + δ− i∗⌋
is also statistically close to uniform as q is even (and hence the most significant bit of u
is also uniform).

Finally, in the remaining hybrids 4 and 5 we undo the hybrid changes made in hybrids 1 and 2.
Hybrid 5 is thus identical to the ideal experiment.

5.4 Statistical Binding

We will now establish the statistical binding property for the vector trapdoor hash (Setup,Hash,Encode,Decode,Verify)

Lemma 10. Given that q ≥ Ω(k2−ϵσmℓλ1/2−c) and n ≤ O(kϵλc/ log(λ)) for some constant c > 0 it
holds that (Setup,Hash,Encode,Decode,Verify) satisfies the statistical binding property.

27

Proof. Note that it holds that

vi · πi =
∑
j ̸=i

vi,j ·Wjxj + vi,i · xi

=
∑
j ̸=i

(siBj + ei,j) ·Wjxj + (si ·Bi ·Wi + ei,iWi + e′i,i) · xi

= si
∑
j

BjWjxj +
∑
j

ei,jWjxj + e′i,i · xi

= si ·
∑
j

Ajxj +
∑
j

ei,jWjxj + e′i,i · xi

= sih+
∑
j

ei,jWjxj + e′i,i · xi.

First note by Lemma 5, the L2-norm of the concatenation (ei,1∥ . . . ∥ei,k) is bounded by
√
λℓk · σ,

except with negligible probability e−λ/2. Likewise, the norm of the e′i,i is bounded by
√
λm · σ,

except with probability e−λ/2.
As Verify(hk,h, i,πi) = 1, it holds that (W1x1∥ . . . ∥Wkxk) ∈ {0, . . . ,m}ℓk and xi ∈ {0, 1}m.

Hence it holds that ∥(W1x1∥ . . . ∥Wkxk)∥2 ≤
√
ℓk ·m and hence ∥xi∥2 ≤

√
m. We obtain via the

Cauchy-Schwartz inequality (Lemma 6) and the triangle inequality that

B =

∣∣∣∣∣∣
∑
j

ei,jWjxj + e′i,i · xi

∣∣∣∣∣∣ ≤ √λσm(ℓk + 1) ≤ 2
√
λσmℓk.

Now fix any hash-value h and let hk and {(eki, tdi)}i∈[k] be the output of the Setup(1λ, 1k)
algorithm run on fresh random coins. Parse tdi = (si, δ).

For each index i, given that sih+ δi /∈ ±q/4 + [−B,B], it holds that

⌈vi · πi + δi⌋ = ⌈sih+ δi⌋.

Say that an index i ∈ [k] is bad if sih+ δi ∈ ±q/4+ [−B,B]. For each index i, the probability that it
is bad is 4B/q as δi is chosen uniformly random. Thus, in expectation there are 4kB/q bad indices.

Note that the due to the independence of the δi the events that indices are bad are independent.
Hence, a Chernoff bound yields that there are less than 8kB/q bad indices for this specific hash
value h, except with probability e−4kB/(3q).

The hash value h is in Zn
q , i.e. there are exactly qn choices for h. Hence, by a union-bound

the probability over the choice of honestly generated hk and {(eki, tdi)}i∈[k] that there exists a hash
value h for which there are more than 4kB/q bad indices is at most

qn · e−4kB/(3q) = en·ln(q)−4kB/(3q).

Recall that we need to bound the number of bad indices with kϵ (for 0 < ϵ < 1). Hence we have
the following constraints on q:

8kB/q ≤ kϵλc (1)

4kB/(3q)− n ln(q) ≥ ω(log(λ)). (2)

28

We can satisfy inequality (1) by choosing q ≥ 8k1−ϵB/λc = Ω(k2−ϵσmℓλ1/2−c). Furthermore, we
can satisfy inequality (2) by e.g. choosing

n ≤ kB/(q log(q))

≤ O(kϵλc/ log(λ))

5.5 Setting the Parameters

1. By Lemma 9 we need to choose ℓ ≤ (m−log(q)−2λ)/log(m), as well as n ≥ λ and ℓ ≥ n log(q)
to get hardness for LWE(q, n, σ).

2. By Lemma 10 we need to choose q ≥ Ω(k2−ϵσmℓλ1/2−c) and n ≤ O(kϵλc/ log(λ)) for some
constants 0 ≤ ϵ < 1 and c ≥ 0.

Let k be a free parameter for now. We can choose n = λ, which satisfies n ≤ O(kϵλc/ log(λ))
for e.g. c = 2. We choose σ by σ = Ω(

√
n) = O(

√
λ) as usual. We further choose ℓ = nλ = λ2.

We can now choose m = λ3, hence the condition ℓ ≤ (m − log(q) − 2λ)/ log(m) is satisfied for a
sufficiently large λ and as long as q = poly(λ). Finally, we can choose q ≥ Ω(k2−ϵσmℓλ1/2−c) =
Ω(k2−ϵλ3.5σ) = O(k2−ϵλ4).

The modulus-to-noise ratio for these choices will be q/σ = Ω(k2−ϵλ3.5).

6 Vector Trapdoor Hash from DDH and LPN

In this section, we give our construction of vector trapdoor hash from DDH and the LPN assump-
tions.

Building Blocks. We need the following components for our construction:

– A PRG,
PRG : {0, 1}λ

εPRG 7→ Zm
p

such that the following distributions are indistinguishable,{
PRG(seed)

∣∣∣ seed← {0, 1}λεPRG
}
λ∈[N]{

Berτ(λ)(Zp)
m
}
λ∈[N]

Here the parameter τ(λ) is set such that other than with negligible probability, the Hamming
weight for a sample from Berτ(λ)(Zp)

m is ≤ m/λ1−εwt .

The existence of such a PRG follows from the existence of any PRG such as those based on
DDH. The underlying PRG output can be used as the input to the sampler for Berτ(λ)(Zp)

m.

– A balanced and blockwise resilient Boolean function (Theorem 1) F : {0, 1}ρblk·ρnum → {0, 1}.

– A randomness extractor Ext : {0, 1}λ × G → {0, 1}. We denote ExtS(·) as the function that
takes a group element as input and uses S as the seed.

29

Parameters. We specify here the parameters, and the relationships between them necessary for
our proof. The security parameter is λ. We primarily work over Zp, with prime order groups G of
size p with generator g. The reader may disregard the relationship between the parameters for now
to focus on the construction’s description and can return here later for the security proof.

– The group elements are represented by λG bits.

– The number of parallel repetitions be denoted by ρ = ρblk · ρnum = λ1+εrep . Here ρblk = λ1+εblk

and ρnum = λεnum , thus εrep = εblk + εnum.

– The LPN matrices are of the form Zλ×m
p , where m = λ1+εLPN for εLPN ∈ (0, 1) and εrep < εLPN.

– The Bernoulli distribution for the PRG has already been set to be such that the Hamming
weight of the output is m/λ1−εwt

– The Bernoulli distribution for the LPN error is set to be τerr = 1/λεerr , where 1 > εerr >
εLPN + εwt + εnum. And εPRG < 1 + εblk − (εerr − εLPN − εwt).

Construction. We now present our construction of the vector trapdoor hash.
Setup(1λ, 1k)

1. G, p, g ← Gen(1λ). //group represented by λεG bits

2. Sample a seed S ← {0, 1}λ.

3. ∀i ∈ [k],

(a) Sample Bi ← Zλ×λ
p , Wi ∈ Zλ×m

p .

(b) Set Gi := gBi .

(c) Set Ai := BiWi. // ∈ Zλ×m

(d) Set Hi := gAi(= GWi
i).

(e) For each repetition ℓ ∈ [ρ]

i. Sample s
(ℓ)
i ← Zλ

p .

ii. Sample e
(ℓ)
i ← Berτerr(Zp)

m.
iii. Set

– ∀j ∈ [k] \ {i}, ek(ℓ)i,j := g(s
(ℓ)
i)⊤Bj // ∈ G1×λ

– ek
(ℓ)
i,i := g(s

(ℓ)
i)⊤BiWi+(e

(ℓ)
i)⊤(= g(s

(ℓ)
i)⊤Ai+(e

(ℓ)
i)⊤) // ∈ G1×m

(f) Set eki := (S, {ek(ℓ)i,j }j∈[k],ℓ∈[ρ]), tdi := (S, {s(ℓ)i }ℓ∈[ρ]).

4. Set hk = (g, {Gi,Wi, ek
(ℓ)
i,j }j∈[k],ℓ∈[ρ]}i∈[k]).

5. Output (hk, {eki, tdi}i∈[k]).

Hash(hk,x ∈ {0, 1}k·εPRG)

1. Parse hk = (g, {Gi,Wi, {ek(ℓ)i,j }j∈[k],ℓ∈[ρ]}i∈[k]).

30

2. Parse x = (seed1, · · · , seedk).
3. Set xi := PRG(seedi).

4. Set h :=
∏

i∈[k] H
xi
i // ∈ G1×λ (h[ℓ] =

∏k
i=1

∏m
j=1 g

Ai[ℓ,j]xi[j]).

5. ∀i ∈ [k],

(a) Set yi := Wixi //∈ Zλ
p .

(b) Set πi := (y1, . . . ,yi−1, seedi,yi+1, . . . ,yk) //∈ Z(k−1)λ+m
p .

6. Output (h, {πi}i∈[k]).

Encode(eki,πi)

1. Parse eki = (S, {ek(ℓ)i,j }j∈[k],ℓ∈[ρ]).
2. Parse πi = (y1, . . . ,yi−1, seedi,yi+1, . . . ,yk).

3. Set xi := PRG(seedi).

4. For all ℓ ∈ [ρ], set e(ℓ)i := ExtS
(
(ek

(ℓ)
i,i)

xi
∏

j ̸=i(ek
(ℓ)
i,j)

yj

)
. //Ext is a randomness extractor.

5. Output ei = F (e
(1)
i , . . . , e

(ρ)
i).

Decode(tdi,h)

1. Parse tdi = (S, {s(ℓ)i }ℓ∈[ρ]).

2. For all ℓ ∈ [ρ], set d(ℓ)i := ExtS
(
h(s

(ℓ)
i)⊤

)
.

3. Output di = F (d
(1)
i , . . . , d

(ρ)
i).

Verify(hk,h, i,πi)

1. Parse hk = (g, {Gi,Wi, {ek(ℓ)i,j }j∈[k],ℓ∈[ρ]}i∈[k]).
2. Parse πi = (y1, . . . ,yi−1, seedi,yi+1, . . . ,yk).

3. Set Hi := GWi
i

4. Set xi = PRG(seedi).

5. Output 0 if h = g0.

6. Output 1 if h = Hxi
i

∏
j ̸=i G

yj

j .

Lemma 11 (Completeness and Succinctness). The scheme presented above satisfies completeness
and succinctness.

31

Proof. Succinctness of the scheme follows directly from the choice of parameters, where the hash
h is λ group elements with the group elements represented by λεG . Thus the total size of the hash
is poly(λ).

For completeness, we simply need to argue that for an honestly generated hash h, the probability
that h = g0 is negligible in λ. This is the only instance that the Verify algorithm will reject since it
otherwise simply recomputes h.

We rewrite h =
∏

i∈[k] H
xi
i as g

∑
i∈[k] Aixi . Since in the honest setting, all xi are computed

independently of hk and thus independently of all the Ai, we simply need to bound the probability
that for all fixed {xi}i∈[k], Pr

[∑
i∈[k] Aixi = 0

]
where the probability is over the choice of Ai. We

separate this into two cases: (i) xi = 0 for every i – since Pr
[
Berτ(λ)(Zp)

m = 0
]
= negl(λ) by our

choice of parameters, by the pseudorandomness of the PRG we have that Pr[(x1, . . . ,xk) = 0] =
negl(λ) where each xi is the output of the PRG on a random seed; and (ii) exists i∗, j∗ such that

x∗i [j
∗] ̸= 0 – we rewrite Pr

[∑
i∈[k] Aixi = 0

]
as

Pr

∀ℓ ∈ [λ] :
∑
i∈[k]

∑
j∈[m]

Ai[ℓ, j]xi[j] = 0

 ≤ 1/pℓ

where the bound comes from the fact that for all ℓ we can represent A∗i [ℓ, j
∗] ∈ Zp as 1/x∗i [j

∗](
∑

i ̸=i∗
∑

j∈[m] Ai[ℓ, j]xi[j]).

6.1 Hiding

Lemma 12. The scheme presented above satisfies hiding based the security of the PRG, and of the DDH
and LPN assumptions.

Proof. We first show that there exists an alternate algorithm Setup∗ such that the mode indistin-
guishability and pseudorandomness as defined in Definition 12.

Mode Indistinguishability. At a high level, Setup∗ will replace each eki by random group ele-
ments. Note that matrices {Gi,Wi}i∈[k] are sampled at random, and given these matrices, each
eki is computed independently from other. Thus, it will suffice to present an index specific alter-
nate setup algorithm Setup∗i∗ that only replaces eki∗ by random. We will then show that Setup∗i∗
is indistinguishable from Setup. From the independence of generation of ekis, the aforementioned
indistinguishability is sufficient to establish mode indistinguishability for Setup∗ where each eki is
generated at random.

We present our proof for security via a sequence of hybrids described below. We start with the
output of Setup (excluding the trapdoor), and over a sequence of hybrids replace eki∗ by random
group elements. The setup algorithm in the final hybrid will correspond to Setup∗i∗ .

The output of each hybrid is (hk, {eki}).
Hyb0: The first hybrid generates the distribution as in the standard seup Setup. Specifically,

1. Sample S ← {0, 1}λ.
2. ∀i ∈ [k],

(a) Sample Bi ← Zλ×λ
p , Wi ∈ Zλ×m

p .

32

(b) Set Gi := gBi , Ai := BiWi, Hi := gAi .
(c) For each repetition ℓ ∈ [ρ]

i. Sample s
(ℓ)
i ← Zλ

p , e(ℓ)i ← Berτerr(Zp)
m.

ii. Set ek(ℓ)i,i := g(s
(ℓ)
i)⊤BiWi+(e

(ℓ)
i)⊤ ; ∀j ∈ [k] \ {i}, ek(ℓ)i,j := g(s

(ℓ)
i)⊤Bj .

(d) eki = (S, {ek(ℓ)i,j }j∈[k],ℓ∈[ρ]).

3. Set hk = (g, {Gi,Wi, ek
(ℓ)
i,j }j∈[k],ℓ∈[ρ]}i∈[k]).

Hyb1: In this hybrid, we rely on the DDH assumption to remove the use of s(1)i∗ , · · · , s(ρ)i∗ from
the hybrids. We do so by changing how {ek(ℓ)i∗,j}j∈[k] is computed for each ℓ ∈ [ρ].

1. Sample S ← {0, 1}λ.
2. ∀i ∈ [k],

(a) Sample Bi ← Zλ×λ
p , Wi ∈ Zλ×m

p .

(b) Set Gi := gBi , Ai := BiWi, Hi := gAi .
3. ∀i ̸= i∗,

(a) For each repetition ℓ ∈ [ρ]

i. Sample s
(ℓ)
i ← Zλ

p , e(ℓ)i ← Berτerr(Zp)
m.

ii. Set ek(ℓ)i,i := g(s
(ℓ)
i)⊤BiWi+(e

(ℓ)
i)⊤ ; ∀j ∈ [k] \ {i}, ek(ℓ)i,j := g(s

(ℓ)
i)⊤Bj .

4. For each repetition ℓ ∈ [ρ]

(a) Sample e
(ℓ)
i∗ ← Berτerr(Zp)

m, and ∀j ∈ [k] t
(ℓ)
i∗,j ← Zλ

p .

(b) Set ek(ℓ)i∗,i∗ := g(t
(ℓ)

i∗,i∗)
⊤Wi∗+(e

(ℓ)

i∗)⊤ ; ∀j ∈ [k] \ {i∗}, ek(ℓ)i∗,j := g(t
(ℓ)

i∗,j
)⊤ .

5. ∀i ∈ [k], eki = (S, {ek(ℓ)i,j }j∈[k],ℓ∈[ρ]).

6. Set hk = (g, {Gi,Wi, ek
(ℓ)
i,j }j∈[k],ℓ∈[ρ]}i∈[k]).

Hyb1 ≈c Hyb0. We start by defining a sequence ρ sub-hybrids, Hyb1,0, . . . ,Hyb1,ρ. In

Hyb1,ℓ we change only the computation of {ek(ℓ)i∗,j}j∈[k] from

ek
(ℓ)
i∗,i∗ := g(s

(ℓ)

i∗)⊤Bi∗Wi∗+(e
(ℓ)

i∗)⊤ ;∀j ∈ [k] \ {i∗}, ek(ℓ)i∗,j := g(s
(ℓ)

i∗)⊤Bj

to
ek

(ℓ)
i∗,i∗ := g(t

(ℓ)

i∗,i∗)
⊤Wi+(e

(ℓ)

i∗)⊤ ;∀j ∈ [k] \ {i∗}, ek(ℓ)i∗,j := g(t
(ℓ)

i∗,j
)⊤ .

Thus, Hyb1,0 ≡ Hyb0 and Hyb1,ρ ≡ Hyb1.
For every ℓ, we show that Hyb1,ℓ and Hyb1,ℓ+1 are indistinguishable based on the DDH
assumption. In particular, for every ℓ ∈ [ρ] we rely on the matrix DDH assumption which
states that the following distributions are computationally indistinguishable:

gB1 , · · · , gBk , g(s
(ℓ))⊤
i∗ B1 · · · g(s

(ℓ))⊤
i∗ Bk and gB1 , · · · , gBk , g(t

(ℓ)

i∗,1
)⊤ · · · g(t

(ℓ)

i∗,k
)⊤ ,

where s
(ℓ)
i∗ , {Bj , t

(ℓ)
i∗,j}j∈[k] are drawn at random (with appropriate dimensions) from Zp.

33

In the reduction to the above assumption, note that ek(ℓ)i∗,i∗ can be computed given ei-

ther g(t
(ℓ)

i∗,i∗)
⊤

or g(s
(ℓ)

i∗)⊤Bi∗ since Wi∗ and e
(ℓ)
i∗ are known to the reduction in the clear.

Further, the computation of {ek(ℓ
′)

i∗,j}j∈[k] for ℓ′ ̸= ℓ can be computed directly using

gB1 , · · · , gBk and without knowledge of s(ℓ)i∗ .

Hyb2: In this hybrid, we rely on LPN to replace the noisy terms in {ek(ℓ)i∗,j}j∈[k] for each ℓ ∈ [ρ]
with a random group element.

1. Sample S ← {0, 1}λ.
2. ∀i ∈ [k],

(a) Sample Bi ← Zλ×λ
p , Wi ∈ Zλ×m

p .

(b) Set Gi := gBi , Ai := BiWi, Hi := gAi .

(c) Set eki := (S, {ek(ℓ)i,j }j∈[k],ℓ∈[ρ]).
3. ∀i ̸= i∗,

(a) For each repetition ℓ ∈ [ρ]

i. Sample s
(ℓ)
i ← Zλ

p , e(ℓ)i ← Berτerr(Zp)
m.

ii. Set ek(ℓ)i,i := g(s
(ℓ)
i)⊤BiWi+(e

(ℓ)
i)⊤ ; ∀j ∈ [k] \ {i}, ek(ℓ)i,j := g(s

(ℓ)
i)⊤Bj .

4. For each repetition ℓ ∈ [ρ]

(a) Sample v
(ℓ)
i∗ ← Zm

p , ∀j ̸= i∗ t
(ℓ)
i∗,j ← Zλ

p .

(b) Set ek(ℓ)i∗,i∗ := g(v
(ℓ)

i∗)⊤ ; ∀j ∈ [k] \ {i∗}, ek(ℓ)i∗,j := g(t
(ℓ)

i∗,j
)⊤ .

5. ∀i ∈ [k], eki = (S, {ek(ℓ)i,j }j∈[k],ℓ∈[ρ]).

6. Set hk = (g, {Gi,Wi, ek
(ℓ)
i,j }j∈[k],ℓ∈[ρ]}i∈[k]).

Hyb2 ≈c Hyb1. We rely on the LPN to argue indistinguishability of hybrids. As in the
previous hybrid, we define a sequence of ρ sub-hybrids, Hyb2,0, . . . ,Hyb2,ρ. In Hyb2,ℓ

we change only the computation of ek(ℓ)i∗,i∗ from g(t
(ℓ)

i∗,i∗)
⊤Wi∗+(e

(ℓ)

i∗)⊤ to g(v
(ℓ)

i∗)⊤ . Thus,
Hyb2,0 ≡ Hyb1 and Hyb2,ρ ≡ Hyb2.
To argue indistinguishability of Hyb2,ℓ and Hyb2,ℓ, we rely on the LPNλ,m,τ assumption
that shows that the following two distributions are indistinguishable,

Wi∗ , (t
(ℓ)
i∗,i∗)

⊤Wi∗ + (e
(ℓ)
i∗)⊤ and Wi∗ , (v

(ℓ)
i∗)⊤

where Wi∗ , t
(ℓ)
i∗,i∗ and v

(ℓ)
i∗ are sampled from Zp with the appropriate dimension, and

e
(ℓ)
i∗ is sampled from Berτ (Zp)

m. Note that by our choice of parameters, we have that
m = λ1+εLPN > λ as required since t

(ℓ)
i∗,i∗ ∈ Zλ

p .

For the reduction, given either (t(ℓ)i∗,i∗)
⊤Wi∗ +(e

(ℓ)
i∗)⊤ or (v(ℓ)

i∗)⊤ from the LPN challenger,

ek
(ℓ)
i∗,i∗ can be computed by simply raising g to the challenge vector.

The output of Hyb2 is exactly the setup algorithm Setup∗i∗ .

34

Pseudorandomness. We now show that the scheme satisfies pseudorandomness. Let us fix the
challenge index to be i∗. In each hybrid, we shall argue that the distribution over the adversary A ’s
input (hk, h, {eki, πi}i ̸=i∗ , (eki∗ , ri∗)) remains indistinguishable, thus establishing that the scheme is
secure when the starting and ending hybrids correspond to the distributions in the ‘real’ and ‘ideal’
games in the pseudorandomness security definition.

The output of each hybrid is (hk, h, {eki, πi}i̸=i∗ , (eki∗ , ei∗)).

Hyb0: The first hybrid generates the distribution as in the ‘real’ game. Here the setup param-
eters are sampled according to Setup∗, where all the eki are random elements. Specifi-
cally,

1. Sample S ← {0, 1}λ.
2. ∀i ∈ [k],

(a) Sample Bi ← Zλ×λ
p , Wi ∈ Zλ×m

p .

(b) Set Gi := gBi , Ai := BiWi, Hi := gAi .
(c) For each repetition ℓ ∈ [ρ]

i. Sample v
(ℓ)
i ← Zm

p , ∀j ̸= i, t
(ℓ)
i,j ← Zλ

p .

ii. Set ek(ℓ)i,i := g(v
(ℓ)
i)⊤ ; ∀j ∈ [k] \ {i}, ek(ℓ)i,j := g(t

(ℓ)
i,j)

⊤
.

(d) Set eki = (S, {ek(ℓ)i,j }j∈[k],ℓ∈[ρ]).
3. ∀i ∈ [k], set seedi ← {0, 1}εPRG , xi := PRG(seedi), yi := Wixi.
4. ∀i ̸= i∗, πi := (y1, . . . ,yi−1, seedi,yi+1, . . . ,yk).

5. For all ℓ ∈ [ρ], set e(ℓ)i∗ := ExtS(g
(v

(ℓ)

i∗)⊤xi∗
∏

j ̸=i∗(ek
(ℓ)
i∗,j)

yj).

6. Set ei∗ = F (e
(1)
i∗ , . . . , e

(ρ)
i∗).

7. Set hk = (g, {Gi,Wi, ek
(ℓ)
i,j }j∈[k],ℓ∈[ρ]}i∈[k]).

Note that in the computation of e
(ℓ)
i∗ , we make a syntactic change and replace e

(ℓ)
i∗ :=

ExtS((ek
(ℓ)
i∗,i∗)

xi∗
∏

j ̸=i∗(ek
(ℓ)
i∗,j)

yj) with e
(ℓ)
i∗ := ExtS(g

(v
(ℓ)

i∗)⊤xi∗
∏

j ̸=i∗(ek
(ℓ)
i∗,j)

yj). This change
will be useful for arguing security in subsequent hybrids.

Hyb1: In this hybrid, we sample xi∗ randomly instead of using the output of PRG. Specifically,

1. Sample S ← {0, 1}λ.
2. ∀i ∈ [k],

(a) Sample Bi ← Zλ×λ
p , Wi ∈ Zλ×m

p .

(b) Set Gi := gBi , Ai := BiWi, Hi := gAi .
(c) For each repetition ℓ ∈ [ρ]

i. Sample v
(ℓ)
i ← Zm

p , ∀j ̸= i, t
(ℓ)
i,j ← Zλ

p .

ii. Set ek(ℓ)i,i := g(v
(ℓ)
i)⊤ ; ∀j ∈ [k] \ {i}, ek(ℓ)i,j := g(t

(ℓ)
i,j)

⊤
.

(d) Set eki = (S, {ek(ℓ)i,j }j∈[k],ℓ∈[ρ]).
3. ∀i ̸= i∗, set seedi ← {0, 1}εPRG , xi := PRG(seedi), yi := Wixi.
4. xi∗ ← Berτ(λ)(Zp)

m, yi∗ := Wi∗xi∗ .

5. ∀i ̸= i∗, πi := (y1, . . . ,yi−1, seedi,yi+1, . . . ,yk).

6. For all ℓ ∈ [ρ], set e(ℓ)i∗ := ExtS(g
(v

(ℓ)

i∗)⊤xi∗
∏

j ̸=i∗(ek
(ℓ)
i∗,j)

yj).

35

7. Set ei∗ = F (e
(1)
i∗ , . . . , e

(ρ)
i∗).

8. Set hk = (g, {Gi,Wi, ek
(ℓ)
i,j }j∈[k],ℓ∈[ρ]}i∈[k]).

Hyb1 ≈c Hyb0. . This follows from the indistinguishability of the pseudorandom gen-
erator PRG. We rely here on the fact that seedi∗ is not used anywhere else in the two
hybrids outside of the computation of xi∗ . In particular, πi∗ , which requires seedi∗ is
never computed or given out to the adversary.

Hyb2: In this hybrid, we rely on the dual LPN to remove xi∗ from the experiment.

1. Sample S ← {0, 1}λ.
2. ∀i ∈ [k],

(a) Sample Bi ← Zλ×λ
p , Wi ∈ Zλ×m

p .

(b) Set Gi := gBi , Ai := BiWi, Hi := gAi .
(c) For each repetition ℓ ∈ [ρ]

i. Sample v
(ℓ)
i ← Zm

p , ∀j ̸= i, t
(ℓ)
i,j ← Zλ

p .

ii. Set ek(ℓ)i,i := g(v
(ℓ)
i)⊤ ; ∀j ∈ [k] \ {i}, ek(ℓ)i,j := g(t

(ℓ)
i,j)

⊤
.

(d) Set eki = (S, {ek(ℓ)i,j }j∈[k],ℓ∈[ρ]).
3. ∀i ̸= i∗, set seedi ← {0, 1}εPRG , xi := PRG(seedi), yi := Wixi.
4. yi∗ ← Zλ

p .

5. ∀i ̸= i∗, πi := (y1, . . . ,yi−1, seedi,yi+1, . . . ,yk).

6. For all ℓ ∈ [ρ], sample r
(ℓ)
i∗ ← Zp and set e(ℓ)i∗ := ExtS(g

r
(ℓ)

i∗
∏

j ̸=i∗(ek
(ℓ)
i∗,j)

yj).

7. Set ei∗ = F (e
(1)
i∗ , . . . , e

(ρ)
i∗).

8. Set hk = (g, {Gi,Wi, ek
(ℓ)
i,j }j∈[k],ℓ∈[ρ]}i∈[k]).

Hyb2 ≈c Hyb1. We rely on the dual LPN to show the indistinguishability of the two
hybrids. Unlike in the previous hybrids, we will not define sub-hybrids and will have
to argue security ‘in one shot’. Specifically, the dual LPN assumption lets us argue the
following distributions are indistinguishable

Wi∗ , (v
(1)
i∗)⊤, . . . , (v

(ρ)
i∗)⊤,Wi∗xi∗ , (v

(1)
i∗)⊤xi∗ . . . , (v

(ρ)
i∗)⊤xi∗

and Wi∗ , (v
(1)
i∗)⊤, . . . , (v

(ρ)
i∗)⊤,yi∗ , r

(1)
i∗ . . . , r

(ρ)
i∗

where Wi∗ ∈ Zλ×m
p ,v

(1)
i∗ , . . . ,v

(ρ)
i∗ ∈ Zm

p ,yi∗ ∈ Zλ
p , r

(1)
i∗ . . . , r

(ρ)
i∗ ∈ Zp and xi∗ ← Berτ(λ)(Zp)

m.

We view the dual LPN matrix to be (Wi∗ , (v
(1)
i∗)⊤, . . . , (v

(ρ)
i∗)⊤)⊤ ∈ Zm×(λ+ρ)

p . Thus to
rely on the dual LPN, we need λ + ρ << m. By our choice of parameters, we have
ρ = λ1+εrep and m = λ1+εLPN where εrep < εLPN which enables to use the dual LPN
assumption. The indistinguishability directly follows by simply raising the appropriate
values to g,

Hyb3: In this hybrid, we change ei to be a randomly sampled bit.

1. Sample S ← {0, 1}λ.

36

2. ∀i ∈ [k],
(a) Sample Bi ← Zλ×λ

p , Wi ∈ Zλ×m
p .

(b) Set Gi := gBi , Ai := BiWi, Hi := gAi .
(c) For each repetition ℓ ∈ [ρ]

i. Sample v
(ℓ)
i ← Zm

p , ∀j ̸= i, t
(ℓ)
i,j ← Zλ

p .

ii. Set ek(ℓ)i,i := g(v
(ℓ)
i)⊤ ; ∀j ∈ [k] \ {i}, ek(ℓ)i,j := g(t

(ℓ)
i,j)

⊤
.

(d) Set eki = (S, {ek(ℓ)i,j }j∈[k],ℓ∈[ρ]).
3. ∀i ̸= i∗, set seedi ← {0, 1}εPRG , xi := PRG(seedi), yi := Wixi.
4. yi∗ ← Zλ

p .
5. ∀i ̸= i∗, πi := (y1, . . . ,yi−1, seedi,yi+1, . . . ,yk).

6. For all ℓ ∈ [ρ], sample r
(ℓ)
i∗ ← Zp and set e(ℓ)i∗ := ExtS(g

r
(ℓ)

i∗
∏

j ̸=i∗(ek
(ℓ)
i∗,j)

yj).
7. Set ei∗ ← {0, 1}.

8. Set hk = (g, {Gi,Wi, ek
(ℓ)
i,j }j∈[k],ℓ∈[ρ]}i∈[k]).

Hyb3 ≈s Hyb2. This follows from the fact that: (i) each e
(ℓ)
i∗ is statistically close to a

random bit as the output of ExtS is statistically close to random bit when given a random
group element as input, which is case as gr

(ℓ)

i∗ is a random group element; and (ii) F is a
balanced function.

Since Hyb3 is the challenge experiment in the ‘ideal world’, this concludes our proof of psue-
dorandomness.

We note that although the Setup∗ algorithm produces keys that are indistinguishable from ran-
dom, the pseudorandomness only holds against computationally bounded adversaries. This results
in our scheme not satisfying the dual-mode property.

6.2 Statistical Binding

We will prove the statistical binding property via a sequence of Lemmas.
Fix any hash h ̸= 0. For i ∈ [k], let BADi be the event that there exists a proof πi such that (i) πi

verifies at index i for the hash h; and (ii) ei computed using πi via the encode function is different
than di computed using the trapdoor. The probability of BADi is defined over the random choices
of s(ℓ)i and e

(ℓ)
i for all ℓ ∈ [ρ].

The following Lemma establishes that for any fixed index i ∈ [k], the event BADi happens only
with a inverse poly small probability.

Lemma 13. There exists a constant δ > 0 such that for any fixed i ∈ [k]

Pr[BADi] ≤ 1/λδ,

where the probability is defined over the random choices of s(ℓ)i and e
(ℓ)
i for all ℓ ∈ [ρ].

37

Before we prove Lemma 13, we show how to establish the statistical binding property via
Lemma 13.

Theorem 6. The vector trapdoor-hash (Setup,Hash,Encode,Decode,Verify) is statistically binding.

Proof. First note that by our description, for every i, BADi is determined by independently chosen
random coins, namely the s

(ℓ)
i and e

(ℓ)
i . Hence the events BAD1, . . . ,BADk are independent. In the

following, let k = λγ for some constant γ. In expectation, there are k/λδ = λγ−δ bad indices. We
can now bound the number of bad indices using the Chernoff bound as the BADi are independent
events. That is, it holds that

Pr
[
|{i | BADi happens }| ≥ 2λγ−δ] < e−λ

γ−δ/3.

Note that while the events BADi are defined for a fixed h, for statistical binding the above should
hold for all h. We achieve this by applying a union bound over all possible h. Noting that there
are at most |G|λ = 2λ

1+ϵG possible choice for h, we get that the probability that there exists an h

such that there are more than 2λγ−δ bad indices is bounded by e−λ
γ−δ/3 ·2λ1+ϵG = 2−O(λγ−δ)+λ1+ϵG .

This expression is negligible whenever γ > δ + 1 + ϵG. Noting that we can choose k = λγ to be an
arbitrarily large polynomial, i.e. make γ an arbitrarily large constant, we have established that our
scheme is statistically binding.

We will now prove Lemma 13.

Proof of Lemma 13. We start by re-writing the computation of e(ℓ)i in Encode(eki,πi) where πi =
(y1, . . . ,yi−1, seedi,yi+1, . . . ,yk) to be

e
(ℓ)
i = ExtS

(
g(s

(ℓ)
i)⊤BiWi+(e

(ℓ)
i)⊤

)xi ∏
j ̸=i

(
g(s

(ℓ)
i)⊤Bj

)yi


= ExtS

g(e
(ℓ)
i)⊤xi

(
g(s

(ℓ)
i)⊤BiWi

)xi ∏
j ̸=i

(
g(s

(ℓ)
i)⊤Bj

)yi



= ExtS

g(e
(ℓ)
i)⊤xi

gBiWixi

∏
j ̸=i

(
gBj

)yi

(s
(ℓ)
i)⊤



= ExtS

g(e
(ℓ)
i)⊤xi

gAixi

∏
j ̸=i

gBjyi

(s
(ℓ)
i)⊤



= ExtS

g(e
(ℓ)
i)⊤xi

Hxi
i

∏
j ̸=i

Gyi

j

(s
(ℓ)
i)⊤



38

If Verify(hk,h, i,πi) = 1, by the description of Verify we have that h = Hxi
i

∏
j ̸=i G

yi

j . Thus, if the
output of the Verify algorithm is 1, we have

e
(ℓ)
i = ExtS

(
g(e

(ℓ)
i)⊤xihs

(ℓ)
i

)
.

Since d
(ℓ)
i := ExtS(h

(s
(ℓ)
i)⊤) in the Decode algorithm, it follows that e

(ℓ)
i ̸= d

(ℓ)
i if and only if

(e
(ℓ)
i)⊤xi ̸= 0 mod p.

We now argue that the probability that there exists an xi such that, within any block of size ρblk,
the number of indices where e

(ℓ)
i ̸= d

(ℓ)
i exceeds a certain threshold is small.

We first bound the probability that (e(ℓ)i)⊤xi ̸= 0 mod p for any fixed xi and ℓ. This is done via
the following claim.

Claim 1. There exists a constant δ′ > 0 such that for any fixed xi of Hamming weight m/λ1−εwt and
any ℓ ∈ [ρ],

Pr
e
(ℓ)
i ←Berτ (Zp)m

[
(e

(ℓ)
i)⊤xi = 0 mod p

]
≥ 1− 1

λδ′
.

To prove the claim, we substitute parameters m = λ1+εLPN , τ = 1/λεerr and get m/λ1−εwt =

λεLPN+εwt . By independence of the e
(ℓ)
i we get that

Pr
e
(ℓ)
i ←Berτ (Zp)m

[
(e

(ℓ)
i)⊤xi = 0 mod p

]
≥

(
1− 1

λεerr

)λεLPN+εwt

≥ 1− 1

λεerr−εLPN−εwt
.

Since εerr > εLPN + εwt, we complete the proof of the claim by setting δ′ = εerr − εLPN − εwt.
From this claim, we get that for any block of size ρblk, the expected number of indices ℓ such

that (e(ℓ)i)⊤xi ̸= 0 is ρblk/λ
εerr−εLPN−εwt . We call such indices erroneous. Thus, by an application of

the Chernoff bound, we can bound the number of erroneous indices in each block. Specifically, we
see that except with probability ≈ e−ρblk/λ

εerr−εLPN−εwt the number of erroneous indices in a block is
bounded by 2 · ρblk/λεerr−εLPN−εwt . Analogously, we also say that a block is erroneous if more than
2 · ρblk/λεerr−εLPN−εwt indices contained within it are erroneous.

Since our above observations were for a fixed xi, we now apply a union bound over all possible
choices of xi to argue that the probability of any fixed block j being an erroneous block, for any xi

is negligible.
Pr[∃xi s.t. block j is erroneous] < 2λ

εPRG · e−ρblk/λ
εerr−εLPN−εwt

.

The above follows from the fact that xi is generated using a PRG where the seed-size is λεPRG ,
and to union bound over all xi it is sufficient to union bound over all possible PRG seeds. Since
εPRG < 1 + εblk − (εerr − εLPN − εwt), we have that the above probability is negligible.

We now want to argue that there does not exist an xi such that any of the blocks are erroneous,
except with negligible probability. Since the above argument was for a fixed block j to be an
erroneous block, we apply a union bound over the number of blocks ρnum = λεnum . Specifically, we
have

Pr[∃j,xi s.t. block j is erroneous] < λεnum · 2λ
εPRG · e−ρblk/λ

εerr−εLPN−εwt
.

39

Thus except with negligible probability there does not exists xi or a block j such that there are
more than 2 · ρblk/λεerr−εLPN−εwt erroneous indices in each block, or alternatively the adversary can
only influence at most 2 · ρblk/λεerr−εLPN−εwt bits in each block.

We can now rely on the blockwise resilience of F to guarantee that the probability that ei ̸= di
is small inverse polynomial. In other words, with all but a small inverse polynomial probability the
value ei is fixed by the hash h.

As h ̸= g0 = 1 is fixed and s
(1)
i , . . . , s

(ρ)
i ← Zλ

p , it follows that h(s
(1)
i)⊤ , . . . ,h(s

(ρ)
i)⊤ are uniformly

distributed. Note that since h is fixed, these values are not under the adversary’s influence. Since
the output of the extractor ExtS is negligibly close to uniform, we can replace ExtS(h

(s
(ℓ)
i)⊤) with

uniform bits uℓ for each ℓ ∈ [ρ] except with negligible statistical distance. This can be done for
every

Combining with our prior analysis for erroneous indices in a block, an adversary can thus effec-
tively influence 2 ·ρblk/λεerr−εLPN−εwt positions in any block with an adversarial choice of xi, with the
remaining bits in the block chosen uniformly at random.

Now consider the e∗i = F (u1, . . . , uρ). Since the u1, . . . , uρ are chosen uniformly random, the
blockwise resilience of F (Definition 4 with q = 2 · ρblk/λεerr−εLPN−εwt positions under adversarial
control in each block), the probability that that F is constant and equal to e∗i on all vectors with
Hamming distance at most q from (u1, . . . , uρ) is at least 1−BIq(F), where

BIq(F) = O

(
ρnum ·

(
log2 ρblk
ρblk

)
·
(

2 · ρblk
λεerr−εLPN−εwt

))
.

Hence, we obtain that the probability that BADi happens is at most BIq(F) + negl(λ) (where the
negl(λ) contribution is due to the randomness extractor). By the above equation the value BIq(F)
is bounded by 1/λδ where δ is set to be a constant smaller than εerr − εLPN − εwt − εnum.

Acknowledgements

The authors thank the anonymous reviewers of EUROCRYPT 2025 for their valuable feedback and
Brent Waters for comments on an early draft of this work.

Pedro Branco and Giulio Malavolta are supported by the European Research Council through
an ERC Starting Grant (Grant agreement No. 101077455, ObfusQation). Giulio Malavolta is also
funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under Ger-
many’s Excellence Strategy - EXC 2092 CASA – 390781972. Akshayaram Srinivasan is supported
in part by a NSERC Discovery Grant RGPIN-2024-03928. Abhishek Jain is supported in part by
NSF CNS-1814919, NSF CAREER 1942789, Johns Hopkins University Catalyst award, JP Morgan
Faculty Award, and research gifts from Ethereum, Stellar and Cisco. Nico Döttling is funded by the
European Union (ERC, LACONIC, 101041207). Views and opinions expressed are however those
of the author(s) only and do not necessarily reflect those of the European Union or the European
Research Council. Neither the European Union nor the granting authority can be held responsible
for them.

40

References

[Ajt99] Miklós Ajtai. Generating hard instances of the short basis problem. In Jiŕı Wieder-
mann, Peter van Emde Boas, and Mogens Nielsen, editors, ICALP 99: 26th International
Colloquium on Automata, Languages and Programming, volume 1644 of Lecture Notes
in Computer Science, pages 1–9, Prague, Czech Republic, July 11–15, 1999. Springer,
Berlin, Heidelberg, Germany. 21

[AL93] Miklós Ajtai and Nathan Linial. The influence of large coalitions. Comb., 13(2):129–
145, 1993. 12

[Ale03] Michael Alekhnovich. More on average case vs approximation complexity. In 44th
Annual Symposium on Foundations of Computer Science, pages 298–307, Cambridge,
MA, USA, October 11–14, 2003. IEEE Computer Society Press. 12

[BFM88] Manuel Blum, Paul Feldman, and Silvio Micali. Non-interactive zero-knowledge and
its applications (extended abstract). In 20th Annual ACM Symposium on Theory of
Computing, pages 103–112, Chicago, IL, USA, May 2–4, 1988. ACM Press. 3

[BHHO08] Dan Boneh, Shai Halevi, Michael Hamburg, and Rafail Ostrovsky. Circular-secure en-
cryption from decision Diffie-Hellman. In David Wagner, editor, Advances in Cryptology
– CRYPTO 2008, volume 5157 of Lecture Notes in Computer Science, pages 108–125,
Santa Barbara, CA, USA, August 17–21, 2008. Springer, Berlin, Heidelberg, Germany.
16

[BKM20] Zvika Brakerski, Venkata Koppula, and Tamer Mour. NIZK from LPN and trapdoor hash
via correlation intractability for approximable relations. In Daniele Micciancio and
Thomas Ristenpart, editors, Advances in Cryptology – CRYPTO 2020, Part III, volume
12172 of Lecture Notes in Computer Science, pages 738–767, Santa Barbara, CA, USA,
August 17–21, 2020. Springer, Cham, Switzerland. 3, 4

[BL85] Michael Ben-Or and Nathan Linial. Collective coin flipping, robust voting schemes and
minima of banzhaf values. In 26th Annual Symposium on Foundations of Computer Sci-
ence, pages 408–416, Portland, Oregon, October 21–23, 1985. IEEE Computer Society
Press. 12

[BLMR13] Dan Boneh, Kevin Lewi, Hart William Montgomery, and Ananth Raghunathan. Key
homomorphic PRFs and their applications. In Ran Canetti and Juan A. Garay, editors,
Advances in Cryptology – CRYPTO 2013, Part I, volume 8042 of Lecture Notes in Com-
puter Science, pages 410–428, Santa Barbara, CA, USA, August 18–22, 2013. Springer,
Berlin, Heidelberg, Germany. 9

[CCH+19] Ran Canetti, Yilei Chen, Justin Holmgren, Alex Lombardi, Guy N. Rothblum, Ron D.
Rothblum, and Daniel Wichs. Fiat-Shamir: from practice to theory. In Moses Charikar
and Edith Cohen, editors, 51st Annual ACM Symposium on Theory of Computing, pages
1082–1090, Phoenix, AZ, USA, June 23–26, 2019. ACM Press. 3

[CCRR18] Ran Canetti, Yilei Chen, Leonid Reyzin, and Ron D. Rothblum. Fiat-Shamir and cor-
relation intractability from strong KDM-secure encryption. In Jesper Buus Nielsen and

41

Vincent Rijmen, editors, Advances in Cryptology – EUROCRYPT 2018, Part I, volume
10820 of Lecture Notes in Computer Science, pages 91–122, Tel Aviv, Israel, April 29 –
May 3, 2018. Springer, Cham, Switzerland. 3

[CGH04] Ran Canetti, Oded Goldreich, and Shai Halevi. The random oracle methodology, revis-
ited. J. ACM, 51(4):557–594, 2004. 3

[CHK03] Ran Canetti, Shai Halevi, and Jonathan Katz. A forward-secure public-key encryption
scheme. In Eli Biham, editor, Advances in Cryptology – EUROCRYPT 2003, volume 2656
of Lecture Notes in Computer Science, pages 255–271, Warsaw, Poland, May 4–8, 2003.
Springer, Berlin, Heidelberg, Germany. 3

[CKU20] Geoffroy Couteau, Shuichi Katsumata, and Bogdan Ursu. Non-interactive zero-
knowledge in pairing-free groups from weaker assumptions. In Anne Canteaut and
Yuval Ishai, editors, Advances in Cryptology – EUROCRYPT 2020, Part III, volume 12107
of Lecture Notes in Computer Science, pages 442–471, Zagreb, Croatia, May 10–14,
2020. Springer, Cham, Switzerland. 3

[CZ16] Eshan Chattopadhyay and David Zuckerman. Explicit two-source extractors and re-
silient functions. In Daniel Wichs and Yishay Mansour, editors, 48th Annual ACM Sym-
posium on Theory of Computing, pages 670–683, Cambridge, MA, USA, June 18–21,
2016. ACM Press. 12

[DGI+19] Nico Döttling, Sanjam Garg, Yuval Ishai, Giulio Malavolta, Tamer Mour, and Rafail
Ostrovsky. Trapdoor hash functions and their applications. In Alexandra Boldyreva
and Daniele Micciancio, editors, Advances in Cryptology – CRYPTO 2019, Part III, vol-
ume 11694 of Lecture Notes in Computer Science, pages 3–32, Santa Barbara, CA, USA,
August 18–22, 2019. Springer, Cham, Switzerland. 4, 5

[DJJ24] Quang Dao, Aayush Jain, and Zhengzhong Jin. Non-interactive zero-knowledge from
lpn and mq. In CRYPTO, 2024. 3, 4

[DMP88] Alfredo De Santis, Silvio Micali, and Giuseppe Persiano. Non-interactive zero-
knowledge proof systems. In Carl Pomerance, editor, Advances in Cryptology –
CRYPTO’87, volume 293 of Lecture Notes in Computer Science, pages 52–72, Santa Bar-
bara, CA, USA, August 16–20, 1988. Springer, Berlin, Heidelberg, Germany. 3

[DN00] Cynthia Dwork and Moni Naor. Zaps and their applications. In 41st Annual Sympo-
sium on Foundations of Computer Science, pages 283–293, Redondo Beach, CA, USA,
November 12–14, 2000. IEEE Computer Society Press. 12

[DORS08] Yevgeniy Dodis, Rafail Ostrovsky, Leonid Reyzin, and Adam Smith. Fuzzy extractors:
How to generate strong keys from biometrics and other noisy data. SIAM Journal on
Computing, 38(1):97–139, 2008. 13

[FLS90] Uriel Feige, Dror Lapidot, and Adi Shamir. Multiple non-interactive zero knowledge
proofs based on a single random string (extended abstract). In 31st Annual Symposium
on Foundations of Computer Science, pages 308–317, St. Louis, MO, USA, October 22–
24, 1990. IEEE Computer Society Press. 3, 4, 17

42

[FR21] Marc Fischlin and Felix Rohrbach. Single-to-multi-theorem transformations for non-
interactive statistical zero-knowledge. In Juan Garay, editor, PKC 2021: 24th Inter-
national Conference on Theory and Practice of Public Key Cryptography, Part II, volume
12711 of Lecture Notes in Computer Science, pages 205–234, Virtual Event, May 10–13,
2021. Springer, Cham, Switzerland. 4

[FS87] Amos Fiat and Adi Shamir. How to prove yourself: Practical solutions to identifica-
tion and signature problems. In Andrew M. Odlyzko, editor, Advances in Cryptology –
CRYPTO’86, volume 263 of Lecture Notes in Computer Science, pages 186–194, Santa
Barbara, CA, USA, August 1987. Springer, Berlin, Heidelberg, Germany. 3

[GMR85] Shafi Goldwasser, Silvio Micali, and Charles Rackoff. The knowledge complexity of in-
teractive proof-systems (extended abstract). In 17th Annual ACM Symposium on Theory
of Computing, pages 291–304, Providence, RI, USA, May 6–8, 1985. ACM Press. 3

[GMW87] Oded Goldreich, Silvio Micali, and Avi Wigderson. How to play any mental game or A
completeness theorem for protocols with honest majority. In Alfred Aho, editor, 19th
Annual ACM Symposium on Theory of Computing, pages 218–229, New York City, NY,
USA, May 25–27, 1987. ACM Press. 3

[GO93] Shafi Goldwasser and Rafail Ostrovsky. Invariant signatures and non-interactive zero-
knowledge proofs are equivalent (extended abstract). In Ernest F. Brickell, editor,
Advances in Cryptology – CRYPTO’92, volume 740 of Lecture Notes in Computer Science,
pages 228–245, Santa Barbara, CA, USA, August 16–20, 1993. Springer, Berlin, Hei-
delberg, Germany. 3

[GOS06a] Jens Groth, Rafail Ostrovsky, and Amit Sahai. Non-interactive zaps and new techniques
for NIZK. In Cynthia Dwork, editor, Advances in Cryptology – CRYPTO 2006, volume
4117 of Lecture Notes in Computer Science, pages 97–111, Santa Barbara, CA, USA,
August 20–24, 2006. Springer, Berlin, Heidelberg, Germany. 3

[GOS06b] Jens Groth, Rafail Ostrovsky, and Amit Sahai. Perfect non-interactive zero knowledge
for NP. In Serge Vaudenay, editor, Advances in Cryptology – EUROCRYPT 2006, vol-
ume 4004 of Lecture Notes in Computer Science, pages 339–358, St. Petersburg, Russia,
May 28 – June 1, 2006. Springer, Berlin, Heidelberg, Germany. 3

[GPV08] Craig Gentry, Chris Peikert, and Vinod Vaikuntanathan. Trapdoors for hard lattices and
new cryptographic constructions. In Richard E. Ladner and Cynthia Dwork, editors,
40th Annual ACM Symposium on Theory of Computing, pages 197–206, Victoria, BC,
Canada, May 17–20, 2008. ACM Press. 4, 7, 21

[HL18] Justin Holmgren and Alex Lombardi. Cryptographic hashing from strong one-way func-
tions (or: One-way product functions and their applications). In Mikkel Thorup, edi-
tor, 59th Annual Symposium on Foundations of Computer Science, pages 850–858, Paris,
France, October 7–9, 2018. IEEE Computer Society Press. 3

[JJ21] Abhishek Jain and Zhengzhong Jin. Non-interactive zero knowledge from sub-
exponential DDH. In Anne Canteaut and François-Xavier Standaert, editors, Advances
in Cryptology – EUROCRYPT 2021, Part I, volume 12696 of Lecture Notes in Computer

43

Science, pages 3–32, Zagreb, Croatia, October 17–21, 2021. Springer, Cham, Switzer-
land. 3, 4

[KMY20] Fuyuki Kitagawa, Takahiro Matsuda, and Takashi Yamakawa. NIZK from SNARG. In
Rafael Pass and Krzysztof Pietrzak, editors, TCC 2020: 18th Theory of Cryptography
Conference, Part I, volume 12550 of Lecture Notes in Computer Science, pages 567–595,
Durham, NC, USA, November 16–19, 2020. Springer, Cham, Switzerland. 18, 19

[LPWW20] Benôıt Libert, Alain Passelègue, Hoeteck Wee, and David J. Wu. New constructions
of statistical NIZKs: Dual-mode DV-NIZKs and more. In Anne Canteaut and Yuval
Ishai, editors, Advances in Cryptology – EUROCRYPT 2020, Part III, volume 12107 of
Lecture Notes in Computer Science, pages 410–441, Zagreb, Croatia, May 10–14, 2020.
Springer, Cham, Switzerland. 5, 45

[Mat94] Mitsuru Matsui. Linear cryptanalysis method for DES cipher. In Tor Helleseth, editor,
Advances in Cryptology – EUROCRYPT’93, volume 765 of Lecture Notes in Computer Sci-
ence, pages 386–397, Lofthus, Norway, May 23–27, 1994. Springer, Berlin, Heidelberg,
Germany. 45

[Mek17] Raghu Meka. Explicit resilient functions matching ajtai-linial. In Philip N. Klein,
editor, 28th Annual ACM-SIAM Symposium on Discrete Algorithms, pages 1132–1148,
Barcelona, Spain, January 16–19, 2017. ACM-SIAM. 12, 45

[MP12] Daniele Micciancio and Chris Peikert. Trapdoors for lattices: Simpler, tighter, faster,
smaller. In David Pointcheval and Thomas Johansson, editors, Advances in Cryptology –
EUROCRYPT 2012, volume 7237 of Lecture Notes in Computer Science, pages 700–718,
Cambridge, UK, April 15–19, 2012. Springer, Berlin, Heidelberg, Germany. 14, 15, 21

[PS19] Chris Peikert and Sina Shiehian. Noninteractive zero knowledge for NP from (plain)
learning with errors. In Alexandra Boldyreva and Daniele Micciancio, editors, Advances
in Cryptology – CRYPTO 2019, Part I, volume 11692 of Lecture Notes in Computer Sci-
ence, pages 89–114, Santa Barbara, CA, USA, August 18–22, 2019. Springer, Cham,
Switzerland. 3, 4

[QRW19] Willy Quach, Ron D. Rothblum, and Daniel Wichs. Reusable designated-verifier NIZKs
for all NP from CDH. In Yuval Ishai and Vincent Rijmen, editors, Advances in Cryptology
– EUROCRYPT 2019, Part II, volume 11477 of Lecture Notes in Computer Science, pages
593–621, Darmstadt, Germany, May 19–23, 2019. Springer, Cham, Switzerland. 3, 17,
18, 19

[Reg05] Oded Regev. On lattices, learning with errors, random linear codes, and cryptography.
In Harold N. Gabow and Ronald Fagin, editors, 37th Annual ACM Symposium on Theory
of Computing, pages 84–93, Baltimore, MA, USA, May 22–24, 2005. ACM Press. 13, 15

[Wat24] Brent Waters. A new approach for non-interactive zero-knowledge from learning with
errors. In STOC, pages 399–410. ACM, 2024. 2, 4, 6, 7, 8, 9, 10, 17, 19

44

A Blockwise Resilient Function

In this section, we present a simple proof for Theorem 1, where we rely on the following Theorem
from [Mek17] for the resilient function underlying our construction.

Theorem 7 ([Mek17]). For some universal constant c ≥ 1 the following holds. There exists a function
f : {0, 1}n 7→ {0, 1} which can be computed in time t · nc such that,

– f is almost balanced: Prx←${0,1}n [f(x) = 0] = 1/2± 1/10.

– Iq(f) ≤ c · q(log2 n)/n.

We now proceed to the proof of Theorem 1.
We first note the Piling-up Lemma that will be useful for the proof.

Lemma 14 (Piling-up Lemma[Mat94]). Let x1, . . . , xt ∈ {0, 1} be i.i.d. random variables such that
E[xi] = 1/2± ε, then

Pr[x1 ⊕ . . . xt = 0] = 1/2± 2t−1εt.

Proof of Theorem 1. We use the resilient function f from Theorem 7 to construct F . Specifically,

F (x1, . . . , xt) = f(x1)⊕ · · · ⊕ f(xt).

By the Piling-up Lemma, we have that

Prx←${0,1}n·t [F (x) = 0] = 1/2± 2t−1

10t
= 1/2± 1/2t.

For the resilience, we perform a simple union bound over the t blocks, which gives us BIq(F) ≤
t · Iq(f) ≤ t · c′ · q(log2 n)/n.

B Designated-Verifier Vector Trapdoor Hash from DDH

We now present a construction in the designated-verifier model for a trapdoor hash function from
DDH to show the versatility of our framework. This scheme is a recast of the scheme in [LPWW20].
Setup(1λ, 1k)

1. G, p, g ← Gen(1λ).

2. Sample a seed S ← {0, 1}λ.

3. Sample a← Zn
p where n ≥ 2(λ+ log(p)) and set h := ga.

4. ∀i ∈ [k],

(a) Sample si, ti, ki ← Zp.

(b) Set g1,i := gsi·a
T

, g2,i := gti·a
T

and fi := gki

(c) Set yi := siki + ti.

(d) Set eki = (S,g1,i,g2,i, fi), tdi = (S, si) and vki = (ki, yi).

5. Set hk = (h, {eki}i∈[k]).

45

6. Output (hk, {eki, tdi, vki}i∈[k]).

Hash(hk,x ∈ {0, 1}n)

1. Parse hk = (h, {eki}i∈[k]) and eki = (S,g1,i,g2,i, fi).

2. Compute h := hx(= ga
T ·x).

3. ∀i ∈ [k],

(a) Set γi := gx
1,i(= gsi·(a

T ·xT)) and δi := gx
2,i(= gti·(a

T ·x)).
(b) Set πi := (γi, δi).

4. Output (h, {πi}i∈[k]).

Encode(eki, πi)

1. Parse eki = (S,g1,i,g2,i, fi) and πi = (γi, δi).

2. Output ei = ExtS(γi). //ExtS outputs the least significant bit.

Decode(tdi, h)

1. Parse tdi = (S, si).

2. Output di = ExtS(h
si).

Verify(hk, vki, h, i, πi, ẽ)

1. Parse hk = h, vki = (ki, yi), and πi = (γi, δi).

2. Check if hyi = γki
i δi and if ẽ = ExtS(γi).

3. Output 1 if all the checks verify.

Lemma 15 (Completeness and succinctness). The scheme presented above is complete and succinct.

Succinctness follows immediately since h = ga
T ·x is composed by only one group element.

Hence, |h| = log(p) = poly(λ). Moreover, completeness follows since hyi = g(a
T ·x)sikig(a

T ·x)ti =
γki
i δi.

B.1 Hiding

We prove the hiding property of this construction below.

Lemma 16. The scheme presented above is secure assuming that the DDH assumption is hard.

Proof. We will start by proving mode indistinguishability.

46

Mode indistinguishability. We will first show how the Setup∗ algorithm samples the encoding
keys. We will replace each one at a time.

Let i∗ ∈ [k] be any index. The proof follows the following sequence of hybrids.
Hyb0: This hybrid generates the distribution as in the ‘real’ game. Specifically,

1. Sample a seed S ← {0, 1}λ.
2. Sample a← Zp and set h := ga. Set hk = h.
3. ∀i ∈ [k],

(a) Set g1,i := gsi·a
T

, g2,i := gti·a
T

and fi := gki

(b) Set yi := siki + ti.
(c) Set eki = (S,g1,i,g2,i, fi), tdi = (S, si) and vki = (ki, yi).

Hyb1: In this hybrid, we sample ki∗ , yi∗ randomly and set ti∗ = yi∗ − si∗ki∗ . Specifically,
1. Sample a seed S ← {0, 1}λ.
2. Sample a← Zp and set h := ga. Set hk = h.
3. ∀i ̸= i∗,

(a) Set g1,i := gsi·a
T

, g2,i := gti·a
T

and fi := gki

(b) Set yi := siki + ti.
(c) Set eki = (S,g1,i,g2,i, fi), tdi = (S, si) and vki = (ki, yi).

4. Sample ki∗ , yi∗ ← Zp and set ti∗ = yi∗ − si∗ki∗ .

5. Set g1,i∗ := gsi∗ ·a
T

, g2,i∗ := gti∗ ·a
T

and fi∗ := gki∗ .
6. Set eki∗ = (S,g1,i∗ ,g2,i∗ , fi∗), tdi∗ = (S, si∗) and vki∗ = (ki∗ , yi∗).

Hyb1 ≈s Hyb0. . Perfect indistinguishability of hybrids follows from the fact that ti∗ =
yi∗ − si∗ki∗ .

Hyb2: In this hybrid we set g1,i as gv where v←$ Zn
p .

1. Sample a seed S ← {0, 1}λ.
2. Sample a← Zp and set h := ga. Set hk = h.
3. ∀i ̸= i∗,

(a) Set g1,i := gsi·a
T

, g2,i := gti·a
T

and fi := gki

(b) Set yi := siki + ti.
(c) Set eki = (S,g1,i,g2,i, fi), tdi = (S, si) and vki = (ki, yi).

4. Sample ki∗ , yi∗ ← Zp.

5. Set g1,i∗ := gv
T

for v←$ Zn
p , g2,i∗ := g(yi∗−si∗ki∗)·aT

and fi∗ := gki∗ .

6. Set eki∗ = (S,g1,i∗ ,g2,i∗ , fi∗), tdi∗ = (S, si∗) and vki∗ = (ki∗ , yi∗).

Hyb2 ≈c Hyb1. Indistinguishability of hybrids follows from the DDH assumption which
states that

(ga, gsi∗ , gsi∗a) ≈c (g
a, gsi∗ , gv)

where v ←$ Zn
p . Additionally, note that given gsi∗a (or gv) the reduction can efficiently

simulate vki∗ = (ki∗ , yi∗) where ki∗ , yi∗ ← Zp, and g2,i∗ = g(yi∗−ki∗si∗)a.
We set the eki in the last hybrid to be the output of Setup∗

47

Pseudorandomness. Having set the eki∗ to be to be the output of Setup∗ we argue that the bit ei∗
is indistinguishable from uniform.

Indistinguishability follows from the leftover hash lemma (Lemma 3). To see this note that
g1,i∗ = gv and that ei∗ is computed as ExtS(γi∗) where γi∗ = gx

1,i∗ = gv·x
T

. Hence, it is enough to
show that γi∗ is indistinguishable from uniform.

First note that H̃∞(x) = n and that |aTx| = log p. Hence we can use a chain rule (Lemma 2)

H̃∞(x|aTx) ≥ H̃∞(x)− log p.

We can now use the leftover hash lemma to argue that

(vTx,aTx) ≈s (u,a
Tx)

where u← Zp as long as log p ≤ n− log p− 2λ.

B.2 Statistical Binding

We prove the binding property of this construction below.

Lemma 17. The scheme presented above is statistically binding.

Proof. Assume that for an adversarially chosen hash value h, index i and proof π, we have that
Encode(eki, πi) = ei ̸= di = Decode(tdi, h). This means that hsi ̸= γi. Let h = gw, γi = gz0 and
δi = gz1 for some w, z0, z1 ∈ Zp. Then

Pr
ki←Zp

[Verify(hk, vki, h, i, πi, ẽ) = 1 : hsi ̸= γi] = Pr
ki←Zp

[
hsi·ki+ti = γki

i δi : h
si ̸= γi

]
= Pr

ki←Zp

[w(si · ki + ti) = z0ki + z1 : wsi ̸= z0]

= Pr
ki←Zp

[
ki =

w(si + ti)− z1
z0 − wsi

: wsi ̸= z0

]
=

1

p
=

1

2λ
= negl(λ).

We conclude that if ei ̸= di, then Verify(hk, vki, h, i, πi, ẽ) fails except with negligible probability,
even when the adversary is computationally unbounded.

48

	Introduction
	Our Results

	Technical Overview
	Vector Trapdoor Hash
	Recasting STOC:Waters24 as a Vector Trapdoor Hash
	New Construction from Learning with Errors
	Construction from DDH+LPN

	Preliminaries
	Resilient Functions
	Hardness Assumptions
	Learning with Errors
	Decisional Diffie-Hellman
	Learning Parity with Noise

	NIZKs in Hiddent Bit Model
	Hidden-Bits Generator

	Vector Trapdoor Hash
	Vector Trapdoor Hash Imply Hidden Bits Generators

	Vector Trapdoor Hash from LWE
	Completeness
	Pseudorandomness of Hashing and Encoding Keys
	Statistical Hiding
	Statistical Binding
	Setting the Parameters

	Vector Trapdoor Hash from DDH and LPN
	Hiding
	Statistical Binding

	Blockwise Resilient Function
	Designated-Verifier Vector Trapdoor Hash from DDH
	Hiding
	Statistical Binding

