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Abstract. Cryptographic group actions have gained significant atten-
tion in recent years for their application on post-quantum Sigma pro-
tocols and digital signatures. In NIST’s recent additional call for post-
quantum signatures, three relevant proposals are based on group actions:
LESS, MEDS, and ALTEQ. This work explores signature optimisations
leveraging a group’s factorisation. We show that if the group admits a
factorisation as a semidirect product of subgroups, the group action can
be restricted on a quotient space under the equivalence relation induced
by the factorisation. If the relation is efficiently decidable, we show that
it is possible to construct an equivalent Sigma protocol for a relation-
ship that depends only on one of the subgroups. Moreover, if a special
class of representative of the quotient space is efficiently computable via
a canonical form, the restricted action is effective and does not incur
in security loss. Finally, we apply these techniques to the group actions
underlying LESS and MEDS, showing how they will affect the length of
signatures and public keys.
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1 Introduction

Cryptographic Group Actions. The topic of cryptographic group action
has raised a lot of interest in recent years. They represent a generalisation of
the Discrete Logarithm Problem, and the underlying problem can be stated as
follows: given a group action (G,X, ⋆) and two elements x, y in X, find, if any,
an element g of G such that y = g ⋆ x. A first appearance of group actions in
cryptography can be found in [8], while in [1] are given the formal assumptions
linked to them. This interest has grown since a proposal for a post-quantum
Diffie-Hellman is based on the commutative action of the isogenies of elliptic
curves CSIDH [10]. After that, many post-quantum proposals have emerged,
but the most impactful application is the one related to Sigma protocols and
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digital signatures. For instance, three candidates to the NIST’s call for the post-
quantum standardisation are based on group actions: LESS [3], MEDS [13] and
ALTEQ [28].

Our contribution. The goal of this work is to investigate the cryptographic
optimisations taking advantage of a factorisation of the group G. To do this,
we introduce a framework that exploits the fact that, to be infeasible to invert,
the group action relies only on a part of the group G. More in detail, we show
that the group action can be restricted on a quotient space under an appropriate
equivalence relation, induced by the group factorisation. From this relation, we
propose two optimisation techniques. First, if the relation is decidable in poly-
nomial time, we show that it is possible to define an equivalent Sigma protocol
for the action (G,X, ⋆) with shorter responses and without changing the secu-
rity assumption. Unfortunately, the resulting Sigma protocol lacks commitment
recoverability, leading to larger signatures. This problem can be overcome with
the following technique. We prove that the restricted action can be efficiently
computed if an efficiently computable canonical form exists for the equivalence
relation. Moreover, we show that this approach can be extended to groups G
that are semidirect products of subgroups.

We apply these techniques to reduce the size of the public key, secret key
and signature of the textbook instantiation of schemes based on code equiv-
alence problems. In particular, we analyse LESS and MEDS. The group act-
ing in the former is GLk(q) ⋊ Mon(n, q), that can be further factorised as(
GLk(q)× (F∗q)n

)
⋊ Sn. This, along with the existence of a canonical form for

the action of GLk(q) × (F∗q)n, implies that the secret can consist of just a per-
mutation of Sn. Moreover, in the Sigma protocol, this means that the response
of each round is a permutation instead of an element of GLk(q)⋊Mon(n, q) or
a monomial matrix when the systematic form is involved. Concerning MEDS,
we have the action of GLn(q) × GLm(q) × GLk(q) on the set of n × m ma-
trix spaces of dimension k. We consider the factorisation given by GLn(q) ×
(GLm(q)×GLk(q)), and, after presenting a canonical form for the action of
the group (GLm(q)×GLk(q)), we describe a compressed variant of the MEDS
signature.

Concurrent works. Numerous optimisations for signature schemes based on
cryptographic group actions have been proposed. Many of these are generic opti-
misations that can be applied to any scheme within the framework of Fiat-Shamir
signatures. For instance, [17] proposes an approach to reduce the signature size
by expanding the public key; while [5] proposes the use of unbalanced challenges
when the size of responses varies significantly between distinct challenges.

Other optimisations, instead, are closely linked to the specific security as-
sumption. As a reference, LESS includes a variant of the code equivalence in-
troduced in [25] where the size of the signatures is reduced by modifying the
commitment generation and the verification procedure. Recently, in [15], the au-
thors introduced a new notion of code equivalence using canonical forms with
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respect to certain equivalence relations. Their work exploits a decomposition
of the group G that does not require the use of subgroups. While this enables
greater reduction in signature size, it comes with a drawback: it makes it impos-
sible to create a restricted group action. As a result, this method is only suitable
for applications where the full group structure is not required.

In [18], Feulner described an algorithm to compute a canonical form for
(semi)linear equivalence of linear codes. To compute a canonical representative,
the algorithm splits the action of the group

(
GLk(q)× (F∗q)n

)
⋊ (Aut(Fq)×Sn)

into two parts. It first describes a canonical form on the inner action of the
subgroup

(
GLk(q)× (F∗q)n

)
⋊ Aut(Fq). This inner canonical form is a slight

generalization of the one examined for LESS, obtained by also considering the
action of field automorphisms Aut(Fq). While the author does not analyse the
computational cost of the algorithm, they employ a recursive structure that is
less efficient than the approach discussed in this paper.

In [14], the authors show how to reduce the signature length of matrix-
code-based systems. In particular, the isometry can be shortened giving some
information on how the isometry acts on some codewords. This implies that, for
MEDS, for each isometry, only 2k field elements must be sent, leading to a boost
in the sizes of the cryptosystem. This improvement will be implemented in the
next round of the NIST’s call, together with new parameters set.

2 Preliminaries

2.1 Notation

With Sn and GLn(q) we denote the group of permutations acting on n elements
and the group of n × n invertible matrices with coefficients in the finite field
with q elements, respectively. Mon(n, q) is the subgroup of GLn(q) of monomial
matrices, consisting of matrices with exactly one non-zero element in each row
and column. Given a group G, we write G = G1 ⋊ G2 to denote the internal
semidirect product of subgroups G1, G2 of G, with G1 normal in G. If also G2

is normal in G, then G = G1 × G2 is an internal direct product of G1 and G2.
The transpose of the matrix A is denoted with AT .

2.2 Cryptographic Group Actions

We recall the definition of group action and some related properties for their use
in cryptography. In the rest of the paper, we will use groups with multiplicative
notation.

Definition 1. Let G be a group, X be a set and ⋆ be a map from G×X to X.
The triple (G,X, ⋆) is called group action if for any g, h in G and x in X, we
have g ⋆ (h ⋆ x) = (gh) ⋆ x, and, if e is the neutral element of G, then e ⋆ x = x
for any x in X.
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In [1] are defined the requirements that a group action must accomplish to be
manipulated and used in cryptography. This leads to the definition of effective
group actions.

Definition 2. Let λ be a positive integer. Given a group action (G,X, ⋆) with
log(|G|) = poly(λ) and log(|X|) = poly(λ), we say that the action is effective
if the following algorithms are polynomial time computable in λ: unique string
representation, sampling and equality testing for both G and X, product and
inverse in G and the map ⋆.

Along with the above polynomial time algorithms, we need some hard prob-
lems to use group actions in cryptography. The main computational problem
related to them is a generalisation of the Discrete Logarithm in the language of
group actions.

Definition 3. Given a group action (G,X, ⋆), the Group Action Inverse Prob-
lem (GAIP⋆) takes as input a pair of elements x and y in X and asks to find g
in G such that y = g ⋆ x, if any.

Observe that this problem was introduced in [16] with the name of “vectorisa-
tion problem” and the related cryptographic assumption is called “one-wayness”
of the group action in [1].

2.3 Code Equivalence and related problems

A k-dimensional linear code is a subspace of dimension k of a vector space V
endowed with a metric d : V × V → N. An isometry ψ : V → V for d is a
map that does not affect the metric, d (ψ(u), ψ(v)) = d(u, v). Two codes are said
equivalent if there exists an isometry between them and the set of isometries is
a group with the group operation given by the composition. This means that
a group action on codes can be defined using the group of isometries. In this
work, we will concern linear codes of two types: subspaces of Fn

q endowed with
the Hamming metric dH(u, v) = |{i : vi − ui ̸= 0}|, and subspaces of the vector
space of matrices Fn×m

q endowed with the rank metric drk(U, V ) = rank(V −U).
Linear codes in the rank metric are also called matrix codes.

We now model the equivalence of codes in the two metrics above as group
actions. For the Hamming metric, we have the following.

Definition 4. Let G = GLk(q) ×Mon(n, q) and X ⊆ Fk×n
q the set of all full

rank k × n matrices over Fq. The group action is given by (L,Q) ⋆ G = LGQ.

The Group Action Inversion Problem for the above action is usually called
Linear Code Equivalence (LEP). In the rank metric, we have the following mod-
elling.

Definition 5. Let G = GLn(q) × GLm(q) × GLk(q) and let X be the set of
k-dimensional subspaces of Fn×m

q represented by their bases. The group ac-
tion is given by (A,B,C) ⋆ ⟨M1, . . . ,Mk⟩ = ⟨AM ′1B, . . . , AM ′kB⟩, where M ′i =∑k

j=1 CijMj.
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g

h hg−1Base element Public KeyCommitment

Private Key

Fig. 1. High-level description of the group action Sigma protocol for (G,X, ⋆).

The GAIP for this action is known as Matrix Code Equivalence (MCE). An
equivalent way to describe the action behind the Matrix Code Equivalence is as
follows. Given a basis {M1, . . . ,Mk} of a k-dimensional matrix code in Fn×m

q ,
build the n×km block matrix M = [M1 |M2 | . . . |Mk]. Then, the group action
is given by (A,B,C) ⋆ M = CM(AT ⊗B).

2.4 Sigma protocols and digital signatures from group actions

Nowadays, one of the most important applications of (non-abelian) crypto-
graphic group actions is the design of digital signatures. This is done by first
building a sigma protocol inspired by [20] for the following NP-relation

R = {((x0, x1), g) ∈ (X ×X)×G | g ⋆ x0 = x1} ,

and then applying some transforms to convert it into a digital signature. In R,
the statement is a pair or set elements (x0, x1) and the witness is given by an
element g in G sending the first into the second.

Protocol 1 (Generalisation of [20]). Let (G,X, ⋆) be a group action. In the
following protocol, the Prover and the Verifier have a statement (x0, x1) ∈ X×X,
while the Prover knows a witness g ∈ G such that g ⋆ x0 = x1.

1. P1((x0, x1), g): picks at random an element h ∈ G and sends to the Verifier
com← h ⋆ x0 as a commitment.

2. V1((x0, x1), com): generate a random challenge ch ∈ {0, 1} and sends it to
the Prover.

3. P2((x0, x1), g, com, ch): if ch = 0 set rsp← h, otherwise they set rsp← hg−1

and send it to the Verifier.
4. V2((x0, x1), com, ch, rsp): they check that rsp ⋆ xch = com. If the check suc-

ceeds, then they accept; otherwise reject.

A graphical description of the protocol is shown in Figure 1.

It is easy to show that the above sigma protocol is correct, special-sound and
honest-verifier zero-knowledge. To produce a digital signature with λ bits of se-
curity, one can repeat it λ times in parallel and apply the Fiat-Shamir transform
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[19]. Interactivity is removed by having the Prover (the Signer) computing the
challenge as H(com, pk,m), where H is a suitable hash function and m is the
message to be signed.

There are three ways to apply the Fiat-Shamir transform. Let (com, ch, rsp)
be a transcript of the sigma protocol with ch = H(com, pk,m). If the signature
for m is given by the whole transcript, we refer to this version of the transform
as the “transcript” version. If we remove ch from the signature (observe that
it can be computed from com and public data), we obtain the “commitment”
version. To remove the commitment and return just (ch, rsp) as signature, the
sigma protocol must achieve the commitment recoverability property [2], i.e.
there exists an efficient algorithm that, on input (pk, ch, rsp) returns a com such
that (com, ch, rsp) is an accepting transcript.

3 Equivalence Relations from Groups Factorisations

Given a group action (G,X, ⋆), suppose that we can write G as G1 ⋊ G2. Let
ψ be the homomorphism from G2 to the automorphism group of G1 used in
the semidirect product, sending h ∈ G2 to the automorphism of G1, i.e. ψh :
G1 → G1. In the rest of the paper, we assume that the group factorisation is
efficiently computable, i.e. for any g ∈ G, it is feasible to find its decomposition
into (g1, g2) ∈ G1 ⋊ G2. From (G,X, ⋆), it is natural to define the following
relation on X ×X

x ∼ y ⇐⇒ ∃g1 ∈ G1 such that y = (g1, e) ⋆ x

and it is easy to show that ∼ is an equivalence relation. Given the quotient
space X∼ with respect to the equivalence ∼, we can define a new group action
(G2, X∼, ⋆∼) as follows

g2 ⋆∼ [x]∼ 7→ [(e, g2) ⋆ x]∼. (1)

To show that the action is well-defined, let g2 ∈ G2 and let x ∼ y. Then, there
exists g1 ∈ G1 such that y = (g1, e) ⋆ x and

g2 ⋆∼ [y]∼ = [(e, g2) ⋆ ((g1, e) ⋆ x)]∼ = [(ψg2(g1), g2) ⋆ x]∼

= [(e, g2) ⋆ x]∼ = g2 ⋆∼ [x]∼.

Note that if the relation is defined via G2, the action above is not well-defined.
In fact, it is possible to show that to obtain a well-defined action, G1 must be
normal in G.

3.1 Verifying Orbit Equivalence

To deal with the orbits, our first approach requires the existence of an efficient
algorithm that checks the equivalence. As an additional feature for the security
reductions, on input x0 and x1, if they are in the same orbit with respect to ∼, we
need that this algorithm returns an element g1 of G1 such that x1 = (g1, e) ⋆ x0.
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Definition 6. Let (G,X, ⋆) be a group action such that G = G1⋊G2. An orbit
equivalence algorithm forG1 is a polynomial-time computable map OE : X×X →
G1 ∪ {⊥} such that OE(x0, x1) ∈ G1 and (OE(x0, x1), e) ⋆ x0 = x1 if and only if
x0 and x1 are in the same orbit with respect to ∼, and OE(x0, x1) = ⊥ otherwise.

Restricting the action to G2 without a canonical representation of the ele-
ments in X∼ would require a new security assumption. However, the existence of
an orbit equivalence algorithm allows us to define a modified Sigma protocol for
the action (G,X, ⋆), with short responses, without changing the assumptions.

In short, we build a Sigma protocol for the following relation

RG1
= {((x0, x1), g2) ∈ (X ×X)×G2 | ∃g1 ∈ G1 s.t. (g1, g2) ⋆ x0 = x1} .

Observe that the existence of an orbit equivalence algorithm OE implies that
RG1

is an NP-relation. Let R be standard relation of the action (G,X, ⋆)

R = {((x0, x1), g) ∈ (X ×X)×G | g ⋆ x0 = x1} ,

then RG1 and R define the same language in NP. In particular, given a pair
(x0, x1), the problems of finding a g in G such that x1 = g ⋆ x0 can be reduced
to the problem of finding g2 in G2 such that [x1]∼ = g2 ⋆∼ [x0]∼. Hence, one can
store and send only elements in the group G2 for the secret, without incurring
in security losses.

The Sigma protocol for RG1
we define runs as follows. The Prover and the

Verifier have a statement (x0, x1) ∈ X × X, while the Prover knows a witness
g2 ∈ G2 for it. We suppose that an orbit equivalence algorithm OE for G1 is
known.

1. P1((x0, x1), g2): picks at random an element (h1, h2) ∈ G1 ⋊ G2 and sends
to the Verifier com = (h1, h2) ⋆ x0 as a commitment.

2. V1((x0, x1), com): generate a random challenge ch ∈ {0, 1} and sends it to
the Prover.

3. P2((x0, x1), g2, com, ch): if ch = 0 set rsp = h2, otherwise they set rsp =
h2g
−1
2 and send it to the Verifier.

4. V2((x0, x1), com, ch, rsp): first, they set y = (e, rsp) ⋆ xch. Then, they check
that OE(y, com) ̸= ⊥. If the check succeeds, then they accept; otherwise
reject.

Theorem 1. The Sigma protocol for the relation RG1 presented above is correct,
2-special sound and perfect honest-verifier zero-knowledge.

Proof. The Sigma protocol for the relation RG1
presented above is a slight mod-

ification of the standard one used for group actions, i.e. a generalisation of the
protocol for Graph Isomorphism from [20]. Here, we use the action (G2, X∼, ⋆∼)
given by the subgroup G2 on the set X∼ of the orbits of X under the action of
G1. The existence of the map OE implies that the action of G1 over X is easy to
invert. Moreover, since the initial action (G,X, ⋆) is effective, so is (G2, X∼, ⋆∼),
except for the unique string representation property for X∼. In the Sigma pro-
tocol, this is addressed using the map OE in point 4. of the algorithm.
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From the above Sigma protocol, an identification scheme can be derived. The
key generation algorithm, sample at random (g1, g2) ∈ G and x0 ∈ X, then sets
(x0, (g1, g2) ⋆ x0) as public key and g2 as private key. To reach a security level
of λ bits, the interactive phase is then repeated λ times in parallel. This scheme
can be turned into a digital signature through standard techniques in the ROM.
Unfortunately, since the verifier needs to check the orbit equivalence between
(e, rsp) ⋆ xch and com, the resulting protocol is not commitment-recoverable, i.e.
the commitment cannot be computed from the knowledge of ch and rsp. Hence,
compared to the signatures analysed in Section 4, there would be no gain with
respect to signature size.

3.2 Canonical Forms

The second approach concerns a class of functions that leads to efficient orbit
equivalence algorithms. To prove that two orbits of X∼ are the same, we use a
special class of representative computable via a canonical form.

Definition 7. A canonical form with failure for a relation ∼ on X × X is a
map CF∼ : X → X ∪ {⊥} such that, for any x, y ∈ X,

1. if x ∼ y then CF∼(x) = CF∼(y);
2. if CF∼(x) ̸= ⊥ then CF∼(x) ∼ x.

If CF∼(x) = ⊥ we say that CF∼ fails on the element x. The fraction of ele-
ments of X having CF(x) = ⊥ is the failure probability of CF. Notice that when
CF∼(x) = CF∼(y) ̸= ⊥, the second property implies x ∼ y.

If CF∼ is defined as above, we will use CF∗∼ to define the map that returns
both the canonical form and the moving element in G1, as follows

CF∗∼(x) =

{
(⊥,⊥) if CF(x) = ⊥
(CF(x), gx), such that CF(x) = (gx, e) ⋆ x otherwise

We assume that CF∗∼ can always be obtained from CF∼.
If there exists an efficiently computable canonical form CF with low failure

probability, such that x ∼ y if and only if CF(x) = CF(y) for every x and y in X,
then the above action is efficiently computable as follows. We identify the orbits
of X∼ with the representatives given by the canonical form CF and the action is
given by

g2 ⋆∼ x 7→ CF((e, g2) ⋆ x).

Similarly to the action of Equation (1), the map above is well-defined, and it
leads to an effective group action.

About automorphisms. Given the action (G,X, ⋆), an automorphism for the
element x in X is an element g in G such that g ⋆x = x. It is easy to see that, for
any x in X we have |Aut⋆(x)| ≥ |Aut⋆∼(CF(x))|, i.e. the automorphisms group
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of the original action is larger than the one related to the action ⋆∼. This can
be seen as follows. Take g2 ∈ Aut⋆∼(CF(x)), then, we have

CF(x) = g2 ⋆∼ CF(x) = CF((e, g2) ⋆ x),

hence there exists g1 ∈ G1 such that (g1, g2) ⋆ x = x and (g1, g2) is in Aut⋆(x).
This observation is relevant in proving security in the QROM [6], where the
considered elements x are assumed to have trivial automorphisms groups.

Hardness. Let us investigate the relation between the Group Action Inverse
problems for (G,X, ⋆) and the one for (G2, X∼, ⋆∼). Observe that one can reduce
GAIP⋆∼ to GAIP⋆ as follows. Let (x, y) be an instance of GAIP⋆∼ . This means
that y is in canonical form and CF(y) = y. The pair (x, y) can be seen as an
instance of GAIP⋆, and finding g = (g1, g2) such that (g1, g2) ⋆ x = y implies
that

g2 ⋆∼ x = CF((e, g2) ⋆ x) = CF((g1, e)(e, g2) ⋆ x) = CF((g1, g2) ⋆ x) = CF(y) = y.

The other direction is trickier, and we give the following result.

Proposition 1. Suppose there exists a polynomial-time computable canonical
form CF with failure probability δ for the equivalence ∼. Then, a fraction of
1 − δ of instances of the Group Action Inverse problems for (G,X, ⋆) can be
reduced to the one for (G2, X∼, ⋆∼).

Proof. Let (x, y) be an instance of GAIP⋆. For every z ∈ X, let gz the element
of G1 returned by CF∗(z), so that (gz, e) ⋆ z = CF(z) whenever the canonical
form does not fail. Let (x,CF(y)), with CF(y) = (gy, e) ⋆ y, be an instance of
GAIP⋆∼ whose solution is given by g2. This means that

CF(y) = g2 ⋆∼ x = CF((e, g2) ⋆ x) = (g̃, g2) ⋆ x,

where g̃ is obtained from CF∗. Then, we have that

(g−1y g̃, g2) ⋆ x = (g−1y ψe(g̃), g2) ⋆ x = (g−1y , e)(g̃, g2) ⋆ x

= (g−1y , e) ⋆ ((g̃, g2) ⋆ x) = (g−1y , e) ⋆ CF(y) = y

and we found a solution for the instance (x, y) of GAIP⋆. This strategy works
for every y such that CF(y) ̸= ⊥, and hence, we obtain the thesis.

However, in general, we can achieve a better reduction if we re-randomize
the instance through a random h until CF(h⋆y) ̸= ⊥. This increases the portion
of reducible GAIP instances to the following set of statements

{(x, y) ∈ X ×X | ∃g2 ∈ G2 s.t. CF(g2 ⋆ y) ̸= ⊥}.

Then, a loss in the advantage will be given by the probability of finding a useful
randomization starting from an instance where CF(y) = ⊥. This is given by the
following probability

Prg2←$G2
[CF(g2 ⋆ y) ̸= ⊥ |CF(y) = ⊥ ].
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x x̃ y

∼
g2

∼
h2

∼
h2g
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2

Base element Public KeyCommitment

Private Key

Fig. 2. High-level description of the group action Sigma protocol based on canonical
forms for (G2, X∼, ⋆∼).

Such expressions cannot be calculated in general and require the canonical form
to be made explicit. In the practical cases discussed in the following section,
we expect the fraction of GAIP⋆ instances that can be efficiently reduced to
GAIP⋆∼ to be overwhelming.

Sigma Protocol. The above results imply that, if one is able to factorise G
and a polynomial-time computable canonical form with respect to the relation
for a factor G1, then the induced action (G2, X∼, ⋆∼), where G2 is the remaining
factor, can be used without introducing new computational assumptions. This
means that, instead of using elements from the whole group G, one can use
elements from G2, potentially reducing the sizes of the elements involved. The
high-level description of the associated Sigma-protocol remains unchanged from
the generic protocol introduced in Section 2.4. A graphical representation of the
protocol is shown in Figure 2.

Notice that this technique is implicitly used in the Linear Code Equivalence
Problem when the systematic form is employed. The action is formulated on the
set of full rank matrices, but the choice of a canonical representative via the
systematic form allows the action to be restricted directly to the linear code.

3.3 Canonical Forms with Designated Representative

Sometimes, computing a canonical form can be computationally inefficient. In
this section, we describe a weaker variant that requires additional information for
computing a canonical representative, and we show that it is enough to obtain
a useful Sigma protocol.

Definition 8. A canonical form with designated representative for a relation
∼ on X ×X is given by a designated form map DF∼ : X × {0, 1}∗ → X ∪ {⊥}
and a designator map ρ : X → {0, 1}∗ such that, for any x, y ∈ X,

1. If x ∼ y, let b = ρ(DF∼(y, ε)), then DF∼(x, b) = DF∼(y, ε);
2. If DF∼(x, b) ̸= ⊥ then DF∼(x, b) ∼ x for any b ∈ {0, 1}∗.
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x

x̃

ỹ

y

∼
g2

∼
h2

∼
h2g

−1
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ρ(x̃)
Base element Public Key

Commitment

Private Key

Fig. 3. High-level description of the group action Sigma-protocol based on canonical
forms with designated representative for (G2, X∼, ⋆∼).

If DF∼(x, ε) = ⊥ we say that DF∼ fails on the element x. Notice that, if there
exists b ∈ {0, 1}∗ such that DF∼(x, b) = DF∼(y, ε) ̸= ⊥, the second property
implies x ∼ y.

Notice that in general it does not hold that x ∼ y =⇒ DF(x, ε) = DF(y, ε).
Therefore, it is not possible to use the designated form directly to obtain a Sigma
protocol as in the previous section. In order to use a designated form instead of
a canonical form, we define the following Sigma protocol for RG1

.

Protocol 2. Let (G,X, ⋆) be a group action such that G = G1 ⋊ G2 and let
(DF, ρ) be a canonical form with designated representative for the relation induced
by G1. In the following protocol, the Prover and the Verifier have a statement
(x0, x1) ∈ X ×X, while the Prover knows a witness g2 ∈ G2 such that DF(g2 ⋆
x0, ε) = x1.

1. P1((x0, x1), g2): picks at random an element h2 ∈ G2 and sends to the Ver-
ifier com← DF((e, h2) ⋆ x0, ε) as a commitment.

2. V1((x0, x1), com): generate a random challenge ch ∈ {0, 1} and sends it to
the Prover.

3. P2((x0, x1), g2, com, ch): if ch = 0 set rsp ← h2, otherwise they set rsp ←
h2g
−1
2 and send it to the Verifier.

4. V2((x0, x1), com, ch, rsp): first, they set b ← ρ(com). Then, they check that
DF((e, rsp) ⋆ xch, b) = com. If the check succeeds, then they accept; otherwise
reject.

A graphical description of the protocol is shown in Figure 3.

It is easy to show that the above Sigma protocol is complete, 2-special sound
and perfect honest-verifier zero-knowledge. Moreover, we can consider a slight
modification where the output of the designator map b ← ρ(com) is sent along
with the response. Clearly, this version is equivalent since the verifier can com-
pute b directly from the commitment. Nevertheless, the transmission of b is
required to obtain a non-interactive signature. When we apply the Fiat-Shamir



12 D’Alconzo et al.

transform, some tweaks are also required to show the security of the signature
scheme we obtain.

First, observe that the “transcript” version of the Fiat-Shamir transform is
unforgeable if the underlying Sigma protocol is complete, sound and HVZK. In
this case, the signature is (com, ch, rsp) and its length can be shortened removing
the challenge or the commitment. Below we analyze these two options.

In order to use the “challenge” version of the transform, i.e. setting the sig-
nature of a message as (ch, rsp), we need to prove the computational soundness
of the commitment recoverability algorithm [2]. In terms of designated canonical
forms, this means that the task of finding b such that DF(x, b) ̸= DF(x, ε) given x
in X must be intractable. Unfortunately, in our setting, this is not true without
new assumptions on the canonical form.

A workaround for this obstacle is to use the “commitment” Fiat-Shamir trans-
form, with a small modification of the first and fourth passes of the protocol.
Now, we consider a suitable hash function H and compute the commitment com
as the digest of DF((e, h2) ⋆ x0, ε) via H. In the fourth pass, the verifier checks
if the hash of DF((e, rsp) ⋆ xch, b) is equal to com. Now, the signature can be
shortened to (com, rsp), where the length of com is 2λ, and its security is implied
by the “transcript” version of the transform [2].

Here we sketch the signature obtained by a parallel repetition of λ of the
above protocols, using the “commitment” Fiat-Shamir transform. Standard tech-
niques like seed trees, unbalanced challenge space and multiple public keys [7]
may be applied to shorten the signature size, however, for the sake of clarity, we
present the non-optimized version.

Protocol 3. Let (G,X, ⋆) be a group action such that G = G1 ⋊ G2 and let
(DF, ρ) be a canonical form with designated form for the relation induced by G1.
Let H : {0, 1}∗ → {0, 1}2λ be an hash function.

– KGen(1λ): picks at random an element x0 in X and a group element g2 in
G2. The, sets x1 as g2 ⋆∼ x0 and return (x0, x1) as the public key and g2 as
the secret key.

– Sign((x0, x1), g2,m): for each i = 1, . . . , λ, picks at random an element h(i)2 ∈
G2 and sets com(i) ← DF((e, h

(i)
2 )⋆x0, ε), then set com← H

(
com(1), . . . , com(λ)

)
.

Computes (ch(1), . . . , ch(λ)) in {0, 1}λ as H (com, (x0, x1),m) and sets rsp(i)

as the pair
(
h
(i)
2 g−ch

(i)

2 , ρ
(
com(i)

))
. Returns (com, rsp(1), . . . , rsp(λ)) as the

signature of the message m.
– Vf(σ,m, (x0, x1)): parses σ as (com, rsp(1), . . . , rsp(λ)), where rsp(i) = (h̃(i), b(i))

and computes ch = (ch(1), . . . , ch(λ)) = H (com, (x0, x1),m). Then, for each
i = 1, . . . , λ, sets c̃om

(i) as DF
(
(e, h̃(i)) ⋆ xch(i) , b

(i)
)

and accepts if and only

if com is equal to H
(
c̃om

(1)
, . . . , c̃om

(λ)
)
; otherwise rejects.

Recall that the difference between the more common “challenge” version and
the “commitment” one we use here is two fold: in the verification algorithm, the
latter needs one more hash computation and the lenght of the produced signature
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increases from λ + |rsp| to 2λ + |rsp|. Hence, in Protocol 3 we occour only in a
small loss both in performance and sizes using the “commitment” version.

4 Applications

4.1 Matrix Code Equivalence

Let us start by recalling that the action on n ×m k-dimensional matrix codes
can be seen as the action of G on n×mk matrices as follows. Let M1, . . . ,Mk be
a basis of a matrix code, then the action of (A,B,C) is defined as CM(AT ⊗B),
where M = [M1 | M2 | . . . | Mk] ∈ Fn×mk

q . One can notice that, if we factor
G = G1×G2 where G1 = GLm(q)×GLk(q) and G2 = GLn(q), the action of G1

is equivalent to a special case of the Matrix Space Conjugacy problem that is
solvable in polynomial time [11,9,21]. Even if this approach leads to an efficient
orbit equivalence algorithm, to obtain a gain in the signature size, we need to
present a canonical form for the following relation

M ∼MEDS N ⇐⇒ ∃(B,C) ∈ GLm(q)×GLk(q) such that N = CM(In ⊗B).

From now on, we assume n = m as in the parameter sets from the MEDS
submission [12].

Definition 9. Let M = [M1 | M2 | . . . | Mk] ∈ Fn×nk
q , with Mi ∈ Fn×n

q , the
canonical form (with failure) CF for ∼MEDS on M is computed as follows:

1. Let 1 ≤ j ≤ k be the smallest index for which the j-th block Mj is invertible
and compute M̄ =M−1j M . If an invertible block does not exist, the procedure
fails and returns ⊥.

2. Let j′ = j + 1 (mod k). Find the solution set V of invertible matrices B ∈
GLn(q) such that B−1M̄j′B is equal to the circulant matrix circ(en) on the
first n−1 columns. If the solution set is empty, the procedure fails and returns
⊥.

3. Let j′′ = j + 2 (mod k). Given a total ordering on Fn
q , find the unique

solution B ∈ V (up to a constant factor) that minimizes the first column of
B−1M̄j′′B.

4. Finally, return CF(M) = (MjB)−1M(Ik ⊗B).

Proposition 2. The map CF of Definition 9 is a canonical form for the re-
lation ∼MEDS. For a random input M ∈ Fn×nk

q , CF(M) fails with probability
approximately 1/q. If CF does not fail, the expected execution time is O(qn6).

Proof. See Appendix A.1.

Unfortunately, this canonical form, even if it can be computed in expected
polynomial time, is not efficient for practical applications. Observe that the most
burdensome task is given by step 3 of the computation of CF. To overcome this
limitation, we can slightly modify the Sigma protocol by including additional
information in the response to quickly identify a specific class representative.
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Consider the standard Sigma protocol for a cryptographic group action. The
commitment is the element CF(h2 ⋆∼MEDS

[x]∼MEDS
) for a random h2 ∈ G2. When

computing the canonical form, we modify step 3: instead of finding the minimal
column, the signer selects a column and includes this choice in the response. This
allows the verifier to efficiently compute the same representative by constraining
the specified column in step 3. This modification results in more efficient signing
and verification processes, making the signature scheme feasible in practice.

Definition 10. Let M = [M1 | M2 | . . . | Mk] ∈ Fn×nk
q and let b ∈ Fn

q ∪ {⊥},
with Mi ∈ Fn×n

q , the canonical form with designated representative (with failure)
DF for ∼MEDS on input M and additional info b is computed as follows:

1. Let 1 ≤ j ≤ k be the smallest index for which the j-th block Mj is invertible
and compute M̄ =M−1j M . If an invertible block does not exist, the procedure
fails and returns ⊥.

2. Let j′ = j + 1 (mod k). Find the solution set V of invertible matrices B ∈
GLn(q) such that B−1M̄j′B is equal to the circulant matrix circ(en) on the
first n−1 columns. If the solution set is empty, the procedure fails and returns
⊥.

3. Let j′′ = j+2 (mod k). If b = ⊥, randomly sample B ←$ V . Otherwise, find
the unique solution B ∈ V such that B−1M̄j′′B = b.

4. Finally, return CF(M) = (MjB)−1M(Ik ⊗B).

The designator map ρ takes as input M , define j and j′′ as in the computation
of CF and returns the first column of M−1j Mj′′ .

Proposition 3. The map DF together with ρ of Definition 10 is a canonical
form with designated representative for the relation ∼MEDS. For a random input
M ∈ Fn×nk

q , CF(M) fails with probability approximately 1/q3. If CF does not
fail, the expected execution time is O(n6).

Proof. See Appendix A.2.

Concerning the version of MEDS using the action of GLn(q)×GLm(q) from
[13], our proposal allows to reduce the size of the signature of about 45% for
the last version of the parameter sets given in [12], as reported in Table 1. The
gain in the signature dimensions comes at the cost of running the canonical form
algorithm both in the signing and verification phases.

Recently, the MEDS team announced an updated parameters set [22], which
takes into account the recent attack from Eurocrypt 2024 [23]. These new pa-
rameters are tailored to exploit the new optimisation techniques from [14] to
achieve even better signature size than the previous MEDS specifications. Pos-
sible combinations of the new techniques with our framework are left to future
work.
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Table 1. Signature sizes (in bytes) for MEDS.

Parameter set Sec. Level Specs. This work Gain

MEDS-13220 [12] I 12976 7548 42.1%
MEDS-69497 [12] III 54736 29820 45.6%
MEDS-167717 [12] V 165332 86477 47.7%

4.2 Linear Code Equivalence

LESS is a digital signature scheme based on the equivalence of linear codes,
which can be described in the framework of group actions. For 1 ≤ k ≤ n, let
Fk×n
q be the linear space of k × n matrices over Fq. Let Mon(n, q) be the group

of n × n monomial matrices over Fq. We consider the group action ⋆ described
in Definition 4 of G = GLk(q)×Mon(n, q) on X ⊆ Fk×n

q , the set of all full rank
k × n matrices over Fq.

It is well known that Mon(n, q) is isomorphic to the semidirect product Sn⋉
(F∗q)n, where (F∗q)n is isomorphic to the group of non-singular n × n diagonal
matrices. Hence, the group G can then be factorised as G = GLk(q) × (Sn ⋉
(F∗q)n). Observe that G is isomorphic to (GLk(q) × (F∗q)n) ⋊ Sn and we can
apply the framework of the previous section by defining the following relation
on X ×X:

M ∼LESS M
′ ⇐⇒ ∃(L,D) ∈ GLk(q)×(F∗q)n s.t. M ′ = LMD = (L, (In, D))⋆M.

To show that the induced group action (Sn, X∼LESS
, ⋆∼LESS

) can be efficiently
computed, we introduce the following canonical form (with failure) CF for ∼LESS.

Definition 11. Let M ∈ X ⊆ Fk×n
q , the canonical form (with failure) CF for

∼LESS is computed as follows:

1. Compute the Reduced Row-Echelon Form (RREF) of M .
2. Let 1 ≤ j ≤ n be the smallest index for which the j-th column Mj =

(M1,j , . . . ,Mk,j) of RREF(M) has only non-zero elements. If a column of
this form does not exist, the procedure fails and returns ⊥. Compute Dr =
diag(M−11,j , . . . ,M

−1
k,j ) ∈ Fk×k

q .
3. For each 1 ≤ j ≤ n, consider the j-th column of Dr RREF(M). If the j-th

column is non-zero, let bj be its first non-zero element, otherwise let bj = 1.
Compute Dc = diag(b−11 , . . . , b−1n ) ∈ Fn×n

q .
4. The canonical form of M is computed as CF(M) = Dr RREF(M)Dc.

Proposition 4. The map CF of Definition 11 is a canonical form for the rela-
tion ∼LESS. For a random input M ∈ X ⊆ Fk×n

q , CF(M) fails with probability(
1−

(
1− 1

q

)k
)n−k

.

If CF does not fail, the expected execution time is O(n3).
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Table 2. Signature sizes (in bytes) for LESS.

Parameter set Sec. Level LEP IS-LEP [25] CF-LEP [15] This work

LESS-1b I 15726 8646 2496 9096
LESS-3b III 30408 17208 5658 18858
LESS-5b V 53896 30616 10056 34696

Proof. See Appendix A.3.

LESS implicitly use the framework with canonical form by working with the
RREF of elements in X. Compared to this basic form, in our version, the re-
sponse size changes from n(⌈log2 n⌉+⌈log2(q−1)⌉) bits, required to represent an
element of Mon(n, q), to n⌈log2 n⌉, required for an element of Sn. However, the
version of LESS submitted to NIST includes the Information Set-LEP variant
introduced in [25]. With this variant, the commitment generation and the veri-
fication procedure are modified so that it is possible to reduce the response size
to k(⌈log2 n⌉+ ⌈log2(q− 1)⌉) bits. Moreover, in [15] has been recently presented
a new notion of equivalence for codes and proved that it reduces to linear equiv-
alence. This leads to an even more significant reduction in the size of responses.
This last variant can partially be framed within our framework. In particular,
let H be a subgroup of G and S be a subset of G such that e ∈ S, and suppose
that for each g ∈ G there exist unique elements h ∈ H, s ∈ S such that g = hs.
Then, as in Section 3, we can take the relation ∼LESS on X ×X induced by H
and consider the quotient space X∼LESS

. However, we cannot define a new group
action restricted to S since it is not a group. On the other hand, if we know a
canonical form CF∼LESS

for ∼LESS, this is enough to define a Sigma protocol based
on the original group action, where responses are computed as the factor in S
of the considered element in G. This requires the definition of a new security
assumption based on a variant of the original problem where the action is taken
on X∼LESS

via the canonical form4. See Table 2 for a comparison.

Remark 1. Conversely, our canonical form for LESS can also be partially de-
scribed in the context of [15]. In fact, the authors describe multiple canoni-
cal forms with respect to different choices of F ∈ M̃on(k, q) × S̃k × M̃on(n −
k, q) × S̃n−k, where M̃on(ℓ, q) ∈ {{Iℓ},Mon(ℓ, q)} and S̃ℓ ∈ {{Iℓ},Sℓ}. Our
factorization G = GLk(q) × (Sn ⋉ (F∗q)n) can be viewed as the case where
F = (Mon(k, q), Ik,Mon(n− k, q), In−k). Unlike the cases discussed in [15], our
factorisation preserves the group structure.

Further details on the extension of Section 3 to a generic factorisation in-
volving a subset of G are given in Appendix B.

4 In the context of LEP, the authors of [15] refer to this variant as Canonical Form-LEP
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A Missing Proofs

A.1 Proof of Proposition 2

Correctness. We prove that CF is a canonical form according to Definition 7.
Let M = [M1 | M2 | . . . | Mk] ∈ Fn×nk

q , Mi ∈ Fn×n
q . Suppose CF(M) ̸= ⊥, then

CF(M) = (MjB)−1M(Ik ⊗ B), for some 1 ≤ j ≤ k and B ∈ GLn(q). Then the
i-th block of CF(M) is given by (MjB)−1MiB, which implies CF(M) ∼MEDS M .

Let M ∼MEDS N , i.e. there exists X,Y ∈ GLn(q) such that Ni = XMiY ,
for all 1 ≤ i ≤ k. Then, since Mj is invertible, so is Nj and it holds CF(N) =
(NjB

′)−1N(Ik ⊗ B′) for some B′ ∈ GLn(q). Let V (resp. V ′) be the solution
space of invertible matrices B ∈ GLn(q) (resp. B′) such that B−1M−1j Mj′B

(resp. B′−1N−1j Nj′B
′) is equal to the circulant matrix circ(en) on the first n−1

columns. Then, there is a one-to-one correspondence between V and V ′ given
by B 7→ Y −1B. It follows that

CF(N) = (NjB
′)−1N(Ik ⊗B′) = (XMjY B

′)−1XM(Ik ⊗ Y B′)
= (Y B′)−1M−1j M(Ik ⊗ Y B′) = (MjB)−1M(Ik ⊗B) = CF(M).

Failure Probability. Let M = [M1 | M2 | . . . | Mk] ∈ Fn×nk
q , Mi ∈ Fn×n

q . We
define FAIL1 the event that Mi is not invertible for any 1 ≤ i ≤ k. For a random
matrix over A ∈ Fn×n

q , the probability that A is invertible is
∏n

k=1(1 − qk).
Therefore

Pr[FAIL1] =

(
1−

n∏
k=0

(qn − qk)

)n

≈ 1

qn
.

If FAIL1 does not occur, let 1 ≤ j ≤ k be the smallest index such that Mj

is invertible and let M̄ = M−1j M . Let j′ = j + 1 (mod k) and let V be the
solution space of invertible matrices B ∈ GLn(q) such that B−1M̄j′B is equal
to the circulant matrix circ(en) on the first n− 1 columns. Let FAIL2 the event
that V is empty. It is known that every matrix A ∈ Fn×n

q is similar to a unique
matrix FNF(A), known as the Frobenius Normal Form [27], which is a diagonal
block matrix of the form diag(Cf1 , . . . , Cfr ). Each block Cfi is the companion
matrix of a monic polynomial fi ∈ Fq[x] such that fi | fi+1 for 1 ≤ i ≤ r − 1
and

∏
fi is the minimal polynomial of A. Recall that the companion matrix of

a monic polynomial f = c0 + c1x + . . . + cn−1x
n−1 + xn ∈ Fq[x] of degree t is

defined as

C(f) =


0 0 . . . 0 −c0
1 0 . . . 0 −c1
0 1 . . . 0 −c2
...

...
. . .

...
...

0 0 . . . 1 −cn−1

 .

If the minimal polynomial fA of A equals its characteristic polynomial, then
the Frobenius form of A is just the companion matrix of fA. Therefore, in this
case, there exists U ∈ GLn(q) such that U−1AU = FNF(A), which is equal
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to the circulant matrix circ(en) on the first n − 1 columns. The probability of
FAIL2 is thus the probability that the minimal polynomial M̄j′ is distinct from
its characteristic polynomial. A matrix with this property is called derogatory.
The computation of Pr[FAIL2] is directly given by [24, Theorem 4.1]. In fact, an-
other name for non-derogatory matrices is cyclic. The probability that a random
matrix is non-cyclic, and hence derogatory, is given by

Pr[FAIL2] = Pr[non-cyclic] <
1

(q2 − 1)(q − 1)
≈ 1

q3
.

If FAIL2 does not occur, let j′′ = j + 2 (mod k) and let V ′ ⊂ V be the
subset of solutions that minimizes the first column c of B−1M̄j′′B with respect
to a given total ordering on Fn

q . Notice that V can be viewed equivalently as
the subset of invertible matrices of the nullspace V̄ of the linear transformation
L : Fn×n

q → Fn×n
q given by X 7→ M̄j′X−X ·FNF(M̄j′). Since M̄j′ and FNF(M̄j′)

are similar and M̄j′ is non-derogatory, it follows from [26, Theorem 4.4.14] that
V̄ has dimension dim(kerL) = n. Now, let B ∈ V̄ such that it minimizes the first
column of N̄j′′ = B−1M̄j′′B and consider the linear transformation L′ : Fn×n

q →
Fn
q given by X 7→ M̄j′′X

(1) −XN̄ (1)
j′′ , where A(i) denotes the i-th column of the

matrix A. Let W = kerL′, then V ′ can be viewed equivalently as the subset
of invertible matrices in W ∩ V̄ . Let FAIL3 the event that dimW ∩ V̄ > 1.
Heuristically, this is equivalent to randomly sampling two subspaces in a vector
space of dimension n2 − 1, having dimensions n− 1 and n2 − n− 1 respectively,
and studying for the probability that the intersection has dimension greater
than zero. In fact, we observed that V̄ is a random subspace of dimension n in a
vector space of dimension n2, and we can similarly show that W has dimension
n2−n. Notice that since N̄j′′ is defined as B−1M̄j′′B, we have that B ∈W ∩ V̄ .
Then, we can remove B and move to a lower dimensional space as described
above. Let W1,W2 be two random subspaces of Fn−1

q with dimensions k− 1 and
n−k−1. Let B1 and B2 be matrices whose columns are the basis vectors of W1

and W2, respectively. Finding v ∈ W1 ∩W2 is equivalent to find non-zero x ∈
Fk−1
q , y ∈ Fn−k−1

q such that B1x = B2y, or to find the nullspace of (B1 | −B2).
In particular, the dimension of W1 ∩W2 is equal to (n − 2) − rank(B1 | −B2).
Since B1 and B2 are both full-rank matrices of dimensions (n− 1)× (k− 1) and
(n− 1)× (n− k − 1), we obtain

Pr[dim(W1 ∩W2) = 0] = Pr[rank(B1 | −B2) = n− 2]

=
|{A ∈ F(n−2)×(n−1)

q | rank(A) = n− 2}|
|{A ∈ F(k−1)×(n−1)

q | rank(A) = k − 2}||{A ∈ F(n−k−1)×(n−1)
q | rank(A) = n− k − 1}|

=

∏n−3
i=0 (q

n−1 − qi)∏k−2
i=0 (q

n−1 − qi)
∏n−k−2

i=0 (qn−1 − qi)
=

∏n−3
i=n−k−1(q

n−1 − qi)∏k−2
i=0 (q

n−1 − qi)
.

Therefore, the probability of FAIL3 is given by

Pr[FAIL3] = 1− Pr[dim(W1 ∩W2) = 0] = 1−
∏n−3

i=n−k−1(q
n−1 − qi)∏k−2

i=0 (q
n−1 − qi)

≈ 1

q2
.
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If FAIL3 does not occur, let FAIL4 be the event that V ′ is empty, i.e. the
event that the subset of invertible matrices in W ∩ V̄ is empty. Following the
previous heuristic, W ∩ V̄ is a random linear subspace of Fn2

q having dimension
1. V ′ is empty if and only if W ∩ V̄ is generated by a singular matrix in Fn×n

q ,
and two invertible matrices generate the same subspace only if they are linearly
dependent as vectors in Fn2

q . Therefore, the probability of FAIL4 is given by

Pr[FAIL4] = 1− |GLn2(q)|/(q − 1)

|{U | U ⊆ Fn2

q ,dimU = 1}|
= 1−

∏n2−1
i=0 (qn

2 − qi)
qn2 − 1

≈ 1

q
.

Using the union bound, we get that the overall probability of failure is

Pr[FAIL] ≤ Pr[FAIL1] + Pr[FAIL2] + Pr[FAIL3] + Pr[FAIL4] ≈
1

q
.

Computational Complexity. Computing CF involves two main steps: invert-
ing an n×n matrix and solving a unique linear system with n2 equations and n2
unknowns. The latter step dominates the computational complexity, requiring
O(n6) operations. The third phase of CF calculation involves testing increasing
columns c ∈ Fn

q until we find one where the first column of B−1M̄j′′B equals
c. Here, B is in the nullspace V̄ determined in the second step. For any c, the
nullspace Wc of the map X 7→ M̄j′′X

(1) − Xc has dimension n2 − n. We con-
tinue testing different c values until dim V̄ ∩ W̄ > 0. The expected number of
columns to evaluate is 1/(1 − Pr

[
dim(V̄ ∩Wc) = 0

]
). Using similar logic as in

the Pr[FAIL3] calculation, we find:

Pr
[
dim(V̄ ∩Wc) = 0

]
=

|{A ∈ Fn2×n2

q | rank(A) = n2}|
|{A ∈ Fn2−n×n2

q | rank(A) = n2 − n}|

=
1

qn3

n2−1∏
i=n2−n

(qn
2

− qi) ≈ 1− 1

q
.

For each c, we must solve a linear system with n2 equations and n2 variables.
Therefore, the overall computational complexity of CF is O(qn6).

A.2 Proof of Proposition 3

The proof is essentially the same as that outlined in Appendix A.1, with the
following exceptions in the calculation of the probability of failure. Let M =
[M1 |M2 | . . . |Mk] ∈ Fn×nk

q , Mi ∈ Fn×n
q and let b ∈ Fn

q ∪{ε}. For simplicity, we
consider only the case where b = ε, since otherwise the probability of failure is 0
if b is chosen as the output of the designator map ρ or 1 otherwise. The events
FAIL1 and FAIL2 are defined as in the proof of Proposition 2, and their respective
probabilities are 1/qn and 1/q3. Let V be the solution space of invertible matrices
B ∈ GLn(q) such that B−1M̄j′B as computed in the aforementioned proof. If
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FAIL2 does not occur, V is not empty and a random solution B is sampled in step
3. Therefore, the events FAIL3 and FAIL4 considered for the standard canonical
form cannot occur, and the overall probability of failure is

Pr[FAIL] ≤ Pr[FAIL1] + Pr[FAIL2] ≈
1

q3
.

Moreover, since B is chosen among the set of possible solutions, comput-
ing DF only requires solving a single linear system with n2 equations and n2

unknowns. Therefore, the computational complexity of DF is O(n6).

A.3 Proof of Proposition 4

Correctness. Let G ∈ X ⊆ Fk×n
q and suppose CF(G) ̸= ⊥, then CF(G) =

Dr RREF(G)Dc for some Dr ∈ (F∗q)k, Dc ∈ (F∗q)n. RREF(G) is computed
as G−1J G, where GJ is the submatrix of G with columns indexed by the set
J ⊆ {1, . . . , n} of the first k linearly independent columns in G. Then CF(G) =
(DrG

−1
J )GDc where (DrG

−1
J ) ∈ GLk(q) andDc ∈ (F∗q)n, which implies CF(G) ∼LESS

G.
Let G ∼LESS G′ and suppose that G can be put in systematic form, i.e.

RREF(G) = [Ik | A], where A = G−1J G[n]\J . Notice that it is always possible
to put G in systematic form by applying a column permutation on RREF(G).
Moreover, since the set of the first k linear independent columns is the same for
G and G′, the columns permutation coincides and we can write RREF(G′) =
[Ik | B], where B = (G′J)

−1G′[n]\S . Let CF′ be the canonical form induced by CF

on the following relation ∼′ on Fk×(n−k)
q × Fk×(n−k)

q :

A ∼′ B ⇐⇒ ∃T ∈ (F∗q)k, R ∈ (F∗q)n−k such that B = TAR.

CF′ is implicitly defined by CF(G) = [Ik | CF′(G−1J G[n]\J)]. Since G ∼LESS G
′,

there exists L ∈ GLk(q) and D ∈ (F∗q)n such that G′ = LGD. It follows that

G′ = LGD = L[GJ | G[n]\J ]

(
Dk 0
0 Dn−k

)
= [LGJDk | LG[n]\JDn−k].

Moving to the systematic form we obtain

RREF(G′) = [Ik | D−1k G−1J G[n]\JDn−k]

= [Ik | D−1k ADn−k] = [Ik | B].

Therefore, A ∼′ B. To conclude, it is enough to prove that CF′(A) = CF′(B).
Let 1 ≤ j ≤ n − k be the first column of A with all non-zero elements. Let
Dr = diag(a−11,j , . . . , a

−1
n−k,j) and compute Ā = DrG. Let āij ,j be the first non-

zero element of the j-th column in Ā. Let Dc = diag(ā−1i1,1
, . . . , ā−1in−k,n−k), then

CF′(A) = DrADc = ĀDc. Write B = TAR, with T ∈ (F∗q)k, R ∈ (F∗q)n−k. Since
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both T and R are non-singular diagonal matrices, the first column of B with all
non-zero elements coincides with that of A. Therefore

D′r = diag(b−11,j , . . . b
−1
n−k,j) = diag((t1a1,jrj)

−1, . . . , (tn−kan−k,jrj)
−1)

= r−1j DrT
−1.

Let B̄ = D′rB, then
B̄ = r−1j DrT

−1AR = r−1j ĀR.

Again, since R is a non-singular diagonal matrix, the first non-zero element of
each column in B̄ coincides with those of Ā. Therefore

D′c = diag(b̄−1i1,1
, . . . , b̄−1in−k,n−k) = diag((r−1j āi1,1r1)

−1, . . . , (r−1j āin−k,n−krn−k)
−1)

= R−1Dcrj .

Finally, we obtain

CF′(B) = D′rBD
′
c = r−1j ĀRR−1Dcrj = BDc = CF′(A).

Failure Probability. Let G ∈ X ⊆ Fk×n
q and suppose w.l.o.g that G can be

put in systematic form, i.e. RREF(G) = [Ik | A]. The computation of CF fails
on step 2 if each column of A has a zero entry. For each column, the probability
of having a zero entry is 1− (1− 1/q)k, therefore

Pr[FAIL] =

(
1−

(
1− 1

q

)k
)n−k

.

Computational Complexity. Computing CF requires computation of RREF
over G and multiplication by two diagonal matrices. The computational cost is
dominated by the RREF operation, which runs in O(n3).

B Additional Group Factorisations

In Section 4.2 we briefly discussed the work of [15] for LESS, partially fram-
ing it within our framework. In this section, we first show that generalization
attempts that preserve a well-defined map in the quotient reduce to the semi-
direct product of subgroups. Then, we descibe a modified Sigma-protocol that
more accurately reflects the construction of [15], altough this approach loses the
group action structure.

Quotient Group Action. Suppose that the group action (G,X, ⋆) is free5

and suppose that we can write G = HS, such that any g ∈ G can be uniquely
5 For most cryptographic relevant parameters sets this is a common assumption, see

[4,6,13].
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decomposed as g = hs, with h ∈ H, s ∈ S. Without further initial assumptions
on H and S, define the following relation on X ×X induced by H:

x ∼ y ⇐⇒ ∃h ∈ H such that y = h ⋆ x.

It is easy to see that ∼ is an equivalence relation if and only if H is a group.
Instead of requiring that the map

⋆∼ : S ×X∼ → X∼, s ⋆∼ [x]∼ = [s ⋆ x]∼

is an action of S on X∼ ⋆∼, we can ease the assumption requiring that it is
just a one-way map. Furthermore, we must further require that the above map
is well-defined. For any h ∈ H, s ∈ S, suppose that there exists α(s, h) ∈ H
and β(s, h) ∈ S such that sh = α(s, h)β(s, h)6. To show that the action of ⋆∼
is well-defined, we need to prove that s ⋆∼ [x]∼ = s ⋆∼ [y]∼, for any s ∈ S and
x ∼ y. Let h ∈ H such that h ⋆ x = y, then

s ⋆∼ [y]∼ = [s ⋆ y]∼ = [sh ⋆ x]∼ = [α(s, h)β(s, h) ⋆ x]∼.

Therefore, s ⋆∼ [x]∼ = s ⋆∼ [y]∼ if and only if there exists h̃ ∈ H such that
h̃s⋆x = α(s, h)β(s, h)⋆x. Since the action is free, it follows that α(s, h)β(s, h) =
h̃s, i.e. sh = α(s, h)s for any h ∈ H, s ∈ S. This implies that, for any g̃ = h̃s̃ ∈ G
and h ∈ H,

g̃hg̃−1 = h̃ s̃hs̃−1︸ ︷︷ ︸
∈H

h̃−1 ∈ H,

so that H is normal in G, and since S ∼= G/H, we have that S is a subgroup and
G = H ⋊ S is a semi-direct product. Therefore, we end up in the description of
Section 3.

Modified Sigma-Protocol. In [25], the authors consider the group factorisa-
tion G = HS, where H is a subgroup and S is a set. The previous analysis shows
that in this setting it is still possible to consider the quotient space X∼ induced
by the action of H, but a restriction of the map ⋆ on S is not well-defined.
Nonetheless, we can consider a modified Sigma protocol for RG which resembles
the original protocol for group actions, but that still manages to reduce commu-
nication costs through the use of a canonical form on X∼. The protocol employs
a function Compress that takes as input a group element g = hs and returns its
partial decomposition s ∈ S.

Protocol 4. Let (G,X, ⋆) be a group action such that G = HS and let CF be
a canonical form for the relation induced by H. In the following protocol, the
Prover and the Verifier have a statement (x0, x1) ∈ X × X, while the Prover
knows a witness g ∈ G such that g ⋆ x0 = x1.
6 Notice that, the existence of the maps α : S×H → H and β : S×H → S induced by

the group decomposition, is equivalent to saying that G is an internal Zappa–Szép
product of H and S [29].
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Compress(hg
−1 )

CF

CFBase element Public Key

Private Key

Fig. 4. High-level description of the group action modified Sigma-protocol based on
canonical forms from [25].

1. P1((x0, x1), g): picks at random an element g̃ ∈ G and sends to the Verifier
com← CF(g̃ ⋆ x0) as a commitment.

2. V1((x0, x1), com): generate a random challenge ch ∈ {0, 1} and sends it to
the Prover.

3. P2((x0, x1), g, com, ch): if ch = 0 set rsp ← g̃, otherwise they set rsp ←
Compress(g̃g−1) and send it to the Verifier.

4. V2((x0, x1), com, ch, rsp): checks that CF(rsp ⋆ xch) = com. If the check suc-
ceeds, then accept; otherwise reject.

A graphical description of the protocol is shown in Figure 4.

Notice that, when the challenge is 1, the Prover only reveals an element of
S. The response maps y to an element in the same equivalence class of cmt and
can be verified using a canonical form.

Completeness and zero-knowledge are immediate and are thus omitted. In
the following, we instead focus on special soundness. In particular, we show that
Protocol 4 is a proof of knowledge for solutions of the following problem.

Definition 12 ([25]). Given a group action (G,X, ⋆) such that G = HS and
a canonical form CF for the relation induced by H, the Canonical Form Group
Action Inverse Problem (CF-GAIP⋆) takes as input a pair of elements x and y
in X and asks to find s, s′ in S such that CF(s ⋆ x) = CF(s′ ⋆ y), if any.

Proposition 5. Protocol 4 is 2-special-sound.

Proof. Let (com, 0, rsp0) and (com, 1, rsp1) be two accepting transcripts. No-
tice that rsp0 ∈ G and rsp1 ∈ S, and we can write rsp0 = h0s0 so that
Compress(rsp0) = s0. It follows that

CF(rsp1 ⋆ x1) = com = CF(rsp0 ⋆ x0) = CF(s0 ⋆ x0).

Therefore s0, rsp1 is a solution for CF-GAIP⋆ on input (x0, x1).
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