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Abstract

Lookup arguments enable a prover to convince a verifier that a
committed vector of lookup elements ®𝑓 ∈ F𝑚 is contained within
a predefined table 𝑇 ∈ F𝑁 . These arguments are particularly
beneficial for enhancing the performance of SNARKs in handling
non-arithmetic operations, such as batched range checks or bitwise
operations. While existing works have achieved efficient and
succinct lookup arguments, challenges remain, particularly when
dealing with large vectors of lookup elements in privacy-sensitive
applications.

In this paper, we introduce duplex, a scalable zero-knowledge
lookup argument scheme that offers significant improvements
over previous approaches. Notably, we present the first lookup
argument designed to operate over the RSA group. Our core
technique allows for the transformation of elements into prime
numbers to ensure compatibility with the RSA group, all without
imposing substantial computational costs on the prover. Given𝑚
lookup elements, duplex achieves an asymptotic proving time of
𝑂 (𝑚 log𝑚), with constant-sized proofs, constant-time verification,
and a public parameter size independent of the table size 𝑁 .
Additionally, duplex ensures the privacy of lookup elements and
is robust against dynamic table updates, making it highly suitable
for scalable verifiable computation in real-world applications.

We implemented and empirically evaluated duplex, comparing
it with the state-of-the-art zero-knowledge lookup argument
Caulk [CCS’22]. Our experimental results demonstrate that duplex
significantly outperforms Caulk in proving time for both single and
batched lookup arguments, while maintaining practical proof size
and verification time.

1 Introduction

A Succinct Non-interactive Arguments of Knowledge (SNARK),
which allows a verifier to efficiently validate the correctness
of a statement using a short proof, has gained prominence
with the growing demand for delegating computation while
ensuring the integrity of the results. Applications like blockchain,
artificial intelligence (AI), and cloud computing increasingly rely
on offloading complex computations to external provers, while
still requiring a reliable method to verify the results with minimal
overhead. For example, rollups outsource transaction processing
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to external servers to reduce expensive on-chain operations [36].
In such systems, batches of transactions are processed off-chain,
and only the updated states and succinct proofs are recorded on-
chain. Instead of each node in the blockchain network performing
the transaction computations themselves, they can simply verify
the succinct proof, significantly improving the system’s efficiency
by reducing the overall computational load required to validate
transactions.

Beyond improving computational efficiency, privacy in these
outsourced computations has become a critical concern, especially
when sensitive data is involved. For instance, in deep learning,
weight values in a model are often proprietary and represent
valuable intellectual property for providers [30, 33]. zero-knowledge
SNARKs (zkSNARKs), which offer zero-knowledge guarantees, have
emerged as a solution to ensure both privacy and correctness,
allowing computations to be verified without revealing the
underlying data. However, one of the most significant challenges
for SNARKs remains the proving time, which has driven substantial
research into optimizing this aspect. Most SNARK schemes require
computations to be transformed into arithmetic circuits, which is
relatively straightforward for some applications. Yet, many real-
world computations, such as hash functions or range checks, involve
non-arithmetic operations that do not easily fit into arithmetic
circuit representations. These non-arithmetic operations often
lead to inefficiencies, as they must be transformed into complex
arithmetic constraints, significantly increasing both the proving
time and the number of constraints. For example, proving that a
value falls within a specific range (e.g., ensuring that 𝑥 is a 256-
bit number) requires breaking the value into binary components,
introducing hundreds of additional constraints. As applications like
blockchain [2, 4] and privacy-preserving machine learning [19, 30,
33] increasingly rely on such non-arithmetic operations, optimizing
their proof generation is essential for making SNARKs more widely
applicable.
Lookup arguments in the context of SNARKs. One of the most
effective techniques to address the inefficiencies of proving non-
arithmetic operations in SNARKs is the use of lookup arguments.
Given a (predefined) table 𝑇 ∈ F𝑁 and a commitment 𝑐 ®𝑓 to a

vector ®𝑓 ∈ F𝑚 , where𝑚 represents the number of lookup elements,
a prover can claim that all elements of ®𝑓 are contained within
the table 𝑇 with a short proof. Importantly, the verification of the
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lookup argument should be performed in time independent of 𝑁 ,
as the table size 𝑁 is typically much larger than the number of
lookup elements𝑚. Lookup arguments are particularly beneficial
for handling non-arithmetic operations, such as range checks or
bitwise operations. For instance, a range check that would otherwise
require 256 constraints and additional field elements can be reduced
to a single lookup operation when using a well-constructed table.
Similarly, bitwise operations like XOR can be efficiently handled
by organizing the lookup table with triples (𝑎, 𝑏, 𝑐) for inputs and
outputs, which simplifies the SNARK’s arithmetic circuit.

Recognizing the potential of lookup arguments in SNARKs,
extensive researches [8, 9, 15, 18, 21, 23–25, 37, 42, 48, 49]
have focused on improving their efficiency and expanding their
applications [2, 22, 43, 47]. While many lookup arguments
are becoming increasingly efficient, achieving performance
independent of the table size 𝑁 is a critical goal, especially when
𝑁 is much larger than𝑚. Despite these advancements, challenges
remain in terms of ensuring full compatibility between lookup
arguments and different SNARK schemes, particularly those based
on different polynomial structures. Additionally, privacy concerns
are paramount when using lookup tables, especially in sensitive
applications like AI, where lookup arguments can enhance non-
arithmetic tensor operations [43] while protecting proprietary
data [19]. Furthermore, verifiable computation systems, such as
those involving Random Access Memory (RAM), benefit from
lookup arguments that can adapt to dynamic environments where
tables are frequently updated [22].

1.1 Our Works

We introduce duplex1, a scalable zero-knowledge lookup
argument built over the RSA group2. duplex achieves superior
proving performance, constant-time verification, and small
public parameters, all while maintaining constant-sized proofs.
Importantly, duplex ensures the privacy of lookup elements and is
designed to handle dynamic tables, making it highly applicable
to scenarios like verifiable RAM access or frequently updated
databases. Moreover, it offers flexibility, meaning it can be applied
to various SNARK frameworks (e.g., AIR, Plonkish, R1CS) without
requiring specific transformations that incur additional overhead.

The foundation of duplex lies in its extension of harisa [16],
a state-of-the-art set membership proof scheme based on the RSA
group. harisa already offers the key properties required for an
efficient lookup argument, such as fast proving time, succinct
verification, constant-sized proofs, and compact public parameters,
all while preserving privacy. However, applying harisa directly to
lookup arguments is challenging due to two primary issues:
• Element Uniqueness: harisa assumes the uniqueness of
elements within its proofs, which is not compatible with
lookup arguments where duplicate elements are common.

1The name “Duplex”[46], referring to two living units within a single structure,
reflects the dual scalability offered by the proposed lookup argument in terms of
both performance and functionality, encompassing features such as zero-knowledge,
flexibility, and adaptability to dynamic environments, all within a single construction.
Furthermore, it aligns with our core technique, “double lookup, less work.”

2While the RSA group is used in this work for clarity, duplex can also be
instantiated with other groups of unknown order, such as the class group of an
imaginary quadratic field. The choice of group involves trade-offs, which are detailed
in[11].

For example, considering lookup argument for an AND
operation, the lookup element vector ®𝑓 = (𝑓1 = 1111 &
0000, 𝑓2 = 1111 & 0000, 𝑓3 = 1100 & 0101) could have
identical elements (e.g., 𝑓1 and 𝑓2).
• Compatibility with RSA Group: RSA group-based
accumulators require elements to be prime (or hashed-to-
prime) to ensure security under the strong RSA and/or
adaptive root assumptions. This is problematic for typical
lookup arguments, where the elements may not naturally
be prime numbers, as seen in many lookup tables for
operations like AND. While encoding non-prime elements
as primes is one approach, it introduces significant overhead
in the SNARK circuit.

By resolving these challenges, duplex delivers a lookup argument
with competitive proving time, succinct verification, constant-
sized proofs, and a public parameter size independent of the
table size 𝑁 . Additionally, duplex is versatile across different
SNARK frameworks and applicable to dynamic tables, all while
upholding zero-knowledge guarantees essential for privacy-
sensitive applications. Our contributions are summarized as follows:

• We introduce duplex, a novel zero-knowledge lookup
argument scheme built over the RSA group. It achieves
competitive proving performance compared to existing
schemes while maintaining succinct verification. This
efficiency is realized through our innovative technique
(we refer to it as double lookup, less work), which
transforms the given table elements into prime numbers
to ensure compatibility with the RSA group without
imposing significant computational overhead on the prover.
Asymptotically, for𝑚 lookup elements and an 𝑁 -sized table,
the proving time for duplex operates independently of the
table size, at𝑂 (𝑚 log𝑚), with precomputation. Additionally,
the verification time and the proof size is constant, and the
public parameter size is 𝑂 (𝑚), independent of the table size.
• duplex provides zero-knowledge for the lookup elements,
allowing a prover can convince the verifier that the lookup
elements are indeed in the predefined table without revealing
their values. This is particularly beneficial for privacy-
sensitive applications, such as those in artificial intelligence.
• duplex seamlessly integrates with SNARK circuits of any
arithmetization (e.g., AIR, Plonkish, R1CS) without incurring
additional costs. This flexibility is particularly advantageous
in scenarios where consistency across computations from
heterogeneous SNARKs is required, making it a versatile
solution in diverse cryptographic settings.
• Our scheme supports zero-knowledge lookup arguments
even for dynamic tables that can be continuously updated.
For example, consider lookup elements ®𝑓 = (𝑓1 = 𝑡1, 𝑓2 = 𝑡2),
an initial table𝑇 = {𝑡1, 𝑡2, · · · , 𝑡𝑁 }, and an updated table𝑇 ′ =
{𝑡1, 𝑡2, · · · , 𝑡𝑁 , 𝑡𝑁+1}. The prover does not need to regenerate
the public parameters since the setup is independent of the
table size. This feature is especially effective for real-world
applications such as blockchain and verifiable computation
environments involving RAM, where data is frequently
updated.
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• We implemented duplex in Rust and empirically validated
its performance against the state-of-the-art zero-knowledge
lookup argument Caulk [48]. For example, given 26 lookup
elements, duplex achieves a proving time of 207ms, making
it 12.96× faster than Caulk of table of 220 elements. While
the verification time and proof size are slightly larger than
those of Caulk—46ms and 1.17KB for duplex compared to
36ms and 0.89KB for Caulk—these metrics remain within
practical limits. This trade-off allows duplex to provide
significant improvements in proving efficiency, especially in
applications requiring frequent updates to dynamic tables,
such as blockchain or verifiable RAM access.

1.2 Related works

Lookup arguments in the literature. After Bootle et al. [8]
introduced lookup argument, research on the lookup arguments has
been amplified. One of the initial lookup arguments Plookup [25]
proposed lookup arguments along with Plonk, with a proving cost
dependent of table size 𝑁 . Caulk [48] proposed the first solution
that was sublinear in the size of the table, 𝑂 (𝑚2 +𝑚 log𝑁 ) for
table size 𝑁 and lookup elements size𝑚, achieved by preprocessing
elements in the table. Caulk is also the first protocol achieving
zero-knowledge, that is, the lookup elements are unknown to the
verifier. Caulk+ [37] attains a proving time of𝑂 (𝑚2) by eliminating
𝑁 factor, rendering Caulk lookup argument independent of the size
of table. Ba𝑙𝑜𝑜 [49] introduces quasilinear to the size of lookups
and independent of the size of the table. It is based on commit-and-
prove checkable subspace argument that for the table ®𝑡 and the
lookup ®𝑎, a prover convinces verifier that they know a matrix 𝑀
such that𝑀 ·®𝑡 = ®𝑎. cq [23] made𝑂 (𝑚 log𝑚) prover works first time
based on logarithmic derivative of [28]. It has proof aggregation
by giving elements as the sum of derivatives. cq+ [14] improves cq
by reducing Aurora’s sumcheck [5] into checking one polynomial.
zkcq [14] propose the up-to-date lookup argument achieving zero-
knowledge by combining cq+ with the CP-SNARK.

Lasso [42] convinces the verifier by proving the relation
𝑀 · ®𝑡 = ®𝑎 in another way. It proves the relation using Surge,
a generalization of sparse polynomial commitment Spark by
modifying decomposable structures into subtables, called spark-
only structure (SOS). The advantage of Lasso is that it allows the
prover to commit to only "small" field element, whereas a random
field element is required to committed, even if the witness is small. It
can be applied to any arithmetization—AIR, Plonkish, or R1CS—by
converting into customizable constraint systems introduced in [41].

Very recently, Campanelli et al. [15] introduce the super-efficient
lookup argument, called 𝜇-seek. They define a super-efficient
lookup argument as lookup argument in which the prover runs
independent of table size. 𝜇-seek is therefore super-efficient since
it has a linear proving time 𝑂 (𝑚). On the other hand, both the
verification and proof size are logarithmic on𝑚 (yet still succinct)
due to the sumcheck protocol and CP-SNARK with a multilinear
commitment scheme. Moreover, the public parameter depends on
the table size since it precomputes all possible polynomial.
Lookup arguments and its applications. Driven by the merits of
lookup arguments, research on their application has recently been
activated. Jolt [2] introduces a new SNARK scheme for executions

of virtual machines by integrating with its companion work, Lasso.
Notus [47] introduces a lookup argument to the Dynamic Proof
of Liabilities (DPoL) with an RSA accumulator and a hashchain.
Each transaction is combined with a DI-hash and its membership
is verified using the hashchain. Dutta et al. [22] present a batching-
efficient RAM built upon lookup argument, which can be adapted
for updatable table. zkLLM [43] devises a parallelizable lookup
argument to leverage parallel computing resources, such as GPUs.
Setmembership proof.Another relevant approach to prove ®𝑓 ∈ 𝑇
is a set membership proof [3, 6, 12, 13, 16, 20, 31, 32, 34, 35, 44, 50].
It is analogous to lookup arguments in that the set membership
proof aims to prove some elements 𝑥 belongs to some public set
𝑆 . Recent works on set membership proofs carry efficient prover
and succinct verifier (and proof). Nevertheless, as it has obvious
distinctions with lookup arguments, it is difficult to directly use a
set membership proof as a lookup argument. Since the elements in
the set membership proof are generally assumed to be unique, the
duplication does not occur. However, in the lookup arguments,
the duplication is likely scenario. For instance, the result of a
bitwise operation can appear twice or more. For the reason, a set
membership proof is not directly compatible with lookup argument
while it has good properties. Furthermore, there is one more
constraint that the elements should be prime numbers among the
works based on RSA accumulator [3, 6, 13, 16, 31, 32]. Regarding
that the given table elements3 are potentially not prime number,
such constraint charges additional cost incurred by transformation
of elements into prime numbers.

1.3 Structure of the paper

We introduce notations and (informal) definition of cryptographic
primitives used in this paper in Section 2. The technical intuition of
our work is outlined in Section 3 and the construction is depicted
in Section 4. In Section 5, implementation and evaluation for our
construction is presented.

2 Preliminaries

We provide informal definitions of the primary cryptographic
primitives and some notations used in our constructions.

2.1 Notations

Before we dive into our construction overview, we show some
notations used throughout the paper. Most of the notations related
to RSA accumulator are from [16]. Additionally, for the set 𝑆 ,

∏
𝑆

denotes the product of all elements in the set 𝑆 , i.e.,
∏

𝑆 =
∏

𝑢𝑖 ∈𝑆 𝑢𝑖 .
This holds for the vector as well, e.g.,

∏
𝑠 denotes the product of

all elements in vector ®𝑠 . The left subset 𝑆𝐿 denotes the first half
of the elements in set 𝑆 , and 𝑆𝑅 denotes the latter half elements.
For example, consider the set 𝑆 = {𝑢1, · · · , 𝑢𝑁 } where 𝑁 is even;
𝑆𝐿 = {𝑢1, · · · , 𝑢 𝑁

2
} and 𝑆𝑅 = {𝑢 𝑁

2 +1
, · · · , 𝑢𝑁 } respectively. For

brevity, vectors are sometimes used as data structure to represent
sets, and vice versa. For example, the table 𝑇 = {𝑡1, . . . , 𝑡𝑁 } is
sometimes denoted as ®𝑡 = (𝑡1, . . . , 𝑡𝑁 ). The concatenation operation
is denoted as ∥. Unless otherwise specified, the vector ®𝑓 denotes

3Suppose the table contains all possible results of bitwise operation. The results
are probably not prime number.
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Scheme Zero-knowledge Precomputation Proof Prover work Verifier
size group field work

plookup [25] − − 5G1, 9F 𝑂 (𝑁 ) 𝑂 (𝑁 log𝑁 ) 2𝑃
Caulk [48] ✓ 𝑂 (𝑁 log𝑁 ) 14G1, 1G2, 4F 15𝑚 𝑂 (𝑚2 +𝑚 log𝑁 ) 4𝑃
Caulk+ [37] ✓ 𝑂 (𝑁 log𝑁 ) 7G1, 1G2, 2F 8𝑚 𝑂 (𝑚2) 3𝑃
flookup [24] − 𝑂 (𝑁 log2 𝑁 ) 7G1, 1G2, 4F 𝑂 (𝑚) 𝑂 (𝑚 log2𝑚) 3𝑃
Ba𝑙𝑜𝑜 [49] − 𝑂 (𝑁 log𝑁 ) 12G1, 1G2, 4F 14𝑚 𝑂 (𝑚 log2𝑚) 5𝑃
cq [23] − 𝑂 (𝑁 log𝑁 ) 8G1, 3F 7𝑚 +𝑂 (𝑚) 𝑂 (𝑚 log𝑚) 5𝑃
cq+ [14] − 𝑂 (𝑁 log𝑁 ) 8G1, 1F 8𝑚 𝑂 (𝑚 log𝑚) 5𝑃
zkcq+ [14] ✓ 𝑂 (𝑁 log𝑁 ) 9G1, 1F 8𝑚 𝑂 (𝑚 log𝑚) 6𝑃

Lasso w/ KZG+Gemini − − 𝑂 (log𝑚)G1 (𝑐 + 1)𝑚 + 𝑐𝑁
1
𝑐 𝑂 (𝑚 + 𝑁 ) 2𝑃

(unstructured table) [42] 𝑂̃ (log𝑚)F 𝑂̃ (log𝑚)F
𝜇-seek [15] − 𝑂 (𝑁 log𝑁 ) 2(log𝑚 + 3)G1

𝑂 (𝑚) 𝑂 (𝑚) 2𝑃
w/ KZG+Gemini 6(log𝑚 + 1)F 𝑂 (log𝑚)G1

our scheme w/ cpGro16 ✓ 𝑂 (𝑁 log𝑁 ) 13G1, 3G2, 4G? 𝑂 (𝑚 log𝑚) − 3G?, 11𝑃
Table 1: Costs comparison of prior lookup works and our work. 𝑁 is the size of table,𝑚 is the number of lookups (the size of

lookup element vector). We assume 𝑁 > 𝑚 for simplicity. G1 and G2 are pairing-friendly group and G? is group of unknown

order. In this paper, we assume RSA group for G?. The complexity in precomputation is the number of group operation. For the

prover and verifier work, 𝑐 denotes the decomposition factor of Lasso, and 𝑃 refers to pairing operation. If the cell is marked as

−, it means that it has nothing corresponding.

the vector of lookup elements 𝑓𝑖 , and ®𝑡 generally denotes the vector
of table elements 𝑡𝑖 in table 𝑇 .

2.2 Commitments

A commitment scheme allows one to commit to a value in a manner
that is both hiding and binding. Specifically, the hiding property
ensures that the committed value remains secret, while the binding
property guarantees that the commitment can only be opened to the
originally committed value. A commitment scheme consists of two
algorithms (Setup,Comm) where Setup takes security parameter
1𝜆 as input and outputs commitment key ck, and Comm returns a
commitment 𝑐 for the input of ck, message𝑚, opening randomness
𝑜 . A commitment scheme is additively homomorphic if it satisfies
the following conditions: for any messages𝑚𝑖 and𝑚 𝑗 such that
𝑚𝑖 ≠ 𝑚 𝑗 and any randomnesses 𝑜𝑖 and 𝑜 𝑗 such that 𝑜𝑖 ≠ 𝑜 𝑗 ,
Comm(𝑚𝑖 ;𝑜𝑖 ) + Comm(𝑚 𝑗 ;𝑜 𝑗 ) = Comm(𝑚𝑖 +𝑚 𝑗 ;𝑜𝑖 + 𝑜 𝑗 ) holds.

2.3 SNARKs

A SNARK for a relation 𝑅 consists of three algorithms Π =

(Setup, Prove,Vfy) as follows:

• Setup(1𝜆, 𝑅) → crs takes a security parameter 1𝜆 and a
relation 𝑅 as inputs and outputs a common reference string
crs.
• Prove(crs, 𝑥 ;𝑤) → 𝜋 returns a proof 𝜋 on crs with a
statement 𝑥 and a witness𝑤
• Vfy(crs, 𝑥, 𝜋) → {0, 1} on input 𝑐𝑟𝑠 , a statement 𝑥 , and a
proof 𝜋 returns 1 if the proof is correct and 0 otherwise.

A SNARK needs to satisfy completeness, knowledge-soundness,
and succinctness. Completeness means that the honest verifier
always accepts the proof for any pair (𝑥,𝑤) satisfying the relation.
Formally, a SNARK is complete if it holds with overwhelming
probability that Vfy(crs, 𝑥, 𝜋) = 1 where crs ← Setup(1𝜆, 𝑅)

and 𝜋 ← Prove(crs, 𝑥 ;𝑤) for (𝑥 ;𝑤) ∈ 𝑅. Knowledge soundness
says that a valid witness can be extracted from a proof that
passes verification. We can say that a SNARK is succinct if it
has a proof of small size and fast verification time, formally
both are poly-logarithmic in the witness size. A SNARK may
also be zero-knowledge if the proof reveals nothing about the
witness, and we refer it to zkSNARK. We employ commit-and-
prove SNARKs (CP-SNARKs) [17] as a framework in this work.
CP-SNARK is a SNARK that the prover can prove properties
of committed inputs efficiently with some existing commitment
scheme Comm, e.g., Pedersen Commitment. In this paper, 𝑐?
denotes the committed value (of subscript) and its opening is
denoted as 𝑜?. For instance, 𝑐𝑢 is the commitment to the value
𝑢 and its opening is 𝑜𝑢 . As discussed in [17], CP-SNARK has the
modular composition of SNARKs with the committed witnesses.
For example, 𝑅1 (𝑐𝑢 ;𝑤1) and 𝑅2 (𝑐𝑢 ;𝑤2) can be proven with CP-
SNARK relation 𝑅̃(𝑐𝑢 ;𝑤1,𝑤2, 𝑢, 𝑜𝑢 ): 𝑅̃(𝑐𝑢 ;𝑤1,𝑤2, 𝑢, 𝑜𝑢 ) = 1 ⇔
𝑅1 (𝑐𝑢 ;𝑤1) = 1 ∧ 𝑅2 (𝑐𝑢 ;𝑤2) = 1. A CP-SNARK for the relation 𝑅̃ is
denoted as cpΠ.

2.4 RSA Accumulator

An RSA accumulator is a data structure that transforms a large
set 𝑆 into a compact digest, based on RSA group. Built upon the
RSA accumulator, the membership proof can prove that 𝑢𝑖 is a valid
element of the set 𝑆 for any set element 𝑢𝑖 ∈ 𝑆 , even in privacy-
preserving manner. The instantiation of the RSA accumulator
is secure under strong RSA assumption [3] and adaptive root
assumption [45]. The elements for the RSA accumulator must
be primes (or the ones hashed-to-prime). The syntax of the
accumulator scheme we use in this paper is as follows:

• Setup(1𝜆) → pp := (G?, 𝑔?) takes a security parameter 1𝜆
as input and outputs a public parameter pp.

4



• Acc(pp, 𝑆) → acc := 𝑔
∏

𝑆

? returns an accumulator where all
of the elements in set 𝑆 are accumulated by exponentiating
the product of 𝑆 .
• MemPrv(pp, 𝑆,𝑈 ) → 𝑊 := 𝑔

∏
𝑆/

∏
𝑈

? computes a witness
𝑊 by exponentiating all elements in set 𝑆 except those in
𝑈 , which is the subset of 𝑆 that includes the elements to be
proven.
• MemVfy(pp,𝑊 ,𝑈 , acc) → {0, 1} accepts if and only if
𝑊

∏
𝑈 = acc, rejects otherwise.

We can notice that calculating𝑊 from scratch impedes proving
performance since it accompanies𝑂 ( |𝑆 |) exponentiations over RSA
group. Precomputation based on divide-and-conquer approach [38]
for witness generation can reduce the cost of prover whereas
it requires additional storage to store the precomputed results,
covering all possible witnesses. In this paper, the RSA accumulator
and the membership proof scheme follow harisa (Figure 1),
which is introduced in [16], and we further enhance it with
precomputation.

2.4.1 Revisiting harisa Since duplex employs harisa as a building
block, we can ride the wave of the benefits of harisa. First of
all, harisa takes out RSA operation from the SNARK circuit to
reduce the proving overhead by combining sigma protocol, proof
of knowledge exponent (PoKE, [7]) and zkSNARKs. Briefly, they
hide membership elements through sigma protocol and it is proven
under cpΠmodarithm for the relation as follows:

𝑅̃modarithm
ck (𝑐 ®𝑢 , 𝑐𝑠,𝑟 , ℎ, 𝑙, 𝑘) = 1⇔ 𝑘 = 𝑠 · ℎ ·

∏
𝑖∈[𝑚]

𝑢𝑖 + 𝑟 mod 𝑙

What’s more, it provides the privacy of the witness by using a
technique where witness𝑊 is hidden by randomly exponentiating
among prime numbers 𝑝𝑖 ∈ P2𝜆 . The randomization of𝑊 helps
prevent leakage of elements (to be proven) from brute-force testing
for all elements in the set 𝑆 :𝑊𝑢𝑖 ?

= acc. Also, they get succinctness
by adopting PoKE technique.

In summary, they construct zero-knowledge, succinct,
and efficient membership proof scheme by combining the
aforementioned techniques in commit-and-prove way. However,
there exists difficulties to use harisa as lookup argument directly
since it is built for the membership proof. As other membership
proof schemes, each of the membership elements to be proven are
unique in harisa with being prime numbers. Thus, it does not offer
an efficient way to transform the given table and lookup elements
into RSA-compatible form when it comes to lookup arguments.

3 Technical overview

We now present a high-level overview of our main technical
contributions. The core protocol in this work extends the
membership proof to the lookup argument. In particular, harisa,
state-of-the-art zero-knowledge membership proof protocol based
on RSA accumlator, has the advantages in terms of both
performance and functionality. It has optimal proving time,
succinct verification and constant-sized proof. Moreover, it satisfies
zero-knowledge while being compatible with SNARKs of any
arithmetization. The noteworthy feature is that it takes RSA

Setup
(
1𝜆, ck, pp

)
:

crs1 ← cpΠmodarithm .Setup(1𝜆, ck, 𝑅̃modarithm
ck )

return crs := (ck, pp, crs2 )

Prove (crs, acc, 𝑐 ®𝑢 ;𝑊®𝑢 , ®𝑢,𝑜 ®𝑢 ) :

ˆacc← acc
∏

𝑝𝑖 ∈P2𝜆 𝑝𝑖

Let 𝑢∗ =
∏
𝑖

𝑢𝑖 , 𝑝
∗ =

∏
𝑝𝑖 ∈P2𝜆

𝑝𝑖

Sample 𝑏1, . . . , 𝑏2𝜆 ←$ {0, 1}

Let 𝑠 :=
∏

𝑝𝑖 ∈P2𝜆

𝑝
𝑏𝑖
𝑖
, 𝑠 :=

∏
𝑝𝑖 ∈P2𝜆

𝑝
1−𝑏𝑖
𝑖

𝑊̂®𝑢 ←𝑊 𝑠
®𝑢

Sample 𝑟 ←$ {0, 1} ∥𝑝∗ ∥+∥𝑢∗ ∥+2𝜆

𝑐𝑠,𝑟 ← Commck (𝑠, 𝑟 ;𝑜𝑠,𝑟 )

𝑅 ← 𝑊̂ 𝑟
®𝑢

ℎ ← 𝐻 (crs | |acc | |𝑐 ®𝑢 | |𝑐𝑠,𝑟 | |𝑊̂®𝑢 | |𝑅)
𝑘 ← 𝑟 + (𝑢∗𝑠 )ℎ

𝜋1 ← ΠPoKE .Prv
(
(G?, 𝑔? ),𝑊̂®𝑢 , ˆaccℎ𝑅;𝑘

)
Parse 𝜋1 as (𝑄,𝑘 )

ℓ ← 𝐻prime ( (G?, 𝑔? ),𝑊̂®𝑢 , ˆaccℎ𝑅)

𝜋2 ← cpΠmodarithm .Prv(crs2, 𝑐 ®𝑢 , 𝑐𝑠,𝑟 , ℎ, ℓ, 𝑘 ; ®𝑢,𝑜 ®𝑢 , 𝑟 , 𝑠, 𝑜𝑠,𝑟 )

return 𝜋 =
(
𝑊̂®𝑢 , 𝑅, 𝑐𝑠,𝑟 , 𝜋1, 𝜋2

)
Verify (crs, acc, 𝑐 ®𝑢 , 𝜋 ) :

ˆacc← acc
∏

𝑝𝑖 ∈P2𝜆 𝑝𝑖

Parse 𝜋 as (𝑊̂®𝑢 , 𝑅, 𝑐𝑠,𝑟 , 𝜋1, 𝜋2 ) and 𝜋1 as (𝑄,𝑘 )

ℓ ← 𝐻prime ( (G?, 𝑔? ),𝑊̂®𝑢 , ˆaccℎ𝑅)

ℎ ← 𝐻 (crs | |acc | |𝑐 ®𝑢 | |𝑐𝑠,𝑟 | |𝑊̂®𝑢 | |𝑅)

Reject if ΠPoKE .Vfy(G?, 𝑔? ),𝑊̂®𝑢 , ˆaccℎ𝑅, 𝜋1 ) ≠ 1

Reject if cpΠmodarithm .Vfy(crs2, 𝑐 ®𝑢 , 𝑐𝑠,𝑟 , ℎ, ℓ, 𝑘, 𝜋2 ) ≠ 1

Figure 1: harisa scheme we will use throughout this work

operation out from SNARK circuit, and only the connectivity
between the membership proof and the circuit through a commit-
and-prove way4. However, directly applying harisa to the lookup
argument has following restrictions: (A) Basically, harisa is the
membership proof scheme where it is assumed that the duplication
among elements to be proven does not occur, while it is likely
in lookup arguments, i.e., there can exist 𝑓𝑖 = 𝑓𝑗 for 𝑖 ≠ 𝑗 . (B)
The given elements (both table elements and lookup elements) can
be (and it is quite probable) composite numbers. However, since
harisa plays over RSA groups, each element should be transformed
into the proper form, such as prime numbers or ones hashed to
prime, and such transformation can incur additional cost for prover.
Our primary contribution is to provide an efficient and scalable

4Here we provide an intuition for the better delivery. Further detail is referred
to [16].
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construction for lookup arguments by resolving above obstacles.
To achieve this, we combine below main techniques.

(1) Apart from applicability of the element, the likelihood of
duplication among elements is hindrance to use harisa as
lookup arguments. In order to handle duplication, we first sort
both the table and lookup elements vectors. Then, create a
temporary vector where each element is copied to the one in
lookup elements vector at same index until the duplication
occurs. Whenever the duplication occurs in lookup elements
vector, the element of the temporary vector at that index is
copied with another table elements which is not in the lookup
elements vector. For instance, for the temporary vector ®𝑒 , lookup
elements ®𝑓 , and table elements ®𝑡 where ®𝑓 and ®𝑡 are sorted in
ascending order, 𝑒𝑖 = 𝑓𝑖 if 𝑖-th element has no duplication.
Otherwise the duplication exists such that 𝑓𝑗 = 𝑓𝑗+1, 𝑒 𝑗+1 = 𝑡𝑘

such that 𝑡𝑘 ∉ ®𝑓 ∧ 𝑡𝑘 ∈ ®𝑡 . Then, check that ∀𝑖 ∈ [1,𝑚] :
(𝑓𝑖 −𝑒𝑖 ) (𝑓𝑖 − 𝑓𝑖−1) = 0. This confirms that each element is either
the original or a duplication. Combining it with the membership
proof, we can prove that all elements, including duplication
elements, are in the lookup table. Namely, the membership
proof for ®𝑒 is able to that all the elements in ®𝑒 are in the table.
Accordingly, the equation is finally able to ensure that all the
elements in ®𝑓 are either original elements in table or duplicated
ones.

(2) Including harisa, using RSA accumulator for lookup arguments
has significant obstacle, even though other challenges are
resolved. Directly putting elements into an RSA accumulator
is difficult in that the elements—both table elements and
lookup elements—may not have proper form, such as the
prime numbers or ones hashed-to-prime. Simply transforming
elements into prime numbers using hash-to-prime is not a
suitable solution, as it requires hash computations within the
SNARK circuit that scale linearly with the number of elements
to be proven, leading to significant computational overhead for
the prover. So as to construct lookup argument using harisa
with affordable proving overhead of well-transformation, we
devise double lookup, less work technique. For an element 𝑡𝑖 ,
let 𝑡𝑖 ← 𝑡𝑖 ∥𝑧𝑖 be the prime number where 𝑧𝑖 is the random
prime number and make a table for 𝑧𝑖 . From the perspective
of the prover, the prover proves that 𝑓𝑖 = 𝑓𝑖 ∥𝑧𝑖 and both 𝑓𝑖 and
𝑧𝑖 are in the table using harisa. It brings only one additional
lookup for 𝑧𝑖 to the original one lookup for 𝑓𝑖 , which does
not harm the asymptotic proving complexity and has little
impact on practicality. Owing to the advantage of harisa, this
additional lookup can be efficiently proven in batch manner.
Further scrutiny can be seen in Section 4.2.

Overcoming the aforementioned hindrances, our lookup
argument attains two benefits. The first one is flexibility, which
means that the lookup argument is applicable to SNARKs of any
arithmetization. Existing works represent argument as polynomial
relation, such as KZG polynomial commitment [29] or a multilinear
extension of sparse matrix [42], whereas our construction deals
with the lookup element as its own value. After transformation with
double lookup, less work, we can utilize harisa membership proof.
As a result, the (committed) values of lookup elements are directly

passed to SNARKs of any arithmetization through commit-and-
provewaywhich is identical technique to harisawithout additional
costs. Namely, duplex does not need to manipulate to tune into
specific arithmetization. The another one is that duplex can be
extended to dynamic environments where the table is updated
over time. By combining b-ins-arisa (introduced in [16, Section
5]) with duplex, we can prove lookup argument for the updated
table with preserving privacy. Similar to the core idea of duplex,
duplex for dynamic table begins by proving well-transformation of
updated elements in outline. It guarantees that the table is correctly
updated. Then, run duplex for the lookup elements in succession.
Consequently, duplex for the dynamic table can be constructed
proving the update is done correctly and the lookup argument itself.
Note that the duplex is not affected by the update of table (and
proving well-transformation of updated elements), zero-knowledge
can be maintained even the update take places.

4 Zero-knowledge Lookup Arguments over RSA

Group

In this section, we describe the construction of our scalable zero-
knowledge lookup arguments, duplex, over RSA group. We start
from extending harisa, zero-knowledge set membership proof
over RSA group. When using harisa for lookup arguments, two
primary obstacles must be addressed to harness its full potential.
The first one is that a lookup element may be a duplicate of
another element which does not occur in general membership proof
protocol. The second one is all the elements including table elements
and lookup elements, must be transformed into an appropriate
form to be compatible with RSA group (prime numbers or ones
hashed-to-prime). We demonstrate each of the challenges and
introduce the corresponding solutions accordingly. Then, we show
the construction of the proposed lookup arguments, duplex in
Figure 3 where harisa is used as a building block while handling
duplication and well-transformation. In Figure 2, we provide high-
level structure of our proposed scheme.

4.1 Duplication handling

As aforementioned, one of the main hindrances is duplication
among the lookup elements. It arises from the fundamental
difference in the uniqueness of elements within membership proofs
compared to the lookup arguments. In the membership proof
protocols, each element to be proven is assumed to be unique.
However, lookup arguments do not inherently guarantee such
uniqueness, leading to possible duplication among the lookup
elements. Specifically, it is conceivable for two distinct lookup
elements denoted as 𝑢𝑖 and 𝑢 𝑗 to be equivalent (𝑢𝑖 = 𝑢 𝑗 ) for
𝑖 ≠ 𝑗 . For clarity, let all the elements be prime numbers5. Unless
duplication exists, harisa can be used as a lookup argument
in itself due to the uniqueness of the elements. However, if
duplication occurs (which is quite probable), the membership proof
cannot be used as the lookup argument. To illustrate, consider
the table 𝑇 = {𝑡1, 𝑡2, . . . , 𝑡𝑁 } and the lookup elements ®𝑓 = (𝑓1 =

5Even if this is a strong assumption, we assume that all the elements have an
applicable form to be used in harisa to concentrate on the duplication. The inspection
of the suitability of the elements is in Section 4.2.
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Figure 2: Bird’s eye view of our protocol. The initial elements are assumed to be sorted in ascending order. 𝑅̃
harisa

denotes the

relation proven under SNARK circuit in harisa. 𝑅̃WT
ck and cpΠCTT

denotes the relations for well-transformation (double lookup,

less work in Section 4.2) and duplication handling (copy-this-or-that in Section 4.1) respectively.

𝑡1, 𝑓2 = 𝑡2, . . . , 𝑓𝑖 = 𝑡𝑖 , . . . , 𝑓𝑗 = 𝑡𝑖 , . . . , 𝑓𝑚 = 𝑡𝑚) for 𝑁 > 𝑚.
As shown, owing to 𝑓𝑖 = 𝑓𝑗 for 𝑖 ≠ 𝑗 , generating a witness
becomes problematic. In this case, for an accumulator acc← 𝑔

∏
𝑇 ,

the witness is generated as 𝑊 ← 𝑔
∏

𝑇 /
∏

𝑓 . In order to prove
membership, a prover should pass 𝑊 , and lookup elements ®𝑓 6.
However, 𝑡𝑖 appears twice in ®𝑓 (at 𝑓𝑖 and 𝑓𝑗 ) while acc contains
only one 𝑡𝑖 . Hence, it is hard to prove that 𝑡𝑖 appears twice through
a membership proof. If we update the accumulator reflecting the
duplication, acc ← 𝑔

∏
𝑇 ′ 𝑠 .𝑡 .𝑇 ′ = 𝑇 ∪ {𝑡𝑖 }, to get two 𝑡𝑖 in the

accumulator. Moreover, since the accumulation phase precedes the
accumulation phase, and the number and identity of duplicated
elements vary with each invocation, it is impractical to reflect
duplications in the accumulator. For simplicity, if ®𝑓 only consists
of𝑚 copies of 𝑡𝑖 , the accumulator must handle𝑚 − 1 duplicated
elements by multiplying acc′ ← acc

∏𝑚−1
𝑘=1 𝑡𝑖 . Besides, this can affect

the security in that the elements are not coprime if the duplication
is reflected. Thus, duplication has to be managed carefully to avoid
harming security and practicality.

To handle such duplication, we combine the
copy-this-or-that technique introduced in Halo2 [9] with harisa.
The copy-this-or-that proves that all the duplicated elements
are indeed the same. For example, assume the vector of lookup
elements ®𝑓 = (𝑓1, 𝑓2, 𝑓3, 𝑓4, . . . , 𝑓𝑚) and 𝑓3 and 𝑓4 are same. To
shed light on, we suppose that the vector of table elements ®𝑡 and

6Rigorously, lookup elements are passed in hidden through masking with some
randomness (𝑘 ← 𝑟 + 𝑓𝑖𝑠ℎ) in harisa.

the vector of lookup elements ®𝑓 are sorted by ascending order
without loss of generality. At this point, the copy-this-or-that
proves that 𝑓3 and 𝑓4 are the indeed in the set even though they
have same value. For 𝑇 and ®𝑓 , generate a temporary vector
®𝑒 = (𝑒1 = 𝑓1, 𝑒2 = 𝑓2, 𝑒3 = 𝑓3, 𝑒4 = 𝑡𝑚+1, 𝑒5 = 𝑓5, . . . , 𝑒𝑚 = 𝑓𝑚).
Note that 𝑡𝑚+1 is also a legitimate element in the table 𝑇 . Proving
∀𝑖 ∈ [2,𝑚], (𝑓𝑖 − 𝑒𝑖 ) (𝑓𝑖 − 𝑓𝑖−1) = 0 ∧ 𝑓1 = 𝑒1 ensures that all the
elements in ®𝑒 contain the elements of ®𝑓 at the corresponding index,
or valid other elements which exist in the range [𝑚 + 1, 𝑁 ]. Finally,
if ®𝑒 passes verification of the membership proof, then it implies that
all of the elements in ®𝑓 are in the table subsequently7. Formally, for
a vector of lookup elements ®𝑓 , and the temporary (sorted) vector
of lookup element ®𝑒 ∈ F𝑚 , the relation for copy-this-or-that is as
follows:

𝑅̃CTTck (𝑐 ®𝑓 , 𝑐 ®𝑒 ) = 1⇔ ∀𝑖 ∈ [2,𝑚] : (𝑓𝑖 − 𝑒𝑖 ) (𝑓𝑖 − 𝑓𝑖−1) = 0 ∧ 𝑓1 = 𝑒1

For a vector of lookup elements ®𝑓 ∈ F𝑚 and the temporary
vector ®𝑒 ∈ F𝑚 to handle duplication in ®𝑓 , 𝑅̃CTTck proves that the
element 𝑓𝑖 ∈ ®𝑓 is equal to either 𝑓𝑖−1 or 𝑒𝑖 ∈ ®𝑒 , and 𝑒1 is a copy
of 𝑓1. 𝑅̃CTTck is proven with harisa to assure that ®𝑒 consists of only
valid elements in table 𝑇 . If both the membership proof for ®𝑒 and
SNARK proof for 𝑅̃CTTck are verified, it implies that ®𝑒 contains only

7In general, since the number of lookup elements is smaller than the table size,
we assume that 𝑁 >𝑚
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valid elements in 𝑇 , and 𝑒𝑖 is a copy of 𝑓𝑖 if 𝑓𝑖 is a unique element,
or a copy of some 𝑡𝑘 which does not appear in ®𝑓 but in ®𝑡 otherwise.

4.2 Double Lookup, Less Work: Proving

well-transformation of elements

The second challenge pertains to the requirement that all
elements within the table must prime numbers or hashed ones
through a collision-resistant hash-to-prime function to construct
lookup argument from harisa, which plays over RSA group.
To accommodate this, the lookup elements 𝑓 must undergo a
transformation into elements 𝑓 that are compatible with the
RSA group. This transformation is not trivial; it necessitates the
validation that the transformed elements 𝑓 correctly reflect its
original counterparts 𝑓 . As the lookup elements are witnesses, the
integrity of the transformationmust be proven in the SNARK circuit.
However, ensuring such well-transformation is computationally
intensive, incurring 𝑂 (𝑚) of heavy computation such as hash
functions where𝑚 denotes the number of lookups. This intensive
computation in the circuit significantly impacts the scalability of
harisa when applied to lookup arguments, even if solution to the
elements duplication exists.

For instance, suppose that the table elements are𝑇 = {𝑡1, . . . , 𝑡𝑁 },
and lookup elements are in ®𝑓 . Naively, we can use hash-to-prime
where we can map each element of table into a unique prime. Then,
the converted table 𝑇 = {𝑡1, . . . , 𝑡𝑁 } where 𝑡𝑖 ← 𝐻𝑝𝑟𝑖𝑚𝑒 (𝑡𝑖 ). In
this case, the prover computes 𝑓𝑖 ← 𝐻𝑝𝑟𝑖𝑚𝑒 (𝑓𝑖 ). The prover should
prove that 1) 𝑓𝑖 is in the table𝑇 and 2) 𝑓𝑖 is indeed the output of hash-
to-prime of 𝑓𝑖 . However, the latter incurs𝑚-hash check in the circuit,
and this lets program computationally heavy. Another potential
solution is to compute a random number 𝑧𝑖 making 𝑓𝑖 = 𝑓𝑖 ∥𝑧𝑖 . This
approach leads to checking 𝑓𝑖 = 𝑓𝑖 ∥𝑧𝑖 in the circuit. Additionally,
to guarantee that there is no 𝑓𝑗 such that 𝑓𝑖 = 𝑓𝑗 ∥𝑧𝑖 where 𝑖 ≠ 𝑗 ,
we should check the range of 𝑧𝑖 . If 𝑧𝑖 exceeds (or close to) the size
of 𝑓𝑖 , there can be 𝑓𝑗 which makes 𝑓𝑖 = 𝑓𝑗 ∥𝑧𝑖 for 𝑖 ≠ 𝑗8. Although it
mitigates prover’s computation compared to the previous method,
it still requires excessive computation than necessary.

We propose a novel technique for the efficient lookup arguments
over RSA group. The sketch of our technique is as follows: 1) Prover
computes random prime number 𝑧𝑖 such that 𝑓𝑖 = 𝑓𝑖 ∥𝑧𝑖 letting
𝑓𝑖 be a prime number. The difference with aforesaid approach is
that the 𝑧𝑖 should be a prime number as well as random. 2) Make
the table for 𝑧𝑖 . This table can exist independently or as together
with a table of 𝑡𝑖 . 3) Prover proves that 𝑓𝑖 = 𝑓𝑖 ∥𝑧𝑖 and 𝑓𝑖 and 𝑧𝑖
are in the table respectively using harisa. Since both 𝑓𝑖 and 𝑧𝑖
are prime number, there is no restriction proving membership
with harisa. However, since 𝑓𝑖 is witness, we should encode
that the transformation is correctly done (we refer to it as well-
transformation) in the SNARK circuit. If the verification passes, it is
ensured that the 𝑓𝑖 is a validmember and 𝑓𝑖 is well-transformed from
𝑓𝑖 simultaneously. This solution yields only one additional lookup
(for 𝑧𝑖 ) per existing lookup (for 𝑓𝑖 ) which doubles the prover’s work
but remains manageable. Furthermore, it does not affect asymptotic

8Generally, the concatenation check evokes bitwise operation. For example, 𝑓𝑖 =
𝑓𝑖 ∥𝑧𝑖 can be checked through 𝑓𝑖 = 𝑓𝑖 · 2𝑛 + 𝑧𝑖

complexity of the prover’s work,𝑂 (𝑚 log𝑚). The relation for well-
transformation is as follows:

𝑅̃WT
ck (𝑐 ®̂𝑓 , 𝑐®𝑧 , 𝑐 ®𝑓 ) = 1⇔ ∀𝑖 ∈ [𝑚], 𝑓𝑖 = 𝑓𝑖 ∥𝑧𝑖 ⇔ 𝑓𝑖 = 𝑓𝑖 · 2𝑛 + 𝑧𝑖

𝑅̃WT
ck proves that 𝑓𝑖 is well-transformed from 𝑓𝑖 and 𝑧𝑖 of 𝑛 bits.

Note that since 𝑧𝑖 is publicly opened as a table element with 𝑡𝑖 , it
doesn’t need to be proven whether 𝑧𝑖 is prime or not. With harisa,
if 𝑅̃WT

ck is satisfied and the membership proof for 𝑓𝑖 and 𝑧𝑖 is verified,
then it implies the well-transformation.

Remark 1. Note that since the probability that a prime number 𝑥

exists is approximately
1

log𝑥 according to the Prime Number Theorem,

the size of 𝑧𝑖 is sufficient for (log𝑎 + log log𝑎)-bit to make 𝑓𝑖 and

𝑧𝑖 themselves prime numbers where 𝑓𝑖 is 𝑎 bits in size. Considering

𝑧𝑖 is the size of 𝑏-bit, 𝑓𝑖 is the size of (𝑎 + 𝑏)-bit. Since 𝑧𝑖 ≃ 2𝑏 and

the probability that 𝑓𝑖 is prime is
1

𝑎+𝑏 , there exists at least one prime

number 𝑓𝑖 ∈ {0, 1}𝑎+𝑏 if 2𝑏 ≥ 𝑎 + 𝑏. Accordingly, 𝑏 ≃ log(𝑎 + 𝑏)
to 𝑓𝑖 be prime number. Similarly, the probability that 𝑧𝑖 is a prime

number is
1
𝑏
in this case. Consequently, the inequality 𝑧𝑖 ≥ 𝑎 log𝑎

ensures 𝑓𝑖 and 𝑧𝑖 are prime number. In other words, 𝑧𝑖 is sufficient for

(log𝑎 + log log𝑎) − 𝑏𝑖𝑡 .

For example, if 𝑓 is size of 16 bits, then, 𝑧 is sufficient for 6
bits. However, we can set the size of 𝑧 greater as necessary. In our
construction, since the domain of the elements should be greater
than the size of P2𝜆 , i.e., 𝑧 should be greater than the 2𝜆-th prime9.
As it is shown, the size of the auxiliary 𝑧 remains small and does
not increase the overall size significantly.

Remark 2. Unlike harisa, our proposed scheme does not need to

prove the bound of the element 𝑅bound separately due to the existence

of 𝑅̃WT
ck . In harisa, 𝑅bound proves that the elements are in the specific

domain, i.e., all 𝑢𝑖 are greater than public integer 𝐵. In detail, the

elements are greater than the blinding factors 𝑝𝑖 ∈ P2𝜆 , which hide

the witness 𝑊 . Through transformation, the lookup elements are

transformed as 𝑓𝑖 ← 𝑓𝑖 | |𝑧𝑖 and these transformations are proven with

𝑅̃WT
ck . Note that since the smallest element among ®𝑧 is greater than

P2𝜆 , all the elements in
®̂
𝑓 are prime numbers. Consequently, 𝑅̃WT

ck
implies 𝑅bound, we can therefore omit 𝑅bound in duplex.

4.3 Our construction for lookup argument

duplex

Corresponding with the above description, our construction is
portrayed in Figure 3. In the setup phase, the initial table 𝑇 is
transformed into vector of prime numbers ®̂𝑡 ← 𝑡𝑖 ∥𝑧𝑖 such that 𝑧𝑖
is a prime number as described in Section 4.2. Then, the prover
argues largely two parts. The first one is that the transformation of
lookup elements is correctly done. The second is that the duplicated
elements are also in the table as well as the original ones.

9It can be different depending on security parameter setting. Under our experiment
setting, we choose 2𝜆 = 256 primes, 𝑧 should be greater than 1621, the 2𝜆-th prime
number.
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Setup
(
1𝜆, ck, pp,𝑇

)
:

∀𝑖 ∈ [𝑁 ] : Compute a random prime 𝑧𝑖 such that 𝑡𝑖 ← 𝑡𝑖 | |𝑧𝑖
and 𝑡𝑖 is a prime number

Update the set𝑇 = {𝑡1, . . . , 𝑡𝑁 , 𝑧1, · · · , 𝑧𝑁 }

crs1 ← cpΠWT .Setup(1𝜆, ck, 𝑅̃WT )

crs2 ← cpΠCTT .Setup(1𝜆, ck, 𝑅̃CTT )

crs3 ← harisa.Setup(1𝜆, ck, pp)
crs = (crs1, crs2, crs3 )

return (crs,𝑇 )

LookupPrv
(
crs, acc,𝑇 , ®̂𝑓 , ®𝑓 , ®𝑧𝑓

)
:

Create a temporary vector ®𝑒 such that 𝑒𝑖 = 𝑓𝑖

if 𝑓𝑖 has no duplication, 𝑒𝑖 = 𝑡𝑘 for 𝑘 ←$ [𝑚 + 1, 𝑁 ] otherwise.
®𝑢 ← ®𝑒.append( ®𝑧𝑒 )

𝜋1 ← cpΠWT .Prv(crs1, 𝑐 ®̂
𝑓
, 𝑐 ®𝑓 , 𝑐 ®𝑧𝑓 ; ®̂𝑓 , 𝑜 ®̂

𝑓
, ®𝑓 , 𝑜 ®𝑓 , ®𝑧𝑓 , 𝑜 ®𝑧𝑓 )

𝜋2 ← cpΠCTT .Prv(crs2, 𝑐 ®𝑢 , 𝑐 ®𝑒 ; ®𝑢,𝑜 ®𝑢 , ®𝑒, 𝑜 ®𝑒 )
𝜋3 ← harisa.OptPrv(crs3, acc, 𝑐 ®𝑢 ; ®𝑢,𝑜 ®𝑢 )
𝜋 = (𝜋1, 𝜋2, 𝜋3 )
return 𝜋

LookupVfy
(
crs, acc, 𝑐 ®𝑢 , 𝑐 ®̂

𝑓
, 𝑐 ®𝑓 , 𝑐 ®𝑧𝑓 , 𝑐 ®𝑒 , 𝜋

)
:

Reject if cpΠWT .Vfy(crs1, 𝑐 ®̂
𝑓
, 𝑐 ®𝑓 , 𝑐 ®𝑧𝑓 , 𝜋1 ) ≠ 1

Reject if cpΠCTT .Vfy(crs2, 𝑐 ®𝑢 , 𝑐 ®𝑒 , 𝜋2 ) ≠ 1
Reject if harisa.Vfy(crs3, acc, 𝑐 ®𝑢 , 𝜋3 ) ≠ 1

Figure 3: Our proposed lookup argument duplex

The former one can be proven under 𝑅̃WT
ck . cpΠWT generates the

proof 𝜋1 which proves that 𝑓𝑖 = 𝑓𝑖 ∥𝑧𝑓𝑖 for all 𝑖 ∈ [1,𝑚]. Note that
𝑧𝑓𝑖 is an auxiliary prime 𝑧 corresponding to 𝑓𝑖 . The latter one can

be viewed as two steps again: 1) Ensuing that the duplication of ®̂𝑓
and ®𝑧𝑓 are accurately reflected to temporary vector ®𝑒 . 2) Verifying
all the elements, including duplicated ones, are legitimate elements
from table. The first one can be proven under 𝑅̃CTTck . 𝜋2 checks that
(𝑢𝑖 − 𝑒𝑖 ) (𝑢𝑖 − 𝑢𝑖−1) = 0 which implies that all 𝑓𝑖 and 𝑧𝑓𝑖 are copy
of either the previous element or another valid element that is
in 𝑇 , but not in ®𝑢. Sequentially, harisa is evoked to generate 𝜋3
which proves the membership proof of ®𝑢. Note that ®𝑢 is merging of
temporary vector ®𝑒 and its corresponding auxiliary primes ®𝑧𝑒 . If all
verification pass, it means that ®̂𝑓 is well-transformed (with 𝜋1),

®̂
𝑓

contains only valid duplication (with 𝜋2) and
®̂
𝑓 comprises only the

elements from table (with 𝜋3)10.

4.4 Precomputation for Optimizing Witness

Generation

During invoking harisa in duplex, a prover may generate
witness from scratch. Observing harisa closely, a prover has to
generate witness𝑊 as 𝑔

∏
𝑓𝑖 ∈𝑇 \{𝑓𝑗 } 𝑓𝑖 to prove inclusion proof for

𝑓𝑗
11. Computing𝑊 from scratch costs 𝑂 (𝑁 )-exponentiation over

RSA group. In order to optimize witness generation, we adopt
precomputation in [38] as follows: For example, let 𝑔 ← G? and
the set 𝑇 = {𝑡1, 𝑡2, 𝑡3, 𝑡4}. Using a divide-and-conquer approach, we
divide the set into 𝑇𝐿 = {𝑡1, 𝑡2} and 𝑇𝑅 = {𝑡3, 𝑡4} and calculate the
exponentiation of all elements in𝑇𝑅 and𝑇𝐿 to get𝑔1,1 = 𝑔

∏
𝑇𝑅 ,𝑔1,2 =

𝑔
∏

𝑇𝐿 . For 𝑔1,1 and 𝑔1,2, repeating the previous step, it is possible
to calculate ingredients of the witness as 𝑔2,1 = 𝑔

𝑡2
1,1 = 𝑔𝑡2𝑡3𝑡4 ,

𝑔2,2 = 𝑔
𝑡1
1,1 = 𝑔𝑡1𝑡3𝑡4 , 𝑔2,3 = 𝑔

𝑡4
1,2 = 𝑔𝑡1𝑡2𝑡4 , and 𝑔2,4 = 𝑔

𝑡3
1,2 = 𝑔𝑡1𝑡2𝑡3 .

As a result, precomputation takes 𝑂 (𝑁 log𝑁 ).
Precomputation allows a prover to compute witness without

exponentiating all elements. With ingredients, a prover requires
only 𝑂 (𝑚 log𝑚) multiplication to compute 𝑊 . With extended
Euclidean algorithm, a prover can compute Bezout coefficient
easily. Using the extended Euclidean algorithm, a prover is able
to compute Bezout coefficient easily, i.e., a prover can get 𝑎 and
𝑏 such that 𝑎𝑥 + 𝑏𝑦 = 𝐾 for 𝑔𝑐𝑑 (𝑥,𝑦) = 𝐾 . Based on this fact, a
prover can compute the witness for 𝑓𝑖 , and 𝑓𝑗 easily with the so-
called ingredients. If the prover tries to compute𝑊 for 𝑓1 = 𝑡1 and
𝑓3 = 𝑡3 in the above example, it can compute 𝑎 and 𝑏 such that
𝑎 · 𝑓1 +𝑏 · 𝑓3 = 1. For the ingredients 𝑔2,1 and 𝑔2,3, a prover computes

𝑔𝑏2,1 · 𝑔
𝑎
2,3 = 𝑔

𝑎 · 𝜋𝑇
𝑓3
+𝑏 · 𝜋𝑇

𝑓1 = 𝑔
𝜋𝑇 (𝑎 ·𝑓1+𝑏 ·𝑓3 )

𝑓1 ·𝑓3 = 𝑔
𝜋𝑇
𝑓1 ·𝑓3 . In general, by

recursively performing this procedure, we can compute the witness
in 𝑂 (𝑚 log𝑚) time.

Investigating the trade-off of the precomputation, it requires
storage for the ingredients while it can enhance the proving time.
Viewing it as a tree structure (in Figure 7, Appendix A), a prover
has to store all 𝑁 leaves in the tree. For example, a prover is in need
of 256MB storage for table of 𝑁 = 220. Yet, it is still attractive in
that it necessitates computation only once during the initial phase
while it can significantly reduce the proving time. The details are
deferred to Appendix A.

4.5 Security Analysis

We present the intuition of the security for our proposed scheme
and provide a sketch proof. As duplex is built upon harisa,
the overall security relies on the security of harisa. The major
differences from harisa are that duplex includes two additional
components: duplication handling and element transformation. The
former, as shown in Section 4.1, just brings multiplication check
in the SNARK circuit on 𝑅̃CTTck and nothing else. Thus, duplication
handling does not harm the existing security of harisa. Inspecting

10For better understanding, we depict each relation producing distinct proofs as
𝜋1 𝜋2 , and 𝜋3 . In practice, all the relations can be proven with a single proof using the
same SNARK.

11For the better delivery, we focus more on harisa. The explanation is on the
context of membership proof.
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well-transformation, it renders whole elements to be fit to RSA
group without hash-to-prime which makes a significant overhead
to prover. To achieve transformation, we introduce a subsidiary
random element prime number 𝑧. In other words, the element itself
is different from those in harisa. As the transformation itself is
proven in the SNARK circuit on 𝑅̃WT

ck , we need to consider the
modified form of the elements affects the security of harisa. Recall
that 𝑧𝑖 and 𝑓𝑖 are prime numbers which are not in P2𝜆 . Then, every
accumulated elements in ®̂𝑡 and ®𝑧 is distinct, thus it can be considered
as a general membership proof based on RSA accumulator.

Theorem 1. Let𝐻 and𝐻prime be modeled as random oracles, harisa

in Figure 1 be secure, and cpΠWT
and cpΠCTT

be secure CP-SNARKs.

The construction in Figure 3 is a secure CP-SNARKs: knowledge-sound

under the adaptive root assumption, zero-knowledge under the DDH-II

assumption, and succinct.

Proof. For knowledge-soundness, it is clear that the
transformed elements and duplication handling do not affect on
the knowledge-soundness of harisa. As described previously, two
relations 𝑅̃CTTck and 𝑅̃WT

ck proven in the SNARK circuit arise, and
the lookup argument along with the both the table and lookup
elements can be considered as a general membership proof after
transformation. Likewise, the zero-knowledge for witness 𝑊
can be maintained since the transformed elements are prime
numbers greater than P2𝜆 . As a result, it is secure under the DDH-II
assumption.

duplex involves harisa and two additional components, the
duplication handling and the element transformation. In terms of
verification, these two things only produce twomore relations 𝑅̃CTTck
and 𝑅̃WT

ck , which are proven in the SNARK circuit. Consequently,
verification time is identical to the one in harisa. Rigorously, the
element transformation leads to twice membership proof (harisa)
for a single lookup element. However, since harisa is able to be
proven in a batch manner via PoKE [7], duplex can reap benefits
from batch proving, resulting in constant verification and constant-
sized proof. duplex eventually satisfies the succinctness. □

4.6 Observation on Flexibility

In this section, we sift the flexibility where the lookup arguments
can be applied to SNARKs of any arithmetization (e.g., AIR,
Plonkish, or R1CS) without incurring additional costs by comparing
duplex with existing works. The main difference between duplex
and other works stems from perspective in which we approach
the lookup argument. Most of existing works represent the lookup
argument in polynomial, whereas duplex expresses it as a type
of membership proof after modifications described in Section 4.1
and 4.2. Plookup [25] proves the lookup argument through the
divisibility of the product of ®𝑓 and ®𝑡 where ®𝑓 is the lookup element,
and the ®𝑡 is the table element. Caulk [48], Ba𝑙𝑜𝑜 [49], and cq [23]
employs a similar method to Plookup except that the elements
are handled through KZG polynomial commitment [29] and some
polynomial protocol terminology from [26]. That is, the above
arguments are confined to the Plonkish arithmetization.

Lasso [42] proposes a distinct approach by showing that there
exists a sparse matrix 𝑀 such that 𝑀 × ®𝑡 = ®𝑎 for the table
elements ®𝑡 and lookup elements ®𝑎. In Lasso, the table is decomposed

into subtables {®𝑡1, . . . , ®𝑡𝛼 }, where the tensor product of subtables⊗
𝑖∈[𝛼 ] ®𝑡𝑖 = ®𝑡 . Lasso shows flexibility by converting it into

customizable constraint systems (CCS), as introduced in [41].
However, it handles elements as sparse polynomials, incurring
additional cost proportional to the number of non-zero entries in
the CCS matrices in order to convert the arithmetization into CCS
form. That is, the cost of the prover is proportional to the number
of non-zero elements in the CCS matrix, which means that the
number of inputs affects. With such matrix-vector product based
approach, the lookup arguments are proven by matching values in
the decomposed matrix and offline memory checking12, which are
reduced to multilinear polynomials to facilitate the validation of
matrix-vector multiplication. In practice, Diamond and Posen [21]
applies Lasso to Hyperplonk [18] and Babyspartan [40] applies
Lasso to SuperSpartan [41], extending Plonkish constraint system
to a CCS.

On the other hand, duplex manages each lookup element as
a (committed) value itself. As demonstrated previously, the table
elements and lookup elements can be regarded as set elements and
membership elements (to be proven) respectively in the context
of membership proof scheme after transformation into prime
numbers (see double lookup, less work in Section 4.2). As harisa
does, each element is handled as a commitment in duplex, and
the commitment is taken as input to the SNARK circuit, which
validates the relations 𝑅̃CTTck and 𝑅̃WT

ck . Namely, duplex can be
used along with SNARK circuit of any arithmetization through
commit-and-prove way. The flexibility of arithmetizations provides
advantages especially when the consistency in computations across
heterogeneous SNARK circuits is needed to be validated. In practice,
for example, duplex can ameliorate the interoperability of the
blockchain by efficiently validating computations from different
blockchains where each blockchain utilizes SNARKs of different
arithmetization.

4.7 Extension to Dynamic Table

duplex can be extended to the dynamic tables where the table
elements are updated over time. The update can appear verifiable
outsourcing of state update [10] which is developed recently for
blockchain environments or RAM construction [16, 22, 36]. Briefly,
the states are stored in a public table (set)𝑇 , and a short digest of𝑇
is stored (or published) as an accumulator acc. When some states
are updated, the updated table 𝑇 ′ is produced and the accumulator
acc′ is computed corresponding to 𝑇 ′. By proving insertion and
deletion between 𝑇 and 𝑇 ′ with acc and acc′, a prover claims that
the states are updated correctly13.

An RSA accumulator can be used to manage the dynamic table.
b-ins-arisa which is introduced in [16, Section 5] suggests the
way to prove correctness of update of the table. By combining it
with duplex, we can construct a lookup argument for dynamic
environments. Concisely, b-ins-arisa is called when an update
occurs to prove that the updated accumulator acc′ comprises valid
elements. It is essential to consider that the table is transformed in
duplex. Therefore, duplex for a dynamic table operates as follows.

12The offline memory checking is independent of our interest. We refer to [39, 42]
for more detail.

13Such insertion and deletion are handled all together, which is referred to as
MultiSwap in [36]
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Given the existing table 𝑇 , updated table 𝑇 ′, and the accumulator
acc for𝑇 , the vector for updated elements is denoted as ®𝑢, i.e.,𝑇 ′ ←
𝑇∪{𝑢𝑖 }𝑢𝑖 ∈ ®𝑢 . The transformed elements are denotedwith a hatmark,
that is, 𝑇,𝑇 ′, and ®̂𝑢. Then, we prove that ®̂𝑢 is well-transformation
of ®𝑢 first, then run the b-ins-arisa with 𝑇,𝑇 ′, acc, and acc′. By
proving the well-transformation for updated elements ®𝑢, it is
ensured that the updated table 𝑇 ′ correctly reflects the updates
from the 𝑇 with ®̂𝑢, which is the vector of transformed elements.
The lookup argument protocol for a dynamic environment can
be constructed by proceeding duplex in sequence. Since the set
update is deterministic and both the existing table and the updated
table (as well as their corresponding accumulators) are publicly
accessible, proving the set updates as zero-knowledge is not of
primary interest. However, preserving privacy for lookup argument
is still possible since proving the set update does not affect the
subsequent duplex. Namely, the lookup elements are not correlated
with the updated elements. Therefore, we can provide privacy for
the lookup argument in a dynamic setting. Full description for our
construction is in Appendix B (Figure 8).

5 Evaluation

5.1 Instantiations and Implementation

We consider the construction of the duplex scheme as depicted
in Figure 3 for an arbitrary table. Note that it is feasible because
duplex includes a transformation phase to make the table elements
applicable to harisa. Additionally, with the precomputation
introduced in Figure 6, we can optimize the proving time. We
instantiate the CP-SNARKs building block of the construction,
cpΠarithm, cpΠCTT, and cpΠWT, with LegoGroth16 from [17], an
efficient commit-and-prove SNARK based on Gro16 [27]. Identically
with Gro16, it works over the bilinear map. We use the curve BN254
for our instantiation. For the accumulator scheme, we use a 2048-bit
RSA group. As harisa does, we use 2𝜆 = 256 primes14 to hide the
RSA witness in our construction.

We implement duplex using the Arkworks library [1] in Rust.
The implementation consists of harisa, LegoGroth16, and relations
described above. All the benchmarks depicted in this section were
obtained by running on a laptop with an Apple M1 Pro processor
and 32GB of RAM.

5.2 Benchmarks for Lookup Arguments

We evaluate our proposed scheme duplex by comparing it to
Caulk [48], the state-of-the-art. Since Caulk presents a lookup
argument satisfying zero-knowledge, and it is the only one that
provides its implementation and evaluation in the literature, it is
the optimal candidate for comparison to analyze the performance
of duplex. We also provide a comparison table (Table 1) for the
asymptotic complexity with existing works.

5.2.1 Benchmarks for a Single Lookup Element In Figure 4, we
compare duplex to Caulk for single opening (i.e.,𝑚 = 1) by varying
the log-scale set size 𝑁 on the 𝑥-axis. We observe that the duplex
remains constant for all values of 𝑁 while Caulk’s proving time

14Strictly speaking, harisa uses 232 primes. We use 256 primes, a power of 2,
for computational convenience. Note that since we set 𝜆 greater than the minimum,
security is maintained under DDH-II assumption.

grows gradually as set size increases. The difference arises because
Caulk has set-related factor in its proving time as well as batch
size (𝑂 (𝑚2 +𝑚 log𝑁 )) while duplex is only affected by batch size
(𝑂 (𝑚 log𝑚)). In case of the smallest set size (𝑁 = 26 in this case),
duplex is nearly 5× faster than Caulk.
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Figure 4: Comparison of lookup argument for single opening

in zero-knowledge: Our work (duplex) vs Caulk.

5.2.2 Benchmarks for Batch Lookup Elements Figure 5 depicts the
batch proving for the lookup argument comparing duplex to Caulk.
The Caulk-* represents Caulk’s performance, where the asterisk
symbol stands for the log-scale table size (log𝑁 in this paper).
In Figure 5, we show the proving time in the 𝑦-axis in the log-
scale varying the batch size𝑚 in the 𝑥 axis. duplex is faster than
Caulk for all values of 𝑚, regardless of whether Caulk’s set size
is large (𝑁 = 220) or small (𝑁 = 28)15. For larger batch sizes, we
expect that duplex will have more benefit than Caulk since Caulk’s
proving time has quadratic component on𝑚. Even though Caulk’s
verification time and proof size are slightly better than duplex,
we argue that harisa is still practical since it also has constant
asymptotic complexity and the estimation is quite small as well.

We provide more detailed performance metrics of duplex in
Table 2, including results for larger batch sizes. Since duplex has the
advantage of batch proving, we can see that it maintains practicality
even as the batch size increases.

5.2.3 Analysis on CRS size and RAM consumption. Our proposed
duplex has benefits in terms of CRS size and memory consumption
as well. Theoretically, we have a small-sized CRS independent
of set size, while Caulk has 𝑂 (𝑁 )-sized srs. For batch sizes
𝑚 = (1, 16, 64, 256), the CRS sizes are 14.4KB, 91.58KB, 433.65KB,
and 1.71MB, respectively. duplex occupies 1.81MB, 21.14MB, and
85.47MB of memory for 𝑚 = (1, 16, 64). For larger batch sizes
𝑚 = (256, 1024), duplex consumes 337.01MB and 1.34GB of

15Note that since the table size 𝑁 doesn’t affect the proving time of duplex, we
experimented with 𝑁 = 211 for convenience.
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Proving time (s) Verification time (ms) Proof size

(KB)𝑚 = 16 32 64 256 1024 16 32 64 256 1024

duplex 0.073 0.131 0.207 0.718 2.902 31.537 50.072 43.889 47.232 60.137 0.895
Table 2: Performance table of duplex.

16 32 64

102

103

73

131
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113
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575.44

803

1,468

2,683.72

Lookup size (𝑚)

pr
ov
in
g
tim

e
(m

s)

duplex

Caulk-8

Caulk-20

Scheme V time (ms) Proof size (KB)
Caulk-∗ 36 0.89
duplex 46 1.17

Figure 5: Comparison of lookup arguments in zero-

knowledge: Our work (duplex) vs Caulk. The plot is in

log-scale. The estimated verification time and proof size are

average value of Table 2. Verification time and proof size of

both schemes remain constant regardless of set/batch size.

memory. As the estimation shows, duplex has feasibility even
for large batch sizes. We expect that the low memory usage adds
up to competitive power when employing the practical application
demanding large size such as large language model (LLM) or
ethereum virtual machine (EVM).
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A Precomputation for Witness Generation

In this section, we show the construction of precomputation
and assembly for set accumulator. As foregoing, one of the
prominent overhead in harisa is witness generation. It takes𝑂 (𝑁 )-
exponentiation over RSA group. To shed light on, we depict our
construction as binary tree structure. In figure 7, it illustrates the
structuralization of Precompute algorithm. The root of the tree is
the starting point with group generator 𝑔. Whenever Precompute
is called, it exponentiates some set elements over previous outputs.
At first step, the left child node is exponentiation of the right
half of the set over parent, 𝑔. In contrast, the right child node is
exponentiation of the left half of the set over 𝑔. Those are denoted
𝑔1,1 and 𝑔1,2 respectively. In the same way, the "left" child node
exponentiates the "right" side of the remaining elements, and the
"right" child node expoenentiates the "left" side of the remaining
elements. The "remaining" in here means that non-used elements
in its parent node. For example, the remaining elements for 𝑔2,1
and 𝑔2,2 are 𝑢1, . . . , 𝑢 𝑁

2
, and the remaining elements for 𝑔2,3 and

𝑔2,4 are 𝑢 𝑁
2 +1

, . . . , 𝑢𝑁 . If the membership proof for 𝑢𝑖 for 𝑖 which
is odd, the prover simply takes 𝑔log𝑁,𝑖 as𝑊 instead of computing
𝑂 (𝑁 ) exponentiations. This is more effective in realistic application
where the prover may prove (batch) membership proof several
times. To make whole preprocess tree for the set of length 𝑁 ,
it is required to compute 𝑂 (𝑁 log𝑁 ) times exponentiation. We
present the algorithms for precomputation in Figure 6. Newly added
functions are Precompute and Assemblewhich are precomputation
and witness generation with precomputed ingredients respectively.

B duplex for Dynamic Table

As described in Section 4.7, we can apply our lookup arguments
against dynamic environment where the table is updatable. In
Figure 8, the construction for proving table update of duplex is
depicted. We prove that a (possibly) batch of commitments to the
updated elements ®𝑢 = (𝑢1, . . . , 𝑢𝑛) is in right domain. Recall that all
of the elements throughout our system have transformed form, that
is, 𝑡 ← 𝑡 | |𝑧. Therefore, the updated elements must be transformed
into 𝑢𝑖 ← 𝑢𝑖 | |𝑧𝑖 . Then, performing lookup argument according to
the updated table 𝑇 ′ ← 𝑇 ∪ {𝑢1, . . . , 𝑢𝑛}. Since proving update is
required once until further update occurs, the advantages of our
lookup argument are preserved in dynamic environments. In detail,
the space/time complexity of duplex is maintained since there is
no dependency between proving update and the lookup argument.
Since the lookup vector in duplex is not revealed publicly, zero-
knowledge for lookup vector is guaranteed independently of being
able to know what elements are being updated16.

Theorem 2. Let 𝐻𝑝𝑟𝑖𝑚𝑒 be modeled as random oracles, cpΠWT
,

and cpΠmodarithm
be secure CP-SNARKs. The construction in Figure 8

16Obviously, the lookup vector can contain updated element. However, it is not
known whether the lookup vector actually contains updated elements.
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Precompute (𝑤,𝑆 ) :

If |𝑆 | = 1 :

return 𝑤
∏

𝑆

Else :

Precompute(𝑤
∏

𝑆𝑅 , 𝑆𝐿 )

Precompute(𝑤
∏

𝑆𝐿 , 𝑆𝑅 )

Assemble
(
𝑝𝑝, 𝑎,𝑏, 𝑤𝑖,𝑗 , 𝑤𝑘,𝑙

)
:

Compute 𝑥 and 𝑦 such that 𝑎𝑥 + 𝑏𝑦 = 1

𝑐 = (𝑤𝑖,𝑗 )𝑦 (𝑤𝑘,𝑙 )𝑥 = 𝑔
𝑦
𝑎

∏
𝑆 + 𝑥𝑏

∏
𝑆 = 𝑔

∏
𝑆 (𝑏𝑦+𝑎𝑥 )

𝑎𝑏 = 𝑔

∏
𝑆

𝑎𝑏

return 𝑐

OptPrv

(
crs, acc,

∏
𝑆

, 𝑐 ®𝑢 ; ®𝑢,𝑜 ®𝑢

)
:

Let ®𝑤 = {}
For 𝑖 = 1 to𝑚:

𝑤0,𝑖 ← 𝑔𝑢 [𝑖−1]

For 𝑖 = 1 to log𝑚:

For 𝑗 = 1 to𝑚 · 2−𝑖 :
𝑤𝑖,𝑗 =

Assemble(𝑝𝑝,𝑢 [2𝑗 − 2],𝑢 [2𝑗 − 1], 𝑤𝑖−1,2𝑗−1, 𝑤𝑖−1,2𝑗 )
®𝑤.append(𝑤𝑖,𝑗 )

𝑊®𝑢 ← 𝑤log𝑚,1

ˆacc← acc
∏

𝑝𝑖 ∈P2𝜆 𝑝𝑖

Let 𝑢∗ =
∏
𝑖

𝑢𝑖 , 𝑝
∗ =

∏
𝑝𝑖 ∈P2𝜆

𝑝𝑖

Sample 𝑏1, . . . , 𝑏2𝜆 ←$ {0, 1}

Let 𝑠 :=
∏

𝑝𝑖 ∈P2𝜆

𝑝
𝑏𝑖
𝑖
, 𝑠 :=

∏
𝑝𝑖 ∈P2𝜆

𝑝
1−𝑏𝑖
𝑖

𝑊̂®𝑢 ←𝑊 𝑠
®𝑢

Sample 𝑟 ←$ {0, 1} ∥𝑝∗ ∥+∥𝑢∗ ∥+2𝜆

𝑐𝑠,𝑟 ← Commck (𝑠, 𝑟 ;𝑜𝑠,𝑟 )

𝑅 ← 𝑊̂ 𝑟
®𝑢 ℎ ← 𝐻 (crs | |acc | |𝑐 ®𝑢 | |𝑐𝑠,𝑟 | |𝑊̂®𝑢 | |𝑅) 𝑘 ← 𝑟 + (𝑢∗𝑠 )ℎ

𝜋1 ← ΠPoKE .Prv
(
(G?, 𝑔? ),𝑊̂®𝑢 , ˆaccℎ𝑅;𝑘

)
Parse 𝜋1 as (𝑄,𝑘 )

ℓ ← 𝐻prime ( (G?, 𝑔? ),𝑊̂®𝑢 , ˆaccℎ𝑅)

𝜋2 ← cpΠmodarithm .Prv(crs2, 𝑐 ®𝑢 , 𝑐𝑠,𝑟 , ℎ, ℓ, 𝑘 ; ®𝑢,𝑜 ®𝑢 , 𝑟 , 𝑠, 𝑜𝑠,𝑟 )

return 𝜋 =
(
𝑊̂®𝑢 , 𝑅, 𝑐𝑠,𝑟 , 𝜋1, 𝜋2

)

Figure 6: Optimized construction for witness generation. The

colored with blue is modified proving function of harisa

consistent with precomputation.

is a secure CP-SNARKs: knowledge-sound under the adaptive root

assumption and succinct.

Proof. As described in Theorem 1, we examine meticulously
whether the differences added to harisa affects the security of
harisa. Likewise Figure 3, the difference is that updated elements
are transformed into prime numbers, i.e., as 𝑢𝑖 ← 𝑢𝑖 | |𝑧𝑢𝑖 such
that 𝑧𝑢𝑖 is prime number. Therefore, the adaptive root assumption
holds for the construction in Figure 8 where updated elements are
transformed. Also, we observe that the succinctness is satisfied. The
proof from cpΠWT, cpΠmodarithm and PoKE are constant-sized, and
the verification runs in𝑂 (1) in the samemanner as the Figure 3. □
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Figure 7: The Precompute algorithm in tree view

Setup
(
1𝜆, ck, pp

)
:

crs2 ← cpΠmodarithm .Setup(1𝜆, ck, 𝑅̃modarithm )

crs3 ← cpΠWT .Setup(1𝜆, ck, 𝑅̃WT )
return (ck, pp, crs2, crs3 )

Prove
(
crs, acc, acc′, 𝑐 ®̂𝑢 ; ®̂𝑢,𝑜 ®̂𝑢 , ®𝑢, ®𝑧

)
:

Let 𝑢∗ =
∏
𝑢𝑖 ∈ ®𝑢

𝑢𝑖

𝜋1 ← ΠPoKE .Prv
(
(G?, 𝑔? ), acc, acc′;𝑢∗

)
Parse 𝜋1 as (𝑄,𝑘 )
ℓ ← 𝐻prime ( (G?, 𝑔? ), acc, acc′ )

𝜋2 ← cpΠmodarithm .Prv(crs2, 𝑐 ®̂𝑢 , ℓ, 𝑘 ; ®̂𝑢,𝑜 ®̂𝑢 )

𝜋3 ← cpΠWT .Prv(crs3, 𝑐 ®̂𝑢 , 𝑐 ®𝑢 , 𝑐 ®𝑧 ; ®̂𝑢,𝑜 ®̂𝑢 , ®𝑢,𝑜 ®𝑢 , ®𝑧, 𝑜 ®𝑧 )
return 𝜋 = (𝜋1, 𝜋2, 𝜋3 )

Verify
(
crs, acc, acc′, 𝑐 ®̂𝑢 , 𝑐 ®𝑢 , 𝑐 ®𝑧 , 𝜋

)
:

Parse 𝜋 as (𝜋1, 𝜋2, 𝜋3 ) and 𝜋1 as (𝑄,𝑘 )

Reject if ΠPoKE .Vfy( (G?, 𝑔? ), acc, acc′, 𝜋1 ) ≠ 1

Reject if cpΠmodarithm .Vfy(crs2, 𝑐 ®̂𝑢 , ℓ, 𝑘, 𝜋2 ) ≠ 1

Reject if cpΠWT .Vfy(𝑐 ®̂𝑢 , 𝑐 ®𝑢 , 𝑐 ®𝑧 , 𝜋3 ) ≠ 1

Figure 8: Construction for dynamic table in duplex
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