
1

Comments on “Privacy-Enhanced Federated
Learning Against Poisoning Adversaries”∗

Thomas Schneider , Ajith Suresh , and Hossein Yalame
Technical University of Darmstadt, Germany

Abstract—In August 2021, Liu et al. (IEEE TIFS’21) proposed
a privacy-enhanced framework named PEFL to efficiently detect
poisoning behaviours in Federated Learning (FL) using homo-
morphic encryption. In this article, we show that PEFL does not
preserve privacy. In particular, we illustrate that PEFL reveals
the entire gradient vector of all users in clear to one of the
participating entities, thereby violating privacy. Furthermore, we
clearly show that an immediate fix for this issue is still insufficient
to achieve privacy by pointing out multiple flaws in the proposed
system.

Index Terms—Federated Learning (FL), Homomorphic En-
cryption, Poisoning and Inference Attacks, Data Privacy.

I. INTRODUCTION

Federated Learning (FL) is a new distributed machine
learning approach that allows multiple entities to jointly train a
model without sharing their private and sensitive local datasets
with others. In FL, clients locally train models using their
local training data, then send model updates to a central
aggregator, which merges them into a global model. FL is
used in a variety of applications such as word prediction for
mobile keyboards in GBoard [7] and medical imaging [10].
Despite its benefits, FL has been shown to be susceptible
to model poisoning [8] and inference attacks [2]. In model
poisoning attacks, an adversary injects poisoned model updates
by corrupting a subset of clients, with which the adversary can
compromise the user’s data privacy as well as the FL model’s
integrity [4], [5]. The recent work of Liu et al. [6] proposed a
privacy-enhanced framework called PEFL to detect poisoning
behaviors in FL. PEFL aims to prevent malicious users from
inferring memberships by uploading malicious gradients and
semi-honest servers from invading users’ privacy. Furthermore,
PEFL claims to be the first effort to detect poisoning behaviors
in FL while using ciphertext and uses homomorphic encryp-
tion (HE) as the underlying technology.

In this article, we have a closer look at the PEFL system
of [6] and identify multiple privacy vulnerabilities. In particu-
lar, we show that each of the three main protocols in PEFL –
SecMed, SecPear, and SecAgg, reveals significant information
about the user’s gradients to one of the computing servers
thereby compromising privacy. Furthermore, we demonstrate
that combining information from the protocols enables a
computation server to learn the gradient vectors of all users
in clear, thereby breaking the PEFL system.

∗Please cite the journal version of this work published at IEEE TIFS’23 [9].

II. LIU ET AL.’S PROTOCOLS ARE NOT PRIVATE

In this section, we revisit the Privacy Enhanced Federated
Learning (PEFL) system in [6], but with our notations for
clarity. We begin with an overview of PEFL’s four entities:
• Key Generation Center (KGC): Trusted entity managing

public and private keys (pk, sk) for HE.
• Data Owners (Ux): Each data owner Ux, for x ∈ [m],

locally trains the local model on their data and computes
the gradient vector g⃗x = {g1x, . . . , gnx}. Here, m denotes
the total number of users in the system and n denotes the
dimension of the gradient vector.

• Service Provider (SP): SP receives all gradients submitted
by data owners and aggregates them (usually by averaging)
to produce an optimized global model.

• Cloud Platform (CP): CP assists SP in the computations
and operates on a pay-per-use basis.

The threat model assumes that SP and CP are both semi-
honest, whereas data owners can be maliciously corrupt. Fur-
thermore, the four entities mentioned above are non-colluding.

We now examine the PEFL system in-depth, focusing on the
amount of information visible to each entity. More specifically,
we are interested in how much information the cloud platform
(CP) learns from the protocol execution.

A. Calculation of Gradients

The protocol begins with each user Ux training the model
locally and obtaining the corresponding gradient vector g⃗x =
{g1x, . . . , gnx}. User Ux then encrypts and sends the gradient
vector to SP using CP’s public key pkc. As shown in (1), the
gradient vectors corresponding to all users can be viewed as
a matrix G⃗m×n.

G⃗m×n =



c1 c2 ci cn−1 cn

U1 g11 g21 gi1 gn−1
1 gn1

U2 g12 g22 gi2 gn−1
2 gn2

Um g1m g2m gim gn−1
m gnm


. (1)

B. Median Computation using SecMed

The SP and CP use the SecMed algorithm (cf. Figure 4
in [6]) to compute the median value for each of the n coordi-
nates. SP sends gij + ri to CP for each user Uj corresponding
to a coordinate ci, where ri denotes a random pad sampled by

https://orcid.org/0000-0001-8090-1316
https://orcid.org/0000-0002-5164-7758
https://orcid.org/0000-0001-6438-534X


2

SP for each coordinate ci (but the same for all users). The CP
decrypts and computes the medians based on these padded
values. The CP then encrypts the medians before sending
them to the SP. Finally, the SP removes the pad ri to achieve
the desired results g⃗y by utilizing the underlying encryption
scheme’s homomorphic property.

Leakage: The view of CP while executing SecMed is
consolidated in the matrix V⃗SecMed:

V⃗SecMed =


c1 ci cn

U1 g11 + r1 gi1 + ri gn1 + rn

Um g1m + r1 gim + ri gnm + rn

. (2)

We observe that for each coordinate ci, CP learns a “shifted”
distribution of gradients in clear across all users. This is clearly
a violation of privacy [4], [5] because it leaks a lot more
information to CP and thus does not meet the design goal
of ‘Privacy’ claimed in [6]. The main source of the leakage is
that SP uses same random pad ri for all users with respect
to a coordinate ci. While the aforementioned leakage could
be prevented by using different random pads across users, we
emphasize that the use of the same pad is unavoidable for
the SecMed algorithm to remain correct. In detail, the median
of gij values is calculated by first computing the median of
gij + ri, then removing ri from the result. This requires that
the same ri value be associated with each gij value, or the
computation’s correctness will be violated.

C. Computing Pearson correlation coefficient using SecPear

Once the coordinate-wise medians are computed, the
next step in PEFL is to calculate the Pearson correlation
coefficient ρx,y between the coordinate-wise medians g⃗y and
the gradient of the user Ux. This is achieved via the SecPear
protocol (cf. Figure 5 in [6]) where SP communicates g⃗x · px
and g⃗y · py to CP. The view of CP in SecPear with respect to
G⃗m×n is V⃗SecPear:

V⃗SecPear =


c1 ci cn

U1 g11 · p1 gi1 · p1 gn1 · p1

Um g1m · pm gim · pm gnm · pm

. (3)

Leakage: Similar to the problem with SecMed above,
here CP learns the correlation between each coordinate in the
gradient vector g⃗x. SP uses the same random pad px for all
coordinates, which causes leakage. However, using different
pads for the coordinates does not address the issue since the
use of the same pad is required for the SecPear algorithm to
remain correct (cf. Proposition 1 in [6]). More elaborately, for
dx = g⃗x · px and dy = g⃗y · py , computation of ρx,y involves
computing the covariance Cov(dx, dy) and the standard devi-
ations σ(dx) and σ(dy). As shown in Proposition 1 in [6], the
correctness of ρx,y relies on the following observations:

Cov(dx, dy) = pxpy · Cov(g⃗x, g⃗y),

σ(dx) = px · σ(g⃗x) , σ(dy) = py · σ(g⃗y).

If different pads are used for the coordinates, the above
relations do not hold, and hence ρdx,dy

=
Cov(dx,dy)
σ(dx)σ(dy)

̸= ρx,y .

D. Aggregating the gradients using SecAgg
SecAgg, the final stage in PEFL, aggregates the gradients

after scaling them with a factor based on the Pearson cor-
relation coefficient calculated in SecPear. SP communicates
g⃗x + sx to CP for this purpose, as shown in V⃗SecAgg:

V⃗SecAgg =


c1 ci cn

U1 g11 + s1 gi1 + s1 gn1 + s1

Um g1m + sm gim + sm gnm + sm

.

(4)
Leakage: Again, similar to SecMed, V⃗SecAgg reveals a

“shifted” distribution of each user’s gradient values across
all the coordinates to CP. When combining information from
V⃗SecPear (3) and V⃗SecAgg (4), a more significant leakage
occurs. Consider the gradient at coordinates i, j for user Ux.
From V⃗SecPear, CP learns a1 = gix · px and a2 = gjx · px =
(gix · δijx ) · px where δijx = gjx/g

i
x. Similarly, CP learns

b1 = gix + sx and b2 = gjx + sx = (gix + ∆x
ij) + sx from

V⃗SecAgg, where ∆x
ij = gjx − gix. Given that CP can compute

both δijx and ∆x
ij in clear, CP learns gix and gjx by solving the

equations. For instance, a2 = (gix +∆x
ij) · px = a1 +∆x

ij · px
reveals px. Using this method, CP learns the entire gradient
matrix G⃗m×n, thereby breaching the PEFL system’s privacy.

E. Practical and probabilistic attacks
Another practical attack on PEFL would be to allow CP to

register as an honest user Um+1 in the PEFL system and submit
its gradients. This action does not violate the semi-honest
assumption of CP in the PEFL threat model and may represent
scenarios in which CP has some side channel information
about some user gradients. Knowing g⃗m+1, CP learns ri for
all i ∈ [n] and hence the gradient matrix G⃗m×n given in (1) in
clear from (2) and thereby breaking the privacy of the entire
PEFL system.

Considering the matrices V⃗SecMed and V⃗SecPear together, we
note that it is sufficient for CP to be aware of just one gradient,
say gix, to compromise the system’s privacy. In particular, gix
will allow CP to learn the random pad ri corresponding to the
i-th coordinate ci in V⃗SecMed, revealing the gradients of all
users at that coordinate. Similarly, knowing gix allows CP to
learn the random pad px corresponding to user Ux in V⃗SecPear

and reveals the gradient vector g⃗x to CP in clear. CP will
now learn the entire gradient matrix G⃗m×n by combining the
information from V⃗SecMed and V⃗SecPear.

Finally, we note that CP can launch probabilistic attacks by
looking for similar values in the matrices V⃗SecMed and V⃗SecPear

and attempting to correlate the random pads. This is possible in
PEFL because CP is aware of the correlation between different
rows of V⃗SecMed as well as columns of V⃗SecPear.

ADDITIONAL REMARKS

Although our privacy issues mentioned in Section II have
been published in January 2023 [9], several subsequent papers
continued to reference [6] as a potential solution for private
federated learning.1 While a few works, e.g. [3], [12], [14],

1As of September 25, 2024, [6] has been cited 206 times according to
Google Scholar.



3

have acknowledged the privacy concerns we raised, several of
subsequent works either propagate these errors or adopt the
constructions from [6], thereby unintentionally inheriting the
same privacy vulnerabilities [1], [11], [13], [15]. We believe
this oversight is partly due to the limited visibility of our
comments paper at TIFS’23 [9]. Consequently, to prevent the
continued propagation of the flawed algorithms in [6] into
future research, we also put this article to an ePrint.

ACKNOWLEDGEMENTS
This project received funding from the European Research

Council (ERC) under the European Union’s Horizon 2020
research and innovation program (grant agreement No.850990
PSOTI) and was co-funded by the Deutsche Forschungsge-
meinschaft (DFG) – SFB1119 CROSSING/236615297 and
GRK2050 Privacy & Trust/251805230.

REFERENCES

[1] J. Chen, H. Yan, Z. Liu, M. Zhang, H. Xiong, and S. Yu,
“When Federated Learning Meets Privacy-Preserving Computation,”
ACM Comput. Surv., 2024. [Online]. Available: https://doi.org/10.1145/
3679013

[2] H. Fereidooni, S. Marchal, M. Miettinen, A. Mirhoseini, H. Möllering,
T. D. Nguyen, P. Rieger, A. Sadeghi, T. Schneider, H. Yalame, and
S. Zeitouni, “SAFELearn: Secure Aggregation for private FEderated
Learning,” in IEEE S&P Workshops (DLSP), 2021. [Online]. Available:
https://doi.org/10.1109/SPW53761.2021.00017

[3] T. Gehlhar, F. Marx, T. Schneider, A. Suresh, T. Wehrle, and H. Yalame,
“SafeFL: MPC-friendly Framework for Private and Robust Federated
Learning,” in IEEE S&P Workshops (DLSP), 2023. [Online]. Available:
https://doi.org/10.1109/SPW59333.2023.00012

[4] J. Geiping, H. Bauermeister, H. Dröge, and M. Moeller, “Inverting
Gradients - How easy is it to break privacy in federated learning?”
in NeurIPS, 2020. [Online]. Available: https://proceedings.neurips.cc/
paper/2020/hash/c4ede56bbd98819ae6112b20ac6bf145-Abstract.html

[5] B. Hitaj, G. Ateniese, and F. Pérez-Cruz, “Deep Models Under the GAN:
Information Leakage from Collaborative Deep Learning,” in ACM CCS,
2017. [Online]. Available: https://doi.org/10.1145/3133956.3134012

[6] X. Liu, H. Li, G. Xu, Z. Chen, X. Huang, and R. Lu,
“Privacy-Enhanced Federated Learning Against Poisoning Adversaries,”
IEEE Trans. Inf. Forensics Secur., 2021. [Online]. Available: https:
//doi.org/10.1109/TIFS.2021.3108434

[7] B. McMahan and D. Ramage, “Federated Learning: Collaborative
Machine Learning without Centralized Training Data,”
https://research.google/blog/federated-learning-collaborative-machine-
learning-without-centralized-training-data/, 2017, accessed: September
24, 2024.

[8] T. D. Nguyen, P. Rieger, H. Chen, H. Yalame, H. Möllering,
H. Fereidooni, S. Marchal, M. Miettinen, A. Mirhoseini,
S. Zeitouni, F. Koushanfar, A. Sadeghi, and T. Schneider,
“FLAME: Taming Backdoors in Federated Learning,” in USENIX
Security, 2022. [Online]. Available: https://www.usenix.org/conference/
usenixsecurity22/presentation/nguyen

[9] T. Schneider, A. Suresh, and H. Yalame, “Comments on ”Privacy-
Enhanced Federated Learning Against Poisoning Adversaries”,” IEEE
Trans. Inf. Forensics Secur., vol. 18, pp. 1407–1409, 2023. [Online].
Available: https://doi.org/10.1109/TIFS.2023.3238544

[10] M. Sheller, A. Reina, B. Edwards, and J. Martin, “Federated Learning
for Medical Imaging,” in Intel AI, 2018.

[11] Y. Wan, Y. Qu, W. Ni, Y. Xiang, L. Gao, and E. Hossain,
“Data and Model Poisoning Backdoor Attacks on Wireless Federated
Learning, and the Defense Mechanisms: A Comprehensive Survey,”
IEEE Commun. Surv. Tutorials, 2024. [Online]. Available: https:
//doi.org/10.1109/COMST.2024.3361451

[12] J. Wu, W. Zhang, and F. Luo, “On the Security of ”LSFL:
A Lightweight and Secure Federated Learning Scheme for Edge
Computing”,” IEEE Trans. Inf. Forensics Secur., 2024. [Online].
Available: https://doi.org/10.1109/TIFS.2023.3331274

[13] G. Xia, J. Chen, C. Yu, and J. Ma, “Poisoning Attacks in Federated
Learning: A Survey,” IEEE Access, 2023. [Online]. Available:
https://doi.org/10.1109/ACCESS.2023.3238823

[14] M. Xu and X. Li, “FedG2L: a privacy-preserving federated learning
scheme base on ”G2L” against poisoning attack,” Connect. Sci., 2023.
[Online]. Available: https://doi.org/10.1080/09540091.2023.2197173

[15] J. Zhao, H. Zhu, F. Wang, Y. Zheng, R. Lu, and H. Li,
“Efficient and Privacy-Preserving Federated Learning against Poisoning
Adversaries,” IEEE Trans. Serv. Comput., 2024. [Online]. Available:
https://doi.org/10.1109/TSC.2024.3377931

https://doi.org/10.1145/3679013
https://doi.org/10.1145/3679013
https://doi.org/10.1109/SPW53761.2021.00017
https://doi.org/10.1109/SPW59333.2023.00012
https://proceedings.neurips.cc/paper/2020/hash/c4ede56bbd98819ae6112b20ac6bf145-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/c4ede56bbd98819ae6112b20ac6bf145-Abstract.html
https://doi.org/10.1145/3133956.3134012
https://doi.org/10.1109/TIFS.2021.3108434
https://doi.org/10.1109/TIFS.2021.3108434
https://research.google/blog/federated-learning-collaborative-machine-learning-without-centralized-training-data/
https://research.google/blog/federated-learning-collaborative-machine-learning-without-centralized-training-data/
https://www.usenix.org/conference/usenixsecurity22/presentation/nguyen
https://www.usenix.org/conference/usenixsecurity22/presentation/nguyen
https://doi.org/10.1109/TIFS.2023.3238544
https://doi.org/10.1109/COMST.2024.3361451
https://doi.org/10.1109/COMST.2024.3361451
https://doi.org/10.1109/TIFS.2023.3331274
https://doi.org/10.1109/ACCESS.2023.3238823
https://doi.org/10.1080/09540091.2023.2197173
https://doi.org/10.1109/TSC.2024.3377931

	Introduction
	Liu et al.’s protocols are not private
	Calculation of Gradients
	Median Computation using SecMed
	Computing Pearson correlation coefficient using SecPear
	Aggregating the gradients using SecAgg
	Practical and probabilistic attacks

	References

