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Abstract. A mixnet developed by Hébant et al. (PKC ’20) employs certified ciphertexts that
carry homomorphic signatures from an authority, reducing the complexity of the shuffling proof,
and thereby enabling efficient large-scale deployment. However, their privacy relies on trusting
the authority, making it unsuitable for voting, the primary application of mixnets.
Building on the prior work, we leverage recent advances in equivalence class signatures by replac-
ing homomorphic signatures with newly developed two-party mercurial signatures on random-
izable ciphertexts. This allows users and the authority to jointly sign ciphertexts and randomize
keys, ciphertexts, and signatures, all while preserving the embedded messages. We demonstrate
that our mixnet is suitable for receipt-free voting without requiring trust in the signing authority
for privacy.
To assess scalability, we compare our approach to other scalable mixnet solutions, implement our
protocols, and provide concrete performance benchmarks. Our results show that our mixnet sig-
nificantly outperforms existing alternatives in both computation and communication efficiency.
Specifically, verifying the mixing process for 50,000 ciphertexts takes just 135 seconds on a
commodity laptop using ten mixers, illustrating the practical viability of our approach.
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1 Introduction

The notion of a mixnet originates with the work on untraceable email by Chaum [Cha81], who
proposed the use of multiple servers to shuffle a set of messages (i.e., permute and perform crypto-
graphic operations) in cascade to hide the relation between the initial input and resulting output.
Since their introduction, mixnets have found numerous applications ranging from anonymous messag-
ing [AKTZ17] and routing [CAB+15, KCGDF17, PHE+17] to voting (see e.g., [CRS05, HMMP23a])
and even oblivious RAM [TDE17]. In general, mixnets are required to provide verifiability (i.e.,
misbehavior during the mixing phase can be detected), which usually includes accountability (i.e.,
misbehaving parties can be identified). Verifiable mixnets, e.g., [SK95, Abe98, Abe99, AH01, FS01,
Nef01, JJR02, Gro03, KMW12], require proof of correct shuffling, which adds a considerable overhead
to the non-verifiable counterpart. Recent constructions of shuffle arguments, such as those proposed
in [FLSZ17, AFK+20, KL21], improves on proof efficiency in the common reference string model with
complex setup that are often challenging for implementers.

More recent approaches assume specific structures in the input ciphertexts, making malicious
behaviour by mix-servers more difficult and thus simplifying the proof and verification processes.
Faonio et al. [FFHR19, FR22] employ Re-randomizable Replayable CCA encryption (Rand-RCCA)
[CKN03] to eliminate the need for a proof of shuffle, replacing it with NIZK proofs of plaintext
knowledge for each ciphertext and NIZK proofs of membership at each mixing stage. Unfortunately,
their approach requires a complex setup and incurs high computational costs. This is primarily because
their Rand-RCCA scheme is based on Cramer-Shoup encryption [CS02], and the associated NIZK proofs
involve elements in the target group, significantly impacting on the proof size.



In [HPP20], Hébant, Phan, and Pointcheval introduced an extended mixnet model that pro-
cesses certified inputs. Each input ciphertext is accompanied by a signature that is malleable in a
restricted manner, preserving the integrity of the signed object while still allowing shuffling. While
promising, their instantiation, referred to hereafter as HPP20, suffers from several serious draw-
backs. First, HPP20 involves numerous cryptographic tools, including two homomorphic signature
schemes [LPJY13]—one used by each user to sign a ciphertext and the other by the certification au-
thority (CA) to sign the user’s key for the first signature. Additionally, it employs a multi-signature
scheme [BDN18] and the Groth-Sahai proof system [GS08] as a malleable non-interactive proof sys-
tem, which must be executed by each mix server. This results in a complex setup, and relying on
an ad-hoc assumption for unlinkability (Def. 4 in [HPP20]). More critically, their soundness is only
guaranteed for honest users, and it breaks down in the presence of malicious users. Therefore, despite
its formulation following the blueprint of mix-based e-voting where encrypted ballots must be authen-
ticated by an authority to enforce the one-voter-one-vote principle (see Appendix A for a detailed
presentation of their model and related discussion), HPP20 is unsuitable for voting applications.

1.1 Our Contribution

Our goal is to give instantiations to the promising certified input paradigm of [HPP20] for scalable
mixnet with better efficiency and stronger security guarantees. To this end, we present the following
improvements over HPP20:

– We replace the homomorphic signatures with newly developed Two-Party Mercurial Signature
on Randomizable Ciphertexts (MSoRC) to sign ciphertexts in a way that signatures, keys, and
ciphertexts can be randomized. This eliminates the double use of homomorphic signatures. A two-
party signature generation is conducted by a user and the CA so that the randomized signatures
can be verified with the authority’s key while the malicious authority cannot trace the signature
generated in cooperation with a specific user.

– We also eliminate the Groth-Sahai proof executed by each mix-server, replacing it with more
lightweight proof system from Couteau and Hartmann (CH20) [CH20] in batch verification to
further improve efficiency. This is possible due to MSoRC that has simpler structure than the
double use of homomorphic signatures.

Overall, our approach reduces both computation and verification costs compared to HPP20, while
providing stronger security guarantees. As summarized in the quantitative asymptotic comparison in
Sec. 4.5, our solution improves computation efficiency by a factor of 3.5x and communication by up to
3x compared to HPP20. To evaluate practical performance, we benchmarked a Rust implementation
of our mixnet for n = 50k ciphertexts and N = 10 mixers. In the worst-case timing, the mixing process
takes approximately 40 seconds, and verifying the final mixing result takes around 135 seconds on a
commodity laptop, without parallelization. We emphasize that all the cryptographic building blocks
used in this work can be easily implemented with existing cryptographic libraries.

Our new primitive, MSoRC (Sec. 3), is considered as an independent contribution on its own that
might find other applications. We present a base MSoRC construction, which extends singatures on
randomizable ciphertexts (SoRC) in [BF20] so that their keys can be randomized as well as mercurial
signatures (MS) [CL19]. We then present its two-party signature generation incorporating techniques
from interactive threshold mercurial signatures (TMS) in [ANPT24]. We also present a more efficient
variant that achieves optimal signature size with three group elements [AGHO11]. It is secure for
honestly chosen encryption keys, which is the case in our mixnet application.

Finally, we present an application of our mixnet for voting with receipt-freeness (Sec. 5). We
provide a qualitative comparison with voting schemes of similar structure based on alternative state-
of-the-art building blocks, i.e., HPP20’s mixnet and Rand-RCCA. It becomes evident that our voting
scheme requires less trust on the voters while achieving higher security against coercers.

1.2 Related Work

Signatures on Equivalent Class and Randomizable Ciphertexts. Signatures on equivalence class (EQS) [HS14,
FHS19] are malleable structure-preserving signatures [AFG+10, AGHO11] (i.e., pairing-based signa-
tures with messages and public keys that are elements of a source group and whose verification is done
using paring-product equations) defined over a message vector space. They allow a controlled form
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of malleability on message-signature pairs. EQS have further been studied to consider equivalence
classes for the public key only [BHKS18] or both (latter introduced under the name of mercurial
signatures in [CL19]). In addition, Bauer and Fuchsbauer [BF20] considered a different equivalence
relation for the message space and gave the first construction of SoRC [BFPV11] using an EQS. In
brief, it signs ElGamal Ciphertexts and all randomizations of a ciphertext define an equivalence class.
The motivation of SoRC is to build signatures on ciphertexts that could be adapted to randomizations
of them. The SoRC construction from [BF20] (which is based on [FHS19]) provides a strong notion
of class-hiding where an adapted message-signature pair looks like a completely random message-
signature pair even when knowing the original message-signature pair. However, it only provides the
same weak public-key class hiding guarantees of early constructions [CL19, CL21, CLPK22] (i.e.,
original signers can identify adapted signatures for an adapted public key using their secret key).

A stronger class-hiding notion for the public key is addressed very recently in [ANPT24] that
introduces interactive TMS. As it allows parties to produce a signature on their combined public
keys, key-randomizability of the resulting signature provides a stronger class-hiding notion as long
as parties keep their signing key private. We follow their two-party construction that is simpler and
suffices for our purpose.

Mixnets. While our focus is on instantiating the certified input paradigm within pairing groups,
there are also works that explore post-quantum secure mixnets, such as [BHM20, ABG+21, HMS21,
AKA+21, ABGS23a, ABGS23b]. Although these approaches require a careful selection of parameters,
exploring post-quantum security in the context of the certified input paradigm remains a promising
direction for future research.

In decryption mixnets, e.g., [Cha81, PIK94, Abe99, PHE+17, DHK21], each mix server holds
a share of the decryption key and partially decrypts the inputs along with shuffling. They follow
different structure and trust model than re-encryption mixnets we focus on in this work. Achieving
verifiability in decryption mixnets often results in more complexity due to the involvement of the
decryption key.

Receipt-free e-voting. Coersion resistance is one of the demanded property for e-voting. It guarantees
that a coercer who interacts with a voter during the voting phase cannot determine if coercion was
successful or not from the election outcome. Receipt-freeness is a weak form of coercion resistance
that voters cannot prove how they voted to a potential coercer. Several countermeasures to coer-
cion have been proposed in the literature, e.g., Fake Credentials [JCJ05], Masking [WB09], Panic
Password [CH11], Nullification [CCC+22a, CCC+22b]. In recent works [Poi23, Poi24] Pointcheval ad-
dressed receipt-freeness using perfectly randomizable homomorphic tags from [FHS19]. Some of these
approaches are tailored to homomorphic tallying where only the aggregated result is published.

Amng many, JCJ [JCJ05, CCM08, BGR12, CGY24, ABR23] and VoteAgain [LQT20, HMQA23]
are well-studied mix-type coercion resistant schemes that uses different mechanisms than the ran-
domizable certified input paradigm. They require physical anonymous channels between each voter
and the bulletin board whereas ours only requires authenticated communication. We elaborate these
previous works and other properties of e-voting in Appendix F.

1.3 Technical Overview

From SoRC to MSoRC. For gaining malleability on the key space, we turn the SoRC from [BF20]
into a full-fledged MSoRC. Recall that SoRC verifies a signature element Z on ElGamal ciphertext
(C0, C1) with signature verification key (X̂0, X̂1) by

e(Z, Ŝ) = e(C0, X̂0)e(C1, X̂1)e(G, Ĝ)

where Ŝ is another signature element. In this form, the presence of e(G, Ĝ) rules out any key ran-
domizations of the form (X̂ρ

0 , X̂
ρ
1 ) that would pass the verification:

e(Zρ, Ŝ) ̸= e(C0, X̂
ρ
0 )e(C1, X̂

ρ
1 )e(G, Ĝ)

Our MSoRC improves the inconvenience by extending the signing key with one more element, X̂2,
and using it to sign a fixed generator, G. Thus, the above verification equation now turns into

e(Z, Ŝ) = e(C0, X̂0)e(C1, X̂1)e(G, X̂2)
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whose key can be randomized within the equivalence class with factor ρ as

e(Zρ, Ŝ) = e(C0, X̂
ρ
0 )e(C1, X̂

ρ
1 )e(G, X̂ρ

2 ).

It prevents the ciphertext from being altered with (Cρ′

0 , Cρ′

1 ) since G in the remaining paring e(G, X̂2)
must remain unchanged. We prove security of our base MSoRC giving reduction to the original SoRC
in the generic group model.

Two-party MSoRC. As mentioned earlier, the signer can trace the randomized keys in above MSoRC
as well as SoRC. To see why, observe that the equivalence class of key (X̂0, X̂1, X̂2) is defined by keys of
form (X̂ρ

0 , X̂
ρ
1 , X̂

ρ
2 ). A key (X̂ ′

0, X̂
′
1, X̂

′
2) is in the class if and only if (X̂ ′

0)
1/x0 = (X̂ ′

1)
1/x1 = (X̂ ′

2)
1/x2(=

Ĝρ) holds for secret key (x0, x1, x2). Hence, knowledge of the secret key suffices to recognize the class.
Following the approach in [ANPT24], we distribute the secret key among multiple parties, ensuring

that no single party can perform tracing as above. Since our application to the mixnet requires
only two parties to be involved in the signature generation, we adopt the two-party construction
from [ANPT24]. The signing protocol for the two-party MSoRC follows a blind-compute-unblind
structure, which allows us to simulate an honest party in the unforgeability proof when the other
party is corrupted. We show that the unforgeability of the two-party MSoRC can be reduced to the
unforgeability of the base MSoRC.

Optimal MSoRC. Our MSoRC produces a signature consisting of four group elements, (Z, S, Ŝ, T ).
We claim that (Z, Ŝ, T ) suffices for unforgeability if the encryption key for the ciphertext to be
signed is honestly generated. An intuition is the following. The encryption key X is involved in the
verification equation

e(T, Ŝ) = e(G, X̂0)e(X, X̂1). (1)

If x of X = Gx is known to the adversary, we have

e(T, Ŝ) = e(G, X̂0)e(G
x, X̂1) = e(G, X̂0X̂

x
1 ).

Thus T and Ŝ can be computed as T = G, Ŝ = X̂0X̂
x
1 without using signing key x0 and x1. To

prevent this, another verification equation e(S, Ĝ) = e(G, Ŝ) has been involved to ensure that the
adversary knows the representation of Ŝ regarding G. On the other hand, if x is not known to the
adversary, computing T and Ŝ satisfying (1) would require signing key x0 and x1. We prove this
intuition rigorously in the generic group model.

Mixnet from two-party MSoRC. We use the two-party MSoRC for each user and the CA jointly
creating a certified ciphertext as input to the mixnet. User i having ciphertext (C0, C1)i joins with
the preliminary registered key, uvki, and the authority works with an ephemeral key evki and its
long-term key avk. User key uvki as well as ephemeral key evki are published in an authentic manner
so that joint verification key vki := uvki + evki + avk can be computed in public. The ephemeral key
is included to make sure that every vki is independent. The input to mixnet from user i consists of
randomized ciphertext (C ′

0, C
′
1)i, MSoRC signature σi, and joint verification key vki, all of which are

randomizable through adaptation functions of MSoRC.
Considering s1, . . . , sN mix servers, sj delivers SSet(j) := {(C ′

0, C ′
1)Π(i), σ

′
Π(i), vk′Π(i)}i∈[n] for

permutation Π : [n] → [n] and a signed NIZK proof of correct mixing to sj+1 using the statement
from the previous round as the base point. The proof is:

NIZK{(
i=n∑
i=1

vk′
(j−1)
Π(i) , ρ) :

i=n∑
i=1

vk′
(j)
Π(i) = ρ ·

i=n∑
i=1

vk′
(j−1)
Π(i) }

This is where we replace the Groth-Sahai proof with the CH20 proof.
Servers sign their NIZK proof using an aggregate signature, and we use batch verification for all

proofs. Everyone can publicly verify the aggregate signature to confirm the participation of each
mix server while batch verification validates the output tuple. Only the initial tuples, the final ones,
all the N short NIZK proofs, and server’s public keys are needed for verification. This is because
if the aggregate signature and proofs verify, the output tuple implicitly validates the intermediate
randomizations performed by each mix server. Alternatively, as in HPP20, the mix servers could
perform a second round to produce a multi-signature on the final proof, making the final verification
independent of N .
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Security of MSoRC ensures that no collusion between mix servers and the CA can break public
key unlinkability of honest users as long as one mix server is honest (i.e., it correctly randomizes the
tuples and permutes them). This holds even if the CA colludes with a subset of mix servers and users.
Correctness of this process is ensured proving the correct randomization of verification keys, which is
a discrete log proof on the sum of all of them.

Receipt-free voting from our mixnet. We adhere to the classical blueprint for achieving receipt-
freeness: the user and authority jointly generate the input ciphertext for the mixnet, ensuring that
the user alone cannot prove to a third party that the ciphertext encrypts a specific message. This
is precisely the role of MSoRC in our mixnet construction, where the CA randomizes the user’s
ciphertext. However, we must ensure that the user can simulate the interaction with the CA, meaning
that zero-knowledge proofs cannot be non-interactive in this context.

Other properties, such as fairness and verifiability, depend on external assumptions, including the
use of a bulletin board with authenticated access and the absence of coercion during registration. The
one-voter-one-vote principle is enforced through user authentication at both registration and vote
casting. We further discuss these design choices in relation to other security considerations, such as
protecting the privacy of absentee voters.

2 Preliminaries

Notation. The set of integers from 1 to n is denoted as [n]. Zp represents the ring of integers modulus
p. For a set S, r ←$ S denotes that r is sampled uniformly at random from S. The security parameter
κ is usually passed in unary form. We denote by PP the set of public parameters, and for pp ∈ PP we
letMpp be the set of messages, DKpp the set of decryption keys, EKpp, the set of encryption keys, Cpp
the set of ciphertexts, Rpp the set of ciphertext randomness, SKpp the set of signature keys, VKpp the
set of verification keys and Spp the set of signatures. Let BGGen be a PPT algorithm that on input 1κ,
returns public parameters pp ∈ PP s.t. pp = (p,G1,G2,GT , G, Ĝ, e) describes an asymmetric bilinear
group where G1,G2,GT are cyclic groups of prime order p with ⌈log2 p⌉ = κ, G and Ĝ are generators
of G1 and G2, and e : G1 × G2 → GT is an efficiently computable (non-degenerate) bilinear map.
e is said to be of Type-3 if no efficiently computable isomorphisms between G1 and G2 are known.
Elements in G2 are written with a hat (e.g., X̂ ∈ G2).

ElGamal PKE [ElG86]. Let pp = (p,G1,G2,GT , G, Ĝ, e) and (KeyGen, Enc, Dec). Key generation
KeyGen(pp) chooses dk := x←$ Z∗

p, sets ek := X ← xG and outputs (dk, ek). Encryption Enc(X,M)
outputs ciphertext (C1, C0) := (µG,M + µX) with µ ←$ Z∗

p. Decryption Dec(x, (C0, C1)) outputs
M := C1 − xC0. The ElGamal PKE is IND-CPA in G1 as long as the DDH assumption holds in G1.

Zero-Knowledge Proofs. We consider languages in NP defined in terms of a relation LR = {x| ∃ w st.
(x,w) ∈ RL}, where x ∈ X is referred to as the instance and w ∈ W as the witness with RL being
a subset of X ×W . A zero-knowledge proof allows a prover to convince a verifier that (x,w) ∈ RL
without disclosing any information about w. This work uses Zero-Knowledge Proofs of Knowledge
(ZKPoK) and non-interactive arguments (i.e., Non-Interactive Zero-Knowledge arguments or NIZK).
The former are three-round public coin, honest verifier zero-knowledge proofs that satisfy knowledge
soundness (see [Gol01] for further details). The latter are single-round protocols in the common
reference string (crs) model whose syntax we recall next (we refer the reader to [DEF+23] and [CH20]
for formal definitions). A NIZK proof system for a language L is defined by three algorithms: (1)
CRSGen generates a common reference string and (optionally) a trapdoor; (2) Prove produces a proof
for (x,w) ∈ RL; (3) Verify verifies a proof w.r.t. an instance x.

Couteau and Hartmann proposed a framework for building pairing-based NIZK for algebraic
languages [CH20], an extension of linear languages. In particular, their framework is very well-
suited as an alternative to GS proofs [GS08] due to its conceptual simplicity and because it pro-
vides fully adaptive soundness and perfect zero-knowledge with a single random group element as
the crs. We will consider the following linear language LA for A = (A0,A1,A2) ∈ G3 given by
RA := {(x, w) : x ∈ G3, w ∈ Zp s.t. x = Aw}, which captures DDH relations. We show how to
instantiate and batch verify a NIZK for LA in Appendix B, as required by our mixnet scheme.
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3 Mercurial Signatures on Randomizable Ciphertexts

This section introduces our definitional framework for mercurial signatures on randomizable cipher-
texts (Sec.3.1), as well as our base construction (Sec.3.2) and its two-party signature generation
(Sec.3.3) with associated security proofs. We also present an optimized scheme (Sec.3.4).

3.1 Definitions

Our definitions for mercurial signatures on randomizable ciphertexts adapts the presentation from
[BF20] to signatures on randomizable ciphertexts (similar to what [CL19] does for mercurial signatures
when generalizing the ideas from [FHS19]). Thus, they can be seen as a merge between the original
syntax and security properties of SoRC and MS schemes. As in [CL19], letR be an equivalence relation
where [x]R = {y | R(x, y)} denotes the equivalence class of which x is a representative. We loosely
consider parametrized relations and say they are well-defined as long as the corresponding parameters
are well-defined. We recall that signatures on randomizable ciphertexts are EQS where Adapt is
analogous to ChgRep. More precisely, the equivalence class [c]ek of a ciphertext c under encryption key
ek is defined as all randomizations of c, that is, [c]ek := {c′ | ∃ r ∈ Rpp : c

′ = Rndmz(ek, c; r)}. Similarly,
equivalence classes of verification and secret keys are defined as [vk]vk := {vk′ | ∃ r ∈ Rpp : vk

′ = rvk}
and [sk]sk := {sk′ | ∃ r ∈ Rpp : sk

′ = rsk}, respectively.

Definition 1 (Mercurial Signature on Randomizable Cipehrtexts). A MSoRC scheme for
parametrized equivalence relations Rc, Rpk, Rsk is a tuple of the following polynomial-time algorithms
of which all except Setup are implicitly parametrized by an element pp ∈ PP:

Setup(1κ)→ pp : Outputs public parameters.
KeyGen(pp)→ (ek, dk) : Outputs an encryption key ek and decryption key dk.
Enc(ek,m; r)→ c : Outputs a ciphertext c under ek for a message m using randomness r.
Dec(dk, c)→ m : Outputs a message m.
Rndmz(ek, c;µ)→ c′ : Randomizes a ciphertext c into c′ using randomness µ.
SKG()→ (vk, sk) : Outputs a secret key sk and a verification key vk.
Sign(sk, ek, c; s)→ σ : Outputs a signature σ for c under sk using randomness s.
Verify(vk, ek, c, σ)→ 0/1 : Verifies (c, σ) w.r.t. vk and ek.
Adapt(σ;µ, ρ)→ σ′ : Randomizes σ into σ′ using randomness µ and ρ.

ConvertSK(sk, ρ)→ sk′ : Randomizes sk into sk′ using ρ.

ConvertVK(vk, ρ)→ vk′ : Randomizes vk into vk′ using ρ.

Definition 2 (Correctness). A SoRC scheme is correct if for all pp ∈ PP, for all pairs (ek, dk)
and (sk, vk) in the range of KeyGen(pp) and SKG(pp), respectively, and all m ∈ Mpp, r, µ, ρ ∈ Rpp,
σ ∈ Sign(sk, ek, c) and c ∈ Cpp :

– Dec(dk,Enc(ek,m; r)) = m.
– Pr[Verify(vk, ek, c, σ) = 1] = 1.
– ConvertSK(sk, ρ) ∈ [sk]sk ∧ ConvertVK(vk, ρ) ∈ [vk]vk.
– Pr[Verify(ConvertVK(vk, ρ), ek,Rndmz(ek, c;µ),Adapt(σ;µ, ρ)) = 1] = 1.

Similar to mercurial signatures, unforgeability of MSoRC should allow the adversary to output
signatures under equivalent public keys (which are not considered a forgery). However, since MSoRC
also deal with encryption keys, it is crucial to consider what happens to them and how they are
managed in the unforgeability game. In this regard, the unforgeability notion from BF20 considers a
forgery the case in which the adversary can produce a signature on an encryption of a message for
an encryption key that has not been queried for that message. This strong unforgeability notion lets
the adversary produce signatures under any encryption key pair of its choice. We capture this setting
with the following definition.

Definition 3 (UNF-I). A MSoRC scheme is unforgeable if the advantage of any PPT adversary
A defined by AdvUNF−I

MSoRC(1
κ,A) := Pr [ExpUNF−I

MSoRC(1
κ,A)⇒ true] ≤ ϵ(κ), where ExpUNF−I

MSoRC(1
κ,A) is shown

in Fig. 1.
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Experiment ExpUNF-I
MSoRC(1

κ,A)
Q← ∅; pp←$ Setup(1κ); (sk, vk)←$ SKG(pp)

(vk∗, ek∗, c∗, σ∗)← ASign(sk,·,·)(vk)
return (ek∗, c∗) /∈ Q ∧ [vk∗]vk = [vk]vk ∧ Verify(vk∗, ek∗, c∗, σ∗) = 1

Oracle Sign(sk, ek, c)

Q← Q ∪ {ek} × [c]ek; return Sign(sk, ek)̧

Fig. 1. Unforgeability experiment (UNF-I).

While the previous notion enables applications such as blind signatures [BFPV11], for our concrete
application of mixnet, the encryption keys are either managed by the CA or by some other set of
authorities (if a distributed key generation protocol is used to distribute trust) but not the users.
Therefore, we can relax the unforgeability requirement from Def. 3 so that it’s the challenger the one
that picks the encryption key pair instead of the adversary5 as done below.

Definition 4 (UNF-II). A MSoRC scheme is unforgeable if the advantage of any PPT adversary
A defined by AdvUNF−II

MSoRC(1
κ,A) := Pr [ExpUNF−II

MSoRC(1
κ,A)⇒ true] ≤ ϵ(κ), where ExpUNF−II

MSoRC(1
κ,A) is shown

in Fig. 2.

Experiment ExpUNF-II
MSoRC(1

κ,A)
Q← ∅; pp←$ Setup(1κ); (sk, vk)←$ SKG(pp); (dk, ek)←$ KeyGen(pp)

(vk∗, c∗, σ∗)← ASign(sk,·,·)(vk, ek)
return c∗ /∈ Q ∧ [vk∗]vk = [vk]vk ∧ Verify(vk∗, ek, c∗, σ∗) = 1

Oracle Sign(sk, ek, c)

Q← Q ∪ [c]ek; return Sign(sk, ek)̧

Fig. 2. Unforgeability experiment (UNF-II).

An MSoRC should also provide an encryption scheme with IND-CPA security and full class-hiding.
These properties were defined in [BF20] and are recalled below.

Definition 5 (IND-CPA security & Full Class-Hiding [BF20]). A MSoRC scheme is IND-
CPA and full class-hiding if:

IND-CPA: the advantage of any PPT adversary A defined by AdvIND-CPA
MSoRC,A (κ) := 2·Pr

[
ExpIND-CPA

MSoRC,A (κ)⇒ true
]
−

1 = ϵ(κ).
Full class-hiding: the advantage of any PPT adversary A defined by AdvFull-CH

MSoRC,A(κ) := 2·Pr
[
ExpFull-CH

MSoRC,A(κ)⇒ true
]
−

1 = ϵ(κ).
where ExpIND-CPA

MSoRC,A (κ) and ExpFull-CH
MSoRC,A(κ) are the experiments shown below.

Experiment ExpIND-CPA
MSoRC,A (κ) Experiment ExpFull-CH

MSoRC,A(κ)

pp←$ Setup(1κ) pp←$ Setup(1κ)
b←$ {0, 1}; r ←$Rpp b←$ {0, 1}; r ←$Rpp

(dk, ek)←$ KeyGen(pp) (dk, ek)←$ KeyGen(pp)
(st,m0,m1)← A(ek) (st, c)← A(ek); c0 ←$ Cpp
c← Enc(ek,mb, r) c1 ← Rndmz(ek, c; r)
b′ ←$A(st, c); return b = b′ b′ ← A(st, cb); return b = b′

We consider signature adaptations for a new representative of the public key, extending the defi-
nition from [BF20].

Definition 6 (Signature adaption). A MSoRC scheme is adaptable (under malicious keys) if
for all pp ∈ PP, all (vk, ek, c, σ) ∈ VKpp × EKpp × Cpp × Spp that satisfy Verify(vk, ek, c,
σ) = 1 and all (µ, ρ) ∈ R2

pp, the output of Adapt(σ;µ, ρ) is uniformly distributed over the set {σ′ ∈
Spp | Verify(ConvertVK(vk, ρ), ek, Rndmz(ek, c, µ), σ′) = 1}.
5 This key observation allows us to obtain an even more efficient MSoRC.
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Experiment ExpUNF−III

MSoRC(1
κ,A)

Q← ∅; pp←$ Setup(1κ); (b, st)← A(pp); (dk, ek)←$ KeyGen(pp)
(ski, vki)i∈{0,1} ←$ TKGen(pp); vk← vk0 + vk1
(vk∗, c∗, σ∗)← AISign1−b(sk1−b,·,·)(st, vk0, vk1, skb, ek)
return c∗ /∈ Q ∧ [vk∗]vk = [vk]vk ∧ Verify(vk∗, ek, c∗, σ∗) = 1

Oracle ISign1−b(sk1−b, ek, c)

Q← Q ∪ [c]ek; return ISign1−b(sk1−b, ek, c)

Fig. 3. Unforgeability w.r.t an interactive signing protocol.

Besides standard definitions, we also consider an interactive signing protocol for MSoRC schemes
as defined below.

ISignP0
(sk0, ek, c)↔ ISignP1

(sk1, ek, c)→ σ: This algorithm is run interactively between parties P0 and
P1. It produces a signature σ for c under sk, implicitly defined as sk0 + sk1.

We now define unforgeability and public-key class-hiding, assuming at least one honest signer.
To prove security, we introduce a key generation algorithm that is run by a trusted third party that
produces (vk, sk) as in SKG but such that vk = vk0 + vk1 and sk = sk0 + sk1 (in practice, each party
will run SKG independently). We require the following property adapted from [ANPT24].

Definition 7 (Security of key generation). TKGen is secure if it outputs vk with the same dis-
tribution as SKG, and there exists a simulator, SimTKGen, s.t. for any sufficiently large κ, any
pp ∈ Setup(1κ), (vk, sk) ∈ SKG(pp), and b ∈ {0, 1}, SimTKGen(vk, b) outputs skb and {vk0, vk1}.
The joint distribution of (vk, vk0, vk1, skb) is indistinguishable from that of TKGen(pp).

For unforgeability, we let the adversary choose one of the signing parties and leak its corresponding
keys. As in Def. 4, the challenger picks the encryption key pair. We note that the definition below
can easily be adapted to Def. 3.

Definition 8 (UNF-III). A MSoRC scheme is unforgeable if the advantage of any PPT adversary A
having access to an interactive signing oracle defined by AdvUNF−III

MSoRC(1
κ,A) := Pr [ExpUNF−III

MSoRC(1
κ,A)⇒ true]

≤ ϵ(κ), where ExpUNF−III

MSoRC(1
κ,A) is shown in Fig. 3.

For public key class-hiding, we adapt the original definition from [CL19] in the vein of [ANPT24],
that is, considering an interactive signing protocol. This allows us to obtain a stronger notion of public
key class-hiding when one of the parties is honest. In other words, we get a full public key class hiding
notion when there is no collusion between the two parties. Following the naming convention from
[ANPT24], we formalize this notion as public key unlinkability. As we shall see, this notion suffices
for the discussed applications.

Definition 9 (Public Key Unlinkability). A MSoRC scheme is public key unlinkable if the ad-
vantage of any PPT adversary A defined by AdvPK-UNL

MSoRC (1κ,A) := 2 ·Pr
[
ExpPK-UNL

MSoRC (1κ,A)⇒ true
]
−1 ≤

ϵ(κ), where ExpPK-UNL
MSoRC (1κ,A) is shown below.

Experiment ExpPK-UNL
MSoRC (1κ,A)

pp←$ Setup(1κ); ρ←$Rpp; b←$ {0, 1}
(s̃k, ṽk)←$ TKGen(pp); (ski, vki)i∈{0,1} ←$ TKGen(pp)

vk′ ← ConvertVK(ṽk+ vkb, ρ); b
′ ←$AISign(skb,·,·)(s̃k, ṽk, vk′, vk0, vk1)

return b = b′

Oracle ISign(skb, ek, c, vk)

if vk = vk′ then σ ←$ ISignb(skb, ek, c) return Adapt(σ; ρ)
elseif vk = vki return ISign(ski, ek, c)

3.2 Single-Signer Construction

In Fig. 4, we present the base MSoRC with a signle signer.
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Our departure point is the SoRC from [BF20], which is an EQS based on [FHS19] that signs
ElGamal ciphertexts. In [BF20], a signature consists of four group elements Z = 1

s (x0C0 + x1C1 +

G), S = sG, Ŝ = sĜ and T = 1
s (x0G + x1X), where (C0, C1) is the ciphertext, X it’s public key,

and (x0, x1) the scheme’s secret key. Without G, (Z, S, Ŝ) is the EQS from [FHS19]. The idea from
[BF20] was to embed G into Z so that Z can only be adapted to ciphertext randomizations using the
additional element T . To turn the SoRC from [BF20] into a full-fledged MSoRC we extend the secret
key to include one more element (x2) and use it to sign G in Z. This way, Z can be adapted to a new
key representative, as well as to a ciphertext randomization if T is used.

MSoRC.KeyGen() :

dk := x←$ Z∗
p

ek := X ← xG

return (dk, ek)

MSoRC.Enc(X,M ; r) :

return (rG,M + rX)

MSoRC.Dec(x, (C0, C1)) :

return M := C1 − xC0

MSoRC.SKG() :

sk := (x0, x1, x2)← Z∗
p ; vk := (x0Ĝ, x1Ĝ, x2Ĝ)

return (sk, vk)

MSoRC.Sign((x0, x1, x2), X, (C0, C1)) :

s←$ Z∗
p ;Z :=

1

s
(x0C0 + x1C1 + x2G)

S := sG; Ŝ := sĜ;T :=
1

s
(x0G+ x1X)

return (Z, S, Ŝ, T )

MSoRC.Rndmz(X, (C0, C1);µ) :

return (C0 + µG,C1 + µX)

MSoRC.ConvertSK((x0, x1, x2), ρ) :

return (ρx0, ρx1, ρx2)

MSoRC.ConvertVK((X̂0, X̂1, X̂2), ρ) :

return (ρX̂0, ρX̂1, ρX̂2)

MSoRC.Adapt((Z, S, Ŝ, T );µ, ρ) :

s′ ←$ Z∗
p ;Z

′ :=
ρ

s′
(Z + µT )

S′ := s′S; Ŝ′ := s′Ŝ;T ′ :=
ρ

s′
T

return (Z′, S′, Ŝ′, T ′)

MSoRC.Verify((X̂0, X̂1), X, (C0, C1), (Z, S, Ŝ, T )) :

return 1 if and only if e(Z, Ŝ) = e(C0, X̂0)e(C1, X̂1)e(G, X̂2)

∧ e(T, Ŝ) = e(G, X̂0)e(X, X̂1) ∧ e(S, Ĝ) = e(G, Ŝ)

Fig. 4. Our base MSoRC scheme.

Correctness of our base scheme follows by inspection. Next, we prove unforgeability. As in related
work ([ANPT24, BF20]), we consider the stand-alone model and adversaries in the Generic Group
Model (GGM) for asymmetric bilinear groups.

Theorem 10 (Unforgeability). Our base MSoRC is unforgeable in the GGM w.r.t. Definition 3 if
all ZKPoK’s are secure.

Proof. We reduce the security of our base scheme (Def. 3) to that of [BF20]. Thus, we consider a
reduction B playing the role of the adversary against [BF20]. B receives pk = (X̂0, X̂1) from the
challenger, it picks α ←$ Z∗

p , sets pk′ := (αX̂0, αX̂1, αĜ) for our scheme and forwards it to A.
Whenever A asks for a signature on (C

(i)
0 , C

(i)
1 , X(i)), B forwards to the signing oracle of [BF20].

On receiving σ(i) = (Z(i), T (i), S(i), Ŝ(i)), it sets σ(i)′ = (αZ(i), αT (i), S(i), Ŝ(i)) and returns it to
A. Whenever A outputs (Z∗, T ∗, S∗, Ŝ∗) and (C∗

0 , C
∗
1 , X

∗) for public key pk∗ = βpk′, B outputs
( 1
αβZ

∗, 1
αβT

∗, S∗, Ŝ∗) for the same query. We note that B is a generic forger and thus, it can obtain
β. To see how, we proceed as done in [CL19] (Claim 1). Since A is a generic forger, the forged key
must be computed as a linear combination of previously seen elements. Thus, for all i ∈ {0, 1, 2}:

X̂∗
i = χ1Ĝ+ χ1

0X̂0 + χ1
1X̂1 + χ0

2X̂2 +

k∑
j=1

χ1
s,jŜj

Taking the discrete logarithm base Ĝ, we get:

x∗
i = χ1 + χ1

0x0 + χ1
1x1 + χ0

2x2 +

k∑
j=1

χ1
s,jsj
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The above is a multivariate polynomial of degree O(k) in x0, x1, x2, s1, . . . , sk. Consider the probability
that two formally different polynomials collide such that x∗

i = βxi, but B cannot obtain β ∈ Z∗
p despite

seeing A’s queries to the group and signing oracles and their results. By Schwartz-Zippel lemma, such
probability is O(kp ), which is negligible.

Our MSoRC’s provide IND-CPA and full class hiding. ElGamal is IND-CPA if the DDH assumption
holds, which we assume. Full class-hiding was already proven in [BF20] giving a reduction to DDH
and so we omit its proof.

Theorem 11 (Signature adaption). Our base MSoRC scheme is signature-adaptable under ma-
licious keys.

The proof follows directly from that of the original SoRC ([BF20], Proposition 2) and thus, we
also omit it.

Theorem 12 (Public Key Unlinkability). Our base MSoRC scheme is public key unlinkable under
corruption of at most one party.

Proof. It suffices to show that adapted signatures are independent of b, i.e., the adversary gains no
information by knowing one of the shares of the corresponding secret key. For any tuple (X, (C0, C1)),
an adapted signature from one computed using s̃k, skb and a uniformly random ρ verifies under
vk′ = ρ(s̃k+ skb) and has the following distribution for uniformly random values s and δ:

Z =
1

s
(ρ(s̃k

0
+ sk0b)C0 + ρ(s̃k

1
+ sk1b)C1 + ρ(s̃k

1
+ sk1b)G)

T =
1

s
(ρ(s̃k

0
+ sk0b)G+ ρ(s̃k

1
+ sk1b)X), S = sG, Ŝ = sĜ

Since ρ is uniformly random, it perfectly hides b and the adversary gains no information dependent
on b.

3.3 Two-Party Construction

We can extend our construction to support a two-party interactive signing protocol as shown in
Fig. 5. We do so using the techniques from [ANPT24] to build TMS, and all elements are computed
analogously (e.g., we compute a blinded version of Z and T , with each party proving the correctness
of each step via short ZKPoK’s). ZKPoK’s are defined as follows:

– ZKPoK[s0 : S0 = s0G ∧ Ŝ0 = s0Ĝ],
– ZKPoK[(s0, x

0
0, x

0
1, x

0
2) : T0 = 1

s0
(T1 + x0

0G + x0
1X) ∧ S0 = s0G ∧ Z0 = 1

s0
(Z1 + x0

0C0 + x0
1C1 +

x0
2G) ∧ X̂0

0 = x0
0Ĝ ∧ X̂0

1 = x0
1Ĝ ∧ X̂0

2 = x0
2Ĝ],

– ZKPoK[(r, x1
0, x

1
1, x

1
2) : T1 = rS0+x1

0G+x1
1X∧Z1 = rS0+ x1

0C0+x1
1C1+x1

2G∧X̂1
0 = x1

0Ĝ∧X1
1 =

x1
1Ĝ ∧X2

1 = x1
2Ĝ],

– ZKPoK[(r, s1) : T = 1
s1
(T0 − rG) ∧ S = s1S0 ∧ Ŝ = s1Ŝ0 ∧ Z = 1

s1
(Z0 − rG)].

We stress that all ZKPoK involved are as simple to implement as a Schnorr proof.
We now argue that the interactive variant produces signatures under the same distribution. Look-

ing closer at how Z and T are computed, we have:

Z =
1

s1
(Z0 − rG) =

1

s1

(
1

s0

(
Z1 + x0

0C0 + x0
1C1 + x0

2G
)
− rG

)
=

1

s1

(
1

s0

((
rS0 + x1

0C0 + x1
1C1 + x1

2G
)
+ x0

0C0 + x0
1C1 + x0

2G
)
− rG

)
=

1

s1

(
1

s0

(
rs0G+

(
x0
0 + x1

0

)
C0 +

(
x0
1 + x1

1

)
C1 +

(
x0
2 + x1

2

)
G
)
− rG

)
=

1

s0s1

((
x0
0 + x1

0

)
C0 +

(
x0
1 + x1

1

)
C1 +

(
x0
2 + x1

2

)
G
)
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P0: C0, C1, X, {X̂0
i = x0

i Ĝ, x0
i , X̂

1
i }i∈{0,1,2} P1: C0, C1, X, {X̂1

i = x1
i Ĝ, x1

i , X̂
1
i }i∈{0,1,2}

s0 ←$ Z∗
p; S0 ← s0G; Ŝ0 ← s0Ĝ r ←$ Zp; s1 ←$ Z∗

p

π0 ← ZKPoK[s0]
S0, Ŝ0, π0−−−−−−−→ Ŝ ← s1Ŝ0

Z1 ← rS0 + x1
0C0 + x1

1C1 + x1
2G

T1 ← rS0 + x1
0G+ x1

1X

T0 ← 1
s0
(T1 + x0

0G+ x0
1X)

T1, Z1, π1←−−−−−−− π1 ← ZKPoK[r, x1
0, x

1
1, x

1
2]

Z0 ← 1
s0
(Z1 + x0

0C0 + x0
1C1 + x0

2G)

π̃0 ← ZKPoK[s0, x
0
0, x

0
1, x

0
2]

Z0, T0, π̃0−−−−−−−→ T ← 1
s1
(T0 − rG);Z ← 1

s1
(Z0 − rG)

π̃1 ← ZKPoK[r, s1]

return (σ, π̃1)
σ, π̃1←−−−− σ ← (Z, S , Ŝ, T ); return (σ, π̃1)

Fig. 5. Our two-party interactive signing algorithm.

Similarly, T is computed as:

T =
1

s1
(T0 − rG) =

1

s1

(
1

s0

(
T1 + x0

0G+ x0
1X

)
− rG

)
=

1

s1

(
1

s0

((
rS0 + x1

0G+ x1
1X

)
+ x0

0G+ x0
1X − rG

))
=

1

s0s1

((
x0
0 + x1

0

)
G+

(
x0
1 + x1

1

)
X
)
+

1

s1

( 1

s0
rs0G− rG

)
=

1

s0s1

((
x0
0 + x1

0

)
G+

(
x0
1 + x1

1

)
X
)

It follows that s0s1, x0
0 + x1

0, x0
1 + x1

1 and x0
2 + x1

2 correspond to s, x0, x1 and x2 in the single party
variant.

It remains to see that our two-party variant is also unforgeable (other properties are obviously
taken over from the single-party construction). We reduce unforgeability of the two-party MSoRC to
that of single-party MSoRC in the similar way as done in [ANPT24].

Theorem 13 (Unforgeability of Two-Party MSoRC). Our two-party MSoRC from Fig. 5 is un-
forgeable under Definition 8 (considering adversarially chosen encryption keys) if the single-party
base MSoRC is unforgeable in the sense of Definition 3, and all ZKPoK’s are secure.

Proof. For an adversary A′ against the unforgeability game of Def. 8, we construct a simulator
that, given access to A′, plays the role of the adversary in the unforgeability game of Def. 3. The
simulator gets pp and vk from the challenger. Subsequently, it calls A on pp to obtain b and executes
SimTKGen(vk, b) to get (skb, vk0, vk1). Now the simulator invokes A′ with (skb, vk0, vk1) as input.
From this point onwards, A′ can make signing queries and in the following we show that regardless
the corruption case, the simulator is able to simulate the honest party and that such interaction
is indistinguishable from the real execution in the view of A′. Whenever A′ queries a message, the
simulator forwards the query to it’s signing oracle and obtains a signature (Z ′, S′, Ŝ′, T ′). From there,
the simulator proceeds as shown in Fig. 6 (left side for the case where b = 0 or right side for the case
where b = 1), as corresponds.

We observe that in the first case (Fig. 6, left side), a real computation of Z1 is indistinguishable
from that of Z ′ as the former includes a uniformly random factor and the latter is uniformly random.
This is also the case for T1 and T ′. Moreover, the zero-knowledge property of π1 conceals this infor-
mation. Looking at the second round, the simulated nature of σ cannot be distinguished by A′ due
to the soundness of both π̃0 and π̃1. The second case (Fig. 6, right side) is analogous to the first one.
In both cases, the simulator outputs whatever A′ outputs. Hence, whenever A′ wins, the simulator
wins.

3.4 Optimization

We claim that signature element S can be removed if encryption keys are honestly generated. Mamely,
instead of allowing the adversary to choose the encryption key pair as done in Def. 3, we work with
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P0: sk0, pk0, pk1, (C0, C1) P1: pk0, pk1, (C0, C1)

(Z′, S′, Ŝ′, T ′)← Sign(sk, (C0, C1))

(S0, Ŝ0, π0)← A(st)
S0,Ŝ0,π0−−−−−−→ Z1 ←$ G1;S ← S′; Ŝ ← Ŝ′;T ←$ G1

T1,Z1,π1←−−−−−− π1 ← ZKPoK.Sim(T1, Z1, S0, (C0, C1))

(T0, Z0, π̃0)← A(st, T1, Z1, π1)
Z0,T0,π̃0−−−−−−→ Z ← Z′;T ← T ′

π1 ← ZKPoK.Sim(Z,Z0, S0, Ŝ0)

return (σ, π1)
σ,π̃1←−−− σ ← (Z, S, Ŝ, T ); return (σ, π̃1)

P0: pk0, pk1, (C0, C1) P1: sk1, pk0, pk1, (C0, C1)

(Z′, S′, Ŝ′, T ′)← Sign(sk, (C0, C1))

S0 ← S′; Ŝ0 ← Ŝ′

π0 ← ZKPoK.Sim(S0, Ŝ0)
S0,Ŝ0,π0−−−−−−→ (Z1, π1)← A(st, S0, Ŝ0, π0)

r ← ZKPoK.Ext(π1)
T1,Z1,π1←−−−−−−

Z0 ← Z′P r;T0 ← T ′P r

π̃0 ← ZKPoK.Sim({Zi, Ti, Ci}i∈{0,1}, Y0)
Z0,T0,π̃0−−−−−−→ (σ, π̃1)← A(st, Z0, T0, π0)

return (σ, π̃1)
σ,π̃1←−−− return (σ, π̃1)

Fig. 6. Simulator’s algorithm for corrupted P0 (above) and for corrupted P1 (below).

Def. 4 so that the challenger picks the encryption key pair. This relaxed security suffices for the
optimized MSoRC to build mixnets where the encryption key is not under the user’s control. while
also allowing us to further optimize the previous construction by dropping S to obtain a shorter
signature with optimal size.

This modification also reduces the number of pairings used in verification by two. Correctness,
IND-CPA, full-class hiding, signature adaption and public key unlinkability directly follow from the
previous proofs. Unforgeability needs to be proven from scratch as we cannot reduce the security of
this version to that of the original scheme (signatures no longer have four elements). We provide a
proof of the following theorem in Appendix C.

Theorem 14 (Unforgeability of our optimized MSoRC). Our optimized scheme is unforgeable
in the GGM as per definitions 3 and 8 if all ZKPoK’s are secure.

4 Mixnet from Two-Party MSoRC

4.1 Building blocks

Our mixnet scheme requires three different building blocks: an MSoRC to sign ciphertexts, a NIZK proof
system to prove the correct randomization of verification keys, and an aggregate signature (or multi
signature to optimize verification). We use the sequential aggregate signature (SAS) from Pointcheval
and Sanders [PS16] (see Appendix E for details) as it suits our setting. First of all, its setup is compat-
ible with that of the MSoRC scheme as it also requires a bilinear group of type-III, and the common
random string can be generated in the same way as that of the CH20 NIZK (see Appendix. B).

4.2 Construction

This section provides a more detailed discussion of the technical decisions behind our mixnet scheme,
shown in figures 7 and 8.

MixSetup. This algorithm samples the parameters for each building block. For ease of exposition we
assume that a trusted party does the whole setup. However, we stress that all parameters can be
produced via a multi-party protocol in a distributed way (see e.g., [BCG+15]).
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MixEncKG. This algorithm generates an encryption key pair. In a decentralized setting, multiple
parties (e.g., polling authorities) can run a DKG protocol [Ped91] to distribute trust. Decryption is
done upon completion of the mixnet process.

MixKG. This algorithm is run by the CA, mix servers, and users independently. We assume the usual
certified-key setting where parties register their public key with the CA and prove knowledge of their
secret key (to avoid rogue key attacks). We note that for all users, the proof of secret key explicitly
happens during MixSignui

.

MixSign. This algorithm is run between a user and the CA to compute a signature as done in Fig. 5.
The user’s ZKPoK serves two purposes: proves plaintext knowledge and authenticates her. It is needed
to avoid replay attacks where a user B waits for another user A to submit her ciphertext, randomize
it and get a signature for the same message.

The ephemeral key pair used by the CA is introduced to protect the scheme against maliciously
crafted user keys. Without it, malicious users could sample their keys in a correlated way to collude
with the first mix server to replace ciphertexts. The share of the ephemeral public key ensures that
each verification key is independent on how users sample their keys.

MixInit. This algorithm corresponds to the initialization phase in which every user submits their
ciphertext (C0, C1)i alongside the corresponding signature σi on it and public key uvki. It also takes
as input evki published by the CA in an authentic manner. The corresponding verification key for
((C0, C1)i, σi) is computed as vki := uvki + evki + avk. Upon verification of each tuple, the initial
shuffle set is defined as SSet(0) := {(C0, C1)i, σi, vki}

(0)
i∈[n].

Mix. This algorithm is run in cascade by N mixers. The first one takes the initial shuffle set SSet(0)
and does the following:

1. Computes the addition of all verification keys to obtain VK(0) :=
∑i=n

i=1 vk
(0)
i . Multiplies it by ρ to

obtain VK(1) :=
∑i=n

i=1 vk
(1)
i and proves knowledge of ρ in zero-knowledge with respect to VK(0).

As a result, it obtains a proof π(1).

MixSetup(1κ) :

pp1 := (p,G1,G2,GT , G, Ĝ, e)←$ BGGen(1κ); (pp2 = Ẑ, ·)←$ NIZK.CRSGen(1κ)

(pp3 = (W, Ŵ ), ·)←$ SAS.Setup(1κ); pp← (pp1, pp2, pp3); return pp

MixEncKG(1κ): dk := x←$ Z∗
p; ek := X ← xG; return (ek, dk)

MixKG(pp) :

Si : (sski, spki)←$ SAS.SKG(pp3) ui : (uski, uvki)←$ MSoRC.SKG(pp1)
CA : (ask, avk)←$ MSoRC.SKG(pp1)

MixSignui
(uski, uvki, avk,Mi, ek)↔ MixSignCA(ask, avk, uvki, ek) :

ui : CA :
(C0, C1)← ElGamal.Enc(ek,Mi; γ) (eski, evki)←$ MSoRC.SKG()
π ← ZKPoK[(γ, uski) : C0 = γG

∧ uvki = uski · Ĝ]
(C0, C1), π−−−−−−−−−−−−→ (C′

0, C
′
1)← Rndmz(ek, (C0, C1);µ)

(C′
0, C

′
1), π

′, evki←−−−−−−−−−−−−− π′ ← ZKPoK[µ : (C′
0, C

′
1)

= Rndmz(ek, (C0, C1);µ)]
MSoRC.ISign←−−−−−−→↔

σi ← MSoRC.ISignP0
(uski, (C

′
0, C

′
1)) σi ← MSoRC.ISignP1

( eski + ask , (C0, C1))

vki ← uvki + evki + avk

return (σi, (C
′
0, C

′
1), evki)

Fig. 7. Algorithms MixSetup,MixEncKG,MixKG and MixSign.
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2. Generates an aggregate signature for the message m(1) := π(1)||VK(1). The purpose of this signa-
ture is to bind the mixer’s output to the previous one. For the first mixer, a valid proof ensures
the relation between the permuted and randomized verification keys with those in SSet(0).

3. Runs MSoRC.Rndmz and MSoRC.Adapt using ciphertext and verification key randomizers µ and
ρ to consistently randomize (C0, C1)

(0)
i and σ

(0)
i , obtaining a tuple ((C0, C1)

(1)
i , σ(1)

i ) that verifies
under vk

(1)
i := ρ · vk(0)i .6

4. Permutes message tuples and computes a partial aggregate signature for π(1).

Subsequent mixers apply the above procedure, taking the output from the previous mixer as input.

MixVerify. This algorithm can be run by any external party to verify the output of the whole mixing
process. In the following, we discuss the scenario in which verification takes an input linear in the
number of mixers as presented in Fig. 8. On input the initial and final shuffle sets (SSet(0) and
SSet(N)), the final aggregate signature and messages m

(k)
k∈[N ], all proofs are verified in batch as in

Sec. 2. The batch verification implicitly validates all mixing steps, ensuring each mixer contributed
to the randomization process. If it fails, each proof can be verified independently to identify the
misbehaving mixer. Since all proofs are signed, a false one provides non-repudiable evidence on the
mixer’s misbehaviour. For this reason, during the signing process, each mixing server needs to verify
the partial aggregate signature up to that point and abort if it receives an invalid one.

4.3 Security Model

We strengthen the security model from HPP20 so that soundness and privacy hold against malicious
users. For soundness, we guarantee that an adversary cannot successfully modify or replace messages
of any user, including malicious ones. Similarly, our privacy notion ensures that messages in the input
shuffle set are unlinkable from those in the output, even if some users collude with some mixers. Both
notions hold if at least one mix server is honest.

Definition 15 (Soundness). A mixnet is said to be sound in the certified key setting, if any
PPT adversary A has a negligible success probability in the following security game:

1. The challenger generates certification and encryption keys.
2. The adversary A then
– decides on the corrupted users I∗ and generates itself their keys (uvki)i∈I∗

– decides on the set I of the (honest and corrupted) users that will generate a message
– proves knowledge of the secrete keys for each corrupted user in I∗ to get the MSoRC signatures σi

and ephemeral verification keys evki for ciphertexts of its choice
– generates the tuples (Ti)i∈I∗ for the corrupted users and provides messages (Mi)i∈I\I∗ for the

honest users
3. The challenger generates the keys of the honest users (ski, vki)i∈I\I∗ and their tuples (Ti)i∈I\I∗ .

The initial shuffle set is thus defined by SSet = (Ti)i∈I .
4. The adversary mixes SSet in a provable way into (SSet′, proof ′).

The adversary wins if MixVerify(SSet,SSet′, proof ′) = 1 but {Dec∗(SSet)} ̸= {Dec∗(SSet′)}, where
Dec∗ extracts the plaintexts using the decryption key.

Theorem 16 (Soundness). Our Mixnet scheme is sound in the certified key setting assuming the
unforgeability of our MSoRC scheme and the kerMDH assumption.

Proof Sketch. We first note that if the verification passes, soundness of the NIZK proof guarantees
(under the kerMDH assumption) that ∀ vk′i ∈ SSet′ ∧ vki ∈ SSet :

∑
vk′i =

∑
αvki. This, together

with the unforgeability of MSoRC, implies that ∀ vk′i : vk
′
i = α(uski+eski+ask)Ĝ since [vk′i]vk = [vki]vk.

Observe that for each uski (regardless of whether it is maliciously chosen or not), the value eski + ask
“fixes” the corresponding equivalence class. The class is unique and is outside the adversary’s control
since eski is chosen independently uniformly from uski by the CA. This proves that the verification
keys in the output shuffle set are a permutation of the ones in the input shuffle set. Consequently, the
ciphertexts in the output shuffle set are also a permutation of the ciphertexts from the input shuffle
set, which concludes the proof.
6 Since the mixer chooses the randomizer ρ, collusion between the user and the CA would be able to break

the anonymity of vk(1)i and, thus, its corresponding tuple. However, such collusion is not considered in our
model, and even if it were, it would not help identify other users’ votes.
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MixInit({(C0, C1)i, σi, uvki}i∈[n], {evki}i∈[n], avk) :

// Each server verifies the initial set
∀ i, j : uvki + evki ̸= uvkj + evkj ∧ foreach i ∈ [n] do

check MSoRC.Verify(uvki + evki + avk, (C0, C1)i, σi)

Mix(sskj , {((C0, C1)i, σi, vki)}
(j−1)

i∈[n] , σ
(j−1), (spkk,mk)k∈[j−1]) :

µ, ρ←$ Z∗
p;π

(j) ← NIZK.Prove(
∑i=n

i=1 vk
(j−1)
i ,

∑i=n
i=1 vk

(j)
i , ρ)

vk
(j)
i ← ρ · vk(j−1)

i ;mj := π(j) ||
∑i=n

i=1 vk
(j)
i

if j = 1 then σ(j) ← SAS.Sign(sskj ,⊥,⊥,mj)
// Each mixer verifies the aggregate signature from previous mixers
if j > 1 then σ(j) ← SAS.Sign(sskj , σ

(j−1), (spkk,mk)k∈[j−1],mj)

foreach i ∈ [n] do

(C0, C1)
(j)
i ← MSoRC.Rndmz(ek, (C0, C1)

(j−1)
i ;µ)

σ
(j)
i ← MSoRC.Adapt(σ

(j−1)
i ;µ, ρ)

{(C0, C1)Π(i), σΠ(i), vkΠ(i)}
(j)

i∈[n] ←$ {(C0, C1)i, σi, vki}
(j)

i∈[n]

return ({(C0, C1)Π(i), σΠ(i), vkΠ(i)}
(j)

i∈[n], π
(j), σ(j))

MixVerify({spkk}k∈[N ], {((C0, C1)i, σi, vki)}
(0)

i∈[n], {((C0, C1)i, σi, vki)}
(N)

i∈[n],

π
(k)

k∈[N ], {
∑i=n

i=1 vk
(k)
i }k∈[1..N−1], σ

(N)) :

check NIZK.Verify(π
(k)

k∈[N ], {
∑i=n

i=1 vk
(k)
i }k∈[0..N ])

check SAS.Verify({spkk}k∈[N ], {π(k) ||
∑i=n

i=1 vk
(k)
i }k∈[N ], σ

(N))

foreach i ∈ [n] check MSoRC.Verify(vk
(N)
i , (C0, C1)

(N)
i , σ

(N)
i )

Mix∗(mski, {mpk1, . . . ,mpkN}, π(N) ||
∑i=n

i=1 vk
(N)
i ) :

return MSig.Sign(mski, {mpk1, . . . ,mpkN}, π(N) ||
∑i=n

i=1 vk
(N)
i )

//Any combiner computes msig =
∑
H1(pki, {pk1, . . . , pkN})σi

MixVerify∗(avk, {((C0, C1)i, σi, vki)}
(0)

i∈[n], {((C0, C1)i, σi, vki)}
(N)

i∈[n], π
(N),msig) :

check NIZK.Verify(π(N),
∑i=n

i=1 vk
(N)
i ) ∧MSig.Verify(avk, π(N) ||

∑i=n
i=1 vk

(N)
i ,msig)

foreach i ∈ [n] check MSoRC.Verify(vk
(N)
i , (C0, C1)

(N)
i , σ

(N)
i )

Fig. 8. Algorithms MixInit,Mix,MixVerify,Mix∗ and MixVerify∗.

In the privacy game, the adversary provides two possible permutations for the case where the mix
server follows the protocol and it wins if it can identify the permutation used.

Definition 17 (Privacy). A mixnet is said to provide privacy in the certified key setting, if any
PPT adversary A has a negligible advantage in guessing b in the following security game:

1. The challenger generates certification and encryption keys.
2. The adversary A then
– decides on the corrupted users I∗ and generates itself their keys (uvki)i∈I∗

– decides on the corrupted mix-servers J ∗ and generates itself their keys (spki)i∈J ∗

– decides on the set I of the (honest and corrupted) users that will generate a message
– decides on the set J of the (honest and corrupted) mix-servers that will make mixes
– proves its knowledge of the secrete keys for each corrupted user in I∗ to get the MSoRC signatures

σi and ephemeral verification keys evki for ciphertexts of its choice
– generates the message tuples (Ti)i∈I∗ for corrupted users
3. The challenger generates the keys of the honest mix-servers (sskj , spkj)j∈J\J ∗ and the keys of the

honest users (uski, uvki)i∈I\I∗ and their message tuples (Ti)i∈I∗ .

The initial shuffle set is thus defined by SSet(0) = (Ti)i∈I . The challenger randomly chooses a bit
b←$ {0, 1} and then enters into a loop for j ∈ J with the attacker:
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Mix∗(mski, {mpk1, . . . ,mpkN}, π(N) ||
∑i=n

i=1 vk
(N)
i ) :

return MSig.Sign(mski, {mpk1, . . . ,mpkN}, π(N) ||
∑i=n

i=1 vk
(N)
i )

//Any combiner computes msig =
∑
H1(pki, {pk1, . . . , pkN})σi

MixVerify∗(avk, {((C0, C1)i, σi, vki)}
(0)

i∈[n], {((C0, C1)i, σi, vki)}
(N)

i∈[n], π
(N),msig) :

check NIZK.Verify(π(N),
∑i=n

i=1 vk
(N)
i ) ∧MSig.Verify(avk, π(N) ||

∑i=n
i=1 vk

(N)
i ,msig)

foreach i ∈ [n] check MSoRC.Verify(vk
(N)
i , (C0, C1)

(N)
i , σ

(N)
i )

Fig. 9. Algorithms Mix∗ and MixVerify∗.

– if j ∈ J ∗, A builds itself the new shuffle set SSet(j) with the proof proof(j)

– if j /∈ J ∗, A provides two permutations Πj,0 and Πj,1 of its choice, then the challenger runs the
mixing with Πj,b, and provides the output (SSet(j),proof(j))

In the end, the adversary outputs its guess b′ for b. The experiment outputs 1 if b′ = b and 0 otherwise.

Theorem 18 (Privacy). Our Mixnet scheme is private in the certified key setting if at least one mix
server is honest, assuming the public key unlinkability and signature adaption of our MSoRC scheme,
and the SXDH assumption.

Proof. We analyze what happens when an honest mixer runs the protocol, showing that in the
adversary’s view the output shuffle set and proof are independent on the permutation chosen and
any other information available to the adversary. Without loss of generality, we consider an honest
mixer j that gets SSet(j−1) = {((C0, C1)i, σi, Σi, vki)}

(j−1)
i∈[n] and proof(j−1). Soundness guarantees

that SSet(j−1) is well-formed with respect to the initial tuple SSet(0). The challenger, running mixer
j:

1. randomizes each vki ∈ SSet(j−1) with ρ to get vk
(j−1)
i . The public key unlinkability of MSoRC

guarantees that vk
(j−1)
i is unlinkable to the adversary (even if it knows the user’s secret key and

any previous randomizer from a corrupted mixer).
2. randomizes each (C0, C1)

(j−1)
i with µ and adapts Σ

(j−1)
i with µ and ρ to get (C0, C1)

(j)
i and

Σ
(j)
i . On the one hand, security of ElGamal under DDH ensures that (C0, C1)

(j)
i is unlinkable to

(C0, C1)
(j)
i . On the other hand, signature adaption of MSoRC guarantees that Σ

(j)
i looks like a

freshly computed signature for (C0, C1)
(j)
i and thus, unlinkable to Σ

(j−1)
i .

4.4 Extensions

Constant Verification. Using the multi-signature from [BDN18] (see Appendix E for details), we can
remove the linear dependency on N at the cost of introducing another round of interaction to the
mixnet as done in HPP20. These modifications are shown with Mix∗ and MixVerify∗ in Fig. 9 (enclosed
in boxes to emphasize that they are optional).

Multiple Ciphertexts. As discussed in Sec. 5 (where we present a detailed discussion concerning the
application of our scheme to e-voting), the encryption key pair can be distributed among a set of
trustees (e.g., as in [CGGI13]). Besides, longer plaintexts may have to be supported for complex
voting rules or to allow redundant encoding for the convenience of final counting. The authors of
[BF20] discussed how their SoRC scheme can be generalized to sign a vector of ElGamal ciphertexts
without increasing signature size. The idea is to define a key vector so that multiple ciphertexts can
be encrypted using the same randomness. Our construction is compatible with such generalization,
allowing users to obtain a single signature for multiple ciphertexts. Given an encryption key ek =
(ek1, · · · , ekn), a signing key (x0, · · · , xn+1), a ciphertext consisting of C0 = rG and Ci = Mi + reki
for 1 ≤ i ≤ n, the signature is:

Z := 1
s

(∑i=n
i=0 xiCi + xn+1G

)
, T := 1

s

(
x0G+

∑i=n
i=1 xieki

)
, Ŝ := sĜ
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Table 1. Comparison of computational costs with prior work.

Scheme Mixing
Rand-RCCA [FR22] (7n+ 6)E1 + (7n+ 8)E2 + 2nET + (9n+ 8)P
HPP20 [HPP20] (10n+ 12N + 11)E1 + (7n+ 12N + 10)E2 + (8N − 2)P
Ours∗ (6n+ 5)E1 + (2n+N + 2)E2 + (N + 6)P
Ours (6n+ 5)E1 + (2n+N + 2)E2 + 2P

Verification
Rand-RCCA [FR22] (6N(n+ 1)− 6n)E1 + (6N + 4nN)E2 − 4nE2 + 4NET + 4n(N − 1)P
Ours (14n+N + 3)P
Ours∗ (14n+ 5)P
HPP20 [HPP20] (8n+ 14)P

This way, users can encrypt, e.g., the ranking preference for each candidate keeping the signature
size constant. Since every vote is decrypted individually, the validity of each vote can be verified
at decryption time and malformed votes can be discarded. This contrasts with homomorphic voting
schemes like [CFSY96] for which adding such functionality is costly and non-trivial.

4.5 Performance Evaluation

In this section, we first compare the complexity our work with state-of-the-art mixnets constructions.
Subsequently we present experimental results of our protocol’s implementation.

Comparison. We compare our mixnet with the works by Hébant et al. [HPP20] and Faonio and Russo
[FR22] in Table 1 and Table 2, presenting computational and communication costs in descending
order w.r.t. their asymptotic complexity7. Computational and communication costs for verification in
HPP20 consider the use of a multi-signature as originally reported by the authors. Consequently, for
HPP20, we include verification costs of the individual proofs required to produce the multi-signature
as part of the mixing computational costs. HPP20 does not specify which signature the servers use
to sign their proofs and so we consider the use of BLS [BLS04] as it is highly efficient and compatible
with their setting.

In our case, we consider the standard scenario where verification depends linearly on the number
of mixers, and the optimized one that uses Mix∗ and MixVerify∗(denoted as Ours∗ in both tables)
for constant costs. In the standard one, the mixers do not need to verify individual proofs, but
they need to verify the partial aggregate signature. Therefore, we report the computational cost that
corresponds to the last mixer who has to perform N exponentiations in G2 to verify the messages from
all previous servers. Regarding the optimized case, we include the cost of verifying each individual
proof and the final aggregate signature as part of the mixing process just as we do for HPP20. For in
and out communication we include the server’s public keys needed to verify the signatures and related
messages (considering their original representation with sizes in source group instead of Zp). We recall
that our construction achieves a stronger security model compared to HPP20 and is, therefore, more
competitive.

Comparison with [FR22] requires us to make some assumptions since NIZK proofs NIZKsnd and
NIZKmx are not fully specified in their works [FFHR19, FR22, FHR23]. Consequently, we make the
simplifying assumptions (which are in their favor) that for NIZKmx we have a simple adaptively sound
QA-NIZK due to Kiltz and Wee [KW15], which under SXDH has a proof size of 2G1 elements,
and a Groth-Sahai NIZK for NIZKsnd (just considering pairing product equations) with a size of
4G1 + 4G2 elements. This allows us to compare the approaches in Table 1, where we consider the
popular BLS12-381 curve where sizes of group elements in bits are as follows: |G2| = 2 · |G1|, |G1| =
2 · |Zp|, |Zp| = 256 and |GT | = 12 · 381. For the scalar multiplications in the groups G1 (E1) and
G2 (E2), the exponentiation in group GT (ET ) as well as pairing computation (P ), we have that
scalar multiplications in G1 are the cheapest and the operations in G2, GT and P are a factor of
2 as well as 7 more expensive than in G1. Firstly, we observe that HPP20 and our approach only
linearly depend on the parameters n and N . In contrast [FR22] have a dependency on n · N in the
7 We note that Faonio et al. initially proposed the use of Rand-RCCA PKE as a building block to construct

mixnets in [FFHR19]. There, the Rand-RCCA PKE needs to provide public verifiability. In [FR22] the
authors manage to get rid of this property, achieving more efficient constructions.
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Table 2. Comparison of communication costs with prior work. Approximated concrete costs are provided for
the most efficient scheme, considering N = 10 and n = 25k.

Scheme Mixing
Comm. (in) Comm. (out)

Rand-RCCA [FR22] (7n+ 2N)G1 + 8nG2 + nGT (16n+ 4)G1 + 12nG2 + 2nGT

HPP20 [HPP20] (8n+ 10N + 7)G1 + (6n+ 8N + 8)G2 (8n+ 17)G1 + (6n+ 16)G2

Ours∗ (4n+N + 2)G1 + (4n+ 6N)G2 (4n+ 3)G1 + (4n+ 3)G2

Ours (4n+N + 2)G1 + (4n+ 5N)G2 (≈ 18MB) (4n+ 3)G1 + (4n+ 2)G2 (≈ 18MB)

Verification
Rand-RCCA [FR22] (16n+ 4)G1 + 12nG2 + 2nGT

Ours (10n+ 2N + 1)G1 + (8n+ 7N + 1)G2

HPP20 [HPP20] (12n+ 4)G1 + (14n+ 7)G2

Ours∗ (10n+ 1)G1 + (8n+ 3)G2 (≈ 40MB)

Table 3. Running times of each protocol in seconds.

MixVerify
n MixInit Mix MixVerify∗ (N = 5) (N = 10)
1k 2.7 0.8 2.7 2.7 2.7
10k 27.1 8.3 27 27 27
25k 67.6 20.7 67.4 67.4 67.4
50k 135 41.3 134.5 134.6 134.5

verification costs and generally higher computational and bandwidth costs overall. When taking a
closer comparison with the more scaleable solution (HPP20), our effort for verification is comparable
(even for the variant where we are linear in N as typically N ≤ 10), but in all other aspects we
improve. For instance, if one sets n = 1000 and N = 10, mixing is around 3.5x more efficient with
our approach and bandwidth savings are around 1.5x (for inputs as well as outputs to mixing) and
around 3x for the optimized case (and 1.1x for the unoptimized one).

Experimental Results. We implemented a prototype of our protocols in Rust using the blasters library
[Lab21], which implements the pairing-friendly BLS12-381 curve. BLAKE3 [OANWO20] was used to
instantiate hash functions. Source code and documentation to reproduce our results are available
upon request. We used Rust’s Criterion library and the nightly compiler with no extra optimizations
to run the benchmarks on a MacBook Pro M3 with 32GB of RAM. The (interactive) signing protocol
of our MSoRC scheme (Fig. 5) takes 6.4ms while MixSign (which includes the ZKPoK’s) takes 8.1ms.

Running times of other protocols are summarized in Table 3, confirming the linear complexity
of our mixnet scheme. In all cases, the standard deviation was below 1s. In this regard, we recall
that the main difference in terms of computation between MixVerify and MixVerify∗ is on the number
of N pairings and multi-exponentiation executed. A paring takes around 380 microseconds while a
multi-exponentiation for N = 10 takes 737 microseconds. Thus, for a small N , their difference in the
running times is less noticeable compared to others as shown in the table. We omit Mix∗ as it’s a
single signature computation but recall that in that case, each mixer runs MixVerify before Mix∗ and
one gets higher overall running times for the mixing process.

Our prototype does not make use of parallelization libraries such as Rayon. However, our scheme
is highly compatible with such techniques due to the individual processing of tuples during mixing
and verification. Moreover, practical deployments would use proper servers, allowing our solution to
scale further.

5 Application to Receipt-Free E-voting

As evidenced by the vast literature (see e.g., [SK95, Abe98, Abe99, AH01, BG02, Adi08, CKLM13,
LQT20, KER+22, ABGS23b]), voting (or e-voting) is by far the most popular application of mixnets.
We demonstrate that our mixnet construction naturally supports a receipt-free e-voting scheme.

Our scheme follows the standard blueprint of mix-type e-voting. There are voters, a certificate
authority (CA), mix servers (MX), and tally servers (TA). We implicitly use a trustful bulletin board

18



(BB) that records all published data authentically and in a non-erasable manner. The election process
consists of four phases, i.e., setup, registration, vote casting, and tallying, which correspond to our
mixnet procedures.

Setup phase. MixSetup and MixKG are executed by relevant entities. Each voter ui generates a key pair
(uski, uvki). CA generates the public parameters and key pair (ask, avk). The tally servers generate
an ElGamal encryption key pair, dk and ek, by running a secure distributed key generation protocol,
e.g., [Kat23, AF04, CL24]. All public parameters and verification keys are published authentically.

Registration phase. Once the voting phase begins, ui decides their vote Mi and engages in MixSign
with the CA. This process is one-time for each voter. Voter ui obtains an encrypted and signed ballot
(σi, C

′
i, uvki, evki). In MixSign, CA’s proof of re-randomization, π′ ← ZKPoK[µ : C ′

i = Rndmz(ek, Ci;µ)],
must be done in a simulatable manner for the sake of receipt-freeness. The standard five-round aug-
mentation of sigma-protocols provides fully simulatable zero-knowledge. A sigma-protocol for disjunc-
tive coupling of the statement with a knowledge of secret-key uski gives a non-interactive designated
verifier proof in the random oracle model that also suffices for the purpose.

Casting phase. Each voter casts their ballot (σi, C
′
i, uvki) on BB. Communication happens over a

public channel, and the process is done only once. At the end of this phase, all evki corresponding to
cast ballots are published by the CA.

Tallying phase. MixInit is invoked to screen irregular votes. It is a public process that can be executed
by, e.g., a representative of mix servers. Each mix server executes Mix in order and MixVerify at the
end. Once the verification passes, the tallying servers decrypt every verified ciphertext with distributed
ElGamal decryption and publish a proof of correct decryption. The final result is publicly computed
from the decryption result published on BB.

5.1 Security

Trust model. First, we clarify which authority is trusted for which property.

CA: Trusted for verifiability, which relies on the unforgeability of the CA’s signatures. Untrusted for
ballot privacy. Trusted for receipt-freeness.

MX: Untrusted for verifiability and receipt freeness. At least 1 server is trusted for privacy.
TA: Untrusted for verifiability and receipt freeness. At least k-out-of-N servers are trusted for privacy.
BB: Trusted for all properties. It authentically holds data, i.e., it is publicly verifiable who wrote

what.

No trust is assumed on voters for any property.

Receipt-freeness. Receipt-freeness inherently requires a moment when the coercer does not monitor
or control every user. We require absence of the coercer during the execution of MixSign. The commu-
nication is done through an untappable channel or assumes the absolute absence of the coercer. Since
the ciphertext is randomized by the CA, the user cannot prove to the coercer that it used the coercer’s
ciphertext. After the user obtains the signature, it can only be adapted to a ciphertext randomization,
so it’s not possible to change the encrypted vote. More formally, we define receipt-freeness in a way
that user ui completed the registration with vote Mi of its own choice and can create a fake view of
MixSign concerning a forced vote M̃i that is indistinguishable from the actual view. We recall MixSign
to explain how ui creates such a fake view.

1. Follow the first step of MixSignui
with M̃i to create (C̃i,π).

2. Pick C ′
i and evki from the real view. Simulate a proof of re-encryption for C ′

i and C̃i : π′ ←
ZKPoK[C ′

i = Rndmz(ek, C̃i)].
3. Use the real view for MSoRC.ISign.

The simulated view differs from the proper distribution at C ′
i and π. Distinguishing C ′

i being
re-randomization of C̃i or not is infeasible if the DDH assumption holds in G1. Simulation of π′ is due
to the quality of the zero-knowledge simulator. Accordingly, the fake view is indistinguishable from
the real one if the SXDH assumption holds for BGGen.
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Thus, vote selling or buying is of no use. We stress that users can be coerced before the execution
of MixSign. If users are mandated to use a given vote M̃i, during MixSign, users can use their real
choice Mi during the signing process. The computationally bounded coercer will have no way to
distinguish between cases. If users are coerced afterward, the unforgeability of MSoRC guarantees
that ciphertext-signature pairs can only be adapted to the same plaintext.

Verifiability, fairness, and voter privacy. A voting result is correct if it is equal to the outcome
obtained by applying the tally computation on the votes Mi of voters who completed the registration
and casting phases. (Note that, in our scheme, Mi is uniquely determined for each transcript of
a completed registration.) A voting scheme is universally verifiable when any third party (verifier)
accepts the final voting result if and only if it is correct. The “only if” part can be relaxed by
incorporating computational assumptions or the trust model. The above verifiability captures the
notion of fairness that no votes can be altered once votes are cast.

Our scheme is verifiable since the mixnet is sound, all proofs made by MX are publicly verifiable,
and the distributed decryption by TA is also sound and publicly verifiable. Note that the soundness
of the mixnet requires the unforgeability of the signatures of CA. Hence, CA is trusted in a way that
it would not do anything that risks the unforgeability of MSoRC (e.g., share its secret key).

Verifiability also depends on the fact that every input to the mixnet comes from one voter as the
security of the mixnet only concerns one-to-one correspondence between the input ciphertexts and the
resulting plaintexts. Verifiablity captures the one-voter-one-vote principle, which must be considered
separately. Our design choice is to authenticate users at the registration and casting phases to maintain
structural consistency between the voting scheme and the underlying mixnet for easier understanding.
We could also choose CA to send the encrypted ballot to BB on behalf of each user at the end of
each registration. In this case, MixInit can be replaced with the trust of CA. This would not change
the trust model since CA is trusted for soundness in our original construction.

We note that voting with authentication inherently reveals who has voted or not. Some consider
this as a benefit for democracy, while others view it as a risk to privacy. Practical non-cryptographic
countermeasures have been considered, e.g., CA casting null votes for absentees. Another approach
would be that if CA sends the ballots to BB on voters’ behalf, uvki and evki in a ballot are replaced
with uvki + evki. It protects absentees’ privacy and provides so-called everlasting privacy [CFSY96,
MN07, HMMP23b], which claims privacy against unbound adversaries under trust assumptions. A
drawback would be that it requires more trust in CA.

Common threats for mix-type voting. A replay attack violates a particular voter’s privacy by copying a
victim’s encrypted ballot and seeing if the same vote appears at the end. This is a common risk for mix-
type voting with public bulletin boards where ballots are published successively during the casting
phase. Many voting schemes have been proven vulnerable to these attacks [MMR22] and possible
alternatives to mitigate them should be compatible with receipt-freeness. Our scheme prevents this
by letting the voters prove their knowledge of the plaintext, and it accommodates receipt-freeness
thanks to the re-encryption.

An italian attack [Hea07] can also violate the privacy of a particular voter and it is effective for
coercion. In preferential voting, there could be some rarely chosen combination of preferences. The
coercer can pick such a rare choice and ask a victim to submit it. As it appears at the end, the coercer
can see if the victim obeyed. It is an unavoidable threat against any open-ballot voting with a large
space of choices. We refer to [PB09, Yan23] for more discussion.

5.2 Comparison

Table 4 compares the trust model and voting properties of our construction with previously discussed
mix-type voting schemes that follow the same blueprint. “Privacy” stands for the infeasibility of
associating individual votes and voters when all voters are honest. The “Soundness” columns show
which entity must be trusted to guarantee a correct outcome. Namely, if an authority marked as T
acts in a way that betrays the defined trust, the result of the election can be incorrect, i.e., different
from what is directly computed from the plain input, and it is not necessarily noticed by the public.
“U” for soundness means that, if the result of the election is obtained, it is correct without assuming
any trustful behavior on the respective authority. The “Properties” columns show if the respective
property is achieved even if voters and all authorities marked as U are corrupted. In Appendix F, we
extend the comparison to voting schemes that follow a different paradigm.
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Table 4. Comparison of trust model and voting properties. V = Voter, CA = Certification Authority, MX
= Mix Servers, TA = Tallying Authority, U = Untrusted, T = Trusted, (x, N) = x-out-of-N trust. RF =
Receipt Freeness, CR = Coercion Resistance, RA = Replay Attack Resistance, F = Fairness, UV = Universal
Verifiability. See text for details on each term.

Scheme Privacy Soundness Properties
V CA MX TA V CA MX TA RF/CR RA F UV

Rand-RCCA U - (1, N) (k, N) U - U (k, N) × ✓ ✓ ✓
HPP20 T U (1, N) (k, N) T T U (k, N) × × × ×
Ours U U (1, N) (k, N) U T U (k, N) ✓ ✓ ✓ ✓

HPP20 and Rand-RCCA. The model from [FFHR19, FR22, FHR23] does not discuss any authen-
tication mechanism, but we assume users can post signed ciphertexts to the BB using a previously
registered key with the CA (although the corresponding entry in the table is left empty as it’s not de-
fined in their work). Since they include proofs of plaintext knowledge, replay attacks can be avoided,
but they cannot provide receipt-freeness (nor coercion-resistance). Privacy and verifiability are en-
sured by their verify-then-decrypt protocol. Considering HPP20, as discussed in Appendix A, their
model only provides guarantees for honest users, and hence, they cannot achieve any of the properties
required for e-voting.

6 Conclusion

We developed the notion of MSoRC as a combination of threshold mercurial signatures and signatures
on randomizable ciphertexts. We presented a concrete instantiation with an optimized variant that
fits naturally as the core building block for the scalable mixnet framework of HPP20 [HPP20].

Our improvements over HPP20 are twofold. From the efficiency point of view, substituting GS
proofs and incorporating aggregate signatures, we obtain an even more efficient, scalable mixnet
protocol. This is demonstrated by our benchmarks on both verification strategies. In addition, public-
key unlinkability of our MSoRC scheme is the cornerstone for our stronger security that withstands
collusion between users and mix servers, or mix servers and the certificate authority while the users
are assumed honest in previous work. As a result, our mixnet suits more practical e-voting where
individual voters are not fully trustful. Scalability of our mixnet is supported by an implementation.
In this regard, for 50k voters and 10 mix servers the worst-case time for mixing takes around 40
seconds and the verification of the whole mixing process (input validation plus out verification) takes
less than 5 minutes on a commodity laptop, without any parallelization technique. We also stress
the modular design of our approach that allows for a smoother integration of the required building
blocks.
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Appendix

A Mixnets from Linearly Homomorphic Signatures

This section presents HPP20’s mixnet framework [HPP20], the cornerstone upon which we build upon.
Simply put, it is based on the idea that each ciphertext can be handled independently, and servers
(mixers) are responsible for randomizing and permuting them. Their shuffle approach comprises four
algorithms: MixSetup (global parameters), MixKG (key material for the CA, servers and users), MixInit
(run by users to cast their messages) and Mix (run by servers to mix messages), and MixVerify (verifies
the outcome).

First, users run MixInit to send a tuple Ti = (Ci, σi, vki, Σi) where Ci is an ElGamal ciphertext
containing the user’s plaintext message, σi is the user’s one-time linearly homomorphic signature for
Ci, and Σi is the CA’s linearly homomorphic signature for vki (the public key against σi verifies).
Notably, this requires a rather complex set up of tags to randomize each signature, and the use of
“canonical vectors” to enforce correct randomizations of keys and ciphertexts. This contrasts with our
approach that, thanks to the use of MSoRC, removes the need for different signature schemes.

Once all N users in the system have submitted their tuples, the initial shuffle set SSet(0) = (Ti)ni=1

is assembled. Subsequently, the Mix process takes place and every server Sj outputs a new shuffle
set SSet(j) = {(CΠ(i), σΠ(i), vkΠ(i), ΣΠ(i))

(j)
i∈[n], (π

(j), σ(j))}, containing the server’s NIZK proof and
signature (π(j), σ(j)) to verify the the correct randomization of each element of TΠ(i).

The linear dependence on N for the server’s proofs and signatures (π(k), σ(k))Nk=1 can be removed
using Groth-Sahai proofs. As explained in HPP20, each server can compute a partial (updatable) proof
proof(j) from proof(j−1). Servers verify the individual proofs and the final proof proof(N) to then sign
proof(N) using the multi-signature scheme from Boneh-Drijvers-Neven [BDN18]. As a result, only the
initial and last shuffle sets (SSet(0) and SSet(N)) and a single proof-signature pair are required to
run MixVerify.

Security Model. HPP20 requires soundness and privacy for honest users. Informally, soundness means
that all plaintexts of honest users in the input shuffle set are in the output shuffle set. Likewise, privacy
means that messages of honest users are unlinkable from the input shuffle set to the output shuffle
set. For soundness, only the initial input shuffle set and output shuffle set are considered.

Definition 19 (Soundness for Honest Users [HPP20]). A mixnet is said to be sound for honest
users in the certified key setting, if any PPT adversary A has a negligible success probability in the
following security game:

1. The challenger generates certification and encryption keys.
2. The adversary A then
– decides on the corrupted users I∗ and generates itself their keys (vki)i∈I∗

– proves its knowledge of the secrete keys to get the certifications Σi on vki for i ∈ I∗
– decides on the set I of the (honest and corrupted) users that will generate a message
– generates the message tuples (Ti)i∈I∗ for corrupted users but provides the messages (Mi)i∈I\I∗

for the honest ones
3. The challenger generates the keys of the honest users (ski, vki)i∈I\I∗ and their tuples (Ti)i∈I\I∗ .

The initial shuffle set is thus defined by SSet = (Ti)i∈I .
4. The adversary mixes SSet in a provable way into (SSet′, proof ′).

The adversary wins if MixVerify(SSet,SSet′, proof ′) = 1 but {Dec∗(SSet)} ̸= {Dec∗(SSet′)}, where
Dec∗ extracts the plaintexts using the decryption key, but ignores messages of non-honest users (using
the private keys of honest users) and sets of plaintexts can have repetitions.

The privacy games allows the adversary to provide two possible permutations for honest mix
servers so that the challenger uses one of them. The adversary’s goal is to identify which was the
permutation used, capturing the unlinkability notion behind the privacy definition.

Definition 20 (Privacy for Honest Users [HPP20]). A mixnet is said to provide privacy for
honest users in the certified key setting, if any PPT adversary A has a negligible advantage in guessing
b in the following security game:
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1. The challenger generates certification and encryption keys.
2. The adversary A then
– decides on the corrupted users I∗ and generates itself their keys (vki)i∈I∗

– proves its knowledge of the secrete keys to get the certifications Σi on vki for i ∈ I∗
– decides on the corrupted mix-servers J ∗ and generates itself their keys
– decides on the set J of the (honest and corrupted) mix-servers that will make mixes
– decides on the set I of the (honest and corrupted) users that will generate a message
– generates the message tuples (Ti)i∈I∗ for corrupted users but provides the messages (Mi)i∈I\I∗

for the honest ones
3. The challenger generates the keys of the honest mix-servers j ∈ J \ J ∗and the keys of the honest

users (ski, vki)i∈I\I∗ and their message tuples (Ti)i∈I∗ .

The initial shuffle set is thus defined by SSet = (Ti)i∈I . The challenger randomly chooses a bit
b←$ {0, 1} and then enters into a loop for j ∈ J with the attacker:

– let I∗j−1 be the set of indices of the tuples of the corrupted users in the input shuffle set SSet(j−1)

– if j ∈ J ∗, A builds itself the new shuffle set SSet(j) with the proof proof(j)

– if j /∈ J ∗, A provides two permutations Πj,0 and Πj,1 of its choice, with the restriction they
must be identical on I∗j−1, then the challenger runs the mixing with Πj,b, and provides the output
(SSet(j),proof(j))

In the end, the adversary outputs its guess b′ for b. The experiment outputs 1 if b′ = b and 0 otherwise.

Security against malicious users. Security for honest users is not sufficient for voting applications.
To see why, we consider the following example that is possible in their model. Assume the adversary
controls four out of ten voters in an election of three candidates (C1, C2 and C3). Let us also assume
that the six votes from honest users are distributed so that C1 gets four, C2 gets one and so does C3.
Initially, the adversary mandates the coerced users to vote such that two votes are given to C1, one to
C2 and one to C3. Once that all votes are casted an exit poll reveals that C1 is the favourite. Knowing
this, the adversary colludes with the first mix server to change the votes of coerced users such that
only the vote for C3 is counted (the others are replaced by randomizations of that vote). None of the
votes from honest users is discarded nor modified yet the election outcome changes. While such an
action is not a flaw in the security model, it is clearly a violation of voting schemes known as fairness.
The essential problem is that the universal verifiability is lost under the collusion of the first mix
server and some users. The authors consider a partial fix to this issue, adding another Groth-Sahai
proof as discussed in Sec. 6.1 from HPP20. However, such fix still allows replay attacks [CS11] that
should also be avoided in voting applications.

B Couteau & Hartmann’s Proof System

Below we give the NIZK proof system for LA in the framework of CH20 (Sec. 7.1). Security has been
proven under the kerMDH assumption [MRV16] in [CH20].

– NIZK.CRSGen(1κ): pp←$ BGGen(1κ); z ←$ Zp; τ ← z; Z ← zG; crs← (pp, Z); return ((pp, crs), τ)
– NIZK.Prove(crs,A, x, w): r ←$ Zp;

a← rA; d← wZ + rG; π ← (a, d); return π
– NIZK.Verify(crs,A,x, (a, d)):

return e(d,A0) = e(Z, x0) + e(G, a0) ∧ e(d,A1)
= e(Z, x1) + e(G, a1) ∧ e(d,A2) = e(Z, x2) + e(G, a2)

Batch Verification. The proof system from [CH20] is compatible with the batch verification technique
from [FGHP09] that ports the small exponents test [BGR98] to the pairing setting. Given two valid
proofs (a, d) and (a′, d′) for A and A′ respectively, a naive verification would have to check six pairing
equations:

e(d,A0) = e(Z, x0) + e(G, a0) ∧ e(d,A1) = e(Z, x1) + e(G, a1)

∧ e(d,A2) = e(Z, x2) + e(G, a2) ∧ e(d′,A′
0) = e(Z, x′0) + e(G, a′0)

∧ e(d′,A′
1) = e(Z, x′1) + e(G, a′1) ∧ e(d′,A′

2) = e(Z, x′2) + e(G, a′2)
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With [FGHP09], a verifier can instead sample (δi)i∈[6] where δi is an ℓ-bit element of Zp and
check a single equation given by: e(d,Aδ1

0 Aδ2
1 Aδ3

2 ) + e(d′,A′δ4
0 A′δ5

1 A′δ6
2 ) = e(Z, xδ10 xδ21 xδ32 x′0

δ4x′1
δ5x′2

δ6)

+ e(G, aδ10 aδ21 aδ32 a′0
δ4a′1

δ5a′2
δ6).

There is an efficiency trade-off: the larger ℓ is (in general ℓ = 80), the better are the soundness
guarantees.

C Proof of Theorem 14

Proof. We consider an adversary A similar to that one against the unforgeability game from Def. 3.
The difference is that we let the challenger generate the encryption keys and give the adversary access
to ek only. To prove unforgeability we follow a similar strategy (in parts verbatim) to that of [BF20].
The main difference is that now, the generic adversary no longer controls the secret key dk = x.
Consequently, group elements output by the adversary can be a linear combination of previously seen
elements, which includes the representation of x in the GGM. To prove that our modified scheme is
also unforgeable w.r.t. the interactive signing protocol (Def. 8), we need to modify the simulator from
Fig. 6 to drop S and simulate it in the first ZKPoK, which can easily be done under DDH.

We begin observing that the challenger picks (sk, vk) = ((x0, x1, x2), (X̂
∗
0 = x0Ĝ, X̂∗

1 = x1Ĝ, X̂∗
2 =

x2Ĝ)), (dk, ek) = (x,X = xG), and randomness si for each of the adversary’s signing queries.

After seeing vk and signatures (Zi, Ŝi, Ti)
k
i=1 (computed with randomness si) on queries (C(i)

0 ,C(i)
1 )ki=1,

A outputs (C
(k+1)
0 , C(k+1)

1 ), a signature (Z∗, Ŝ∗, T ∗) and verification key vk∗ = (X̂∗
0 , X̂

∗
1 , X̂

∗
2 ). Since

A is a generic forger, all computed elements must be a linear combination of previously seen elements.
Consequently, the following equations should hold for a suitable set of coefficients chosen by A:

C
(i)
0 = γ(i)G+ γ(i)

x X +

i−1∑
j=1

(γ
(i)
z,jZj + γ

(i)
t,jTj)

C
(i)
1 = κ(i)G+ κ(i)

x X +

i−1∑
j=1

(κ
(i)
z,jZj + κ

(i)
t,jTj)

Z∗ = ζG+ ζ(i)x X +

k∑
j=1

(ζz,jZj + ζt,jTj)

Ŝ∗ = ϕĜ+ ϕ0X̂0 + ϕ1X̂1 + ϕ2X̂2 +

k∑
j=1

ϕs,jŜj

T ∗ = τG+ τ (i)x X +

k∑
j=1

(τz,jZj + τt,jTj)

X̂∗
0 = χ0Ĝ+ χ0

0X̂0 + χ0
1X̂1 + χ0

2X̂2 +

k∑
j=1

χ0
s,jŜj

X̂∗
1 = χ1Ĝ+ χ1

0X̂0 + χ1
1X̂1 + χ0

2X̂2 +

k∑
j=1

χ1
s,jŜj

X̂∗
2 = χ2Ĝ+ χ2

0X̂0 + χ2
1X̂1 + χ2

2X̂2 +

k∑
j=1

χ2
s,jŜj

Moreover, for all 1 ≤ i ≤ k, we can write the discrete logarithms zi and ti in basis G of the
elements Zi =

1
si
(x0C

(i)
0 +x1C

(i)
1 +x2G) and Ti =

1
si
(x0G+x1X) from the oracle answers. We have:
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zi =
1

si
(x0(γ

(i) + γ(i)
x x+

i−1∑
j=1

(γ
(i)
z,jzj + γ

(i)
t,j tj))

+ x1(κ
(i) + κ(i)

x x+

i−1∑
j=1

(κ
(i)
z,jzj + κ

(i)
t,jtj)) + x2)

ti =
1

si
(x0 + x1x)

A successful forgery (Z∗, Ŝ∗, T ∗) on (C
(k+1)
0 , C(k+1)

1 ) satisfies the verification equations, and we
can take the discrete logarithms in base e(G, Ĝ) for each equation as shown below:

(ζ + ζxx+

k∑
j=1

(ζz,jzj + ζt,jtj))(ϕ+ ϕ0x0 + ϕ1x1

+ϕ2x2 +

k∑
j=1

ϕs,jsj) = αx0c
(k+1)
0 + αx1c

(k+1)
1 + αx2

(2)

(τ + τxx+

k∑
j=1

(τz,jzj + τt,jtj))(ϕ+ ϕ0x0 + ϕ1x1

+ϕ2x2 +

k∑
j=1

ϕs,jsj) = αx0 + αx1x

(3)

Equations (2) and (3) are valid with respect to the forged key (X̂∗
0 , X̂

∗
1 , X̂

∗
2 ). However, since

verification pass, we have that [X̂∗
i ]pk = [X̂i]pk and thus ∃ α ∈ Z∗

p s.t. X̂∗
i = αX̂i, i ∈ {0, 1, 2}8.

Furthermore, we can interpret the previous verification equations as multivariate rational functions
in variables x0, x1, x2, x, s1, . . . , sk, unknown to A.

We begin analyzing if α can be zero modulo any xi, as this will prove useful later. We can take
the discrete logarithms in base Ĝ for each equation defining X̂∗

i to obtain:

αx0 = χ0 + χ0
0x0 + χ0

1x1 + χ0
2x2 +

k∑
j=1

χ0
s,jsj

αx1 = χ1 + χ1
0x0 + χ1

1x1 + χ0
2x2 +

k∑
j=1

χ1
s,jsj

αx2 = χ2 + χ2
0x0 + χ2

1x1 + χ2
2x2 +

k∑
j=1

χ2
s,jsj

From the above, it follows that for α to be zero modulo any xi, all the of coefficients must be zero,
which is a contradiction.

In the following, we assume without loss of generality that (ϕ+ϕ0x0+ϕ1x1+ϕ2x2+
∑k

j=1 ϕs,jsj) ̸=
0 because Ŝ∗ ̸= 0.

As in [BF20], we now interpret the equalities over the ring Zp(s1, . . . , sk)[x0, x1, x2, x] as well
as over Zp(s1, . . . , sk)[x0, x1, x2, x]/(x0, x1, x2, x) ≡ Zp(s1, . . . , sk)

9. Over such quotient zi = 0 and
ti = 0, and thus, (2) and (3) become:

ζ(ϕ+

k∑
j=1

ϕs,jsj) = 0 (4)

8 Such relation is efficiently checkable by the challenger (it knowns sk).
9 This interpretation is possible because x0, x1 and x2 never appear in the denominators of any expression.
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τ(ϕ+

k∑
j=1

ϕs,jsj) = 0 (5)

Case 1: If (ϕ +
∑k

j=1 ϕs,jsj) = 0 then ϕ = ϕs,j = 0. However, this would imply that S∗ is a linear
combination of the public key. But this can only hold if it’s the trivial one, leading to a contradiction.
Case 2: (ϕ+

∑k
j=1 ϕs,jsj) ̸= 0. We have ∀i ∈ {1, . . . , k} : τ = ζ = 0. Hence, (2) and (3) turn into:

(ζxx+

k∑
j=1

(ζz,jzj + ζt,jtj))(ϕ+ ϕ0x0 + ϕ1x1

+ϕ2x2 +

k∑
j=1

ϕs,jsj) = αx0c
(k+1)
0 + αx1c

(k+1)
1 + αx2

(6)

(τxx+

k∑
j=1

(τz,jzj + τt,jtj))(ϕ+ ϕ0x0 + ϕ1x1

+ϕ2x2 +

k∑
j=1

ϕs,jsj) = αx0 + αx1x

(7)

Computing the above modulo (x0, x1, x2) we get ζx = τx = 0. Putting back x2 and looking modulo
(x0, x1), we get:

(

k∑
j=1

ζz,j
1

sj
)(ϕ+ ϕ2x2 +

k∑
j=1

ϕs,jsj) = α (8)

(

k∑
j=1

τz,j
x2

sj
)(ϕ+ ϕ2x2 +

k∑
j=1

ϕs,jsj) = 0 (9)

We deduce τz,j = 0 ∀j ∈ {1, . . . , k}. Now, equation (7) modulo (x, x1) becomes:

(

k∑
j=1

τt,j
1

sj
)(ϕ+ ϕ0x0 +

k∑
j=1

ϕs,jsj) = α (10)

We first observe that there exists j0 such that τt,j0 ̸= 0 as otherwise T ∗ would be zero and thus a
contradiction. Then, looking at the degrees in sj0 , the left hand size of the equation has degsj0 = −1,
which means that (ϕ + ϕ0x0 +

∑k
j=1 ϕs,jsj) should have degree one in sj0 . Hence, there is also at

least one ϕs,j0 ̸= 0. Suppose there exist j1 ̸= j2 ∈ {1, . . . , k} such that ϕs,j1 ̸= 0 and ϕs,j2 ̸= 0. As in
[BF20], that leads to a contradiction. So there is only one non-zero coefficient. Similarly, we conclude
∀i ∈ {1, . . . , k} \ {j0} : ζz,j = τt,j = 0.

Now, equations (6) and (7) become:

(ζz,j0zj0 +

k∑
j=1

(ζt,j
x0 + x1x

sj
))(ϕ+ ϕ0x0 + ϕ1x1

+ϕ2x2 + ϕs,j0sj0) = αx0c
(k+1)
0 + αx1c

(k+1)
1 + αx2

(11)

(τt,j0
x0 + x1x

sj0
)(ϕ+ ϕ0x0 + ϕ1x1 + ϕ2x2 + ϕs,j0sj0) = αx0 + αx1x (12)
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Prover: S0, Ŝ0, s0 Verifier: S0, Ŝ0

a1 ←$ Zp;A1 = a1G; Â1 = a1Ĝ
A1, Â1−−−−−→

c←−−−− c←$ Zp

q1 = a1 − cs0
q1−−−−−→ return A1 = q1G+ cS0 ∧ Â1 = q1Ĝ+ cŜ0

Fig. 10. ZKPoK protocol for π0.

Prover: Z, T, Ŝ, Z0, T0, Ŝ0, r, s1 Verifier: Z, T, Ŝ, Z0, T0, Ŝ0

a1, a2 ←$ (Zp)
2;A1 = a1G+ a2T

A2 = a1G+ a2Z; Â4 = a2Ŝ0
A1, A2, Â4−−−−−−−−→

q1 = a1 − cr
c←−−−−−−−− c←$ Zp

q2 = a2 − cs1
q1, q2−−−−→ return A1 = q1G+ q2T + cT0

∧ A2 = q1G+ q2Z + cZ0 ∧ Â4 = q2Ŝ0 + cŜ

Fig. 11. ZKPoK protocol for π̃1.

equating coefficients for x0 we get τt,j0ϕs,j0 = α, which means that τt,j0 ̸= 0. Moreover, we deduce,
ϕ = ϕ0 = ϕ1 = ϕ2 = 0. Besides, ζz,j0ϕs,j0 = α (taking modulo x0, x1). This means that ζz,j0 = τt,j0 .
Now, we have:

x0c
(j0)
0 ζz,j0ϕs,j0 + x1c

(j0)
1 ζz,j0ϕs,j0

+ϕs,j0sj0

k∑
j=1

(ζt,j
x0 + x1x

sj
) = αx0c

(k+1)
0 + αx1c

(k+1)
1

(13)

Equating coefficients for x0 and x1 we get that c(j0)0 = c
(k+1)
0 and c

(j0)
1 = c

(k+1)
1 , meaning that it’s

a ciphertext that has already been queried.
The above means that the adversary cannot win the unforgeability game in the ideal world (because

the first winning condition cannot be met if the other two hold). It remains to see that the statistical
distance from the adversary’s point of view when interacting in the real game (for concrete choices
of x0, x1, x2, x, s1, . . . , sk) with the ideal one is negligible. This follows from the analysis in [BF20],
which applies the Schwartz-Zippel lemma [Sch80].

D Zero-knowledge Proofs

We instantiate the ZKPoK of our interactive signing protocol in the ROM using known techniques [FS87,
Sch91, CP93]. π0 := (ZKPoK[s0 : S0 = s0G ∧ Ŝ0 = s0Ĝ]) is shown in Fig.10. π1 := (ZKPoK[(r, x1

0, x
1
1, x

1
2) :

T1 = rS0+x1
0G+x1

1X ∧ Z1 = rS0+x1
0C0+x1

1C1+x1
2G ∧ X̂1

0 = x1
0Ĝ ∧ X1

1 = x1
1Ĝ ∧ X1

2 = x1
2Ĝ]) is

shown in Fig.12. They are a simple application of standard ZKPoK. However, π̃0 := (ZKPoK[(s0, x
0
0, x

0
1, x

0
2) :

T0 = 1
s0
(T1 + x0

0G+ x0
1X) ∧ Z0 = 1

s0
(Z1 + x0

0C0 + x0
1C1 + x0

2G) ∧ S0 = s0G ∧ X̂0
0 = x0

0Ĝ ∧ X̂0
1 =

x0
1Ĝ ∧ X̂0

2 = x0
2Ĝ]) and π̃1 := (ZKPoK[(r, s1) : T = 1

s1
(T0−rG) ∧ Z = 1

s1
(Z0−rG) ∧ Ŝ = s1Ŝ0]) in-

clude multiplication of witness variables in some clauses. Hence, we need to re-arrange the statements.
We change π̃0 into

ZKPoK[(s0, x
0
0, x

0
1, x

0
2) : T1 = s0T0 − x0

0G− x0
1X ∧

Z1 = s0Z0 − x0
0C0 − x0

1C1 − x0
2G ∧

S0 = s0G ∧
X̂0

0 = x0
0Ĝ ∧ X̂0

1 = x0
1Ĝ ∧ X̂0

2 = x0
2Ĝ]

and turn π̃1 into ZKPoK[(r, s1) : T0 = rG+ s1T ∧ Z0 = rG+ s1Z ∧ Ŝ = s1Ŝ0]
These statements are equivalent to the original ones that were shownm in Fig. 13 and Fig. 11.
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Prover: T1, Z1, {X̂1
i , x

1
i }i∈{0..2}, Verifier: T1, Z1, {X̂1

i }i∈{0..2},

S0, X,C0, C1, r S0, X,C0, C1

a1, a2, a3, a4 ←$ (Zp)
4

A1 = a1S0 + a3G+ a4X
A2 = a1S0 + a3C0 + a4C1 + a2G

Â3 = a3Ĝ; Â4 = a4Ĝ; Â5 = a2Ĝ
A1, A2, Â3, Â4, Â5−−−−−−−−−−−−−−→

q1 = a1 − cr; q2 = a2 − cx1
2

c←−−−−−−−− c←$ Zp

q3 = a3 − cx1
0; q4 = a4 − cx1

1
q1, q2, q3, q4−−−−−−−−−→ return A1 = q1S0 + q3G+ q4X + cT1

∧ A2 = q1S0 + q3C0 + q4C1 + q2G+ cZ1

∧ Â3 = q3Ĝ+ cX̂1
0 ∧ Â4 = q4Ĝ+ cX̂1

1

∧ Â5 = q2Ĝ+ cX̂1
2

Fig. 12. ZKPoK protocol for π1.

Prover: {Ti, Zi}i∈{0,1}, S0, s0, Verifier: {Ti, Zi}i∈{0,1}, S0,

{X̂0
i , x

0
i }i∈{0..2}, X,C0, C1 {X̂0

i }i∈{0..2}, X,C0, C1

a1, a2, a3, a4 ←$ (Zp)
5;A2 = a1T − a4G

A1 = a1T0 − a2G− a3X
A2 = a− 1Z0 − a2C0 − a3C1 − a4G

A3 = a1G; Â4 = a2Ĝ; Â5 = a3Ĝ

Â6 = a6Ĝ
A1 . . . Â6−−−−−−−→

q1 = a1 − cs0; q2 = a2 − cx0
0

c←−−−−−−−− c←$ Zp

q3 = a3 − cx0
1; q4 = a4 − cx0

2
q1, q2, q3, q4−−−−−−−−−→ return A1 = q1T0 − q2G− q3X + cT1

∧ A2 = q1Z0 − q2C0 − q3C1 − q4G+ cZ1

∧ A3 = q1G+ cS0 ∧ Â4 = q2Ĝ+ cX̂0
0

∧ Â5 = q3Ĝ+ cX̂0
1 ∧ Â6 = q5Ĝ+ cX̂0

2

Fig. 13. ZKPoK protocol for π̃0.

E Aggregate and Multi-signatures

We recall the sequential aggregate signature from [PS16].

– SAS.Setup(1κ): pp←$ BGGen(1κ); w ←$ Zp;
W ← wG; Ŵ ← wĜ; return (pp,W, Ŵ ).

– SAS.SKG(pp): sk←$ Z∗
p; pk← skĜ; return (sk, pk).

– SAS.Sign(sk, σ, (m1, . . . ,mr), (pk1, . . . , pkr),m):
if r = 0 then σ ← (G,W ) elseif (r > 0
∧ SAS.Verify(σ, (m1, . . . ,mr), (pk1, . . . , pkr)) = 0) ∨ m = 0 ∨ ∃ pkj ∈ {pk1, . . . , pkr} : pkj =
pk return ⊥
else t←$ Z∗

p;σ
′ ← (tσ1, t(σ2 + (sk ·m)σ1)) return σ′.

– SAS.Verify(σ, (m1, . . . ,mr), (pk1, . . . , pkr)):
return σ1 ̸= 1G ∧ e(σ1, Ŵ +

∑
i mipki) = e(σ2, Ĝ)

Its security considers the certified keys setting from [LOS+06] (i.e., users must prove knowledge of
their secret key if they want to produce a signature) and is proven in the generic group model for type-
III pairings, under the Pointcheval-Sanders assumption given in Definition 21. Alternatively, as shown
by the same authors [PS18], it’s also possible to prove security under a non-interactive assumption
(the q-MSDH-1 assumption, which is itself a variant of the q-SDH assumption) in the random oracle
model with a small modification to the scheme that doesn’t incur any efficiency overhead.

Definition 21 (PS Assumption). Let BGGen be a type-III bilinear group generator and A a
PPTalgorithm. The Pointcheval-Sanders (PS) assumption over BGGen states that the following prob-
ability is negligible in κ:
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Q := ∅; pp←$ BGGen(1κ)

x, y ←$ Z∗
p; X̂ ← xĜ; Ŷ ← yĜ

(A∗, B∗,m∗)← AOx,y(·)(pp, X̂, Ŷ )

:
m∗ /∈ Q ∧ A∗ ̸= 1G
∧ B∗ = (A∗)x+m·y

 ,

where Q is the set of queries that A has issued to the oracle Ox,y(m) := Q ← Q ∪ {m};A ←
G∗; return (A,Ax+m·y).

We also recall the (aggregatable) multisignature signature of Boneh-Drijvers-Neven [BDN18],
which uses two full-domain hash functions H0 : {0, 1}∗ → G2 and H1 : {0, 1}∗ → Zp.

– MSig.Setup(1κ): pp←$ BGGen(1κ); return pp.
– MSig.SKG(pp): sk←$ Z∗

p; pk← skĜ; return (sk, pk).
– MSig.KeyAgg({pk1, . . . , pkN}):

avk←
∑
H1(pki, {pk1, . . . , pkN})pki; return avk.

– MSig.Sign(ski, {pk1, . . . , pkN},m):
return σi = ski · H0(m)
//From all the individual signatures any combiner
//computes msig =

∑
H1(pki, {pk1, . . . , pkN})σi MSig.Verify(avk,m,msig):

return e(G,msig) = e(H0(m), avk)

F Extended Comparison of Voting Schemes

Voting schemes are generally required to provide ballot privacy (no coalition of malicious parties
can learn the voter’s vote), verifiability (voters can verify that their vote was cast and counted as
cast) and coercion resistance (a coercer who interacts with a voter during the voting phase cannot
determine if coercion was successful or not from the election outcome). Sometimes, a weak form of
coercion resistance called receipt-freeness [Oka97] is also considered. This notion states that voters
cannot prove how they voted to a potential coercer. Additionally, some notion of fairness is considered
alongside integrity to ensure that no partial tally is leaked, and no ballot can be altered during the
tally phase. Such guarantees are of utmost importance considering corruption scenarios during the
tally phase, which can incorporate information from exit polls to influence the outcome. Similarly to
the coercion case, robust notions of verifiability usually cover fairness. Last but not least, security
against replay attacks protects honest users from malicious ones that try to cast the same vote. Many
voting schemes have been proven vulnerable to these attacks [MMR22] and alternatives to mitigate
them should be compatible with receipt-freeness.

In this section, we focus on JCJ [JCJ05, CCM08, BGR12, CGY24, ABR23] and VoteAgain [LQT20,
HMQA23] that are well-studied mix-type coercion resistant schemes in the literature. Furthermore,
VoteAgain also aims for scalability and thus its suitable for comparison with our work.

JCJ & variants – Fake credentials. The voting scheme by Jakobsson, Juels and Catalano (JCJ) [JCJ05]
is the standard benchmark for coercion resistance. In this model, users manage real and fake creden-
tials. Whenever they are under the influence of a coercer, users can vote using their fake creden-
tials to convince the coercer that their vote was cast. However, the protocol only counts votes from
real credentials, whose use is indistinguishable from the fake ones in the coercer’s view. Subsequent
work identified security and efficiency issues in JCJ, proposing several improvements (see e.g., Civ-
itas/Trivitas [CCM08, BGR12] and CHide [CGY24, ABR23]). Under the JCJ framework, the most
efficient protocol under a strong resistance-coercion definition is [ABR23] and has computational
complexity O(n log n) due to sorting. In all cases, users must keep their real credentials safe and
protect them from the coercer. Our work is closer to the JCJ model because we require the absence
of a coercer at the beginning.

VoteAgain [LQT20]. Lueks, Querejeta-Azurmendi and Troncoso proposed a voting scheme based on
the revoting paradigm, which assumes that the user will be free from the coercer at some point before
the voting phase ends. Since each voter can vote multiple times, votes must be filtered so that only the
last vote is counted as valid, and coercers cannot identify which votes have been filtered. To achieve
better scalability, VoteAgain trades off trust for efficiency. Indeed, its security model makes several
trust assumptions: 1) the adversary never gets access to the voter’s credentials, 2) the authority
is trusted, and 3) a tally server, responsible for filtering the votes is also trusted. Follow-up work
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[HMQA23] by Haines, Muller and Querejeta-Azurmendi slightly improved trust assumptions but still
required all the previous considerations. Besides, the computational complexity is also O(n log n) due
to the insertion of log n dummies for every ballot. In this regard, we stress that VoteAgain and JCJ
consider different definitions and corruption scenarios for coercion-resistance, which are incomparable
in many ways.

Our Work. Ballot privacy, verifiability and fairness follow from the stronger privacy and soundness
notions of our mixnet protocol. This contrasts with HPP20, which was unable to provide fairness as
evidenced in Appendix A. Receipt-freeness was also already addressed before (recall the randomiza-
tion on the user’s ciphertext done by the CA during the interactive signing). For coercion-resistance
the situation is slightly different as our model contrasts with other works in the literature and each
of them introduces its tailored definition. However, as previously outlined, unforgeability and perfect
adaption of our MSoRC scheme together with receipt-freeness do provide a form of coercion-resistance.
Our work achieves all the previously-mentioned properties with O(n) complexity under minimal trust
assumptions. In particular, we only require an authenticated communication with the BB whereas
JCJ and VoteAgain require an anonymous channel, which is a much stronger assumption and even
harder to achieve in practice.
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