
Making Searchable Symmetric Encryption Schemes Smaller and
Faster

Debrup Chakraborty1, Avishek Majumder2, and Subhabrata Samajder3

1 Cryptology and Security Research Unit, Indian Statistical Institute, Kolkata, India.
debrupchakraborty@gmail.com

2 School of Computer Science, UPES, Dehradun, India. avishek.majumder1991@gmail.com
3 Institute of Advancing Intelligence (IAI), TCG CREST, Kolkata, India and Academy of Scientific and

Innovative Research (AcSIR), Ghaziabad, India.
subhabrata.samajder@gmail.com

Abstract. Searchable Symmetric Encryption (SSE) has emerged as a promising tool for facilitating
efficient query processing over encrypted data stored in un-trusted cloud servers. Several techniques
have been adopted to enhance the efficiency and security of SSE schemes. The query processing
costs, storage costs and communication costs of any SSE are directly related to the size of the
encrypted index that is stored in the server. To our knowledge, there is no work directed towards
minimizing the index size. In this paper we introduce a novel technique to directly reduce the index
size of any SSE. Our proposed technique generically transforms any secure single keyword SSE
into an equivalently functional and secure version with reduced storage requirements, resulting in
faster search and reduced communication overhead. Our technique involves in arranging the set
of document identifiers db(w) related to a keyword w in leaf nodes of a complete binary tree and
eventually obtaining a succinct representation of the set db(w). This small representation of db(w)
leads to smaller index sizes. We do an extensive theoretical analysis of our scheme and prove its
correctness. In addition, our comprehensive experimental analysis validates the effectiveness of our
scheme on real and simulated data and shows that it can be deployed in practical situations.

Keywords: Outsourced Storage, Searchable Symmetric Encryption, Binary Tree, Tree Cover

1 Introduction

Delegating an organization’s or individual’s storage requirements to a third-party server
has become a common practice. Storage as a Service, commonly referred to as cloud
storage, is a model in which providers offer storage solutions to clients. These solutions are
advantageous as they alleviate users from costs associated with storage-related hardware,
software, and maintenance. While outsourcing storage requirements offers convenience
and cost-effectiveness, it also raises significant security concerns. Among these concerns,
the foremost is the confidentiality of stored data. Specifically, the potential exposure of
users’ data to the un-trusted server.

Historically, the challenge of maintaining data confidentiality has been addressed
through encryption. Secure encryption algorithms ensure that the resulting ciphertext is
indistinguishable from random strings, rendering it practically unreadable for the server.
However, this solution presents a dilemma, as users also require the ability to query and
update the delegated data. Encrypting the stored data with a traditional encryption al-
gorithm would hinder the server’s capability to execute queries or updates on behalf of
the client.

Searchable Symmetric Encryption (SSE) schemes, as introduced by Song et al. [29]
and Curtmola et al. [16], are specialized encryption schemes that allow users to store
encrypted data on untrustworthy cloud servers while enabling search queries and updates
on the encrypted data. SSE schemes have now emerged as a viable strategy for encrypting
data destined for storage on un-trusted third-party servers.

An SSE scheme abstracts a database as a set of documents denoted as D. Each doc-
ument di ∈ D is associated with a unique identifier idi. These documents are viewed

2 Chakraborty et al.

as collections of keywords from a predefined finite set, denoted as W . For each keyword,
w ∈ W , db(w) represents the set of identifiers of those documents containing the keyword
w. For a w ∈ W , let tw = db(w)×{w} = {(id, w) : id ∈ db(w)}. Generally, the input to an
SSE scheme consists of the set of tuples S =

⋃
w∈W

tw. An SSE encrypts this set, comprising

keyword-identifier pairs, using a specialized structure often referred to as an “encrypted
multi-map” [13] (EMM) or an inverted index. This encrypted multi-map is stored on the
server and facilitates both searching and updating the encrypted database. To initiate
a keyword search, the client provides a search token for the encrypted multi-map to the
server. For updates (such as additions and deletions to/from the database), the client
supplies an update token to the server, enabling modifications to the encrypted multi-
map. Subsequently, these search and update tokens are used by the server to transmit
encrypted search results to the client and update the database as needed. SSE schemes
which support only search operations are called Static SSE schemes, whereas the schemes
which support both search and updates are called Dynamic SSE (DSSE) schemes. Note,
in the context of an SSE the encryption of the tuples in S is only considered. The en-
cryption of the documents in D does not fall under the purview of an SSE scheme, which
can be separately encrypted and stored in the server.

1.1 Our Contributions

In general, the efficiency of an SSE scheme is measured by the time it takes for search and
update. Most schemes are optimized to get better search and update times maintaining
adequate security guarantees.

Optimizing the size of the encrypted database has not yet received adequate attention
in the literature as it is always assumed that the server is computationally powerful and
has sufficient storage. But, optimizing the storage size has an immediate effect on search
time and communication overhead. If the input set of tuples for an SSE is S, then the
size of the encrypted database in any existing SSE scheme, to the best of our knowledge,
is at least |S|. In fact in most schemes (particularly in dynamic SSE schemes) the storage
overhead is much more than |S|. Similarly, the size of the result of a query w is at least
|db(w)|, and in most schemes, the size of the search result which is to be communicated
to the client is much more than |db(w)|. In most Dynamic SSEs the size of the encrypted
database and the query result increases with the number of updates performed on the
database.

Recently, some effort has been made to restrict the size of the search result to at most
O (db(w)) for any given keyword w [30,12,17,11]. To the best of our knowledge, no SSE
scheme has considered reducing the storage size beyond |S| and the result size beyond
|db(w)|. In this study, we specifically address the following questions.

1. Can we build a functional and secure SSE whose storage size is smaller than |S| on
average?

2. Can a search query for a keyword w on average be answered with a result size smaller
than |db(w)|?

We answer both these questions in the affirmative. In order to achieve this, we intro-
duce a generic method for transforming any single keyword SSE scheme into an equivalent
secure SSE scheme where the size of the encrypted database required to store for search-
ing is much smaller than in the original SSE scheme. This results in a more compact
representation of both the encrypted database and the set db(w) compared to the origi-
nal SSE scheme. Note, that a reduction of the size of the encrypted database and db(w)
also results in a reduction of search time and communication costs.

Making Searchable Symmetric Encryption Schemes Smaller and Faster 3

The Basic Technique: Given db(w) for any keyword w, we convert db(w) to a new set
cw, which we call as the “cover of the keyword” w. We ensure that, on average, |cw|
is smaller than |db(w)|, while retaining the ability to fully recover db(w) from cw. We
provide S ′ =

⋃
w∈W

cw × {w} as an input to any standard secure SSE. Note that S ′ is on

average less than the size of S =
⋃

w∈W
db(w)×{w}, which is the input to the original SSE.

This generic transformation of db(w) to its cover cw produces a considerable reduction
in both the storage size and result size, resulting in shorter search time and reduced
communication size.

The heart of our technique lies in representing db(w) for each w as a full binary
tree. For each keyword w ∈ W , we construct a virtual full binary tree where each leaf
node is associated with an identifier idi. We label the leaf nodes with +++ if the identifier
corresponding to it is present in db(w) and label it with −−− otherwise. This tree with the
labels in the leaf nodes uniquely represents db(w). We devise a scheme by which this
tree can be represented uniquely by a small set of nodes of the tree, and we call this set
as the cover of the tree. We show how we can use this representation on any existing
SSE scheme to achieve considerable savings in storage size and the size of query results.
Furthermore, we also propose several efficient algorithms to generate covers of a labeled
tree for different scenarios. We do in-depth combinatorial analysis of these algorithms
and prove them to be optimal in our setting.

Experimental Validation: We validate our efficiency cla-ims with extensive experimenta-
tion on both synthetic and real data. We use synthetic data to validate our theoretical
claims regarding the average reduction of database sizes by exhaustively computing cov-
ers for all possible configurations of the set db(w). Our theoretical bound on the cover
sizes closely matches our experimental results. We also report the results of our schemes
when applied to the Enron Email database [18]. Our proposed scheme achieves a signifi-
cant reduction (between 35% to 60%) in the size of the encrypted database over a base
SSE scheme. We also simulate the dynamic setting in SSE using a synthetic database,
and we demonstrate a significant advantage of our scheme in the dynamic setting as well.
Furthermore, we provide results on extra overhead incurred by adopting our technique
and show that the overhead of our scheme is fairly reasonable in a practical context. The
basic codes and data used for our experiment are publicly available at [1].

1.2 Related Work.

The notion of SSE was initially introduced by Song et al. [29], and was first formally
defined by Curtmola et al. [16]. While the definition provided in [16] was for static
databases, the first dynamic scheme, accommodating database updates, was formal-
ized and proposed by Kamara et al. [23]. This was followed by several Dynamic SSE
schemes [9,6,7,19,15,12,31]. Efforts such as [21,8] began studying SSE security through
inherent leakages in the schemes. The authors of [34] improved upon the previous line of
work and showed that the notion of security originally proposed in [23] was insufficient
by suggesting some realistic attacks. To mitigate such attacks, two notions of privacy,
namely, “forward privacy” and “backward privacy”, were first mentioned in [30]. The first
formal definitions and construction of forward privacy and backward privacy was due to
Bost [6], and Bost et.al. [7] respectively. Since then, many efficient SSE schemes meet-
ing both forward and backward privacy with different efficiency and security have been
proposed [36,15,12,31]. Secure SSE schemes supporting more complex queries like range
queries [35,25], conjunctive queries [10,32,24,28,33], wildcard sear-ch [20,14] etc. have also
been reported.

4 Chakraborty et al.

Few efforts [30,17,11] were made by researchers to propose SSE schemes with optimal
search complexity. Consider a database containing N many keyword-identifier pairs. Let
iw be the number of additions, and dw be the number of deletions for a keyword w.
Then the total number of updates uw for the keyword w is given by uw = iw + dw.
Let nw = iw − dw denote the actual number of keyword identifier pairs for the keyword
w currently present in the database. Then, an SSE with optimal search refers to those
schemes that achieve a O(nw) search complexity. In other words, for an SSE with optimal
search, the search time for a keyword w should depend only on the number of documents
currently present in the database that contains w, and not on total updates performed for
the keyword. Most SSE schemes [36,15,12,31] do not achieve this complexity as they treat
deletion also as an addition with a specific tag and thus the search time also depends on
the number of deletions.

The tree structure that we propose for representing the set db(w) is motivated by
the idea of subset difference scheme used in the context of broadcast encryption [26].
The subset-difference (SD) techniques were first introduced by Naor et al. in [26]. It was
primarily used for key pre-distribution in symmetric key broadcast encryption schemes.
The main goal of this technique was to reduce the broadcast header length, which is the
extra amount of data that needs to be broadcasted for proper decryption. The scheme in
[26] was later generalized in [4,5]. Though the basic idea of our scheme is derived from
subset difference scheme but the details of our method and its application in the context
of SSE is totally new.

1.3 Structure of the Paper

We begin with the definitions of SSE in Section 2. Sections 3 and 4 develops the basic
tools required by us. Particularly, Section 3 defines the important concept of tree cover
whereas Section 4 is devoted to the description of cover generation and reconstruction
algorithms and proving their correctness. Section 4 also contains the calculations related
to computing the average cover size of a configuration of a binary tree. Sections 3 and 4
make no reference to SSE schemes and thus can be of independent interest; they describe
and solve some combinatorial problems related to binary trees, and these solutions are
later used to design SSEs. Sections 5 and 6 are devoted to designing SSEs with tree covers
where we describe in detail how to convert a given SSE to a new SSE using the idea of
tree covers. In Section 7, we discuss some existing SSEs and the concrete improvements
that can be obtained if these schemes are used as a base SSE in our protocol. In Section 8
we define security of SSE schemes and describe formally the security of our proposed
schemes. In Section 9, we report the experimental results, and finally, in Section 10, we
conclude this article and point to some future directions of work.

2 Searchable Symmetric Encryption

General Notations: For a finite set X, |X| denotes the cardinality of X. Let X, Y be
two finite sets then, X×Y denotes the Cartesian products of X and Y . For a non-negative
integer n, [n] denotes the set {1, 2, . . . , n}, and for non-negative integers i, j, i < j, [i, j]
represents the set {i, i + 1, ..., j}. The set {0, 1}∗ represents the set of all binary strings,
including the empty string, and for a positive integer n, {0, 1}n denotes the set of all n
bit strings. For x, y ∈ {0, 1}∗, x||y denote the concatenation of the strings x and y. Let
X1, X2, . . . , Xn be finite sets, then minCard(X1, . . . , Xn) gives a nonempty set of minimum
cardinality among the sets X1, X2, . . . , Xn.
Searchable Symmetric Encryption (SSE) scheme is a protocol between a client and a
server. It enables a client to store a collection of documents, a database, in an encrypted

Making Searchable Symmetric Encryption Schemes Smaller and Faster 5

manner on the server such that the server learns “almost nothing” about the client’s
data and queries. Each document in the database is identified by a unique identifier
and has some keywords associated with it. The protocol must support search operations
on the keywords, i.e., a search for a keyword w must return all the documents (identi-
fiers) associated with it. In addition, an SSE may support updates, i.e., insertion of new
keyword-identifier pair, or deletion of keywords from existing document identifiers. An
SSE scheme that does not support updates is called a Static SSE scheme and the ones
which support updates are called Dynamic SSE schemes.

Let D = {d1, . . . , dn} denote the collection of all documents that the client wants to
store in the server. LetW denote the set of all possible keywords. Each document di ∈ D,

corresponds to a set of keywords wi ⊆ W . Define W =
n⋃

i=1

wi ⊆ W to be the collection of

all keywords present in the database DB.
Let ID : D → {0, 1}λ, for a fixed constant λ (in general considered as the security

parameter), be an injective map. We call idi = ID(di) as the identifier of the document
di. The set of all identifiers is denoted with I = {id1, . . . , idn}. It is customary to abstract
out a database as a collection of identifiers and their associated keywords, and we would
only be concerned about storing keyword-identifier (id, w) pairs and retrieving those.
Note that, in general, the mapping ID is known only to the client and thus the client can
associate documents with the identifiers securely.

For i ∈ [n], let Si = {(idi, w) : w ∈ wi}. Then a database DB can be defined as a set of
tuples, as DB =

⋃
i∈[n]

Si. For each keyword w ∈ W, define the set of identifiers containing

the keyword w as db(w) = {id : (id, w) ∈ DB}.
Thus, if Uw = db(w)× {w}, then a database DB can also be viewed as

DB =
⋃
w∈W

Uw.

For ease of explanation, throughout this paper, we write identifier id containing key-
word w to mean that the keyword w is present in a document d with id = ID(d).

With this abstraction of a database, an SSE scheme Σ is defined as follows. It closely
resembles the definitions of Bost et al. [7] and Chatterjee et al. [15].

Definition 1 (SSE). An SSE scheme Σ = (Setup, Search, Update) is a tuple of one
algorithm and two protocols between the client (C) and the server (S) defined as follows.

– (k, σC,EDB) ← Setup(1λ,DB): The Setup is a probabilistic polynomial time (ppt)
algorithm run by the client that takes as input the security parameter 1λ and the initial
database DB. It outputs a key k, the client’s state σC and the encrypted database EDB.
The client stores the key k, σC, and the encrypted database EDB is sent to the server.

– Update(k, σC, q; utoken,EDB): The Update protocol is executed between the client and
the server. It comprises the following two algorithms.
• (σC, utoken) ← UpdateC(k, σC, q): This (possibly probabilistic) algorithm is run by

the client. On input the key k, client’s state σC and an update query q = (op, in),
the algorithm outputs an update token utoken and client’s updated state σC, where
op ∈ {add, del} and in = (id,w).
• EDB← UpdateS(utoken,EDB): This is a deterministic algorithm run by the server,

which takes as input the encrypted database EDB and the update token utoken. It
then outputs an updated encrypted database EDB.

– Search(k, σC, q; stokenq,EDB): The Search protocol is executed between the client and
the server. It comprises of the following two algorithms.

6 Chakraborty et al.

• (σC, stoken) ← SearchC(k, σC, q): This (possibly probabilistic) algorithm is run by
the client. On input the key k, client’s state σC and search query q, the algorithm
outputs a search token stoken and client’s updated state σC.
• res← SearchS(stoken,EDB): This is a deterministic algorithm run by the server. It

takes as input the encrypted database EDB and the search token stoken. It outputs
a set res of identifiers matching the search results for the search query q.

Remark. In this work, we only consider single keyword search queries, i.e., we consider
q = w for search queries. For updates, we will only consider update queries of the type
q = (op, in), where op ∈ {add, del}, in = (id,w) and w = {w}. For bulk updates, the
Update algorithm is executed multiple times with different (id, w) pairs, where w ∈ w.

Static and Dynamic SSE Scheme. Definition 1 captures the setting of a dynamic
SSE Σ. Recall that for a Static SSE scheme update is not allowed. Therefore, a Static
SSE scheme can be defined as in Definition 1 but without the Update protocol. That is a
Static SSE scheme Σ = (Setup, Search) is only a tuple of one algorithm and one protocol.

Correctness. An SSE scheme is said to be correct if, for any search query on w, the Search
protocol returns the correct search result (i.e., db(w)), except with negligible probability.
A more formal definition of correctness is given in [9], but in our context, we will not
require this formalism.

3 Binary Trees and Tree Covers

Our main object of interest is a complete binary tree, i.e., a binary tree where all levels
are present. We fix some basic terminology first.

The depth of a node i of a binary tree is the number of edges in the path from i to the
root. The root has a depth of 0. In a complete binary tree, there are exactly 2d nodes at
depth d, and consequently, all leaf nodes are at the same depth. The height of a node i
is the number of edges in a path from i to the deepest leaf. The height of the tree is the
height of the root of the tree. A complete binary tree of height h, has exactly 2h+1 − 1
nodes, with 2h leaf nodes. The structure of a complete binary tree can be specified only
using its height. Let T be a tree and i a node of T , then by T (i) we denote the subtree
rooted at i. Thus, if i is the root of T , then T (i) = T and if i is a leaf node then T (i)
is a tree containing the single node i. Unless specifically mentioned, by a binary tree, we
will mean a complete binary tree.

For convenience, we will denote nodes of a complete binary tree by integers. The root
will be denoted by zero. The nodes at depth d will be denoted by 2d consecutive integers
starting with 2d− 1, counting left to right. Thus, for a tree T of height h, the nodes of T
would be denoted by the set of integers nodes(T) = {0, 1, . . . , 2h+1−2} and the leaf nodes
would be denoted by the set leaves(T) = {2h−1, 2h, . . . , 2h+1−2}. For any i ∈ nodes(T),
leaves(T (i)) ⊆ leaves(T) will denote the leaf nodes of the subtree rooted at i.

We will sometimes use an alternative representation of the leave nodes. Given a tree
T of height h with leaves(T) = {2h− 1, 2h, . . . , 2h+1− 2}. Let ϕh : leaves(T)→ [1, 2h], be
a bijection defined as ϕh(i) = i − 2h + 2. Note that for any i ∈ leaves(T), if j = ϕh(i),
then the leaf node i in T is the jth leaf node from the left. As ϕh is a bijection, we have
ϕ−1
h : [1, 2h]→ leaves(T) defined as ϕ−1

h (j) = j + 2h − 2.

Definition 2 (Configuration). Let T be a complete binary tree of height h and leaves(T)
be the set of leaf nodes of T . A configuration of T is a function ΛT : S → {+++,−−−}, where

Making Searchable Symmetric Encryption Schemes Smaller and Faster 7

0

1 2

3 4 5 6

7 8 9 10 11 12 13 14

Fig. 1. The tree T used in Example 1.

S ⊆ leaves(T). The configuration is complete if S = leaves(T), i.e., a complete config-
uration of T is a map ΛT : leaves(T) → {+++,−−−}. We will represent ΛT by a subset of
leaves(T)× {+++,−−−}.

Thus, a configuration put labels from the set {+++,−−−} to the leaves of a tree. If all
leaves of a tree are labelled then the configuration is called a complete configuration. We
represent a configuration ΛT : S → {+++,−−−}, where S ⊆ leaves(T) by the set L = {(i, s) :
i ∈ S, s = ΛT (i)}.

Example 1. Consider the full binary tree T of height 3 shown in Figure 1. The nodes of
T are elements of the set nodes(T) = {0, 1, . . . , 14} and leaves(T) = {7, 8, . . . , 14}. L =
{(7,−−−), (8,+++), (9,+++), (10,+++), (11,−−−), (12,+++), (13,+++), (14,+++)}, is a complete configu-
ration of T , where the nodes 7 and 11 are labeled −−− and all other nodes are labeled +++.
Whereas, the configuration {(7,−−−), (8,+++), (9,−−−), (10,+++), (11,−−−)} is not complete, as the
leaf nodes 12, 13 and 14 are not assigned any labels.

3.1 Cover of a Configuration

Our goal is to have a succinct representation of the configuration of a binary tree. For
a tree T the naive representation of its configuration can be done through a subset of
leaves(T)×{+++,−−−}, i.e, by listing all the leaf nodes along with their labels. We are inter-
ested in a more compact representation. Informally, a cover is a succinct representation
of a configuration.

We define a cover of a configuration through a pair of algorithms cover generation and
cover reconstruction.

Definition 3 (Syntax of a Tree Cover Scheme). A tree cover scheme Ψ = (CoverGen,
ReConstruct) is a tuple of two algorithms defined as follows.

– C ← CoverGen(h, L): On input a configuration L of a tree T of height h, CoverGen
outputs a cover C ⊂ nodes(T)× {+++,−−−}.

– L← ReConstruct(h,C): On input the height h of a tree T and a cover C ⊂ nodes(T)×
{+++,−−−}, ReConstruct outputs a configuration L ⊂ leaves(T)× {+++,−−−}.

Correctness: We say a tree cover scheme Ψ is correct if for any configuration L of a tree
of height h,

L = Ψ.ReConstruct(h, Ψ.CoverGen(h, L)).

A tree cover scheme is interesting only if the covers produced by its cover generation
algorithm have a size much smaller than the configuration (which it receives as input) for
most configurations. The cover generation schemes described later satisfy this property.

8 Chakraborty et al.

We do not yet provide any structural characterisation of a cover of a configuration.
A cover is just what is output by a cover generation algorithm, with the guarantee that
there is a corresponding reconstruction algorithm which can reconstruct the configuration
from which the cover was generated. This syntactic definition of a cover would be enough
for us to develop SSE schemes with desirable properties, but at this point, it may be
useful to see what a cover generation algorithm can possibly do.

Let us take the example of Figure 1, which represents a complete configuration L =
{(7,−−−), (8,+++), (9,+++), (10,+++), (11,−−−), (12,+++), (13,+++), (14,+++)}, of a tree T of height 3.
Nodes drawn in circles that is the nodes {8, 9, 10, 12, 13, 14} are marked as +++ and nodes
drawn in squares that is {7, 11} are marked as −−−. According to our definition so far,
there can be several algorithms for cover generation which can possibly output different
covers for the same tree with the same labeled leaf nodes. We focus on two such simple
instances.

1. L itself can be a cover. In this case, on input L the cover generation algorithm simply
outputs L as the cover and the reconstruction algorithm on input any set C, just
outputs C.

2. The set C = {(7,−−−), (11,−−−)}, can be a cover. Here the cover generation algorithm
on input L outputs the set C = {(i,−−−) : (i,−−−) ∈ L}, i.e., outputs those nodes (along
with their labels) which are labeled −−−. The cover reconstruction algorithm on input
C labels those nodes in leaves(T) which are not in C with +++ and calls those labeled
nodes as L1 and outputs C∪L1. It is easy to see that this reconstruction always works
when L is a complete configuration.

The above two instances are trivial covers. Note that in case (2) we already have a
cover whose size is much smaller than the configuration, at least for the example that
we consider. In Section 4 we systematically study much more complex cover generation
algorithms which on average give covers whose sizes are smaller than the configuration.
For designing Dynamic SSEs a notion of covers for a dynamic configuration would be
necessary which we provide in the next subsection. The design of the SSEs presented
in Sections 5 and 6 only assumes the definitions of cover generation and reconstruction
algorithms. Exact instances of cover generation algorithms, as discussed in Section 4, are
not required to follow the material in Sections 5 and 6.

3.2 Cover of a Dynamic Configuration

We will be interested in trees where the configuration is dynamic, i.e., we may start with
an initial tree along with a configuration, and the tree may change by more nodes getting
added to it and/or by the leaves changing labels.

For the sake of modeling dynamic trees, we will use the alternative representation of
leaf nodes. Recall for a tree T of height h, if i ∈ leaves(T) = [2h − 1, 2h+1 − 2], then
ϕh(i) = i− 2h + 2, is the position of the leaf i from the left. Let for a configuration L of
tree T with height h, we define

ϕh(L) = {(ϕh(i), s) : (i, s) ∈ L}.

Thus, ϕh(L) is just a different representation of the configuration L, where the leaf nodes
are specified by their position from the left. Similarly, for any S ⊆ [1, 2h] × {+++,−−−}, we
define ϕ−1

h (S) = {(ϕ−1
h (i), s) : (i, s) ∈ S}.

Let Ta, Tb be two complete binary trees of height ha and hb respectively. Let La and Lb

be complete configurations of Ta and Tb respectively. Let L̃a = ϕha(La) and L̃b = ϕhb
(Lb).

Making Searchable Symmetric Encryption Schemes Smaller and Faster 9

Let s ∈ {+++,−−−}. If s = +++, then s̄ =−−− and vice versa. We define two sets D̃ and Ã as

D̃ =
{
(i, s) ∈ L̃b : (i, s̄) ∈ L̃a

}
,

Ã =
{
(i, s) ∈ L̃b : (i, s) /∈ L̃a

∧
(i, s̄) /∈ L̃a

}
.

Note, the set D̃ contains those labeled leaf nodes in L̃a whose labels have changed in L̃b

and Ã contains those labeled nodes in L̃b which are not present in L̃a. As, both La and
Lb are complete configurations of the trees Ta and Tb, then by our definitions of D̃ and
Ã they are disjoint. We define the change in configuration of La and Lb as

∆(La, Lb) = ϕ−1
hb

(
D̃ ∪ Ã

)
. (1)

Consider a finite sequence of trees T1, T2, . . . , Tℓ and their corresponding complete con-
figurations L1, . . . , Lℓ. Let

Lδ
i = ∆(Li, Li+1). (2)

Note that, Lδ
i represents a configuration (not necessarily, a complete one) of the tree Ti+1.

It is easy to see that given Ti along with Lδ
i one can reconstruct Li+1, i.e., the complete

configuration of Ti+1.
We assume a scenario where we have an initial tree T1 with a certain complete config-

uration and over time the tree changes where new labeled nodes are added to the tree or
the labels in its leaf node change. We are given the initial tree and the changes that take
place in each step, i.e., we have access to T1 along with Lδ

1, L
δ
2, . . . , L

δ
ℓ−1.

A dynamic cover generation algorithm outputs a cover on input a configuration. A
dynamic cover reconstruction algorithm when given a sequence of covers generates a
configuration.
Definition 4 (Dynamic Tree Cover Scheme). A dynamic tree cover scheme Ψd =
(dCoverGen, dReConstruct) is a tuple of two algorithms defined as follows.
– C ← dCoverGen(h, L): On input the height of the tree h and a configuration L,
dCoverGen outputs a cover C.

– L← dReConstruct
(
{hi, Ci}i∈[ℓ]

)
: On input a sequence of tree height hi and correspond-

ing cover Ci, dReConstruct outputs a configuration L.

Correctness: Let L1, L2, . . . , Lℓ be as before, let ∅ denote the empty configuration corre-
sponding to an empty tree and let

Lδ
1 =∆(∅, L1),

Lδ
i =∆(Li, Li+1), 2 ≤ i ≤ ℓ− 1.

We say, Ψd is correct if for all j ≤ ℓ,

Ψd.dReConstruct
(
{hi, dCoverGen

(
hi, L

δ
i

)
}i∈[j]

)
= Lj.

4 Cover Generation Algorithms

For ease of exposition, we will sometimes impose colors on the nodes of the trees. For a
node i, color(i) will denote its color. For a node i, leftChild(i) and rightChild(i) will denote
its left and right child respectively. Recall, that configuration of a tree T is a set of labeled
leaf nodes of T , thus elements of a configuration are ordered pairs (i, s) where i is a node
and s ∈ {+++,−−−} is its label, we will sometimes denote the label of i by sign(i).

We call a configuration L a pure configuration if, for every (i, s) ∈ L, s is the same,
i.e., in a pure configuration, every node is either labeled +++ or −−−. A configuration which
is not pure is called a mixed configuration.

10 Chakraborty et al.

4.1 Pure Cover: A Tree Cover Scheme for pure Configurations

For the algorithms that follow, we assume that each tree node i is endowed with two
fields color(i) and sign(i).

We start with a simple scheme which generates covers only for pure configurations. Let
Lp be a pure configuration of a tree T of height h, and we want to construct a cover of Lp.
As a first step, we color the nodes of the tree according to the scheme PureColoring(h, Lp)
described in the algorithm in Figure 2. We start from the leaf nodes and color each node
which is in the configuration with the color “green”. We proceed with the non-leaf nodes
starting from the level just above the leaf nodes and color a node green if both of its
children are colored green.

PureColoring(h, Lp):
01. Initialize a tree T with height h,

where the nodes of the tree has no color.
02. for i← 2h − 1 to 2h+1 − 2 ▷ leaf nodes
03. if (i, s) ∈ Lp

04. color(i)← green, sign(i)← s

05. for i← 2h − 1 to 0 of T ▷ non-leaf nodes
06. if color(leftChild(i)) = color(rightChild(i)) = green
07. color(i)← green, sign(i)← sign(leftChild(i))
08. return T

Fig. 2. The coloring scheme for pure configurations

If we apply the algorithm PureColoring(h, Lp) on tree T with a pure configuration Lp,
its nodes either get colored green or they are without color.

Definition 5 (Top Node). A colored node in a tree T is called a top node if the path
from that node to the root does not contain any other colored node.

We call the set of top nodes in a tree T with a pure configuration Lp as the cover of
the configuration.

PureCoverGen(h, Lp):
01. T ← PureColoring(h, Lp)

02. for i← 0 to 2h+1 − 2
03. Xi ← ∅
04. for i = 2h − 1 to 2h+1 − 2 ▷ leaf nodes
05. if color(i) = green
06. Xi ← {(i, sign(i))}
07. for i← 2h − 2 to 0 ▷ every non-leaf node i
08. if color(i) = green
09. Xi ← {(i, sign(i))}
10. else
11. Xi ← XleftChild(i)

⋃
XrightChild(i)

12. return X0

Fig. 3. Algorithm for pure cover generation

With the above characterization of a cover of a pure configuration, we formulate an
algorithm to construct one in Figure 3. Initially, the algorithm assigns an empty set Xi

to each node i of the tree. For any leaf node j, if the leaf node is colored green, then
Xj is set to the singleton set {(j, sign(j))}, otherwise Xj remains the empty set. For any
non-leaf node i, if the node is colored green, then Xi is set to {(i, sign(i))}, else Xi is

Making Searchable Symmetric Encryption Schemes Smaller and Faster 11

set as XleftChild(i)

⋃
XrightChild(i). Finally, the algorithm returns X0, i.e., the set associated

with the root node.

Proposition 1. PureCoverGen(h, Lp) returns the top no-des of a tree of height h with
configuration Lp.

Proof. According to our coloring scheme and the definition of a top node, the following
are true for any top node i.

1. Both children of i are green. Our coloring scheme guarantees this.
2. The sibling of i is not green, as otherwise, our coloring scheme will make the imme-

diate ancestor of i also green, which violates the condition that i is a top node.
3. No ancestor of i is green, as i is a top node.

Based on the above observations, it follows that if i is a top node, then Xi = {(i, s)} (see
lines 6 and 9 of the Algorithm in Figure 3). Further, for any ancestor j of i, Xj contains
(i, s) (see line 11 of Figure 3). As the root (i.e., node 0) is also an ancestor of i, hence
X0 contains (i, s). Thus, the set returned by PureCoverGen(h, Lp) contains all top nodes.
Conversely, following the same arguments, it is easy to see that if (i, s) ∈ X0, then i is a
top node.

We list some additional properties of covers generated by the cover generation algo-
rithm PureCoverGen which are immediate from the algorithm.

Proposition 2. Let Lp be a pure configuration of a tree T of height h, and let Cp =
PureCoverGen(h, Lp) then the following are true.

1. If (i, s) ∈ Cp and i is a leaf node then (i, s) ∈ Lp.
2. If (i, s) ∈ Cp and i is not a leaf node then every leaf node of the subtree rooted at i

occurs in Lp with sign s.
3. If i and i′ be siblings in the tree T then both (i, s), (i′, s) cannot be in Cp.

PureReConstruct(h,Cp):
01. Initialize a tree T with height h,

where the nodes of the tree has no color.
02. Initialize Lp ← ∅
03. for every node i = 0 to 2h − 2 ▷ non-leaf nodes
04. if (i, s) ∈ Cp

05. for all j ∈ leaves(T (i))
06. Lp ← Lp ∪ {(j, s)}
07. return Lp

Fig. 4. Algorithm for pure cover reconstruction

Now, given a pure cover Cp, corresponding to a pure configuration Lp, a reconstruction
algorithm works as follows (see Figure 4). For every non-leaf node i in the cover, the
reconstruction algorithm assigns the same sign to all the leaf nodes of the sub-tree rooted
at node i and adds those leaf nodes along with their sign to the configuration Lp. And
for every leaf node in the cover, it adds the node with its sign to the configuration.

The following proposition, which is easy to verify, asserts that the cover generation
scheme is correct.

Proposition 3. Let Lp be a pure configuration and Cp = PureCoverGen(h, Lp) and L′
p =

PureReConstruct(h,Cp), then Lp = L′
p.

12 Chakraborty et al.

Expected Cover Size of a Pure Cover In this section, we provide an analysis of the
expected size of a cover returned by the Algorithm in Figure 3. Let T be a full binary tree
of height h and thus T has a total of n = 2h leaf nodes. Let Lp be a pure configuration
of T such that |Lp| = r, and without loss of generality, we assume that all nodes in Lp

bear the sign +++. There are
(
n
r

)
such configurations possible, and we are interested in the

average (expected value of) cover size over all these
(
n
r

)
configurations.

Consider a sequence of 2n−1 binary random variables P0, P1, . . . , P2n−2 corresponding
to each node i of T . Define

Pi =

{
1; if color(i) = green
0; otherwise.

That is, according to our coloring scheme, Pi = 1 denotes if the node i is colored green
or not. Consider any node i at the ℓth level of the tree T , i.e., i ∈

{
2ℓ − 1, . . . , 2ℓ+1 − 2

}
.

Then, the subtree rooted at node i contains 2h−ℓ many leaf nodes. The event “{Pi = 1}”
can then be viewed as choosing 2h−ℓ many black balls from a bag containing a total of n
balls, where r many are black balls and the remaining n−r are white balls. Therefore,

Pr[Pi = 1] =

{
(r
2h−ℓ)
(n
2h−ℓ)

= η2h−ℓ(n, r); if 2h−ℓ ≤ r

0; otherwise,

where ηρ(ν, ξ) =
(ξρ)
(νρ)

denotes the probability of choosing ρ many black balls from a bag

containing ξ many are black balls and the ν − ξ many white balls. In order to avoid
writing the boundary conditions every time, we extend the definition of ηρ(ν, ξ) in the
following way.

ηρ (ν, ξ)
∆
=


(
ξ
ρ

)(
ν
ρ

) ; if ν, ξ, ρ ≥ 0 and ρ ≤ ξ

0; otherwise.
Define another sequence of 2n − 1 binary random variables X0, X1, . . . , X2n−2 in the

following manner.

Xi =

1; if
{
i = odd and Pi = 1 and Pi+1 = 0
i = even and Pi = 1 and Pi−1 = 0

0 otherwise.

That is, the random variable Xi corresponding to the node i contributes 1 to the size of
the cover if i is a green node, but its sibling node is not a green node. Assume that i
is odd and 2ℓ < i < 2ℓ+1. Then,

Pr[Xi = 1] = Pr[{Pi = 1} ∩ {Pi+1 = 0}]
= Pr[Pi+1 = 0|Pi = 1] · Pr[Pi = 1]

= (1− Pr[Pi+1 = 1|Pi = 1]) · Pr[Pi = 1]

=

(
1−

(
r−2h−ℓ

2h−ℓ

)(
n−2h−ℓ

2h−ℓ

)) · η2h−ℓ(n, r)

=
(
1− η2h−ℓ

(
n− 2h−ℓ, r − 2h−ℓ

))
·

η2h−ℓ (n, r).

Let the random variable X denote the cover size. Then, X can be expressed as

X = X0 +X1 + · · ·+X2h+1−2.

Making Searchable Symmetric Encryption Schemes Smaller and Faster 13

Assume that 2α ≤ r < 2α+1. This implies that Pi = 0 for all 0 ≤ i ≤ 2h−α − 2 with the
convention that if 2h−α − 2 < 0 the such an i does not exist. Then the cover size X is
given by,

X =X2h−α−1 +X2h−α + · · ·+X2h+1−2

=
h∑

i=h−α

(X2i−1 +X2i + · · ·+X2i+1−2) .

Therefore, by linearity of expectation, the expected cover size is given by

E[X] =
h∑

i=h−α

(E[X2i−1] + E[X2i] + · · ·+ E[X2i+1−2])

=
h∑

i=h−α

{
2i ·
(
1− η2h−i

(
n− 2h−i, r − 2h−i

))
·

η2h−i (n, r)} , (3)

where r denote the size of the pure configuration such that 2α ≤ r < 2α+1.

4.2 Mixed Cover: Generating a Smaller Sized Cover

In the previous section we discussed a scheme to generate covers assuming the config-
uration to be pure. In this section, we remove this restriction. Let L be a complete
configuration for a tree T of height h. Hence, L contains all leaf nodes of T along with
their sign, i.e.,

L = {(i, sign(i)) : i ∈ leaves(T)} ,
where sign(i) ∈ {+++,−−−}. Such a complete configuration can be naturally decomposed into
pure configurations Lg and Lr where,

Lg = {(i,+++) : (i,+++) ∈ L} , Lr = {(i,−−−) : (i,−−−) ∈ L} .

As Lg and Lr are pure configurations, we can use our cover generation algorithm for
computing the covers of the pure configurations Lg and Lr as Cg = PureCoverGen (h, Lg),
Cr = PureCoverGen (h, Lr). Note, that any one of Cg or Cr can be used as a cover of the
complete configuration L. The reconstruction would be simple. We would reconstruct the
pure configuration Lg (respectively Lr) from Cg (respectively Cr) and assign the opposite
sign to all other leaf nodes of the tree. Thus, we can choose the one with smaller number
of elements among Cg and Cr as the cover of L.

The above procedure would generate a correct cover for L, but we seek to find a more
succinct cover. The above procedure yields a cover which contains nodes of the same
sign, and hence we call such a cover as a pure cover. The procedure that we are about to
describe will contain nodes with both signs and hence we name this algorithm a mixed
cover algorithm.

As before, the heart of the algorithm is a coloring scheme MixedColoring(h, Lc) which
is described in Figure 5. The algorithm takes in a complete configuration (Lc) for a tree
T of height h, and colors the nodes of T as green or red. The algorithm examines the
nodes level wise starting from the lowest level, i.e., the leaf nodes. All leaf nodes with sign
+++ are colored green and leaf nodes with sign −−− are colored red. A non-leaf node gets
the color green if both its children are colored green and get the color red if both its
children are red. Other nodes remain uncolored.

14 Chakraborty et al.

MixedColoring(h, Lc):
01. Initialize a tree T with height h,

where the nodes of the tree has no color.
02. for i← 2h − 1 to 2h+1 − 2
03. if (i,+++) ∈ Lc

04. color(i)← green
05. else
06. color(i)← red
07. for i← 2h − 2 to 0
08. if color(leftChild(i)) = color(rightChild(i)) = green
09. color(i)← green
10. if color(leftChild(i)) = color(rightChild(i)) = red
11. color(i)← red
12. return T

Fig. 5. Coloring scheme for mixed covers

We discuss the main idea of our cover generation scheme next. It may be helpful to
consider an example shown in Figure 6 all along. The number of leaf nodes in the tree
n = 16. Consider that the nodes labeled +++ are Lg = {15, 16, 18, 19, 20, 23}, and the nodes
labeled −−− are Lr = {17, 21, 22, 24, 25, 26, 27, 28, 29, 30}. According to our coloring algo-
rithm of Figure 5, the nodes {15, 16, 18, 19, 20, 23} will receive the color green (denoted
by shaded circles in the Figure 6) and the nodes {17, 21, 22, 24, 25, 26, 27, 28, 29, 30} will
be colored red (shown by shaded squares in the figure).

Let T be a tree of height h with a complete configuration Lc and colored using
MixedColoring(h, Lc). Recall that a node i is a top node of the colored tree T if i is
colored and there is no colored node in the path from i to the root. In our example in
Figure 6 the nodes 7, 17, 18, 9, 10, 23, 24, 12, and 6 are top nodes. Note that all leaf nodes
of the subtree rooted at a top node i have the same color as that of i.

0

1 2

3 4 5 6

7 8 9 10 11 12 13 14

15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

Fig. 6. An example of mixed cover: The leaf nodes represented by circles are assumed to bear the sign +++, the leaf
nodes represented by squares bear the sign −−−. The shaded circles represent nodes colored green and the shaded
squares are nodes colored red.

The main intuition of our mixed cover generation algorithm is the following. Let i be
a top node for a colored tree T . Hence, the color of i is enough to determine the color
of all the leaf nodes of the subtree rooted at i. In fact, in many cases a top node i along
with its color can be used to uniquely color the leaf nodes of a tree much bigger than the
subtree rooted at i. For example, in Figure 6, node 10 can be used to reconstruct the tree
rooted at node 4: we will assign the sign of 10 to all of its leaf nodes and the opposite

Making Searchable Symmetric Encryption Schemes Smaller and Faster 15

sign to all the other leaf nodes of the subtree rooted at node 4. We want to make this
intuition more concrete. We introduce some definitions for this purpose.

Definition 6 (Representable Top Nodes). Let T be a tree of height h with complete
configuration Lc and colored by MixedColoring(h, Lc). A set of top nodes S of T is called
representable, if the following holds

1. All nodes in S are of same color c ∈ {green,red}.
2. There exists a subtree T ′ (of T) containing all nodes in S, such that all leaf nodes of
T ′ other than the leaf nodes of the trees rooted at nodes in S have a color different
from c.

If S is representable then any T ′ satisfying the property (2) above is said to represent S.

Definition 7 (Representative Tree). Let T be a tree of height h with complete con-
figuration Lc and colored by MixedColoring(h, Lc). S be a representable set of top nodes
of T . The largest subtree of T which represents S is called the representative tree of S.
By repT (S) we will denote the root of the representative tree of S. If S is a singleton set
containing only i, we will denote the root of the representative tree of S by repT (i).

From the definition it is immediate that every representable set of top nodes will have
a representative tree. Moreover, every singleton set containing a top node is representable
and thus has a representative tree.

In our example tree T in Figure 6 we have the set {17, 10} is representable and
repT ({17, 10}) = 1, whereas {17, 24} is not representable. Moreover, we have repT (7) = 7,
repT (17) = 3, repT (6) = 6, repT (9) = repT (10) = 4, repT (23) = 2, repT (12) = 12 and
repT (6) = 6.

Definition 8 (Independent Nodes). Let S1, S2 be two sets of representable top nodes
of a colored tree T and let repT (S1) = i1 and repT (S2) = i2. We say S1, S2 are independent
if T (i1) and T (i2) are disjoint.

In our example, the sets {7}, {17} are not independent whereas {17}, {10} and {23},
{17} are independent.

Definition 9 (Span). Let S be a set of top nodes of a tree T colored by MixedColoring(h,
L). We say that S spans T , if S can be decomposed into S = S1 ∪S2 ∪ · · · ∪ Sk, for some
k ≤ |S| such that the following holds

1. For all i, j ∈ [k], Si ∩ Sj = ∅.
2. For all i ∈ [k], Si is representable.
3. For all i, j ∈ [k], i ̸= j, Si and Sj are independent.
4. The union of the leaf nodes of the representative trees of the sets S1, . . . , Sk, gives the

leaves of the tree T , i.e.,⋃
i∈[k]

leaves (T (repT (Si))) = leaves(T).

Observe that if X spans a colored tree T , then the nodes in X along with their colors
contain enough information to reconstruct the complete configuration of T . Thus, for a
given colored tree our goal is to find a set X of top nodes of minimum size which spans the
tree. For the reconstruction, it is necessary to just decompose the span into representable
sets and determine the representative tree for each such representable set.

Consider any node i of a colored tree T . If i is colored and is of color c ∈ {red,green},
then i along with its color/sign spans the tree T (i). If i is un-colored, then the following
statements hold and are easy to verify.

16 Chakraborty et al.

Proposition 4. Let i be any un-colored node in a colored tree T and ρ and λ be the right
child and left child of i respectively. Let Xρ and Xλ span T (ρ) and T (λ) respectively.
Then either both Xρ and Xλ individually spans T (i) or Xλ ∪Xρ spans T (i).

Proposition 5. Let i be any un-colored node in a colored tree T and ρ and λ be the
right child and left child of i respectively. Let X span T (i) and let X = Xλ ∪Xρ, where
Xλ ⊆ nodes(T (λ)) and Xρ ⊆ nodes(T (ρ)). For j ∈ {λ, ρ}, if Xj ̸= ∅, then Xj spans
T (j). Moreover, if Xλ = ∅ then Xρ contains nodes of the same color and all leaves of
T (λ) are of color different from that of the nodes of Xρ.

The above observation is central to our algorithm MixedCoverGen(h, Lc) for generating
covers described in Figure 7. The algorithm finds a cover for a tree T of height h with a
complete configuration Lc. The algorithm assigns to each node i, three sets namely Xi,g,
Xi,r, Xi,m. Xi,g and Xi,r contains the green and red top nodes of the subtree rooted at
i. Xi,m is empty if i is a leaf node, otherwise we set

Y ← MixedUnion(i).

The procedure MixedUnion(i), when i is not a leaf node, is described in the right
column of Figure 7. MixedUnion(i) computes the following collection of sets

C =
{
XleftChild(i),x

⋃
XrightChild(i),y : x, y ∈ {r, g,m};

x ̸= y;XleftChild(i),x, XrightChild(i),y ̸= ∅
}
,

and returns the set Y of minimum cardinality from C. If |Y | is smaller than both |Xi,g| and
|Xi,r|, then Xi,m is set to Y otherwise it remains empty. Finally, the algorithm outputs
C = minCard(X0,r, X0,g, X0,m).

Theorem 1. Let T be a tree of height h, and Lc be a complete configuration of T . Let
MixedCoverGen(h, Lc) compute the sets Xi,g, Xi,r, Xi,m for each node i of T as described
in Figure 7. Let Ci = {Xi,g, Xi,r, Xi,m}. Then the following are true.

1. Ci contains at least one non-empty set.
2. Any non-empty set X ∈ Ci spans T (i).
3. minCard(Ci) is the smallest set of nodes which spans T (i).

The proof of Theorem 1 is presented in Appendix A. Theorem 1 asserts that the
algorithm MixedCoverGen (h, Lc) outputs the smallest possible set X which spans a tree of
height h with a complete configuration Lc. Now our goal is to regenerate the configuration
of a tree of height h, given h and a set C which spans the tree and was produced by
MixedCoverGen(h, Lc). The reconstruction algorithm is presented in Figure 8.

First, note that it may be the case that the algorithm MixedCoverGen(h, Lc) generates
a pure cover, i.e., it generates C where all nodes in C are labeled with the same sign. In
such a case either C = X0,r or C = X0,g, i.e., C contains all top nodes of a single color.
In this case, the reconstruction is simple, as the representative tree for C is the complete
tree, i.e., repT (C) = 0. For reconstruction, the following procedure would suffice: For
every (i, sign(i)) ∈ C, the leaves of the sub-tree T (i) are labeled with sign(i) and the rest
of the leaf nodes are labeled with the opposite sign. These steps are done in lines 5 to 8
of the algorithm described in Figure 8.

If C is a mixed cover, i.e., C contains nodes of both signs then C = X0,m. In this case,
the reconstruction procedure is a bit more involved. For convenience, we introduce some

Making Searchable Symmetric Encryption Schemes Smaller and Faster 17

MixedCoverGen(h, Lc): MixedUnion(i):
01. T ← MixedColoring(h, Lc) 01. cnt← 0
02. for every node i of tree T 02. for x ∈ {r, g,m}
03. Xi,g, Xi,r, Xi,m ← ∅ 03. for y ∈ {r, g,m}
04. for i← 2h − 1 to 0 04. λ← leftChild(i)
05. if color(i) = green 05. ρ← rightChild(i)
06. Xi,g ← Xi,g

⋃
{(i,+)} 06. if (x ̸= y)

∧
Xλ,x ̸= ∅

∧
Xρ,y ̸= ∅

07. else-if color(i) = red 07. Ycnt ← Xλ,x

⋃
Xρ,y

08. Xi,r ← Xi,r

⋃
{(i,−)} 08. cnt← cnt+ 1

09. else 09. X ← minCard(Y0, Y1, . . . , Ycnt)
10. Xi,g ← XleftChild(i),g

⋃
XrightChild(i),g 10. return X

11. Xi,r ← XleftChild(i),r

⋃
XrightChild(i),r

12. Y ← MixedUnion(i)
13. if |Y | < min{|Xi,g|, |Xi,r|}
14. Xi,m ← Y
15. return minCard(X0,g, X0,r, X0,m)

Fig. 7. Algorithm for mixed cover generation

additional notations. For any node i in a tree T , let path(i) denote the sequence of nodes
in the unique path from i to the root of T . For any node j ̸= i of path(i), previ(j) denotes
the node preceding j in the sequence path(i).

Reconstructing the configuration, given a mixed cover C boils down to decomposing
C into disjoint subsets such that each subset is representable. Once such representable
subsets are obtained the leaves of the corresponding representative trees can be assigned
signs (colors), and this assignment of signs would yield the desired complete configuration.

Let C be the output of MixedCoverGen (h, Lc) and let C be a mixed cover. Let (j, s) ∈
C, where s ∈ {+++,−−−} and let s̄ be the sign opposite to s. Let, ℓj be the first node in path(j)
which intersects with path(i) for some node i such that (i, s̄) ∈ C. As C is a mixed cover,
hence C contains at least two elements with different signs and thus for every (j, s) ∈ C,
ℓj is well-defined.

Let λ and ρ be the left and right children of ℓj. Then, if i belongs to T (λ) then j
belongs to T (ρ) and vice versa. Without loss of generality, let i belong to T (λ) also let
J be those nodes in T (ρ) which belongs to C, i.e.,

J = {(k, sign(k)) : (k, sign(k)) ∈ C, k ∈ T (ρ)}. (4)

It is easy to see that all nodes in J bears the same sign as that of j, as otherwise ℓj
cannot be the first node in path(j) which intersects with the path of another node in C
with a sign different from the sign of j. We observe the following

Proposition 6. The set J as defined in Eq. (4) is representable and ρ = repT (J).

Proof. As all nodes in J are top nodes and bear the same sign, then in the corresponding
colored tree T all nodes in J have the same color, say green. With reference to the
algorithm MixedCoverGen((h, Lc)), it is immediate that J ⊆ Xρ,g. We claim that J = Xρ,g,
i.e., J contains all green top nodes in T (ρ). As C is a cover of T and J ⊆ C, by
Theorem 1, C spans T , and the nodes in J are the only green top nodes in T (ρ) which
are in C. If there are green top nodes in T (ρ) which are not in J then C cannot span
T . Thus, J is representable and T (ρ) represents J .

18 Chakraborty et al.

We are left to show that T (ρ) is the largest tree that represents J , i.e., repT (J) = ρ.
The smallest tree larger than T (ρ) which contains T (ρ) is T (ℓj). We will argue that
ℓj ̸= repT (J). Note that, i ∈ C and i belongs to the left subtree T (λ) of T (ℓj) and i has
color different from j, i.e., i is colored red. If ℓj = repT (J), then a set containing J and
another set containing i cannot be independent, which implies that both nodes in J and
the node i cannot be in C which by Theorem 1 spans T .

The above proposition is central to the reconstruction algorithm presented in Figure 8
when C is a mixed cover. Lines 10-14 of the algorithm presented in Figure 8 finds the
node ℓj (as described above) for each j in C and thus decomposes C into representative
sets J as asserted in Proposition 6. This process is iterated until all leaves of the tree are
labeled.

MixedReConstruct(h,C):
01. Initialize a tree T with height h, where the nodes of the tree has no color.
02. L← ∅
03. for all (i, s) ∈ C
04. for all k ∈ leaves(T (i))
05. L← L ∪ {(k, s)}
05. if C is a pure cover with sign s ∈ {+++,−−−}
06. for all k′ ∈ leaves(T)
07. if (k′, s) /∈ L
08. L← L ∪ {(k′, s̄)}
09. else
10. for each (i, s) ∈ C
11. find the first ancestor node j of i in path(i) such that j ∈ path(l) for some (l, s̄) ∈ C
12. for all the leaf nodes k of the sub-tree rooted at the node previ(j)
13. if (k, s) /∈ L
14. L← L ∪ {(k, s̄)}
15. return L

Fig. 8. Algorithm for mixed cover reconstruction

4.3 Dynamic Tree Cover Scheme

Recall the setting of a dynamic tree cover scheme as discussed in Section 3.2. We have a se-
quence of trees T1, T2, . . . , Tℓ, with their corresponding complete configurations L1, L2, . . .,
Lℓ, and for 1 ≤ i ≤ ℓ − 1, Lδ

i is defined as in Equations (1) and (2). Note, each Lδ
i rep-

resents a configuration, not necessarily a complete one, of a tree of height hi, where hi

is the height of the shortest complete binary tree which contains all nodes in Lδ
i . The

dynamic cover generation algorithm takes Lδ
i and generates a cover Ci. The property

which is required is that, knowing the complete configuration of T1 and the sequence
of covers C2, C3, . . . , Cℓ corresponding to the configurations Lδ

2, L
δ
3, . . . , L

δ
ℓ−1, the cover

reconstruction algorithm can generate the complete configuration of Tℓ.
The dynamic cover generation algorithm just takes a configuration and produces its

cover. If the input configuration L is a complete configuration, then the mixed cover
generation algorithm is used to generate the cover. Otherwise, L is decomposed into two
sets Lg and Lr, where Lg contains the nodes labeled +++ and Lr contains the nodes labeled
−−−, and the pure cover generation algorithm is used to generate covers Cg and Cr for the
configurations Lg and Lr respectively. Finally, C = Cg ∪ Cr is produced as the output.
The details are shown in Figure 9.

Making Searchable Symmetric Encryption Schemes Smaller and Faster 19

dCoverGen(h, L):
01. Initialize an empty tree T of height h

02. if |L| = 2h

03. C ← MixedCoverGen(h, L)
04. else
05. C,Lg, Lr ← ∅
06. for all (i,+++) ∈ L
07. Lg ← Lg ∪ {(i,+++)}
08. Cg ← PureCoverGen(h, Lg)
09. for all (i,−−−) ∈ L
10. Lr ← Lr ∪ {(i,−−−)}
11. Cr ← PureCoverGen(h, Lr)
12. C ← Cg ∪ Cr

13. return C

Fig. 9. Algorithm for dynamic cover generation

To explain the reconstruction procedure we introduce a new operation on configu-
rations. Let Lα and Lβ are two configurations for trees with heights hα and hβ. Let
hmax = max{hα, hβ}, L̃α = ϕhα(Lα) and L̃β = ϕhβ

(Lβ). We define a new configuration
for a tree of height hmax as

Lα ▷(hα,hβ) Lβ = ϕ−1
hmax

(X ∪ Y ∪ Z), (5)

where X, Y, Z are defined as follows:

X = {(i, s) ∈ L̃α : (i, s) /∈ L̃β and (i, s̄) /∈ L̃β}
Y = {(i, s) ∈ L̃β : (i, s) /∈ L̃α, (i, s̄) /∈ L̃α}
Z = {(i, s) ∈ L̃β : (i, s̄) ∈ L̃α}.

Lα ▷(hα,hβ) Lβ is essentially the configuration obtained by overwriting Lα by Lβ. Notice
that the set X contains those labeled nodes in Lα which are not present in Lβ. Similarly,
Y contains those nodes in Lβ which are not present in Lα, and Z contains those nodes
in Lβ which are present in Lα but with the opposite label.

For reconstruction, the sequence of covers, along with the corresponding tree heights,
is used. Suppose C1 be the cover of L1 and for 2 ≤ i ≤ ℓ− 1, Ci be the cover of Lδ

i . The
cover reconstruction algorithm first reconstructs the configuration Li for each cover Ci

and then outputs the configuration

L = ((((L2 ▷ L2)▷ L3)▷ · · ·)▷ Lℓ−1) .

The details are in Figure 10.

5 Constructing Static SSE Using Tree Cover

In this section, we will show how to use the tree cover scheme to design a Static SSE
scheme. A static database is where the number of documents in the database is a fixed
natural number n. Let, D = {d1, . . . , dn} be the set of documents and I = {id1, . . . , idn}
be the set of identifiers associated with those documents. We assume a natural ordering of
the identifiers in the database, where idi represents the i-th identifier of the database. Let
w ∈ W be an arbitrary keyword and mw be the largest integer such that idmw ∈ db(w),
and let hw be the smallest integer such that mw ≤ 2hw .

Let Tw be a complete binary tree of height hw. We will represent db(w) by a configu-
ration of the tree Tw. We associate each identifier idi, i ≤ mw with a leaf node of the tree

20 Chakraborty et al.

dCoverReConstruct({(hi, Ci)}i∈[0,ℓ−1]):
01. L0 ← MixedReConstruct(h0, C0)
02. for i = 1 to ℓ− 1
03. Initialize Xi, Cp, Cr ← ∅
04. for all (j,+++) ∈ Ci

05. Cp ← Cp ∪ {(j,+)}
06. Lp ← PureReConstruct(hi, Cp)
07. for all (j,−−−) ∈ Ci

08. Cr ← Cr ∪ {(j,−−−)}
09. Lr ← PureReConstruct(hi, Cr)
10. Xi ← Lp ∪ Lr

11. h← h0, L← L0

12. for i = 1 to ℓ− 1,
13. L← L▷(h,hi) Xi

14. h← max{h, hi}
15. return L

Fig. 10. Algorithm for dynamic cover reconstruction

Tw, though the injective map φ−1 : I → nodes(Tw), where

φ−1(idi) = ϕ−1(i) = i+ 2hw − 2.

Note, the ϕ−1 function was introduced in Section 3. With the above specification, φ−1(idi)
represents the ith leaf node from the left of the tree Tw.

We label the leaf nodes of Tw as follows. For every i ≤ mw, the leaf node φ−1(idi) is
labeled +++ if idi ∈ db(w) and is labeled −−− if idi /∈ db(w). Moreover, if mw < 2hw , then for
all i, mw < i ≤ 2hw , the leaf nodes φ−1(idi) are labeled −−−. This labelling of the leaves
of Tw yields a complete configuration of Tw, and we call this configuration Lw. Note that
this configuration Lw uniquely represents the set db(w).

We now fix a tree cover scheme Ψ = (CoverGen, ReConstruct), and let Cw ← Ψ.CoverGen
(hw, Lw), where Cw is the cover of the configuration Lw of the tree Tw of height hw. Thus,
from Cw, the configuration Lw and further the set db(w) can be uniquely reconstructed.
This interpretation of db(w) as a configuration of Tw, which can be represented by a
cover, will help us construct an efficient SSE scheme.

This is important to note that the height of a tree completely specifies it. So, it is not
required by any of our schemes described later to store the tree explicitly.

5.1 Cover-based Representation of DB.

As a first step of constructing a cover-based SSE, we need to convert the given database
DB to a different representation D̃B. We call this the converted database. This D̃B then
acts as the input to the existing SSE scheme. For each w ∈ W, we generate a configuration
Lw from the set db(w) as described before. Let Cw ← Ψ.CoverGen(Lw). We define

d̃b(w) = {(c, s, hw) : (c, s) ∈ Cw}. (6)

The elements of d̃b(w) are the λ-bit encoding of the tuple (c, s, hw). With this we define

D̃B =
⋃
w∈W

d̃b(w)× {w}.

The conversion scheme from DB to D̃B is summarized in dbConversion Algorithm in
Figure 11.

Making Searchable Symmetric Encryption Schemes Smaller and Faster 21

dbConversion (DB) Conversion (db(w))

01. set D̃B← ∅ 01. set d̃b(w), Lw ← ∅
02. for each keyword w ∈W 02. let mw be the largest integer such that idmw ∈ db(w)

03. d̃b(w)← Conversion(db(w)) 03. let hw be the smallest integer such that mw ≤ 2hw

04. for all ĩd ∈ d̃b(w) 04. initialize an empty full binary tree Tw of height hw

05. D̃B← D̃B ∪ {(ĩd, w)} 05. define P = {φ−1(idi) : idi ∈ db(w)}
06. return D̃B 06. define R = leaves(Tw) \ P

07. for all p ∈ P
08. Lw ← Lw ∪ {(p,+++)}
09. for all r ∈ R
10. Lw ← Lw ∪ {(r,−−−)}
11. Cw ← Ψ.CoverGen(hw, Lw)
12. for all (c, s) ∈ Cw

13. d̃b(w)← d̃b(w) ∪ {(c, s, hw)}
14. return d̃b(w)

Fig. 11. Algorithm to convert DB to D̃B

5.2 Generic Static SSE Using Keyword Cover

Let us consider a database

DB =
⋃
w∈W

{(id, w) : ∀ id ∈ db(w)},

and any secure Static SSE scheme Σ = (Σ.Setup, Σ. Search) as defined in Definition 1
(without the update protocol). Our goal is to covert Σ into a new SSE sΣ = (sΣ.Setup,
sΣ.Search). The procedures sΣ.Setup and sΣ. Search are described in Figure 12. We call
the SSE Σ as the base SSE.

sΣ.Setup takes in the database DB and a security parameter λ and outputs an en-
crypted database EDB, a key k and a client state σC. EDB is uploaded to the server
and σC and k are retained with the client. sΣ.Setup calls the routine dbConversion(DB),
described in Figure 11 and converts DB to D̃B. Further D̃B is sent as input to Σ.Setup,
the setup routine of the base Static SSE scheme.

Search for a keyword w is performed by running the sΣ.Search protocol described
in Figure 12. In the protocol, first the client’s side SearchC algorithm corresponding to
the base SSE scheme Σ is executed on the inputs (k, σC, w). SearchC (k, σC, w) returns
a search token stokenw for the keyword w and the updated client state σC. The search
token stokenw is sent to the server, which subsequently runs the Σ.SearchS (stokenw,EDB)
and outputs res, the search result, which is sent to the client. The rest of the procedure,
i.e., lines 15 to 23 of Figure 12 runs in the client side. Where the client obtains the set
d̃b(w) from the search result sent by the server. Note, as described in Equation 6, d̃b(w)
is a collection of tuples which encode a cover of a tree of height hw. Using the cover
reconstruction algorithm, we reconstruct the configuration of the tree representing the
set db(w) and finally output it.

It is worth noting a few important characteristics of the scheme sΣ.

Correctness. The correctness of sΣ directly follows from the correctness of the base
Static SSE scheme Σ and the correctness of the cover generation scheme Ψ .

22 Chakraborty et al.

sΣ.Setup(1λ,DB) sΣ.Search(k, σC, w)

01. D̃B← dbConversion(DB) 10. Generate (σC, stokenw)← Σ.SearchC (k, σC, w)

02. (k, σC,EDB)← Σ.Setup(1λ, D̃B) 11. Send stokenw to the server
03. Send EDB to server and retain (k, σC) 12. res← Σ.SearchS (stokenw,EDB)

13. Send res to the client
14. Decrypt and generate d̃b(w) from res
15. Set Cw, db(w)← ∅
16. for each ĩd ∈ d̃b(w)

17. Parse ĩd as (c, s, hw)
18. Cw ← Cw ∪ {(c, s)}
19. Generate Lw ← Ψ.ReConstruct(hw, Cw)
20. for each (ℓ, s) ∈ Lw

21. if s = +++
22. db(w)← db(w) ∪ {φ (ℓ)}
23. return db(w) to client

Fig. 12. Generic Static SSE using Tree-Cover scheme: Setup and Search operations

Benefits. Performance of any SSE schemes is measured by the search and update time
and the amount of data communicated during these processes. All these parameters es-
sentially depend on the databases under consideration. For a keyword w, let nw = |db(w)|
be the number of document identifiers containing the keyword w. In all the state-of-the-
art SSE schemes, either static or dynamic, the search complexity is O(nw) [16,30,17,11].
In many dynamic schemes, like in [23,9,6,7,15], the search complexity is in order of the
number of updates for a keyword, which in the worst case may exceed O(nw). Asymp-
totically, the worst case search complexity of our scheme is also O(nw), but on average
the exact number of tuples that need to be communicated is much less than nw. To the
best of our knowledge, in no existing scheme the search complexity is smaller than nw.

Note that, this improvement of search time is obtained by our scheme because we use
a compact but lossless representation of db(w). This compact representation results in a
smaller index size which further results in more efficient search and communication. The
exact savings obtained by pairing our scheme with existing SSEs are further discussed in
Section 7. Concrete experimental data on real databases is presented in Section 9.

Extra overhead. Superficially, it may look that sΣ requires more computation than
Σ. As sΣ requires the conversion of DB to D̃B in the setup phase and the conversion
of the cover to the configuration (lines 15-23 in Figure 12). These extra computations
are negligible and take place on the client side. Conversion of db to d̃b for a database
of decently large size only takes a few seconds whereas reconstruction of db from cover
takes less than a second. More detailed discussion on this can be found in Section 9.3.
The important savings that are achieved through sΣ is that, on average, the size of D̃B is
much smaller than DB, and this will significantly reduce the costs of the routines Σ.Search.
Moreover, this will lead to a smaller size of res which leads to a lower communication
cost.

Security. The scheme sΣ just does some preprocessing of the input to the base scheme
Σ and further does some post processing of the decrypted output. These pre and post
processing takes place on the client side and does not require any computation involving
the secret key(s). This implies that the security of the base scheme Σ implies the security
of sΣ.

Making Searchable Symmetric Encryption Schemes Smaller and Faster 23

dΣ.Setup
(
1λ,DB

)
:

01. Set B← ∅
02. Initialize an empty map ts

03. D̃B← dbConversiond(ts,DB)

04. Run (k, σC,EDB)← Σ.Setup(1λ, D̃B)
05. Send EDB to server and retain (k, σC,B, ts)

dbConversiond (ts,DB)

01. set D̃B← ∅
02. for all w ∈ W
03. tsw ← ⊥
02. for each keyword w ∈W
03. Set tsw ← 0
04. DB∗ ← dbConversion (DB)
05. for all (id, w) ∈ DB∗

06. ĩd← id∥tsw
07. D̃B← D̃B ∪ {(ĩd, w)}
08. return D̃B

Fig. 13. A generic Dynamic SSE using Tree-Cover Scheme: Setup phase and DB to D̃B conversion algorithm

BufferUpdate((op, in),B):
01. if (op = add) ∧ ((del, in) ∈ B)
02. B← B \ {(del, in)}
03. B← B ∪ {(op, in)}
04. else-if (op = del) ∧ ((add, in) ∈ B)
05. B← B \ {(add, in)}
06. B← B ∪ {(op, in)}
07. else
08. B← B ∪ {(op, in)}
09. return B

Fig. 14. Buffer Update algorithm

We make this intuition more concrete in Section 8, where we present a reductionist
security proof of our dynamic scheme dΣ (described in Section 6). The security result
and the proof is also applicable for the static scheme.

Additional security advantage. Informally, an SSE scheme is called volume hiding
if an adversary cannot guess the number of tuples that are related to a query by seeing
the result of a query which is transmitted by a server. This additional security property
in SSE schemes has been recently studied [27,22,3]. In general, making an SSE volume
hiding makes it in-efficient in terms of communication and storage costs. In our scheme,
the size of a search result for a keyword w is related to the size of the cover of the keyword
w, and it does not directly reveal the number of tuples related to the keyword w. Thus, a
constrained passive adversary, who only sees the communication between the server and
the client, will not be able to accurately estimate the size of a query result from observing
the response sizes. We believe that by using some additional randomness we can make
our scheme to be volume hiding for more powerful adversaries.

6 Constructing Dynamic SSE Using Tree Cover

For constructing a Dynamic SSE, we need to support modifications in the database.
Modification may take place in two ways. One being the addition of new documents
in the database and the other being updating an existing document. In the context of
SSE, a modification to the database is recorded by adding or removing the corresponding
keyword identifier pair involved in the modification. In the context of the tree cover based
SSE scheme, we will still represent db(w) as a tree, and thus adding a new document would
result in adding an extra leaf node to the existing tree, which in some cases can only be
done by increasing the height of the tree. Modification of an existing document would be
achieved by assigning or altering the sign of the leaf node associated with the identifiers
that were affected by the update operation.

24 Chakraborty et al.

dΣ.Update(k, σC, ts,B, (op, in)):
Client Side:
01. if B ̸= FULL
02. B← BufferUpdate(op, in,B)
03. if B = FULL
04. set UList← ∅
05. for each w such that (op, (id, w)) ∈ B
06. set Lw ← ∅
07. let mw be the largest integer such that (op, (idmw , w)) ∈ B
08. let hw bet the smallest integer such that mw ≤ 2hw

09. initialize an empty full binary tree Tw of height hw

10. define P = {φ−1(id) : (add, (id, w)) ∈ B}
11. define R = {φ−1(id) : (del, (id, w)) ∈ B}
12. if tsw =⊥
13. tsw ← 0
14. for all p ∈ P
15. Lw ← Lw ∪ {(p,+++)}
16. for all r ∈ leaves(Tw) \ P
17. Lw ← Lw ∪ {(r,−−−)}
18. (hw, Cw)← Ψd.CoverGen(Lw)
19. else
20. tsw ← tsw + 1
21. for all p ∈ P
22. Lw ← Lw ∪ {(p,+++)}
23. for all r ∈ R
24. Lw ← Lw ∪ {(r,−−−)}
25. Cw ← Ψd.CoverGen(hw, Lw)
26. for each (c, s) ∈ Cw

27. ĩd = (c, s, hw, tsw)

28. (σC, utoken)← Σ.UpdateC

(
k, σC, add, (ĩd, w)

)
29. UList← UList ∪ {utoken}
30. send UList to server
Server Side:
31. for all utoken ∈ UList
32. EDB← Σ.UpdateS(utoken,EDB)

Fig. 15. A generic Dynamic SSE using Tree-Cover scheme: Update protocol

As before we take a secure Dynamic SSE scheme Σ = (Σ.Setup,Σ.Search,Σ.Update)
as our base scheme and convert it into a tree cover based Dynamic SSE dΣ = (dΣ.Setup,
dΣ.Search, dΣ.Update). The procedures for dΣ.Setup are shown in Figures 13. dΣ.Update
is shown in Figures 14 and 15. dΣ.Search is shown in Figure 16.

dΣ.Setup described in Figure 13 is very similar to sΣ.Setup. In sΣ.Setup a given
database DB is converted to D̃B, where D̃B consists of tuples of the form (w, c, hw)
where c is an element of the cover corresponding to the keyword w and hw is the height
of the corresponding tree representing the set db(w). In the case of dΣ.Setup the initial
database DB is converted into D̃B, but in this case, the D̃B consists of tuples of the form
(w, c, hw, tsw), where tsw is a new variable associated with each keyword, which keeps
information about the time at which some identifiers related to w have been updated.
Further, we’ll call tsw as the time stamp for the keyword w. In the setup phase, for each
keyword w, tsw is set to zero, signifying that no update has taken place yet. The role of
this variable tsw will be more clear from the update operation which we describe next.

Making Searchable Symmetric Encryption Schemes Smaller and Faster 25

Updates, in our case, take place by adding or deleting keyword-identifier pairs. Our
main strategy for an update is a lazy update model. We assume a buffer memory B
of restricted size (which may be user defined) at the client’s side to store intermediate
updates. The client uses this buffer B to store a “few” keyword-identifier pairs in un-
encrypted form along with the corresponding operation op ∈ {add, del}, where add and del
represents addition and deletion respectively. Once the buffer is full, the client uploads the
contents of the buffer to the server and resets the buffer to empty. The update procedure
consists of procedures to update the buffer and procedures to upload the contents of the
buffer to the server.

The update procedure shown in Figure 15 takes as input (op, in), where op ∈ {add, del}
and in is a keyword-identifier pair (id, w). On receiving the input the client first checks
if (op, in) ∈ B or not, where op = del if op = add and vice versa. If (op, in) ∈ B, then
the client deletes (op, in) from B and add (op, in) to the buffer B. Otherwise, it only adds
(op, in) to the buffer B. This procedure is summarized in the procedure BufferUpdate
shown in Figure 14. It is important to note that if (op, in) is present in the buffer, then
only deleting (op, in) from the buffer does not suffice. It is also necessary to add (op, in)
to the buffer B as the client has no knowledge of the current contents of the server, in
particular, it is not possible for the client to know during the update process if (op, in) is
currently present in the server or not. For example, assume that for an identifier id the
client wants to delete a keyword w, i.e., op = del. Also assume that (add, (id, w)) ∈ B.
If (id, w) currently resides in the server, then deleting (add, (id, w)) from buffer and not
adding (del, (id, w)) to B would lead to a wrong configuration for the keyword w.

After the buffer B becomes full the client retrieves all the entries (op, in) ∈ B that
correspond to each keyword w. Let Udt(w) = {(op, in) ∈ B : in = (id, w)}. The set
Udt(w) gives all identifiers corresponding to w which were updated in the current phase.
The client creates a tree T whose leaf nodes based on the identifiers present in Udt(w),
the identifiers associated with the operation add are labeled +++ and the ones associated
with del are labeled with −−−. This labeling gives a configuration Lw of the tree T . This
configuration along with the height of the tree is fed to a dynamic cover generation
algorithm Ψd.dCoverGen, which yields a cover Cw for the configuration Lw. Cw consists of
pairs (i, s) where i is a node of the three T and s ∈ {+++,−−−}. The update operation uploads
a λ bit representation of the tuple (i, s, hw, tsw) to the server by creating an update token
for the string through the client side update procedure of the base SSE, i.e., through
Σ.UpdateC. The details are depicted in the Algorithm shown in Figure 15.

The search protocol is summarised in Figure 16. To perform a search query on w, the
client uses the Σ.SearchC protocol of the base SSE to search for the keyword w and obtain
the search token stokenw. This token is then sent to the server. Upon receiving the search
token, the server returns the encrypted search result resS ← Σ.SearchS(stoken,EDB),
which the client decrypts. Each element of the decrypted search result res is an encoding
of (c, s, h, tsw). The client generates a sequence of covers {(ht, Ct)}t∈[0,tsw−1], where

Ct = {(c, s) : (c, s, h, tsw) ∈ res and , tsw = t},

for all t ∈ [0, tsw−1]. It is important to note that for every update (that is when the buffer
is full and offloaded to the server), the timestamp and corresponding height h related to
all the updates of a particular keyword are the same. The client then feeds this sequence of
covers to the dynamic cover reconstruction algorithm Ψd.dReConstruct (Section 4.3). The
final configuration produced by the Ψd.dReConstruct algorithm is used to construct db(w).
For computing the final search result the client looks for w in the buffer B and denotes the
search result as resC. The entries in B have the format (op, (id, w)). If (del, (id, w)) ∈ resC
then client discards the id from db(w). Otherwise, if (add, (id, w)) ∈ resC then the client

26 Chakraborty et al.

dΣ.Search (k, σC, ts,B, w):
Round 1:
01. Generate (σC, stokenw)← Σ.SearchC (k, σC, w)
02. Send stokenw to server
03. Server returns resS ← Σ.SearchS (stoken,EDB)
04. Parse all r ∈ resS as (c, s, h, i)
05. for j ∈ [0, tsw − 1]
06. Initialize Cj ← ∅
07. Cj ← Cj ∪ {(c, s)}, and hj ← h for all (c, s, h, j) ∈ resS
08. Generate the final configuration L← Ψd.dReConstruct

(
{hj , Cj}j∈[0,tsw−1]

)
09. Generate db(w) from L using φ
10. Search in B with keyword w and create the set resC from the search result
11. for all (op, (id, w)) ∈ resC
12. if op = add
13. db(w)← db(w) ∪ {id}
14. else
15. db(w)← db(w) \ {id}
Round 2:
Client Side:
16. Set UList← ∅
17. Set tsw ← 0

18. d̃b(w)← Conversion(db(w))

19. for all id ∈ d̃b(w)

20. ĩd← (id, tsw)

21. (σC, utoken)← Σ.UpdateC

(
k, σC, add, (ĩd, w)

)
22. UList← UList ∪ {utoken}
23. Send UList to server
Server Side:
24. for all utoken ∈ UList
25. EDB← Σ.UpdateS(utoken,EDB)

Fig. 16. A generic Dynamic SSE using Tree-Cover scheme: Search protocol

adds id to db(w). Subsequently, it resets tsw to 0. The client then re-uploads the search
result for w, in a manner similar to the update phase discussed earlier.

7 Discussions

In this section we discuss some existing SSEs and the consequences of pairing our scheme
with them.

Consider a Dynamic SSE scheme applied to an initially empty database. At a certain
instance of time, let iw be the number of additions, and dw be the number of deletions that
has taken place for a keyword w. Thus, the total number of updates uw for the keyword w
is given by uw = iw+dw, and nw = iw−dw denote the number of identifier pairs currently
matching keyword w. In addition, let N be the total number of document identifier
pairs in the database at that instance. In Table 1 we summarize the characteristics of
some widely studied recent SSE schemes. The list does not pretend to be a complete
one but is a good representative of the existing SSE schemes. The Table has two major
columns named Computation Cost and Communication Cost. The two sub-columns
under Computation Cost report the asymptotic computation cost for search and update,
respectively. The three sub-columns under Communication Cost list the size of the result

Making Searchable Symmetric Encryption Schemes Smaller and Faster 27

0 5 10 15 20 25 30
Number of Identifiers Present

0

5

10

15

20

25

30

Co
ve
r S
ize

Pure Cover with Positive Nodes
Pure Cover with Negative Nodes
Mixed Cover
Y=X Line

Fig. 17. Number of identifiers vs average cover size

of a single keyword search, the size of an update token for a single update and the number
of round-trips (RT), i.e., the number of communication rounds necessary between the
server and client for a search.

The schemes reported in Table 1 can be naturally grouped into two groups as follows:

Group-1: The schemes whose search cost is O(uw). The first four entries of Table 1,
i.e., Fides, Mitra, ΠBP and Dianadel falls under this category.
Group-2: The schemes whose search cost is not O(uw) but is dominated by nw. The
last five entries of Table 1 fall under this group.

SSE protocols that achieve a O(nw) time complexity for search are called optimal
search protocols. The Group-2 schemes are near optimal, as the leading term in the
search cost of these schemes is dominated by nw.

The Group-1 schemes fail to achieve the optimal search complexity as they treat dele-
tion also as an insertion with a specific tag and thus the search time depends on the
number of updates and not on the number of documents currently in the database that
contains w. But the Group-2 schemes achieve near optimal search time at an increased
cost for updates. All Group-2 schemes except Janus and LLSE have an update cost of
O(logN) whereas most Group-1 schemes have a constant update cost.

A similar pattern is observed in the case of communication costs also. The size of the
search results of all schemes in Group-2 is dominated by nw, but this is achieved with
an increased number of communication rounds. Most Group-1 schemes require a small
constant number of communication rounds, but the response size for a search query is
O(uw).
Effect of our Preprocessing on Efficiency: Our proposed scheme is just a prepro-
cessing step which can be applied to all existing SSEs. For a concrete understanding, we
can consider the effect of our pre-processing step on the schemes listed in Table 1. Firstly,
if the tree cover scheme is paired with any of the listed schemes, the asymptotic complex-
ity of the schemes does not change. For each w, our scheme deals with d̃b(w) instead of
db(w), hence the parameters of interest on which the complexity is measured in all the
listed schemes will change. In particular, with our scheme the parameter nw = |db(w)|

28 Chakraborty et al.

should be replaced by ñw = |d̃b(w)| and N = |DB| should be replaced by Ñ = |D̃B|. We
have already amply argued that on average for any database we will have ñw < nw and
Ñ < N . With this, it is easy to see that on average each of the Group-2 schemes will
have a concrete reduction of both computation and communication costs.

The effect of our scheme in the case of the Group-1 schemes is similar. In these schemes,
the search cost grows linearly with the number of updates uw. These schemes consider
each update, either insertion or deletion, as a new keyword document pair and these are
stored in the database. Thus, the number of keyword document pairs currently in the
database is uw, and this leads to the linear dependence of the search time with the number
of updates. But, if paired with the tree cover scheme, the effective number of updates
that are to be stored will get reduced on average as instead of the keyword identifier
pairs the cover of the configuration related to those pairs will be stored and this would
incur lesser cost. Based on the same argument, there would be a concrete reduction of the
response sizes on average. Moreover, the constant update cost and the constant update
token sizes, as achieved by these schemes, would be retained if paired with the tree cover
scheme.

Scheme Computation Cost Communication Cost
Search Update Search Update RT

Fides [7] O(uw) O(1) O(uw) O(1) 2
Mitra [12] O(uw) O(1) O(uw) O(1) 1
ΠBP [15] O(uw) O(1) O(nw) O(1) 2

Dianadel [7] O(uw) O(log uw) O(nw + dw log uw) O(1) 2
Janus [7] O(nw · dw) O(1) O(nw) O(1) 1
QOS [17] O(nw log iw + log2 |W|) O(log2 N) O(nw log2 N) O(log3 N) O(log |W|)
Orion [12] O(nw log2 N) O(log2 N) O(nw log2 N) O(log2 N) O(logN)

Horus [12] O(nw log(dw) logN) O(log2 N) O(nw log2 N) O(log2 N) O(logN)

LLSE [11] O((nw + log iw) · log logN) O(log2 N) O(nw) O(log2 N) 1
Table 1. Characteristics of some existing SSE schemes: N is the number of (id, w) pairs, |W| is the number of
distinct keywords. For each keyword w, iw and dw are the number of insertions and deletions, and uw = iw + dw
is the total number of updates, and nw = iw − dw is the number of keyword-identifier pairs currently matching
the keyword w. RT is the number of roundtrips for a search query.

8 Security of dΣ

As already stated, our scheme dΣ acts as key-less pre-processing step on a base SSE
scheme Σ. Thus, if our scheme is used as a preprocessing over an SSE Σ, the resulting
scheme would inherit the security of Σ. In this section, we formalize this intuition.

The security of a Dynamic SSE Σ is determined by a leakage function L = (LSetup,
LSearch,LUpdate). L denote the information that the adversary learns from the setup process
and each execution of the search and update protocols. The security of SSE schemes is
generally argued by showing that an adversary can not distinguish between a real-world
execution and an ideal-world execution (simulated using the leakage function) of the
scheme [16,23,9].

Definition 10 (Adaptive security of DSSE). Let Σ = (Setup, Search,Update) be a
Dynamic SSE scheme with security parameter λ and leakage profile L. Then, for any
probabilistic polynomial time (ppt) adversary A and a simulator S with access to L, we
define the experiments SSERealΣA(λ), and SSEIdealΣA,S (λ) as follows.

Making Searchable Symmetric Encryption Schemes Smaller and Faster 29

SSERealΣA(λ) : The adversary A(1λ) chooses a DB and the challenger runs (σC, EDB)←
SetupC

(
1λ,DB

)
and returns EDB to A. Then for subsequent search or update queries, the

challenger runs the real protocols, i.e., (σC, stoken) ← SearchC (σC, q) or (σC, utoken) ←
UpdateC (σC , op, (id, w)) respectively and provides the adversary with stoken or utoken.
The adversary A stops by outputting a bit, which is the output of the experiment.
SSEIdealΣA,S (λ) : The adversary A

(
1λ
)

chooses a DB and the challenger runs EDB ←
S (LSetup) and returns EDB to A. Then for subsequent search or update queries, the chal-
lenger runs stoken ← S (LSearch) or utoken ← S (LUpdate) respectively and provides the
adversary with stoken or utoken. The adversary A stops by outputting a bit, which is the
output of the experiment.

A Dynamic SSE scheme Σ is said to be L-adaptively secure if for all adversaries A,
the exists a simulator S such that, the SSE advantage

(
AdvΣA,S

)
of A (defined below) is a

negligible function in λ.

AdvPriv,ΣA,S (λ) =
∣∣Pr [SSERealΣA(λ) = 1

]
−

Pr
[
SSEIdealΣA,S(λ) = 1

]∣∣ ≤ negl(λ).

We reduce the security of our dynamic scheme dΣ to the security of the base SSE
scheme Σ.
Theorem 2. Let dΣ = (dΣ.Setup, dΣ.Search, dΣ.Update) be a Dynamic SSE scheme as
described in Figures 13, 15 and 16. dΣ is instantiated with a fixed but arbitrary tree cover
scheme Ψ = (Ψ.CoverGen, Ψ. ReConstruct) and a base dynamic SSE scheme Σ with leakage
profile L. If Σ is L-adaptive secure, then dΣ is also L-adaptive secure.

We provide the proof of the above theorem in the Appendix B. A few more points
regarding the security of dΣ are to be noted:

1. Our preprocessing step does not add to the security of the base scheme. The tree cover
scheme is meant to enhance the efficiency of the scheme while restoring the security
of the base scheme.

2. Theorem 2 only asserts a basic security guarantee of our scheme. We assumed the
base scheme to be L-adaptive secure which is a well accepted model of security. But
security of SSE schemes is still an active area of research and is not fully understood.
It has been claimed that SSE schemes proven secure in the L-adaptive model may still
succumb to attacks that the security model fails to incorporate. For example, a class
of attacks called file injection attacks [34] or a recent generalization in [2] may still
be applicable to provably secure schemes. Such weaknesses of the base SSE scheme Σ
may affect the security of dΣ.

3. A similar security Theorem holds for our static scheme sΣ.

9 Experimental Results

9.1 Comparing Cover Sizes

Consider a database with n documents, where n = 2k for some k and let for a keyword w,
|db(w)| = r. A tree representing this keyword w will contain n leaves, of which r leaves
would be labeled +++ and n− r leaves would be labeled −−−. We are interested in finding the
cover size of such a keyword. Note that if we fix the database size to n and |db(w)| to
r, then the tree for w may have

(
n
r

)
different configurations, and each configuration will

give rise to a cover of a different size. In our first experiment, we keep n fixed to 32 and
for each 0 ≤ r ≤ 32 we generate

(
n
r

)
configurations and compute the cover of all these

configurations. For each configuration, we generate three types of covers:

30 Chakraborty et al.

1. Pure cover with the nodes labeled +++, by using the algorithm PureCoverGen(·, ·) de-
scribed in Figure 3.

2. Pure cover with the nodes labeled −−−, also using algorithm PureCoverGen(·, ·) of Fig-
ure 3.

3. Mixed cover using Algorithm MixedCoverGen(·, ·) described in Figure 7.

For each r, we compute the average cover size over all the configurations. These results
are summarized in Figure 17. The X-axis of the graph shown in Figure 17 represents the
value r = |db(w)|, i.e., the number of identifiers which are present corresponding to the
keyword w. The Y -axis represents the average cover size of the configurations. The size
of the three types of covers is represented by three different types of lines. In addition,
we have also plotted the line Y = X for the sake of reference. Note that the line Y = X
shows how the input size corresponding to a normal SSE (which is just the number of
identifiers present in the database corresponding to w, i.e., |db(w)|) will grow with the
increase in the number of identifiers r.

The following can be immediately observed from the results demonstrated in Figure 17:

1. For all three types of covers, the average size of the covers increases with r, and then
it decreases.

2. For all values of r, the size of the mixed cover is smaller than the size of the pure
covers. The difference is significant when the number of identifiers present is around
half of the total number of identifiers.

3. The curves representing the average size of pure cover with nodes labeled +++ and
the mixed cover always lies below the line Y = X, signifying that on average, using
covers as input to an SSE would give rise to savings compared to using just the set
db(w)× {w}.

We have theoretically calculated the expected cover size for pure configuration (see Sec-
tion 4.1), given by Equation (3). To validate our theoretical result (Equation (3)), we ran
the pure cover generation algorithm for all possible configurations of the set db(w) in a
tree with 32 leaf nodes. The experimental results for the expected cover size match very
closely with the values predicted by the expression (Equation 3), confirming the tightness
of our expression.

Next, we repeat the same experiment with different database sizes for n = 512, 1024,
2048, and 4096. In this setting, it would be computationally prohibitive to compute the
cover size of all configurations corresponding to a value of r, 0 ≤ r ≤ n. Hence, for each
r, we generate 5000 uniform random configurations (with replacement), then compute
their mixed cover and the average cover size over these 5000 configurations. The results
of this experiment are depicted in Figure 18, which shows the variation of the average
cover size with r for different values of n. In each figure, the line Y = X is also drawn
for reference. For pure covers, the curves were drawn using Equation (3). The results in
Figure 18 show the same pattern as in Figure 17.

9.2 Performance on a Real Data

To validate our proposed scheme in practical databases, we conducted an experiment
using the Enron Email Dataset [18], which has about 500,000 documents and 200,000
keywords. We began by extracting keywords from the data set and construction of DB
consisting of the keyword identifier pairs. Subsequently, using the algorithm in Figure 11
we converted DB to D̃B. We experimented on different sizes of the database by randomly
selecting subsets of the database and for each case we compared the sizes of the original
and converted versions. These results are shown in Table 2, and for easy visual comparison

Making Searchable Symmetric Encryption Schemes Smaller and Faster 31

0 100 200 300 400 500
Number of Identifiers Present

0

100

200

300

400

500

Co
ve

r S
ize

Pure Cover with Positive Nodes
Pure Cover with Negative Nodes
Mixed Cover
Y=X Line

(a) Expected Cover Size (512)

0 200 400 600 800 1000
Number of Identifiers Present

0

200

400

600

800

1000

Co
ve

r S
ize

Pure Cover with Positive Nodes
Pure Cover with Negative Nodes
Mixed Cover
Y=X Line

(b) Expected Cover Size (1024)

0 500 1000 1500 2000
Number of Identifiers Present

0

500

1000

1500

2000

Co
ve

r S
ize

Pure Cover with Positive Nodes
Pure Cover with Negative Nodes
Mixed Cover
Y=X Line

(c) Expected Cover Size (2048)

0 1000 2000 3000 4000
Number of Identifiers Present

0

1000

2000

3000

4000
Co
ve
r S
ize

Pure Cover with Positive Nodes
Pure Cover with Negative Nodes
Mixed Cover
Y=X Line

(d) Expected Cover Size (4096)

Fig. 18. Expected cover size comparison

a pictorial representation of the data in Table 2 is shown in Figure 19. The last column
of Table 2 computes (|DB|−|D̃B|)×100

|DB| . It is evident from Table 2 that our protocol results
in substantial reductions in database size, ranging from 60% to 35%, even when dealing
with reasonably large databases. This demonstrates the effectiveness of our approach in
practical databases.

|DB| |D̃B| Advantage (%)
220 5,26,492 52.4
220.5 6,08,347 60.2
221 9,24,455 54.8
221.5 15,50,264 49.8
222 29,74,256 43.8
222.5 44,05,133 41.1
223 64,47,481 36.4
223.5 75,17,379 35.6

Table 2. The size of original database DB and the converted database D̃B in case of Enron data

32 Chakraborty et al.

0.0 0.2 0.4 0.6 0.8 1.0 1.2
Number of (id,w) pairs 1e7

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Nu
m

be
r o

f R
ed

uc
ed

 (i
d,

w)
 P

ai
rs

1e7 Number of (id,w) Pairs and Reduced (id,w) Pairs
No. of (id,w) pairs
No. of. Reduced (id,w) pairs

Fig. 19. A pictorial depiction of the data in Table 2 showing the number of tuples in the original database
(represented by filled circles) and the number of tuples in the converted database (represented by filled triangles)
for different database sizes

9.3 Extra Overheads

Our scheme builds over an existing SSE and the extra overhead over the original SSE
is the time required for computing covers and cover reconstruction. We experimentally
compute the time required for cover generation and computation. We used the following
configuration for our computation:

CPU: Intel Core i5-1135G7 @ 2.40GHz × 8 processor (3.1GHz).
RAM: 16 GB
OS: Ubuntu 22.04.3 LTS, 64 bits.
Programming Language: Python

Table 3 shows the time required for cover generation and reconstruction for databases
of different sizes. We considered database sizes of n = 217, 218, 219. For each of these
databases, we considered different sizes of |db(w)| as shown in the rows of the Table. For
each |db(w)| we generated 100 random configurations and the times reported for the cover
generation and re-construction are the average time required for generation and recon-
struction for these 100 configurations. As expected, Table 3 clearly shows that the cover
generation times increase with both the increase in n and |db(w)|. The reconstruction
times reported for |db(w)| < 104, are negligible. If |db(w)| is small, it is expected that a
pure cover is generated, and reconstruction of a pure cover is immediate.
Dynamic Scenario: Now, we test the performance of our scheme for updates. We con-
sider a database containing 109 keyword-identifier pairs, and a client buffer of size 0.01%
of the actual database size. We consider updates for a single keyword w following the
protocol described below.

We consider an initial set of documents D0 and a keyword w∗ where w∗ is initially
present in 12.5% of the documents in D0. Next, we perform a series of update oper-
ations involving w∗. The updates are made in three phases P1, P2, P3. The updates in
phase Pi are applied to the documents in Di−1, and the updates result in a new set of

Making Searchable Symmetric Encryption Schemes Smaller and Faster 33

|db(w)|
Time (sec)
for n = 217

Time (sec)
for n = 218

Time (sec)
for n = 219

Gen Re-con Gen Re-con Gen Re-con
102 0.22 10−5 0.42 10−5 0.94 10−5

103 0.27 10−4 0.49 10−4 1.01 10−4

104 0.51 10−3 0.88 10−3 1.51 10−3

216 0.87 0.17 1.64 0.25 2.97 0.35
217 - - 1.99 0.37 3.69 0.57
218 - - - - 4.14 0.85

Table 3. Cover generation and reconstruction times

documents Di. The update operations are designed in such a way that w∗ is present in
25% of the documents in D1, 50% of the documents in D2 and 60% documents in D3.
In each phase, multiple update operations are performed and 10% of all operations in
each phase are delete operations. At the end of each phase of updates, a search operation
is performed involving w∗. Note, that the search operation forces the transmission of all
tuples corresponding to w∗ from the buffer to the server.

65536 131072 262144 314573
Actual Key-ID Pair

0

50000

100000

150000

200000

250000

300000

Ke
y-

ID
 P

ai
r t

o
be

 S
to

re
d

Normal SSE
Cover Based SSE

Fig. 20. Database sizes in dynamic scenario.

We repeated the above protocol 2000 times with random updates following the rules
stated above using our scheme dΣ. After each execution, we recorded the size of the
database after the search operations in each phase. In Figure 20 we report the average
size of the database across the 2000 executions in a bar diagram. In Figure 20 the database
sizes for our scheme and the base SSE are shown. The four pairs of bars correspond to
the sizes of the databases after each phase just after the search operation. The first pair
correspond to the database for the initial set of documents D0, and the second pair is
for D1 etc. The figure clearly shows that our scheme leads to considerable savings in the
dynamic scenario also.

34 Chakraborty et al.

10 Conclusion

We describe a novel way to make SSE schemes space efficient. Our scheme converts a given
database into a different representation which on average results in a significant amount of
space savings. The smaller representation also results in reduced search time and response
sizes. Our scheme depends on representing the set db(w) using binary trees where the
leaves are labeled. This representation has interesting combinatorial properties which we
explore in detail. Our experiments show that our representation results in smaller index
sizes with very low extra overhead. Our scheme can be used with any secure SSE, and
our scheme being just a pre-processing step retains the security of the base SSE.

We list some aspects of the tree cover scheme as applied to SSE which we plan to
explore in the near future:

1. Our current study involves only single keyword select queries. It seems that with some
small modifications, it may be possible to equip the scheme to handle range queries.

2. We compute an estimate of the average size of a cover in the case of pure covers.
Our estimate is quite accurate as demonstrated by the experiments, but we failed to
obtain a semantically useful analytical expression of the estimate. It would be nice to
try to estimate the average size in some alternative way to obtain a more meaningful
expression.

3. We would like to see the performance of our scheme in real environment which would
require a careful implementation of our scheme paired with a base SSE in a real cloud
environment.

4. An attractive property of the scheme is that given the response of a query produced by
our scheme it is not possible to directly know the number of documents that match the
query. This hints that our scheme is volume hiding to some extent. But, a thorough
investigation of this property is required. We think that by using some additional
randomization, it may be possible to convert our scheme into a volume hiding scheme
against a large class of powerful adversaries.

A Proof of Theorem 1

The proof of (1) is immediate, as at least one of Xi,r or Xi,g must be non-empty as Lc is
a complete configuration of T and hence all the leaves of T are colored.

(2) Directly follows from the description of the algorithm and Proposition 4.
We prove (3) by induction on the height of a node. Let i be of height 0, i.e., a leaf

node and without loss of generality let i be colored green, thus Xi,g = {(i,+++)} and
Xi,r = Xi,m = ∅, and Xi,g is the smallest set which spans T (i) as |Xi,g| = 1. This
serves as the base case. As induction hypothesis consider that (3) is true for all nodes
at height less than ℓ. Consider, a node i at height ℓ. As ℓ > 0, i have two children
say λ and ρ. By our induction hypothesis, Xλ = minCard(Xλ,r, Xλ,g, Xλ,m) and Xρ =
minCard(Xρ,r, Xρ,g, Xρ,m) are the smallest sets which spans T (λ) and T (ρ) respectively.
Now we have a few cases to consider:

Case 1: i is colored. Without loss of generality let color(i) = green, then Xi,g =
{(i,+++)} and Xi,r and Xi,m are empty. Moreover, as Xi,g = {(i,+++)} contains a single
node which is the root of T (i), thus Xi,g is the smallest set which spans T (i).
Case 2: i is not colored. Let X = minCard(Ci), and for the sake of contradiction let
Y span T (i) and let |Y | < |X|. Let Y = Yλ ∪ Yρ where Yj contains nodes in T (j) for
j ∈ {λ, ρ}. We consider two subcases:

Making Searchable Symmetric Encryption Schemes Smaller and Faster 35

(a) Both Yλ and Yρ are non-empty. By Proposition 5, Yλ and Yρ spans T (λ) and
T (ρ) respectively. Now, we claim that either |Yλ| < |Xλ| or |Yρ| < |Xρ|, and this
contradicts our induction hypothesis. Finally, to see why our claim is correct, notice
that by our algorithm Xλ ∪ Xρ ∈ Ci, and as |Y | < |X| and X = minCard(Ci) it
cannot be that |Yλ| ≥ |Xλ| and |Yρ| ≥ |Xρ|.

(b) One of Yλ and Yρ is empty. Without loss of generality, let Yρ = ∅, i.e., Y = Yλ.
Then by Proposition 5, Yλ must contain nodes of the same color, say green, and
all leaves of T (ρ) must be red. Hence, node ρ must be red and all nodes in
leaves(T (λ))\Yλ must also be red. In this configuration, the set Xi,g computed by
MixedCoverGen, will contain the same nodes as in Yλ. Hence, we have Y = Yλ ∈ Ci,
which contradicts |Y | < |X|, as X = minCard(Ci).

B Proof of Theorem 2

We say that SimB is a compatible simulator for an adversary B attacking Σ if∣∣Pr [SSERealΣB(λ) = 1
]
− Pr

[
SSEIdealΣB,SimB

(λ) = 1
]∣∣ ≤ negl(λ).

As Σ is L-adaptive secure hence by Definition 10, a compatible simulator for B always
exists.

Let A be an arbitrary adversary for dΣ instantiated with a fixed but arbitrary tree
cover scheme Ψ and a base dynamic SSE Σ. Based on the protocols involved in dΣ
(see Figures 13, 15, 16) it is important to note down the correct interface between the
adversary A and its challenger:

1. On a setup query (1λ,DB) for a database DB of A’s choice its challenger returns EDB.
2. On an update query (op, in), its challenger returns UList a set of update tokens (see

line 30 of Figure 15).
3. For a search query w, the challenger returns a search token stokenw and a set of update

tokens UList (see lines 02 and 23 of Figure 16).

Given an adversary A for dΣ, we construct an adversary B for the base protocol Σ,
which acts as a challenger for A. B being an adversary for Σ has a challenger which we
denote as C. B provides responses to the queries of A with the help of the responses
it receives from its challenger C. Note the tree cover scheme Ψ is key-less and is thus
accessible to B.

Now we describe the interaction of A, B and C in a sequence of games G0, G1, G2.
Game G0: We assume that B’s challenger C follows the real protocols (Σ.Setup,Σ.Search,
Σ.Update) to answer queries of B. B acts as a challenger to A as follows:

1. When a setup request Setup(1λ,DB) is issued by A then B runs lines 01 to 03 of the
procedure dΣ.Setup(1λ,DB) described in Figure 13 and obtains D̃B. B then issues the
setup request (1λ, D̃B) to its challenger C and receives EDB as a response which it
transmits to A. Note, in this process B has created a map ts and a buffer B which it
retains with it and updates during the subsequent queries of A.

2. On receiving an update query (op, in) from A, B runs lines 01 to 30 of the procedure
dΣ.Update described in Figure 15. In lieu of line 28, it issues an update query (ĩd, w)
to its challenger C and receives utoken in response. It populates the set UList using the
responses received from C, then it executes lines 31 and 32 of the procedure dΣ.Update
and finally sends UList to A.

36 Chakraborty et al.

3. On receiving a search query w from A, B queries C with w and receives as a response
stokenw. Then it executes lines 03 to 25 of the procedure dΣ.Search as described in
Figure 16. Instead of executing line 21, it queries C with an update query (add, (ĩd, w))
and receives utoken as response. Finally, it sends UList as constructed in line 23 to A.

After A stops querying, A outputs a bit b ∈ {0, 1}, B and G0 also outputs b.
We can view G0 as an interaction between A and its challenger B, where A gets a

perfect interface for the real scheme dΣ, thus

Pr
[
SSERealdΣA (λ) = 1

]
= Pr[G0 = 1]. (7)

We can also view adversaries A and B together as a single adversary B′ who interacts
with C (the challenger of B), which provides the perfect interface for Σ. Thus, we have

Pr
[
SSERealΣB′(λ) = 1

]
= Pr[G0 = 1]. (8)

Game G1: We make some small changes in Game G0 to obtain game G1. First, observe
that for any adversary A for dΣ, Game G0 gives a concrete description for an adversary
B, and thus of the combined adversary B′ which attacks Σ. As Σ is L-adaptive secure
hence a compatible simulator SimB′ for B′ exists. In Game G1 the challenger responds to
the queries of B′ using the simulator SimB′ instead of the real protocols of Σ. Thus,

Pr
[
SSEIdealΣB′,SimB′ = 1

]
= Pr[G1 = 1]. (9)

As Σ is L-adaptive secure hence, we have∣∣∣Pr [SSERealΣB′(λ) = 1
]
− Pr

[
SSEIdealΣB′,SimB′ (λ) = 1

]∣∣∣ ≤ negl(λ). (10)

Thus using Equations (8), (9), (10), we have

|Pr[G0 = 1]− Pr[G1 = 1]| ≤ negl(λ). (11)

Game G2: In this game we view the game G1 a bit differently. We see the description of
B along with the simulator Sim′

B together and call it as SimA. Note, with this view, we
see A interacting with a single piece of code SimA. Thus, we have

Pr[SSEIdealΣA,SimA
(λ)] = Pr[G2 = 1], (12)

and as G1 and G2 are essentially same we have

Pr[G1 = 1] = Pr[G2 = 1]. (13)

Now, using Equations (11) and (13) we have

|Pr[G0 = 1]− Pr[G2 = 1]| ≤ negl(λ). (14)

Finally, using Equations (7), (12) and (14), we have∣∣Pr [SSERealΣA(λ) = 1
]
− Pr

[
SSEIdealΣA,SimA

(λ) = 1
]∣∣ ≤ negl(λ),

as desired.

Acknowledgments. A major portion of this work was done when Subhabrata Samajder and Avishek Majumder
were in the Computer Science and Engineering department of Indraprastha Institute of Information Technology
Delhi (IIIT-Delhi). They thank IIIT-Delhi for the support.

Making Searchable Symmetric Encryption Schemes Smaller and Faster 37

References

1. Tree Cover SSE. https://github.com/sochoavi/IJIS_Code
2. Amjad, G., Kamara, S., Moataz, T.: Injection-secure structured and searchable symmetric encryption. In:

Guo, J., Steinfeld, R. (eds.) Advances in Cryptology - ASIACRYPT 2023 - 29th International Conference
on the Theory and Application of Cryptology and Information Security, Guangzhou, China, December 4-8,
2023, Proceedings, Part VI. Lecture Notes in Computer Science, vol. 14443, pp. 232–262. Springer (2023).
https://doi.org/10.1007/978-981-99-8736-8_8, https://doi.org/10.1007/978-981-99-8736-8_8

3. Amjad, G., Patel, S., Persiano, G., Yeo, K., Yung, M.: Dynamic volume-hiding encrypted multi-maps with
applications to searchable encryption. Proc. Priv. Enhancing Technol. 2023(1), 417–436 (2023). https:
//doi.org/10.56553/popets-2023-0025, https://doi.org/10.56553/popets-2023-0025

4. Bhattacherjee, S., Sarkar, P.: Complete tree subset difference broadcast encryption scheme and its analysis.
Designs, codes and cryptography 66(1), 335–362 (2013)

5. Bhattacherjee, S., Sarkar, P.: Concrete Analysis and Trade-Offs for the (Complete Tree) Layered Subset
Difference Broadcast Encryption Scheme. IEEE Transactions on Computers 63(7), 1709–1722 (2014), DOI:
10.1109/TC.2013.68

6. Bost, R.:
∑

oφoς: Forward secure searchable encryption. In: Weippl, E.R., Katzenbeisser, S., Kruegel,
C., Myers, A.C., Halevi, S. (eds.) Proceedings of the 2016 ACM SIGSAC Conference on Computer and
Communications Security, Vienna, Austria, October 24-28, 2016. pp. 1143–1154. ACM (2016). https:
//doi.org/10.1145/2976749.2978303, https://doi.org/10.1145/2976749.2978303

7. Bost, R., Minaud, B., Ohrimenko, O.: Forward and backward private searchable encryption from constrained
cryptographic primitives. In: Thuraisingham, B.M., Evans, D., Malkin, T., Xu, D. (eds.) Proceedings of the
2017 ACM SIGSAC Conference on Computer and Communications Security, CCS 2017, Dallas, TX, USA,
October 30 - November 03, 2017. pp. 1465–1482. ACM (2017). https://doi.org/10.1145/3133956.3133980,
https://doi.org/10.1145/3133956.3133980

8. Cash, D., Grubbs, P., Perry, J., Ristenpart, T.: Leakage-abuse attacks against searchable encryption. In:
Proceedings of the 22nd ACM SIGSAC conference on computer and communications security. pp. 668–679
(2015)

9. Cash, D., Jaeger, J., Jarecki, S., Jutla, C.S., Krawczyk, H., Rosu, M.C., Steiner, M.: Dynamic searchable
encryption in very-large databases: data structures and implementation. In: NDSS. vol. 14, pp. 23–26. Citeseer
(2014)

10. Cash, D., Jarecki, S., Jutla, C., Krawczyk, H., Roşu, M.C., Steiner, M.: Highly-scalable searchable symmet-
ric encryption with support for boolean queries. In: Advances in Cryptology–CRYPTO 2013: 33rd Annual
Cryptology Conference, Santa Barbara, CA, USA, August 18-22, 2013. Proceedings, Part I. pp. 353–373.
Springer (2013)

11. Chamani, J.G., Papadopoulos, D., Karbasforushan, M., Demertzis, I.: Dynamic searchable encryption with
optimal search in the presence of deletions. In: Butler, K.R.B., Thomas, K. (eds.) 31st USENIX Security Sym-
posium, USENIX Security 2022, Boston, MA, USA, August 10-12, 2022. pp. 2425–2442. USENIX Association
(2022), https://www.usenix.org/conference/usenixsecurity22/presentation/chamani

12. Chamani, J.G., Papadopoulos, D., Papamanthou, C., Jalili, R.: New constructions for forward and backward
private symmetric searchable encryption. In: Lie, D., Mannan, M., Backes, M., Wang, X. (eds.) Proceedings
of the 2018 ACM SIGSAC Conference on Computer and Communications Security, CCS 2018, Toronto, ON,
Canada, October 15-19, 2018. pp. 1038–1055. ACM (2018)

13. Chase, M., Kamara, S.: Structured encryption and controlled disclosure. In: Abe, M. (ed.) Advances in
Cryptology - ASIACRYPT 2010. pp. 577–594. Springer Berlin Heidelberg, Berlin, Heidelberg (2010)

14. Chatterjee, S., Kesarwani, M., Modi, J., Mukherjee, S., Puria, S.K.P., Shah, A.: Secure and efficient
wildcard search over encrypted data. Int. J. Inf. Sec. 20(2), 199–244 (2021). https://doi.org/10.1007/
S10207-020-00492-W, https://doi.org/10.1007/s10207-020-00492-w

15. Chatterjee, S., Puria, S.K.P., Shah, A.: Efficient backward private searchable encryption. J. Comput. Secur.
28(2), 229–267 (2020). https://doi.org/10.3233/JCS-191322, https://doi.org/10.3233/JCS-191322

16. Curtmola, R., Garay, J., Kamara, S., Ostrovsky, R.: Searchable symmetric encryption: Improved definitions
and efficient constructions. In: Proceedings of the 13th ACM Conference on Computer and Communications
Security. p. 79–88. CCS ’06, Association for Computing Machinery, New York, NY, USA (2006). https:
//doi.org/10.1145/1180405.1180417, https://doi.org/10.1145/1180405.1180417

17. Demertzis, I., Chamani, J.G., Papadopoulos, D., Papamanthou, C.: Dynamic searchable encryption with
small client storage. In: 27th Annual Network and Distributed System Security Symposium, NDSS 2020, San
Diego, California, USA, February 23-26, 2020. The Internet Society (2020), https://www.ndss-symposium.
org/ndss-paper/dynamic-searchable-encryption-with-small-client-storage/

18. Enron Corp and Cohen, W. W.: Enron email dataset. United States Federal Energy Regulatory Commis-
sioniler, comp (2015), https://www.loc.gov/item/2018487913/

19. Etemad, M., Küpçü, A., Papamanthou, C., Evans, D.: Efficient dynamic searchable encryption with
forward privacy. Proc. Priv. Enhancing Technol. 2018(1), 5–20 (2018). https://doi.org/10.1515/
POPETS-2018-0002, https://doi.org/10.1515/popets-2018-0002

https://github.com/sochoavi/IJIS_Code
https://doi.org/10.1007/978-981-99-8736-8_8
https://doi.org/10.1007/978-981-99-8736-8_8
https://doi.org/10.1007/978-981-99-8736-8_8
https://doi.org/10.56553/popets-2023-0025
https://doi.org/10.56553/popets-2023-0025
https://doi.org/10.56553/popets-2023-0025
https://doi.org/10.56553/popets-2023-0025
https://doi.org/10.56553/popets-2023-0025
https://doi.org/10.1109/10.1109/TC.2013.68
https://doi.org/10.1145/2976749.2978303
https://doi.org/10.1145/2976749.2978303
https://doi.org/10.1145/2976749.2978303
https://doi.org/10.1145/2976749.2978303
https://doi.org/10.1145/2976749.2978303
https://doi.org/10.1145/3133956.3133980
https://doi.org/10.1145/3133956.3133980
https://doi.org/10.1145/3133956.3133980
https://www.usenix.org/conference/usenixsecurity22/presentation/chamani
https://doi.org/10.1007/S10207-020-00492-W
https://doi.org/10.1007/S10207-020-00492-W
https://doi.org/10.1007/S10207-020-00492-W
https://doi.org/10.1007/S10207-020-00492-W
https://doi.org/10.1007/s10207-020-00492-w
https://doi.org/10.3233/JCS-191322
https://doi.org/10.3233/JCS-191322
https://doi.org/10.3233/JCS-191322
https://doi.org/10.1145/1180405.1180417
https://doi.org/10.1145/1180405.1180417
https://doi.org/10.1145/1180405.1180417
https://doi.org/10.1145/1180405.1180417
https://doi.org/10.1145/1180405.1180417
https://www.ndss-symposium.org/ndss-paper/dynamic-searchable-encryption-with-small-client-storage/
https://www.ndss-symposium.org/ndss-paper/dynamic-searchable-encryption-with-small-client-storage/
https://www.loc.gov/item/2018487913/
https://doi.org/10.1515/POPETS-2018-0002
https://doi.org/10.1515/POPETS-2018-0002
https://doi.org/10.1515/POPETS-2018-0002
https://doi.org/10.1515/POPETS-2018-0002
https://doi.org/10.1515/popets-2018-0002

38 Chakraborty et al.

20. Hu, C., Han, L.: Efficient wildcard search over encrypted data. Int. J. Inf. Secur. 15(5), 539–547 (oct 2016).
https://doi.org/10.1007/s10207-015-0302-0, https://doi.org/10.1007/s10207-015-0302-0

21. Islam, M.S., Kuzu, M., Kantarcioglu, M.: Access pattern disclosure on searchable encryption: Ramification, at-
tack and mitigation. In: 19th Annual Network and Distributed System Security Symposium, NDSS 2012, San
Diego, California, USA, February 5-8, 2012. The Internet Society (2012), https://www.ndss-symposium.org/
ndss2012/access-pattern-disclosure-searchable-encryption-ramification-attack-and-mitigation

22. Kamara, S., Moataz, T.: Computationally volume-hiding structured encryption. In: Annual International
Conference on the Theory and Applications of Cryptographic Techniques. pp. 183–213. Springer (2019)

23. Kamara, S., Papamanthou, C., Roeder, T.: Dynamic searchable symmetric encryption. In: Proceedings of
the 2012 ACM Conference on Computer and Communications Security. p. 965–976. CCS ’12, Association for
Computing Machinery, New York, NY, USA (2012). https://doi.org/10.1145/2382196.2382298, https:
//doi.org/10.1145/2382196.2382298

24. Lai, S., Patranabis, S., Sakzad, A., Liu, J.K., Mukhopadhyay, D., Steinfeld, R., Sun, S.F., Liu, D., Zuo,
C.: Result pattern hiding searchable encryption for conjunctive queries. In: Proceedings of the 2018 ACM
SIGSAC conference on computer and communications security. pp. 745–762 (2018)

25. Molla, E., Rizomiliotis, P., Gritzalis, S.: Efficient searchable symmetric encryption supporting range queries.
Int. J. Inf. Sec. 22(4), 785–798 (2023). https://doi.org/10.1007/S10207-023-00667-1, https://doi.org/
10.1007/s10207-023-00667-1

26. Naor, D., Naor, M., Lotspiech, J.: Revocation and tracing schemes for stateless receivers. In: Kilian, J. (ed.)
Advances in Cryptology — CRYPTO 2001. pp. 41–62. Springer Berlin Heidelberg, Berlin, Heidelberg (2001)

27. Patel, S., Persiano, G., Yeo, K., Yung, M.: Mitigating leakage in secure cloud-hosted data structures: Volume-
hiding for multi-maps via hashing. In: Proceedings of the 2019 ACM SIGSAC Conference on Computer and
Communications Security. pp. 79–93 (2019)

28. Patranabis, S., Mukhopadhyay, D.: Forward and backward private conjunctive searchable symmetric en-
cryption. In: 28th Annual Network and Distributed System Security Symposium, NDSS 2021, virtu-
ally, February 21-25, 2021. The Internet Society (2021), https://www.ndss-symposium.org/ndss-paper/
forward-and-backward-private-conjunctive-searchable-symmetric-encryption/

29. Song, D.X., Wagner, D., Perrig, A.: Practical techniques for searches on encrypted data. In: Proceedings of
the 2000 IEEE Symposium on Security and Privacy. p. 44. SP ’00, IEEE Computer Society, USA (2000)

30. Stefanov, E., Papamanthou, C., Shi, E.: Practical dynamic searchable encryption with small leakage. In:
21st Annual Network and Distributed System Security Symposium, NDSS 2014, San Diego, California,
USA, February 23-26, 2014. The Internet Society (2014), https://www.ndss-symposium.org/ndss2014/
practical-dynamic-searchable-encryption-small-leakage

31. Sun, S., Steinfeld, R., Lai, S., Yuan, X., Sakzad, A., Liu, J.K., Nepal, S., Gu, D.: Practi-
cal non-interactive searchable encryption with forward and backward privacy. In: 28th An-
nual Network and Distributed System Security Symposium, NDSS 2021, virtually, Febru-
ary 21-25, 2021. The Internet Society (2021), https://www.ndss-symposium.org/ndss-paper/
practical-non-interactive-searchable-encryption-with-forward-and-backward-privacy/

32. Wu, Z., Li, K.: Vbtree: forward secure conjunctive queries over encrypted data for cloud computing. The
VLDB journal 28(1), 25–46 (2019)

33. Yuan, D., Zuo, C., Cui, S., Russello, G.: Result-pattern-hiding conjunctive searchable symmetric encryption
with forward and backward privacy. Proc. Priv. Enhancing Technol. 2023(2), 40–58 (2023). https://doi.
org/10.56553/POPETS-2023-0040, https://doi.org/10.56553/popets-2023-0040

34. Zhang, Y., Katz, J., Papamanthou, C.: All your queries are belong to us: The power of file-injection attacks on
searchable encryption. In: Proceedings of the 25th USENIX Conference on Security Symposium. p. 707–720.
SEC’16, USENIX Association, USA (2016)

35. Zuo, C., Sun, S.F., Liu, J.K., Shao, J., Pieprzyk, J.: Dynamic searchable symmetric encryption schemes sup-
porting range queries with forward (and backward) security. In: Computer Security: 23rd European Sympo-
sium on Research in Computer Security, ESORICS 2018, Barcelona, Spain, September 3-7, 2018, Proceedings,
Part II 23. pp. 228–246. Springer (2018)

36. Zuo, C., Sun, S.F., Liu, J.K., Shao, J., Pieprzyk, J.: Dynamic searchable symmetric encryption with forward
and stronger backward privacy. In: Computer Security – ESORICS 2019: 24th European Symposium on
Research in Computer Security, Luxembourg, September 23–27, 2019, Proceedings, Part II. p. 283–303.
Springer-Verlag, Berlin, Heidelberg (2019). https://doi.org/10.1007/978-3-030-29962-0_14, https://
doi.org/10.1007/978-3-030-29962-0_14

https://doi.org/10.1007/s10207-015-0302-0
https://doi.org/10.1007/s10207-015-0302-0
https://doi.org/10.1007/s10207-015-0302-0
https://www.ndss-symposium.org/ndss2012/access-pattern-disclosure-searchable-encryption-ramification-attack-and-mitigation
https://www.ndss-symposium.org/ndss2012/access-pattern-disclosure-searchable-encryption-ramification-attack-and-mitigation
https://doi.org/10.1145/2382196.2382298
https://doi.org/10.1145/2382196.2382298
https://doi.org/10.1145/2382196.2382298
https://doi.org/10.1145/2382196.2382298
https://doi.org/10.1007/S10207-023-00667-1
https://doi.org/10.1007/S10207-023-00667-1
https://doi.org/10.1007/s10207-023-00667-1
https://doi.org/10.1007/s10207-023-00667-1
https://www.ndss-symposium.org/ndss-paper/forward-and-backward-private-conjunctive-searchable-symmetric-encryption/
https://www.ndss-symposium.org/ndss-paper/forward-and-backward-private-conjunctive-searchable-symmetric-encryption/
https://www.ndss-symposium.org/ndss2014/practical-dynamic-searchable-encryption-small-leakage
https://www.ndss-symposium.org/ndss2014/practical-dynamic-searchable-encryption-small-leakage
https://www.ndss-symposium.org/ndss-paper/practical-non-interactive-searchable-encryption-with-forward-and-backward-privacy/
https://www.ndss-symposium.org/ndss-paper/practical-non-interactive-searchable-encryption-with-forward-and-backward-privacy/
https://doi.org/10.56553/POPETS-2023-0040
https://doi.org/10.56553/POPETS-2023-0040
https://doi.org/10.56553/POPETS-2023-0040
https://doi.org/10.56553/POPETS-2023-0040
https://doi.org/10.56553/popets-2023-0040
https://doi.org/10.1007/978-3-030-29962-0_14
https://doi.org/10.1007/978-3-030-29962-0_14
https://doi.org/10.1007/978-3-030-29962-0_14
https://doi.org/10.1007/978-3-030-29962-0_14

	Making Searchable Symmetric Encryption Schemes Smaller and Faster

