
Honest Majority GOD MPC with O(depth(C))
Rounds and Low Online Communication

Amit Agarwal1, Alexander Bienstock2, Ivan Damgård3, and Daniel Escudero2

1 University of Illinois Urbana-Champaign
2 J.P. Morgan AI Research and J.P. Morgan AlgoCRYPT CoE

3 Aarhus University

Abstract. In the context of secure multiparty computation (MPC) pro-
tocols with guaranteed output delivery (GOD) for the honest majority
setting, the state-of-the-art in terms of communication is the work of
(Goyal et al. CRYPTO’20), which communicates O(n|C|) field elements,
where |C| is the size of the circuit being computed and n is the number
of parties. Their round complexity, as usual in secret-sharing based MPC,
is proportional to O(depth(C)), but only in the optimistic case where
there is no cheating. Under attack, the number of rounds can increase
to Ω(n2) before honest parties receive output, which is undesired for
shallow circuits with depth(C) ≪ n2. In contrast, other protocols that
only require O(depth(C)) rounds even in the worst case exist, but the
state-of-the-art from (Choudhury and Patra, Transactions on Informa-
tion Theory, 2017) still requires Ω(n4|C|) communication in the offline
phase, and Ω(n3|C|) in the online (for both point-to-point and broadcast
channels). We see there exists a tension between efficient communication
and number of rounds. For reference, the recent work of (Abraham et al.,
EUROCRYPT’23) shows that for perfect security and t < n/3, protocols
with both linear communication and O(depth(C)) rounds exist.

We address this state of affairs by presenting a novel honest majority
GOD protocol that maintains O(depth(C)) rounds, even under attack,
while improving over the communication of the most efficient protocol
in this setting by Choudhury and Patra. More precisely, our protocol
has point-to-point (P2P) online communication of O(n|C|), accompanied
by O(n|C|) broadcasted (BC) elements, while the offline has O(n3|C|)
P2P communication with O(n3|C|) BC. This improves over the previous
best result, and reduces the tension between communication and round
complexity. Our protocol is achieved via a careful use of packed secret-
sharing in order to improve the communication of existing verifiable
secret-sharing approaches, although at the expense of weakening their
robust guarantees: reconstruction of shared values may fail, but only if
the adversary gives away the identities of many corrupt parties. We show
that this less powerful notion is still useful for MPC, and we use this as a
core building block in our construction. Using this weaker VSS, we adapt
the recent secure-with-abort Turbopack protocol (Escudero et al. CCS’22)
to the GOD setting without significantly sacrificing in efficiency.

1 Introduction

Secure multiparty computation, or MPC for short, is a set of tools that enable a
set of parties P1, . . . , Pn, each Pi holding an input xi, to compute any function
y = f(x1, . . . , xn) while revealing only the output y. This holds even if an
adversary corrupts t out of the n parties, and if the protocol is what is known as
actively secure, then security holds even if the corrupt parties deviate arbitrarily
from the protocol execution. A particularly interesting setting, which is the focus
of this work, is the honest majority case where it is assumed that t < n/2, that
is, the adversary only corrupts a minority of the parties. In this case, the strong
property of guaranteed output delivery (G.O.D.) can be achieved, which ensures
the honest parties receive the output y in spite of any malicious behavior by
the corrupt parties. Furthermore, if one is willing to assume the existence of
a broadcast channel, the whole protocol can be made unconditionally secure,
meaning it is resistant against unbounded adversaries and it only has a negligible
amount of error. This is in contrast to security with abort, which ensures privacy
but may not guarantee output provision.

G.O.D. is the strongest security notion for MPC and very important in
practice as it removes all problems with deciding who failed if the protocol
aborts. Hence, optimizing the efficiency of G.O.D. protocols has been a topic of
study in recent literature. First, as usual in MPC, let us model the computation
to be carried out as an arithmetic circuit C over a large-enough finite field F.
Let us begin by discussing the case in which t < n/3, which is weaker than
honest majority t < n/2 as it tolerates less corruptions. Earlier works such as
BGW [BGW88] and (concurrently) [CCD88] show that G.O.D. is possible for
t < n/3 with perfect security, having a communication complexity (measured in
the total number of field elements) of O(n4|C|). Several follow-up works were
devoted to improving the communication. Towards such goal, [HMP00] introduces
the player elimination framework, which reduces communication to O(n3|C|),
and building on top of this framework, the works of [BTH08; GLS19] get linear
communication O(n|C|). Unfortunately, the number of rounds—which is also
an important metric directly related to end-to-end performance—of protocols
based on player elimination is proportional to O(depth(C)), but only in the
optimistic case where there is no cheating. When the corrupt parties misbehave,
the protocol enters a “recovery state” and eventually resumes after a previous
“checkpoint”. This process can happen Ω(n) times, and overall it adds Ω(n) rounds
to the round-count, which is particularly impactful when depth(|C|) = o(n). For
high latency settings such as wide area networks this can drastically affect the
performance of the protocol. Studying the communication of t < n/3 MPC with
O(depth(C)) rounds (independently of n, even in the worst case) has been a topic
of study of recent works: [AAY21] achieved O(n3|C|) communication, and the
recent work of [Abr+23] lowered it to O(n|C|), matching (asymptotically) that
of the previous state-of-the-art [BTH08; GLS19], but crucially, without paying
any additive overhead in n on the number of rounds.

The above discussion is for the t < n/3 setting, which is considerably easier
than the n/3 < t < n/2 regime. For t < n/2, it is known that G.O.D. is possible

2

assuming a broadcast channel, and the early work by Rabin and Ben-Or [RB89]
achieved O(depth(C)) rounds even in the worst case, but it is very expensive in
terms of communication. For instance, its communication is higher than that
of [Cra+99], which is O(n5|C|) +O(n3)× BC, where the term multiplying the
BC denotes the number of elements sent over the broadcast channel. The work
of [Cra+99] however has a number of rounds that, in the worst case, can become
O(n · depth(C)). In the last two decades several subsequent works approached
the task of improving communication [BFO12; BTH06; GSZ20], culminating
in the current state-of-the-art by Goyal, Song, and Zhu [GSZ20], which has
O(n|C| + O(n3) × BC) communication. All these works require O(depth(|C|))
rounds in the optimistic case, but in case of cheating, the “recovery state” adds not
only Ω(n), but Ω(n2) extra rounds,4 which is extremely harmful for circuits with
depth(C) ≪ n2. Currently, and unlike the t < n/3, removing this round-count
overhead can only be done at the expense of increasing communication. Indeed,
the most recent work exploring the task of O(depth(C))-round honest majority
G.O.D. MPC is [CP17], which has a communication of O(n4|C|)+O(n4|C|)×BC
in total, with an online phase of O(n3|C|) +O(n3|C|)× BC.

Towards improving this state of affairs, recent work by Escudero and Fehr
[EF21] presents an honest majority G.O.D. protocol that achieves O(depth(C))
rounds, independent of n, and simultaneously has linear communication O(n|C|)+
0× BC. However, this is done in the preprocessing model where the parties are
assumed to have certain correlated randomness independent of their inputs
available for free. When instantiating this preprocessing with a protocol that has
number of rounds independent of n—like the one from [CP17]—the resulting
preprocessing complexity would be O(|C|n6)+O(|C|n6)×BC, which is too large.
This situation leads to the following interesting and challenging question:

How communication-efficient can honest majority G.O.D. protocols be, while
using only O(depth(|C|)) rounds even under attack (that is, independent of n)?

1.1 Our Contribution

In this work we make progress on this question by providing an MPC protocol in
the honest majority case t < n/2 that has O(depth(C)) rounds even in the worst
case, while improving over the communication of the state-of-the-art [CP17] in
this regime. We achieve a communication of O(n|C|+ depth(C)n3) +O(n|C|+
depth(C)n3) × BC in the online phase (a factor of n2 improvement), and for
the offline phase our communication is O(n3|C|) + O(n3|C|)× BC (a factor of
n improvement). Table 1 presents our communication in relation to the work
of [CP17], as well as the previous works that achieved G.O.D. with an amount of
rounds proportional to depth(C), independent of n.

Interestingly, for the online phase, our protocol matches the peer-to-peer
communication of the best-known protocol [GSZ20], which is linear O(n|C|) (also
4 In t < n/2 the recovery is done with a technique called dispute control [BTH06],

which is repeated n2 times in the worst case, in contrast to player elimination—only
suitable for t < n/3—which is repeated n times.

3

Work Offline Comm. Online Comm.

[RB89] N/A ω(|C|n5) + ω(|C|n5) × BC
[CP17] O(|C|n4) + O(|C|n4) × BC O(|C|n3) + O(|C|n3) × BC
[EF21] O(|C|n5) + O(|C|n5) × BC ∗ O(|C|n + depth(C)n3) + 0 × BC

Ours O(|C|n3) + O(|C|n3) × BC
O(|C|n + depth(C)n3)+

O(|C|n + depth(C)n3) × BC

Table 1. Works with G.O.D. for t < n/2, and O(depth(C)) rounds (independent of n,
even in the worst case). “N/A” in the offline phase means these works did not consider an
offline/online separation. We ignore poly(n) terms that do not depend on C. ∗ The work
of [EF21] does not instantiate the offline phase. The complexity reported is obtained by
calculating the cost of generating their preprocessing using our protocol. For this, we
take their preprocessing size, n2|C|, and multiply it by the total communication of our
protocol, leading to O(n3 · n2|C|).

believed to be optimal [DLN19]).5 This constitutes significant progress in the
direction of matching the communication of G.O.D. protocols for t < n/2 with
O(depth(C)) rounds, like ours, with protocols that add O(n2) rounds in the worst
case, like [GSZ20]. We recall that for t < n/3 and perfect security, the task of
designing protocols with O(depth(C)) rounds whose communication matches that
of O(depth(C) + n)-round protocols was only recently settled in [Abr+23].

Remark 1 (On the term depth(C) · n3). Our online communication is O(n|C|+
depth(C)n3) + O(n|C| + depth(C)n3) × BC. Note that the term depth(C)n3 is
absorbed by |C|n, as long as |C|/depth(C) = Ω(n2), in which case the commu-
nication becomes O(|C|n) + O(|C|n) × BC. This can be satisfied for instance
if the circuit has uniform width Θ(n2), but this is not strictly necessary: for
example, a few layers can have a very small amount of multiplication gates (say
o(n)), while some others may have many more gates (say ≈ n3), and the property
|C|/depth(C) = Ω(n2) may still be satisfied.

1.2 Other Related Work

We have already discussed the works of [BFO12; BTH06; CP17; Cra+99; EF21;
GSZ20]—which are the works most related to us—as well as their comparison with
respect to our work. We present in Section A in the Supplementary Material a
more detailed description of how these protocols work. As other related literature,
an important mention is [Ish+16], which presents a series of compilers which,
among other things, enable “upgrading” secure-with-abort protocols into G.O.D..
Their approach also results in a protocol whose round complexity depends on n,
since it consists of identifying corrupt parties and then re-running certain parts
of the protocol.
5 Note that our term O(|C|n)×BC (which is not present in [GSZ20]) would require all

parties to receive at least n|C| messages, which in practice means a communication
of at least n2|C|, widening the gap between the protocol from [GSZ20] and ours. See
also Remark 1.

4

Using information-theoretic randomized encodings [IK00; IK02], it is possible
to achieve statistically secure MPC in the n = 2t + 1 setting with constant
round complexity [AKP23] (i.e. the round complexity is independent of both
n and depth(C)) where the constant is 4. This is akin to how Garbled Circuits
(which are an instance of computationally secure randomized encoding) enable
us to achieve constant round complexity in the computational setting. In such
protocols, the communication complexity is always proportional to the size of the
randomized encoding. With current known techniques, the size of information-
theoretic randomized encoding grows exponentially with the circuit depth and
reducing this exponential dependency has been a big open problem for the past
two decades. Hence, this approach of using randomized encodings to get low
round complexity is currently practical only for NC1 circuits.

1.3 Overview of our Techniques

We discuss at a very high level how our final protocol is achieved. First, to avoid
the extra n2 rounds, we must deviate from the dispute-control paradigm used in all
communication-efficient works [BFO12; BTH06; GSZ20]. Instead, let us take as a
starting point the protocol from [CP17, Section VI], which is more communication
heavy but removes the round dependency on n. In [CP17] the authors make use
of the verifiable secret-sharing (VSS) ideas from [Cra+99; RB89], which enable
parties to obtain sharings [s] of a secret in such a way that the honest parties can
always reconstruct the given secret s, using a constant number of rounds. The
authors make use of multiplication triples [Bea92], produced in an offline phase.
With this preprocessing at hand, the online phase is comprised only of linear
combinations and reconstruction of secret-shared data, which is possible thanks
to the VSS guarantees. The main contribution of [CP17] lies in the generation
of the multiplication triples. Traditionally, the most efficient approach for triple
generation is the first generating so-called double-sharings [DN07], which can
be later used to obtain triples. However, this approach requires more than what
VSS can provide: there are certain proofs of correctness that the parties must
perform, which ultimately add substantially to the final costs (intuitively, these
complexities come from local multiplication increasing the degree from t to 2t).
Instead, the work of [CP17] introduces a novel approach which only relies on the
basic properties of VSS, letting each party contribute with triples directly, which
are later checked for correctness and “combined” in such a way that truly random
triples are produced. Intuitively, this only relies on sharing, linear combinations,
and reconstructions, and hence can be handled by the underlying VSS alone.
Now, this approach is less communication-efficient than using double-sharings,
but it is much more suitable for reducing the number of rounds. From the above,
in order to improve the communication complexity of [CP17], which maintains
the number of rounds we are looking for, it is imperative to improve that of the
underlying VSS.

Optimizing—but weakening—verifiable secret-sharing. We start from
the VSS used in [CP17], which is that from [RB89] in conjunction with the

5

so-called information-checking protocol (ICP) from [Cra+99]. Intuitively, these
techniques involve distributing Shamir sharings, and additionally, distributing
shares of each share to the parties. The shares-of-shares exist so that, when a
party announces a share, it can prove to the others this is correct by also showing
them the shares of the announced share, which the parties can contrast with
the share-of-share they have internally. Now, a corrupt party may complain of a
correctly announced share, and to prevent this the ICP machinery is used: that
ensures that (1) honest parties can always prove the correctness of their shares,
and (2) corrupt parties who modify their shares are identified. The degree of the
polynomials is t, which requires t+ 1 shares to be reconstructed. By using the
“signatures”, the ≤ t + 1 correct shares coming from the honest shares can be
identified, which allows for the reconstruction of the secret. Inspired by [Abr+23],
our approach to improve the complexity of this VSS is to make use of packed
secret-sharing [FY92], which allows for having ℓ ≥ 1 secrets instead of only one,
without penalty in the communication costs. However, using packed secret-sharing
comes at the expense of increasing the degree of the underlying polynomials from
t to t+ (ℓ− 1), and in particular reconstruction now requires more shares than
honest parties. This is not a problem in [Abr+23], which is set in t < n/3, but in
our t < n/2 regime extra care is needed.

We use packed secret-sharing twice, resulting in packed vectors of dimension
Θ(n2). First, we use degree (t + (ℓ − 1)) to secret-share ℓ = Θ(n) secrets at
once (we will specify the exact value of ℓ), but crucially, we use degree-t for the
“shares of shares”, which ensures the t+ 1 honest parties alone still have enough
joint information to reconstruct the secrets. Now, each share-of-share is signed
using the ICP from [Cra+99], which at a high level works by secret-sharing the
message to be signed towards the parties, so that later on when this message
is revealed, the parties can jointly verify if this is consistent with the shares
they hold. In [Cra+99] degree-t polynomials are used, but a useful observation
from [PR10] is that this can be improved by using packed secret-sharing, signing
multiple messages towards multiple verifiers simultaneously. We adapt their ideas
to our setting. This requires a batch of m = Θ(n) shares to be signed, each of
which corresponds to ℓ = Θ(n) secrets, so overall our VSS works on vectors of
dimension mℓ = Θ(n2).

Finally, an important remark is that our construction does not directly
instantiate the notion of VSS. Increasing the degree from t to t+ (ℓ− 1) or, as
we will see, t+ 2(ℓ− 1) in some cases, comes at the expense of corrupt parties
being able to disrupt the reconstruction if they decide to misbehave or abort.
However, we still guarantee the crucial property that such corrupt parties are
identified. We call this weaker notion detectable secret-sharing (DSS), and one
of our core contributions, on top of the formal definition of such primitive as a
UC functionality and its efficient instantiation, is showing that this weaker form
of VSS can still be useful for our goal of MPC with O(depth(C)) rounds. We
discuss this below.

6

1.4 Our MPC Protocol

Since our core secret-sharing primitive operates on vectors instead of individual
values, we cannot make direct use of the MPC approach from [CP17], which
follows the standard Beaver triple paradigm [Bea92]. Instead, we adapt the ideas
from the recent Turbopack work by Escudero et al. [Esc+22], which shows how
to efficiently make use of packed secret-sharing, supporting arbitrary circuits
without noticeable overhead. The details are provided in Section 5, but at a high
level, there are two main components required in Turbopack. In the offline phase,
the main challenge is generating packed multiplication triples, while in the online
phase, the main challenge is reconstructing degree-(t+ 2(ℓ− 1)) secrets. For the
first part, we show how to adapt the triple extraction ideas from [CP17], which
quite surprisingly turn out to also work for the packed secret-sharing regime.
The most interesting and challenging part is addressing the degree-(t+ 2(ℓ− 1))
reconstructions.

Recall that in our DSS, the adversary may completely halt the reconstruction
of degree-(t + 2(ℓ − 1)) secrets. This is because, even though as in [Cra+99;
RB89] our scheme guarantees that honest parties can convince the others that
their announced shares are correct, and also that corrupt parties announcing
incorrect shares are identified, given that there are only t+1 honest parties, only
t+ 1 out of the t+ 2(ℓ− 1) + 1 shares needed for reconstruction are guaranteed
to be announced. That is, there could be 2(ℓ − 1) shares missing. Our core
observation is the following. If the t corrupt parties collectively send less than
these 2(ℓ − 1) shares, hence halting reconstruction, it is because more than
t− 2(ℓ− 1) cheaters misbehaved, and crucially, their identities become known
due to the properties of our DSS. At this point these parties can be removed,
restarting the computation with threshold t′ < t− (t−2(ℓ−1)) and total number
of parties n′ < n− (t− 2(ℓ− 1)). This time, the corruption ratio is t′/n′, and it
turns out we can upper bounded it by 1/3 as long as we take ℓ ≤ n+6

8 . The rest
of the protocol is now set in the t′ < n′/3 regime, point in which we can apply
any existing work for that threshold to finish the computation. In particular, we
can use the recent work of [Abr+23], which achieves perfect security but most
importantly, requires linear communication and has no overhead in terms of the
number of rounds.6 Note that the adversary can only cause an abort-and-restart
once, hence keeping the overall number of rounds O(depth(C)).

There is a subtle issue when instantiating this novel idea. Restarting the
protocol from scratch may allow the parties to change their inputs, which is
not secure if in the first run the adversary was able to learn some information
about the output. We propose two ways to address this, which perform differently
depending on the amount of inputs versus amount of outputs. The first approach
is more suitable if there are not many inputs, and consists of having the parties
provide sharings of their inputs not only in our DSS scheme—which is packed
and does not guarantee reconstruction—but also in the original VSS of [Cra+99;
6 Furthermore, this protocol can presumably be optimized by avoiding the instantiation

of the broadcast channel—which comes “for free” in our setting—and relaxing perfect
security to statistical, but we find it to be unnecessary for our feasibility results.

7

RB89], while proving these two are consistent. In this way, if there is a restart,
the parties can provide shares of the inputs for the t′ < n′/3 protocol, while
proving they hold the same secrets as the initial VSS sharings.

The second approach is more adequate if there are not many outputs. First,
we note that it is fine to restart the computation while allowing the parties
to change their inputs as long as this happens before the output phase, since
in this case no sensitive leakage occurs. Now, we modify the output phase as
follows: instead of attempting straight reconstruction of the degree-(t+ 2(ℓ− 1))
output sharings, the parties first convert the packed sharing of the outputs in the
main protocol into a non-packed VSS representation. We design this conversion
mechanism so that it does not leak anything about the outputs in case it aborts.
This way, there are two potential outcomes: either the conversion succeeds, point
in which the outputs are VSS’ed and then can be reconstructed with no abort, or
the conversion fails, which does not leak anything and hence it is fine to restart
the computation with t′ < n′/3, even if the parties change their inputs. Details
on these protocols are given in Sections 5 and C.

2 Preliminaries

Let κ be a statistical security parameter. We consider a finite field F with
|F| = ω(poly(κ)), so that poly(κ)/|F| = negl(κ). Given two strings x and y, we
denote by x∥y the concatenation of the two. We denote length-ℓ vectors as v =
(v1, . . . , vℓ)⊺ ∈ Fℓ. Given two vectors u = (u1, . . . , uℓ)⊺,v = (v1, . . . , vℓ)⊺ ∈ Fℓ,
we define u ∗ v = (u1 · v1, . . . , uℓ · vℓ)⊺ as the component-wise multiplication of u
and v. We denote m× n matrices as M ∈ Fℓ. For any given C ⊆ [n], we denote
by MC the sub-matrix of M corresponding to the columns with indices C. We
study MPC amongst n parties in the setting where the number of corrupted
parties is exactly t with n = 2t + 1. We denote the set of honest parties as
Hon ⊆ [n] and the set of corrupted parties as Corr ⊆ [n]. We say that a protocol
has communication complexity P2P(M)+N ×BC(L) if it sends M field elements
in total over the peer-to-peer channels, and it calls the broadcast channel N times
with messages containing L field elements. A degree-d univariate polynomial
over F is of the form f(x) =

∑d
i=0 cix

i, where ci ∈ F. We say that a collection
of field elements zi1 , . . . , zim for m > d and unique i1, . . . , im ∈ F is consistent
with a degree-d polynomial, if there exists some degree-d polynomial f(x) such
that f(ij) = zij for ij ∈ [m]. A degree-(dx, dy) bivariate polynomial over F is of
the form F (x, y) =

∑dx

i=0

∑dy

j=0 ci,jx
iyj where ci,j ∈ F. For i ∈ F, we can isolate

univariate polynomials fi(x) = F (x, i) and gi(y) = F (i, y) of degree dx and dy
respectively. In this paper, we will always assume that dx = max{dx, dy}.

2.1 Bivariate Polynomials

We now present some lemmas regarding bivariate polynomials. We borrow ideas
from [AL17] for the proofs. We begin by showing that dy + 1 sets of points that
define degree-dx univariate polynomials fk(x) (for k ∈ K of size |K| = dy + 1)

8

uniquely determine a degree-(dx, dy) bivariate polynomial F (x, y) such that
F (x, k) = fk(x) for all k ∈ K.

Lemma 1. Let n > dx ≥ dy ∈ N and J,K ⊆ [n] be such that |J | ≥ dx + 1 and
|K| = dy +1. Let {zjk ∈ F : j ∈ J, k ∈ K} be a set of field elements such that for
each k ∈ K, {zjk}j∈J are consistent with a degree-dx univariate polynomial fk(x)
such that fk(j) = zjk for each j ∈ J . Then there exists a unique degree-(dx, dy)
bivariate polynomial F (x, y) such that F (j, k) = zjk, for j ∈ J, k ∈ K.

Proof. Define the bivariate polyonimal F (x, y) via Lagrange interpolation:

F (x, y) =
∑
i∈K

fi(x) ·
∏

j∈K\{i}(y − j)∏
j∈K\{i}(i− j)

. (1)

It is easy to see that F (x, y) has degree (dx, dy). Moreover, for every k ∈ K it
holds that:

F (x, k) =
∑
i∈K

fi(x) ·
∏

j∈K\{i}(k − j)∏
j∈K\{i}(i− j)

= fk(x) ·
∏

j∈K\{k}(k − j)∏
j∈K\{k}(k − j)

+
∑

i∈K\{k}

fi(x) ·
∏

j∈K\{i}(k − j)∏
j∈K\{i}(i− j)

= fk(x) + 0

= fk(x),

and therefore that F (j, k) = fk(j) = zjk, for each j ∈ J , as desired.
It remains to show that F (x, y) is unique. Assume that there exists F ′(x, y)

that also satisfies the lemma statement. Define the polynomial

R(x, y)← F (x, y)− F ′(x, y) =

dx∑
i=0

dy∑
j=0

ri,jx
iyj .

We will now show that R(x, y) = 0. First, for every k ∈ K it holds that:

R(x, k) =

t∑
i,j=0

ri,jx
ikj = F (x, k)− F ′(x, k) = fk(x)− fk(x) = 0,

by assumption. We can rewrite the univariate polynomial R(x, k) as

R(x, k) =

xx∑
i=0

 dy∑
j=0

ri,jk
j

 · xi

 .

As we have seen, R(x, k) = 0. Thus, its coefficients are all zeroes, implying that
for every fixed i ∈ [0, dx] it holds that

∑dy

j=0 ri,jk
j = 0. This in turn implies that

9

for every fixed i ∈ [0, dx], the polynomial hi(y) =
∑dy

j=0 ri,jy
j is zero for dy + 1

points (k ∈ K), and so hi(y) is also the zero polynomial. Thus, its coefficients ri,j
are equal to 0 for every j ∈ [0, dy]. This holds for every fixed i, and therefore for
every i ∈ [0, dx], j ∈ [0, dy], we have that ri,j = 0. We conclude that R(x, y) = 0
and hence F (x, y) = F ′(x, y). ⊓⊔

Now we show a corollary, which extends Lemma 1, by expanding K to be
of size at least dy + 1 (instead of exactly dy + 1), and requiring that the sets of
points {zjk}k∈K are consistent with a degree-dy polynomial gj(y), for each j ∈ J .

Corollary 1. Let n > dx ≥ dy ∈ N and J,K ⊆ [n] be such that |J | ≥ dx+1 and
|K| ≥ dy + 1. Let {zjk ∈ F : j ∈ J, k ∈ K} be a set of field elements such that:

1. For each k ∈ K, {zjk}j∈J are consistent with a degree-dx univariate polyno-
mial fk(x) such that fk(j) = zjk for each j ∈ J ; and

2. For each j ∈ J , {zjk}k∈K are consistent with a degree-dy univariate polyno-
mial gj(y) such that gj(k) = zjk for each k ∈ K.

Then there exists a unique degree-(dx, dy) bivariate polynomial F (x, y) such that
F (j, k) = zjk, for j ∈ J, k ∈ K.

Proof. Let L be any subset of K of cardinality exactly dy+1. By Lemma 1, there
exists a unique degree-(dx, dy) bivariate polynomial F (x, y) such that F (j, l) = zjl

for j ∈ J, l ∈ L. We now show that for all j ∈ J , gj(y) = F (j, y).
By definition of gj(y), we have that gj(l) = zjl. Furthermore, by the definition

of F from above, we have that zjl = F (j, l). Thus, for all j ∈ J and l ∈ L it holds
that gj(l) = F (j, l). Since both gj(y) and F (j, y) are degree-dy polynomials, and
gj(l) = F (j, l) for dy + 1 points l, it follows that gj(y) = F (j, y) for every j ∈ J .

Therefore, for every j ∈ J, k ∈ K, F (j, k) = gj(k) = zjk. This concludes the
proof. ⊓⊔

Next, we show that for a random degree-(dx, dy) bivariate polynomial F (x, y)
such that F (−l + 1, 0) = sl for l ∈ [ℓ], no information about s = (s1, . . . , sℓ) is
revealed given the set of points {(F (j, k), F (k, j)}j∈T,k∈[n] for some T ⊆ [n] such
that |T | ≤ dy ≤ dx − ℓ+ 1.

Lemma 2. Let 1 ≤ ℓ ≤ dy ≤ dx − ℓ+ 1 < n and T ⊆ [n] be such that |T | ≤ dy.
Let s1, s2 be any two vectors of ℓ elements. Then

D1 := {(zjk, zkj)}j∈T,k∈[n] ≡ D2 := {(ζjk, ζkj)}j∈T,k∈[n],

where F 1(x, y) and F 2(x, y) are degree-(dx, dy) bivariate polynomials chosen at
random under the constraints that F 1(−l+ 1, 0) = sl1 and F 2(−l+ 1, 0) = sl2, for
l ∈ [ℓ], zjk ← F 1(j, k), zkj ← F 1(k, j) and ζjk ← F 2(j, k), ζkj ← F 2(k, j) for all
j ∈ T, k ∈ [n].

Proof. To show that this holds, we first show that for any set of pairs of elements
Z = {(vjk, vkj)}j∈T,k∈[n], the number of bivariate polynomials in the support

10

of D1 that are consistent with Z equals the number of bivariate polynomials
in the support of D2 that are consistent with Z. By consistent, we mean that
vjk = F (j, k) and vkj = F (k, j) for j ∈ T, k ∈ [n].

First note that if there exists j1, j2 ∈ T such that (vj1,j2 , ·) ∈ Z and (·, uj1,j2) ∈
Z for vj1,j2 ̸= uj1,j2 , then there does not exist any bivariate polynomial in the
support of D1 or D2 that is consistent with Z, since it must be that vj1,j2 =
F (j1, j2) = uj1,j2 . Also if there exists j ∈ T such that (vj1, . . . , vjn) are not
consistent with a degree-dy polynomial or (v1j , . . . , vnj) are not consistent with
a degree-dx polynomial, then there clearly does not exist any degree-(dx, dy)
bivariate polynomial in the support of D1 or D2 that is consistent with Z.

Now, let us count how many polynomials that are consistent with Z exist
in the support of D1. We have that Z contains points (v1j , . . . , vnj) for j ∈ T
that are consistent with |T | degree-dx polynomials F (x, j). By Lemma 1, if we
have dy + 1− |T | more sets of points, (v1j

∗
, . . . , vnj

∗
) that are consistent with

degree-dx polynomials, then we can define a unique degree-(dx, dy) bivariate
polynomial F (x, y). In fact, since for j∗ = 0, we need to satisfy the constraint
that F (−l + 1, 0) = sl1 for l ∈ [ℓ], in order to be in the support of D1, we will
indeed use j∗ = 0. So, we have to pick (v10, . . . , vn0) consistent with a degree-dx
polynomial F (x, 0), such that for j ∈ T , vj0 = F (j, 0) for the polynomial F (j, y)
defined by {(vj,k, ·)}k∈[n] ⊆ Z, and F (−l + 1, 0) = sl1 for l ∈ [ℓ]. Since dx + 1
points define such polynomials, and we already have |T |+ ℓ points, we can pick
any dx + 1− |T | − ℓ remaining points, and still be consistent with Z. Therefore,
there exists |F|dx+1−|T |−ℓ ways to choose F (x, y) from D1 that will be consistent
with Z. However, note that we can do the same exact calculation for finding the
number of F (x, y) from D2 that will be consistent with Z, which is exactly what
we wanted to show.

Now, let Z = {(vjk, vkj)}j∈T,k∈[n] be any set of pairs of elements from F. We
have already shown that the number of bivariate polynomials in the support of
D1 that are consistent with any such Z is the same as the number of bivariate
polynomials in the support of D2 that are consistent with Z. This also means
that the number of total bivariate polynomials in the support of D1 is the same
as that of D2. Since the polynomials from D1 and D2 are chosen randomly, it
follows that that the probability that Z is obtained is exactly the same in both
cases, as required. ⊓⊔

3 Linear Batched Information-Checking Signatures

In this section, we introduce a crucial building block that will be used in our
packed detectable secret sharing scheme: linear batched information-checking
signatures (IC signatures). This primitive and its construction are based on that
of [PR10], which in turn are based on that of [Cra+99; RB89]. A batched IC
signature protocol is executed amongst n parties and allows a dealer D to send
a “signature” σ of a batch To ensure that a corrupt INT (or a corrupt D) does
not cheat, the n parties, who we call verifiers, each get a “share” of the signature.
Importantly, the corrupted parties’ shares should together not reveal anything

11

about s. Later, INT can reveal the signature σ of s to the n verifiers. Using the
shares previously received, the verifiers then decide whether or not to accept
the signature. In fact, we allow D to sign many such batches,based on which
INT can add their corresponding signatures together, to get a signature of their
sum. We also allow INT to compute the signature of a signed batch of secrets
component-wise multiplied with some public vector u ∈ Fℓ, using the signature
of the original batch.

3.1 IC Signature Ideal Functionality

We now formally introduce our ideal functionality for linear batched IC signatures.
The properties that we want from an IC signature are intuitively as follows: (i) If
the dealer D is honest, then with all-but-negligible probability, the honest verifiers
will only accept a signature σ on the batch s input by D; (ii) If the intermediary
INT is honest, then after the signing phase phase, INT knows a signature σ on
some batch s that the honest verifiers will later accept with all-but-negligible
probability; and (iii) If both the dealer D and intermediary INT are honest, then
nothing about s is revealed to the corrupt verifiers before the reveal phase. Note
that if both the dealer D and intermediary INT are corrupted, we guarantee
nothing about the signatures, and in fact, INT can decide to reveal a signature
σ for any s of the adversary’s choosing.

Furthermore, we require the following linearity properties from our IC signa-
tures: (i) Given a signature σ1 on s1 and a signature σ2 on s2, we can define a
signature σ3 on s1 + s2 with the above properties; and (ii) Given a signature σ
on s and a public vector u ∈ Fℓ, we can define a signature σ′ on s ∗ u with the
above properties, only if σ is a linear combination of other signatures that were
not themselves multiplied by a public vector.

This latter property of multiplication with a public vector is our main contri-
bution to IC signatures. We now present the ideal functionality Fbatch-IC, which
captures the above properties (Note: as far as we are aware, there has been
no formal treatment in UC, or any other simulation-based framework, of IC
signatures individually in prior works).

Functionality 1: Fbatch-IC

This functionality is parameterized by ℓ ∈ N and n parties, two of which are
the dealer D and intermediary INT . It allows the dealer D to create signatures
on several vectors s ∈ Fℓ, add them together, and multiply them with public
vectors u ∈ Fℓ.

1. In the initialization phase, if either the dealer D or intermediary INT are
corrupted, then Fbatch-IC receives Corr from the adversary. If Corr = 1 then
Fbatch-IC outputs this to all parties and for all future inputs (sign, s, sid) from
D, simply outputs s to all parties, and for all other inputs, ignores them.

2. On input (sign, s, sid) from the dealer D, where s ∈ Fℓ, Fbatch-IC first stores
isMult ← 0 and s with sid, then outputs (s, sid) to INT , and outputs
(signed, sid) to all other parties. Then, if the dealer D is corrupted, Fbatch-IC

12

receives s′ from the adversary, and stores it with sid. Finally, if s′ ̸= s,
Fbatch-IC outputs (verified, s′, sid) to all other parties; otherwise, it outputs
(verified, sid) to all other parties.

3. On input (reveal, sid) from INT , Fbatch-IC first sends s stored at sid to the
adversary. Then:
(a) If INT is corrupted and D is honest, Fbatch-IC asks the adversary whether

to reject. If so, it outputs (reject, sid) to all parties. Otherwise, it outputs
(s, sid) to all parties.

(b) If INT and D are corrupted, Fbatch-IC asks the adversary whether to
reject. If so, it outputs (reject, sid) to all parties. Otherwise, it receives
s′ and outputs (s′, sid) to all parties.

(c) Otherwise, Fbatch-IC outputs (s, sid) to all parties.
4. On input (add, sid1, sid2, sid3) from all parties, let isMult3 ← 1, if isMult1 = 1

or isMult2 = 1; and isMult3 ← 0, otherwise; where s1 and isMult1 are stored
with sid1 and s2 and isMult2 are stored with sid2. Fbatch-IC stores s1 + s2

and isMult3 with sid3.
5. On input (mult,u, sid, sid′) from all parties, where s and isMult = 0 are

stored with sid, and u ∈ Fℓ, Fbatch-IC stores s ∗ u and isMult← 1 with sid′.
6. On input (corr, D) or (corr, INT) from the adversary, Fbatch-IC sends to the

adversary all (sid, s) pairs that have not been revealed yet.

3.2 IC Signature Protocol

Now, we present our protocol Πbatch-IC which instantiates Fbatch-IC. In the initial-
ization phase, the dealer D first sends to each party Pi, random αi ←$ F, for
i ∈ [n].

Signing. When signing some s ∈ Fℓ, the dealer D samples a random degree-
(t+ ℓ− 1) polynomial f(x) such that f(−j + 1) = sj for j ∈ [ℓ] and a random
degree-(t + ℓ − 1) polynomial r(x). D then sends f(x) and r(x) to INT , and
to each other party Pi, vi ← f(αi) and ri ← r(αi). Notice that since f(x) is
of degree-(t + ℓ − 1), an adversary’s t points {vj}j∈Corr reveal nothing about
s. Now, note that a corrupt D could send vi ̸= f(αi) to some Pi. In order to
catch this bad behavior, INT samples random β ←$ F and broadcasts (β, b(x)),
where b(x)← β · f(x)+ r(x); since β is uniformly random, with all-but-negligible
probability, Pi will see that b(αi) ̸= β · vi + ri, and thus D is corrupted. Also,
observe that r(x) masks f(x) and thus s. However, it could also be the case that
D is honest and a corrupted INT broadcasts (β, b(x)) where b(x) ̸= β ·f(x)+r(x);
in this case, the honest D will know that INT is corrupted, and thus the adversary
knows s, so it can simply broadcast s. If D (honest or corrupt) broadcasts s,
then INT sets the signature σ ← g(x), where g(x) is the degree-ℓ polynomial
such that g(−j + 1) = sj for j ∈ [ℓ], and each Pi resets vi ← g(αi). If D does
not broadcast s, but b(αi) ̸= β · vi + ri then Pi knows that D is corrupt, and so
will accept any signature from INT for this batch of secrets. Also (whether or
not D is honest or corrupt), if D does not broadcast s, INT sets σ ← f(x).

13

Adding and multiplication by public vectors. To add two signatures together,
INT simply sets σ3(x)← σ1(x)+σ2(x), and each Pi sets v3,i ← v1,i+ v2,i, where
it stored v1,i and v2,i for σ1 and σ2, respectively. To multiply σ by some public
vector u ∈ Fℓ, let u(x) be the degree-(ℓ−1) polynomial such that u(−j+1) = uj

for j ∈ [ℓ]. INT simply sets σ′(x)← σ(x) · u(x) (so that it is of degree t+2ℓ− 2)
and each Pi sets v′i ← vi · u(αi).

Revealing. Finally, to reveal a signature, INT simply broadcasts σ(x). Then
each Pi broadcasts accept if σ is of degree at most t + 2ℓ − 2 and σ(αi) = vi
or they already marked D as corrupt for this signature (or any of which this
signature consists). If at least t + 1 parties broadcast accept, then the honest
parties set sj ← σ(= j + 1) for j ∈ [ℓ] and output (s1, . . . , sℓ); otherwise they
output reject. Note that if D is honest and INT is corrupted, for any given honest
Pi, if σ is incorrect, then the probability that σ(αi) = vi is negligible, by the
Schwartz-Zippel Lemma, since αi is random and unknown to the adversary. Thus,
with all-but-negligible probability, there will be no Pi such that σ(αi) = vi for
incorrect σ, and thus, the honest parties will only accept a correct σ (since there
are at most t < t + 1 corrupted parties). Observe also that in the case of an
honest INT and corrupted D, from above, we will already have that σ(αi) = vi,
or Pi marked D as corrupt for this signature, for all ≥ t+ 1 honest Pi, and thus
all honest Pi will accept.

Rerandomizaing signatures of degree-(2t+ 2ℓ− 2) before revealing. One subtlety
in the security proof occurs if both D and INT are honest, and a multiplication
with some u occurs, boosting the degree of σ to 2t+ 2ℓ− 2. In this case, when
σ is revealed in the ideal world, the simulator S only has at most t corrupted
parties’ shares and the ℓ points corresponding to the underlying signed s, and
thus cannot correctly simulate the polynomial σ(x). For this reason, before
broadcasting σ, INT re-randomizes it with a degree-(2t + 2ℓ − 2) polynomial
o(x) given to INT by D in the initialization phase, such that o(−j + 1) = 0 for
j ∈ [ℓ]. Each party Pi also adds to vi, oi ← o(αi), given to them by D in the
initialization phase. Similarly to before, for honest INT to ensure that corrupted
D gave it o(x) corresponding to the honest parties’ oi values, in the initialization
phase it actually receives another such polynomial o′(x) from D, and broadcasts
(β, β · o(x)− o′(x)), which the honest parties verifies is consistent with their oi, o′i.
If an honest INT or D catches a corrupted D or INT , respectively, misbehaving
during the initialization phase, then it broadcasts Corr ← 1. If so, then for all
future signatures, D simply broadcasts the secret batch s (since the adversary
would learn it anyway).

Now we present the formal protocol Πbatch-IC, below.

Protocol 1: Πbatch-IC

1. In the initialization phase:
(a) First, the dealer D samples random αi for every other party Pi, and

sends it to them.

14

(b) Then, for τ ∈ [N] (in parallel), for some number N :
i. D samples two random degree-(t+ 2ℓ− 2) polynomials o1(x) and

o2(x) such that o1(−j + 1) = o2(−j + 1) = 0 for j ∈ [ℓ].
ii. D then sends (o1(x), o2(x)) to INT and to each other party Pi,

o1,i ← o1(αi) and o2,i ← o2(αi).
iii. Next, if o1(x), o2(x) are not degree-(t+ 2ℓ− 2) polynomials such

that o1(−j + 1) = 0 and o2(−j + 1) = 0 for all j ∈ [ℓ], then INT
sets Corr ← 1 and broadcasts Corr, then all parties output Corr.
Otherwise, INT chooses random β and broadcasts (β, o(x)), where
o(x)← β · o1(x)− o2(x).

iv. D then checks that o(x) = β ·o1(x)−o2(x) and if not, sets Corr← 1,
and broadcasts Corr, then all parties output Corr.

v. If D did not broadcast Corr = 1 but o(αi) ̸= β · o1(αi) − o2(αi) ,
then Pi sets dealerbadτ ← 1.

vi. Then INT stores oτ (x)← o1(x) and each party Pi stores oτ,i ← o1,i
(c) If D or INT broadcasted Corr = 1 at any point above, then for all future

inputs (sign, ssid, sid), the protocol consists of D simply broadcasting
ssid, and for all other inputs, the parties ignore them.

2. On input (sign, ssid, sid):
(a) The dealer D samples a random degree-(t+ ℓ−1) polynomial f(x) such

that f(−j + 1) = sjsid for all j ∈ [ℓ], and a random degree-(t + ℓ − 1)
polynomial r(x).

(b) D then sends f(x) and r(x) to INT and to each other party Pi, vsid,i ←
f(αi) and rsid,i ← r(αi).

(c) Next, INT chooses random β and broadcasts (β, b(x)), where b(x)←
β · f(x) + r(x).

(d) D then checks that b(x) = β · f(x) + r(x) and if not, broadcasts s.
(e) If D indeed broadcasts s, let g(x) be the degree-ℓ polynomial such that

g(−j + 1) = sj for j ∈ [ℓ]. In this case, INT sets σsid ← g(x) and each
verifier Pi resets their vsid,i ← g(αi); otherwise, INT sets σsid ← f(x)
and each Pi locally sets dealerbadsid ← 1 if β · vsid,i + rsid,i ≠ b(αi). In
both cases, the parties set isMultsid ← 0.

3. On input (reveal, sid):
(a) (For next available τ ∈ [N]) INT sets h(x) ← σsid(x) + oτ (x), and

each Pi sets vsid,i ← vsid,i + oτ,i and dealerbadsid ← 1 if dealerbadsid was
already 1 or dealerbadτ = 1.

(b) INT then broadcasts h(x).
(c) Then, each Pi broadcasts accept if h(x) is degree at most t+2ℓ− 2 and

h(αi) = vsid,i, OR dealerbadsid = 1; otherwise, they broadcast reject.
(d) If at least t+ 1 parties broadcast accept, then Pi sets sj ← h(−j + 1)

for j ∈ [ℓ] and then outputs (s1, . . . , sℓ); otherwise they output reject.
4. On input (add, sid1, sid2, sid3), INT computes σsid3 ← σsid1+σsid2 . Each other

party Pi computes vsid3,i ← vsid1,i+vsid2,i; dealerbadsid3 ← 1 if dealerbadsid1 =
1 or dealerbadsid2 = 1, otherwise dealerbadsid3 ← 0; and isMultsid3 ← 1 if
isMultsid1 = 1 or isMultsid2 = 1, otherwise isMultsid3 ← 0.

5. On input (mult,u, sid, sid′), the parties first check that isMultsid stored with
sid satisfies isMultsid = 0, and abort if not. If so:

15

(a) Each party interpolates the degree-(ℓ− 1) polynomial u(x) such that
u(−j + 1) = uj for j ∈ [ℓ].

(b) INT then computes σsid′ ← σsid ·u(x) and each other party Pi computes
vsid′,i ← vsid,i · u(αi), dealerbadsid′ ← dealerbadsid, and isMultsid ← 1.

Efficiency of Πbatch-IC. First, it is clear the initialization phase takes O(1) rounds
and costs P2P(O(n)) for sending the αi. We will count the cost of generating the
oτ (x) in the corresponding reveal phase below.

In the signing phase, D first sends f(x), r(x) to INT , which costs P2P(2(t+ℓ)).
D then sends the vi, ri to the parties Pi, which costs P2P(2n) values. INT then
broadcasts (β, b(x)) which costs 1 × BC(1 + t + ℓ). Then, in the worst case,
D broadcasts s, which costs another 1 × BC(ℓ). Thus, the signing phase costs
P2P(O(n+ ℓ)) and 1× BC(O(n+ ℓ)). If ℓ = Θ(n), then this is P2P(O(n)) and
1 × BC(O(n)). It is clear that the signing phase takes O(1) rounds. Note that
both adding and multiplication are local operations.

In the reveal phase, INT broadcasts h(x) which costs at most 1×BC(t+2ℓ−2).
Then, each Pi broadcasts accept or reject which costs n × BC(1). Additionally,
in the initialization phase, D sends o1(x), o2(x) to INT , the former of which
INT adds to σ(x) to get h(x), which costs P2P(2(t + 2ℓ − 2)), and o1,i, o2,i
to each Pi, which costs P2P(2n). Then INT broadcasts (β, o(x)), which costs
1 × BC(t + 2ℓ − 1). Counting the cost to generate o1(x) as part of the reveal
phase cost, we get the reveal phase costs P2P(O(n+ ℓ)), O(n)× BC(O(1)), and
O(1)×BC(O(n+ ℓ)). If ℓ = Θ(n), then this is P2P(O(n)), O(n)×BC(O(1)), and
O(1)× BC(O(n)). It is clear that the reveal phase takes O(1) rounds.

Theorem 1. Πbatch-IC UC-realizes Fbatch-IC for any ℓ = poly(κ) with probability
1− negl(κ).

The proof is in Section B.1 in the Supplementary Material.

4 Packed, Batched, (Mass) Detectable Secret Sharing

In this section, we introduce our packed, batched, (mass) detectable secret sharing
(DSS) ideal functionality and protocol. We base the protocol off of that of [Cra+99]
and take from [Abr+23] the idea of “packing” many secrets into a single bivariate
polynomial, as well as batching many bivariate polynomials to amortize costs. A
DSS protocol is executed amongst n parties and allows any given Pi to act as a
dealer and secret share a batch of secret vectors s1, . . . , sm ∈ Fℓ. As usual, we
want the corrupted parties’ shares to reveal nothing about s1, . . . , sm ∈ Fℓ. Later,
the parties can choose to publicly reconstruct s1, . . . , sm; the reconstruction
must either succeed, or Ω(n) corrupted parties are publicly identified (the exact
number depends on ℓ). In fact, we allow the parties to add their shares of many
such sharings together, which results in a sharing of the vector-wise sum of the
underlying batches of secret vectors. We also allow the parties to compute a

16

sharing of a shared batch of secrets, element-wise and component-wise multiplied
by some public vectors u1, . . . ,um ∈ Fℓ, using the original sharing.

4.1 Detectable Secret Sharing Ideal Functionality

We now present our packed, batched, DSS ideal functionality. The properties
that we want from a DSS are as follows: (i) If the given dealer Pi is honest, then
all honest parties will complete the sharing phase; (ii) If the given dealer Pi is
honest, then nothing about s1, . . . , sm are revealed before the reconstruction
phase; and (iii) If all honest parties finish a sharing phase, then there exists fixed
x1, . . . ,xm such that (a) if the given dealer Pi is honest, then each xi = si, and
(b) if all honest parties start the reconstruction phase, either it succeeds with
them outputting x1, . . . ,xm, or it fails, but Ω(n) corrupted parties are identified.

Furthermore, we require the following linearity properties from our DSS: (i)
Given a sharing of s1,1, . . . , s1,m and a sharing of s2,1, . . . , s2,m, the parties can
compute a sharing of s1,1 + s2,1, . . . , s1,m + s2,m with the above properties; and
(ii) Given a sharing of s1, . . . , sm and public vectors u1, . . . ,um ∈ Fℓ, the parties
can compute a sharing of s1 ∗ u1, . . . , sm ∗ um with the above properties, only
if s1, . . . , sm is a linear combination of other sharings that were not themselves
multiplied by a batch of public vectors.

Our main contributions to DSS are using packing and batching in the statis-
tical setting, t < n/2 setting to amortize costs, as well as the mass detectability
property in case of failure of reconstruction. Now we present the ideal functionality
FPacked-DSS, which captures the above properties.

Functionality 2: FPacked-DSS

This functionality is parameterized by ℓ,m ∈ N and n parties. It allows parties
to create several size-m batches of packed Verifiable Secret Sharings of size-ℓ
vectors, add them together, and multiply them with size-m batches of size-ℓ
public vectors.

1. On input (share, (s1, . . . , sm), sid) from party Pi, where each sj ∈ Fℓ, and
(share, Pi, sid) from all honest parties, FPacked-DSS first sets isMult ← 0.
Then if Pi is corrupted, FPacked-DSS first asks the adversary whether to
continue. If so, FPacked-DSS stores (Pi, isMult, (s1, . . . , sm)) with sid; else,
FPacked-DSS outputs abort to all parties. If Pi is honest, FPacked-DSS stores
(Pi, isMult, (s1, . . . , sm)) with sid.

2. On input (reconstruct, sid) from all parties, where (·, isMult, (s1 . . . , sm)) is
stored at sid, FPacked-DSS first sends (s1, . . . , sm) to the adversary and asks
whether to continue. If so, FPacked-DSS outputs (s1, . . . , sm) to all parties.
Otherwise, FPacked-DSS receives from the adversary a set of indices T ⊆ [n]
corresponding to corrupted parties such that |T | > t− ℓ+ 1 if isMult = 0
and |T | > t− 2ℓ+ 2 if isMult = 1, and outputs T to all parties.a

3. On input (add, sid1, sid2, sid3) from all parties, where
(·, isMult1, (s1,1 . . . , s1,m)) is stored with sid1 and (·, isMult2, (s2,1 . . . , s2,m))
is stored with sid2, FPacked-DSS stores (⊥, isMult3, (s1,1+s2,1, . . . , s1,m+s2,m))

17

with sid3, where isMult3 ← 0 if isMult1 = isMult2 = 0, and isMult3 ← 1
otherwise.

4. On input (mult, (u1, . . . ,um), sid, sid′) from all parties, where each ui ∈
Fℓ and (·, 0, (s1 . . . , sm)) is stored at sid, FPacked-DSS stores (⊥, 1, (s1 ∗
u1, . . . , sm ∗ um)) with sid′.

5. On input (corr, Pi) from the adversary, FPacked-DSS sends to the adversary
all pairs (sid, (Pi, (s1, . . . , sm))).

a If ℓ = 1, (s1, . . . , sm) will always be output to the parties since there are only
t corrupted parties and thus the adversary cannot send T such that |T | > t.

4.2 Detectable Secret Sharing Subroutines

Before presenting our DSS protocol ΠPacked-DSS, we will first present various
procedures which ΠPacked-DSS uses. Note, however, that ΠPacked-DSS starts with
each party initializing separate instances of Fbatch-IC as a dealer with each other
party acting as intermediary. The procedures will use these instances of Fbatch-IC.

Sharing Procedure πPacked-DSS-Share We begin by presenting the sharing pro-
cedure, πPacked-DSS-Share(dx, sid, (s1, . . . , sm)), below. When a party Pi wants to
secret share a batch of vectors s1, . . . , sm ∈ F ℓ,7 with degree n−1 ≥ dx ≥ t+ℓ−1,
it begins by sampling m random degree-(dx, t) bivariate polynomials such that
Fη(−l + 1, 0) = slη for l ∈ [ℓ], η ∈ [m]. Then, letting zjkη ← Fη(j, k) and
zjk
η ← (zjk1 , . . . , zjkm), Pi invokes the Fbatch-IC instance with Pj as intermedi-

ary on input zjk
η and zkj

η (thus implicitly sending to Pj these vectors), for
j, k ∈ [n]. Each Pj then ensures that the points it receives define valid degree-dx
and degree-(t+ ℓ− 1) polynomials, respectively. If not, it reveals their points to
all of the parties, using Fbatch-IC. Then, if a party sees such a set of bad points
from some other party Pk (checking that indeed, the points are bad), it aborts.
Then, Pj invokes the Fbatch-IC instance with Pk as intermediary on input zkj

η

(thus implicitly sending to Pk this vector), for k ∈ [n]. Next, Pj compares those
points it received from Pk to those received from the dealer Pi, and if there is
any inconsistency, reveals those points that Pi gave it to all of the parties, using
Fbatch-IC. Then, Pj checks if some Pk revealed points that are not consistent with
those it received from Pi, and if so, reveals those points that Pi gave it to all of
the parties, using Fbatch-IC. If any pair of parties Pj ̸= Pk revealed two different
vectors of points from the dealer Pi, then all parties abort. Otherwise, each party
Pj outputs its share, (zj1

sid, . . . ,z
jn
sid).

We will only ever explicitly use πPacked-DSS-Share in the following to generate
sharings with degree dx = t + ℓ − 1 or degree dx = t + (2ℓ − 1). If the parties
do not abort in πPacked-DSS-Share, we denote a sharing of s = (s1, . . . , sm) with
degree dx = t+ ℓ− 1 as JsK and a sharing with degree dx = t+ ℓ− 1 as JsK∗.
7 For a given instance of ΠPacked-DSS, we use the same packing parameter ℓ and batching

parameter m for each call to πPacked-DSS-Share.

18

Procedure 2: πPacked-DSS-Share(Pi, dx, sid, s1, . . . , sm)

This procedure takes in the party Pi acting as dealer, n− 1 ≥ dx ≥ t+ ℓ− 1
and produces a degree-(dx, t) sharing of s1, . . . , sm.

1. Party Pi samples m random bivariate polynomials F1(x, y), . . . , Fm(x, y)
of degree at most dx in x and t in y, such that Fη(−l + 1, 0) = slη for
l ∈ [ℓ], η ∈ [m].

2. Let zjkη ← Fη(j, k) and zjk
sid ← (zjk1 , . . . , zjkm). Pi invokes the Fbatch-IC

instance with Pj as intermediary on inputs (sign,zjk
sid , sid∥k∥0) and

(sign,zkj
sid , sid∥k∥1), for j, k ∈ [n].

3. Each party Pj checks that for each η ∈ [m], zj1η , . . . , zjnη received from
Fbatch-IC define a degree-t polynomial and z1jη , . . . , znj

η received from Fbatch-IC

define a degree-dx polynomial. If not, Pj reveals zjk
sid ,z

kj
sid to all of the parties

by invoking Fbatch-IC on (reveal, sid∥k∥0) and (reveal, sid∥k∥1), for all k ∈ [n].
4. If a party sees polynomial evaluations from some other party Pk that do

not define degree-t or degree-dx polynomials, respectively, it aborts.
5. Each Pj invokes the Fbatch-IC instance with Pk as the intermediary on input

(sign,zkj
sid , sid), for k ∈ [n].

6. Pj compares the values zjk
sid which he received from Fbatch-IC for each k ∈

[n] in the previous round to the values received from Pi. If there is any
inconsistency, Pj reveals zjk

sid received from Pi to all of the parties by invoking
Fbatch-IC on (reveal, sid∥k∥0).

7. Pj checks if some Pk revealed a value zkj
sid which is different from that which

Pi gave it. If so, then Pj reveals zkj
sid to all parties by invoking Fbatch-IC on

(reveal, sid∥k∥1).
8. If for any index pair (j, k) ∈ [n]× [n], a party sees two different vectors of

points from Pi, then it aborts; otherwise, each party Pj outputs its share
(zj1

sid, . . . ,z
jn
sid).

Now, we prove the following simple lemma about πPacked-DSS-Share:
Lemma 3. If the dealer Pi is honest in πPacked-DSS-Share, then all honest parties
finish πPacked-DSS-Share without aborting.
The proof is in Section B.2 in the Supplementary Material.

Next, we prove the following lemma, which shows that if the values zkj
sid which

the honest parties Pj input to Fbatch-IC in step 5 of πPacked-DSS-Share, and which
thus become part of Pk’s share, define degree-t polynomials gk(y), then they
uniquely define the underlying degree-(dx, t) bivariate polynomials Fη(x, y) and
thus the shared secrets sη.

Lemma 4. For any K ⊆ [n] such that |K| ≥ dx + 1, let zkj
sid, for k ∈ K, be the

vectors that the honest parties Pj input to Fbatch-IC in step 5 of πPacked-DSS-Share.
Assume that πPacked-DSS-Share does not abort and that for each η ∈ [m], k ∈ K,
{zkjη }j∈[Hon] define degree-t polynomials. Then for all η ∈ [m], the {zkjη }j∈Hon for
k ∈ K together define unique degree-(dx, t) bivariate polynomials Fη(x, y).

Proof. First, consider just the zkj
sid for k ∈ K that the honest parties Pj input to

Fbatch-IC and fix any η ∈ [m]. We have that the number of honest parties Pj is at

19

least t+1. Observe that if πPacked-DSS-Share does not abort, then each honest party
Pj ’s shares {zkjη }k∈K are consistent with degree-(dx) polynomials. In addition,
by assumption, the shares {zkjη }j∈Hon define degree-t polynomials. So, we have
|K| ≥ dx + 1, |Hon| ≥ t + 1 and {zjkη }j∈Hon,k∈K satisfying the requirements of
Corollary 1. Therefore, there exists a unique degree-(dx, t) bivariate polynomial
Fη(x, y) that are defined by these points. ⊓⊔

Efficiency of πPacked-DSS-Share. For analyzing the communication complexity of
πPacked-DSS-Share, we will utilize the efficiency of our Πbatch-IC protocol for Fbatch-IC.
Pi, for each Pj , signs length-m vectors zjk

sid, z
kj
sid for k ∈ [n], with Fbatch-IC which

costs P2P(O(n2 · (n+m))) and n2×BC(O(n+m)), using Πbatch-IC. Then, in the
worst case, each Pj could reveal those signatures, which costs P2P(O(n2 ·(n+m))),
n3×BC(O(1)), and n2×BC(O(n+m)), using Πbatch-IC. Next, each Pi sends signs
for each Pk length-m vectors zkj

sid with Fbatch-IC, which costs P2P(n2 · (n+m)) and
O(n2)×BC(O(n+m)), using Πbatch-IC. Next, in the worst case, each Pj could reveal
the signatures from Pi for all k ∈ [n], which costs P2P(O(n2 ·(n+m))), n3×BC(1),
and n2 × BC(O(n+m)), using Πbatch-IC. Altogether, this is P2P(O(n3 + n2m)),
O(n3)×BC(O(1)), and O(n2)×BC(O(n+m)). If m = Θ(n), this is P2P(O(n3)),
O(n3)× BC(O(1)), and O(n2)× BC(O(n)). It is clear that πPacked-DSS-Share takes
O(1) rounds.

Adding Packed, Batched DSS’s and Multiplying them by Public Vectors
Let us assume that the parties have a packed, batched DSS Js1K and a packed,
batched DSS Js2K. Adding two such sharings together is a simple, local procedure,
πPacked-DSS-Add, which consists of parties simply adding (the signatures on) their
shares together:

Procedure 3: πPacked-DSS-Add(Js1K , Js2K)

Let (zj1
sid1

, . . . , zjn
sid1

) and (zj1
sid2

, . . . ,zjn
sid2

) be party Pj ’s respective shares of shar-
ings sid1 and sid2.

1. For each j ∈ [n], Pj sets zjk
sid3
← zjk

sid1
+ zjk

sid2
and all parties invoke

the Fbatch-IC instance with Pj as intermediary and Pk as dealer on input
(add, sid1, sid2, sid3), for k ∈ [n].a

2. Each Pj outputs new shares (zj1
sid3

, . . . , zjn
sid3

).

a Note that for our Πbatch-IC, the add operation is indeed local.

We denote this as Js3K ← Js1K + Js2K. Note that this also works for sharings
Js1K∗ and/or Js2K∗ of higher degree (dx = t+ 2(ℓ− 1)), in which case we denote
Js3K∗ as the resulting sharing.

Now, let us assume that the parties have a single packed, batched DSS of
secrets JsK (note that for such a sharing, dx = t+ ℓ− 1 ≤ n− ℓ), and some public
vectors u1, . . . ,um ∈ Fℓ. Multiplying the sharing by this batch of public vectors
is a simple, local procedure, πPacked-DSS-Mult, which consists of parties simply

20

multiplying their shares (and the signatures on those shares) by the degree-(ℓ−1)
polynomials uη(x) such that uη(−l + 1) = ul

η for η ∈ [n], l ∈ [ℓ]:

Procedure 4: πPacked-DSS-Mult(JsKdx,t
, (u1, . . . ,um))

Let (zj1
sid, . . . , z

jn
sid) be party Pj ’s shares of sharing sid.

1. Each party first interpolates the degree-(ℓ− 1) polynomials uη(x) such that
uη(−l + 1) = ul

η for η ∈ [m], l ∈ [ℓ].
2. Then, for each j ∈ [n], Pj locally computes zjk

sid′ ← zjk
sid ∗ (u1(j), . . . , um(j))

and all parties invoke the Fbatch-IC instance with Pj as intermediary and Pk

as dealer on input (mult, (u1(j), . . . , um(j)), sid, sid′), for k ∈ [n].a

3. Finally, each Pj outputs new shares (zj1
sid′ , . . . ,z

jn
sid′).

a Note that for our Πbatch-IC, the mult operation is indeed local.

We denote this as JsK∗ ← JsK∗u, since the new sharing has degree dx = t+2(ℓ−1).
Let Fsid′,η(x, y) be the unique polynomials defined by the {zkjsid′,η}j∈Hon for

k ∈ K, of some sharings Js′K output by πPacked-DSS-Share, according to Lemma 4.
We can again prove the following lemma similar to Lemma 4, which essentially
says that for any sharing JsK (or JsK∗) formed by running the addition and multi-
plication procedures above on sharings Js′K originally output by πPacked-DSS-Share,
the {zjk

sid}j∈Hon part of each Pk’s share (defined by the corresponding signatures),
together uniquely define the underlying degree-(dx, t) bivariate polynomials
Fη(x, y), which are equal to the polynomials that result from applying the same
addition and multiplication procedures on the Fsid′,η(x, y) above from the original
sharings Js′K.8

Lemma 5. Let the sharing JsK (resp. JsK∗), be the result of addition and mul-
tiplication procedures on sharings Js′K originally output by πPacked-DSS-Share. For
any K ⊆ [n] such that |K| ≥ dx + 1, let {zkj

sid}j∈Hon be the part of each Pk’s
shares of JsK (resp. JsK∗) defined by the Fbatch-IC instance with Pj as dealer and
Pk as intermediary. Assume that for each η ∈ [m], k ∈ K, {zkjsid,η}j∈[Hon] define
degree-t polynomials. Then for all η ∈ [m], the {zkjsid,η}j∈Hon for k ∈ K together
define unique degree-(dx, t) bivariate polynomials Fsid,η(x, y) which are equal to
the polynomials which result from applying the same addition and multiplication
procedures on the unique polynomials Fsid′,η(x, y) defined by the {zkjsid′,η}j∈Hon for
k ∈ K, by Lemma 4.

Proof. If for each η ∈ [m], k ∈ K, the parts of shares {zkjsid,η}j∈[Hon] of sharing JsK
(resp. JsK∗) define degree-t polynomials, it must be that for each η ∈ [m], k ∈ K,
the parts of shares {zkjsid′,η}j∈[Hon] of sharings Js′K define degree-t polynomials in y,
since the shares are only added together and multiplied by univariate polynomials
8 A ‘multiplication procedure’ multiplying a sharing by u1, . . . ,um corresponds to

multiplying the polynomials defined by the sharing by the degree-(ℓ− 1) polynomials
u1(x), . . . , um(x) defined by the above vectors.

21

in x, using operations on Fbatch-IC instances (which are thus performed correctly).
Then by Lemma 4, we have that for all η ∈ [m], the {zkjsid′,η}j∈Hon for k ∈ K

together define unique degree-(dsid′,x, t) bivariate polynomials Fsid′,η(x, y). Let us
first consider the case where some sharing Js′K is multiplied by public vectors
u1, . . . ,um. Since the shares are defined by the Fbatch-IC instances, it must be
that the new shares are {zkjsid′,η ∗ uη(j)}j∈Hon. Therefore, the new shares together
define unique degree-(dsid′,x + ℓ− 1, t) bivariate polynomials Fsid′,η(x, y) · uη(x).
Now, let us consider the case where two sharings Js1K , Js2K are added together
(where possibly one or both of them were multiplied by public vectors). Since the
shares are defined by the Fbatch-IC instances, it must be that the new shares are
{zkjsid′1,η + zkjsid′2,η

}j∈Hon. Therefore, the new shares together define unique degree-
(max{dsid′1,x, dsid′1,x}, t) bivariate polynomials Fsid1,η(x, y) + Fsid2,η(x, y). We can
continue the process above inductively, as long as dx remains at most n− 1, until
we arrive at unique degree-(dx, t) bivariate polynomials Fsid,η(x, y). ⊓⊔

Essentially, the above lemma shows that our add and multiplication pro-
cedures have the desired outcome of performing the corresponding operations.
The following corollary will help us show that the correct secrets can then be
reconstructed from such sharings.

Corollary 2. If for each η ∈ [n], k ∈ K, {zkisid,η}i∈[n] in Pk’s share of JsK (resp.
JsK∗) define a degree-t polynomial, then given any I ⊆ [n] such that |I| = t+ 1
(such as [t+ 1]) {zkisid,η}i∈I can be used to interpolate as in Equation 1 the same
unique degree-(dx, t) bivariate polynomials Fsid,η(x, y) as in Lemma 5.

Proof. For each k ∈ K, we have by assumption that {zkisid,η}i∈[n] define a degree-t
polynomial gk(y). In particular, since Fsid,η(k, y) is also a degree-t polynomial
consistent with at least t+ 1 points {zkjsid,η}j∈Hon ⊆ {zkisid,η}i∈[n], it must be that
Fsid,η(k, y) = gk(y) and therefore Fsid,η(k, i) = zkisid,η for every i ∈ [n]. Moreover,
for every i ∈ [n], we have that Fsid,η(x, i) is a degree-dx polynomial consistent
with the at least dx + 1 points {zkisid,η}k∈K . Therefore, we have that any I ⊆ [n]
of size |I| = t + 1 (such as [t + 1]), the given K of size |K| ≥ dx + 1, and
{zkisid,η}i∈I,k∈K satisfy the requirements of Lemma 1, and so define a unique
degree-(dx, t) bivariate polynomial F ′

sid,η(x, y) (that can be interpolated as in
Lemma 1). Since F ′

sid,η(x, y) is uniquely defined by {zkisid,η}i∈I,k∈K and from above,
Fsid,η(k, i) = zkisid,η for each i ∈ I, k ∈ K, it must be that F ′

sid,η(x, y) = Fsid,η(x, y),
for any such I. ⊓⊔

Reconstruction Procedure πPacked-DSS-Rec Next, we present the reconstruction
procedure, πPacked-DSS-Rec(JsK), which the honest parties use to reconstruct the
batch of secret vectors defined by their shares of the sharing JsK. All parties Pk

first reveal their share zk1
sid , . . . ,z

kn
sid to all parties using Fbatch-IC. Then, each Pk

checks if the points that each Pj revealed define degree-t polynomials in y, and
if not, marks them as corrupt. Then, if the number of parties marked corrupt
is greater than 2t− dx, the honest parties output those parties’ identities that

22

are marked corrupt (note that sharings must satisfy dx ≤ n− 1, so 2t− dx > 0).
Otherwise, the parties use the shares of those parties that are not marked corrupt
to interpolate the unique, correct Fη(x, y) (that exist by Corollary 2) and output
the corresponding secrets sη. Note that this procedure works in exactly the same
way for sharings JsK∗ of higher degree dx = t+ 2(ℓ− 1).

Procedure 5: πPacked-DSS-Rec(JsK)

This procedure takes as input the party’s shares of JsK of degree dx = t+ ℓ− 1
or JsK∗ of degree dx = t+ 2(ℓ− 1).

1. Every party Pk reveals zk1
sid , . . . , z

kn
sid to all other parties by invoking for

j ∈ [n], the Fbatch-IC instance with Pj as intermediary on input (reveal, sid).
2. Pk first sets T ← ∅ then checks whether Pj ’s shares revealed in the previous

step define degree-t polynomials Fη(j, y), η ∈ [m]. If not, then Pj is added
to T and thus marked as corrupt.

3. If the number of parties marked corrupt in T is greater than 2t− dx, then
output T and abort.

4. For every Pk not marked as corrupt in K = [n] \ T , Pj uses the values
Fη(k, 1), . . . , Fη(k, t+ 1), together, to interpolate the unique degree-(dx, t)
bivariate polyonmial Fη(x, y), as in Equation 1.

5. Pj finally outputs slη ← Fη(−l + 1, 0) for η ∈ [m], l ∈ [ℓ].

We now have the following lemma, which shows that if s1, . . . , sm are output
by the honest parties, then they are the correct secrets corresponding to JsK;
otherwise, each party Pk ∈ T is actually corrupt. The latter is because for
sharings output by πPacked-DSS-Share, honest parties’ shares are always consistent
with degree-t polynomials, for otherwise they would have aborted. Furthermore,
addition and multiplication operations do not affect the degree in the y variable,
so the shares always stay consistent with degree-t polynomials.

Lemma 6. Let {zkj
sid}k∈K,j∈[n] be the points that are revealed via Fbatch-IC in

πPacked-DSS-Rec. If |T | ≤ 2t − dx, then the honest parties output the correct se-
crets s1, . . . , sm defined by the unique degree-(t+ ℓ− 1, t) bivariate polynomials
(F1(x, y), . . . , Fm(x, y)) from Lemma 5. If |T | > 2t− dx, then the honest parties
output (abort, T) such that for each Pj ∈ T , Pj ∈ Corr.

Proof. If |T | ≤ 2t− dx, then we have that |K| ≥ n− 2t+ dx. Since n− 2t > 0,
we thus have |K| ≥ dx + 1. Moreover, we have that the {zkisid,η}i∈[n] for k ∈ K
define degree-t polynomials. So, by Corollary 2, the honest parties interpolate
the correct polynomials defined by Lemma 5 and thus output the correct sη.

If |T | > 2t− dx, let us analyze why honest parties mark some Pj as corrupt.
This happens if Pj is not able to reveal via Fbatch-IC, (zj1sid,η, . . . , z

jn
sid,η) consistent

with degree-t polynomials, for every η ∈ [m]. However, for sharings output
by πPacked-DSS-Share, honest parties’ shares are always consistent with degree-t
polynomials (for otherwise, they would have aborted). Since the sharing sid
is only formed from valid addition and multiplication operations, neither of
which affect the degree in y, the honest parties’ shares (zj1sid,η, . . . , z

jn
sid,η) must be

23

consistent with degree-t polynomials. Thus, they will never be marked as corrupt.
Therefore, if |T | > 2t− dx, then the honest parties output (abort, T) such that
for each Pj ∈ T , Pj ∈ Corr. ⊓⊔

Efficiency of πPacked-DSS-Rec. For analyzing the communication complexity of
πPacked-DSS-Rec, we will utilize the efficiency of our Πbatch-IC protocol for Fbatch-IC.
Each Pk simply reveals zkj

sid, for j ∈ [n] with Fbatch-IC, which costs P2P(O(n2 ·
(n + m))), n3 × BC(1), and n2 × BC(O(n + m)), using Πbatch-IC. If m = Θ(n),
this is P2P(O(n3)), O(n3)× BC(O(1)), and O(n2)× BC(O(n)). It is clear that
πPacked-DSS-Rec takes O(1) rounds.

Creating Random Sharings J0K∗. After multiplying sharings by batches of
public vectors, the degree of the sharing increases by ℓ− 1 in x. Thus, in order
to securely open such sharings, we need to mask them by random sharings J0K∗,
of degree xx = t+ 2(ℓ− 1), since all sharings created as part of the ΠPacked-DSS

protocol will start as degree dx = t+ ℓ− 1. We use the typical random extraction
technique from [DN07] to do this efficiently, which consists of each party creating
their own such random sharings, and then using some super-invertible (n− t)×n
matrix M to take linear combinations of these sharings and then output the
resulting sharings that are random to the adversary.

However, it may be that the underlying secrets that corrupted parties share
are not equal to 0, . . . ,0. For this, we adapt a standard technique, which takes
as input two sharings from the same party which supposedly share 0, . . . ,0, take
a random linear combination of the two, then open them to check if they are
indeed sharings of 0, . . . ,0. We will adapt standard techniques to sample the
random coefficients of the linear combination.

Below we present the procedures corresponding to the above, πPacked-Zero-DSS,
πCheck-Zero-DSS, and πPacked-DSS-Coins.

Sampling a Random β. The first tool we need is allowing the parties to jointly
sample some β ←$ F that is random to all. We use the following simple procedure
πPacked-DSS-Coins to do so, in which parties sample their own random sharings, add
them together, reconstruct the resulting sharing, and output the corresponding
secret.9

Procedure 6: πPacked-DSS-Coins

1. Each party Pj samples random βj,1, . . . ,βj,m and runs πPacked-DSS-Share(Pj , t+
ℓ− 1, (βj,1, . . . ,βj,m)) so that the parties obtain JβjK.

2. Then, the parties compute JβK←
∑n

j=1 JβjK.
3. Finally, the parties reconstruct JβK using πPacked-DSS-Rec and output the

resulting (
∑n

j=1 βj,1, . . . ,
∑n

j=1 βj,m) or corrupted parties set T such that
|T | > 2t− (t+ ℓ− 1) = t− ℓ+ 1.

9 Note that there are more efficient ways to sample such random values, but since it
will not affect efficiency of our eventual MPC protocol, we present it this way for
simplicity.

24

We now prove that πPacked-DSS-Coins works.

Lemma 7. If πPacked-DSS-Coins does not abort with some set T of corrupted parties,
then it outputs β1, . . . ,βm that are random and unknown to the adversary.

The proof appears in Section B.2 in the Supplementary Material.

Efficiency of πPacked-DSS-Coins. Each party Pj runs πPacked-DSS-Share once which costs
P2P(O(n ·n2 · (n+m))), n ·n3×BC(1), and n ·n2×BC(O(n+m)), using Πbatch-IC.
Then all parties run πPacked-DSS-Rec together, which costs P2P(O(n2 · (n+m))),
n3 × BC(1), and n2 × BC(O(n + m)). Altogether, this is P2P(O(n4 + n2m)),
O(n4)×BC(O(1)), and O(n3)×BC(O(n+m)) for m · ℓ random β’s. If m = Θ(n),
this is P2P(O(n4)), O(n4) × BC(O(1)), and O(n3) × BC(O(n)). If additionally
ℓ = Θ(n), this is P2P(O(n2)), O(n2) × BC(O(1)), and O(n) × BC(O(n)) per
output β. Clearly, it take O(1) rounds.

Checking Parties’ Own J0K∗ Sharings. Now we present how the honest parties
catch corrupted parties who do not share 0. For this, we use the below procedure
πCheck-Zero-DSS, which takes as input two sharings from the same party which
supposedly share 0, . . . ,0, take a random linear combination of the two, then
open them to check if they are indeed sharings of 0, . . . ,0.

Procedure 7: πCheck-Zero-DSS(J01K∗ , J02K∗)

This procedure takes as input two batches of 0 sharings from a single dealer Pi,
checks that they indeed are sharings of 0, and if so, outputs the first batch of
sharings.

1. First, the parties run πPacked-DSS-Coins to sample random value β.a

2. Next, the parties compute J0K∗ ← β · J01K∗ − J02K∗ for k ∈ [n].
3. Then, the parties reconstruct J0K∗ using πPacked-DSS-Rec and receive back

either (abort, T) or (e1, . . . , em).
4. If (e1, . . . , em) = (0, . . . ,0), each party Pj outputs J01K∗; otherwise, they

output abort.

a This procedure will eventually (only once) be used Ω(|C|) times in parallel
in ΠPacked-DSS. We use the same β value each time.

Lemma 8. If Pi inputs sharings (Js1K∗ , Js2K∗) ̸= (J01K∗ , J02K∗) to πCheck-Zero-DSS,
then with probability at least 1−negl(κ), all honest parties output either (abort, T),
for |T | > t − 2ℓ + 2 where each j ∈ T corresponds to a corrupt Pj, or abort.
Otherwise, all honest parties output either (abort, T), for |T | > t− 2ℓ+ 2 where
each j ∈ T corresponds to a corrupt Pj, or J01K∗.

The proof appears in Section B.2 in the Supplementary Material.

Lemma 9. πCheck-Zero-DSS run on an honest party Pi’s sharings does not give the
adversary any more information on J01K∗.

The proof appears in Section B.2 in the Supplementary Material.

25

Efficiency of πCheck-Zero-DSS. The parties run πPacked-DSS-Rec, which costs P2P(O(n2·
(n+m))), n3×BC(1), and n2×BC(O(n+m)). If m = Θ(n), this is P2P(O(n3)),
O(n3)×BC(O(1)), and O(n2)×BC(O(n)). The parties use a single random β for
all parallel runs of the procedure, which costs P2P(O(n4)), O(n4)× BC(O(1)),
and O(n3) × BC(O(n)) (if m, ℓ = Θ(n)). This procedure will be used (only
once) Ω(|C|) times in parallel in ΠPacked-DSS, and thus the cost amortizes out if
|C| = Ω(n). Clearly, it takes O(1) rounds.

πPacked-Zero-DSS. Now, we present the actual procedure to generate random
sharings J0K∗ using super-invertible matrix M .

Procedure 8: πPacked-Zero-DSS

This procedure has each party share batches of 0 and outputs batches of n− t
random sharings of 0 each. Initialize T = ∅.

1. Every party Pi uses πPacked-DSS-Share to share J0i,1K∗ and J0i,2K∗.
2. The parties then run πCheck-Zero-DSS on J0i,1K∗ and J0i,2K∗ from each party

Pi above and output the first batch for each Pi; or if Pi does not share
0i,1 = 0 = 0i,2, the parties add Pi to the set T .

3. For Pi ∈ T , store the canonical sharing J0i,1K∗ ← J0K∗ for this party.
4. Every party Pj then computes and outputs

(J01K∗ , . . . , J0n−tK∗)
⊺ ←M · (J01,1K∗ , . . . , J0n,1K∗)

⊺.

Lemma 10. For each i ∈ [n− t], the output J01K∗ , . . . , J0n−tK∗ are distributed
randomly given the corrupted parties’ shares.

The proof appears in Section B.2 in the Supplementary Material.

Efficiency of πPacked-Zero-DSS. Each party Pi runs πPacked-DSS-Share twice, which costs
P2P(O(n ·n3+n2m)), O(n ·n3)×BC(O(1)), and O(n ·n2)×BC(O(n+m)). Then
the parties run πCheck-Zero-DSS for Pi’s sharings, which costs P2P(O(n·n2 ·(n+m))),
n ·n3×BC(1), and n ·n2×BC(O(n+m)). Altogether, this is P2P(O(n4 +n3m)),
O(n4)×BC(O(1)), and O(n3)×BC(O(n+m)) for Ω(n) such random zero sharings,
or P2P(O(n3+n2m)), O(n3)×BC(O(1)), and O(n2)×BC(O(n+m)) per sharing.
If m = Θ(n), then this is P2P(O(n3)), O(n3)×BC(O(1)), and O(n2)×BC(O(n))
per sharing. Clearly, it takes O(1) rounds.

4.3 Detectable Secret Sharing Protocol

Now, we are finally ready to present our ΠPacked-DSS protocol. For generating a
sharing, a given dealer simply uses πPacked-DSS-Share with degree dx ← t+ ℓ − 1.
For adding sharings and multiplying them by public vectors, the parties use
πPacked-DSS-Add and πPacked-DSS-Mult, respectively. The parties also keep track of
when a given sharing is multiplied by a public vector. Then, for reconstruction, if
the sharing is a linear combination of sharings that have not been multiplied by

26

a public vector, the parties simply us πPacked-DSS-Rec to reconstruct it. Otherwise,
the parties first re-randomize it by adding a random sharing J0K∗ to it, and then
use πPacked-DSS-Rec to reconstruct it.

Protocol 9: ΠPacked-DSS

1. In the initialization phase, each party initializes instances of Fbatch-IC with
each other party as intermediary. The parties also run πPacked-Zero-DSS to
compute a number N of random packed zero sharings J0τ K∗ for τ ∈ N (in
parallel).

2. On input (share, (s1, . . . , sm), sid), Pi runs πPacked-DSS-Share(Pi, t + ℓ −
1, sid, s1, . . . , sm) to share JssidK, then every party Pj sets isMult← 0 and
stores (sid, (isMult, JssidK)).

3. On input (reconstruct, sid), the parties first check isMult stored with sid.
If isMult = 0, then the parties run πPacked-DSS-Rec on JssidK and output ssid.
Otherwise, the parties (for next available τ ∈ [N]), compute JssidK∗ + J0τ K∗
and then run πPacked-DSS-Rec on it and output ssid.

4. On input (add, sid1, sid2, sid3), the parties compute Jssid3K← Jssid1K+ Jssid2K
(using πPacked-DSS-Add). Then if isMult1 = isMult2 = 0, they set isMult3 ← 0;
otherwise, they set isMult3 ← 1 Finally, they store (sid3, (isMult, Jssid3K)).a

5. On input (mult, (u1, . . . ,um), sid, sid′): The parties first check that isMult
stored with sid satisfies isMult = 0, and abort if not. If so, they com-
pute Jssid′K∗ ← JssidK ∗ u (using πPacked-DSS-Mult). Finally, the parties store
(sid′, (1, Jssid′K∗)).

a This also works if the sharings corresponding to sid1 and/or sid2 have higher
degree dx = t+2(ℓ− 1); i.e., for sharings Jssid1K∗ and/or Jssid2K∗. In this case
we store Jssid3K∗ of degree dx = t+ 2(ℓ− 1).

Efficiency of ΠPacked-DSS. Initialization uses πPacked-Zero-DSS in parallel, which
takes O(1) rounds. We will count the communication cost of generating each
such zero sharing towards each such sharing that is reconstructed using it below.

Sharing uses πPacked-DSS-Share, which costs P2P(O(n3+n2m)), O(n3)×BC(O(1)),
and O(n2) × BC(O(n + m)). If m, ℓ = Θ(n), then this is P2P(O(n)), O(n) ×
BC(O(1)), and O(1)×BC(O(n)) per underlying secret. It also takes O(1) rounds.

Reconstruction possibly uses a zero sharing, generated from πPacked-Zero-DSS,
which costs P2P(O(n3+n2m)), O(n3)×BC(O(1)), and O(n2)×BC(O(n+m)) for
this sharing. It then uses πPacked-DSS-Rec, which costs P2P(O(n3+n2m)), O(n3)×
BC(O(1)), and O(n2) × BC(O(n+m)). Altogether, this is P2P(O(n3 + n2m)),
O(n3) × BC(O(1)), and O(n2) × BC(O(n + m)). If m, ℓ = Θ(n), then this is
P2P(O(n)), O(n) × BC(O(1)), and O(1) × BC(O(n)) per underlying secret. It
also takes O(1) rounds.

Theorem 2. ΠPacked-DSS UC-realizes FPacked-DSS in the Fbatch-IC-hybrid model
for any ℓ ≤ t/2 and any m = poly(κ), with probability 1− negl(κ).

The proof appears in Section B.2 in the Supplementary Material.

27

4.4 Extensions and Notation

The rest of the paper is devoted to using FPacked-DSS, Functionality 4.1, to obtain
honest majority MPC with G.O.D., with our claimed communication and round
complexities. In the real world, this functionality corresponds to our packed DSS,
but from now on we will work with the FPacked-DSS abstraction, which allows us
to ignoring details regarding shares, degrees, and other aspects only needed to
instantiate this functionality. FPacked-DSS is implicitly parameterized by ℓ and m,
and it models a simple but quite powerful arithmetic black box: parties can store
vectors of dimension mℓ, and these vectors can be computed on by adding them
together, as well as multiplying them element-wise by public constant vectors.
Furthermore, any stored vector can be reconstructed, and the only way for the
adversary to stop it is to reveal the identities of at least t − 2(ℓ − 1) corrupt
parties. Recall that, for s ∈ Fmℓ, we denote JsK a value stored in FPacked-DSS with
isMult = 0, and JsK∗ if isMult = 1. Recall that given a public value u ∈ Fmℓ, it
is possible to compute JsK∗ ← JsK ∗ u. Addition of stored values and addition
by public values is also possible. We use JaK← share(a) to denote sharing, and
a← reconstruct(JaK) to denote reconstruction (this also applies to J·K∗).

To be able to work with this functionality effectively, we will add to it a few
helpful instructions that can be easily instantiated based on what we have seen so
far. These include multiplication by scalars and addition by constants, which are
particularly useful in the MPC context. The J·K notation suggestively represents
these operations. Finally, we add an instruction, whose call we abbreviate by
r ← rand(), which allows the honest parties to obtain a fresh random value. This
can be instantiated with a communication of O(n4), cf. Section 4.2.

5 Our MPC Protocol

We are now ready to put together the building blocks developed in previous
sections to construct our final MPC protocol for honest majority with G.O.D..
As mentioned in technical overview (Section 1.3), the overall structure of our
protocol is inspired on that of Turbopack [Esc+22], which is particularly suitable
for the use of packed secret-sharing, a crucial tool we make use of in our work.
While Turbopack uses plain packed secret-sharing, we make use of our optimized
detectable secret-sharing, together with its reconstruction properties.

First, we define the MPC functionality with G.O.D. we aim at instantiating in
this work. Let C be an arithmetic circuit over a finite field F comprised of inputs,
addition and multiplication gates, and outputs. Each party Pi is responsible of
providing a subset of the inputs. All parties are intended to receive the outputs.
We use Greek letters α, β, γ, etc. to label wires in the circuit. We aim at
instantiating FMPC, Functionality 3, described below.

28

Functionality 3: FMPC

The functionality proceeds as follows:

– Receive inputs: Upon receiving (input, Pi, x, α) from an honest party Pi,
or from the adversary if Pi is corrupt, where x ∈ F and α is an input wire
assigned to Pi, store (α, x)

– Compute the circuit: Once all inputs have been provided, compute the
circuit C on these inputs. For every output wire α, if its associated result
is y, send (α, y) to all parties.

MPC for t < n/3. As part of our protocol, we will need an MPC protocol
with G.O.D. for t < n/3. We model this with a functionality that behaves almost
exactly the same as FMPC, with the only difference being that (1) it interacts
only with a subset of the parties, aborting if the subset has at least a 1/3
fraction of corruptions, and (2) it allows for reactive computation, meaning that
different functions can be computed on the fly.10 We denote this functionality
by FMPC-t<n/3 The recent work of [Abr+23] instantiates FMPC-t<n/3 with linear
communication O(n|C ′|) while maintaining the number of rounds O(depth(C ′)),
where C ′ is the function being computed (we will use FMPC-t<n/3 with a function
C ′ that is slightly different to C, but has roughly the same size and depth). For
the purpose of this section we use [x] when a value x ∈ F has been provided as
input to FMPC-t<n/3, and we say “Pi inputs x, obtaining [x]”.

5.1 Offline Phase

We make use of two instances of FPacked-DSS. To clearly differentiate between the
two, we make the dependency of FPacked-DSS with ℓ and m explicit by writing
FPacked-DSS(ℓ,m). The first instance FPacked-DSS(ℓ,m) allows parties to “share” or
store vectors s ∈ Fm·ℓ, with ℓ = ⌊n+6

8 ⌋ and m = n. In what follows we use
indistinctly “shared” and “stored” values/vectors, since even though we will be
working in the FPacked-DSS-hybrid model, in the real world these corresponds to
sharings. Recall from Section 4.4 that we use JsK and JsK∗ to denote secret-shared
vectors with isMult = 0 and isMult = 1. This, in the real world, corresponds to
sharings of degree t+(ℓ−1) and t+2(ℓ−1) respectively, and the crucial difference
is that first type of sharings allows for multiplications by public values whereas
the latter does not. Reconstructions of JsK and JsK∗ shared values may abort, at
the expense of identifying more than t− (ℓ− 1) or t− 2(ℓ− 1) corrupt parties
respectively. The second instance FPacked-DSS(1, 1) shares individual values s ∈ F,
and these stored values are denoted by ⟨s⟩. Here, the adversary cannot cause
abort when reconstructing shared values. Throughout this section, we denote
1 = (1, . . . , 1) ∈ Fmℓ, and for i ∈ [mℓ] we write 1i ∈ Fmℓ for the vector of all
zeros, except for the i-th entry, which equals 1.
10 FMPC, as defined, is not reactive. However, this is only for presentation and it is not

hard to extend our protocol to support reactive computation.

29

Our preprocessing is as in Turbopack [Esc+22]. First, we group multiplication
gates in each layer in groups of m · ℓ gates each, and we do the same with the
input wires associated to each party, as well as the output wires. Each circuit
wire α that is not the output of an addition gate has associated to it a random
mask λα ∈ F. If two wires α, β are added to obtain wire γ, then λγ := λα + λβ .
The preprocessing consists of sharings JλαK∗ for every output group α, and
sharings (JλαK , JλβK , Jλα ⋆ λβ − λγK∗) for every group of multiplication gates
with inputs α,β and outputs γ. In addition, every party Pi having an input wire
α must learn λα. For the case of a restart, we also require every such λα for input
wires to be VSS’ed as ⟨λα⟩.11 This is captured by FPrep, Functionality 4.

Functionality 4: FPrep

Extension of the Packed DSS functionality. FPrep has all of the instruc-
tions of FPacked-DSS(ℓ,m) and FPacked-DSS(1, 1) (extended as in Section 4.4).a

Sample random masks. Sample the following values
1. For each circuit wire α that is not the result of an addition gate, sample

a random λα ∈ F and store (α, λα).
2. For every addition gate with inputs α, β and output γ, compute λγ =

λα + λβ and store (γ, λγ)
Input and output sharings. For every group of mℓ input gates with labels

α belonging to party Pi:
1. Send λα to Pi,
2. Store ⟨λαj ⟩ for j ∈ [mℓ].

For every group of mℓ output gates with labels α, store JλαK
Multiplication gates. For every group of mℓ multiplication gates with left

input labels α, right input labels β, and output labels γ, the functionality
stores (JλαK , JλβK , Jλα ⋆ λβ − λγK∗).

a Values stored as in FPacked-DSS(ℓ,m) are kept in a separate dictionary than
these from FPacked-DSS(1, 1).

Multiplication triple generation. For our preprocessing we will require
uniformly random multiplication triples (JaK , JbK , JcK∗), with c = a ⋆ b. To this
end, we show how to extend the techniques from [CP17], which are set in the
standard (non-packed) secret-sharing setting, to the packed secret-sharing regime
we use in our work. We choose the techniques from [CP17] since, in contrast to
other approaches such as [DN07], no “degree-2t computations” are needed, and
instead all shares are either degree t+ (ℓ− 1), or t+ 2(ℓ− 1). This is crucial for
us, where we require reconstruction to either succeed, or identify a large set of
corrupt parties. We adapt the techniques from [CP17] to our setting below.

Let m ∈ Θ(n) be a batching parameter and ℓ = Θ(n) be a packing pa-
rameter. The goal of this section is to show how the parties can preprocess

11 Having each input to be VSS’ed adds an extra factor of n with respect to the number
of inputs. We present in Section C in the Supplementary Material a variant that is
more suitable incase there are many more inputs than outputs.

30

sharings of a “packed triple” in the FPacked-DSS-hybrid model, which has the form
(JaK , JbK , JcK∗), where a, b ∈ Fmℓ are uniformly random and c = a ⋆ b. To this
end, we will design a procedure πtriple-generation, which is a direct adaptation of the
techniques from [CP17]. We split this into two phases called “Verifiable Triple
Sharing” and “Triple Extraction” which we describe next.

Verifiable Triple Sharing (Phase 1) : This procedure, denoted by πverifiable-triple-sharing,
enables a dedicated party P to act as a dealer and share a batched triple among
all parties. The guarantee is that a corrupt dealer cannot cause the procedure to
output an invalid batched triple except with negligible probability.

Procedure 10: πverifiable-triple-sharing(P)

This procedure enables a single dedicated party P to act as a dealer and verifiably
share a triple among all parties.a

1. P samples a batched triple (a, b, c) and obtains JaK ← share(a), JbK ←
share(b), JcK∗ ← share(c).

2. P samples another batched triple (α,β,γ) and obtains JαK ←
share(α), JβK← share(β), JγK∗ ← share(γ).

3. e← rand()b

4. Compute JρK← e · JaK− JαK. Then ρ← reconstruct(JρK)
5. Compute JσK← JbK− JβK. Then σ ← reconstruct(JσK)
6. Compute JzK∗ ← e · JcK∗ − JγK∗ − σ · JαK− ρ · JβK− ρ · σ.
7. z ← reconstruct(JzK∗).
8. If z ̸= 0 output (J0K , J0K , J0K∗); otherwise output (JaK , JbK , JcK∗).

a If any of the sharings abort in Steps 1. and 2., the parties skip to step 8.
b As in πInput-Sharings, one single random value can be reused across all parties,

and this is important for efficiency.

Lemma 11. If P is honest, then πverifiable-triple-sharing outputs (JaK , JbK , JcK∗) with
probability 1. If P is corrupt, then πverifiable-triple-sharing either aborts, or outputs a
valid batched triple except with negl(κ) failure probability.

The proof appears in Section B.3 in the Supplementary Material.

Cost analysis of πverifiable-triple-sharing : Steps 1, 2, 4, 5 and 7 cost P2P(O(n3)),
O(n3)×BC(1). Step 3 costs P2P(O(n4)), O(n4)×BC(1). All other steps are local.
Hence the total cost of πverifiable-triple-sharing is P2P(O(n4)), O(n4)× BC(1).

Triple Randomness extractor Before showing Phase 2 of Triple Extraction, we
present the triple extractor of [CP17].

Suppose we have a source distribution R which outputs n = 2t+ 1 triples,
(a1, b1, c1), . . . , (an, bn, cn), out of which n−t = t+1 are guaranteed to be uniform
and independently sampled. [CP17] designed a deterministic extractor Etriple

31

which outputs n− 2t = 1 new triple, (anew, bnew, cnew), such that this new triple
is uniform and independent from any set of at most t source triples. We describe
the extractor algorithm below:

Etriple((a1, b1, c1), . . . , (an, bn, cn)) :

Parameter: Let λ
(i)
j ∈ F denote the jth lagrange coefficient of a degree t

polynomial evaluted at point i ∈ F. More formally, λ(i)
j is the result of evaluating

the lagrange polynomial Πk∈[1,t+1],k ̸=j(x−k)

Πk∈[1,t+1],k ̸=j(j−k) on the point x = i. Similarly, γ(i)
j ∈ F

denote the jth lagrange coefficient of a degree 2t polynomial evaluted at point
i ∈ F.

1. Compute an auxiliary set of values (a′t+2, b
′
t+2), . . . , (a

′
n, b

′
n) s.t.

∀i ∈ [t+ 2, n] :

{
a′i = λ

(i)
1 · a1 + . . .+ λ

(i)
t+1 · at+1

b′i = λ
(i)
1 · b1 + . . .+ λ

(i)
t+1 · bt+1

2. Compute an auxiliary set of values c′t+2, . . . , c
′
n s.t.

∀i ∈ [t+ 2, n] : c′i = a′i · b′i
3. Output (anew, bnew, cnew) s.t.

anew = λ
(n+1)
1 · a1 + . . .+ λ

(n+1)
t+1 · at+1

bnew = λ
(n+1)
1 · b1 + . . .+ λ

(n+1)
t+1 · bt+1

cnew =


γ
(n+1)
1 · c1 + . . .+ γ

(n+1)
t · ct

+

γ
(n+1)
t+1 · c′t+1 . . .+ γ

(n+1)
2t+1 · c′2t+1

Lemma 12. Given n = 2t + 1 source triples, (a1, b1, c1), . . . , (an, bn, cn), out
of which at least n − t triples are uniformly random and independent, Etriple
outputs a triple (anew, bnew, cnew) which is uniform and independent from any set
of atmost t source triples.

The proof appears in Section B.3 in the Supplementary Material.

Triple Extraction (Phase 2) : Consider n valid triples, (Ja1K , Jb1K , Jc1K∗), . . . ,
(JanK , JbnK , JcnK∗), out of which atmost t are known and fixed by the adver-
sary and the remaining are uniformly random and independent. Procedure
πtriple-extraction below deterministically extracts a new uniformly random triple
(JanewK , JbnewK , JcnewK)) which will be uniform and independent from the view
of the adversary. This is done by executing Etriple randomness extractor shown
above securely. The observation is that Step 1 and Step 3 in Etriple involve only
linear operations on the secrets hence they can be computed using add and mult
instructions provided by FPacked-DSS. For securely computing Step 2 in Etriple,

32

which involves multiplying two secret values, we will use a sub-routine πBeaver

which will perform the classic beaver multiplication of two secret batched values
by consuming some input batched triples as preprocessing material.

Procedure 11:

proc:tripleextraction πtriple-extraction((Ja1K , Jb1K , Jc1K), . . . , (JanK , JbnK , JcnK))
This procedure uses n batched triples, (Ja1K , Jb1K , Jc1K), . . . ,
(JanK , JbnK , JcnK), stored in FPacked-DSS, and computes a new batched
triple, (JanewK , JbnewK , JcnewK)), stored in FPacked-DSS.
Public Parameters: Let λ

(i)
j ∈ F denote the jth lagrange coefficient of a

degree t polynomial evaluted at point i ∈ F. More formally, λ(i)
j is the result

of evaluating the lagrange polynomial
Πk∈[1,t+1],k ̸=j(x−k)

Πk∈[1,t+1],k ̸=j(j−k)
on the point x = i.

Similarly, γ(i)
j ∈ F denote the jth lagrange coefficient of a degree 2t polynomial

evaluted at point i ∈ F.

1. Compute an auxiliary set of values (
q
a′
t+2

y
,
q
b′t+2

y
), . . . , (Ja′

nK , Jb′nK) s.t.

∀i ∈ [t+ 2, n] :

{
Ja′

iK = λ
(i)
1 · Ja1K + · · ·+ λ

(i)
t+1 · Jat+1K

Jb′iK = λ
(i)
1 · Jb1K + · · ·+ λ

(i)
t+1 · Jbt+1K

where the λ
(i)
j ’s are Lagrange coefficients of a degree t polynomial.

2. Compute an auxiliary set of values
q
c′t+2

y
∗ , . . . , Jc

′
nK∗ s.t.

∀i ∈ [t+ 2, n] :
q
c′i

y
∗ = πBeaver((

q
a′
i

y
,
q
b′i

y
), (JaiK , JbiK , JciK))

3. Output (JanewK , JbnewK , JcnewK∗) s.t.

JanewK = λ
(n+1)
1 · Ja1K + . . .+ λ

(n+1)
t+1 · Jat+1K

JbnewK = λ
(n+1)
1 · Jb1K + . . .+ λ

(n+1)
t+1 · Jbt+1K

JcnewK∗ =


γ
(n+1)
1 · Jc1K + . . .+ γ

(n+1)
t+1 · Jct+1K

+

γ
(n+1)
t+2 ·

q
c′t+2

y
∗ . . . γ

(n+1)
2t+1 ·

q
c′2t+1

y
∗

Lemma 13 (Triple Extraction Lemma[CP17]). Given n valid batched triples,
(Ja1K , Jb1K , Jc1K), . . . , (JanK , JbnK , JcnK)), out of which the adversary knows and
fixes at most t batched triples and the remaining n− t batched triples are uniform
and independent, πtriple-extraction will output a uniform triple (JanewK , JbnewK , JcnewK∗)
which will be independent from the view of the adversary.

Proof. Since πtriple-extraction is line-by-line evaluating securely the extractor from
Section 5.1, it follows from Lemma 12 that the output triple is uniformly random
and correct. ⊓⊔

Cost analysis of πtriple-extraction: Step 2 performs O(n) invocations of πBeaver where
each invocation costs P2P(O(n3)), O(n3)× BC(1). Hence, the total cost of Step

33

2 is P2P(O(n4)), O(n4)× BC(1). Since the remaining steps are local, the overall
cost of πtriple-extraction is P2P(O(n4)), O(n4)× BC(1).

Procedure 12: πBeaver((JaK , JbK), (JuK , JvK , JwK))

This procedure takes two batched inputs (JaK , JbK) along with a batched triple
(JuK , JvK , JwK) stored in FPacked-DSS, and computes an output JcK∗ stored in
FPacked-DSS s.t. c = a · b.

1. JãK← JaK− JuK. Then ã← reconstruct(JãK).
2.

r
b̃
z
← JbK− JvK. Then b̃← reconstruct(

r
b̃
z
).

3. Output JcK∗ where JcK∗ ← JwK + ã · JvK + b̃ · JuK + ã · b̃

Cost analysis of πBeaver: Step 1 and Step 2 each cost P2P(O(n3)), O(n3)×BC(1)
whereas Step 3 is local. Hence, the overall cost of πBeaver is P2P(O(n3)), O(n3)×
BC(1).

Triple Generation: Our overall procedure for batched triple generation πtriple-generation

will simply combine the individual phases of Verifiable Triple Sharing (Phase 1)
and Triple Extraction (Phase 2) in the following natural way. Each party will
act as a dealer in an invocation of πverifiable-triple-sharing and share a batched triple.
Then we invoke πtriple-extraction on all the n shared batched triples to extract a new
batched triple.

Procedure 13: πtriple-generation

This procedure generates a single batched triple (JanewK , JbnewK , JcnewK∗) which
will be uniform and independent from the view of corrupt parties.

1. For all i ∈ [n] in parallel, compute (JaiK , JbiK , JciK) ←
πverifiable-triple-sharing(Pi).

2. Compute (JanewK , JbnewK , JcnewK∗)← πtriple-extraction

((Ja1K , Jb1K , Jc1K)
. . .

(JanK , JbnK , JcnK)

)
3. Output (JanewK , JbnewK , JcnewK∗).

Lemma 14. πtriple-generation outputs a batched triple (JanewK , JbnewK , JcnewK∗) which
is uniform and independent from the view of an adversary corrupting at most t
parties except with negl(κ) failure probability.

Proof. From Lemma 11, the triples provided by n− t honest parties are random,
and the t triples provided by the adversary are correct (except with negl(κ)
probability). Hence, from Lemma 13, the returned triple (JanewK , JbnewK , JcnewK∗)
is correct and uniformly random towards the adversary. ⊓⊔

34

Cost analysis of πtriple-generation: Step 1 performs O(n) invocations of πverifiable-triple-sharing

where each invocation costs P2P(O(n4)), O(n4) × BC(1). Thus, the total cost
of Step 1 is P2P(O(n5)), O(n5) × BC(1). We note that this can be reduced to
P2P(O(n4)), O(n4)×BC(1) by using a single call of rand() across all the O(n) par-
allel invocations of πverifiable-triple-sharing. Step 2 costs P2P(O(n4)), O(n4)×BC(1) and
Step 3 is local. So the overall cost of πtriple-generation is P2P(O(n4)), O(n4)×BC(1).
Since πtriple-generation outputs a single batched triple containing O(mℓ) = O(n2)
triples, the amortized communication cost per triple generation is P2P(O(n2)),
O(n2)× BC(1).

Useful procedures. Before we describe the protocol that instantiates FPrep,
we describe a few useful procedures. The first, πInput-Sharings(Pi) (Procedure 14),
enables the parties to obtain random sharings of the form (Jr · 1K , ⟨r⟩), where
Pi knows r. This will be important for providing inputs, with the VSS part
enabling restarting without input modification. The procedure follows along
the same lines as πCheck-Zero-DSS, Procedure 4.2, which lets Pi distribute these
sharings and the parties check them via random linear combinations. The second
procedure, which we denote by πRand-Sharings (Procedure 15), allows the parties
to obtain Jr · 1K, where r ∈ F is uniformly random and unknown to any party.
This first uses ideas as in the first procedure to let each party distribute one such
sharing correctly, and then, similarly to πPacked-Zero-DSS (Procedure 4.2), we can
use standard techniques based on Vandermonde matrices to extract uniformly
random sharings.

Procedure 14: πInput-Sharings(Pi)

This procedure lets Pi share a pair (Jr · 1K , ⟨r⟩), where r ∈ F is random.

1. Pi samples r, r′ ∈ F and calls Jr · 1K ← share(r · 1) and Jr · 1K ←
share(r′ ·1), and also ⟨r⟩ ← share(r) and ⟨r′⟩ ← share(r′) (the first two with
FPacked-DSS(ℓ,m), the second with FPacked-DSS(1, 1)).a

2. The parties then call β ← rand()b and compute JzK← β · Jr · 1K− Jr′ · 1K,
as well as ⟨z′⟩ ← β · ⟨r⟩ − ⟨r′⟩

3. Parties call z ← reconstruct(JzK) and z′ ← reconstruct(⟨z′⟩). If z ̸= z′ · 1,
then output (J0K , ⟨0⟩). Else, output (Jr · 1K , ⟨r⟩)

a The parties abort if any of these sharings abort, as we know Pi is corrupted
in this case.

b One single random value can be reused across all parties, and this is important
for efficiency.

Procedure 15: πRand-Sharings

This procedure has each party share batches of Jr · 1K, and outputs batches of
n− t such random sharings. Initialize T = ∅.
1. For every party Pi, the parties do the following:

35

(a) Pi samples ri, r
′
i ∈ F and calls Jri · 1K ← share(ri · 1) and Jri · 1K ←

share(r′i · 1).a
(b) The parties then call β ← rand()b and compute JziK ← β · Jri · 1K −

Jr′i · 1K.
(c) Parties call zi ← reconstruct(JziK). If zi ̸= zi · 1 for some zi ∈ F, add

Pi to the set T .
2. For Pi ∈ T set ri := 0 and store Jri · 1K for this party.
3. All parties then compute and output

(Js1 · 1K , . . . , Jsn−t · 1K)⊺ ←M · (Jr1 · 1K , . . . , Jrn · 1K).

a If the parties abort during this step, they use a canonical sharing of all-zeros
in place of the failed sharing, as we know the dealer is corrupted.

b One single random value can be reused across all parties, and this is important
for efficiency.

The following two Lemmas are proven similarly to Lemma 10, we omit their
proof.
Lemma 15. Except with probability negl(κ), the output Jr · 1K , ⟨r⟩ produced
by πInput-Sharings(Pi) is correct, and for an honest Pi, the secret r is distributed
randomly given the corrupted parties’ shares.

Lemma 16. Except with probability negl(κ), the outputs (Js1 · 1K , . . . , Jsn−t · 1K)
produced by πRand-Sharings are correct, and are distributed randomly given the cor-
rupted parties’ shares.

Preprocessing protocol. We are finally ready to present our protocol for
instantiating FPrep. This is given in ΠPrep, Protocol 16 below.

Protocol 16: ΠPrep

The protocol makes use of two functionalities FPacked-DSS(ℓ,m) and
FPacked-DSS(1, 1), and every command regarding packed DSS is forwarded to
these functionalities. For the other commands:

Input groups. For every input wire α associated to party Pi, call
(Jλα · 1K , ⟨λα⟩)← πInput-Sharings(Pi) for i ∈ [n].a

Sampling random masks. For every wire α that is either an output of a mul-
tiplication gate, or an input wire, the parties call Jλα · 1K← πRand-Sharings().
After this note that, locally, they can compute Jλγ · 1K for every wire γ that
is the output of an addition gate by adding the corresponding shares. This
means they have Jλαi · 1K for every circuit wire α.

Output groups. For an output group α, the parties take the sharings Jλαi · 1K
for i ∈ [mℓ] from the previous step and output JλαK∗ =

∑mℓ
i=1 1i · Jλαi1K.

Multiplication groups. For a multiplication group with input wires α,β and
output wires γ, the parties do the following:
1. Call πtriple-generation to obtain (JaK , JbK , Ja ⋆ bK∗)

36

2. The parties proceed as before, obtaining JλαK∗ and JλβK∗. Similarly,
they get JλγK∗

3. Locally compute JdK∗ ← JλαK∗ − JaK and JeK∗ ← JλβK∗ − JbK
4. Call d← reconstruct(JdK∗) and e← reconstruct(JeK∗)
5. Locally compute JλαK← d+ JaK, JλβK← e+ JbK, and

Jλα ⋆ λβ − λγK∗ ← d · JaK + e · JbK + d ⋆ e+ Ja ⋆ bK∗ − JλγK∗ ,

and output (JλαK , JλβK , Jλα ⋆ λβ − λγK∗)
Abort. Note that, if any of the steps above results in abort, then a set T of

corrupt parties with |T | > t− 2(ℓ− 1) is identified. In this case the parties
output this set.

a If the parties abort during this step, Pi’s inputs will be disregarded, as we
know they are corrupted.

Theorem 3. ΠPrep UC-realizes FPrep in the (FPacked-DSS(ℓ,m),FPacked-DSS(1, 1))-
hybrid model, with probability 1− negl(κ).

The proof appears in Section B.4 in the Supplementary Material.

Communication complexity. We now calculate the communication cost of ΠPrep

by calculating the cost of different parts:

1. Input groups: This step invokes πInput-Sharings k times where k is the number of
input wires. Each invocation of πInput-Sharings costs P2P(O(n3)), O(n3)×BC(1)
(assuming the cost of rand() is amortized across n parties). Therefore, the
total cost of this step is P2P(O(|C|n3)), O(|C|n3)× BC(1).

2. Sampling random masks: This step invokes πRand-Sharings O(|C|/n) times. Each
invocation of πRand-Sharings costs P2P(O(n4)), O(n4)× BC(1). (assuming the
cost of rand() is amortized across n parties). Therefore, the total cost of this
step is P2P(O(|C|n3)), O(|C|n3)× BC(1).

3. Multiplication groups: Let k = |C|/n2 be the number of multiplication
groups. This step invokes πtriple-generation k times where each invocation costs
P2P(O(n4)), O(n4)× BC(1). Also, it performs a beaver multiplication (same
as πBeaver) k times where each multiplication costs P2P(O(n3)), O(n3)×BC(1).
Therefore, the total cost of this step is P2P(O(|C|n2)), O(|C|n2)× BC(1).

Summing up all the above costs, the overall communication cost of ΠPrep is
P2P(O(|C|n3)), O(|C|n3)× BC(1).

Remark 2 (On function-dependent/independent preprocessing.). As in [Esc+22],
we can easily make our offline phase function-independent without affecting
our asymptotic communication in the online phase. For this, the offline phase
consists only of generating sharings of the form Jr · 1K and (JaK , JbK , Ja ⋆ bK∗)
(which is function-independent), and the part of ΠPrep that turns these into the
function-dependent (JλαK , JλβK , Jλα ⋆ λβ − λγK∗) is moved to the online phase
ΠMPC. Crucially, the communication complexity of these steps is O(n|C|).

37

5.2 Online Phase

Finally, we present ΠMPC, Protocol 17, which instantiates FMPC in the FPrep-
hybrid model. This corresponds to the online phase, and at a high level it proceeds
by maitaining the following invariant. For a wire α and a given assignment to
the circuit inputs, let us denote by vα the value held by wire α. The protocol
maintains that, for every wire α, the parties have the values µα := vα−λα in the
clear. This is ensured all the way up to the outputs, point in which the parties
can reconstruct the associated masks and obtain the outputs. A major difference
with respect to Turbopack [Esc+22] is that, in our case, we need to handle the
case in which any of the steps that involve reconstructions—either in the offline or
online phase—result in abort. For this, we let the parties restart the computation,
kicking out the identified corrupt parties, which guarantees the new corruption
threshold is 1/3. The parties make use of the t < n/3 MPC functionality for
this FMPC-t<n/3, but before doing that they use the initial VSS’ed masks ⟨λα⟩ to
ensure that the inputs provided to FMPC-t<n/3 are consistent with these from the
initial execution that resulted in abort.

Protocol 17: ΠMPC

This protocol makes use of FPrep and FMPC-t<n/3.

Preprocessing. The parties call FPrep to obtain:
– JλαK∗ for every output group α
– (JλαK , JλβK , Jλα ⋆ λβ − λγK∗) for every multiplication group with in-

puts α,β and outputs γ.
– For every input group α assigned to a party Pi, this party knows λα,

and the parties have ⟨λα1⟩, . . . , ⟨λαmℓ⟩
Input Gates. For a group of input gates α owned by a party Pi, this party, who

knows λα from the preprocessing, and also knows its input vα, broadcasts
µα = vα − λα.

Addition Gates. For a group of addition gates with inputs α,β and outputs
γ, the parties locally add µγ ← µα + µβ.

Multiplication Gates. For a group of multiplication gates with inputs α,β
and outputs γ, the parties proceed as follows:
1. Locally compute

JµγK∗ ← µα · JλβK + µβ · JλαK + µα ⋆ µβ + Jλα ⋆ λβ − λγK∗

2. Call µγ ← reconstruct(JµγK∗).
Output Gates. Given a group of output wires α, call λα ←

reconstruct(JλαK∗), and return the output vα = λα + µα.

Abort and restart. If any of the calls above results in abort, a set T of
corrupt parties with |T | > t− 2(ℓ− 1) is identified. The new set of parties is
{P1, . . . , Pn} \ T , where n′ = n − |T | and t′ = t − |T |, and they execute the
following.

38

– For every input wire α that belongs to Pi ∈ T , the parties call λα ←
reconstruct(⟨λα⟩) and set vα = µα + λα.

– For every Pi /∈ T , let α1, . . . , αM be the input wires that belongs to Pi. The
parties do the following:
1. Pi inputs λαj in FMPC-t<n/3, obtaining [λαj], for j ∈ [M].
2. Pi samples r ←$ F and calls ⟨r⟩ ← share(r).a Pi also inputs r in
FMPC-t<n/3, obtaining [r].

3. Parties call c1, . . . , cM ← ttrand()
4. Parties compute ⟨z⟩ ← ⟨r⟩ +

∑M
j=1 cj · ⟨λαj ⟩ and call z ←

reconstruct(⟨z⟩)
5. Use FMPC-t<n/3 to compute the following function.

• The inputs are [λα1], . . . , [λαM], [r] as above
• The function first computes [z′]← [r]+

∑M
j=1 cj · [λαj], and outputs

1 if z′ = z, and 0 otherwise.
6. If the output is 0, the parties call λαj ← reconstruct(⟨λαj ⟩) and set

vαj = µαj + λαj , for j ∈ [M]. The party Pi is added to T .
– The parties then use FMPC-t<n/3 to compute the following function and

return its outputs:
• The (secret) inputs are, for each Pi /∈ T , [λα1], . . . , [λαM] as above.
• For every such values, the function first computes [vαj] = µαj + [λαj]

(recall that µαj is public, as it is broadcast in the input phase).
• Using these inputs, together with the public inputs vαj for Pi ∈ T ,

compute the circuit C. These outputs are the outputs of the function.

a If this sharing aborts, the parties skip to step 6., since Pi must be corrupted.

We prove the following in Section B.4 in the Supplementary Material.

Theorem 4. ΠMPC UC-realizes FMPC in the FPrep-hybrid model, with probability
1− negl(κ).

Communication complexity. We now calculate the communication cost of ΠMPC

by calculating the cost of different parts:

1. Input gates: This involves each party broadcasting a batch of inputs per
input group that it owns. Across all parties and all input groups possible, the
cost of this step is bounded by P2P(O(|C|n+ n4)), O(|C|n+ n4)× BC(1).

2. Addition gates: This step is local so there is no communication cost.
3. Multiplication gates: Let k = |C|/n2 be the total number of groups of multi-

plication gates in the circuit. For each group, we invoke a single reconstruct
which requires P2P(O(n3)), O(n3) × BC(1). Hence, the overall cost of this
step is P2P(O(|C|n)), O(|C|n)× BC(1).

4. Output gates: Let k = |C|/n be the total number of groups of output
gates in the circuit. For each group, we invoke a single reconstruct which
requires P2P(O(n3)), O(n3)× BC(1). Hence, the overall cost of this step is
P2P(O(|C|n)), O(|C|n)× BC(1).

5. Abort and restart: Let cI be the number of input wires. The cost of this step
is P2P(O(|C|n+ cIn

3)), O(cIn
3)× BC(1).

39

Combining all the costs, we get that the overall communication cost of ΠMPC in
the FPrep-hybrid model is P2P(O(|C|n+cIn

3+n4)), O(|C|n+cIn
3+n4)×BC(1).

Assuming C >> cI · n2, we get communication cost of P2P(O(|C|n + n4)),
O(|C|n+ n4)× BC(1).

Acknowledgments

This paper was prepared in part for information purposes by the Artificial
Intelligence Research group of JPMorgan Chase & Co and its affiliates (“JP
Morgan”), and is not a product of the Research Department of JP Morgan. JP
Morgan makes no representation and warranty whatsoever and disclaims all
liability, for the completeness, accuracy or reliability of the information contained
herein. This document is not intended as investment research or investment
advice, or a recommendation, offer or solicitation for the purchase or sale of
any security, financial instrument, financial product or service, or to be used
in any way for evaluating the merits of participating in any transaction, and
shall not constitute a solicitation under any jurisdiction or to any person, if such
solicitation under such jurisdiction or to such person would be unlawful.

References

[AAY21] Ittai Abraham, Gilad Asharov, and Avishay Yanai. “Efficient Perfectly
Secure Computation with Optimal Resilience”. In: TCC 2021: 19th
Theory of Cryptography Conference, Part II. Ed. by Kobbi Nissim
and Brent Waters. Vol. 13043. Lecture Notes in Computer Science.
Raleigh, NC, USA: Springer, Heidelberg, Germany, 2021, pp. 66–96.
doi: 10.1007/978-3-030-90453-1_3.

[Abr+23] Ittai Abraham, Gilad Asharov, Shravani Patil, and Arpita Patra.
“Detect, Pack and Batch: Perfectly-Secure MPC with Linear Commu-
nication and Constant Expected Time”. In: Advances in Cryptology
– EUROCRYPT 2023, Part II. Ed. by Carmit Hazay and Martijn
Stam. Vol. 14005. Lecture Notes in Computer Science. Lyon, France:
Springer, Heidelberg, Germany, 2023, pp. 251–281. doi: 10.1007/978-
3-031-30617-4_9.

[AKP23] Benny Applebaum, Eliran Kachlon, and Arpita Patra. “The Round
Complexity of Statistical MPC with Optimal Resiliency”. In: Cryp-
tology ePrint Archive (2023).

[AL17] Gilad Asharov and Yehuda Lindell. “A Full Proof of the BGW Pro-
tocol for Perfectly Secure Multiparty Computation”. In: Journal of
Cryptology 30.1 (Jan. 2017), pp. 58–151. doi: 10.1007/s00145-015-
9214-4.

[Bea91] Donald Beaver. “Secure Multiparty Protocols and Zero-Knowledge
Proof Systems Tolerating a Faulty Minority”. In: Journal of Cryptology
4.2 (Jan. 1991), pp. 75–122. doi: 10.1007/BF00196771.

40

https://doi.org/10.1007/978-3-030-90453-1_3
https://doi.org/10.1007/978-3-031-30617-4_9
https://doi.org/10.1007/978-3-031-30617-4_9
https://doi.org/10.1007/s00145-015-9214-4
https://doi.org/10.1007/s00145-015-9214-4
https://doi.org/10.1007/BF00196771

[Bea92] Donald Beaver. “Efficient Multiparty Protocols Using Circuit Ran-
domization”. In: Advances in Cryptology – CRYPTO’91. Ed. by Joan
Feigenbaum. Vol. 576. Lecture Notes in Computer Science. Santa
Barbara, CA, USA: Springer, Heidelberg, Germany, 1992, pp. 420–
432. doi: 10.1007/3-540-46766-1_34.

[BFO12] Eli Ben-Sasson, Serge Fehr, and Rafail Ostrovsky. “Near-Linear
Unconditionally-Secure Multiparty Computation with a Dishonest
Minority”. In: Advances in Cryptology – CRYPTO 2012. Ed. by Rei-
haneh Safavi-Naini and Ran Canetti. Vol. 7417. Lecture Notes in
Computer Science. Santa Barbara, CA, USA: Springer, Heidelberg,
Germany, 2012, pp. 663–680. doi: 10.1007/978-3-642-32009-5_39.

[BGW88] Michael Ben-Or, Shafi Goldwasser, and Avi Wigderson. “Complete-
ness Theorems for Non-Cryptographic Fault-Tolerant Distributed
Computation (Extended Abstract)”. In: 20th Annual ACM Sympo-
sium on Theory of Computing. Chicago, IL, USA: ACM Press, 1988,
pp. 1–10. doi: 10.1145/62212.62213.

[BTH06] Zuzana Beerliová-Trubíniová and Martin Hirt. “Efficient Multi-party
Computation with Dispute Control”. In: TCC 2006: 3rd Theory of
Cryptography Conference. Ed. by Shai Halevi and Tal Rabin. Vol. 3876.
Lecture Notes in Computer Science. New York, NY, USA: Springer,
Heidelberg, Germany, 2006, pp. 305–328. doi: 10.1007/11681878_
16.

[BTH08] Zuzana Beerliová-Trubíniová and Martin Hirt. “Perfectly-Secure MPC
with Linear Communication Complexity”. In: TCC 2008: 5th Theory
of Cryptography Conference. Ed. by Ran Canetti. Vol. 4948. Lecture
Notes in Computer Science. San Francisco, CA, USA: Springer, Hei-
delberg, Germany, 2008, pp. 213–230. doi: 10.1007/978-3-540-
78524-8_13.

[CCD88] David Chaum, Claude Crépeau, and Ivan Damgård. “Multiparty
Unconditionally Secure Protocols (Extended Abstract)”. In: 20th
Annual ACM Symposium on Theory of Computing. Chicago, IL, USA:
ACM Press, 1988, pp. 11–19. doi: 10.1145/62212.62214.

[CP17] Ashish Choudhury and Arpita Patra. “An Efficient Framework for
Unconditionally Secure Multiparty Computation”. In: IEEE Trans-
actions on Information Theory 63.1 (2017), pp. 428–468. doi: 10.
1109/TIT.2016.2614685.

[Cra+99] Ronald Cramer, Ivan Damgård, Stefan Dziembowski, Martin Hirt,
and Tal Rabin. “Efficient Multiparty Computations Secure Against an
Adaptive Adversary”. In: Advances in Cryptology – EUROCRYPT’99.
Ed. by Jacques Stern. Vol. 1592. Lecture Notes in Computer Sci-
ence. Prague, Czech Republic: Springer, Heidelberg, Germany, 1999,
pp. 311–326. doi: 10.1007/3-540-48910-X_22.

[DLN19] Ivan Damgård, Kasper Green Larsen, and Jesper Buus Nielsen. “Com-
munication Lower Bounds for Statistically Secure MPC, With or
Without Preprocessing”. In: Advances in Cryptology – CRYPTO 2019,

41

https://doi.org/10.1007/3-540-46766-1_34
https://doi.org/10.1007/978-3-642-32009-5_39
https://doi.org/10.1145/62212.62213
https://doi.org/10.1007/11681878_16
https://doi.org/10.1007/11681878_16
https://doi.org/10.1007/978-3-540-78524-8_13
https://doi.org/10.1007/978-3-540-78524-8_13
https://doi.org/10.1145/62212.62214
https://doi.org/10.1109/TIT.2016.2614685
https://doi.org/10.1109/TIT.2016.2614685
https://doi.org/10.1007/3-540-48910-X_22

Part II. Ed. by Alexandra Boldyreva and Daniele Micciancio. Vol. 11693.
Lecture Notes in Computer Science. Santa Barbara, CA, USA: Springer,
Heidelberg, Germany, 2019, pp. 61–84. doi: 10.1007/978-3-030-
26951-7_3.

[DN07] Ivan Damgård and Jesper Buus Nielsen. “Scalable and Uncondition-
ally Secure Multiparty Computation”. In: Advances in Cryptology –
CRYPTO 2007. Ed. by Alfred Menezes. Vol. 4622. Lecture Notes in
Computer Science. Santa Barbara, CA, USA: Springer, Heidelberg,
Germany, 2007, pp. 572–590. doi: 10.1007/978-3-540-74143-5_32.

[EF21] Daniel Escudero and Serge Fehr. “On Fully-Secure Honest Majority
MPC Without n2 Round Overhead”. In: Progress in Cryptology -
LATINCRYPT 2021: 7th International Conference on Cryptology
and Information Security in Latin America. Ed. by Patrick Longa
and Carla Ràfols. Vol. 12912. Lecture Notes in Computer Science.
Bogotá, Colombia: Springer, Heidelberg, Germany, 2021, pp. 47–66.
doi: 10.1007/978-3-031-44469-2_3.

[Esc+22] Daniel Escudero, Vipul Goyal, Antigoni Polychroniadou, and Yifan
Song. “TurboPack: Honest Majority MPC with Constant Online
Communication”. In: ACM CCS 2022: 29th Conference on Computer
and Communications Security. Ed. by Heng Yin, Angelos Stavrou,
Cas Cremers, and Elaine Shi. Los Angeles, CA, USA: ACM Press,
2022, pp. 951–964. doi: 10.1145/3548606.3560633.

[FY92] Matthew K. Franklin and Moti Yung. “Communication Complexity
of Secure Computation (Extended Abstract)”. In: 24th Annual ACM
Symposium on Theory of Computing. Victoria, BC, Canada: ACM
Press, 1992, pp. 699–710. doi: 10.1145/129712.129780.

[GLS19] Vipul Goyal, Yanyi Liu, and Yifan Song. “Communication-Efficient
Unconditional MPC with Guaranteed Output Delivery”. In: Advances
in Cryptology – CRYPTO 2019, Part II. Ed. by Alexandra Boldyreva
and Daniele Micciancio. Vol. 11693. Lecture Notes in Computer
Science. Santa Barbara, CA, USA: Springer, Heidelberg, Germany,
2019, pp. 85–114. doi: 10.1007/978-3-030-26951-7_4.

[GRR98] Rosario Gennaro, Michael O. Rabin, and Tal Rabin. “Simplified
VSS and Fast-Track Multiparty Computations with Applications
to Threshold Cryptography”. In: 17th ACM Symposium Annual on
Principles of Distributed Computing. Ed. by Brian A. Coan and
Yehuda Afek. Puerto Vallarta, Mexico: Association for Computing
Machinery, 1998, pp. 101–111. doi: 10.1145/277697.277716.

[GSZ20] Vipul Goyal, Yifan Song, and Chenzhi Zhu. “Guaranteed Output
Delivery Comes Free in Honest Majority MPC”. In: Advances in
Cryptology – CRYPTO 2020, Part II. Ed. by Daniele Micciancio
and Thomas Ristenpart. Vol. 12171. Lecture Notes in Computer
Science. Santa Barbara, CA, USA: Springer, Heidelberg, Germany,
2020, pp. 618–646. doi: 10.1007/978-3-030-56880-1_22.

42

https://doi.org/10.1007/978-3-030-26951-7_3
https://doi.org/10.1007/978-3-030-26951-7_3
https://doi.org/10.1007/978-3-540-74143-5_32
https://doi.org/10.1007/978-3-031-44469-2_3
https://doi.org/10.1145/3548606.3560633
https://doi.org/10.1145/129712.129780
https://doi.org/10.1007/978-3-030-26951-7_4
https://doi.org/10.1145/277697.277716
https://doi.org/10.1007/978-3-030-56880-1_22

[HMP00] Martin Hirt, Ueli M. Maurer, and Bartosz Przydatek. “Efficient Se-
cure Multi-party Computation”. In: Advances in Cryptology – ASI-
ACRYPT 2000. Ed. by Tatsuaki Okamoto. Vol. 1976. Lecture Notes
in Computer Science. Kyoto, Japan: Springer, Heidelberg, Germany,
2000, pp. 143–161. doi: 10.1007/3-540-44448-3_12.

[IK00] Yuval Ishai and Eyal Kushilevitz. “Randomizing polynomials: A new
representation with applications to round-efficient secure computa-
tion”. In: Proceedings 41st Annual Symposium on Foundations of
Computer Science. IEEE. 2000, pp. 294–304.

[IK02] Yuval Ishai and Eyal Kushilevitz. “Perfect constant-round secure
computation via perfect randomizing polynomials”. In: Automata,
Languages and Programming: 29th International Colloquium, ICALP
2002 Málaga, Spain, July 8–13, 2002 Proceedings 29. Springer. 2002,
pp. 244–256.

[Ish+16] Yuval Ishai, Eyal Kushilevitz, Manoj Prabhakaran, Amit Sahai, and
Ching-Hua Yu. “Secure Protocol Transformations”. In: Advances in
Cryptology – CRYPTO 2016, Part II. Ed. by Matthew Robshaw and
Jonathan Katz. Vol. 9815. Lecture Notes in Computer Science. Santa
Barbara, CA, USA: Springer, Heidelberg, Germany, 2016, pp. 430–
458. doi: 10.1007/978-3-662-53008-5_15.

[PR10] Arpita Patra and C. Pandu Rangan. Communication and Round
Efficient Information Checking Protocol. 2010. arXiv: 1004.3504
[cs.CR].

[RB89] Tal Rabin and Michael Ben-Or. “Verifiable Secret Sharing and Mul-
tiparty Protocols with Honest Majority (Extended Abstract)”. In:
21st Annual ACM Symposium on Theory of Computing. Seattle, WA,
USA: ACM Press, 1989, pp. 73–85. doi: 10.1145/73007.73014.

[Sha79] Adi Shamir. “How to Share a Secret”. In: Communications of the
Association for Computing Machinery 22.11 (Nov. 1979), pp. 612–613.
doi: 10.1145/359168.359176.

43

https://doi.org/10.1007/3-540-44448-3_12
https://doi.org/10.1007/978-3-662-53008-5_15
https://arxiv.org/abs/1004.3504
https://arxiv.org/abs/1004.3504
https://doi.org/10.1145/73007.73014
https://doi.org/10.1145/359168.359176

Supplementary Material

A Honest-Majority Fully-Secure MPC

Rabin and Ben-Or [RB89] are the first in showing that, as a feasibility result,
G.O.D. is possible with polynomial communication if n = 2t + 1, assuming a
broadcast channel and allowing for statistical (also known as unconditional)
security. In that work, the authors introduce a verifiable secret-sharing (VSS)
tool that enhances plain Shamir secret-sharing [Sha79] so that cheating parties
who modify their shares can be identified. [RB89] follows the “BGW paradigm”
from [BGW88], in which the parties have degree-t VSS shares of each secret, and
for multiplications they locally multiply these shares, obtaining degree-2t shares,
which are reshared using degree-t towards the other parties. Some corrupt parties
may misbehave in this step, which can be detected thanks to the use of VSS
in conjunction to certain “zero-knowledge” subprotocols for verifying products.
However, since the product has degree 2t and there are 2t + 1 parties, all of
the parties’ contributions are needed in order to make progress, so disqualifying
a party prevents the parties from continuing. To address this, before sharing
the product of their shares, each party also distributes VSS-shares of each of
their individual shares (proving in “zero-knowledge” they do so correctly), which
enables the parties to make public the shares of parties that are disqualified,
allowing them to continue with the computation. Overall, this only adds a
tiny overhead to each multiplication layer, keeping the total number of rounds
bellow O(depth(C)), independent of n. Later, the work of [Bea91] optimized the
“zero-knowledge” component in [RB89], resulting in an asymptotically similar
result.

Cramer et al. [Cra+99] present a protocol with complexity O(|C|n5 + n4) +
O(|C|n5)BC, which is at least a factor of κ2 ·n better than [Bea91; RB89], where κ
is the statistical security parameter. In addition, [RB89] requires communication
for each addition gate (since their VSS is not linear), while [Cra+99] avoids
such communication by designing a linearly homomorphic VSS. For multiplica-
tions, [Cra+99] does not use the BGW template, but instead uses the simpler
and more efficient GRR [GRR98]. GRR is particularly suitable for t < n/3, or for
t < n/2 with computational assumptions (they use homomorphic commitments),
but [Cra+99] notes that it can be made to work with statistical security using
their VSS, as long as a given party can VSS-share a product of two of its shares
while proving it did so correctly. The authors of [Cra+99] present a protocol for
this, but crucially, in contrast to [RB89], each party’s share is not VSS-shared
across the other parties as part of the protocol (which is part of the optimizations
in [Cra+99]). This means that, in case a cheater is disqualified, the parties cannot
simply reconstruct its share to be able to finish a given multiplication without
its help/ Instead, the parties must reconstruct this corrupt party’s inputs (which
are actually VSS-shared), and redo the computation up to this point. As a result,
the computation may end up being redone t = O(n) times, so the number of

44

rounds becomes O(depth(C) · n) in the worst case (this factor of n also affects
communication).

With the goal of improving communication complexity, Beerliová-Trubíniová
and Hirt [BTH06] introduce a novel technique called dispute-control, resulting
in protocols with O(|C|n2 + n5) + O(n3)BC communication. These massive
improvements w.r.t. [Cra+99] are due to several aspects. First, [BTH06] deviates
from the BGW/GRR paradigm and adopts multiplication triples [Bea92] for the
first time in the G.O.D. honest majority literature, which results in an online
phase that only requires degree-t reconstructions, which is arguably simpler than
the “zero-knowledge”-type techniques involved in prior works. In particular, the
VSS needed in [BTH06] can be made more lightweight; the main bottlenecks are
pushed to an offline phase, which is in charge of, among other things, producing
multiplication triples. Second, [BTH06] does not aim at fully disqualifying parties—
i.e. identifying cheaters—but instead settles with identifying disputed parties,
which are pairs of parties with at least one of them being corrupt, with no certainty
on who is the cheater. Dispute-control is then the technique that enables the
parties to recover using this seemingly weaker notion: the protocol is rerun while
ensuring that either it succeeds, or a new disputed pair is identified; since there
are at most O(n2) possible pairs of parties, this process is repeated at most O(n2)
times, point in which the protocol is guaranteed to succeed. Naively this adds a
factor of n2 to both communication and round complexity, but the authors make
use of an idea stemming from [HMP00], which consists of splitting the circuit
into “segments”, performing the recovery steps at the end of each segment instead
of at the end of the whole protocol. This way, if cheating is detected, only the
current segment must be repeated, and by choosing the number of multiplications
per segment appropriately one can ensure that the potential O(n2) repetitions
do not affect communication asymptotically. Crucially for our work, however,
these repetitions do affect the number of rounds by adding O(n2) extra rounds,
resulting on O(depth(C) + n2) in the worst case.

While [BTH06] achieved quadratic communication (and the authors even
conjectured this was optimal), the groundbreaking work by Ben-Sasson, Fehr, and
Ostrovsky [BFO12] showed that linear communication was possible, obtaining
acomplexity of O(|C|n + depth(C)n2 + n7) + O(n3)BC, which is O(|C|n + n7)
if depth(C) = O(|C|/n), or equivalently, the (average) width is |C|/depth(C) =
Ω(n). The current state-of-the-art is [GSZ20], which improves the concrete
constants in the O-notation from [BFO12], on top of removing the Ω(n) width
requirement, achieving a communication of 5.5|C|n in the optimistic case, and
7.5|C|n in the worst case. This work, however, still uses dispute control and hence
suffers from the extra n2 overhead in terms of rounds.

A recent work that deviates from the identify-then-rerun paradigm and
still achieves linear communication is [EF21], which proposes a protocol in the
preprocessing model with online linear communication O(|C|n+ depth(C)n3) +
0 · BC, which is O(|C|n) if the width is Ω(n2). The protocol has the advantage
of not requiring a broadcast channel in every round. Unfortunately, instantiating
the preprocessing with a protocol that does not add Ω(n) rounds, like [RB89],

45

would lead to a very inefficient (yet polynomial) communication complexity in
the online phase.

B Several Missing Proofs

B.1 Proofs from Section 3

Theorem 5 (Theorem 1, restated). Πbatch-IC UC-realizes Fbatch-IC for any
ℓ = poly(κ) with probability 1− negl(κ).

Proof. We first provide a simulator S:

1. For initialization:
(a) If the dealer D is honest, then for every corrupted party Pi, S samples

random αi and sends it to Pi; otherwise, S receives from the adversary
αi for each honest party Pi.

(b) Then for each τ ∈ [T]:
i. If D is honest and INT is corrupted, S samples random degree-
(t+2ℓ−2) polynomials o1(x), o2(x) such that o1(−j+1) = o2(−j+1) =
0 for j ∈ [ℓ], then sends (o1(x), o2(x)) to the adversary, as well as
o1,i ← o1(αi), o2,i ← o2(αi) for all other corrupted parties Pi.

ii. If both the dealer D and INT are honest, then for each corrupted
party Pi, S samples random o1,i and o2,i and sends them to the
adversary.

iii. If D is corrupted and INT is honest, then S receives from the adver-
sary o1(x) and o2(x).

iv. If both D and INT are corrupt, then S receives from the adversary
o1,i and o2,i for each honest party Pi.

(c) Next:
i. If D is honest and INT is corrupted, then if INT broadcasts Corr = 1,
S forwards it to Fbatch-IC; otherwise, S receives (β, o(x)) from the
adversary.

ii. If both the dealer D and INT are honest, then S samples random β
and random degree-(t+ 2ℓ− 2) polynomial o(x) such that o(αi) =
β · o1,i − o2,i for all corrupted parties Pi and o(−j + 1) = 0 for all
j ∈ [ℓ], then broadcasts (β, o(x)).

iii. If D is corrupted and INT is honest, then if o1(x), o2(x) are not
degree-(t+2ℓ−2) polynomials such that o1(−j+1) = o2(−j+1) = 0
for j ∈ [ℓ], then S broadcasts Corr ← 1 and sends Corr to Fbatch-IC;
otherwise, S samples random β and broadcasts (β, o(x)), where
o(x)← β · o1(x)− o2(x).

iv. If both D and INT are corrupt, if INT broadcasts Corr = 1, S
forwards it to Fbatch-IC; otherwise, S receives (β, o(x)) from the ad-
versary.

(d) Then:

46

i. If D is honest and INT is corrupted, S checks if o(x) = β·o1(x)−o2(x),
and if so, stores oτ (x)← o1(x), otherwise, broadcasts Corr← 1 and
sends Corr to Fbatch-IC.

ii. If both the dealer D and INT are honest, then S stores oτ,i ← o1,i
for each corrupt party.

iii. If D is corrupted and INT is honest, then if D broadcasts Corr = 1,
S forwards it to Fbatch-IC; otherwise, S stores oτ (x)← o1(x).

iv. If both D and INT are corrupt, if INT broadcasts Corr = 1, S
forwards it to Fbatch-IC; otherwise, if o(αi) ̸= β · o1,i − o2,i, S sets
dealerbadi ← 1,

2. For signing, if S input Corr = 1 to Fbatch-IC during initialization, then for
honest dealer, S just broadcasts s; otherwise, we simulate as follows:
(a) First:

i. If the dealer D is honest and intermediary INT is corrupted, S first
receives s from Fbatch-IC, then samples random degree-(t + ℓ − 1)
polynomial f(x) such that f(−j + 1) = sj for all j ∈ [ℓ] and random
degree-(t+ ℓ− 1) polynomial r(x), then sends f(x) and r(x) to the
adversary, as well as vsid,i ← f(αi) and rsid,i ← r(αi) for all other
corrupted parties Pi.

ii. If both the dealer D and intermediary INT are honest, then for each
corrupted party Pi, S samples random vsid,i and rsid,i and sends them
to the adversary.

iii. If the dealer D is corrupted and the intermediary INT is honest, then
S receives from the adversary f(x) and r(x), sets sj ← f(−j + 1) for
j ∈ [ℓ], and sends (sign, (s1, . . . , sℓ), sid) to Fbatch-IC.

iv. Finally, if both the dealer D and intermediary INT are corrupted,
then S receives from the adversary vsid,i and rsid,i for all (at least
t+ 1) honest parties Pi, and sends (sign, (0, . . . , 0), sid) to Fbatch-IC.

(b) Next:
i. If the dealer D is honest and intermediary INT is corrupted, then S

receives (β, b(x)) from the adversary.
ii. If both the dealer D and intermediary INT are honest, then S samples

random β and random degree-(t+ ℓ− 1) polynomial b(x) such that
b(αi) = β · vsid,i + rsid,i for all corrupted parties Pi, then broadcasts
(β, b(x)).

iii. If the dealer D is corrupted and the intermediary INT is honest,
then S samples random β and broadcasts (β, b(x)), where b(x) ←
β · f(x) + r(x)).

iv. Finally, if both the dealer D and intermediary INT are corrupted,
then S receives (β, b(x)) from the adversary.

(c) Finally:
i. If D is honest and INT is corrupted, then if INT was corrupted after

the broadcast of (β, b(x)), S just sets hsid(x) ← f(x); otherwise, S
checks that b(x) = β · f(x) + r(x), and if so, sets hsid(x) ← f(x),
otherwise broadcasts s and sets hsid(x) ← g(x), where g(x) is the
degree ℓ− 1 polynomial such that g(−j + 1) = sj for j ∈ [ℓ].

47

ii. If both the dealer D and intermediary INT are honest, then S does
nothing.

iii. If D is corrupted and INT is honest, then if D broadcasts s′, S
sets hsid(x) ← g(x), where g(x) is the degree-ℓ polynomial such
that g(−j + 1) = (s′)j for j ∈ [ℓ]; else it sets hsid(x) ← f(x) and
sj ← f(−j + 1), for j ∈ [ℓ]. Finally, when Fbatch-IC asks, S sends
(s1, . . . , sℓ) to Fbatch-IC.

iv. Finally, if both the dealer D and intermediary INT are corrupted,
if D broadcasts s, S sets hsid(x) ← g(x), where g(x) is the degree-
ℓ polynomial such that g(−j + 1) = sj for j ∈ [ℓ]. Otherwise, S
sets hsid(x) ← 0 and for each honest party Pi such that b(αi) ̸=
β · vsid,i + rsid,i, S sets dealerbadi ← 1. Then, when Fbatch-IC asks, S
sends (h(−ℓ+ 1), . . . , h(0)) to Fbatch-IC.

3. For revealing, we simulate as follows:
(a) First, S first receives ssid from Fbatch-IC.
(b) If INT is corrupted, then S receives h(x) = σsid+oτ (x) from the adversary.

Then:
i. If D is honest, if h(x) = hsid(x) + oτ (x) stored by S, S broadcasts

accept on behalf of all honest parties Pi and then sends continue
to Fbatch-IC. Otherwise, S broadcasts reject on behalf of all honest
parties Pi and sends reject to Fbatch-IC.

ii. If D is corrupted, then S broadcasts accept on behalf of all honest
parties Pi if vsid,i + oτ,i = h(αi) or dealerbadi = 1. Then if at least
t+ 1 parties (honest or corrupted) broadcasted accept, then S sends
(h(−ℓ+ 1), . . . , h(0)) to Fbatch-IC; otherwise, it sends reject.

(c) If INT is honest:
i. If D is honest, S first receives s from Fbatch-IC, then samples degree-
(t+2ℓ−2) polynomial hsid(x) such that hsid(−j+1) = sj for j ∈ [ℓ] and
hsid(αi) = vsid,i + oτ,i for all corrupted parties Pi. (If D is corrupted,
hsid(x), oτ (x) should already be stored)

ii. Then S broadcasts hsid(x) on behalf of INT and then accept on behalf
of all honest parties Pi.

4. For adding, there is no communication to be simulated, but:
(a) If both D and INT are honest, then S sets vsid3,i ← vsid1,i + vsid2,i for

each corrupted party Pi.
(b) Otherwise, S sets hsid3(x)← hsid1(x) + hsid2(x).

5. For multiplication by public vector, there is also no communication to be
simulated, but letting u(x) be the degree-(ℓ− 1) polynomial such that u(−j+
1) = uj for j ∈ [ℓ]:
(a) If both D and INT are honest, then S sets vsid′,i ← vsid,i · u(αi) for each

corrupted party Pi.
(b) Otherwise, S sets hsid′(x)← hsid(x) · u(x).

6. For a corruption of the dealer D, to build their state, S first samples random
αi for all honest parties (in addition to those already sampled for corrupted
parties), then if INT was not already corrupted, S receives ssid from Fbatch-IC

for each originally signed sid and interpolates degree-(t+ ℓ− 1) polynomial

48

hsid(x) such that hsid(−j + 1) = sj for j ∈ [ℓ] and hsid(αi) = vsid,i for all
corrupted parties Pi.

7. For corruption of the intermediary INT , to build their state, if D was not
already corrupted, S receives ssid from Fbatch-IC for each originally signed sid
and interpolates degree-(t+ℓ−1) polynomial hsid(x) such that hsid(−j+1) = sj
for j ∈ [ℓ] and hsid(αi) = vsid,i for all corrupted parties Pi.

8. For a corruption of some party Pi, to build their state, S samples random
αi, and if D and INT are honest, S samples random vsid,i, otherwise, S sets
vsid,i ← hsid(αi).

Now we show that the real world is distributed identically to the ideal world,
except with probability negl(κ). For initialization, it is clear that the real and
ideal worlds are distributed identically for distributing the αi. Then, for τ ∈ [T]:
In the first step, if the dealer is honest it is clear that the two worlds are identical:
if the INT is corrupted, then the polynomials o1(x) and o2(x) that S sends
to INT are distributed the same way; if INT is honest then the t points on
degree-(t+2ℓ− 2) polynomials o2(x) and o2(x) that the corrupted parties receive
are distributed randomly and independently of the ℓ− 1 evaluations set to 0. In
the second step, if INT is honest and D is corrupted, then S behaves exactly
as INT in the real world; if both INT and D are honest, then S’s broadcast
of random degree-(t + 2ℓ − 2) polynomial o(x) consistent with the corrupted
parties’ points and o(−j + 1) = 0 for j ∈ [ℓ] is identical to the real world, since
the probability that any other point o(i) is equal to some value is exactly equal
to the probability that o2(i) = β · o1(i) − o(i), which is random, constrained
to o2(x) being degree-(t+ 2ℓ− 2) (Note that this preserves the randomness in
o1(x)). In the third step, if D is honest and INT was corrupted and broadcasted
o(x) ̸= β · o1(x) − o2(x), then it is clear that in both the real world and ideal
world, D broadcasts Corr = 1; otherwise, in both worlds, D does nothing and the
honest parties do not set dealerbad← 1. The same holds if both D and INT are
honest (i.e., the honest parties do nothing). If D is corrupted and INT is honest,
it is clear that the honest parties set dealerbadτ ← 1 if D did not broadcast
Corr = 1 properly. If both D and INT are corrupted, S sets dealerbadi for each
honest party Pi in the same way as in the real world.

For signing, in the first step, if the dealer is honest it is clear that the two
worlds are identical: if the INT is corrupted, then the polynomials f(x) and r(x)
that S sends to INT are distributed the same way, since S gets s from Fbatch-IC;
if INT is honest then the t points on degree-(t+ ℓ− 1) polynomials f(x) and r(x)
that the corrupted parties receive are distributed randomly and independently of
s. If the dealer is corrupted and INT is honest, then S can clearly extract some s
from f(x) received to input to Fbatch-IC. In the second step, if INT is honest and
D is corrupted, then S behaves exactly as INT in the real world; if both INT
and D are honest, then S’s broadcast of random degree-(t+ ℓ− 1) polynomial
b(x) consistent with the corrupted parties’ points is identical to the real world,
since the probability that any other point b(i) is equal to some value is exactly
equal to the probability that r(i) = b(i)− β · f(i), which is random, constrained
to r(x) being degree-(t+ ℓ− 1). In the third step, if D is honest and INT was

49

corrupted and broadcasted b(x) ̸= β · f(x) + r(x), then it is clear that in both
the real world and ideal world, D broadcasts s and the honest parties will set
their vsid,i according to hsid(x); otherwise, in both worlds, D does nothing and
the honest parties keep their vsid,i according to hsid(x). The same holds if both
D and INT are honest (i.e., the honest parties do nothing). If D is corrupted
and INT is honest, it is clear that S sends to Fbatch-IC the correct signed s and
the honest parties set their vsid,i according to hsid(x). If both D and INT are
corrupted, S sets dealerbadi for each honest party Pi in the same way as in the
real world (Note that in this case, it does not matter what S sends to Fbatch-IC

for s, nor what hsid(x) is; it will be corrected eventually during the reveal phase).

For adding and multiplying, if both D and INT are honest, it is clear that
the honest parties set their new vi in the same way for both worlds. Otherwise
(except if both D and INT are corrupted, which will be handled in the reveal
phase), it is clear that the honest parties in the real world will set their new vi
according to the new h(x) computed by S in the ideal world.

For the reveal phase, if INT is corrupted: then if D is also corrupted, it
is clear that S behaves exactly as in the real world on behalf of the honest
parties and if at least t + 1 parties accept, S is able to extract s to input to
Fbatch-IC from h(x), which the honest parties output in both worlds; If D is
honest, then in the real world, the adversary does not know the random αi

of honest parties and so by the Schwartz-Zippel Lemma, the probability that
h(αi) = vi = hsid(αi)+ oτ (αi) for any honest Pi, where h(x) is broadcast by INT
and hsid(x), oτ (x) are the polynomials which the honest parties’ shares are based
on is negligible in κ (if |F| is super-polynomial in κ). So, with all but negligible
probability, if h(x) ̸= hsid(x) + oτ (x), then in both worlds, the parties reject;
otherwise they accept and output the same s (in part because oτ (−j +1) = 0 for
j ∈ [ℓ]). If INT is honest: if D is also honest, it is clear that S samples hsid(x)
based on the corrupted parties’ t points vsid,i + oτ,i and the ℓ points of s received
from Fbatch-IC that is distributed identically to the real world. This is because
in the real world, the probability that any other point hsid(i) is equal to some
value is exactly equal to the probability that oτ (i) = hsid(i) − vsid,i, which is
random. If D is corrupted, then it is clear that S sets hsid(x)← hsid(x) + oτ (x)
as INT would in the real world. Furthermore (if D is corrupted), since INT
chooses β independently of f(x) and r(x), for any honest party Pi, if D gives
it vsid,i ≠ f(αi), then the probability that β · vsid,αi + rsid,i = β · f(αi) + r(αi)
is equal to the probability that β = (r(αi) − rsid,i)/(vsid,αi − f(αi)), which is
negligible in κ (if |F| is super-polynomial in κ). A similar thing can be said for
the β, oτ (x), oτ,i from the initialization phase. Thus, if for hsid(x) broadcasted
by INT , hsid(αi) ̸= vsid,i + oτ,i, then with all-but-negligible probability, for some
other sid′ or τ , Pi would have set dealerbad ← 1. Therefore, in the real world,
when INT is honest, the honest parties accept with all-but-negligible probability;
in the ideal world in this case, the honest parties always accept. The parties in
the two worlds output the same s, since S extracts s from the originally input
signed values (which Fbatch-IC uses to compute the final vector for sid), and the
honest parties in the real world do the same from hsid(x) in the protocol, where

50

oτ (x) must satisfy oτ (−j + 1) = 0 for j ∈ [ℓ] since otherwise, honest INT would
have broadcasted Corr = 1.

For similar reasons as above, corruptions are simulated perfectly. Therefore,
the ideal and real worlds are distributed identically except with probability
negl(κ). ⊓⊔

B.2 Proofs from Section 4

Lemma 17 (Lemma 3, restated). If the dealer Pi is honest in πPacked-DSS-Share,
then all honest parties finish πPacked-DSS-Share without aborting.

Proof. This follows easily from the properties of Fbatch-IC. Indeed, an honest
dealer Pi will only give the other parties Pj points zj1η , . . . , zjnη and z1jη , . . . , znjη

consistent with a degree-(dx, t) bivariate polynomial for η ∈ [m], and input
vectors of those points to Fbatch-IC. Therefore, other honest parties will never
reveal their points in step 3 and corrupt parties will only be able to reveal those
points that Pi input to Fbatch-IC, which will always be consistent. Thus, honest
parties never abort from step 3. Also in steps 6 and 7 parties will only be able
to reveal those points that Pi input to Fbatch-IC, which will always be consistent
with each other. Thus, honest parties never abort from reveals in step 6 and
step 7. This concludes the proof. ⊓⊔

Lemma 18 (Lemma 7, restated). If πPacked-DSS-Coins does not abort with some
set T of corrupted parties, then it outputs β1, . . . ,βm that are random and
unknown to the adversary.

Proof. For each i ∈ [n], let Fi,η(x, y), η ∈ [m], be those bivariate polynomi-
als defined by the sharing JβiK, according to Lemma 4. Also, let Fη(x, y) ←∑n

i=1 Fi,η(x, y), η ∈ [m], be the resulting bivariate polynomials defined by JβK,
that are interpolated according to Corollary 2. For any j ∈ Hon, we have that

Fj,η(x, y) = Fη(x, y)−
∑

i∈[n]\{j}

Fi,η(x, y).

Therefore, the probability that Fη(x, y) is some given polynomial is equal to the
probability that Fj,η(x, y) is some given polynomial. For this Pj , for η ∈ [m], we
have by Lemma 2 that the corrupted parties’ points {(Fj,η(k, i), Fj,η(i, k)}k∈Corr,i∈[n]

are consistent with any other F ′
j,η(x, y) chosen in the same fashion (with other

random β′
j,1, . . . ,β

′
j,m). Therefore Fj,η(x, y) is random to the adversary and thus

so are β′
j,1, . . . ,β

′
j,m, and β1, . . . ,βm. ⊓⊔

Lemma 19 (Lemma 8, restated). If Pi inputs sharings (Js1K∗ , Js2K∗) ̸=
(J01K∗ , J02K∗) to πCheck-Zero-DSS, then with probability at least 1 − negl(κ), all
honest parties output either (abort, T), for |T | > t − 2ℓ + 2 where each j ∈ T
corresponds to a corrupt Pj , or abort. Otherwise, all honest parties output either
(abort, T), for |T | > t− 2ℓ+ 2 where each j ∈ T corresponds to a corrupt Pj, or
J01K∗.

51

Proof. We know from Lemma 6 that if the honest parties output (abort, T) such
that |T | > t − 2ℓ + 2, then for each j ∈ T , Pj ∈ Corr. Otherwise, also from
Lemma 6, we know that the opened eη = β · s1,η − s2,η. Thus, if s1,η = s2,η = 0,
then eη = 0 for η ∈ [m], and so the honest parties will output J01Kt+2ℓ−2,t.

Otherwise, first note that if eη = 0 = s1,η, then it must be that s2,η = 0. If
s1,η ≠ 0, then eη = 0 if and only if sl2,η/sl1,η = β for every l ∈ [ℓ]. Since β is
chosen randomly after the runs of πPacked-DSS-Share, in which s1,η, s2,η are defined
according to Lemma 4, the probability that s1,η ̸= 0 and s2,η are chosen such
that sl2,η/s

l
1,η = β for any l ∈ [ℓ] is negligible in κ. ⊓⊔

Lemma 20 (Lemma 9, restated). πCheck-Zero-DSS run on an honest party Pi’s
sharings does not give the adversary any more information on J01K∗.

Proof. By Lemma 2, both sharings J01K∗ and J02K∗ could have been distributed
using, for η ∈ [m], any random degree-(t+ℓ−1, t) bivariate polynomials F1,η(x, y)
and F2,η(x, y) consistent with the corrupt parties’ shares and F1,η(−l + 1, 0) =
F2,η(−l + 1, 0) = 0 for every l ∈ [ℓ]. Since the adversary receives Fη(x, y) ←
β · F1,η(x, y) + F2,η(x, y), the probability that F1,η(x, y) is any given degree-
(t+ ℓ− 1, t) bivariate polynomial consistent with the corrupt parties’ shares and
F1,η(−l + 1, 0) = 0 for every l ∈ [ℓ], is equal to the probability that F2,η(x, y) =
Fη(x, y)− β · F1,η(x, y), which is the same distribution as before πCheck-Zero-DSS

for F2,η(x, y). ⊓⊔

Lemma 21 (Lemma 10, restated). For each i ∈ [n−t], the output J01K∗ , . . . , J0n−tK∗
are distributed randomly given the corrupted parties’ shares.

Proof. Let {Fi,η(x, y)}η∈[n] be the degree-(t + 2ℓ − 2, t) bivariate polynomials
defined by the honest parties’ shares of J0i,1K∗ according to Lemma 4. For each
j ∈ [n], let Gj,η(x, y) for η ∈ [m] be those bivariate polynomials defined by the
honest parties’ shares of J0jK∗, according to Lemma 5. Since M is super-invertible,
we have that MHon is invertible. Thus, we can write that

(Fh1,η(x, y), . . . , Fhn−t,η(x, y))
⊺ = (MHon)−1·

((G1,η(x, y), . . . , Gn−t,η(x, y))
⊺ −MCorr · ((Fc1,η(x, y), . . . , Gct,η(x, y))

⊺)),

where Hon = {h1, . . . , hn−t} and Corr = {c1, . . . , ct}.
Therefore, the probability that any given ((G1,η(x, y), . . . , Gn−t,η(x, y)) are

determined by the honest parties’ shares is equal to the probability that any
given (Fh1,η(x, y), . . . , Fhn−t,η(x, y)) are defined by the honest parties’ shares.
For h ∈ Hon, we have from Lemma 2 that the corrupted parties’ shares
{(Fh,η(j, k), Fh,η(k, j))}j∈Corr,k∈[n] are consistent with any other degree-(t+ 2ℓ−
2, t) bivariate polynomial F ′

h,η(x, y) chosen at random under the constraints that
F ′
h,η(−l+1, 0) = 0 for l ∈ [ℓ] and F ′

h,η(j, k) = Fh,η1, h(j, k), F
′
h,η(k, j) = Fh,η(k, j),

for j ∈ Corr, k ∈ [n], η ∈ [m]. Thus, the same holds for ((G1,η(x, y), . . . , Gn−t,η(x, y))
and so the J0jK∗ are distributed randomly given the corrupted parties’ shares. ⊓⊔

Theorem 6 (Theorem 2, restated). ΠPacked-DSS UC-realizes FPacked-DSS in
the Fbatch-IC-hybrid model for any ℓ ≤ t/2 and any m = poly(κ), with probability
1− negl(κ).

52

Proof. We first provide a simulator S:

1. For initialization, S emulates every instance of Fbatch-IC. We will describe the
simulation of the random zero sharings in the simulation of the reconstruction
phase below.

2. For sharing, we simulate as follows:
(a) First:

i. If the sharing party Pi is corrupt, for its emulation of each Fbatch-IC in-
stance, S first outputs signed to all corrupted parties then receives zjk

sid

and zkj
sid from the adversary for j ∈ Hon, k ∈ [n], and sets Fη(j, k) and

Fη(k, j) based on these, and finally outputs verified to all corrupted
parties.

ii. If the sharing party Pi is honest, then S samples random degree-
(t + ℓ − 1, t) bivariate polynomials Fη(x, y) and for its emulation
of Fbatch-IC S sends (F1(j, k), . . . , Fm(j, k) and (F1(k, j), . . . , Fm(k, j)
for k ∈ [n] to each corrupted party Pj , as well as signed, followed by
verified to all other corrupted parties.

(b) Next:
i. If the dealer Pi was corrupt above, then for every honest party Pj ,
S checks that the Fη(j, k) and Fη(k, j) values corresponds to valid
degree-t and degree-(t+ ℓ− 1) polynomials, respectively, and if not,
for its emulation of Fbatch-IC, first sends zjk

sid and zkj
sid received from

the adversary in the previous round first back to the adversary and
then to all corrupted parties.

ii. For honest dealer Pi, if any corrupted party Pj wants to reveals
its shares, then in its emulation of Fbatch-IC, S first outputs the
corresponding shares to the adversary, then asks it whether it wants
to reject, and if so outputs reject to all corrupted parties; otherwise,
outputs the shares to all corrupted parties.

(c) Then, if the dealer Pi was corrupt from the beginning of this sharing, if
an honest party revealed shares in the previous round (or a corrupted
party correctly did), then S sends to FPacked-DSS, abort.

(d) Next, for every honest party Pj , S sends to each corrupted party Pk in its
emulation of Fbatch-IC: if the dealer Pi was corrupted from the beginning,
zkj
sid sent by the adversary; otherwise, those values sent on behalf of the

honest dealer Pi to Pk. In both cases, for its emulation of Fbatch-IC, S also
sends to Pj : signed, followed by verified to all other corrupted parties. It
also receives on behalf of honest Pj the same from each corrupted party
Pk.

(e) Then:
i. For every honest party Pj , S checks that what it received from each

corrupted Pk in the previous round is consistent with either the zjk
sid

it received from the adversary in the case of a corrupted dealer Pi or
the zjk

sid S sent to Pk in the case of an honest dealer Pi, and if not, for
its emulation of Fbatch-IC, first sends zjk

sid to the adversary and then
to all corrupted parties.

53

ii. For honest dealer Pi, if any corrupted party Pj wants to reveal
its shares, then in its emulation of Fbatch-IC, S first outputs the
corresponding shares to the adversary, then asks it whether it wants
to reject, and if so outputs reject to all corrupted parties; otherwise,
outputs the shares to all corrupted parties.

(f) Then, if the dealer Pi was corrupt from the beginning, if S hears validly
revealed shares from corrupted party Pk in the last round with polynomial
evaluations that are inconsistent with anything that was sent to any honest
party Pj , then S for its emulation of Fbatch-IC, first sends zkj

sid received
from Pi to the adversary and then to all corrupted parties.

(g) Then, if the dealer Pi was corrupt from the beginning, if there are
any inconsistent reveals in the previous two rounds, then S sends to
FPacked-DSS, abort.

(h) Finally, if the dealer was corrupt from the beginning and no abort oc-
curred, then using the Fη(k, j) values for k ∈ [n], j ∈ Hon, S interpolates
Fη(x, y) according to Corollary 1, sets slη ← Fη(−l + 1, 0), and finally
sends (share, (s1, . . . , sm), sid) to FPacked-DSS. S also uses the interpolated
Fη(x, y) from above to compute and store the corrupted parties’ shares
(zj1

sid, . . . ,z
jn
sid). Otherwise, if the dealer is honest, S stores those shares

which it sent to the corrupted parties at the beginning.
3. For reconstruction, we simulate as follows:

(a) First, S receives (s1, . . . , sm) from FPacked-DSS.
(b) Then, if isMult = 0:

i. S interpolates Fη(j, 0) using Fη(j, 1), . . . , Fη(j, n) stored for corrupt
Pj , interpolates Fη(x, 0) using Fη(j, 0) and Fη(−l + 1, 0)← slη just
received, and interpolates Fη(k, y), for k ∈ [n], using Fη(k, 0) and
Fη(k, j) stored for corrupt Pj .

ii. Then for its emulation of Fbatch-IC, S first sends zjk
sid for k ∈ [n]

according to Fη(j, y) to the adversary, and then to all other corrupted
parties.

iii. Next, S initializes T = ∅ and if any corrupted party Pj ’s broadcasted
shares in the previous round do not match what S stored for them
(or their signatures were rejected), then S adds j to T .

iv. If |T | > t− ℓ (or |T | > t− 2ℓ if multiplication with a public vector
occurred), then S sends T to FPacked-DSS; otherwise, S tells FPacked-DSS

to continue.
(c) If isMult = 1 (Note the first 5 steps actually run during the initialization

phase):
i. S first simulates as in step 2 for the sharings of (0i,1, . . . ,0i,m) and
(0i,m+1, . . . ,0i,2m) for i ∈ [n] in πPacked-Zero-DSS, except with degree
t+ 2ℓ− 2 and for corrupted dealers, it remembers the interpolated
Fη(x, y), and for honest dealers, it samples Fη(x, y) consistent with
Fη(−l + 1, 0) = 0 for l ∈ [ℓ].

ii. For sampling β, S first simulates as in step 2 for the random sharings
and then for reconstruction simulates as above in the isMult = 0 case,
but with random secrets (β1, . . . ,βm).

54

iii. Then, to simulate πCheck-Zero-DSS, the simulator computes Fη(x, y)←
β · F 1

η (x, y) + F 2
η (x, y) for η ∈ [n].

iv. Then S simulates reconstruction as above in the isMult = 0 case,
starting at step 3(b)ii.

v. If for any corrupt dealer Pi, they did not share (0i,1, . . . ,0i,m) and
(0i,m+1, . . . ,0i,2m), then S ignores their zero sharings.

vi. Finally, for reconstruction of the re-randomized sharings, S sam-
ples random Fη(x, y) consistent with (re-randomized) Fη(j, k) = zjk

stored for corrupt Pj and Fη(−l+ 1, 0) = slη for l ∈ [ℓ] and simulates
as above in the isMult = 0 case, starting at step 3(b)ii.

4. For adding sid1 and sid2, there is no communication to be simulated, but S
stores for every corrupted party Pj , z

jk
sid3
← zjk

sid1
+ zjk

sid2
for k ∈ [n].

5. For multiplication with public vectors, there is no communication to be
simulated, but letting uη(x) for η ∈ [m] be the degree-(ℓ − 1) polynomials
such that uη(−l+1) = ul

η for l ∈ [ℓ], S computes and stores for every corrupt
party Pj , z

jk
sid′ ← zjk

sid ∗ (u1(j), . . . , um(j)), for k ∈ [n].
6. For corruption of a party Pi:

(a) For all sharings in which Pi was the dealer, S receives from FPacked-DSS

(s1, . . . , sm), and interpolates each Fη(x, y) as above using the t corrupted
parties’ shares originally sent from S.

(b) For all other sharings sid, S computes Pi’s shares zij
sid and zji

sid based on
the polynomials (F1(x, y), . . . , Fm(x, y)) sampled/computed for sid.

Now we show that the real world is distributed ε-close to the ideal world, for
some ε = negl(κ).

For sharing, if the dealer Pi is honest, then it follows from Lemma 2 that the
corrupted parties’ shares are distributed identically in the ideal world as in the
real world. Everything else simulated for the sharing phase is based directly on
these shares, if Pi is honest, and those shares given to honest parties by Pi, if
they are corrupt. Therefore, sharing is distributed identically in the ideal world
as in the real world.

For reconstruction, if mult = 0, the polynomials F1(x, y), . . . , Fm(x, y) are
determined uniquely by the corrupt parties’ shares and s1, . . . , sm by Corollary 1.
Thus, honest parties’ shares are distributed identically in the ideal world and real
world. Since honest parties’ shares define corrupted parties’ shares zj1, . . . ,zjn,
because they correspond to degree-t polynomials, t+ 1 of which are from honest
parties, whether or not corrupted parties are marked as corrupt is the same
in the real and ideal worlds. Finally, because honest parties’ shares define all
sharings, according to Lemma 6, the vectors s1, . . . , sm output in the real and
ideal worlds are the same. If mult = 1, for the sharing phase of the zero sharings,
we have that the ideal and real worlds are distributed identically as above, again
using Lemma 2. We also have that for the reconstruction of JβK, it is defined
by the corrupted parties’ shares and random β, according to Lemma 7, and
so the ideal and real worlds are distributed identically. Since πCheck-Zero-DSS is
based on the above zero sharings sharings, it is clear that the real and ideal
worlds are identical for this part, as well. Also, by Lemma 8, the probability

55

that parties ignore some Pi’s sharings who misbehaved when generating zero
sharings in the ideal world, also not in the real world is 1 − negl(κ). Finally,
for reconstruction of the re-randomized sharings, by Lemma 9, we have that all
of the 0-sharings output by πPacked-Zero-DSS correspond to random polynomials
F1,η(x, y) constrained to the corrupted parties’ shares and F1,η(−l+1, 0) = 0 for
l ∈ [ℓ]. Therefore, adding such random F1,η(x, y) to F2,η(x, y) constrained to the
corrupted parties’ shares and F2,η(−l + 1, 0) = slη for l ∈ [ℓ], results in random
Fη(x, y) constrained to the sum of the corrupted parties’ shares from F1,η(x, y)
and F2,η(x, y) and Fη(−l+1, 0) = slη for l ∈ [ℓ], which is exactly what S samples.

Thus, we have concluded that the real and ideal worlds are distributed
identically, except with probability negl(κ). ⊓⊔

B.3 Proofs From Section 5.1

Lemma 22 (Lemma 11, restated). If P is honest, then πverifiable-triple-sharing

outputs (JaK , JbK , JcK∗) with probability 1. If P is corrupt, then πverifiable-triple-sharing

either aborts, or outputs a valid batched triple except with negl(κ) failure proba-
bility.

Proof. The claim for honest P follows by inspection. Suppose that the procedure
does not abort, and that c ̸= a ⋆ b. By plugging in the values for ρ and σ, one
can verify that the reconstructed z is equal to

z = e · c− γ − (b− β) ⋆α− (e · a−α) ⋆ β − (b− β) ⋆ (e · a−α)

= e · (c− a ⋆ b)− (γ −α ⋆ β)

= e · u− v.

Since u = c− a ⋆ b ̸= 0, there exists i ∈ [mℓ] such that ui ̸= 0. If zi = 0, then
e · ui − vi = 0 and therefore e = vi/ui. However, e is sampled at random after
the values ui, vi are chosen by the adversary, and hence can only happen with
probability ≤ 1/|F| = negl(κ).

Note that, if multiple calls to πverifiable-triple-sharing share the same random
challenge e, then we need to perform a union bound over the number of calls in
order to bound the failure probability. This is because if the challenge e is “bad”
even w.r.t. one of the calls (a challenge is “bad” w.r.t. a tuple (a, b, c) if z = 0
even though (a, b, c) is an incorrect triple), then the adversary will be able to
make that incorrect triple accepted without detection. Having said that, note
that union bounding over t = O(n) calls would still provide us negl(κ) failure
probability for n = poly(κ) and |F| = O(2κ). ⊓⊔

Lemma 23 (Label 12, restated). Given n = 2t+1 source triples, (a1, b1, c1), . . . ,
(an, bn, cn), out of which at least n− t triples are uniformly random and indepen-
dent, Etriple outputs a triple (anew, bnew, cnew) which is uniform and independent
from any set of atmost t source triples.

Proof (Sketch). We provide the high-level intuition here and refer the readers to
[CP17] for the formal version. The idea behind the extractor is to construct three

56

(implicit) polynomials A(x), B(x), C(x) of degree t, t, 2t respectively such that
A(x) ·B(x) = C(x) and then output an evaluation on these triple of polynomials.
This is done by constraining A(i) = ai, B(i) = bi for all i ∈ [t+1]. Since A(x) and
B(x) are supposed to be degree t polynomials, these t+ 1 constraints completely
determine A(x) and B(x). Now in order to determine C(x), one could simply take
the product of A(x) and B(x) as formal polynomials. However, looking ahead,
this approach will not be MPC friendly as it requires too many multiplications.

Therefore, [CP17] propose a different approach which is MPC friendly. The
first observation is that we already know t points on C(x), namely C(i) = ci for
all i ∈ [t+1]. Therefore, in order to determine it completely, we need t additional
points on C(x). This is done in the following way: we evaluate A(x) and B(x)
at t auxiliary points, namely at i ∈ [t+ 2, n] to derive a′i = A(i) and b′i = B(i)
and then use these to derive t additional points on C(x) namely c′i = a′i · b′i for
all i ∈ [t+ 2, n]. Looking ahead, when we run the extractor securely using MPC,
these t multiplications will be performed by consuming the remaining t source
triples (at+2, bt+2, ct+2), . . . , (an, bn, cn) via Beaver multiplication. Now given the
t+ 1 original points c1, . . . , ct+1 and the newly derived t points c′t+2, . . . , c

′
n, we

can completely determine the polynomial C(x).
Having determined A(x), B(x), C(x), the last step is to simply output an

evaluation on these polynomials at a consistent input point. We do this by simply
outputting (anew, bnew, cnew) = (A(n+1), B(n+1), C(n+1)) which ensures that
the output triple is uniform and independent from any subset of ≤ t source
triples. ⊓⊔

B.4 Proofs from Section 5

Theorem 7 (Theorem 3, restated). ΠPrep UC-realizes FPrep in the (FPacked-DSS(ℓ,m),
FPacked-DSS(1, 1))-hybrid model, with probability 1− negl(κ).

Proof. We provide a simulator S. The calls to FPacked-DSS(ℓ,m) and FPacked-DSS(1, 1)
are all emulated internally by S.

Input groups. For an input group with labels α belonging to party Pi,
simulate πInput-Sharings as follows depending on whether Pi is honest or corrupt:

– If Pi is corrupt, the adversary sends m1 = r ·1 and m2 = r to FPacked-DSS(ℓ,m)
and FPacked-DSS(1, 1) respectively, which are emulated by S. This process is
repeated for r′. If these are not well formed (i.e. m1 ̸= m2 · 1), then S stores
(J0K , ⟨0⟩). Else, S stores (JrK , ⟨r⟩), which by Lemma 15 follows the same
distribution as the real world, except with probability negl(κ).

– If Pi is honest, emulate the interaction of πInput-Sharings, that is, inform the
adversary of the calls to share, and sample a random β as part of the call
to rand(). Then, emulate z ← reconstruct(JzK) and z′ ← reconstruct(⟨z′⟩) by
opening a random z = z′ · 1. This is indistinguishable from the real world
since there this corresponds to z = β · r − r′, which is uniformly random
since r′ is. For this emulated party, S stores the sid Jr · 1K , ⟨r⟩ internally,
with r ∈ F sampled uniformly at random.

57

Sampling random masks. For every wire α that is either an output
of a multiplication gate, or an input wire, S simulates the call Jλα · 1K ←
πRand-Sharings() as follows. First, simulate step (1) in πRand-Sharings as done above,
with the difference that if the “dealer” Pi is corrupt, S adds Pi to the set T , and
as in the procedure, Pi stores J0 · 1K , ⟨0⟩ for parties in T . Finally, S computes
internally (Js1 · 1K , . . . , Jsn−t · 1K)⊺ ← M · (Jr1 · 1K , . . . , Jrn · 1K) as in the real
world. As in the real world S assigns them internally to Jλα1K for every wire α
that is either an output of a multiplication gate, or an output wire. Note that,
by Lemma 16, except with probability negl(κ) these sharings are well formed
and they are uniformly random in the real world, following the same distribution
as the ideal world. At this point S can internally compute sid’s Jλα · 1K for every
wire α.

Output groups. As in the real world, for an output group α, S takes the
internally stored “sharings” Jλαi

· 1K for i ∈ [mℓ] from the previous step and
computes JλαK∗ =

∑mℓ
i=1 1i · Jλαi

1K.
Multiplication groups. For a multiplication group with input wires α,β

and output wires γ, S emulates πtriple-generation as follows:

– Emulate πverifiable-triple-sharing (step 1 in πtriple-generation) for honest Pi:
1. Emulate rand() (step 3 in πverifiable-triple-sharing) by sending a random e as

in the real world
2. Emulate ρ← reconstruct(JρK) and σ ← reconstruct(JσK) by reconstruct-

ing random ρ and σ. This follows the same distribution as in the real
world since α and β are uniformly random and unknown to the adversary.

3. Emulate z ← reconstruct(JzK∗) by opening z = 0. This is the same view
as in the real world where it can be checked that, for an honest Pi, z
equals zero.

– Emulate πverifiable-triple-sharing (step 1 in πtriple-generation) for honest Pi:
1. Receive a, b, c and α,β,γ from the adversary as part of the emulation

of FPrep (which extends FPacked-DSS).
2. Emulate rand() (step 3 in πverifiable-triple-sharing) by sending a random e as

in the real world
3. As in the real world, emulate the reconstruction of JρK← e · JaK− JαK,

ρ← reconstruct(JρK) and z ← reconstruct(JzK∗). If z ̸= 0 then S stores
(J0K , J0K , J0K∗); otherwise it stores (JaK , JbK , JcK∗). Note this is the exact
same interaction as the real world.

– Emulate πtriple-extraction (step 2 in πtriple-generation)
1. The only interaction is in step 2 of πtriple-extraction, where

Jc′iK∗ = πBeaver((Ja′
iK , Jb

′
iK), (JaiK , JbiK , JciK)) is called for i ∈ [t+2, n]. If

Pi is honest this simulation consists of opening a random ãi and b̃i as
the reconstructions of steps 1 and 2 in πBeaver, which follows the same
distribution as the real world since JaiK , JbiK are uniformly random and
unknown to the adversary. If Pi is corrupt then S simply plays the
protocol as in the real world.

– From the above, S obtains a triple (JaK , JbK , Ja ⋆ bK∗). From Lemma 14,
except with probability negl(κ), this triple is uniformly random and unknown
to the adversary in the real world, and the same will hold in the ideal world.

58

Now, S emulates FPacked-DSS(ℓ,m) in the calls d ← reconstruct(JdK∗) and
e ← reconstruct(JeK∗) in step (4) by reconstructing random values d, e. This
interaction looks the same as in the ideal world since, except with probability
negl(κ), the vectors a, b are uniformly random and unknown to the adversary
in the real world. Finally, S stores (JλαK , JλβK , Jλα ⋆ λβ − λγK∗). It can be
checked that these follow the same distribution as in the ideal world: from the
above, except with probability negl(κ), the vectors a, b, c in the real world
satisfy a ⋆ b = c, and JcK looks uniform to the adversary, which ensures that
the linear combination in step (5)—which can be easily checked to be equal to
λα ⋆ λβ − λγ—is freshly uniform in the real world as well.

Abort. If in any of the reconstruct calls from above the adversary sends a set T
with |T | > t−2(ℓ−1) and instructs an abort, S forwards the corresponding call to
FPrep (which, recall, extends FPacked-DSS(ℓ,m) and FPacked-DSS(1, 1)), which itself
sends T to the actual honest parties. Since the interaction is indistinguishable
in both worlds, in the real world the adversary would also send the same set T ,
which the actual functionalities FPacked-DSS(ℓ,m) and FPacked-DSS(1, 1) that are
used in the real world would forward to the honest parties. Hence, the two worls
are indistinguishable. ⊓⊔

Theorem 8 (Theorem 4, restated). ΠMPC UC-realizes FMPC in the FPrep-
hybrid model, with probability 1− negl(κ).

Proof. We present a simulator S. This simulator emulates internally honest
parties, as well as the functionalities FPrep and FMPC-t<n/3, together with the
broadcast channel.

Preprocessing. S emulates FPrep by storing internally the following sid’s.
Crucially, the different λ∗ symbols below, with the exception of corrupt input
wires, do not represent specific values, and rather they represent placeholders
that S populates only when needed.

– JλαK∗ for every output group α
– (JλαK , JλβK , Jλα ⋆ λβ − λγK∗) for every multiplication group with inputs

α,β and outputs γ.
– For every input group α assigned to a corrupt party Pi, sample λα ∈ Fmℓ

uniformly at random, and send λα to Pi. Store ⟨λα1
⟩, . . . , ⟨λαmℓ

⟩

Input gates. For a group of input gates α owned by a party Pi, S acts
differently according to the following:

– If Pi is honest, then S emulates the interaction by sampling a random
µα ∈ Fmℓ and emulating honest Pi sending it through the broadcast channel.
This is indistinguishable from the real world, where an honest party broadcasts
µα = vα−λα, since λα is uniformly random and unknown to the adversary.

– If Pi is corrupt, S receives µα from the emulation of the broadcast channel,
and then sets vα := µα +λα (recall that λα for corrupt inputs was sampled
by S above). S then sends (input, Pi, vαi

, αi) to FMPC for i ∈ [mℓ]. Notice that
this is the same input that Pi has used in the real world: the interaction so

59

far is indistinguishable, so in the real world Pi would broadcast µα following
the same distribution as in the ideal world, and the input that would be used
in the real world would be precisely µα + λα.

Note that, once S has provided all corrupt parties’ inputs to FMPC, the
functionality will return S the outputs vα for every output wire vα.

Addition gates. No simulation is required here.
Multiplication gates. For a group of multiplication gates with inputs α,β

and outputs γ, S emulates the call µγ ← reconstruct(JµγK∗) (recall FPrep extends
FPacked-DSS(ℓ,m), which is emulated by S) by opening an internally sampled
random value µγ . This is indistinguishable from the real world: there, it can be
verified that this value would be equal to vα ⋆ vβ − λγ , and given that λγ is
uniformly random and unknown to the adversary, so is µγ .

Output gates. Given a group of output wires α, recall that S knows vα

from its interaction with FMPC. Also, S knows µα from the emulated interaction.
S emulates the call λα ← reconstruct(JλαK∗) by setting λα := vα − µα. and
return the output vα = λα +µα. This is the same distribution as the real world:
we have seen that in the real world µβ is always equal to vβ − λβ for any wire β,
so in particular for this output group α it holds that µα is vα − λα, where λα

is the value stored in JλαK. In the ideal world, S sets λα precisely in this way.
Abort and restart. So far, the executions in both worlds have been indis-

tinguishable, except with probability negl(κ). If in the ideal world the adversary
sends abort to (the emulation of) FPrep (which extends FPacked-DSS), along with a
set T of corrupt parties with |T | > t − 2(ℓ − 1), the adversary would send the
exact same set in the real world. In the ideal world, S from now on interacts
only with the remaining parties {P1, . . . , Pn} \ T . There are t′ = t− |T | corrupt
parties in this new set of n′ = n− |T | parties. Note that

t′

n′ =
t− |T |
n− |T |

=
t/n− |T |/n
1− |T |/n

<
1/2− |T |/n
1− |T |/n

,

which is ≤ 1/3 if and only if |T |/n ≥ 1/4, or |T | ≥ n/4. Now, let us compute
|T |. Since ℓ = ⌊n+6

8 ⌋, we have that ℓ ≤ n+6
8 . Then, taking into account that

n = 2t+ 1, we have:

|T | >t− 2(ℓ− 1)

≥n− 1

2
− 2 ·

(
n+ 6

8
− 1

)
=
n− 1

2
− n+ 6

4
+ 2

=
n− 8

4
+ 2 =

n

4
.

Hence, |T | ≥ n/4 and in particular t′ < n′/3, and hence the calls of FMPC-t<n/3

in the real world will not result in abort.
Now, S emulates the different steps in ΠMPC as follows:

60

– For every input wire α that belongs to Pi ∈ T , S emulates λα ← reconstruct(⟨λα⟩)
by using the values λα sampled during the input phase. As we have argued
there, this leads to the same input vα = µα + λα that the corrupt party uses
in the real world.

– For every Pi /∈ T , let α1, . . . , αM be the input wires that belongs to Pi.
Suppose Pi is corrupt (the case in which Pi /∈ T is honest is even simpler and
we omit it):
1. S receives from Pi the value λ′

αj
when emulating FMPC-t<n/3. Note that

S knows the actual values λαj
that Pi should have used, but a corrupt

Pi can deviate from this.
2. S receives r′ from Pi when emulating ⟨r⟩ ← share(r). S also receives r

as input to FMPC-t<n/3, and it may happen that r′ ̸= r if Pi decides to
cheat.

3. S emulates c1, . . . , cM ← ttrand() by distributing such random elements.
4. S emulates z ← reconstruct(⟨z⟩) by setting z := r +

∑M
j=1 cj · λαj . Note

this is the same that is computed in the real world.
5. S emulates FMPC-t<n/3 by outputting 1 to all parties if r′+

∑
j=1 cj ·λ′

αj
=

z, and 0 otherwise. It is easy to prove that, except with probability
negl(κ), if some of the λ′

αj
is not equal to λαj

, then in both worlds the
parties produce 0. Note that the two interactions are indistinguishable
thus far and hence the adversary causes the same output in both worlds.

6. If the output is 0, S emulates the call to λαj ← reconstruct(⟨λαj ⟩) by
opening the λαj

sampled in the input phase. In the real world the parties
set vαj

= µαj
+ λαj

, for j ∈ [M], which is the same inputs as the ones
used in the ideal world. The party Pi is added to T .

– S emulates FMPC-t<n/3, sending the outputs received earlier from FMPC to
all the parties. Note that these are the exact same outputs resulting in the
real world since the inputs provided to FMPC-t<n/3 there are the same.

⊓⊔

C An Alternative MPC Protocol

In Section 5.2 we presented our MPC protocol. As discussed there, the communi-
cation complexity—for the offline phase—per input wire is O(n2), which may
become the bottleneck if the number of inputs is too large. In this section we
describe an alternative that keeps the communication per input wire under O(n),
at the expense of having the communication per output wire to be O(n2). This
is more suitable for the case in which there are many more inputs than outputs.

Let us begin by recalling briefly how the protocol ΠMPC from Section 5.2
handled the case of an abort. In case there is an abort when reconstructing a
secret-shared value, several corrupt parties are identified and removed, and the
protocol is restarted with a much lower corruption ratio 1/3. The tricky part is
the case in which one of the failed reconstruction is that of an output value, since
the adversary (which is rushing) may learn the output before aborting. In this
case, we must ensure the corrupt parties do not change their inputs in the second

61

execution, since otherwise this would lead to leakage from the adversary learning
two outputs on two sets of corrupt inputs. In ΠMPC we address this by asking
the parties to robustly secret-share the λα’s that define their inputs, which is
more inefficient than our packed DSS but guarantees reconstructions. This in
particular commits the corrupt parties to their inputs.

The alternative we propose in this section consists of ensuring the adversary
cannot execute the rushing attack mentioned above, that is, even if the adversary
decides to cause an abort in the final output reconstructions, it will not be
able to learn any information about the outputs, and hence restarting with
potentially fresh inputs is not a problem (so the inputs do not need to be VSS’ed
anymore). To illustrate how we achieve this, consider an output group α. From
the preprocessing the parties have JλαK∗. We will require the preprocessing to
output, additionally to this, VSS shares ⟨λα1

⟩, . . . , ⟨λαℓ
⟩. Once this is done, our

problem is solved: in the online phase, if the parties abort before attempting
to reconstruct any output wire, then no leakage has occured and it is safe to
restart (possibly with different inputs). However, if the parties successfully reach
the point where the only missing operation is to reconstruct the outputs, this
will not result in abort since the parties know the broadcasted values µα, and
the associated masks λα are somehow VSS’ed, which are guaranteed to be
reconstructed regardless of the adversary’s behavior. We discuss this idea in more
detail below.

C.1 Modified Preprocessing

Our modified preprocessing functionality is as below.

Functionality 5: FPrep-Alt

Everything is the same as FPrep, Functionality 4, except for the following: Input
and output sharings.

– For every group of mℓ input gates with labels α belonging to party Pi, send
λα to Pi.

– For every group of mℓ output gates with labels α, sample a random
ωα ←$ Fmℓ, store ⟨λαj − ωαj ⟩ for j ∈ [mℓ], and send ρα = λα −ωα to all
parties.

This functionality, although similar to FPrep, is slightly harder to instantiate:
in FPrep there is a single party that knows the λα that must be VSS’ed, and this
party can provide such sharings (which are checked against the DSS’ed version).
In our case, in FPrep-Alt the ωα to be VSS’ed is uniformly random and unknown to
any of the parties. For this we adapt the Procedures πInput-Sharings and πRand-Sharings,
essentially moving the VSS part from πInput-Sharings to πRand-Sharings. We describe
these in detail below for completeness.

62

Procedure 18: πInput-Sharings-Alt(Pi)

This procedure lets Pi share Jr · 1K, where r ∈ F is random.

1. Pi samples r, r′ ∈ F and calls Jr · 1K← share(r ·1) and Jr · 1K← share(r′ ·1)
(using FPacked-DSS(ℓ,m)).

2. The parties then call β ← rand() and compute JzK← β · Jr · 1K− Jr′ · 1K.
3. Parties call z ← reconstruct(JzK). If z ̸= z′ · 1 for some z′ ∈ F, then output

J0K). Else, output Jr · 1K

Procedure 19: πRand-Sharings-Alt

This procedure gives parties shares (JrK , ⟨r1⟩, . . . , ⟨rmℓ⟩). It outputs n− t such
tuples. Initialize T = ∅.

1. For every party Pi, the parties do the following:
(a) Pi samples ri, r

′
i ∈ F and calls JriK← share(ri) and JriK← share(r′

i),
and also ⟨rij⟩ ← share(rij) and ⟨r′ij⟩ ← share(r′ij) for j ∈ [mℓ].

(b) The parties then call β ← rand()a and compute JziK← β · JriK− Jr′
iK,

as well as ⟨z′ij⟩ ← β · ⟨rij⟩ − ⟨r′ij⟩.
(c) Parties call zi ← reconstruct(JziK) and z′ij ← reconstruct(⟨z′ij⟩) for

j ∈ [mℓ]. If zi ̸= (zi,1, . . . , zi,mℓ), add Pi to the set T .
2. For Pi ∈ T set ri := 0 and store (JrK , ⟨r1⟩, . . . , ⟨rmℓ⟩) for this party.
3. All parties then compute and output

(Js1K , . . . , Jsn−tK)⊺ ←M · (Jr1K , . . . , JrnK)
(⟨s1,j⟩, . . . , ⟨sn−t,j⟩)⊺ ←M · (⟨r1,j⟩, . . . , ⟨rn,j⟩) for j ∈ [mℓ].

a One single random value can be reused across all parties, and this is important
for efficiency.

Equivalent versions of Lemmas 15 and 16 can be stated and proven as well.
With this at hand, the finally preprocessing protocol is the following.

Protocol 20: ΠPrep-Alt

Everything is the same as ΠPrep, Protocol 16 (“sampling random masks” still
uses πRand-Sharings), except for the following:

Input groups. For an input group α associated to party Pi, call Jλαi · 1K←
πInput-Sharings-Alt(Pi) for i ∈ [mℓ].

Output groups. For an output group α:
1. The parties call πRand-Sharings-Alt(), which results in random values

(JωαK , ⟨ωα1⟩, . . . , ⟨ωαmℓ⟩). Store the VSS sharings.
2. Compute JλαK∗ as in FPrep. Compute JραK∗ ← JλαK∗ − JωαK, and call

ρα ← reconstruct(JραK∗). If this does not abort, all parties also store
ρα.

63

This theorem is proven similarly to 3

Theorem 9. ΠPrep-Alt UC-realizes FPrep-Alt in the (FPacked-DSS(ℓ,m),FPacked-DSS(1, 1))-
hybrid model.

C.2 Modified Online Phase

We are finally ready to describe our alternative online phase. As discussed earlier,
it works almost the same as ΠMPC, Protocol 17, except that (1) the parties do
not have VSS’ed input masks, and (2) the parties have VSS’ed output offsets
that ensure correct reconstruction without aborts, once that phase is reached.
Otherwise, the protocol is restarted with a smaller threshold.12 The protocol is
described below.

Protocol 21: ΠMPC-Alt

This protocol makes use of FPrep-Alt and FMPC-t<n/3.

Preprocessing. The parties call FPrep-Alt to obtain:
– ⟨ωα1⟩, . . . , ⟨ωαmℓ⟩ and public ρα = λα −ωα for every output group α
– (JλαK , JλβK , Jλα ⋆ λβ − λγK∗) for every multiplication group with in-

puts α,β and outputs γ.
– For every input group α assigned to a party Pi, this party knows λα.

Input, Addition and Multiplication Gates. Same as ΠMPC.
Output Gates. Given an output wire α, call ωα ← reconstruct(⟨ωα⟩), and

return the output vα = ωα + ρα + µα.

Abort and restart. If any of the calls above results in abort, a set T of
corrupt parties with |T | > t− 2(ℓ− 1) is identified. The new set of parties is
{P1, . . . , Pn} \ T , where n′ = n− |T | and t′ = n− |T |. They use FMPC-t<n/3 to
securely compute C, where the inputs of parties in T are set to 0. Output the
result of this call.

The following theorem is proven similarly to Theorem 4.

Theorem 10. ΠMPC-Alt UC-realizes FMPC in the FPrep-Alt-hybrid model.

12 We use FMPC-t<n/3 for the restart to finish within one repetiton, but actually with this
variant we can keep using our own protocol even for the restarts, which is guaranteed
to finish within a constant number of repetitions. This would not affect our desired
round complexity (asymptotically).

64

	Honest Majority GOD MPC with O(depth(C)) Rounds and Low Online Communication

