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Abstract. In this work, we revisit the Hosoyamada-Iwata (HI) proof for
the quantum CPA security of the 4-round Luby-Rackoff construction and
identify a gap that appears to undermine the security proof. We empha-
size that this is not an attack, and the construction may still achieve the
claimed security level. However, this gap raises concerns about the feasi-
bility of establishing a formal security proof for the 4-round Luby-Rackoff
construction. In fact, the issue persists even if the number of rounds is
increased arbitrarily. On a positive note, we restore the security of the
4-round Luby-Rackoff construction in the non-adaptive setting, achiev-
ing security up to 2n/6 superposition queries. Furthermore, we establish
the quantum CPA security of the 4-round MistyR and 5-round MistyL
constructions, up to 2n/5 and 2n/7 superposition queries, respectively,
where n denotes the size of the underlying permutation.

Keywords: quantum security, compressed oracle, recording standard
oracle with errors, Luby-Rackoff, Misty

1 Introduction

Quantum Security. In symmetric cryptography, it is generally admitted that a
doubling of the key length would be sufficient to deter the threat of quantum
computers. Indeed, this corresponds to the lowered cost of exhaustive search
from Grover’s algorithm. However, in recent years a plethora of results (see for
instance [7,8,9,10,11,19,25,27,28,29,30]) have shown that this view is too sim-
plistic, and that more efficient distinguishers can be created. This highlights
the need to study whether existing security proofs for generic constructions and
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modes of operation can be extended to the quantum setting, which has received
a considerable focus in a series of recent works [4,6,15,22,23,24,26,42,43,5].

Pseudorandom Functions and Permutations. Classically, most of the well-known
symmetric cryptographic algorithms are constructed as a mode of operation
over fixed length primitives that are instantiated with either a pseudorandom1

permutation (PRP) or function (PRF).
Some well-known examples of generic PRP constructions include the Luby-

Rackoff cipher [32], Lai-Massey [31] and the generic Misty ciphers [34,36]. Of
these the former two constructions can be instantiated by any primitive (func-
tion or permutation), while the latter solely works with permutations. In general,
PRP-based constructions are preferred as they can be directly instantiated with
well-analyzed block ciphers. On the other hand, PRF based constructions are
usually easier to analyze in security proofs. Indeed, many security proofs involve
the boilerplate switching lemma [3,41]: replace PRP calls with PRF calls with
a factor of O(q2/2n) per call, where q and n denote the number of queries and
output size, respectively. Thus, all of the above mentioned constructions are clas-
sically secure birthday-bound PRFs. On the other hand more recent efforts have
focused on building beyond-the-birthday-bound secure PRP-to-PRF construc-
tions, starting with the well-known sum of permutations [2,20] and the trun-
cation of permutation [20] to the more recent encrypted Davis-Meyer [14] and
its dual [35]. The analysis of these PRP and PRF constructions lead to a great
advancement in the provable security research, mushrooming several new proof
techniques such as the H-coefficient technique [39,21], mirror theory [38,40,13]
the χ2-technique [16], and the recent use of Fourier analysis [17] to prove the
exact security of sum of permutations.

The Compressed Oracle. In the quantum setting, however, the research on the
security of these well-known constructions is still in the rudimentary stage. While
there are some generic attacks on Luby-Rackoff [29,22] and Misty [18], on the
security proofs front the results are still far from tight even in the birthday-
bound2 regime. Having said that, the situation has changed in recent years,
largely due to Zhandry’s compressed oracle technique [43] — an elegant way to
lazy sample a random function. Indeed most recent security proofs [22,23,24,5]
in symmetric cryptography relied on the compressed oracle [43] and its variants
respectively introduced by Hosoyamada and Iwata [22] and Chung et al. [12].

When proving the indistinguishability of a construction C based on PRFs
from a true random function, the proof typically follows these steps:

– Model the random function as a construction with a structure similar to C,
but with some of the inputs augmented with adversarial queries to ensure
the uniqueness of inputs, thereby guaranteeing the uniformity of outputs.

1 the fixed-length permutation /function is keyed, efficiently computable, and indis-
tinguishable from a uniform random permutation/function.

2 Note that, in the quantum setting birthday-bound refers to the cube-root of the
output size.
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– Identify "bad events" that occur when the output of intermediate function
calls leads to input collisions in subsequent calls.

– Upper-bound the probability of such bad events occurring.
– Establish a one-to-one mapping between intermediate values in both con-

structions, assuming no bad event has occurred.

It is important to note that ensuring these bad events are described only using
inputs and outputs recorded by the compressed oracle is critical to the proof. In
particular, certain information may be lost in this process, such as the specific
adversarial query or the relationship between input-output pairs belonging to
the same query.

1.1 Our Contribution

Our contribution is three-fold. Firstly, we identify some critical issues in some
of the previous works in this direction. They relate to the aforementioned one-
to-one mapping: most notably, in the 4-round Luby-Rackoff security proof [22],
the authors cannot prevent bad collisions without relying on information that
is not present in the compressed oracle entries. We also spotted similar flaws
in [24,5,33].

Secondly, we propose a new security proof for the 4-round Luby-Rackoff
construction in the non-adaptive chosen plaintext attack setting: the adversary
has to prepare all of its queries in advance, and receive the corresponding outputs
at once. By using an artificial dummy database call on all the adversary’s inputs,
this allows us to mitigate the issue from [22], since now the database contains
all the necessary information to handle the bad events.

Finally, we prove the security of Misty schemes in the quantum setting using
the two-domain framework from [5]. In more details, we prove that the 4-round
MistyR (resp. 5-round MistyL) construction is secure up to 2n/5 (resp. 2n/7) cho-
sen plaintext queries, where n denotes the size of the underlying permutation. We
note that, in both cases, this corresponds to the minimum number of rounds to
achieve an exponential bound in n, since period-finding attacks based on Simon’s
algorithm exist for the 3-round MistyR (resp. 4-round MistyL) constructions [18].

2 Quantum Computing

Throughout, we assume familiarity with the fundamentals of finite dimensional
linear algebra and Quantum computing. A comprehensive exposition on these
subjects is given in [37,1]. In this section, we introduce some notation we use later
in the paper; an introductory overview of the relevant notions is also available
in Appendix A.

2.1 General Notation

The set of all binary strings, including the empty string ε, is denoted {0, 1}∗.
For some x, y ∈ {0, 1}∗, x∥y denotes the concatenation of x and y. For some
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positive integer m, [m] denotes the set {1, . . . ,m}, and {0, 1}m denotes the set
of all m-bit binary strings.

We use the standard Dirac notations. ⟨·|·⟩ denotes the inner product over
a k-dimensional Hilbert space H := Ck, and ∥·∥ denotes the norm. Given an
orthonormal basis B of H, we sometimes write C[B] to emphasize the basis repre-
sentation of H. U(H) will denote the set of all unitaries on H. Tr(L) will denote
the trace of a linear operator L. TrH1(L) will denote the partial trace on H1 of
a linear operator L over the tensor product H1 ⊗H2. D(H) will denote the set
of all density operators of H. ∥L∥1 will denote the trace norm of L.

2.2 Quantum (Non-Adaptive) Oracle-Algorithms

In what follows, we define Hin := C2m , Hout := C2n . Let Hwork and Hstate be
two finite dimensional complex Hilbert spaces.

Any function f : {0, 1}m → {0, 1}n can be realized by the unitary mapping
|x, y⟩ to |x, y⊕ f(x)⟩ on Hin⊗Hout. Indeed, the oracle access to f , denoted Of ,
is represented by this standard unitary

Of |x, y⟩ 7→ |x, y ⊕ f(x)⟩,

on the space Hin ⊗Hout. To represent a stateful oracle, we simply bestow addi-
tional qubits to represent the oracle state. Formally, we define

Of |x, y, s⟩ 7→ |x, y + f(x), s′⟩,

on the product space HOf
:= Hin ⊗ Hout ⊗ Hstate, where {|x, y, s⟩} denotes

the computational basis of HOf
. The oracle state space Hstate into Hdb ⊗Haux,

where Hdb denotes the internal state which is (possibly transient) and persistent
across queries, and Haux denotes the state space of any ancillary qubits required
to compute the function itself. As ancillary qubits are always reset after each
query, it is convenient to focus solely on the former (the useful state) while
disregarding the latter (the ancillary qubits). Indeed, we often drop Haux from
the description and simply consider Hdb as the oracle state space.

For any quantum oracle-algorithm A that makes q black-box queries to a
(possibly stateful) oracle Of , we define the interactive game AOf to be the
sequence of 2q+1 unitaries: UqOf . . .U1OfU0 over the product space HAOf =
Hin⊗Hout⊗Hwork⊗Hstate, where it is implicitly understood that Ui’s operate
on HA = Hin ⊗Hout ⊗Hwork and Of operates on HOf

.
We write AOf [ρA ⊗ ρOf

] = b to denote the event that the oracle-aided al-
gorithm A outputs b after making q queries to oracle Of , where A and Of are
initialized in ρA ∈ D(HA) and ρOf

∈ D(Hstate), or jointly as ρ0A,Of
:= ρA⊗ρOf

.

Capturing Non-Adaptivity. For any oracle-algorithmA that makes q non-adaptive
queries to Of , we define the non-adaptive interactive game AO⊗q

f to be the uni-
tary U1O

⊗q
f U0 on the product space H⊗q

in ⊗H⊗q
out ⊗Hwork ⊗Hstate where it is

implicitly understood that O⊗q
f operates on H⊗q

in ⊗H⊗q
out ×Hstate, while U0 and

U1 operates on H⊗q
in ⊗H⊗q

out ⊗Hwork.
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Indeed the above formalism is analogous to the classical setting, where the
non-adaptive algorithm makes all q queries, x = (x1, . . . ,xq) ∈ ({0, 1}m)q, to-
gether and receives all q responses, y = (y1, . . . ,yq) ∈ ({0, 1}n)q, together from
the oracle. Analogously, in the quantum setting, we have

O⊗q
f |x,y, s⟩ = |x,y + f(x), s′⟩,

where f(x) = (f(x1), . . . , f(xq)) is simply the pointwise application of f on x.

2.3 Quantum Distinguishing Games

For any two quantum oracles I and R, we define the distinguishing advantage
of any quantum distinguisher3 A by

Advdist
I;R(A) :=

∣∣Pr (AI[ρ0A,I] = 1
)
− Pr

(
AR[ρ0A,R] = 1

)∣∣ ,
where ρ0A,I and ρ0A,R denote the initial state of AI and AR, respectively.

The Computationally Unbounded Case. For any computationally-unbounded A,
it is well known that

Advdist
I;R(A) ≤ 1

2
∥TrHIdb

(ρqA,I)− TrHRdb
(ρqA,R)∥1,

where ρqA,O := AOρA,OA
O† is the state after q queries to the oracle at-hand

O ∈ {I,R}. In addition, without loss of generality, we can assume A to be
deterministic, and thus, define the initial state of A, ρA = |ψA⟩⟨ψA| for some
fixed unit vector |ψA⟩ ∈ HA.

The Quantum IND-CPA Game. Let F = {FK : {0, 1}m → {0, 1}n}K∈K be
a family of functions. The IND-qCPA advantage of some distinguisher A against
F is defined as

Advqcpa
F (A) := Advdist

OFK
;Of

(A), (1)

where K is uniformly distributed over K, and f : {0, 1}m → {0, 1}n is a uniform
random function.

For a non-adaptive distinguisher A, the non-adaptive IND-qCPA advantage
is defined analogously as:

Advqncpa
F (A) := Advdist

O⊗q
FK

;O⊗q
f

(A), (2)

3 Zhandry’s Compressed Oracle

In [43], Zhandry proposed an elegant solution to implement a restricted form of
lazy sampling for quantum random oracle, or simply a uniform random func-
tion f : {0, 1}m → {0, 1}n. We will largely follow the Chung-Fehr-Hunag-
Liao (CFHL) intepretation [12] of the compressed oracle, and its refinement
by Bhaumik-Cogliati-Ethan-Jha (BCEJ) [5].
3 An oracle-algorithm with binary output.
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3.1 The Chung-Fehr-Huang-Liao Interpretation

Let Y denote {0, 1}n and define CY to be the computational basis of the n-
qubit space C2n . Let Ŷ denote the dual group of Y, consisting of all the group
homomorphisms ŷ(z) := (−1)y·z.It is well-known that Ŷ is isomorphic to Y. We
assume Ŷ to be an additive group with the group operation ŷ + ẑ := ŷ ⊕ z.
Naturally, 0̂ denotes the identity. For each ŷ ∈ Ŷ define

|ŷ⟩ := 1

2n/2

∑
z∈Y

ŷ(z)|z⟩ = 1

2n/2

∑
z∈Y

(−1)y·z|z⟩,

The set FY := {|ŷ⟩} is referred as the Fourier basis of C2n , and the mapping
|y⟩ → |ŷ⟩ is the well-known Hadamard transformation that maps the computa-
tional basis CY to Fourier basis FY . The reverse basis transformation from FY to
CY is given by

|y⟩ := 1

2n/2

∑
ẑ∈Ŷ

ẑ(y)|ẑ⟩ = 1

2n/2

∑
ẑ∈Ŷ

(−1)z·y|ẑ⟩.

Next, let Z denote the set Y ∪ {⊥} for a special symbol ⊥; similarly Ẑ will
denote Ŷ ∪ {⊥}. We also choose a corresponding norm-1 vector |⊥⟩ orthogonal
to C2n , so that the span of both CZ := {|y⟩ | y ∈ Z} and FZ := {|ŷ⟩ | ŷ ∈
Ẑ} is C2n+1; we’ll call CZ and FZ the computational basis and Fourier basis
respectively of the extended space C2n+1.

Functions and Databases. Let X denote {0, 1}m for some arbitrary m, and let
F denote the set of m-bit-to-n-bit classical functions f : X −→ Y. The quantum
truth table of f is defined as

|f⟩ :=
⊗
x∈X

|x⟩|f(x)⟩.

Let F̂ denote the set of Fourier functions f̂ : X −→ Ŷ. The quantum truth table
of f̂ is defined similarly as

|f̂⟩ :=
⊗
x∈X

|x⟩|f̂(x)⟩.

For a subset S ⊆ X , a function f : S −→ Y will be called a partial function
from X to Y. A partial function f can be extended to a function df : X −→ Z
by defining df (y) = ⊥ for all y ∈ X \ S. We call df the database representing
f , with ⊥ denoting the cells where f is not defined. (When f is a full function,
df coincides with f .) The database will also be represented as a quantum truth
table

|df ⟩ :=
⊗
x∈X

|x⟩|df (x)⟩.
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Similarly we define partial Fourier functions f̂ : S −→ Ŷ, databases df̂ : X −→ Ẑ
representing partial Fourier functions, and their quantum truth tables |df̂ ⟩.
When f and f̂ are clear from context, we’ll find it convenient to drop the sub-
scripts and write df and df̂ simply as d and d̂ respectively. We’ll write D (resp.
D̂) to denote the set of all databases d : X −→ Z (resp. all Fourier databases
d̂ : X −→ Ẑ). When convenient we will treat a database d as a relation on X ×Y
and write (x, y) ∈ d to denote d(x) = y; |d| will then denote the size of this
relation, i.e., the size of {x ∈ X | d(x) ∈ Y}.

For any function f ∈ F , let f̂ ∈ F̂ be defined as the map x 7→ f̂(x). Then
we have

|f̂⟩ = 1

2n2m/2

∑
g∈F

(−1)f ·g|g⟩, (3)

where f · g is defined as
∑

x∈X f(x) · g(x). Thus, {|f⟩ | f ∈ F} and {|f̂⟩ | f̂ ∈ F̂}
span the same space (isomorphic to C2n2m

). Similarly we can show that {|d⟩ |
d ∈ D} and {|d̂⟩ | d̂ ∈ D̂} span the same space isomorphic to C(2n+1)2

m

; we call
this space the database space D.

Letting 0 denote the constant 0n function and observing that 0 · g = 0 for
any g ∈ F , we have

|0̂⟩ = 1

2n2m/2

∑
g∈F

|g⟩,

the uniform superposition over all functions in F .

The Standard Oracle. The standard oracle is a stateful oracle with Hdb = C[F ].
Given a truth-table representation |f⟩ of a function f ∈ F , it acts on the adver-
sary registers |x⟩|y⟩ and the truth-table registers |f⟩ as

stO|x⟩|y⟩ ⊗ |f⟩ = |x⟩|y ⊕ f(x)⟩ ⊗ |f⟩. (4)

It is obvious to see that stO is perfectly indistinguishable with a uniform random
function, when the truth table register is initialized in |0̂⟩.

If we first put the adversary’s response register and the truth-table register
in the Fourier basis, we have

stO|x⟩|ŷ⟩ ⊗ |f̂⟩ = |x⟩|ŷ⟩ ⊗ |f̂ + δ̂xy⟩, (5)

where δxy is the function in F defined as

δxy(z) =

{
y when z = x,

0 otherwise,

and the operations ⊕ in F and + in F̂ are defined point-wise. We define the
operator Oxŷ on the truth-table register as

Oxŷ|f̂⟩ := |f̂ + δ̂xy⟩.

Then we can write stO|x⟩|ŷ⟩ ⊗ |f̂⟩ = |x⟩|ŷ⟩ ⊗Oxŷ|f̂⟩.



8 Ritam Bhaumik, Benôıt Cogliati, Jordan Ethan, and Ashwin Jha

The Compressed Oracle. For any x ∈ X , the cell compression unitary compx

on C2n+1 is defined on the basis FZ as

compx := |⊥⟩⟨0̂|+ |0̂⟩⟨⊥|+
∑

ŷ∈Ŷ\{0̂}

|ŷ⟩⟨ŷ|.

The database compression unitary comp on D is defined as

comp :=
⊗
x∈X

compx.

The compressed oracle cO is a stateful oracle with Hdb = D. It acts on the
adversary’s registers and the oracle’s database registers as

cO := (IC[X ]⊗C[Ŷ] ⊗ comp) ◦ stO ◦ (IC[X ]⊗C[Ŷ] ⊗ comp).

For a database d̂ we have

cO|x⟩|ŷ⟩ ⊗ |d̂⟩ = |x⟩|ŷ⟩ ⊗ cOxŷ|d̂⟩,

where cOxŷ := compx ◦Oxŷ ◦ compx.

3.2 The Two-Domain Distance Technique

Bhaumik et al. distilled [5] the Chung et al. interpretation [12] for indistinguisha-
bility setting and proposed a generic way to represent both the ideal and real
world oracles using a single compressed permutation oracle. In addition, they
combined it with a result from Hosoyamada and Iwata to get a quantum analog
of “identical-up to-bad”, the so-called two-domain distance lemma.

Domain-Restricted Databases. For a subset X̃ of X we will write D|X̃ to denote
the set of databases restricted to X̃ , defined equivalently as {d|X̃ | d ∈ D} or
the set of databases d : X̃ −→ Z. Since D is a basis of the database space
D, a domain-restricted database space will span a subspace of D isomorphic to
C(2n+1)|X̃ |

. We continue to represent elements of X̃ as m-bit numbers.

Transition Capacity. For a domain-restricted database-set D|X̃ , a subset P ⊆
D|X̃ will be called a database property on D|X̃ . We also define the projection

ΠP :=
∑
d∈P

|d⟩⟨d|.

For a database d ∈ D|X̃ and an x ∈ X̃ define

d|x := {d′ ∈ D|X̃ | d′(x′) = d(x′)∀x′ ∈ X̃ \ {x}}.

In other words, d|x is the set of databases in D|X̃ which are identical to d except
(possibly) at x. (Note that since d (resp. x) is also in D (resp. X ), d|x is only
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well-defined when we specify D|X̃ as well; however, since D|X̃ will usually be
clear from the context, for notational convenience we leave the dependence of
d|x on D|X̃ implicit.)

For two properties P and P ′, the transition capacity from P to P ′ is defined
as

JP ↪→ P ′K := max
x∈X̃ ,ŷ∈Ŷ,d∈D|X̃

∥ΠP′∩d|x ◦ cOxŷ ◦ΠP∩d|x∥.

The transition capacity JP ↪→ P ′K is roughly a measure of an upper bound for
how likely it can be that a database in P will transition into a database in P ′

after a single query to cO.
For a property P ⊆ D|X̃ , let Pc denote its negation, i.e., D|X̃ \ P. Then we

have the following lemma from [5, Transition Capacity Bound].

Lemma 1. Let P,P ′ be properties on D|X̃ such that for every x ∈ X̃ and d ∈
D|X̃ , we can find a set SPc↪→P′

x,d ⊆ Y satisfying

P ′ ∩ d|x ⊆ {d′ ∈ d|x | d′(x) ∈ SPc↪→P′

x,d } ⊆ P ∩ d|x. (6)

In other words, for any database d′ ∈ d|x,

d′ ∈ P ′ =⇒ d′(x) ∈ SPc↪→P′

x,d =⇒ d′ ∈ P.

Then we have

JPc ↪→ P ′K ≤ max
x∈X̃ ,d∈D|X̃

√
10|SPc↪→P′

x,d |
2n

.

Size-restricted Properties. For a domain-restricted database-set D|X̃ , a property
P ⊆ D|X̃ , and some i ≤ |X̃ |, we define

P[≤i] := {d ∈ P | |d| ≤ i}.

Then the transition capacity JPc
[≤i−1] ↪→ P[≤i]K is a measure of the maximum

probability of a database outside P with at most i − 1 entries changing to a
database in P after a single application cOxŷ. (Note that Pc

[≤i−1] denotes the
size-restriction of Pc, and not the complement of P[≤i−1].)

Let ⊥ := {d⊥} denote the empty property (where d⊥ is the empty database,
i.e., the constant-⊥ function). Then for P such that d⊥ /∈ P, ⊥ = Pc

[≤0]. We
define ⊥ q

⇝ P
 :=

q∑
i=1

JPc
[≤i−1] ↪→ P[≤i]K,

the q-query transition bound from ⊥ to P. In other words,
⊥ q
⇝ P

 is a measure
of the probability that the empty database changes into a database in P at any
point during q successive queries.
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Prefixed Oracle. Fix some t < m and write X = T × I, where T = {0, 1}t and
I = {0, 1}m−t. For every non-zero t ≤ 2t, any family of functions p = (pk :
I → X )k∈[t] is said to be a (t,m)-domain-separator if for each k ∈ [t] and for all
x ∈ I, pk(x) ∈ {δt(k) ∥ x : x ∈ I}, for some fixed injective function δt : [t] → T .
Let pk(I) := {pk(x) : x ∈ I} and p(I) := ∪k∈[t]pk(I).

To any (t,m)-domain-separator p = (pk : I → X )k∈[t], we associate the
prefixed-compressed oracle cOp which is defined as a family of oracles {cOpk}k∈[t],
where cOpk denotes the restriction of cO to inputs from pk(I) ⊂ X , i.e., for
any k ∈ [t], x ∈ I, ŷ ∈ Ŷ and d̂ ∈ D̂, we have

cOpk |x⟩|ŷ⟩ ⊗ |d̂⟩ = |x⟩|ŷ⟩ ⊗ cOpk

xŷ |d̂⟩,

where cOpk

xŷ := comppk(x)
◦Opk(x)ŷ ◦ comppk(x)

. Consequently, cOp can also
be viewed as the restriction of cO to inputs from p(I) ⊆ X .

Two-Domain Systems. Let I and R be two stateful oracles with Hin = C[I],
Hout = C[Z], Hdb = D, defined by the sequences of unitaries:

I := FtcO
It . . . cOI1F0, R := FtcO

Rt . . . cOR1F0,

where with a slight abuse of notations we reuse I and R to also denote the corre-
sponding (t,m)-domain-separators, and the unitaries F0, . . . ,Ft only operate on
the input, output and ancillary qubits, if any, needed to compute the function
itself. Whenever convenient, we will continue ignoring the ancillary qubits.

Consider a q-query interactive game where a computationally unbounded and
deterministic distinguisher A aims to distinguish R from I. We emphasize that
in such an interactive game with I or R, the compressed oracle cO is invoked
a total of q′ := tq times. Fix two domains X̃I = I(I), X̃R = R(I), and define
DI := D|X̃I

and DR := D|X̃R
. Consider properties BI ⊆ DI\⊥ and BR ⊆ DR\⊥,

and define GI := DI \ BI and GR := DR \ BR. The central tool of our security
proofs will be the following adaptation of [5, Lemma 4]. A proof of this lemma
is available in Appendix B.

Lemma 2 (Two-Domain Distance Lemma). Suppose we can find a map
h : GI −→ GR such that the following hold:

– h is a bijection from GI to GR;
– For every i ∈ [q′] ∪ {0}, h|GI[≤i]

is a bijection from GI[≤i] to GR[≤i];
– For every i ∈ [q′], x ∈ I, ŷ ∈ Ŷ, d ∈ GI[≤i−1], and d′ ∈ GI[≤i],

⟨d′ | cOIk
xŷ | d⟩ = ⟨h(d′) | cORk

xŷ |h(d)⟩.

where k = t if i = 0 mod t, and k = i mod t otherwise.

Then, we have

∥TrD(ρqA,I)− TrD(ρ
q
A,R)∥1 ≤ 3

⊥ q′

⇝ BI


I + 3

⊥ q′

⇝ BR


R,
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where ρqA,p := Ap|ψA, d⊥⟩⟨ψA, d⊥|Ap† is the state after q queries to the oracle
at-hand p ∈ {I,R} for some norm-1 vector |ψA⟩ and the empty database |d⊥⟩.
The transition bounds

⊥ q′

⇝ ·


I and
⊥ q′

⇝ ·


R are computed for queries to cOI

and cOR, respectively.

When the oracle in use is clear from the context, we will drop the subscripts for

the transition bounds and simply write both as
⊥ q′

⇝ ·
. We’ll also keep the

domain-separator implicit when there’s no scope for ambiguity.

3.3 The Hosoyamada-Iwata Interpretation

Hosoyamada and Iwata proposed a slightly different variant of stO with an aim
to characterize and analyze databases in an explicit computational basis with
an exact definition of ⊥ with the help of an ancillary flag bit that signifies if the
database entry is defined or not.

Let S ⊆ X and Z = {0, 1} × Y. For any partial function f : S → Y, we
associate the database function df : X → Z defined as:

df (x) :=

{
(1, y) when f(x) = y ∈ Y,
(0, 0n) if f(x) is undefined,

On comparing this with Zhandry’s original interpretation, we see that the ⊥ in
original interpretation corresponds to (0, 0n) in HI interpretation. As before, we
drop the subscripts when f is either clear from the context or inconsequential.

We define the database space as the 2(n+1)2m-dimensional complex Hilbert
space Hdb = C[Z] which is isomorphic to C2(n+1)2m

. Note that not all
d ∈ Z can be associated with some partial function f . A database d =
((b0, β0), . . . , (b2m−1, β2m−1)) is said to be valid if it satisfies that for each
i ∈ {0, 1, . . . , 2m − 1} such that bi = 0 we have βi = 0n. Indeed, any valid
database ((b0, β0), . . . , (b2m−1, β2m−1)) is identified with the set {(i, βi) | bi = 1},
which is nothing but the truth table of a partially-defined function from {0, 1}m
to {0, 1}n. Accordingly, let Πvalid be the orthogonal projection onto the vector
space spanned by valid databases.

Any database |d⟩ ∈ C[Z] can be equivalently viewed as an array of 2m cells
|d[0]⟩ . . . |d[2m−1]⟩. Writing |d[i]⟩ as |bi, βi⟩ for each i ∈ {0, 1, . . . , 2m−1} (where
bi and βi are respectively the control qubit and the response register of the i-th
cell |d[i]⟩ of |d⟩), the standard oracle stO is now defined as:

stO|i, y⟩|d⟩ := |i, y + βi⟩|d⟩

for each |i, y, d⟩ ∈ Hin ×Hout ×Hdb. For |d⟩ such that |d[i]⟩ = |0, 0n⟩, we define
|d ∪ (i, β)⟩ to be the database with |1, β⟩ as its i-th cell and identical to |d⟩ in
all other cells.
Define the following unitary operators on database cells:

IH0 := I1 ⊗H⊗n Tg0 := I1 ⊗ |0n⟩⟨0n|+X(I2n − |0n⟩⟨0n|)
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cH0 := |0⟩⟨0| ⊗ I2n + |1⟩⟨1| ⊗H⊗n

and databases:

IH := IH⊗2m

0 Tg := Tg⊗2m

0 cH := cH⊗2m

0

where X and H are the well-known flip and Hadamard operators on C, i.e. in
the computational basis:

X := |0⟩⟨1|+ |1⟩⟨0| H :=
1

2
(|0⟩⟨0|+ |0⟩⟨1|+ |1⟩⟨0| − |1⟩⟨1|)

Note that all these operators are Hermitian. Using these, we define the encode
and decode operator dec on databases as follows:

enc := cH ◦Tg ◦ IH;

dec := enc† = IH ◦Tg ◦ cH;

The recording standard oracle RStOE, due to Hosoyamada and Iwata [22], is
defined as:

RStOE := (I2m+n ⊗ enc)stO(I2m+n ⊗ dec)

Thus, RStOE first decodes the database, then applies stO on the adversary’s
registers and the decoded database, and then encodes the database again. Let
|0⟩ denote the valid empty database.

Hosoyamada and Iwata proved [22,24] the following useful propositions.

Proposition 1 (Proposition 1 in [24]). Suppose that the oracle state is ini-
tialized in |0⟩. For any i ≥ 1, if the oracle state register is measured after i
queries, then the resulting database d is valid, and contains at most i entries.

Proposition 2 (Proposition 2 in [24]). For any valid database d satisfying
d[i] = |0, 0n⟩, we have

RStOE|i, y⟩|d ∪ (i, β)⟩ = |i, y ⊕ β⟩|d ∪ (i, β)⟩+ |ϵ1⟩; (7)

RStOE|i, y⟩|d⟩ =
∑

β∈{0,1}n

1

2n/2
|i, y ⊕ β⟩|d ∪ (i, β)⟩+ |ϵ2⟩; (8)

for some |ϵ1⟩ and |ϵ2⟩ such that ∥|ϵ1⟩∥, ∥|ϵ2⟩∥ ∈ O(1/
√
2n).

Although we do not require them in this paper, we remark that [22] gives an
exact description of |ϵ1⟩ and |ϵ2⟩. Intuitively, |ϵ1⟩ and |ϵ2⟩ can be viewed as the
errors introduced in the lazy sampling of a quantum random function due to
interference.

Finally, the main technical result used to study the indistinguishability game
and bound the advantage is given below.
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Proposition 3 (Proposition 3 in [24]). For each j ∈ {0, 1, . . . , q}, let |Rj⟩
and |Ij⟩ denote the state vector corresponding to the real and ideal worlds after
the j-th query, respectively. Suppose, there exist vectors |Rg

j⟩, |Rb
j⟩, |I

g
j⟩, |Ibj⟩ and

non-negative reals ϵ(j)I and ϵ(j)R such that

1. |Rj⟩ = |Rg
j⟩+ |Rb

j⟩, |Ij⟩ = |Igj⟩+ |Ibj⟩;
2. |Rg

j⟩⟨R
g
j | = |Igj⟩⟨I

g
j |;

3. ∥|Ibj⟩∥ ≤ ∥|Ibj−1⟩∥+ ϵ
(j)
I , ∥|Rb

j⟩∥ ≤ ∥|Rb
j−1⟩∥+ ϵ

(j)
R .

Then, for any computationally unbounded and deterministic distinguisher A we
have∥TrHIdb

(ρqA,I) − TrHRdb
(ρqA,R)∥1 ≤

∑q
i=1 ϵ

(j)
I +

∑q
i=1 ϵ

(j)
R , where ρqA,R =

|ψA⟩⟨ψA| ⊗ |0R⟩⟨0R| and ρqA,I = |ψA⟩⟨ψA| ⊗ |0I⟩⟨0I| for some norm-1 vector
ψA ∈ HA and |0R⟩ and |0I⟩ denote the all zero database states in the real and
ideal worlds respectively.

4 Revisiting IND-qCPA Security of LR4

4.1 The Luby-Rackoff Construction

For some r ≥ 1 and f1, . . . , fr : {0, 1}n → {0, 1}n, we define g : [r]× {0, 1}2n →
{0, 1}2n by the mapping:

(i, x1, x2) 7−→ (x2 ⊕ fi(x1), x1),

and write gi(·, ·) := g(i, ·, ·). The r-round Luby-Rackoff construction, denoted
LRr is defined as:

(x1, x2) 7−→ gr ◦ · · · ◦ g1(x1, x2). (9)

For all i ∈ [r], we write (also see Fig. 1):

– xi−1 := (xi−1
1 , xi−1

2 ) to denote the input to gi, where x0 := x = (x1, x2),
denotes the input to LRr.

– (ui, vi) to denote the input-output tuple corresponding to fi.
– y = (y1, y2) := (xr1, x

r
2) to denote the output of LRr.

Hosoyamada and Iwata stated [22] the following IND-qCPA security bound for
LR4.

Theorem 1 (Theorem 3 in [22]). Suppose f1, f2, f3, f4 : {0, 1}n → {0, 1}n
are four mutually independent uniform random functions. Then, for any q ≥ 0,
and any quantum adversary A that makes at most q CPA queries, we have

Advqcpa
LR4

(A) = O

(√
q3

2n

)
.

The proof of this theorem uses the HI interpretation of Zhandry’s compressed
oracle, the so-called RStOE. The high level proof approach is as follows:
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1. Simulate the random functions f1, f2, f3, f4 using independent instances of
RStOE with the corresponding databases, d1, d2, dR, d4, respectively.

2. The authors then apply a series of hybrids, introducing intermediate con-
structions between the real construction LR4, and the ideal construction, a
uniform random function Γ : {0, 1}2n → {0, 1}2n. The first of these inter-
mediate constructions is a length-preserving function, that we refer as L̃R4,
defined by the mapping (see also Fig. 1):

(x1, x2) 7→ g4 ◦G3 ◦ g2 ◦ g1(x1, x2), (10)

where G3(x
′
1, x

′
2) := (F3(x

′
1, x

′
2), x

′
1) for all (x′1, x′2) ∈ {0, 1}2n. The function

F3 : {0, 1}2n → {0, 1}n is a uniform random function, to be implemented by
an appropriate RStOE, say dI.
In this note, we will solely focus on the distance between LR4 and L̃R4. In
fact, showing a negligible distance between the two systems is the technical
core of the proof. For the discussion in this paper, it is sufficient to consider
the chopped output x31. So, we drop the application of f4. We write dR =
(d1, d2, dR) and dI = (d1, d2, dI).

3. In a bid to use Proposition 3 to bound the advantage, the authors iteratively
apply Proposition 2 to study the action of each of f1, f2, f3 (only in the
real world), and F3 (only in the ideal world) in that order, followed by the
respective uncomputation steps for f2 and f1 in that order.

4. The key idea in the proof is the observation that LR4 and L̃R4 are indis-
tinguishable as long as the inputs to f3 (res. F3 in the ideal world) are
pairwise distinct across all queries, i.e., the database triple dR = (d1, d2, dR)
(res. dI = (d1, d2, dI) in the ideal world) is considered to be good if and
only if there does not exists distinct database entries (u1, v1), (u

′
1, v

′
1) ∈ d1,

(u2, v2), (u
′
2, v

′
2) ∈ d2, and (u3, v3) ∈ dR (res. (u3, x

2
2, v3) ∈ dI in the real

world) such that u1 ⊕ v2 = u′1 ⊕ v′2 = u′3. All other database triples are
considered bad. Let Πbad denote the projection onto the space spanned by
bad databases. A key property of good database triples is the fact that they
enable a one-to-one correspondence dR 7→ [dR]I between the real and ideal
databases, i.e., the two worlds can be easily shown to behave identically
when the databases remain good throughout the execution. Thus, by setting
|Rb

j⟩ = Πbad|Rj⟩, |R
g
j⟩ = |Rj⟩ − |Rb

j⟩, |Ibj⟩ = Πbad|Ij⟩, and |Igj⟩ = |Ij⟩ − |Ibj⟩,
we satisfy condition 1 and 2 in Proposition 3.
Now, all that remains is to study the action of each function call, and bound
the norm of the bad vectors after each application, assuming that the state
is spanned by good databases before the action. In particular, we concen-
trate on the application of f1 in the next section, uncovering a flaw in the
argumentation that breaks the proof.

4.2 Action of f1 and the Trivialization of Norm

For any unit vector |ψ⟩ and an arbitrary projection operator Π, we say that
∥Π|ψ⟩∥ is trivially bounded when we simply use the fact that ∥Π|ψ⟩∥ ≤ 1.
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Fig. 1. 4-round Luby-Rackoff (left) and 4-round Luby-Rackoff with a BIG function
(right).

We will study the action in the ideal world, although the same issue lies in
the real world application as well. For brevity we assume that the output of f1
is written on some ancillary register to be used in later actions. By a recursive
application of Proposition 2, there exists vectors |ϵ1⟩ and |ϵ2⟩ such that

Of1 |I
g
j−1⟩ :=

∑
x,y,z,dI

dI:good
d1(x1) ̸=⊥

α
(j−1)

x,y,z,dI |x, y, z⟩ ⊗ |d1(x1)⟩ ⊗ |dI⟩

+
∑

x,y,z,β,dI

dI:good
d1(x1)=⊥

α
(j−1)

x,y,z,dI

2n/2
|x, y, z⟩ ⊗ |β⟩ ⊗ |dI ∪ (x1, β)1⟩

+ |ϵ1⟩+ |ϵ2⟩,
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where |dI ∪ (x1, β)1⟩ = |d1 ∪ (x1, β)⟩ ⊗ |d2⟩ ⊗ |dI⟩ denotes the database that is
same as |dI⟩ except for d1(x1) which has been newly defined as β.

In this note we are only concerned with the second summand, denoted |Ig,1j ⟩,
which gives the state transition on a fresh input to f1 starting with a good
state. Roughly speaking, a new entry (x1, β) is recorded in d1 at the cost of an
amplitude factor of 2−n/2.

Formally, we are interested in the following norm, which is an equivalent
representation of [22, (51)]:

∥Πbad|Ig,1j ⟩∥2 = ∥
∑

x,y,z,β,dI

dI:good
d1(x1)=⊥

dI∪(x1,β)1:bad

α
(j−1)

x,y,z,dI

2n/2
|x, y, z⟩ ⊗ |β⟩ ⊗ |dI ∪ (x1, β)1⟩∥2

=
∑

x,y,z,β,dI

dI:good
d1(x1)=⊥

dI∪(x1,β)1:bad

∣∣∣∣∣∣α
(j−1)

x,y,z,dI

2n/2

∣∣∣∣∣∣
2

(11)

=
∑

x,y,z,dI

dI:good
d1(x1)=⊥

∣∣∣α(j−1)

x,y,z,dI

∣∣∣2 ∑
β

dI∪(x1,β)1:bad

1

2n
(12)

≤ O

(
j

2n

) ∑
x,y,z,dI

dI:good
d1(x1)=⊥

∣∣∣α(j−1)

x,y,z,dI

∣∣∣2 (13)

≤ O

(
j

2n

)
, (14)

where (13) to (14) follows from the fact that ∥|Ij−1⟩∥ ≤ 1. However, there is no
supporting argument in [22] for (12) to (13). In fact, we claim that∑

β

dI∪(x1,β)1:bad

1

2n
= O(1). (15)

To bound the summation, we have to estimate the size of the set {β : dI ∪
(x2, β)1 is bad}. Now, dI ∪ (x1, β)1 is bad if and only if there exists distinct
database entries (u′1, v

′
1) ∈ d1, (u2, v2), (u′2, v′2) ∈ d2, and (u′1 ⊕ v′2, u

′
2, v

′
3) ∈ dI

such that
x1 ⊕ v2 = u′1 ⊕ v′2.

Note that, the above predicate is independent of β! Thus, in the worst case, the
predicate is true for all possible values of β which immediately establishes the
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claim. Once we plug in the bound from (15) in (12), we get

∥Πbad|Ig,1j ⟩∥2 = O(1), (16)

which clearly trivializes the norm. This completely breaks the security proof, as
this revised bound leads to a trivial bound of O(1) on the PRF advantage.

4.3 Do Additional Rounds Help?

One might think that, while this approach does not work for three rounds, maybe
it will if we add more rounds, i.e., by considering r-round Luby-Rackoff for r ≥ 4.
Unfortunately, as we show in this section, the “trivialization of norm” seems to
be a fundamental issue. We will argue this further for input collision at fi for
any odd i ∈ {1, . . . , r}. A similar argument can also be given for any even i.

Consider the database snapshot after j ≥ 2 queries. Suppose, the adversary
makes a query (x1, x2), such that d1(x1) = ⊥, i.e., the database entry corre-
sponding to x1 is empty, and a new entry (x1, β) is to be created. Now, if we
have distinct (u′1, v

′
1) ∈ d1, (u2, v2), (u

′
2, v

′
2) ∈ d2, . . . , (ui−1, vi−1), (u

′
i−1, v

′
i−1) ∈

di−1, (u
′
i, v

′
i) ∈ di, such that

u′i = u′1 ⊕ v′2 ⊕ · · · ⊕ v′i−1, and
x1 ⊕ v2 ⊕ · · · ⊕ vi−1 = u′1 ⊕ v′2 ⊕ · · · ⊕ v′i−1,

then there is a possibility4 that this query leads to a collision at the input of
fi. And what’s more, this condition is independent5 of β, and thus, a similar
trivialization of norms as in (15) would occur in this case as well, rendering this
line of argumentation effectively useless.

5 Non-Adaptive IND-qCPA Security of LR4

The main reason that the existing Luby-Rackoff proof fails is a lack of global
knowledge of adversarial query pattern. At any instant, the compressed oracle
only has the information recorded in the database and the current input. Thus,
one has to argue as if every possible combination of global inputs are possible
which as we showed in Section 4 leads to a trivialization of norm in case of LR4.
At the same time, for several other constructions, like TNT and LRWQ, one can
still try to reconstruct a moderately global view to achieve some security bound.

4 We are obviously overcounting by considering all possible combinations of queries.
In fact, most of these combinations are never queried by the adversary. However,
as of now, there is no effective way to find out the query ordering from database
entries.

5 This independence only holds corresponding to the badness condition. In a typical
execution of LRr, these variables will obviously depend on β. However, due to the
badness condition and the ignorance of query ordering (see the above point), this
dependence is lost.



18 Ritam Bhaumik, Benôıt Cogliati, Jordan Ethan, and Ashwin Jha

The Dummy Call Idea: In the non-adaptive setting, the adversary makes
a single query of the form xq = (x1, . . . , xq). We can employ a single dummy
compressed oracle call to record xq, and then implement the oracle at-hand. Note
that the compressed oracle in both the dummy call and actual oracle evaluation
can be implemented by a single compressed oracle using the prefixed oracle
technique. More formally, suppose Of denote the stateful oracle corresponding
to the function f : {0, 1}ℓ → {0, 1}n, defined as follows:

Of := Ft−1cO
pt−1 . . . cOp1F0,

where p is a (t,m)-domain-separator for some t ≥ ⌈log2 t⌉ such that m ≥ ℓq+ t.
Keep in mind that the unitaries F0, . . . ,Ft−1 only operate on the input, output
and ancillary qubits, if any. Then, the q-query variant of Of with dummy call
is defined to be the sequence

(cOpt)† ◦O⊗q
f ◦ cOpt .

In other words, we enclose the original non-adaptive oracle between two com-
pressed oracle calls, which record and erase the global input (xq, ŷq). Note that
erasing the dummy call entries is crucial; otherwise, this perturbs the state.

In what follows, we assume the actions of the dummy call are implicit and
do not analyze them explicitly. Consequently, we will often focus only on the
relevant subspace of the database used in the other actions.

We prove the following IND-qNCPA bound for LR4.

Theorem 2. Suppose f1, f2, f3, f4 : {0, 1}n → {0, 1}n are three mutually in-
dependent uniform random functions. Then, for any q ≥ 0, and any quantum
adversary A that makes at most q qNCPA queries, we have

Advqncpa
LR4

(A ) = 3

√
q6

2n
+ 6

√
q5

2n
.

Proof. Our goal is to bound the distinguishing advantage for any non-adaptive
adversary trying to distinguish LR4 from a uniform random function. First, let
F3, F4 : {0, 1}3n → {0, 1}n be two uniform random functions. For i ∈ {3, 4},
define

Gi(x1, x2, x
′
1, x

′
2) := (x′2 ⊕ Fi(x1, x2, x

′
1), x

′
1),

for any (x1, x2, x
′
1, x

′
2) ∈ {0, 1}4n. We define the hybrid random function L̃R4 as

(see also Fig. 2):

L̃R4(x1, x2) := G4(x1, x2, G3(x1, x2, LR2(x1, x2))).

Then, it is easy to see that L̃R4 is indistinguishable to a uniform random function
Γ : {0, 1}2n → {0, 1}2n. So, it is sufficient to bound the distance between LR4

and L̃R4. Let X = {0, 1}4+2nq, Y = {0, 1}n and Γ : X → Y be a uniform random
function. For each x1, x2, x3 ∈ {0, 1}n, we define

f1(x1) := Γ(1001∥x1∥02nq−n)
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Fig. 2. LR4 (left) vs the hybrid random function, L̃R4 (right).

f2(x1) := Γ(1010∥x1∥02nq−n)

f3(x1) := Γ(1011∥x1∥02nq−n)

f4(x1) := Γ(1100∥x1∥02nq−n)

F3(x1, x2, x3) := Γ(1101∥x1∥x2∥x3∥02nq−3n)

F4(x1, x2, x3) := Γ(1110∥x1∥x2∥x3∥02nq−3n)

In addition, we implicitly define the dummy call, denoted dummy, to operate over
a disjoint6 subspace of the database, mapping 2qn-bit inputs to n-bit outputs.
The exact description of the dummy call is not necessary as the output is never
used.

The distinctness of the first four bits ensures that f1, f2, f3, f4, F3, F4 are all
independent, and they are independent of dummy by definition.

6 Disjoint from the other functions due to the first bit.
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The database in the real world is denoted dR (tracking dummy, f1, f2, f3,
f4) and dI in the ideal world (tracking dummy, f1, f2, F3, F4). Let DR (resp.
DI) be the set of all possible choices for dR (resp. dI).
For some x = (x1, x2, . . . , x2q) ∈ Y2q, let

[x]0 := 0000∥x [x1]1 := 1001∥x1∥02nq−n

[x1, x2, x3]5 := 1101∥x1∥x2∥x3∥02nq−3n [x1]2 := 1010∥x1∥02nq−n

[x1, x2, x3]6 := 1110∥x1∥x2∥x3∥02nq−3n [x1]3 := 1011∥x1∥02nq−n

[x1]4 := 1100∥x1∥02nq−n

In addition, for all k ∈ [q], we write [x2k−1, x2k]0∥k to denote the k-th diblock
coordinate (x2k−1, x2k) of x. We will mostly use this view, and thus, view the 2qn-
bit entry as q separate entries of size 2n-bit each, and thus, dR([x2k−1, x2k]0∥k) ̸=
⊥ (or dI([x2k−1, x2k]0∥k) ̸= ⊥) is well-defined as long as dR([x]0) ̸= ⊥ (res.
dI([x]0) ̸= ⊥ for some x = (z, (x2k−1, x2k), z

′) where z and z′ are 2(k − 1)n-bit
and 2(q − k)n-bit strings.
Define

X̃R := {[x]0, [x1]1, [x1]2, [x1]3, [x1]4 : x = (x1, . . . , x2q) ∈ Y2q}

X̃I := {[x]0, [x1]1, [x1]2, [x1, x2, x3]5, [x1, x2, x3]6 : x = (x1, . . . , x2q) ∈ Y2q}

Then it is easy to see that DR = D|X̃R
and DI = D|X̃I

.

5.1 Bad and Good Databases

Let BR be the set of databases dR satisfying one of the following condition: we
can find (x1, x2) ̸= (x′1, x

′
2) ∈ Y2 and v1, v2, v′1, v′2 ∈ Y such that

– for some k /∈ k′ ∈ [q], dR([x1, x2]0∥k) ̸= ⊥, dR([x′1, x
′
2]0∥k′) ̸= ⊥;

– ([x1]1, v1), ([x
′
1]1, v1) ∈ dR;

– ([x2 ⊕ v1]2, v2), ([x
′
2 ⊕ v′1]2, v

′
2) ∈ dR;

– x1 ⊕ v2 = x′1 ⊕ v′2;

or we can find (x1, x2) ̸= (x′1, x
′
2) ∈ Y2 and v1, v2, v3, v′1, v′2, v′3 ∈ Y such that

– for some k /∈ k′ ∈ [q], dR([x1, x2]0∥k) ̸= ⊥, dR([x′1, x
′
2]0∥k′) ̸= ⊥;

– ([x1]1, v1), ([x
′
1]1, v1) ∈ dR;

– ([x2 ⊕ v1]2, v2), ([x
′
2 ⊕ v′1]2, v

′
2) ∈ dR;

– ([x1 ⊕ v2]3, v3), ([x
′
1 ⊕ v′2]3, v3) ∈ dR;

– x2 ⊕ v1 ⊕ v3 = x′2 ⊕ v′1 ⊕ v′3;

Next, let BI be the set of databases dI satisfying one of the the following condi-
tion: we can find (x1, x2) ̸= (x′1, x

′
2) ∈ Y2 and v1, v2, v′1, v′2 ∈ Y

– for some k /∈ k′ ∈ [q], dI([x1, x2]0∥k) ̸= ⊥, dI([x′1, x′2]0∥k′) ̸= ⊥;
– ([x1]1, v1), ([x

′
1]1, v1) ∈ dI;

– ([x2 ⊕ v1]2, v2), ([x
′
2 ⊕ v′1]2, v

′
2) ∈ dI;
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– x1 ⊕ v2 = x′1 ⊕ v′2;

or we can find (x1, x2) ̸= (x′1, x
′
2) ∈ Y2 and v1, v2, v3, v′1, v′2, v′3 ∈ Y such that

– for some k /∈ k′ ∈ [q], dI([x1, x2]0∥k) ̸= ⊥, dI([x′1, x′2]0∥k′) ̸= ⊥;
– ([x1]1, v1), ([x

′
1]1, v1) ∈ dI;

– ([x2 ⊕ v1]2, v2), ([x
′
2 ⊕ v′1]2, v

′
2) ∈ dI;

– ([x1, x2, x1 ⊕ v2]5, v5), ([x
′
1, x

′
2, x

′
1 ⊕ v′2]5, v5) ∈ dI;

– x2 ⊕ v1 ⊕ v3 = x′2 ⊕ v′1 ⊕ v′3;

Let GR := DR \ BR and GI := DI \ BI. The above definitions mean that in both
GR and GI, each u3 and u4 is associated with a unique pair (x1, x2). Then it is
easy to see that GR and GI have an obvious bijection h : GR −→ GI as follows:
for each dR we define dI := h(dR) such that

– for each x ∈ Y2q, dI([x]0) = dR([x]0). Note that, by definition of the oracle,
there will be only one entry of this type in both the worlds;

– for each u1 ∈ Y, dI([u1]1) = dR([u1]1);

– for each u2 ∈ Y, dI([u2]2) = dR([u2]2);

– for each u3, u4 ∈ Y such that dR([u3]3) ̸= ⊥ and dR([u4]4) ̸= ⊥, find
the unique (x1, x2) ∈ Y2, and define dI([x1, x2, u3]5) = dR([u3]3) and
dI([x1, x2, u4]6) = dR([u4]4).

Then h satisfies the conditions of Lemma 2. To complete the proof, we show that⊥ 4q+2
⇝ BR

+
⊥ 4q+2

⇝ BI

≤ 2

√
q6

2n
+ 4

√
q5

2n
.

5.2 Sequence of Actions

We ignore the dummy call actions, as the transition from a good to bad database
is independent of the output of this operator.

Recall that the q non-adaptive queries can be represented by a single q-fold
query to be evaluated sequentially.

Action of f1. For i ∈ {4k + 2 : 0 ≤ k ≤ q − 1}, we bound the the transition
capacity JBc

R[≤i−1] ↪→ BR[≤i]K. For any dR with |dR| ≤ i− 1 and any x ∈ Y, we
have

SBc
R↪→BR

x,d = {dR([x′1]1)⊕ dR([u′3]3)⊕ dR([u3]3)⊕ x2 ⊕ x′2 | E} ,

where E denotes the predicate dR([u3]3) ̸= ⊥, dR([u′3]3) ̸= ⊥, dR([x, x2]0∥∗) ̸=
⊥, dR([x′1, x

′
2]0∥∗) ̸= ⊥.

There are at most q choices for (x′1, x
′
2), ⌈i− 1/4⌉ choices for each of u3 and

u′3, and at most q choices for x2, so |SBc
R↪→BR

x,d | ≤ q2⌈(i− 1)/3⌉2 ≤ q4, and from
there using Lemma 1 we have

JBc
R[≤i−1] ↪→ BR[≤i]K ≤

√
10q4

2n
, ∀ i ∈ {4k + 2 : 0 ≤ k ≤ q − 1}. (17)
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By the same arguments we can also show that

JBc
I[≤i−1] ↪→ BI[≤i]K ≤

√
10q4

2n
, ∀ i ∈ {4k + 2 : 0 ≤ k ≤ q − 1}. (18)

Action of f2. Next consider the transition capacity JBc
R[≤i−1] ↪→ BR[≤i]K for

i ∈ {4k + 3 : 0 ≤ k ≤ q − 1}. For any dR with |dR| ≤ i − 1 and any x ∈ Y, we
have

SBc
R↪→BR

x,d = {dR([u′2]2)⊕ x1 ⊕ x′1 | E} ,

where E denotes the predicate dR([u′2]2) ̸= ⊥, dR([x1, x2]0∥∗) ̸= ⊥,
dR([x′1, x

′
2]0∥∗) ̸= ⊥. Again, there are at most ⌈(i − 1)/4⌉ choices for u′2 and

at most q2 choices for (x1, x
′
1). Thus, from Lemma 1, we have

JBc
R[≤i−1] ↪→ BR[≤i]K ≤

√
10q3

2n
, ∀ i ∈ {4k + 3 : 0 ≤ k ≤ q − 1}. (19)

Action of f3 (resp. F3): For i ∈ {4k + 4 : 1 ≤ k ≤ q − 1}, for any dR with
|dR| ≤ i− 1 and any x ∈ Y, we have

SBc
R↪→BR

x,d = {dR([x1]1)⊕ dR([x′1]1)⊕ dR([u′3]3)⊕ x2 ⊕ x′2 | E} ,

where E denotes the predicate dR([x1]1), dR([x′1]1), dR([u3]3) ̸=
⊥, dR([x1, x2]0∥∗) ̸= ⊥, dR([x′1, x

′
2]0∥∗) ̸= ⊥. There are at most ⌈(i − 1)/4⌉

choices for u′3 and at most q2 choices for ((x1, x2), (x
′
1, x

′
2)). Since the analysis

is identical in both the worlds, by using Lemma 1, we have

JBc
R[≤i−1] ↪→ BR[≤i]K ≤

√
10q3

2n
, ∀ i ∈ {4k + 4 : 0 ≤ k ≤ q − 1} (20)

JBc
I[≤i−1] ↪→ BI[≤i]K ≤

√
10q3

2n
, ∀ i ∈ {4k + 4 : 0 ≤ k ≤ q − 1} (21)

Action of f4 (resp. F4): Since the property BR (resp. BI) is independent of
the output of f4 (resp. F4) and the database is good right before the action, we
have SBc

R↪→BR

x,d = ∅. Thus,

JBc
R[≤i−1] ↪→ BR[≤i]K = 0, ∀ i ∈ {4k + 5 : 0 ≤ k ≤ q − 1} (22)

JBc
R[≤i−1] ↪→ BR[≤i]K = 0, ∀ i ∈ {4k + 5 : 0 ≤ k ≤ q − 1} (23)

Summing over the 4q + 2 actions using (17)-(23) gives⊥ 4q+2
⇝ BR

≤ 2

√
10q5

2n
+

√
10q6

2n
,

⊥ 4q+2
⇝ BI

≤ 2

√
10q5

2n
+

√
10q6

2n
. (24)

Adding the two inequalities completes the proof of Theorem 2.
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5.3 The Problem with the Adaptive Setting

A closer look at the non-adaptive proof serves to show why a similar proof is
difficult to achieve in the adaptive setting. The dummy call is used to record
all the q non-adaptive queries of the adversary in the database, before LR4 is
applied to each of them sequentially. This enables us to argue that the oracle
knows all q queries at the time of each of the subsequent actions (f1, f2, f3 etc.)
which in turn helps in upper bounding the bad norm to a non-trivial value.

The proof hinges on the characterisation as bad of any database which has
a ‘collision’ on the f input in either of the last two rounds, i.e., collisions on
x1⊕v2 or x2⊕v1⊕v3 for different database entries. Specifically, this implies that
certain later values of x1 or x2 can always make the database go bad irrespective
of earlier choices of v1, v2, or v3. As a concrete example, recall (from Section 5.1)
that a database is (also) considered bad if:

– for some k ̸= k ∈ [q], dR([x1, x2]0∥k), dR([x′1, x
′
2]0∥k′) ̸= ⊥ (i.e. the adversary

has made these two queries).
– ([x1]1, v1), ([x

′
1]1, v

′
1) ∈ dR; (f1 has been evaluated over x1 and x′1)

– ([x2⊕ v1]2, v2), ([x′2⊕ v′1]2, v′2) ∈ dR; (f2 has been evaluated over x2⊕ v1 and
x′2 ⊕ v′1)

– x1 ⊕ v2 = x′1 ⊕ v′2; (there is an input-collision on f3)

Now, in the context of f1’s action, comparing the above definition with the
previous proofs (specifically see the discussion around (15) and (16)), one can
see that conditions 1 and 3 are missing in previous proofs. This is because it is
impossible for the oracle to detect the queries made by the adversary, as at any
given instant, it can only see the database entries, nothing less and nothing more.
As a result, the norm bound becomes trivial. On the other hand, in our case,
specifically because condition 1 can be checked at all times (once the dummy
call is executed), condition 3 is also well-defined. As a result, as shown in (17)
and (18), the norm bound is non-trivial.

At the same time, the dummy call must be erased before the oracle returns
an output to the adversary. Otherwise, this perturbs the state, which can be
detected by the adversary. So, this approach only works in non-adaptive games
which can be modelled as an adversary making a single “big” query (consisting
of q usual queries) to the oracle and the oracle returning a single “big” output
(consisting of q usual outputs). An adaptive game, on the other hand, does not
adhere to such simplifications. More specifically, since future values of x1 and x2
are directly under the adversary’s control and are not known to the oracle in ad-
vance, the amplitude of such events cannot be bounded using known techniques.
In the HI framework, this problem appears as the trivialization of the norm (see
Section 4). In the BCEJ framework, this observation implies that databases can
go bad between two actions, something that the framework does not account for.
In the non-adaptive setting, however, the oracle knows in advance the future
values of x1 and x2, and the outputs of f can accordingly be classified as ‘bad’
and bounded at the time of the action of f .
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Lastly, we remark that this is not a problem specific to Luby-Rackoff, but is
inherent to any proof for which the definition of bad databases is in terms of an
input that the adversary can adaptively choose. We have also noticed this error
in other proofs. For example, in [5], the security proofs of TNT, LRWQ and LRQ
suffer from this problem, and do not hold in the adaptive setting. While for TNT
and LRWQ this seems to be more of a definitional problem, since the bad events
can be defined directly in terms of the database entries (though possibly leading
to a slightly worse bound), for the LRQ proof this looks like a more fundamental
issue that does not admit an easy fix. We spotted similar flaws in other works
like the proof of LRWQ in [24] and the tight security proof for TNT [33]. While
the former seems to be fixable, the latter is again a fundamental issue.

6 IND-qCPA Security of Misty

6.1 The Misty Constructions

For some r ≥ 1 and f1, . . . , fr : {0, 1}n → {0, 1}n, we define

– gL : [r]× {0, 1}2n → {0, 1}2n by the mapping:

(i, x1, x2) 7−→ (x2, x2 ⊕ fi(x1)),

– gR : [r]× {0, 1}2n → {0, 1}2n by the mapping:

(i, x1, x2) 7−→ (x2 ⊕ fi(x1), fi(x1)),

and write gLi (·, ·) := gL(i, ·, ·) and gRi (·, ·) := gR(i, ·, ·).

MistyL Construction: The r-round MistyL, denoted MistyLr is defined as:

(x1, x2) 7−→ gLr ◦ · · · ◦ gL1 (x1, x2). (25)

MistyR Construction: The r-round MistyR construction, denoted MistyRr is de-
fined as:

(x1, x2) 7−→ gRr ◦ · · · ◦ gR1 (x1, x2). (26)

For all i ∈ [r], we write:

– xi−1 := (xi−1
1 , xi−1

2 ) to denote the input to gi, where x0 := x = (x1, x2),
denotes the input to Misty{L|R}r.

– (ui, vi) to denote the input-output tuple corresponding to fi.
– y = (y1, y2) := (xr1, x

r
2) to denote the output of Misty{L|R}r.

6.2 IND-qCPA Security of MistyR

We prove the following IND-qCPA bound for MistyR4.
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Theorem 3. Suppose f1, f2, f3, f4 : {0, 1}n → {0, 1}n are four mutually in-
dependent uniform random functions. Then, for any q ≥ 0, and any quantum
adversary A that makes at most q queries, we have

Advqcpa
MistyR4

(A ) = O

(√
q5

2n

)
.

Proof. Let F3, F4 : {0, 1}3n → {0, 1}n be two uniform random functions. Define

GR
3 (x1, x2, x

′
1, x

′
2) := (x′2 ⊕ F3(x1, x2, x

′
1), F3(x1, x2, x

′
1))

GR
4 (x1, x2, x

′
1, x

′
2) := (x′2 ⊕ F4(x1, x2, x

′
1), F4(x1, x2, x

′
1))

for any (x1, x2, x
′
1, x

′
2) ∈ {0, 1}4n. We define the hybrid random function M̃istyR4

as (see also Fig. 3):

M̃istyR4(x1, x2) := GL
4 (x1, x2, G

L
3 (x1, x2,MistyR2(x1, x2))).

Then, it is easy to see that M̃istyR4 is indistinguishable to a uniform random
function Γ : {0, 1}2n → {0, 1}2n. So, it is sufficient to bound the distance between
MistyR4 and M̃istyR4.

Let X := {0, 1}3n+3, and let f : X −→ Y be a (3n+ 3)-bit-to-n-bit uniform
random function. We implement f through cO defined over C[X ] ⊗ C[Y] ⊗ D.
For each x, y, z ∈ Y,

f1(x) = f(000∥x∥02n) f4(x) = f(011∥x∥02n)
f2(x) = f(001∥x∥02n) F3(x, y, z) = f(100∥x∥y∥z)
f3(x) = f(010∥x∥02n) F4(x, y, z) = f(101∥x∥y∥z).

The distinctness of the first three bits ensures that f1, f2, f3, f4, F3, F4 are all
independent, and they can be implemented by the prefix oracle. We do not give
the implementation explicitly as it is obvious. This setup allows us to use a single
database df : X −→ Z to keep track of f1, f1, f2, f3, f4, F3 and F4; we refer to
this database as dR in the real world (tracking f1, f2, f3 and f4) and dI in the
ideal world (tracking f1, f2, F3 and F4). Let DR (resp. DI) be the set of all
possible choices for dR (resp. dI). Let

[x]1 := 000∥x∥02n,[x]2 := 001∥x∥02n,
[x]3 := 010∥x∥02n,[x]4 := 011∥x∥02n.

and define the sets

X̃R := {[x]1, [x]2, [x]3, [x]4 | x ∈ Y},

X̃I := {[x]1, [x]2, (100∥x∥x′∥y) , (101∥x∥x′∥y) | x, x′, y ∈ Y}.

Then it is easy to see that DR = D|X̃R
and DI = D|X̃I

.

Let BR be the set of databases dR satisfying one of the two following conditions:
we can find u1, u′1, u2, u′2, v1, v′1, v2, v′2 ∈ Y such that
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Fig. 3. MistyR4 (left) vs the hybrid random function, M̃istyR4 (right).

1. ([u1]1, v1), ([u
′
1]1, v

′
1), ([u2]2, v2), ([u

′
2]2, v

′
2) ∈ dR;

2. v2 ⊕ v1 = v′2 ⊕ v′1;

or we can find u1, u′1, u2, u′2, v1, v′1, v2, v′2, v3, v′3 ∈ Y such that

1. ([u1]1, v1), ([u
′
1]1, v

′
1), ([u2]2, v2), ([u

′
2]2, v

′
2),

[v2 ⊕ v1]3, v3), ([v
′
2 ⊕ v′1]3, v

′
3) ∈ dR;

2. v3 ⊕ v2 = v′3 ⊕ v′2;

Next, let BI be the set of databases dI satisfying one of the two following
conditions: we can find u1, u′1, u2, u′2, v1, v′1, v2, v′2 ∈ Y such that

1. ([u1]1, v1), ([u
′
1]1, v

′
1), ([u2]2, v2), ([u

′
2]2, v

′
2) ∈ dI;
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2. v2 ⊕ v1 = v′2 ⊕ v′1;

or we can find u1, u′1, u2, u′2, v1, v′1, v2, v′2, v3, v′3 ∈ Y such that

1. ([u1]1, v1), ([u
′
1]1, v

′
1), ([u2]2, v2), ([u

′
2]2, v

′
2),

(100∥u1∥v1 ⊕ u2∥v2 ⊕ v1, v3), (100∥u′1∥v′1 ⊕ u′2∥v′2 ⊕ v′1, v
′
3) ∈ dI;

2. v3 ⊕ v2 = v′3 ⊕ v′2;

Let GR := DR \ BR and GI := DI \ BI. Suppose dR ∈ GR and dI ∈ GI. Then
each u3 for which there exists v3 such that ([u3]3, v3) ∈ dR is associated with a
unique pair ([u1]1, v1), ([u2]2, v2) ∈ dR such that u3 = v1 ⊕ v2, and each u4 for
which there exists v4 such that ([u4]4, v4) ∈ dR is associated with a unique triple
([u1]1, v1), ([u2]2, v2), ([u3]3, v3) ∈ dR such that u3 = v1 ⊕ v2 and u4 = v2 ⊕ v3.

Similarly, each u3 for which there exist x1, x2, v3 such that
(100∥x1∥x2∥u3, v3) ∈ dI is associated with a unique pair ([u1]1, v1), ([u2]2, v2) ∈
dI such that u3 = v1 ⊕ v2, and this pair also satisfies x1 = u1, x2 = v1 ⊕ u2;
and each u4 for which there exist x1, x2, v4 such that (101∥x1∥x2∥u4, v4) ∈ dI
is associated with a unique triple ([u1]1, v1), ([u2]2, v2), (100∥x1∥x2∥u3, v3) ∈ dI
such that u3 = v1 ⊕ v2 and u4 = v2 ⊕ v3, and this triple also satisfies
x1 = u1, x2 = v1 ⊕ u2.

Then we can define the bijection h : GR −→ GI as follows: for each dR we
define dI := h(dR) such that

– for each u1 ∈ Y, dI([u1]1) = dR([u1]1);
– for each u2 ∈ Y, dI([u2]2) = dR([u2]2);
– for each x1, x2 ∈ Y and the associated (u3, u4), dI(100∥x1∥x2∥u3) =
dR([u3]3) and dI(101∥x1∥x2∥u4) = dR([u4]4).

Then h satisfies the conditions of Lemma 2. To complete the proof of Theorem 3,
we just need to show that

⊥ 4q
⇝ BR

+
⊥ 4q
⇝ BI

≤ (4 + 2
√
2)
√
10q5/2n.

Sequence of Actions. Each query by the adversary to its oracle results in a
sequence of four queries to f , one each to f1, f2, and one to f3 and f4 in the
real world or F3 and F4 in the ideal world, in that order. We view the query
response phase as a sequence of 4q (possibly duplicate) actions and analyze the
transition capacity at each action.

Action of f1: For i ∈ {4k+ 1 : 0 ≤ k ≤ q − 1}, we first look at the transition
capacity JBc

R[≤i−1] ↪→ BR[≤i]K. For any dR with |dR| ≤ i− 1 and any x ∈ Y, we
have

SBc
R↪→BR

x,d = {dR([u1]1)⊕ dR([u2]2)⊕ dR([u′2]2) | dR([u1]1) ̸= ⊥,

dR([u2]2) ̸= ⊥, dR([u′2]2) ̸= ⊥} .

There are at most ⌈(i− 1)/4⌉3 choices for the triple (u2, u
′
1, u

′
2), so |SBc

R↪→BR

x,d | ≤
⌈(i− 1)/4⌉3 ≤ q3, and from there using Lemma 1 we have

JBc
R[≤i−1] ↪→ BR[≤i]K ≤

√
10q3

2n
, ∀ i ∈ {4k + 1 : 0 ≤ k ≤ q − 1}. (27)
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By the same arguments we can also show that

JBc
I[≤i−1] ↪→ BI[≤i]K ≤

√
10q3

2n
, ∀ i ∈ {4k + 1 : 0 ≤ k ≤ q − 1}. (28)

Action of f2: Next we look at the transition capacity JBc
R[≤i−1] ↪→ BR[≤i]K

for i ∈ {4k + 2 : 0 ≤ k ≤ q − 1}. For any dR with |dR| ≤ i − 1 and any x ∈ Y,
we have

SBc
R↪→BR

x,d = {dR([u1]1)⊕ dR([u′1]1)⊕ dR([u′2]2) | dR([u1]1) ̸= ⊥, dR([u′1]1) ̸= ⊥,
dR([u′2]2) ̸= ⊥} ∪ {dR([u3]3)⊕ dR([u′3]3)⊕ dR([u′2]2) |
dR([u3]3) ̸= ⊥, dR([u′3]3) ̸= ⊥, dR([u′2]2) ̸= ⊥} .

Again, there are at most ⌈(i − 1)/4⌉3 choices for each of the triples (u2, u
′
1, u

′
2)

and (u3, u
′
2, u

′
3), and arguing as before we have

JBc
R[≤i−1] ↪→ BR[≤i]K ≤

√
20q3

2n
, ∀ i ∈ {4k + 2 : 0 ≤ k ≤ q − 1}. (29)

By the same arguments we can also show that

JBc
I[≤i−1] ↪→ BI[≤i]K ≤

√
20q3

2n
, ∀ i ∈ {4k + 2 : 0 ≤ k ≤ q − 1}. (30)

Action of f3 (resp. F3): Next we look at the transition capacity JBc
R[≤i−1] ↪→

BR[≤i]K for i ∈ {4k + 3 : 0 ≤ k ≤ q − 1}. For any dR with |dR| ≤ i− 1 and any
x ∈ Y, we have

SBc
R↪→BR

x,d = {dR([u2]2)⊕ dR([u′2]2)⊕ dR([u′3]3) | dR([u2]2) ̸= ⊥,
dR([u′2]2) ̸= ⊥, dR([u′3]3) ̸= ⊥} .

Again, there are at most ⌈(i−1)/4⌉3 choices for the pair (u2, u′2, u′3), and arguing
as before we have

JBc
R[≤i−1] ↪→ BR[≤i]K ≤

√
10q3

2n
, ∀ i ∈ {4k + 3 : 0 ≤ k ≤ q − 1}. (31)

By the same arguments we can also show that

JBc
I[≤i−1] ↪→ BI[≤i]K ≤

√
10q3

2n
, ∀ i ∈ {4k + 3 : 0 ≤ k ≤ q − 1}. (32)

Action of f4(resp. F4): Finally, for i ∈ {4k : 1 ≤ k ≤ q}, for any dR with
|dR| ≤ i − 1 (resp. any dI with |dI| ≤ i − 1) and any x ∈ Y, since the property
BR (resp. BI) does not depend on dR([x]4) (resp. dI(101∥x1∥x2∥x)), we have
SBc

R↪→BR

x,d = ∅ (resp. SBc
I ↪→BI

x,d = ∅). Thus,

JBc
R[≤i−1] ↪→ BR[≤i]K = 0, ∀ i ∈ {4k : 0 ≤ k ≤ q − 1}, (33)
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and also,

JBc
I[≤i−1] ↪→ BI[≤i]K = 0, ∀ i ∈ {4k : 0 ≤ k ≤ q − 1}. (34)

Summing over the 4q actions using (27)-(34) gives

⊥ 4q
⇝ BR

≤ (2 +
√
2)

√
10q5

2n
,

⊥ 4q
⇝ BI

≤ (2 +
√
2)

√
10q5

2n
. (35)

Adding the two inequalities completes the proof of Theorem 3.

6.3 IND-qCPA Security of MistyL

We prove the following IND-qCPA bound for MistyL5.

Theorem 4. Suppose f1, f2, f3, f4, f5 : {0, 1}n → {0, 1}n are five mutually in-
dependent uniform random functions. Then, for any q ≥ 0, and any quantum
adversary A that makes at most q queries, we have

Advqcpa
MistyL5

(A ) = O

(√
q7

2n

)
.

A proof of this theorem is available in Appendix C.

7 Conclusion

In this work, we uncover a flaw in the proof of quantum security for the Luby-
Rackoff, TNT, LRWQ and LRQ constructions. While TNT and LRWQ might still
be proven secure (most likely with a degraded bound), the issue in the other
cases seems inherent to the proof techniques that were used. In particular, for
the technique to work, it is critical that bad databases are only described with
information that is actually present in the database. For some constructions,
notably the Luby-Rackoff and LRQ constructions, a part of the input to the
construction will never appear in the database directly which means that it
cannot be used to characterize bad databases. On a positive note, we restore the
security of the 4-round Luby-Rackoff construction in the non-adaptive setting,
and prove the security of the 4-round MistyR and 5-round MistyL constructions.
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Appendix

A Basics in Linear Algebra and Quantum Computing

A.1 Hilbert Space, Operators and Norms

We use the standard Dirac notations. Fix a positive integer k. A k-dimensional
complex Hilbert space H is simply the vector space Ck over the complex field C
with the natural choice of inner product ⟨·|·⟩ defined as follows:

⟨ϕ|ψ⟩ =
∑
i,j

α∗
i βj ,

for any |ϕ⟩, |ψ⟩ ∈ H represented in some arbitrary basis {|γi⟩} as:

|ϕ⟩ =
∑
i

αi|γi⟩ |ψ⟩ =
∑
j

βj |γj⟩,

where αi, βj are complex numbers and α∗
i is simply the complex conjugate of

αi. We emphasize that the inner product definition is independent of the choice
of basis. This inner product satisfies the properties of an inner product space,
including

– Linearity: ⟨αϕ1 + βϕ2|ψ⟩ = α⟨ϕ1|ψ⟩+ β⟨ϕ2|ψ⟩,
– Conjugate symmetry: ⟨ϕ|ψ⟩ = ⟨ψ|ϕ⟩∗,
– Positive-definiteness: ⟨ϕ|ϕ⟩ > 0 for all non-zero |ϕ⟩.

The norm of any vector |ϕ⟩ ∈ H is defined as ∥|ϕ⟩∥ :=
√

⟨ϕ|ϕ⟩.

Orthonormal Bases, Tensor Product. An orthonormal basis for H is a set of
vectors {|γi⟩} such that ⟨γi|γj⟩ = δij for all i, j ∈ {1, . . . , k}, where δij is the
Kronecker delta function. Given an orthonormal basis B of H, we sometimes
write C[B] to emphasize the basis representation of H.

For any two finite-dimensional complex Hilbert spaces H1 and H2 of dimen-
sions k1 and k2, respectively, the tensor product H1 ⊗ H2 is another complex
Hilbert space of dimension k1k2, where the inner product is defined as:

⟨ϕ1 ⊗ ϕ2|ψ1 ⊗ ψ2⟩ = ⟨ϕ1|ψ1⟩⟨ϕ2|ψ2⟩.

It is also well-known that H1 ⊗ H2 is isomorphic to the canonical k1k2-
dimensional complex Hilbert space Ck1k2 .

https://doi.org/10.1007/978-3-319-63715-0_10
https://doi.org/10.1007/978-3-030-26951-7_9
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Let H1 and H2 be two complex Hilbert spaces of dimensions k1 and k2,
respectively. It is well-known that any linear operator L : H1 → H2 can be rep-
resented by a k2×k1 complex matrix relative to the chosen basis for representing
H1 and H2. Consequently, we use operators and matrices interchangeably as long
as the bases are either fixed or clear from the context.

Unitary Operators. A linear operator U on H is said to be unitary if and only if
U†U = IH, where U† is the adjoint7 of U and IH denotes the identity operator
on H. Let U(H) denote the set of all unitaries on H.

Trace. For any linear operator L on H1 we define the trace as the sum of diagonal
elements of L, i.e.

Tr(L) :=
∑
i

Lii, (36)

where Lii denotes the (i, i)-th element of L.

Partial Trace. For any linear operator L on H1(B1) ⊗ H2(B2), we define the
partial trace of L on H1 as a linear operator from H1(B1)⊗H2(B2) to H2(B2),

TrH1
(L) :=

∑
|b′1⟩∈B1

(⟨b′1| ⊗ IH2
)L (|b′1⟩ ⊗ IH2

) , (37)

where IH2
denotes the identity operator on H2.

Density Operators. Any linear operator D on H is said to be a density operator
if and only if it is

– Hermitian: D† = D,
– Positive Semi-definite: ⟨ϕ |D |ϕ⟩ ≥ 0, for every non-zero |ϕ⟩ ∈ H,
– Trace-1 : Tr(D) = 1.

Let D(H) denote the set of all density operators of H.

Trace Norm. For any linear operator L on some finite-dimensional complex
Hilbert space H, we define the trace norm of L as

∥L∥1 = Tr
(√

L†L
)
=

r∑
i=1

σi, (38)

where L† denotes the conjugate transpose of L, and σ1, . . . , σr denote the sin-
gular values of L, where r denotes the rank of L. Note that, L†L is a positive
semi-definite matrix, and thus, its square root is well-defined.

7 This is equivalent to the conjugate transpose of the 2n × 2n complex matrix U of
H(B) for some orthonormal bases B.
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A.2 Quantum System, State, Measurement and Algorithm

Any n-qubit quantum system Q is the 2n-dimensional complex Hilbert space
H = C2n with inner product ⟨·|·⟩. The state of Q is given by a density operator
ρQ of H. A state ρ is said to be pure if it can be expressed as |ψ⟩⟨ψ| for some
|ψ⟩ ∈ H of unit norm (i.e., ∥|ψ⟩∥ =

√
⟨ψ|ψ⟩ = 1), and mixed otherwise. Indeed,

pure states are often (equivalently) represented by a unit vector |ψ⟩Q ∈ H, where
the subscript Q is used to make the concerned quantum register explicit. We will
also prefer this latter (simplified) representation whenever possible.

For any finite set X = {x1, . . . , xk}, let CX = {|x1⟩, . . . , |xk⟩} denote an
arbitrarily fixed basis of the k-dimensional complex Hilbert space H that we refer
as the canonical computational basis pf H with respect to X . Since the mapping
x 7→ |x⟩ is an obvious bijection from X to CX , we simply write C[X ] to mean
C[CX ]. Furthermore we often simplify this to C|X | since it is isomorphic to C[X ].
Unless stated otherwise, we always assume a computational basis representation
of the underlying space, where the computational basis will be clear from the
context.

Given a pure quantum state |ψ⟩Q and an orthonormal bases B =
{|b0⟩, . . . , |b2n−1⟩} of H, a measurement of |ψ⟩Q in the bases B collapses the
state to |bi⟩ (or simply the label bi ∈ {b0, . . . , b2n−1}) with probability |⟨bi|ψ⟩|2.
Although we do not explicitly use it in this paper, we remark that the proba-
bilistic behavior of measurements can be analogously extended to mixed states
using the notion of positive operator-valued measurements.

Given two quantum systems H1 and H2, the joint quantum system is given by
the tensor product H1⊗H2. Given ρ1 ∈ D(H1) (res. |ψ1⟩ ∈ H1) and ρ2 ∈ D(H2)
(res. |ψ2⟩ ∈ H2), the product state is given by ρ1⊗ρ2 (res. |ψ1, ψ2⟩ = |ψ1⟩|ψ2⟩ =
|ψ1⟩ ⊗ |ψ2⟩ ∈ H1 ⊗H2 when the state is pure).

Barring measurements, all other quantum operations are unitary. Any quan-
tum algorithm A of depth q can be defined as a sequence of unitary operators
U1, . . . ,Uq on the space Hin ⊗ Hout × Hwork, followed by an optional mea-
surement in the computational8 basis. Here Hin, Hout, and Hwork denote the
input space, output space and workspace of A. If the algorithm is initialized
in the state ρ0 then the final state (before measurement), say ρq, is given by
Uq . . .U1ρ0U

†
1 . . .U

†
q. At this stage, ρq is measured and by convention the out-

put is written in the register corresponding to Hout.

B Proof of Lemma 2

We mimic the proof approach of [5, Lemma 4]. Let U0, . . . ,Uq denote A’s uni-
taries. Define:

– V0 := F0 ◦U0,
– Vit+j := Fj , for all i ∈ [q − 1] ∪ {0}, j ∈ [t− 1],

8 By our convention, the computational bases can be fixed arbitrarily to suit the
measurement basis of the algorithm.
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– Vit := U0 ◦Ui ◦ Ft, for all i ∈ [q − 1],
– Vqt := Uq ◦ Ft.

This defines a sequence of q′ + 1 unitaries, V0, . . . ,Vq′ , where q′ = qt. For each
i ∈ [q′], p ∈ {I,R}, define Wi,p := cOpit ◦Vi−1, where

it :=

{
t if i = 0 mod t,

i mod t otherwise.

Let |ψ⊥⟩ = |ψA⟩ ⊗ |d⊥⟩. Then, for all p ∈ {I,R}, we can write ρqA,p =
|ψq′,p⟩⟨ψq′,p|, where

|ψq′,p⟩ = Vq′ ◦Wq′,p ◦Wq′−1,p ◦ . . . ◦W1,p|ψ⊥⟩.

Let Wb
i,p := ΠBp[≤i]

◦Wi,p and Wg
i,p := ΠGp[≤i]

◦Wi,p. Then we have Wi,p =

Wb
i,p +Wg

i,p. Further, let |ψi,p⟩ := Wi,p ◦ . . . ◦W1,p|ψ⊥⟩, and |ψg
i,p⟩ := Wg

i,p ◦
. . . ◦Wg

1,p|ψ⊥⟩.

Claim. For every i ∈ [q′] and each p ∈ {I,R}:

∥|ψi,p⟩ − |ψg
i,p⟩∥ ≤

⊥ i
⇝ Bp


p. (39)

Proof. Fix some p ∈ {I,R}. First consider i = 1, we have

∥|ψ1,p⟩ − |ψg
1,p⟩∥ = ∥W1,p|ψ⊥⟩ −Wg

1,p|ψ⊥⟩∥ = ∥Wb
1,p|ψ⊥⟩∥.

Since d⊥ ∈ Gp and V0 commutes with ΠGp[≤0]
, we have

∥Wb
1,p|ψ⊥⟩∥ = ∥ΠBp[≤1]

◦W1,p ◦ΠGp[≤0]
|ψ⊥⟩∥

= ∥ΠBp[≤1]
◦ cOp1 ◦V0 ◦ΠGp[≤0]

|ψ⊥⟩∥
= ∥ΠBp[≤1]

◦ cOp1 ◦ΠGp[≤0]
◦V0|ψ⊥⟩∥

≤ ∥ΠBp[≤1]
◦ cOp1 ◦ΠGp[≤0]

∥

≤ JGp[≤0] ↪→ Bp[≤1]Kp =
⊥ 1
⇝ Bp


p,

where the last inequality follows from [5, Proposition 4]. This proves the i = 1
case. Suppose for some i ≥ 2:

∥|ψi−1,p⟩ − |ψg
i−1,p⟩∥ ≤

⊥ i−1
⇝ Bp


p.

Then we have

∥|ψi,p⟩ − |ψg
i,p⟩∥ = ∥Wi,p|ψi−1,p⟩ −Wg

i,p|ψ
g
i−1,p⟩∥

= ∥Wi,p|ψi−1,p⟩ −Wi,p|ψg
i−1,p⟩+Wi,p|ψg

i−1,p⟩ −Wg
i,p|ψ

g
i−1,p⟩∥

= ∥Wi,p(|ψi−1,p⟩ − |ψg
i−1,p⟩) + (Wi,p −Wg

i,p)|ψ
g
i−1,p⟩∥
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≤ ∥Wi,p(|ψi−1,p⟩ − |ψg
i−1,p⟩)∥+ ∥Wb

i,p|ψ
g
i−1,p⟩∥

≤ ∥|ψi−1,p⟩ − |ψg
i−1,p⟩∥+ ∥ΠBp[≤i]

◦Wi,p|ψg
i−1,p⟩∥.

Since |ψg
i−1,p⟩ is in the column space of ΠGp[≤i−1]

. Thus, by reasoning as in the
i = 1 case, we have

∥ΠBp[≤i]
◦Wi,p|ψg

i−1,p⟩∥ ≤ ∥ΠBp[≤i]
◦ cOpit ◦ΠGp[≤i−1]

∥
≤ JGp[≤i−1] ↪→ Bp[≤i]Kp.

Using induction on i ∈ [q′] we get

∥|ψi,p⟩ − |ψg
i,p⟩∥ ≤ ∥|ψi−1,p⟩ − |ψg

i−1,p⟩∥+ ∥ΠBp[≤i]
◦Wi,p|ψg

i−1,p⟩∥

≤
⊥ i−1
⇝ Bp


p + JGp[≤i−1] ↪→ Bp[≤i]Kp =

⊥ i
⇝ Bp


p,

thus completing the proof of the claim. ⊓⊔

Claim. For any x ∈ I, ŷ ∈ Ŷ, any i ∈ [q′], and any d ∈ GI[≤i],

⟨x, ŷ, d|ψg
i,I⟩ = ⟨x, ŷ, h(d)|ψg

i,R⟩. (40)

Proof. For the case of i = 1, considering some d ∈ GI[≤1], we have

|ψg
1,I⟩ = Wg

1,I|ψ⊥⟩ = ΠGI[≤1]
◦ cOI1 ◦V0|ψ⊥⟩.

Let |γx,ŷ⟩ denote the basis state |x⟩|ŷ⟩. Then we have

cOI1 ◦V0|ψ⊥⟩ = cOI1 ◦V0|ψA⟩ ⊗ |d⊥⟩

=
∑
x,ŷ

⟨γx,ŷ |V0 |ψA⟩ cOI1 |γx,ŷ⟩ ⊗ |d⊥⟩

=
∑
x,ŷ

⟨γx,ŷ |V0 |ψA⟩
(
|γx,ŷ⟩ ⊗ cOI1

xŷ|d⊥⟩
)

=
∑
x,ŷ

d∈DI

⟨γx,ŷ |V0 |ψA⟩ ⟨d | cOI1
xŷ | d⊥⟩ |γx,ŷ⟩ ⊗ |d⟩

=
∑
x,ŷ

d∈DI

⟨γx,ŷ |V0 |ψA⟩ ⟨d | cOI1
xŷ | d⊥⟩ |γx,ŷ⟩ ⊗ |d⟩,

where x ∈ I, and ŷ ∈ Ŷ in all the sums. Thus,

ΠGI[≤1]
◦ cOI1 ◦V0|ψ⊥⟩ =

∑
x,ŷ

d∈GI[≤1]

⟨γx,ŷ |V0 |ψA⟩ ⟨d | cOI1
xŷ | d⊥⟩ |φx,ŷ,d⟩,

where φx,ŷ,d denotes the basis state |x, ŷ, d⟩. This gives, for any x ∈ I, ŷ ∈ Ŷ,
and d ∈ GI[≤1],

⟨φx,ŷ,d|ψg
1,I⟩ = ⟨γx,ŷ |V0 |ψA⟩ ⟨d | cOI1

xŷ | d⊥⟩.



38 Ritam Bhaumik, Benôıt Cogliati, Jordan Ethan, and Ashwin Jha

Similarly, we can show that

⟨φx,ŷ,h(d)|ψg
1,R⟩ = ⟨γx,ŷ |V0 |ψA⟩ ⟨h(d) | cOR1

xŷ | d⊥⟩.

Since GI[≤0] = GR[≤0] = {d⊥}, we have d⊥ = h(d⊥), and the third condition of
the lemma gives us ⟨φx,ŷ,d|ψg

1,I⟩ = ⟨φx,ŷ,h(d)|ψg
1,R⟩, thus establishing the i = 1

case. For some i ≥ 2, for all x,∈ I, ŷ ∈ Ŷ, and d ∈ GI[≤i−1], suppose

αx,ŷ,d = ⟨φx,ŷ,d|ψg
i−1,I⟩ = ⟨φx,ŷ,h(d)|ψg

i−1,R⟩.

Then (since h|GI[≤i−1]
is bijective) we have

|ψg
i−1,I⟩ =

∑
x,ŷ

d∈GI[≤i−1]

αx,ŷ,d|γx,ŷ⟩ ⊗ |d⟩,

|ψg
i−1,R⟩ =

∑
x,ŷ

d∈GI[≤i−1]

αx,ŷ,d|γx,ŷ⟩ ⊗ |h(d)⟩.

This gives

|ψg
i,I⟩ = Wg

i,I|ψ
g
i−1,I⟩

= ΠGI[≤i]
◦ cOIit ◦Vi−1|ψg

i−1,I⟩

=
∑
x,ŷ

d∈GI[≤i−1]

αx,ŷ,d ΠGI[≤i]
◦ cOIit ◦Vi−1|γx,ŷ⟩ ⊗ |d⟩

=
∑
x,x′

ŷ,ŷ′

d∈GI[≤i−1]

αx,ŷ,d ⟨γx′,ŷ′ |Vi−1 | γx,ŷ⟩ ΠGI[≤i]
◦ cOIit |γx′,ŷ′⟩ ⊗ |d⟩

=
∑
x,x′

ŷ,ŷ′

d∈GI[≤i−1]

αx,ŷ,d ⟨γx′,ŷ′ |Vi−1 | γx,ŷ⟩ ΠGI[≤i]

(
|γx′,ŷ′⟩ ⊗ cO

Iit
x′ŷ′ |d⟩

)

=
∑
x,x′

ŷ,ŷ′

d∈GI[≤i−1]

d′∈DI

αx,ŷ,d ⟨γx′,ŷ′ |Vi−1 | γx,ŷ⟩ ⟨d′ | cO
Iit
x′ŷ′ | d⟩ ΠGI[≤i]

(|γx′,ŷ′⟩ ⊗ |d′⟩)

=
∑
x,x′

ŷ,ŷ′

d∈GI[≤i−1]

d′∈GI[≤i]

αx,ŷ,d ⟨γx′,ŷ′ |Vi−1 | γx,ŷ⟩ ⟨d′ | cO
Iit
x′ŷ′ | d⟩ |φx′,ŷ′,d′⟩,

so that for any x′ ∈ I, ŷ′ ∈ Ŷ, and d′ ∈ GI[≤i], we have

⟨φx′,ŷ′,d′ |ψg
i,I⟩ =

∑
x,ŷ

d∈GI[≤i−1]

αx,ŷ,d ⟨γx′,ŷ′ |Vi−1 | γx,ŷ⟩ ⟨d′ | cO
Iit
xŷ | d⟩.
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Similarly, we can show that

⟨φx′,ŷ′,h(d′)|ψg
i,R⟩ =

∑
x,ŷ

d∈GI[≤i−1]

αx,ŷ,h(d) ⟨γx′,ŷ′ |Vi−1 | γx,ŷ⟩ ⟨h(d′) | cO
Rit

xŷ |h(d)⟩.

Then the third condition of Lemma 2 proves the claim. ⊓⊔

Using observation (40), for any i ∈ [q′], we have

TrD
(
|ψg

i,I⟩⟨ψ
g
i,I|
)
=
∑
d∈D

⟨d |ψg
i,I ⟩⟨ψ

g
i,I | d⟩

=
∑

d∈GI[≤i]

∑
x,x′

ŷ,ŷ′

αx,ŷ,dαx′,ŷ′,d|x, ŷ⟩⟨x′, ŷ′|

=
∑
x,x′

ŷ,ŷ′

 ∑
d∈GI[≤i]

αx,ŷ,dαx′,ŷ′,d

 |x, ŷ⟩⟨x′, ŷ′|

=
∑
x,x′

ŷ,ŷ′

 ∑
d∈GI[≤i]

αx,ŷ,h(d)αx′,ŷ′,h(d)

 |x, ŷ⟩⟨x′, ŷ′|

=
∑
x,x′

ŷ,ŷ′

 ∑
h(d)∈GR[≤i]

αx,ŷ,h(d)αx′,ŷ′,h(d)

 |x, ŷ⟩⟨x′, ŷ′|

=
∑
x,x′

ŷ,ŷ′

 ∑
d′∈GR[≤i]

αx,ŷ,d′αx′,ŷ′,d′

 |x, ŷ⟩⟨x′, ŷ′|

=
∑

d′∈GR[≤i]

∑
x,x′

ŷ,ŷ′

αx,ŷ,d′αx′,ŷ′,d′ |x, ŷ⟩⟨x′, ŷ′|

=
∑
d′∈D

⟨d′ |ψg
i,R ⟩⟨ψg

i,R | d′⟩

= TrD
(
|ψg

i,R⟩⟨ψg
i,R|
)
. (41)

Now, for each p ∈ {I,R}, let |ψb
q′,p⟩ := |ψq′,p⟩ − |ψg

q′,p⟩. Then, we have

∥TrD(ρqA,I)− TrD(ρ
q
A,R)∥1 = ∥TrD(|ψq′,I⟩⟨ψq′,I|)− TrD(|ψq′,R⟩⟨ψq′,R|)∥1

≤ ∥TrD(|ψg
q′,I⟩⟨ψ

b
q′,I|)∥1 + ∥TrD(|ψb

q′,I⟩⟨ψ
g
q′,I|)∥1

+ ∥TrD(|ψb
q′,I⟩⟨ψb

q′,I|)∥1 + ∥TrD(|ψb
q′,R⟩⟨ψb

q′,R|)∥1
+ ∥TrD(|ψb

q′,R⟩⟨ψg
q′,R|)∥1 + ∥TrD(|ψg

q′,R⟩⟨ψb
q′,R|)∥1
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≤ ∥|ψg
q′,I⟩⟨ψ

b
q′,I|∥1 + ∥|ψb

q′,I⟩⟨ψ
g
q′,I|∥1

+ ∥|ψb
q′,I⟩⟨ψb

q′,I|∥1 + ∥|ψb
q′,R⟩⟨ψb

q′,R|∥1
+ ∥|ψb

q′,R⟩⟨ψg
q′,R|∥1 + ∥|ψg

q′,R⟩⟨ψb
q′,R|∥1

≤ 3∥|ψb
q′,I⟩∥+ 3∥|ψb

q′,R⟩∥

≤ 3
⊥ q′

⇝ BI


I + 3

⊥ q′

⇝ BR


R,

where

– the first inequality follows from the linearity of the partial trace map, obser-
vation (41) and triangle inequality;

– the second inequality follows from the fact that partial trace is a completely
positive and trace-preserving map;

– the third inequality follows from repeated applications of [5, Proposition 5];
– the final inequality follows from (39).

This completes the proof.

C Proof of Theorem 4

Let F4, F5 : {0, 1}3n → {0, 1}n be two uniform random functions. Define

GL
4 (x1, x2, x

′
1, x

′
2) := (x′2, x

′
2 ⊕ F4(x1, x2, x

′
1))

GL
5 (x1, x2, x

′
1, x

′
2) := (x′2, x

′
2 ⊕ F5(x1, x2, x

′
1))

for any (x1, x2, x
′
1, x

′
2) ∈ {0, 1}4n. We define the hybrid random function M̃istyL5

as (see also Fig. 4):

M̃istyL5(x1, x2) := GL
5 (x1, x2, G

L
4 (x1, x2,MistyL3(x1, x2))).

Then, it is easy to see that M̃istyL5 is indistinguishable to a uniform random
function Γ : {0, 1}2n → {0, 1}2n. So, it is sufficient to bound the distance between
MistyL5 and M̃istyL5.

Let X := {0, 1}3n+3, and let f : X −→ Y be a (3n+ 3)-bit-to-n-bit uniform
random function. We implement f through cO defined over C[X ] ⊗ C[Y] ⊗ D.
For each x, y, z ∈ Y,

f1(x) = f(000∥x∥02n),
f2(x) = f(001∥x∥02n),
f3(x) = f(010∥x∥02n),
f4(x) = f(011∥x∥02n),
f5(x) = f(100∥x∥02n),

F4(x, y, z) = f(101∥x∥y∥z),
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Fig. 4. MistyL5 (left) vs the hybrid random function, M̃istyL5 (right).
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F5(x, y, z) = f(110∥x∥y∥z).

The distinctness of the first three bits ensures that f1, f2, f3, f4, f5, F4, F5 are
all independent, and they can be implemented by the prefix oracle. We do not
give the implementation explicitly as it is obvious. This setup allows us to use
a single database df : X −→ Z to keep track of f1, f1, f2, f3, f4, f5F4 and F5;
we refer to this database as dR in the real world (tracking f1, f2, f3, f4 and f5)
and dI in the ideal world (tracking f1, f2, f3, F4 and F5). Let DR (resp. DI) be
the set of all possible choices for dR (resp. dI). Let

[x]1 := 000∥x∥02n,[x]2 := 001∥x∥02n,
[x]3 := 010∥x∥02n,[x]4 := 011∥x∥02n,
[x]5 := 100∥x∥02n.

and define the sets

X̃R := {[x]1, [x]2, [x]3, [x]4, [x]5 | x ∈ Y},

X̃I := {[x]1, [x]2, [x]3 (101∥x∥x′∥y) , (110∥x∥x′∥y) | x, x′, y ∈ Y}.

Then it is easy to see that DR = D|X̃R
and DI = D|X̃I

.

Let BR be the set of databases dR satisfying one of the two following conditions:
we can find u1, u′1, u2, u′2, v1, v′1, v2, v′2 ∈ Y such that

1. ([u1]1, v1), ([u
′
1]1, v

′
1), ([u2]2, v2), ([u

′
2]2, v

′
2) ∈ dR;

2. v2 ⊕ v1 ⊕ u2 = v′2 ⊕ v′1 ⊕ u′2;

or we can find u1, u′1, u2, u′2, v1, v′1, v2, v′2, v3, v′3 ∈ Y such that

1. ([u1]1, v1), ([u
′
1]1, v

′
1), ([u2]2, v2), ([u

′
2]2, v

′
2),

([v1 ⊕ u2]3, v3), ([v
′
1 ⊕ u′2]3, v

′
3) ∈ dR;

2. v3 ⊕ v2 ⊕ v1 ⊕ u2 = v′3 ⊕ v′2 ⊕ v′1 ⊕ u2;

Next, let BI be the set of databases dI satisfying one of the two following condi-
tions: we can find u1, u′1, u2, u′2, v1, v′1, v2, v′2 ∈ Y such that

1. ([u1]1, v1), ([u
′
1]1, v

′
1), ([u2]2, v2), ([u

′
2]2, v

′
2) ∈ dI;

2. v2 ⊕ v1 ⊕ u2 = v′2 ⊕ v′1 ⊕ u′2;

or we can find u1, u′1, u2, u′2, v1, v′1, v2, v′2, v3, v′3 ∈ Y such that

1. ([u1]1, v1), ([u
′
1]1, v

′
1), ([u2]2, v2), ([u

′
2]2, v

′
2),

([v1 ⊕ u2]3, v3), ([v
′
1 ⊕ u′2]3, v

′
3) ∈ dI;

2. v3 ⊕ v2 ⊕ v1 ⊕ u2 = v′3 ⊕ v′2 ⊕ v′1 ⊕ u2;

Let GR := DR \ BR and GI := DI \ BI. Thus the above definitions mean that in
both GR and GI, each pair of values (u4 := v2 ⊕ v1 ⊕ u2, u5 := v3 ⊕ v2 ⊕ v1 ⊕ u2)
is associated with a unique pair (x1, x2). Then we can define the bijection h :
GR −→ GI as follows: for each dR we define dI := h(dR) such that
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– for each xL ∈ Y, dI([u1]1) = dR([u1]1);
– for each u2 ∈ Y, dI([u2]2) = dR([u2]2);
– for each u3 ∈ Y, dI([u3]3) = dR([u3]3);
– for each x1, x2 ∈ Y and the associated (u4, u5), dI(101∥x1∥x2∥u4) =
dR([u4]4) and dI(110∥x1∥x2∥u5) = dR([u5]5).

Then h satisfies the conditions of Lemma 2. To complete the proof of Theorem 4,
we just need to show that

⊥ 5q
⇝ BR

+
⊥ 5q
⇝ BI

≤ (2 + 4
√
2)

√
10q5

2n
.

Sequence of Actions. Each query by the adversary to its oracle results in a
sequence of four queries to f , one each to f1, f2, f3 and one to f4 and f5 in the
real world or F4 and F5 in the ideal world, in that order. We view the query
response phase as a sequence of 5q (possibly duplicate) actions and analyze the
transition capacity at each action.

Action of f1: For i ∈ {5k+ 1 : 0 ≤ k ≤ q − 1}, we first look at the transition
capacity JBc

R[≤i−1] ↪→ BR[≤i]K. Note that any two consecutive rounds of MistyL

are independent (can be executed in parallel). So, without loss of generality, we
assume that f2 is applied first followed by f1. Hence, for any dR with |dR| ≤ i−1
and any x ∈ Y, we have

SBc
R↪→BR

x,d = {u2 ⊕ u′2 ⊕ dR([u1]1)⊕ dR([u2]2)⊕ dR([u′2]2)

| dR([u1]1) ̸= ⊥, dR([u2]2) ̸= ⊥, dR([u′2]2) ̸= ⊥}
∪ {u2 ⊕ u′2 ⊕ dR([u1]1)⊕ dR([u2]2)⊕ dR([u′2]2)⊕ dR([u3]3)⊕ dR([u′3]3)

| dR([u1]1) ̸= ⊥, dR([u2]2) ̸= ⊥, dR([u′2]2) ̸= ⊥, dR([u3]3) ̸= ⊥,
dR([u′3]3) ̸= ⊥}.

There are respectively at most ⌈(i−1)/5⌉3 and ⌈(i−1)/5⌉5 choices for the tuples
(u1, u2, u

′
2) and (u1, u2, u

′
2, u3, u

′
3), so |SBc

R↪→BR

x,d | ≤ 2⌈(i−1)/5⌉5 ≤ 2q5, and from
there using Lemma 1 we have

JBc
R[≤i−1] ↪→ BR[≤i]K ≤

√
20q5

2n
, ∀ i ∈ {5k + 1 : 0 ≤ k ≤ q − 1}. (42)

By the same arguments we can also show that

JBc
I[≤i−1] ↪→ BI[≤i]K ≤

√
20q5

2n
, ∀ i ∈ {5k + 1 : 0 ≤ k ≤ q − 1}. (43)
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Action of f2: For i ∈ {5k + 2 : 1 ≤ k ≤ q}, for any dR with |dR| ≤ i − 1
(resp. any dI with |dI| ≤ i− 1) and any x ∈ Y, we have

SBc
R↪→BR

x,d = {x⊕ u2 ⊕ dR([u1]1)⊕ dR([u′1]1)⊕ dR([u2]2)

| dR([u1]1) ̸= ⊥, dR([u′1]1) ̸= ⊥, dR([u2]2) ̸= ⊥}
∪ {x⊕ u2 ⊕ dR([u1]1)⊕ dR([u′1]1)⊕ dR([u2]2)⊕ dR([u3]3)⊕ dR([u′3]3)

| dR([u1]1) ̸= ⊥, dR([u′1]1) ̸= ⊥, dR([u2]2) ̸= ⊥, dR([u3]3) ̸= ⊥,
dR([u′3]3) ̸= ⊥}.

There are respectively at most ⌈(i − 1)/5⌉3 and ⌈(i − 1)/5⌉5 choices for the
tuples (u1, u2, u

′
1) and (u1, u

′
1, u2, u3, u

′
3), so |SBc

R↪→BR

x,d | ≤ 2q5, and from there
using Lemma 1 we have

JBc
R[≤i−1] ↪→ BR[≤i]K =

√
20q5

2n
, ∀ i ∈ {5k + 2 : 1 ≤ k ≤ q}, (44)

and also,

JBc
I[≤i−1] ↪→ BI[≤i]K =

√
20q5

2n
, ∀ i ∈ {5k + 2 : 1 ≤ k ≤ q}. (45)

Action of f3: Next we look at the transition capacity JBc
R[≤i−1] ↪→ BR[≤i]K

for i ∈ {5k + 3 : 0 ≤ k ≤ q − 1}. For any dR with |dR| ≤ i − 1 and any x ∈ Y,
we have

SBc
R↪→BR

x,d = {u2 ⊕ u′2 ⊕ dR([u1]1)⊕ dR([u′1]1)⊕ dR([u2]2)⊕ dR([u2]2)⊕
dR([u3]3) | dR([u1]1) ̸= ⊥, dR([u′1]1) ̸= ⊥, dR([u2]2) ̸= ⊥,
dR([u′2]2) ̸= ⊥, dR([u3]3) ̸= ⊥} .

There are at most ⌈(i − 1)/5⌉5 choices for the tuple (u1, u
′
1, u2, u

′
2, u3), so

|SBc
R↪→BR

x,d | ≤ ⌈(i− 1)/5⌉5 ≤ q5, and from there using Lemma 1 we have

JBc
R[≤i−1] ↪→ BR[≤i]K ≤

√
10q5

2n
, ∀ i ∈ {5k + 3 : 0 ≤ k ≤ q − 1}. (46)

By the same arguments we can also show that

JBc
I[≤i−1] ↪→ BI[≤i]K ≤

√
10q5

2n
, ∀ i ∈ {5k + 3 : 0 ≤ k ≤ q − 1}. (47)

Action of f4 (resp. F4): Finally, for i ∈ {5k : 1 ≤ k ≤ q}, for any dR with
|dR| ≤ i − 1 (resp. any dI with |dI| ≤ i − 1) and any x ∈ Y, since the property
BR (resp. BI) does not depend on dR([x]4) (resp. dI(101∥x1∥x2∥x)), we have
SBc

R↪→BR

x,d = ∅ (resp. SBc
I ↪→BI

x,d = ∅). Thus,

JBc
R[≤i−1] ↪→ BR[≤i]K = 0, ∀ i ∈ {5k + 4 : 0 ≤ k ≤ q − 1}, (48)
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and also,

JBc
I[≤i−1] ↪→ BI[≤i]K = 0, ∀ i ∈ {5k + 4 : 0 ≤ k ≤ q − 1}. (49)

Action of f5(resp. F5): Finally, for i ∈ {5k : 1 ≤ k ≤ q}, for any dR with
|dR| ≤ i − 1 (resp. any dI with |dI| ≤ i − 1) and any x ∈ Y, since the property
BR (resp. BI) does not depend on dR([x]5) (resp. dI(110∥x1∥x2∥x)), we have
SBc

R↪→BR

x,d = ∅ (resp. SBc
I ↪→BI

x,d = ∅). Thus,

JBc
R[≤i−1] ↪→ BR[≤i]K = 0, ∀ i ∈ {5k : 0 ≤ k ≤ q − 1}, (50)

and also,

JBc
I[≤i−1] ↪→ BI[≤i]K = 0, ∀ i ∈ {5k : 0 ≤ k ≤ q − 1}. (51)

Summing over the 5q actions using (42)-(51) gives

⊥ 5q
⇝ BR

≤ (1 + 2
√
2)

√
10q7

2n
,

⊥ 5q
⇝ BI

≤ (1 + 2
√
2)

√
10q7

2n
. (52)

Adding the two inequalities completes the proof of Theorem 4.
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