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Abstract—Blockchain-enabled digital currency systems have
typically operated in isolation, lacking necessary mechanisms
for seamless interconnection. Consequently, transferring assets
across distinct currency systems remains a complex challenge,
with existing schemes often falling short in ensuring security,
privacy, and practicality. This paper proposes P2C2T – a
privacy-preserving cross-chain transfer scheme. It is the first
scheme to address atomicity, unlinkability, indistinguishabil-
ity, non-collateralization, and required functionalities across
diverse currency systems. P2C2T is based on threshold anony-
mous atomic locks (TA2L), also proposed by us, serving as the
cornerstone for guaranteeing atomic cross-chain transfer while
obscuring the payment relationships between users. By com-
bining TA2L with verifiable timed discrete logarithm schemes,
P2C2T renders cross-chain transactions indistinguishable from
regular intra-chain ones. Notably, P2C2T eliminates the col-
lateralization of senders and imposes minimal requirements
on underlying blockchains, specifically on the ability to verify
signatures. We substantiate the security of TA2L based on
a proposed cryptographic notion called threshold blind con-
ditional signatures and demonstrate the security of P2C2T
through necessary proofs. Additionally, we compare the perfor-
mance of P2C2T with an existing scheme that has properties
closest to P2C2T. The comparison reveals that P2C2T reduces
overhead by at least 85.488% in terms of running time,
communication cost, and storage cost when completing a cross-
chain transfer. We further conduct cross-chain transfers and
intra-chain payments using the Bitcoin testnet and Litecoin
testnet to illustrate the privacy and practicality of P2C2T.

1. Introduction

Blockchain-based digital currencies have garnered sig-
nificant attention across academia, industry, and govern-
ment, owing to their attractive features, including decentral-
ization and payment unforgeability. As of December 2023,
the landscape boasts over 20000 blockchain-based digital
currency systems, commonly referred to as blockchains,
with more than 8000 actively operational ones [1]. However,
a major issue still exists: these blockchains are typically de-
signed in isolation, hindering interconnectivity and limiting
the broader potential of blockchain technology.

Managing assets across blockchains is crucial for
blockchain interoperability [2]. Users (not service providers)
encounter different scenarios based on their specific cross-
chain asset management needs. When users exchange own-
ership of assets across blockchains, it is referred to as cross-
chain swap, which involves bidirectional payment relation-
ships between the participants. In contrast, cross-chain trans-
fer occurs when users transfer ownership of assets across
blockchains, creating unidirectional payment relationships.
In this scenario, the original owners are referred to as
senders, and those gaining ownership are called receivers.
This paper focuses on the case where each sender corre-
sponds to a receiver. This case necessitates addressing five
key requirements, as described below.

Atomicity. Atomicity requires that either the sender
relinquishes ownership of assets on one blockchain while the
corresponding receiver gains ownership of roughly equiva-
lent assets on another, or the asset ownership of both parties
remains unaltered. Failures to uphold atomicity may result
in users losing or receiving unexpected assets – clearly an
undesirable outcome.

Unlinkability. Unlinkability ensures that the payment
relationships between the sender and receiver are hidden
from other users. This definition draws from the concept
of the anonymity set discussed in prior works [3], [4].
Specifically, unlinkability mirrors the anonymity within the
anonymity set, with each sender-receiver pair representing
an element. The strength of anonymity increases with the
number of elements within the anonymity set. Breaching
unlinkability poses risks to both parties involved in the trans-
fer; for instance, the disclosure of the payment relationship
between cooperating parties could result in loosing their
competitive advantage relative to competitors.

Indistinguishability. Indistinguishability means that
cross-chain transactions are indistinguishable from regular
intra-chain ones when observed on blockchains. Loss of in-
distinguishability may hinder asset fluidity related to cross-
chain transfer due to potential discriminatory censorship.

Non-collateralization. Non-collateralization ensures
that senders only need to lock assets roughly equivalent
to those withdrawn by corresponding receivers on another
blockchain. Conversely, collateralization mandates senders
to lock additional assets, roughly equivalent to the assets



withdrawn by corresponding receivers. In this case, the
sender locks approximately twice the amount of assets
compared to non-collateralization, limiting participation
of senders with insufficient assets and making cross-chain
transfers less practical.

Required Functionalities. Required functionalities dic-
tates which functionalities on the underlying blockchains
are essential for the scheme. It is evident that the fewer
functionalities a scheme necessitates, the easier it can be
applied into practice. It is important to emphasize that
signature verification is fundamental for blockchains [5], and
smart contracts can support all other functionalities. Hence,
smart contracts can be considered as the only necessary
functionality for a cross-chain transfer scheme that requires
them.

However, one of the most widely used cross-chain tech-
nologies, known as exchanges, either centralized [6], [7],
[8] or decentralized [9], [10], [11], is primarily designed for
cross-chain swap. Moreover, none of existing cross-chain
transfer schemes [12], [13], [14], [15], [16], [17], [18], [19],
[20] and their variants [3], [4], [21], [22], [23] satisfac-
torily addresses all above requirements. Broadly speaking,
only non-collateralization and the minimality requirement
for signature verification are satisfied in [12]. Only atom-
icity and non-collateralization are satisfied in [13], [14],
[15], [16], [17], [18]. Only atomicity and unlinkability are
achieved in [19]. References [3], [4], [21], [22], [23] require
adaptation to support cross-chain transfer, but they still fall
short in achieving indistinguishability and the minimality
requirement for signature verification. In [20], only an ad-
ditional adapted Zerocash protocol [24] is needed on chain.
However, practical constraints limit the applicability of [20].
First, the scheme in [20] introduces shielded addresses
similar to Zerocash, rendering it incompatible with most
existing blockchains. Second, besides the basic operations
of Zerocash, it introduces additional operations such as
OR proofs and relaying block headers, imposing significant
overhead on users. The shortcomings of existing work create
a significant gap in the context of Blockchain 4.0 [25].

To bridge this gap, we propose P2C2T, a privacy-
preserving cross-chain transfer scheme that addresses all
those requirements in an integrated way. A comparative
analysis on P2C2T against existing schemes is presented
in Table 1, clearly highlighting its advantages with respect
to those requirements.

1.1. Technical Challenges and Solutions

P2C2T builds upon the preliminary discussion in [4],
which adapts a construction for payment channel hubs
(PCHs) [3] to support cross-chain transfer. We further en-
hance this by replacing the synchronization puzzle protocol
instance (say A2L) used in the original construction with
A2L+, proposed by [23] since A2L is demonstrated inse-
cure [23]. Although the resulting scheme (say A2L+-CC)
successfully achieves atomicity and unlinkability due to the
PCH design, it faces the following challenges:

Challenge 1: Ensuring Indistinguishability. As shown
in Table 1, most existing cross-chain transfer schemes, ex-
cept for the one in [20], fail to achieve indistinguishability.
The scheme in [20] uses OR proofs to mix cross-chain
transactions with intra-chain ones, but this approach requires
shielded asset addresses, which are not supported by most
blockchains. To our knowledge, the only other scheme
achieving indistinguishability is that proposed in [5], al-
though it is designed specifically for cross-chain swap. This
scheme involves only two users with no third parties and em-
ploys a joint signature generated through two-party adaptor
signatures [26], rather than separate signatures from each
user. Additionally, it replaces timelock functionality with
verifiable timed discrete logarithm (VTD) schemes [27],
making signature verification the sole on-chain functional-
ity required. Consequently, cross-chain transactions in this
scheme are indistinguishable from intra-chain transactions.
Inspired by this work, we integrate two-party adaptor sig-
natures and the VTD scheme into A2L+-CC, meeting the
minimality requirement for signature verification. However,
we still face the following issues:

Issue 1: How to maintain the security of the adapted
A2L+? Replacing the original adaptor signatures with two-
party adaptor signatures introduces security concerns for the
adapted A2L+, making security assurance a crucial issue.

Issue 2: How to protect against distinguishable infor-
mation? Unlike [27], A2L+-CC includes an untrusted inter-
mediary (say Ph). To achieve unlinkability against Ph, the
amount of transferred coins is fixed for a certain duration.
Since this amount is public, on-chain observers can poten-
tially compromise indistinguishability by simply observing
coin amounts unless defended against. Moreover, if on-chain
observers are aware of the asset addresses of Ph and the
users involved in cross-chain transfer, they could undermine
indistinguishability by inferring that transactions involving
these addresses are cross-chain.

Solutions to Challenge 1. To address Issue 1, we pro-
pose threshold blind conditional signatures (TBCS), inspired
by the concept of blind conditional signatures in [23], to en-
sure the security of the adapted A2L+ (say TA2L). For Issue
2, to mitigate amount distinguishability, we suggest that Ph

or users create intra-chain transactions with coin amounts
identical to those used in cross-chain transactions within
the same duration, excluding transaction fees if feasible. To
address asset address distinguishability, we let Ph and users
privately share public keys to derive asset addresses.

Challenge 2: Enabling Non-Collateralization. A2L+-
CC requires each sender (say Ps) to collateralize supple-
mentary coins to secure a signature from Ph on a request
token intended for the receiver (say Pr). The challenge is
to reduce the amount of supplementary coins and the coins
Ps pays to Ph in order to achieve non-collateralization.

Solutions to Challenge 2. We address Challenge 2 with
the following steps:

Step 1: Reducing the Value of Deposits. Ps deposits
coins into a shared address controlled by both Ps and Ph

to later pay Ph. The deposited amount is generally larger
than the payment Ps makes to Ph each time, allowing



TABLE 1: Comparison of Existing Cross-Chain Transfer Schemes and Adapted Schemes with P2C2T Classified Based on
Technique Types

Requirements TB Proof Relay Notary
[12] [13], [15] [17] [18] [20] [14], [16] [19] [4]∗ [21]∗ [22]∗ [3]∗ [23]∗ P2C2T

atomicity N Y Y Y Y Y Y N Y Y Y Y Y
unlinkability N N N N Y N Y Y Y− Y− Y Y Y

indistinguishability N N N N Y N N N N N N N Y
non-collateralization Y Y Y Y Y Y N N Y N Y N Y

required
functionalities

SV #  # # #  # #  # # # #
MTPV    #          
SPVPV   #           
AZCP     #         

HL           #   
TL       # #  # # #  
WT   #           
SC  #    #   #     

TB: third blockchain; ∗ denotes adapted variants of original schemes are compared; Y (resp., N) denotes the corresponding criterion is (resp., is not)
fulfilled; Y− denotes the corresponding criterion is fulfilled in some cases but not consistently; SV: signature verification; MTPV: the verification of
Merkle-tree proofs; SPVPV: the verification of simplified payment verification proofs; AZCP: adapted Zerocash protocol; HL: hashlocks; TL: timelocks;
WT: wrapped tokens; SC: smart contracts; # (resp.,  ) denotes the corresponding functionality is (resp., is not) required on chain.

multiple off-chain payments. We let the deposited amount be
roughly equivalent to the coins withdrawn by Pr on another
blockchain. This unifies the deposit amounts from senders,
excluding transaction fees, and enhances unlinkability since
each sender can only pay Ph for one time.

Step 2: Replacing Supplementary Coins with Deposits.
Since the deposits are now equivalent to the collateralized
coins for Ps, we eliminate collateralization-related steps and
shift the deposit-related steps to replace them.

A2L+-CC is transformed into P2C2T by solving Chal-
lenge 1 and 2.

1.2. Our Contributions

Our contributions can be summarized as follows.
(1) We propose P2C2T, the first cross-chain transfer

scheme that simultaneously addresses atomicity, unlinkabil-
ity, indistinguishability, non-collateralization, and minimiza-
tion of required functionalities. P2C2T primarily leverages
the proposed TA2L scheme to achieve atomicity, unlinkabil-
ity, and indistinguishability. It ensures non-collateralization
by transforming all assets sent from senders to shared
addresses into roughly equivalent ones available to cor-
responding receivers without considering transaction fees.
Additionally, P2C2T incorporates the VTD scheme to re-
move the dependency on timelocks, thus only requiring the
fundamental signature verification functionality on chain.

(2) We provide rigorous definitions of security properties
and formal security proofs for TA2L, based on the proposed
TBCS. For unlinkability and indistinguishability of P2C2T,
we present rigorous definitions and proof sketches with a
game-based setting. Additionally, we offer proof sketches or
detailed discussions on atomicity, griefing attack1 resistance,

1. Griefing attack is described in [4]: Pr initiates numerous requests in
some phase, each requiring Ph to lock a specific amount of coins, while
the corresponding interactions in the next phase are never executed. This
type of attack depletes the resources of Ph, resulting in a form of denial-
of-service attack.

non-collateralization, and the minimality requirement for
signature verification in P2C2T.

(3) We conduct a comparison between P2C2T and a
cutting-edge scheme [20], regarding running time, com-
munication cost, and storage cost. Our comparison demon-
strates that P2C2T achieves a minimum of 85.488% over-
head reduction when achieving a cross-chain transfer. To
further illustrate its privacy and practicality, we also conduct
cross-chain transfers and intra-chain payments using the
Bitcoin testnet [28] and Litecoin testnet [29]. For interested
readers, we present a performance comparison between
A2L+ and TA2L in Appendix C.

2. Related Work

This section reviews related schemes that facilitate cross-
chain transfer based on their technique types. They are
generally categorized into three types: notary, proof relay,
and third blockchain, as reviewed below.

(1) Notary. Schemes using this technique typically rely
on a third party or committee to assist in cross-chain transfer,
such as [14], [16], [19] and their variants [3], [4], [21],
[22], [23]. Zamyatin et al. [14] leveraged multiple off-chain
entities known as vaults and a specialized smart contract
called iSC to enable trustless cross-chain transfer. While
only one blockchain requires the signature verification func-
tionality, the other must be compatible with iSC, which is
used to verify cross-chain proofs and issue wrapped tokens.
Yin et al. [16] employed hidden committees to enable bidi-
rectional asset transfers across two blockchains. Only one
blockchain requires signature verification, while the other
uses smart contracts to create wrapped tokens. Hanzlik et
al. [19] introduced two protocols, the redeem and exchange
protocols, to achieve cross-chain transfer. Unlinkability is
satisfied but timelocks are needed. Non-collateralization is
undermined for the same reason as the variant of [23], as
outlined in Section 1.1. All above schemes provide some
cross-chain verification mechanisms to guarantee atomicity
and do not require collateral for senders except for [19].



However, they share a common requirement: at least one
interconnected blockchain should support more functionali-
ties than signature verification. This dependency undermines
not only indistinguishability but also unlinkability except
for [19], as on-chain nodes can easily identify a sender
and its corresponding receiver. In addition, as explained
in Section 1.1, PCH schemes [3], [4], [21], [22], [23] can
be adapted to achieve cross-chain transfer. However, such
variants often require additional on-chain functionalities,
such as hashlocks [3], timelocks [3], [4], [22], [23], and
smart contracts [21]. Depending on these functionalities
undermines indistinguishability of such schemes. Atomicity
is compromised in [4] as users can exploit a security vulner-
ability to steal coins from the intermediary, as demonstrated
in [23]. Collateralization is essential in [4], [22] for the
same reason as the variant of [23], as described in Section
1.1. Furthermore, while both variants of [21], [22] support
variable-amount cross-chain transfer, their unlinkability is
compromised when payment channels between the hub and
the receivers are closed.

(2) Proof Relay. Schemes employing this technique
generally require parties to submit proofs from the source
chain to the destination chain [13], [15], [17], [18], [20].
Back et al. [17] pioneered a sidechain technology, allowing
assets to move bidirectionally between a parent chain and
a sidechain. This scheme requires one blockchain to gen-
erate a simplified payment verification proof and another
to verify the proof on chain. If the verification passes, the
other blockchain creates or unlocks corresponding wrapped
tokens [30]. Subsequent sidechain schemes aim to reduce
verification costs [13] or explore innovative approaches to
sidechain initialization [18]. However, smart contracts are
needed for a sidechain to verify cross-chain proofs from
the parent chain and create wrapped tokens [13]. Merkle-
tree [31] proofs need to be verified on a parent chain in
the scheme proposed by Gavzi et al. [18]. Xie et al. [15]
introduced a block header relay network for relaying block
headers and corresponding zero-knowledge proofs [32], [33]
to prove locking transactions on the sender chain. In this
work, smart contracts are needed to transfer coins and
verify zero-knowledge proofs. Baldimtsi et al. [20] pro-
posed a scheme for asset transfers across Zerocash-based
blockchains [24]. All above schemes provide some cross-
chain verification mechanisms to guarantee atomicity and do
not require collateral for senders. In addition, The approach
in [20] achieves indistinguishability by mixing cross-chain
transactions with intra-chain ones via OR proofs. Unlinka-
bility is maintained by hiding all transaction states, including
asset sources, destinations, and amount. However, practical
constraints as described in Section 1 limit its applicability.

(3) Third Blockchain. Schemes utilizing this technique
typically use a third blockchain to facilitate cross-chain
transfer [12]. Tian et al. [12] introduced a scheme that relies
on a validation committee, two qualified intermediaries, and
Ethereum [34] as a coordinator to facilitate cross-chain
transfer. Senders are not required to provide collateral, as
they only need to transfer assets to intermediaries that are
approximately equivalent to the assets the receivers will

eventually receive. Only signature verification is required
on interconnected blockchains. However, the receiver gets
ethers rather than expected native coins on the receiver
blockchain as compensation if one intermediary fails to ful-
fill its obligation, which undermines atomicity. Unlinkability
is not assured since the committee can correlate a sender
and a corresponding receiver by simply observing the re-
lationships of transactions on Ethereum and interconnected
blockchains. Indistinguishability is compromised since the
committee can differentiate cross-chain transfer transactions
and regular intra-chain ones by linking a sender and its
corresponding receiver.

Table 1 compares P2C2T with these schemes and shows
that the existing literature still lacks a cross-chain transfer
scheme that can simultaneously addresses atomicity, unlink-
ability, indistinguishability, and non-collateralization, with
minimization of required functionalities.

3. Problem Statement

This section states our problem, followed by necessary
preliminaries.

3.1. Problem

We describe the problem with respect to four aspects,
i.e., scenario description, system model, threat model, and
design goals.

Scenario Description. We primarily consider a cross-
chain transfer scenario. A party Ps on blockchain B1 wishes
to transfer some amount of coins residing on B2 to another
party Pr on B2. However, Ps may not have enough coins
in its asset address on B2. Or Ps may not even have an
asset address on B2. In such a scenario, it is evident that
Ps cannot achieve its goal without the assistance of a third
party.

System Model. The system model is depicted in Fig.
1 where a third party Ph is introduced to aid Ps in the
described scenario. Ph is required to possess asset addresses
(corresponding to A1

h and A2
h shown in Fig. 1) on both B1

and B2, along with sufficient coins in an asset address on
B2. Without loss of generality, we consider the following
case: the sender Ps aims to transfer y coins from B2 to the
receiver Pr, also on B2. To achieve this, Ps pays Ph x coins
(from the address A1

s shown in Fig. 1) on B1 in exchange
for Ph sending y coins to Pr (possessing the address A2

r

shown in Fig. 1) on B2. It is important to note that a single
entity can control both Ps and Pr to obtain coins on B2

using roughly equivalent coins on B1 via P2C2T.
Threat Model. We consider four threats that could

undermine the security of P2C2T. The first three threats are
similar to those of [4] and the fourth one corresponds to
indistinguishability.

(1) Ph is rational and curious. Ph may attempt to get
some coins from Ps without sending enough coins to Pr.
Additionally, Ph may seek to link Ps with the corresponding
Pr.
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Figure 1: System model of P2C2T. In this figure, x−−→
(resp.,

y−−→) represents the transfer of x (resp., y) coins
from one address to another. ⇊ indicates the posting of a
transaction (represented by the part within the dashed box)
on a blockchain.

(2) Pr may launch a griefing attack on Ph. It is worth
noting that Ps cannot initiate a griefing attack on Ph since
Ph locks a specific amount of coins only after receiving a
request from Pr, not Ps.

(3) Ps and the corresponding Pr may collude to steal
coins from Ph.

(4) On-chain observers are curious about cross-chain
transfer transactions and may manage to distinguish these
transactions from regular intra-chain ones.

Design Goals. The design of P2C2T must achieve atom-
icity, unlinkability, and indistinguishability with griefing at-
tack resistance and non-collateralization. In addition, P2C2T
must have minimal requirements with respect to signature
verification for enhancing practicality.

3.2. Preliminaries

Let n ∈ N denote the security parameter, [n] the set
{1, 2, ..., n}, Zn the set {0, 1, ..., n − 1}, and x ←$ X the
uniform sampling of x from the set X . We write y ← A(x)
to denote that a probabilistic polynomial time (PPT) algo-
rithm A on input x, outputs y. If A is a deterministic polyno-
mial time (DPT) algorithm, we use the notation y := A(x).
We also use := to denote tuples. For example, we write
x := (x1, x2) for a tuple x composed of two elements. We
write G to denote a cyclic group of prime order p with
generator g. We assume that the discrete logarithm (DLOG)
problem is hard on G. We use a PPT algorithm GenR(1n) to
generate an instance of a hard relationship based on DLOG
problem. Specifically, (Y, y)← GenR(1n) where Y := y ·g
and y ←$ Zp. We say that a function is negligible if it
vanishes faster than any polynomial.

Two-Party Adaptor Signatures. A two-party adaptor
signature scheme with respect to a hard relationship R and
a digital signature ΠS := (KeyGen, Sign, V erify) with
a message space M satisfying strong existential unforge-
ability [35] generally consists of five algorithms Π2AS :=
(JointKeyGen, JointPreSign, PreV erify,Adapt, Ext).
Two parties (say P1 and P2) get (sk1, pk2, pk) and
(sk2, pk1, pk) respectively by running an interactive
protocol JointKeyGen⟨P1( ), P2( )⟩. Here (pk1, sk1)
and (pk2, sk2) are key pairs consistent with those
of ΠS from the view of any PPT distinguishers.
pk is the joint verification key corresponding to

the secret key shares sk1 and sk2. Then both P1

and P2 receive the pre-signature σ̃ by executing
JointPreSign⟨P1(sk1, pk,m, Y ), P2(sk2, pk,m, Y )⟩.
Here m is the message to be signed and Y is a
statement associated with some witness y such that
(Y, y) ∈ R. Anyone holding the witness y can transform
σ̃ into a final signature σ by running Adapt(y, σ̃).
Conversely, anyone with σ can extract y by executing
Ext(σ, σ̃, Y ). Both σ̃ and σ can be verified publicly by
invoking PreV erify(pk,m, Y, σ̃) and V erify(pk,m, σ)
respectively. Instantiation of Π2AS with respect to ECDSA
and Schnorr signature schemes have been defined [26],
satisfying properties such as two-party pre-signature
correctness, two-party signature unforgeability, two-
party pre-signature adaptability, and two-party witness
extractability similar to [36], [37]. For formal definitions
of these properties, please refer to Appendix A.1.

Commitment Scheme. A commitment scheme con-
sists of two algorithms ΠC := (Commit, V erify). The
prover can commit to a message m by running commit-
ment algorithm (com, decom) ← Commit(m). Subse-
quently, a verifier can employ the verification algorithm
V erify(com, decom,m) to determine whether the mes-
sage m has been committed. The Pedersen commitment
scheme [38] adopted in this paper is unconditionally-hiding
and computationally-biding [39].

Non-Interactive Zero-Knowledge. A non-interactive
zero-knowledge proof scheme ΠNIZK [32], [33] con-
sists of a tuple of three algorithms ΠNIZK :=
(Setup, Prove, V erify). The setup algorithm takes as input
a relationship R and then outputs a common reference string
crs and a trapdoor td. A prover can generate a proof π
to show the validity of a statement x with a witness w
(i.e., (x,w) ∈ R) by running the prover algorithm π ←
Prove(crs, x, w). The proof π can be efficiently checked
by invoking the verification algorithm V erify(crs, x, π).
We require ΠNIZK to satisfy the following properties.

Soundness. It is infeasible for an adversary to output a
valid proof for a statement x where (x, ·) /∈ R.

Zero-Knowledgeness. There exists a simulator that on
input td and x, outputs a valid proof π without the knowl-
edge of w. That is, the prover does not leak any information
about w except the truth of x. For brevity, we omit crs in
writing Prove and V erify in the following text.

Randomizable Signatures. A randomizable signature
scheme, denoted as ΠRS , allows for both signature ran-
domization and signing of committed messages. In ad-
dition to the usual algorithms of a regular signature
scheme, ΠRS includes four additional algorithms: Commit,
SignCom, ExtSign, and RandSign. To obtain a signature
on a message m, a user first computes a commitment
(com, decom)← Commit(m). The user then submits com
along with a proof of knowledge π for verifying com to
the signer. If π is valid, the signer generates σcom by
running SignCom. The user can then extract the signature
σ on m using σ ← ExtSign(decom, σcom). Additionally,
anyone can produce a randomized signature σ′ by exe-
cuting σ′ ← RandSign(σ). ΠRS is instantiated with the



signature scheme [40] which works over type 3 pairings
(p, e,G1,G2,GT ) in this paper. For more details about type
3 pairings, please refer to Appendix A.2.

Linear-only Encryption. Linear-only encryption (LOE)
is a generic homomorphic cryptosystem modeled by giv-
ing access to oracles instead of their corresponding al-
gorithms [41]. With reference to [23], the cryptosystem
can be instantiated with a LOE scheme ΠLOE given
a linearly homomorphic encryption scheme ΠLHE :=
(KeyGen∗, Enc∗, Dec∗, RandEnc∗) over Zp as follows.

KeyGen(1n): Run (sk∗, pk∗) ← KeyGen∗(1n) and
α ←$ Zp. Return skL := (sk∗, α) as the decryption key
and pkL := (pk∗, Enc∗(pk∗, α)) as the encryption key.

Enc(pkL, x): Compute ciphertext c as
(Enc∗(pk∗, x), Enc∗(pk∗, α·x)), where Enc∗(pk∗, α·x) :=
(Enc∗(pk∗, α))x.

Dec(skL, c): Parse c as (c0, c1) and compute x0 ←
Dec∗(sk∗, c0) and x1 ← Dec∗(sk∗, c1). If x1 = α · x0,
then return x0, else return ⊥.

As demonstrated in [23], ΠLOE can resist oblivious
ciphertext sampling and is one-more CCA-A2L (OM-CCA-
A2L) secure under the one-more discrete logarithm (OMDL)
assumption [42]. ΠLHE is instantiated with the encryption
scheme based on a class group with q ∈ N as the up-
per bound of its order [43] in this paper. An algorithm
RandEnc randomizing a ciphertext can be obtained triv-
ially. Specifically, given input c := (c0, c1) and r ←$

Zq, RandEnc outputs c′ by running RandEnc(c, r) :=
(RandEnc∗(c0, r), RandEnc∗(c1, r)). For additional de-
tails about OM-CCA-A2L security, please refer to Ap-
pendix A.3.

Verifiable Timed Discrete Logarithm. A VTD
scheme [5], [27] with respect to G involves two par-
ties: a committer and a verifier. Specifically, a VTD
scheme ΠV TD comprises four algorithms ΠV TD :=
(Commit, V erify,Open, ForceOp). The committer gen-
erates a timed commitment of timing hardness T for a value
x ∈ Zp and a proof π by running (C, π)← Commit(x, T ).
Then the committer sends (H,C, π) to the verifier, where
H := x ·g. Next the verifier checks if the value x embedded
in C satisfies H = x · g by invoking V erify(H,C, π).
The committer can open the commitment C by running
(x, r) := Open(C), where r is used in generating C.
Finally, the verifier can learn the value x in time T by
running x ← ForceOp(C). A secure VTD scheme must
satisfy the following properties.

Soundness. The verifier is convinced that, given C, the
algorithm ForceOp can produce the value x in time T .

Privacy. All polynomial time algorithms whose running
time is at most t (where t < T ) succeed in learning x from
C and π with at most negligible probability.

Synchronization Puzzles. A synchronization puzzle
protocol [3], [4], [23] involves three parties (say Ps, Pr and
Ph). This protocol enables Pr to get a signature from Ph

on some message (say mHR) only if Ph obtains a signature
from Ps on the other message (say mSH ) with the following
properties.

Blindness. Ph cannot link some Ps with the correspond-
ing Pr when multiple sender-receiver pairs are involved.

Unlockability. If Ph obtains a signature from Ps on
mSH , Pr can get a signature from Ph on mHR.

Unforgeability. If Ph fails to obtain a signature from Ps

on mSH , Pr cannot get a signature from Ph on mHR.

4. TA2L

In this section, we first introduce TBCS with TA2L serv-
ing as an instance. Then we describe TA2L, the cornerstone
of P2C2T. We finally prove the security of TA2L.

4.1. Threshold Blind Conditional Signatures

TBCS is performed among Ps, Ph, and Pr. Its interfaces
and associated security properties are defined below.

Definition 1 (Threshold Blind Conditional Signa-
tures). A threshold blind conditional signature ΠTBCS :=
(Setup, Promise, Solving,Open) is defined with respect
to a two-party adaptor signature scheme Π2AS :=
(JointKeyGen, JointPreSign, PreV erify,Adapt, Ext)
and a linear-only encryption scheme ΠLOE :=
(KeyGen,Enc,Dec,RandEnc) as follows.

(1) Setup(1n) runs the following algorithms.
1) (skL, pkL)← ΠLOE .KeyGen(1n).
2) ({sk0s, pk

0
h1, pk1}, {sk

0
h1, pk

0
s, pk1}) ←

Π2AS .JointKeyGen⟨Ps( ), Ph( )⟩.
3) ({sk0r, pk

0
h2, pk2}, {sk

0
h2, pk

0
r, pk2}) ←

Π2AS .JointKeyGen⟨Pr( ), Ph( )⟩.
(2) (⊥, {τ,⊥})←

Promise

〈
Ph(sk

L, pkL, sk0h2, pk2,mHR)

Pr(sk
0
r, pk

L, pk2,mHR)

〉
is an inter-

active protocol between Ph (with inputs the decryption key
skL,the encryption key pkL, the signing key share sk0h2,
the joint verification key pk2, and a message mHR) and Pr

(with inputs the signing key share sk0r , the encryption key
pkL, the joint verification key pk2, and a message mHR).
It returns ⊥ to Ph and either a puzzle τ or ⊥ to Pr.

(3) ({(σSH , sr),⊥}, {σSH ,⊥})←

Solving

〈
Ps(sk

0
s, pk1, τr, pk

L,mSH)

Ph(sk
0
h1, sk

L, pk1,mSH)

〉
is an interactive

protocol between Ps (with inputs the signing key share sk0s,
the joint verification key pk1, a puzzle τr, the encryption key
pkL, and a message mSH ) and Ph (with inputs the signing
key share sk0h1, the decryption key skL, the joint verification
key pk1, and a message mSH ). It returns either a signature
σSH (Ps additionally receives a secret sr) or ⊥ to both Ps

and Ph.
(4) {σHR,⊥} := Open(τ, sr) is a DPT algorithm that

takes as input a puzzle τ and a secret sr. It returns a
signature σHR or ⊥.

We defer the formal definitions of correctness (Defini-
tion 2) and security properties in a game-based setting for
ΠTBCS to Appendix B. These properties include blindness
(Definition 3), unlockability (Definition 4), and unforgeabil-
ity (Definition 5).



Public parameters: group description (G, g, p), message mHR

PromisePh
(skL, pkL, sk0h2, pk2) PromisePr

(sk0r, pk
L, pk2)

1: (Y, s)← GenR(1n)

2: c← ΠLOE .Enc(pkL, s)

3: πE ← ΠNIZK .P rove(stE := (Y, c), s, skL)

4:
(Y,c,πE)−−−−−→

5: Execute Π2AS .JointPreSign⟨Ph(sk
0
h2, pk2,mHR, Y ), Pr(sk

0
r, pk2,mHR, Y )⟩ jointly. Both Ph and Pr receive σ̃HR.

6: If ΠNIZK .V erify(stE := (Y, c), πE) ̸= 1, return ⊥
7: r′ ←$ Zq, Y

′ := r′ · Y
8: c′ ← ΠLOE .RandEnc(c, r′)
9: return ⊥ return τ := (mHR, σ̃HR, r

′, (Y, c), (Y ′, c′))

Figure 2: Promise protocol of TA2L

Definition 6 (Security). ΠTBCS is secure if it satisfies
blindness, unlockability, and unforgeability.

4.2. TA2L Design

As an instance of both TBCS and synchronization puzzle
protocols, TA2L involves four distinct phases, i.e., setup,
promise, solving, and open, each featuring corresponding
protocols or algorithms outlined below.

Setup Phase. In setup phase, Ps, Pr, and Ph need to
complete the following steps.

(1) Ph runs ΠLOE .KeyGen to generate its keys and
publishes the encryption key.

(2) Ps invokes Π2AS .JointKeyGen by interacting
with Ph, then Ps and Ph receive (sk0s, pk

0
h1, pk1) and

(sk0h1, pk
0
s, pk1) respectively.

(3) Pr invokes Π2AS .JointKeyGen by interacting
with Ph, then Pr and Ph receive (sk0r, pk

0
h2, pk2) and

(sk0h2, pk
0
r, pk2) respectively.

Promise Phase. In promise phase, there are two required
procedures presented below.

(1) Ph and Pr execute the promise protocol shown in
Fig. 2. Specifically, Ph acquires the random s and then
obtains a partial puzzle (Y, c) and its proof πE (Lines
1-3 in Fig. 2). Ph shares the puzzle and proof, and in-
vokes Π2AS .JointPreSign with Pr. They compute a pre-
signature σ̃HR on mHR (Line 5 in Fig. 2). Next Pr verifies
the puzzle and randomizes it if the verification is successful
(Lines 6-8 in Fig. 2). As a result, Pr gets a complete puzzle
τ := (mHR, σ̃HR, r

′, (Y, c), (Y ′, c′)) (Line 9 in Fig. 2).
(2) Pr sends a partial puzzle τr := (Y ′, c′) to Ps.
Solving Phase. In solving phase, there are two required

procedures presented below.
(1) Ps and Ph perform the solving protocol shown in

Fig. 3. Specifically, Ps re-randomizes τr from Pr and gets
(Y ′′, c′′) (Lines 1-2 in Fig. 3). Then Ps shares (Y ′′, c′′)
with Ph. Next Ph verifies the validity of (Y ′′, c′′) (Lines
4-5 in Fig. 3). If the verification passes, Ph invokes
Π2AS .JointPreSign with Ps. Then they receive a pre-
signature σ̃SH on mSH (Line 6 in Fig. 3). Ph adapts σ̃HR

into a final signature σSH and sends σSH to Ps (Lines
7-8 in Fig. 3). Next Ps extracts and verifies the witness
corresponding to Y ′′ by performing Lines 9-10 in Fig. 3.
Last Ps acquires the solution sr of τr (Line 11 in Fig. 3).

(2) Ps sends sr to Pr.
Open Phase. In open phase, Pr follows the open al-

gorithm shown in Fig. 7. Specifically, Pr first acquires the
witness s by computing s := sr ·(r′)−1. Then Pr transforms
the pre-signature σ̃HR into the final signature by invoking
σHR ← Π2AS .Adapt(s, σ̃HR).

4.3. Security Proofs

Theorem 1. Let ΠLOE be a linear-only encryption
scheme, Π2AS a secure two-party adaptor signature scheme,
and ΠNIZK a sound and zero-knowledge proof scheme.
Assuming the hardness of OMDL, TA2L is a secure threshold
blind conditional signature.

The formal proof of Theorem 1 is given in Appendix D.

5. P2C2T

In this section, we respectively present design assump-
tions, scheme description, and security analysis of P2C2T.

5.1. Design Assumptions

The following assumptions are pre-set to allow us to
focus on the target issues and for ease of presentation.

(1) The communication channel is secure and authenti-
cated. In addition, the communication channel between Ps

and Pr are anonymous.
(2) The interconnected blockchains can securely manage

a sequence of transactions based on some intra-chain secu-
rity assumptions. For example, we assume that a majority
hashing power or stake used to maintain interconnected
blockchains is never controlled by any adversaries.

(3) The scheme operates in epochs, with protocols and
algorithms executed in phases. The duration of an epoch is
the sum of the duration of all phases, each of which should
be longer than the time required for the corresponding
protocol or algorithm. The time required varies based on
factors such as transaction finalization time and computing
node performance. All parties have access to a global clock
and are aware of the epochs and phases they are in.

(4) Ph cannot be undermined by centralization risks such
as single point failure. To achieve this as much as possible,
we can equip Ph with robust infrastructure, including power-
ful machines and multiple backup servers. Note that multiple



Public parameters: group description (G, g, p), message mSH

SolvingPs
(sk0s, pk1, τr := (Y ′, c′), pkL) SolvingPh

(sk0h1, sk
L, pk1)

1: r′′ ←$ Zq, Y
′′ := r′′ · Y ′

2: c′′ ← ΠLOE .RandEnc(c′, r′′)

3:
(Y ′′,c′′)−−−−−→

4: s′′ := ΠLOE .Dec(skL, c′′)
5: If Y ′′ ̸= s′′ · g, return ⊥
6: Execute Π2AS .JointPreSign⟨Ph(sk

0
h1, pk1,mSH , Y ′′), Ps(sk

0
s, pk1,mSH , Y ′′)⟩ jointly. Both Ps and Ph receive σ̃SH .

7: σSH ← Π2AS .Adapt(s′′, σ̃SH)

8: σSH←−−−
9: s′′ ← Π2AS .Ext(σSH , σ̃SH , Y ′′)

10: If s′′ =⊥, return ⊥
11: sr := s′′ · (r′′)−1

12: return (σSH , sr) return σSH

Figure 3: Solving protocol of TA2L

Ph could exist in the system to offer the same service, thus
it is possible for the senders to select the most reputable one
to serve cross-chain transfer, mitigating single Ph failure.

(5) Coins received by Ph and Pr remain constant within
a given epoch. This requires that x and y remain constant
during the given epoch. To incentivize Ph, the value of x
coins residing on B1 is no less than that of the sum of y
coins and transaction fees on B2.
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Figure 4: Overview of P2C2T. Here,
...
Bi refers to coins on

Bi, i ∈ {1, 2}.

5.2. Scheme Description

We present the overview of P2C2T and then introduce
P2C2T in detail.

P2C2T Overview. P2C2T operates in epochs, consisting
of six phases: system setup, transfer lock, puzzle promising,
puzzle solving, transfer completion, and transfer timeout.
The key local and interactive operations among Ps, Ph, and

Pr in P2C2T are illustrated in Fig. 4. During the system
setup phase, Ps, Ph, and Pr generate necessary parameters.
In the transfer lock phase, Ps locks x + ∆1 coins on B1,
with ∆1 coins reserved for transaction fees for subsequent
transactions involving these locked coins, after receiving a
commitment (corresponding to [sech]T1 in Fig. 4) on secret
sech from Ph. This secret, preventing perpetual locking, can
be disclosed to Ps in time T1. Subsequently, Ph sends a valid
request token T to Ps, who randomizes T (corresponding
to Rand(T) in Fig. 4) and forwards the result T′ to Pr.
During the puzzle promising phase, Ph locks y +∆2 coins
on B2, with ∆2 coins reserved for transaction fees for
subsequent transactions involving these locked coins, after
receiving a valid token T′ and a commitment (corresponding
to [secr]T2 in Fig. 4) on secret secr from Pr. Similar to
sech, secr prevents perpetual locking and can be revealed
to Ph in time T2. Ph then initiates ΠTA2L.P romise with
Pr, generating a puzzle τ for Pr, which is subsequently
sent to Ps. During the puzzle solving phase, Ps collaborates
with Ph using ΠTA2L.Solving, producing a solution s′ to
aid Ph in withdrawing x coins on B1. Simultaneously, Ps

obtains a solution s to τ and transmits it to Pr. In the
transfer completion phase, Pr can withdraw y coins on B2

by posting a transfer transaction with the aid of s. Finally,
in the transfer timeout phase, Ps and Ph can access sech
and secr, respectively, after a predefined duration (T1 and
T2, respectively). If coins locked on B1 (resp., B2) by a
lock transaction are not withdrawn by the corresponding
transfer transaction, Ps (resp., Ph) can reclaim these coins
by submitting the appropriate redeem transaction with the
assistance of sech (resp., secr).

P2C2T Design Details. We introduce specific algo-
rithms or protocols invoked in corresponding phases, as
shown below.

(1) System Setup Phase. In addition to the setup phase
of TA2L, Ph and each user must exchange their public
keys privately for deriving asset addresses. Specifically, Ps

and Pr share pks and pkr with Ph, respectively, while Ph

sends pkh1 and pkh2 to Ps and Pr, respectively. Here,
asset addresses derived from pks and pkh1 are on B1.
Asset addresses derived from pkr and pkh2 are on B2. In
addition, Ph runs ΠRS .KeyGen to generate (skRS , pkRS)



Public parameters: type 3 pairings description (p, e,G1,G2,GT ), message txlock
s

TLockPs(sks, pk
RS) TLockPh

(sk0h1, sk
RS)

1: (C1, π1)← ΠV TD.Commit(sk0h1, T1)

2:
(C1,π1)←−−−−−

3: If ΠV TD.V erify(pk0h1, C1, π1) ̸= 1, return ⊥
4: Start solving ΠV TD.ForceOp(C1)
5: σlock

s ← ΠS .Sign(sks, tx
lock
s )

6: Post (txlock
s , σlock

s ) on B1 and get the transaction identifier idlocks

7: tid←$ Zp

8: (com, decom)← ΠRS .Commit(tid)
9: πB ← ΠNIZK .P rove(stB := com, decom, tid)

10:
(πB ,com,idlock

s )−−−−−−−−−−→
11: If ΠNIZK .V erify(stB := com, πB) ̸= 1, return ⊥
12: If idlocks is not finalized on B1, return ⊥
13: σcom ← ΠRS .SignCom(skRS , com)

14: σcom←−−−
15: σtid ← ΠRS .ExtSign(decom, σcom)

16: If ΠRS .V erify(pkRS , tid, σtid) ̸= 1, return ⊥
17: σ′

tid ← ΠRS .RandSign(σtid)
18: Send (tid, σ′

tid) to Pr

19: return ⊥ return ⊥

Figure 5: Transfer lock protocol of P2C2T

and publishes pkRS . Ph also performs the setup algorithm
of time-lock puzzles [44] utilized in the VTD scheme [5],
[27] to generate necessary public parameters.

(2) Transfer Lock Phase. In this phase, Ps and Ph

executes the transfer lock (TLock) protocol shown in Fig. 5.
For convenience of notation, we use pki

v−→ pkj to denote
that some sender sends v coins residing in the asset address
derived from its public key pki to the asset address derived
from public key pkj of some receiver. The lock transaction
txlock

s in public parameters signifies pks
x+∆1−−−−→ pk1, where

∆1 is the amount of transaction fees. Broadly speaking,
(txlock

s , σlock
s ) can be utilized to verify the validity of txlock

s ,
as all necessary data except signatures for authenticating
txlock

s is publicly accessible2. It can be seen that Ps has to
first lock enough assets to get the signature under pkRS on
the request token if both parties follow this protocol.

(3) Puzzle Promising Phase. In this phase, Pr and
Ph run the puzzle promising (PPromising) protocol shown
in Fig. 6. Here the set T is maintained locally by Ph.
The lock transaction txlock

h2 in public parameters means
pkh2

y+∆2−−−−→ pk2, where ∆2 is the amount of transaction
fees. The transfer transaction txtrans

r means pk2
y−→ pkr. It

can be seen that this protocol tie together authentication of
txtrans

r for Pr and leakage of a solution to the partial puzzle
(Y, c) from Ph.

(4) Puzzle Solving Phase. In this phase, Ps and
Ph invoke the puzzle solving protocol. Specifically,
Ps and Ph first execute ({(σtrans

h1 , sr)}, {σtrans
h1 }) ←

ΠTA2L.Solving

〈
Ps(sk

0
s, pk1, τr, pk

L, txtrans
h1 )

Ph(sk
0
h1, sk

L, pk1, tx
trans
h1 )

〉
with a

difference that Ph needs to post (txtrans
h1 , σtrans

h1 ) on B1

before sending σtrans
h1 to Ps. Here σtrans

h1 denotes the sig-

2. Our design goals do not consider transactions requiring more on-chain
functionalities than signature verification.

nature under pk1 on txtrans
h1 , indicating pk1

x−→ pkh1. Then
Ps sends sr to Pr. It can be seen that Ps and Pr get the
solution sr to the puzzle τr after Ph achieves authentication
of txtrans

h1 if both Ps and Ph follow this protocol.
(5) Transfer Completion Phase. In this phase, Pr exe-

cutes the transfer completion algorithm. Specifically, Pr first
executes ΠTA2L.Open(τ, sr) to get the signature σtrans

r .
Then Pr posts (txtrans

r , σtrans
r ) on B2.

(6) Transfer Timeout Phase. If there are still some
coins in the asset address derived from pk1 (resp., pk2)
in this phase, Ps (resp., Ph) runs the transfer timeout
(TTimeout) algorithm shown in Fig. 8 (resp., Fig. 9)
to redeem these coins. Here ΠV TD.ForceOp(C1) (resp.,
ΠV TD.ForceOp(C2)) can output a secret key share of Ph

(resp., Pr) if the earliest time for forcibly opening C1

(resp., C2) is set at the beginning of this phase by carefully
choosing a timing hardness T1 (resp., T2). ⋄ denotes a binary
operator. For example, it is the multiplication operator (resp.,
addition operator) with respect to ECDSA (resp., Schnorr)
signature scheme-based Π2AS [26]. The redeem transaction
txredeem

s (resp., txredeem
h2 ) means that pk1

x−→ pk′s (resp.,
pk2

y−→ pk′h2) where pk′s (resp., pk′h2) is newly generated
by Ps (resp., Ph). If no coin remains in the asset address
derived from pk1 (resp., pk2) in this phase, Ps (resp., Ph)
does nothing.

Discussion. Non-collateralization is satisfied since the
coins sent from Ps to a shared address (Line 6 in Fig. 5)
are exchanged for roughly equivalent coins from Ph to Pr

(Line 8 in Fig. 6 and the step of posting a signed transaction
in the transfer completion algorithm) without considering
transaction fees. The minimality requirement for signature
verification is ensured because the only on-chain operation
involves posting signed transactions awaiting authentication
(Line 6 in Fig. 5, Line 8 in Fig. 6, the step of posting
a signed transaction in puzzle solving protocol, transfer



Public parameters: group description (G, g, p), messages txlock
h2 , txtrans

r

PPromisingPh
((pkL, skL), skh2, pk

RS) PPromisingPr
(tid, σ′

tid)

1: (C2, π2)← ΠV TD.Commit(sk0r, T2)

2:
(tid,σ′

tid,C2,π2)←−−−−−−−−−−
3: If tid ∈ T or ΠRS .V erify(pkRS , tid, σ′

tid) ̸= 1, return ⊥
4: Add tid into T
5: If ΠV TD.V erify(pk0r, C2, π2) ̸= 1, return ⊥
6: Start solving ΠV TD.ForceOp(C2)
7: σlock

h2 ← ΠS .Sign(skh2, tx
lock
h2 )

8: Post (txlock
h2 , σlock

h2 ) on B2 and get the transaction identifier idlockh2

9:
idlock

h2−−−−→
10: Ph (with inputs (skL, pkL, sk0h2, pk2, tx

trans
r )) invokes ΠTA2L.P romise with Pr (with inputs (sk0r, pk

L,
pk2, tx

trans
r )). Pr receives τ := (txtrans

r , σ̃trans
r , r′, (Y, c), (Y ′, c′)).

11: If idlockh2 is not finalized on B2, return ⊥
12: Send τr := (Y ′, c′) to Ps

13: return T return τ

Figure 6: Puzzle promising protocol of P2C2T

Open(τ, sr)
Parse τ := (·, σ̃HR, r

′, ·, ·)
s := sr · (r′)−1

σHR ← Π2AS .Adapt(s, σ̃HR)
return σHR

Figure 7: Open algorithm of TA2L

TTimeout(sk0s)

sk0h1 := ΠV TD.ForceOp(C1)
sk1 := sk0s ⋄ sk

0
h1

σredeem
s ← ΠS .Sign(sk1, tx

redeem
s )

Post (txredeem
s , σredeem

s ) on B1

return (txredeem
s , σredeem

s )

Figure 8: Transfer timeout algorithm
of P2C2T on Ps side

TTimeout(sk0h2)

sk0r := ΠV TD.ForceOp(C2)
sk2 := sk0h2 ⋄ sk

0
r

σredeem
h2 ← ΠS .Sign(sk2, tx

redeem
h2 )

Post (txredeem
h2 , σredeem

h2 ) on B2

return (txredeem
h2 , σredeem

h2 )

Figure 9: Transfer timeout algorithm
of P2C2T on Ph side

completion algorithm, and transfer timeout algorithm).

5.3. Security Analysis

In the following, we present the definitions and proof
sketches of atomicity, unlinkability, and indistinguishability.
We also provide a comprehensive discussion focusing on
scenarios where unlinkability is compromised and elucidat-
ing the mechanisms by which P2C2T effectively withstands
griefing attacks.

Definition 7 (Atomicity). P2C2T satisfies atomicity if
for all PPT parties Ps, Ph, and Pr, the following conditions
hold:

(1) If Ps pays Ph, Ph pays Pr (The PPT adversary plays
the role of Ph.).

(2) If Ph pays Pr, Ps pays Ph (The PPT adversary plays
the role of Ps and Pr.).

(3) If some coins still remain in the asset address derived
from pk1 (resp., pk2) in the transfer timeout phase, Ps (resp.,
Ph) can redeem these coins (The PPT adversary plays the
role of Ph (resp., Pr).).

Theorem 2. Assuming the unlockability and unforgeabil-
ity of TA2L, the security of ΠV TD, P2C2T satisfies atomicity.

Proof (Sketch). If the atomicity of P2C2T is broken, there
are the following possible cases according to Definition 7.

(1) Ps pays Ph, but Pr cannot receive coins from Ph.
This means either Ph gets signature from Ps on txtrans

h1
while Pr cannot get signature from Ph on txtrans

r or Ph

opens C2 before transfer completion phase. The former case

implies the unlockability of TA2L is broken and the latter
case implies the privacy of ΠV TD is broken.

(2) Ph pays Pr, but Ph cannot receive coins from Ps.
This means either Pr gets signature from Ph on txtrans

r

while Ph cannot get signature from Ps on txtrans
h1 or Ps

opens C1 before puzzle solving phase. The former case
implies the unforgeability of TA2L is broken and the latter
case implies the privacy of ΠV TD is broken.

(3) There remain some coins in the asset address de-
rived from pk1 (resp., pk2) in transfer timeout phase, but
Ps (resp., Ph) cannot redeem these coins. This means
Ps (resp., Ph) cannot get sk0h1 (resp., sk0r) by running
ΠV TD.ForceOp(C1) (resp., ΠV TD.ForceOp(C2)) in time
T1 (resp., T2), which violates the soundness of ΠV TD.

Unlinkability Game. Let the adversary A playing the
role of Ph choose two candidate senders Ps,0, Ps,1 and
receivers Pr,0, Pr,1, and inform the challenger. Then the
challenger runs b ←$ {0, 1}. If b = 0, the challenger
lets the sender-receiver pairs (Ps,0, Pr,0) and (Ps,1, Pr,1)
run P2C2T with A. Otherwise, (Ps,0, Pr,1) and (Ps,1, Pr,0)
are directed to invoke P2C2T with A. Let Ki denote the
transcript (e.g., exchanged messages and intermediate values
or computations) of A after the cross-chain transfer is
completed successfully when b = i, where i ∈ {0, 1}. Then
the advantage of A winning the game is Prunl := Pr[b′ =
b : b′ ← AKb , b←$ {0, 1}].

Definition 8 (Unlinkability). P2C2T satisfies unlink-
ability if there exists a negligible function negl(n) such



that for all n ∈ N and all PPT adversaries A, Prunl ≤
1
2 + negl(n).

Theorem 3. Assuming the relatively long duration of
phases, the security of ΠRS , the blindness of TA2L, and the
anonymity of communication channel between Ps and Pr,
P2C2T satisfies unlinkability.

Proof (Sketch). If the unlinkability of P2C2T is compro-
mised, it means A can link Ps,i with the counterparty
Pr,j through some transcripts, where i, j ∈ {0, 1} and
their values are determined by the internal coin tosses of
unlinkability game. Hence, there are four potential cases as
follows according to possible transcripts.

(1) A associates Ps,i with the corresponding Pr,j by
associating (C1, π1) from transfer lock phase with (C2, π2)
from puzzle promise phase. It implies linkability between
the timing hardnesses of these two message pairs. This
is contradictory, as both timing hardnesses can be freely
set as relatively random values during phases, given the
assumption of the phases having a relatively long duration.

(2) A associates Ps,i with the corresponding Pr,j by
associating (com, σcom) from transfer lock phase with
(tid, σ′

tid) from puzzle promise phase. This means A can
learn some related information of tid from its commitment
com, which implies the unconditionally-hiding property of
commitment scheme ΠRS uses is broken.

(3) A associates Ps,i with the corresponding Pr,j

by associating (Y ′′, c′′, txlock
s,i , σlock

s,i , txtrans
h1 , σtrans

h1 ) with
(Y, c, txlock

h2 , σlock
h2 , txtrans

r,j , σtrans
r,j ). This means A can ei-

ther discern the number of transferred coins in txtrans
h1

compared to other transfer transactions on B1, and similarly
for txtrans

r,j on B2, or succeed in the blindness experiment
of TA2L. However, the former case is infeasible since the
number of transferred coins in all transfer transactions on
each interconnected blockchain remains constant within an
epoch, making them indistinguishable. The latter case con-
tradicts with the blindness of TA2L.

(4) A associates Ps,i with the corresponding Pr,j by
monitoring communication messages (e.g., τr and sr) be-
tween Ps,i and Pr,j . This means A can perceive the ses-
sions between Ps,i and Pr,j , which violates the assumed
anonymity of the communication channel between Ps,i and
Pr,j .

Discussion. If parties act irrationally, the following cases
may happen, which undermine the unlinkability of P2C2T.

(1) At least one of Ps and Pr is corrupted and colludes
with A. The corrupt party just needs to reveal the identity
of the counterparty to A. Then A can link Ps with the
corresponding Pr.

(2) A launches an abort attack, which is common for
epoch-based synchronization puzzle protocols. Then the
sender and the receiver fail to complete cross-chain transfer
can be linked, provided that all other senders and receivers
succeed. The abort attack includes two cases as listed below.

1) A refuses to interact with some Pr in the puzzle
promising phase. It results in the abort of the puzzle solving

phase for some Ps that has run the transfer lock protocol
successfully with A before.

2) A refuses to interact with some Ps in the puzzle solv-
ing phase. It results in the abort of the transfer completion
phase for some Pr that has invoked the puzzle promising
protocol successfully with A before.

We note that in our threat model, we have assumed Ph

to be rational. Therefore, Ph would refrain from launching
abort attacks in order to preserve its prestige.

Indistinguishability Game. Let the challenger playing
the role of a PPT party (Ps or Ph or Pr) randomly select
two transaction-signature pairs (tx0, σ0) and (tx1, σ1) and
send them to the adversary A playing the role of an on-
chain observer. Let D(·) be a discriminant function of A.
Given transaction-signature pair (tx, σ), let D(tx, σ) = 0
(resp., D(tx, σ) = 1) denote the assertion of A that tx is a
cross-chain transfer (resp., regular intra-chain) transaction.
Then the advantage of A winning the game is Prind :=
|Pr[D(tx0, σ0) = 0]− Pr[D(tx1, σ1) = 0]|.

Definition 9 (Indistinguishability). P2C2T satisfies in-
distinguishability if there exists a negligible function negl(n)
such that for all n ∈ N and all PPT adversaries A,
Prind ≤ negl(n).

Theorem 4. Assuming the security of ΠS and Π2AS ,
P2C2T satisfies indistinguishability.

Proof (Sketch). Regular intra-chain transaction-signature
pairs are used to compare with cross-chain transfer
transaction-signature pairs in the indistinguishability
game. As can be seen in description of P2C2T, there
are six transaction-signature pairs related to cross-
chain transfer, i.e., (txlock

s , σlock
s ), (txlock

h2 , σlock
h2 ),

(txtrans
h1 , σtrans

h1 ), (txtrans
r , σtrans

r ), (txredeem
s , σredeem

s ),
and (txredeem

h2 , σredeem
h2 ).

P2C2T introduces several defense measures. It requires
only on-chain signature verification functionality. Addition-
ally, Ph and users are encouraged to create intra-chain trans-
actions with identical coin amounts as cross-chain transac-
tions within the same epoch. They must also privately share
public keys for deriving asset addresses. If, despite these
precautions, transaction-signature pairs remain distinguish-
able by an on-chain observer, two possible scenarios may
arise, as outlined below.

(1) Two kinds of transactions themselves are distin-
guishable. It means shared addresses are distinguishable
from non-shared ones, which implies the distinguishability
of joint verification keys and regular verification keys. It
further implies the distinguishability of two statistically
indistinguishable elements in G since two kinds of keys
above are generated randomly in G, which is a contraction.

(2) Signatures on cross-chain transfer transactions and
the verification of them are distinguishable from those of
regular intra-chain transactions. It means either signing keys
or verification algorithms of these two kinds of signatures
are distinguishable. The former implies the distinguishability
of two random values in Zp, which is impossible. The latter
does not hold since these two kinds of signatures adopt the
same verification algorithms, i.e., ΠS .V erify.



Discussion on griefing attack resistance. We argue
that assuming the soundness and zero-knowledgeness of
ΠNIZK , the strong existential unforgeability of digital sig-
nature derived by ΠRS , the security of transactions on in-
terconnected blockchains, and the security of set T , P2C2T
satisfies griefing attack resistance. Specially, Ph can verify
the commitment of the request token by running the verifi-
cation algorithm of ΠNIZK and determine whether txlock

s is
finalized on B1 by querying idlocks . If both verifications are
successful, Ph signs the request token for Ps. In addition,
Ph can check if the request token is replayed maliciously
by verifying if tid ∈ T . Hence, if Pr successfully initiates a
request to Ph in the puzzle promising phase, Ps must have
locked corresponding coins on B1 in the transfer lock phase.
And then if Pr does not honestly cooperate with Ph, Ps

has to wait for unlocking its locked coins until the transfer
timeout phase. Thus, a griefing attack leads to a loss for Ps,
which is not desirable for Pr.

6. Performance Evaluation

In this section, we first evaluate the performance of
P2C2T by comparing it experimentally with a baseline
scheme described in [20] in terms of running time (RT),
communication cost (CC), and storage cost (SC). Then, we
illustrate the privacy and practicality of P2C2T by conduct-
ing cross-chain transfers and intra-chain payments using the
Bitcoin testnet and Litecoin testnet.

6.1. Performance Comparison

In this subsection, we set up experiments, present exper-
imental results, and compare them with a baseline scheme
described in [20]. We choose the scheme in [20] as the base-
line for comparison because it closely aligns with P2C2T in
terms of specified requirements, as indicated in Table 1.

6.1.1. Experimental Setup. We now introduce the experi-
mental setup in terms of evaluation metrics and experimental
settings.

Evaluation Metrics. We use RT, CC, and SC as evalu-
ation metrics based on the following factors:

(1) RT and CC are widely accepted metrics for as-
sessing the performance of the synchronization puzzle pro-
tocol [3], [4]. SC represents a critical area of improve-
ment for Zerocash-based blockchains; indeed the baseline
scheme [20] is specifically designed for interconnecting
these blockchains.

(2) These metrics not only directly gauge off-chain
performance but are also significant for on-chain assess-
ments. For instance, transaction finalization time is integral
to the overall RT, and CC encompasses transaction byte
size, which influences transaction fees on some blockchains
such as Bitcoin. Parties responsible for finalizing blocks
have to store all transaction-related data locally, leading to
significant SC.

Experimental Settings. For the scheme in [20], we
adopt a Merkle tree depth of 32 to store coin commit-
ments, aligning with the depths used in Sapling and Orchard
shielded pools of Zcash blockchain [45], an implementation
of Zerocash with security fixes and performance improve-
ments. We incorporate a bit 1 into coin commitments as
a flag to indicate cross-chain transactions and a bit 0 for
intra-chain transactions.

For P2C2T, we employ the secp256k1 curve [46], which
is also used in Bitcoin. With reference to [27], the param-
eters for ΠV TD are set as follows: a statistical parameter-
threshold pair of (30,15) for the cut-and-choose proof, a
security parameter of 30 for range proofs, a 320-bit integer
for the interval parameter in range proofs, a timing hardness
T = 1000000 and a 1024-bit integer for the RSA integer in
time-lock puzzles [44].

Experimental tests are conducted with the following
simplifications:

(1) For the scheme in [20], we focus on testing
its primary overhead, particularly related to zk-SNARKs
schemes [47] (say ΠZKS , a kind of ΠNIZK) and relayed
block headers. We exclude additional overhead from OR
proofs, signing, and encrypting operations, as these items
are not discussed or instantiated in [20].

(2) Regarding P2C2T, we do not measure the transfer
timeout algorithm, which primarily acts as a deterrent for
dishonest participants. In addition, we focus exclusively
on schemes utilizing the ECDSA signature scheme, as it
is the most widely used signature scheme in mainstream
blockchains and supports two-party adaptor signatures.

(3) Comparing the on-chain overhead of these two
schemes is inconclusive because they target at different
blockchains in cross-chain transfer. P2C2T operates on
blockchains with unshielded asset addresses, like Bitcoin
addresses, while the scheme in [20] requires operation on
shielded addresses, such as those used in Zcash. Thus, we
cannot compare their operation performance through cross-
chain transfer between the Bitcoin testnet and the Litecoin
testnet. In our assessment of RT, we still identify necessary
on-chain overhead for a more comprehensive comparison.
Specifically, we use the time taken for verifying transactions
from the perspective of cryptographic operations to simulate
the on-chain RT. This verification process includes verify-
ing signatures in P2C2T and zk-SNARKs proofs in [20]3.
All operations other than these verifications belong to the
off-chain part. When evaluating CC and SC, we do not
differentiate between the off-chain and on-chain parts to
simplify our performance analysis. We focus on reusable
data in multiple cross-chain transfers when evaluating SC.

We implement the scheme in [20] using a C++ li-
brary [48] for the Zerocash protocol. Additionally, we
develop P2C2T in the C language, relying on the RELIC
library [49] and the GMP library [50] for cryptographic
operations, the PARI library [51] for arithmetic oper-
ations in class groups, and the ZeroMQ library [52]

3. In reality, on-chain signature verification is also needed in [20] to
ensure transaction non-malleability [24]. We do not measure RT of it based
on the simplifications discussed before.



for message delivery. The source code is available at
https://github.com/smallfrog/ptoctot. Our experiments are
conducted on a single machine running Ubuntu 20.04 LTS,
equipped with a 2.50GHz Intel Core i5-3210M processor, 4
cores, and 12GB of RAM.

6.1.2. Experimental Results. We denote by m the num-
ber of finalized cross-chain transfers between senders and
receivers. The experimental results presented below are the
averages obtained from 20 implementations to ensure ro-
bustness.

For the scheme in [20], we test the performance of the
zk-SNARKs scheme for proving and verifying transactions
with any type flag, as different flags do not affect the results.
The results indicate that RT of ΠZKS .Setup, ΠZKS .P rove,
and ΠZKS .V erify take 247.957 seconds, 72.476 seconds,
and 0.039 seconds, respectively. The size of the proving
key and verification key generated through ΠZKS .Setup
are 252192.732 kilobytes and 0.638 kilobytes, respectively.
The size of the proof generated through ΠZKS .P rove is
0.280 kilobytes. Furthermore, the scheme [20] requires
relaying block headers from the source chain (say Bs) to the
destination chain (say Bd). Let H.size denote the average
size of block headers from Bs, h represent the height of Bs,
and l indicate the number of miners for Bs. Hence, RT of
the off-chain part for [20] is at least 247.957+m ·144.952
seconds4, while RT of the on-chain part is at least m ·0.078
seconds5. CC is at least 504386.740+m·0.560+h·l·H.size
kilobytes 6 and SC at least 504386.740 + h · l · H.size
kilobytes 7.

For P2C2T, only ΠLOE .KeyGen, ΠRS .KeyGen, and
the setup algorithm of time-lock puzzles [44] in system
setup phase are one-time operations, with RT of 0.540
seconds, 0.002 seconds, and 11.494 seconds respectively.
The parameters generated have sizes of 3.449 kilobytes,
0.192 kilobytes and 0.423 kilobytes, respectively. All other
operations for a cross-chain transfer in P2C2T has RT of the
off-chain part of 44.983 seconds, RT of the on-chain part
of 0.004 seconds, CC of 148.443 kilobytes, and no storage
cost.

6.1.3. Performance Comparison. Building upon the previ-
ous description, the performance comparison between [20]
and P2C2T for m cross-chain transfers is presented in
Table 2. P2C2T demonstrates significant improvements in
various aspects:

(1) P2C2T saves at least 68.967% of RT of the off-
chain part compared to [20]. Even when m = 1, RT of the

4. It comprises the time taken for ΠZKS .Setup as a one-time operation,
along with two runs of ΠZKS .P rove for two intra-chain transactions on
Bs and Bd, respectively.

5. It comprises the time taken for two runs of ΠZKS .V erify.
6. It includes the message size for transferring two proving-verification

key pairs on Bs and Bd, respectively, as a one-time operation, two proofs
for two intra-chain transactions on Bs and Bd, respectively, and h block
headers relayed by every miner.

7. It involves the storage size of two proving-verification key pairs for
the sender and corresponding receiver, respectively, along with h block
headers for every miner.

TABLE 2: Performance Comparison between [20] and
P2C2T for m Cross-Chain Transfers

RT CC SCOFF ON

[20]
247.957 +

m ·
144.952

m ·
0.078

504386.740+
m · 0.560 +
h · l ·H.size

504386.740+
h · l ·H.size

P2C2T 12.036 +
m · 44.983

m ·
0.004

4.064 +m ·
148.443

4.064

ROR 85.488% 94.872% 99.970% 99.999%

RT: running time (in seconds); CC: communication cost (in kilobytes); SC:
storage cost (in kilobytes); OFF: off-chain part; ON: on-chain part; h, l, and
H.size denote the height, the number of miners, and the average size of all
block headers of source chain, respectively; ROR = (o1−o2)/o1×100%,
where o1 and o2 represent the overhead of the scheme in [20] and P2C2T,
respectively, when m = 1, excluding miner overhead (i.e., h · l ·H.size :=
0).

off-chain part of P2C2T accounts for only 14.512% of that
of [20].

(2) RT of the on-chain part of P2C2T is only 5.128%
of that of [20].

(3) P2C2T eliminates the need for miners to relay block
headers, resulting in significant savings in CC and SC,
compared to [20]. For instance, assuming a single miner
(l = 1), a block height of h = 2447490 that is also the
height of some finalized block on Zcash blockchain8, and a
block header size of H.size = 1.452 kilobytes that is also
the block header size of Zcash blockchain, both CC and SC
for the miner to relay block headers amount to 3553755.480
kilobytes. Moreover, both CC and SC for the miner linearly
increase with the height of source chain.

(4) Without considering miner overhead, CC of P2C2T
accounts for only 0.030% of that of [20] for a pair of sender
and receiver when m = 1. Although CC of P2C2T increases
faster than that of [20] with the number of cross-chain
transfers, it remains favorable unless m ≥ 3411, which is
uncommon in practice. Notably, P2C2T incurs no SC for a
pair of sender and receiver, as only 4.064 kilobytes of data
are stored and maintained by Ph. In contrast, [20] requires a
sender-receiver pair to store a total of 504386.740 kilobytes.

In summary, P2C2T reduces overhead by at least
85.488% in terms of running time, communication cost,
and storage cost when completing a cross-chain transfer. We
note that a significant portion of RT and CC in P2C2T is
attributed to the cut-and-choose style proof of ΠV TD. Since
the cryptographic operations adopted by P2C2T impose
significantly less overhead than those used by [20], P2C2T
emerges as a more efficient choice compared to the main
part of [20] and hence [20] itself.

Discussion. If P2C2T were adapted to support cross-
chain transfer across Zerocash-based blockchains, it would
require four on-chain transactions – double of those of
[20]. Consequently, transaction fees for the adapted scheme
would also be doubled compared to [20]. However, such
an adapted scheme currently does not exist and is left for
future work.

8. The block hash is 0000000000ce2ef802d1f7754fb1901f1068836e1ea0
8f5753655c15e0105a34.



TABLE 3: Transaction Identifiers in Experimental Examples of Cross-Chain Transfers and Intra-Chain Payments

txid 1 txid 2
txcc

1,1 a17ea464a0392e481d16f751e8e875ed27ce408391b8fa35ea778c1ab1f5f8b8 3772f0caf8878599d2cbb7e1ef8ae660720baea95061bb5b0a68dc810236d8ad
txcc

1,2 f30e1495a1b1d2af049860ef3b34d58c867f322b43ce15443e375194a313538e 751dbafcb61829b0930e201085b16c0a4d2210f0d454a6bf2d911331ffb5c134
txcc

2,1 fb01023235fd023d533af60082bad032c32aaba063348bccec322106b02dab33 9f8e85fa0d13118bb0f53e358bc6945ed924b10f6633e87409b6efa8ad43fa05
txcc

2,2 c3693e62dfb8a84bb6f2dd79721be67c6abda4caae02e8b556a7d48350de008c 40830eadfc2e0ec849a73f21a4c1798b595a0ee8bd92439fb8990182a1235dc5

txic
1 d1c1df85c880874b7925ee09c9d3f12888a7269207878ca5d9cd5d45bc038ad5 160c0774b55f4f673486477b287220cdd802d63aa4a814e1f409b638568a608a

txic
2 13569aa27aa11cdedd9e371dd69ecfe44af440140dea5f1b0a5cc96f0d674c31 19280e09f1ffc06a873d827338d94e7340ee4548dda55b3be84e4a0e235b5bce

txid 1 and txid 2 represent the transaction identifiers of two consecutive payments on one testnet, respectively.

6.2. Privacy and Practicality Illustration

The privacy and practicality of P2C2T have been rig-
orously addressed in Sections 5, providing theoretical ev-
idence. This subsection offers experimental examples to
further illustrate the privacy and practicality of P2C2T, serv-
ing as supplementary verification. Specifically, we conduct
cross-chain transfers and intra-chain payments using the
Bitcoin testnet (B1) and the Litecoin testnet (B2). To finalize
posted transactions, we let users wait for a minimum of 6
block confirmations on the Bitcoin testnet and at least 12
block confirmations on the Litecoin testnet9. Setting x =
0.0001 and y = 0.074 as described in Subsection 5.1 based
on exchange rates observed in April 2024 [1]10, we execute
two complete cross-chain transactions, txcc

1 = (txcc
1,1, tx

cc
1,2)

and txcc
2 = (txcc

2,1, tx
cc
2,2) where txcc

i,j involves two payments
(i.e., a lock transaction and a transfer transaction) on Bj

(i, j ∈ {1, 2}). The transaction identifiers of these payments
are presented in Table 3. Notably, linking txcc

i,j to txcc
i,3−j

rather than txcc
3−i,3−j is challenging, which illustrates the

unlinkability of P2C2T in terms of on-chain transactions.
Additionally, we conduct two intra-chain payments on each
testnet, where both payments involve the same address, with
one depositing coins and the other withdrawing coins. We
denote by txic

1 the two payments on the Bitcoin testnet
and txic

2 the two payments on the Litecoin testnet. Dis-
tinguishing between payments related to txcc

i,j and txic
j , as

indicated by their transaction identifiers in Table 3, presents
an intuitive challenge (i, j ∈ {1, 2}). Importantly, txcc

1 and
txcc

2 do not require sender coin collateralization and only
utilize signature verification functionalities, highlighting the
practicality of P2C2T.

7. Conclusion

In this paper, we proposed P2C2T, the first cross-chain
transfer scheme that satisfies a set of critical criteria in
an integrated way, including atomicity, unlinkability, indis-
tinguishability, non-collateralization, and minimization of
required functionalities. At the core of P2C2T, we presented

9. 6-block-confirmation represents a fundamental security measure on
Bitcoin against common attacks, including double-spending attacks. How-
ever, due to the smaller block rewards and higher stale block rate of Litecoin
compared to Bitcoin, it requires additional block confirmations to achieve
equivalent security levels [53]. Following the recommendation by [54], 12-
block-confirmation is adopted on the Litecoin testnet to enhance security.

10. We aim to simulate real cross-chain transactions, despite the fact that
coins on testnets hold no real-world value.

a novel synchronization puzzle protocol instance, TA2L.
We established the security of TA2L based on the thresh-
old blind conditional signatures and highlighted the com-
pelling properties of P2C2T through necessary discussions
and proofs. We demonstrated the superior performance of
P2C2T in terms of running time, communication cost, and
storage cost by comparing it with an existing scheme with
properties closest to P2C2T. Additionally, we illustrated the
privacy and practicality of P2C2T by conducting cross-chain
transfers and intra-chain payments using the Bitcoin testnet
and the Litecoin testnet. In the future, we are going to
extend our scheme to support variable-amount cross-chain
transfers and accommodate signature schemes that feature
unique signatures.
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[39] I. Damgård, “Commitment schemes and zero-knowledge protocols,”
in School organized by the European Educational Forum, Springer.
Berlin, Heidelberg: Springer Berlin Heidelberg, 1998, pp. 63–86.

[40] D. Pointcheval and O. Sanders, “Short randomizable signatures,” in
Cryptographers’ Track at the RSA Conference, Springer. Cham:
Springer International Publishing, 2016, pp. 111–126.

https://eprint.iacr.org/2020/1607
https://eprint.iacr.org/2022/1605
https://eprint.iacr.org/2022/1605
https://eprint.iacr.org/2018/472
https://bitcoincore.org/en/download/
https://litecoin.org/


[41] J. Groth, “Rerandomizable and replayable adaptive chosen ciphertext
attack secure cryptosystems,” in Theory of Cryptography Conference,
Springer. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004, pp.
152–170.

[42] B. Bauer, G. Fuchsbauer, and A. Plouviez, “The one-more discrete
logarithm assumption in the generic group model,” in Advances
in Cryptology–ASIACRYPT 2021: 27th International Conference on
the Theory and Application of Cryptology and Information Security,
Singapore, December 6–10, 2021, Proceedings, Part IV 27, Springer.
Cham: Springer International Publishing, 2021, pp. 587–617.

[43] G. Castagnos and F. Laguillaumie, “Linearly homomorphic encryp-
tion from ddh,” in Topics in Cryptology — CT-RSA 2015, Springer.
Cham: Springer International Publishing, 2015, pp. 487–505.

[44] G. Malavolta and S. A. K. Thyagarajan, “Homomorphic time-lock
puzzles and applications,” in Advances in Cryptology – CRYPTO
2019, A. Boldyreva and D. Micciancio, Eds., Springer. Cham:
Springer International Publishing, 2019, pp. 620–649.

[45] D. Hopwood, S. Bowe, T. Hornby, N. Wilcox et al., “Zcash protocol
specification,” GitHub: San Francisco, CA, USA, vol. 4, no. 220,
p. 32, 2016.

[46] Secp256k1. (2011) Secp256k1. MediaWiki. [Online]. Available:
https://en.bitcoin.it/wiki/Secp256k1

[47] E. Ben-Sasson, A. Chiesa, E. Tromer, and M. Virza, “Succinct non-
interactive zero knowledge for a von neumann architecture,” in 23rd
USENIX Security Symposium (USENIX Security 14), USENIX As-
sociatiDon. San Francisco, CA, USA: USENIX Association, 2014,
pp. 781–796.

[48] T. H. Eran Tromer, Madars Virza. (2015) libzerocash: a c++ library
implementing the zerocash protocol. Zerocash. [Online]. Available:
https://github.com/Zerocash/libzerocash

[49] D. F. Aranha, C. P. L. Gouvêa, T. Markmann, R. S. Wahby, and
K. Liao, “RELIC is an Efficient LIbrary for Cryptography,” https:
//github.com/relic-toolkit/relic, 2014.

[50] T. Granlund. (2004) Gnu mp: The gnu multiple precision arithmetic
library. ZeroMQ. [Online]. Available: https://gmplib.org/

[51] H. Cohen et al. (2003) Pari. Laboratoire A2X. [Online]. Available:
http://pari.math.u-bordeaux.fr/

[52] ZeroMQ. (2009) The zeromq project. ZeroMQ. [Online]. Available:
https://github.com/zeromq/libzmq

[53] A. Gervais, G. O. Karame, K. Wüst, V. Glykantzis, H. Ritzdorf,
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Appendix A.
Additional Preliminaries

A.1. Two-Party Adaptor Signatures

Definition 10 (Two-Party Adaptor Signatures).
A two-party adaptor signature scheme with respect
to a hard relationship R and a digital signature
ΠS := (KeyGen, Sign, V erify) with a message
space M generally consists of five algorithms Π2AS :=

(JointKeyGen, JointPreSign, PreV erify,Adapt, Ext).
Here JointKeyGen and JointPreSign are run between
two parties (say P1 and P2). These algorithms are defined
as follows.

(1) ({sk1, pk2, pk}, {sk2, pk1, pk}) ←
JointKeyGen⟨P1( ), P2( )⟩ is an interactive protocol
between P1 (with inputs some public parameters) and P2

(with inputs some public parameters). It returns sk1, pk2,
and pk to P1 and sk2, pk1, and pk to P2.

(2) ({σ̃,⊥}, {σ̃,⊥}) ←
JointPreSign⟨P1(sk1, pk,m, Y ),
P2(sk2, pk,m, Y )⟩ is an interactive protocol between P1

(with inputs the signing key share sk1, the joint verification
key pk, a message m, and a statement Y ) and P2 (with
inputs the signing key share sk2, the joint verification key
pk, a message m, and a statement Y ). It returns either a
pre-signature σ̃ or ⊥ to both parties.

(3) b := PreV erify(pk,m, Y, σ̃) is a DPT algorithm
that takes as input the joint verification key pk, the message
m, the statement Y , and the pre-signature σ̃. It returns a bit
b.

(4) σ := Adapt(y, σ̃) is a DPT algorithm that takes as
input the witness y and the pre-signature σ̃. It returns a
signature σ.

(5) y := Ext(σ, σ̃, Y ) is a DPT algorithm that takes as
input the signature σ, the pre-signature σ̃, and the statement
Y . It returns a witness y.

Next, we can define two-party adaptor signature cor-
rectness, two-party signature unforgeability, two-party pre-
signature adaptability, and two-party witness extractability
respectively.

Definition 11 (Two-Party Adaptor Signature
Correctness). A two-party adaptor signature scheme
Π2AS is correct if for all n ∈ N, all messages
m ∈ M, all hard relationships (Y, y) ← GenR(1n),
and all ({sk1, pk2, pk}, {sk2, pk1, pk}) ∈
JointKeyGen⟨P1( ), P2( )⟩, the follow-
ing holds: PreV erify(pk,m, Y, σ̃) = 1,
ΠS .V erify(pk,m, σ) = 1, and (Y, y′) ∈ R where σ̃ ←
JointPreSign⟨P1(sk1, pk,m, Y ), P2(sk2, pk,m, Y )⟩,
σ := Adapt(y, σ̃), and y′ := Ext(σ, σ̃, Y ).

Definition 12 (Two-Party Signature Unforgeability).
Π2AS satisfies two-party signature unforgeability if there ex-
ists a negligible function negl(n) such that for all n ∈ N and
all PPT adversaries A playing the role of Pi (i ∈ {1, 2}), the
following holds: Pr[ExpSigForgeA−Pi

Π2AS (n) = 1] ≤ negl(n),
where ExpSigForgeA−Pi

Π2AS is defined in Fig. 10.
Definition 13 (Two-Party Pre-Signature Adaptabil-

ity). Π2AS satisfies two-party pre-signature adaptability if
for all n ∈ N, all messages m ∈ M, all hard relationships
(Y, y) ← GenR(1n), all ({sk1, pk2, pk}, {sk2, pk1, pk}) ∈
JointKeyGen⟨P1( ), P2( )⟩, all pre-signatures σ̃ satisfy-
ing PreV erify(pk,m, Y, σ̃) = 1, the following holds:
Pr[ΠS .V erify(pk,m,Adapt(y, σ̃)) = 1] = 1.

Definition 14 (Two-Party Witness Extractability).
Π2AS satisfies two-party signature extractability if there ex-
ists a negligible function negl(n) such that for all n ∈ N and
all PPT adversaries A playing the role of Pi (i ∈ {1, 2}), the
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ExpSigForgeA−Pi

Π2AS (n)
Q := ∅
({sk3−i, pki, pk}, {ski, pk3−i, pk})

← JointKeyGen⟨P3−i( ),A( )⟩
m∗ ← AOS(·),OPreS(·)

(Y, y)← GenR(1n)
σ̃ ← JointPreSign⟨P3−i(sk3−i, pk,m

∗, Y ),A(Y )⟩
σ∗ ← AOS(·),OPreS(·)

return (m∗ /∈ Q) ∧ (ΠS .V erify(pk,m∗, σ∗))

OS(m)
σ ← ΠS .Sign(sk,m) where sk is the signing key
corresponding to pk.
Q := Q∪ {m}

OPreS(m,Y )
σ̃ ← JointPreSign⟨P3−i(sk3−i, pk,m, Y ),A⟩
Q := Q∪ {m}

Figure 10: Two-party signature unforgeability experiment

ExpWitExtA−Pi

Π2AS (n)
Q := ∅
({sk3−i, pki, pk}, {ski, pk3−i, pk})

← JointKeyGen⟨P3−i( ),A( )⟩
(m∗, Y ∗)← AOS(·),OPreS(·)

σ̃ ← JointPreSign⟨P3−i(sk3−i, pk,m
∗, Y ∗),A⟩

σ∗ ← AOS(·),OPreS(·)

y∗ := Ext(σ, σ̃, Y ∗)
return (m∗ /∈ Q) ∧ ((Y ∗, y∗) /∈ R)

∧(ΠS .V erify(pk,m∗, σ∗))

OS(m)
σ ← ΠS .Sign(sk,m) where sk is the signing key
corresponding to pk.
Q := Q∪ {m}

OPreS(m,Y )
σ̃ ← JointPreSign⟨P3−i(sk3−i, pk,m, Y ),A⟩
Q := Q∪ {m}

Figure 11: Two-party witness extractability experiment

following holds: Pr[ExpWitExtA−Pi

Π2AS (n) = 1] ≤ negl(n),
where ExpWitExtA−Pi

Π2AS is defined in Fig. 11.

A.2. Bilinear Groups

Bilinear Groups. Bilinear groups are a set of three
cyclic groups G1, G2, and GT of prime order p along with
a bilinear map e : G1×G2 → GT . These groups satisfy the
following properties.

(1) The map e is efficiently computable.
(2) For all g1 ∈ G1, g2 ∈ G2 and a, b ∈ Zp, e(ga1 , g

b
2) =

e(g1, g2)
ab.

(3) For g1 ̸= 1G1
and g2 ̸= 1G2

, e(g1, g2) ̸= 1GT
, where

1G1
, 1G2

, and 1GT
are the neutral elements of the group G1,

G2, and GT respectively.
Bilinear groups are classified as type 3 pairings if

G1 ̸= G2 and no efficiently computable homomorphism
exists between G1 and G2 [55].

OM-CCA-A2LA
ΠLOE ,d(n)

D := 0
(skL, pkL)← ΠLOE .KeyGen(1n)
r1, ..., rd+1 ←$ Zp

ci ← ΠLOE .Enc(pkL, ri)

r′1, ..., r
′
d+1 ← AOA2L(·)(pkL, (c1, g

r1), ..., (cd+1, g
rd+1))

if (ri = r′i,∀i ∈ [d+ 1]) ∧ (D ≤ d)
return 1

else
return 0

OA2L(pk,m, h, c, σ̃)
if (·, pk) ∈ Π2AS .KeyGen(1n)

x← ΠLOE .Dec(skL, c)
else

return ⊥
if (Π2AS .P reV erify(pk,m, h, σ̃) = 1) ∧ (h = gx)

D := D + 1
return σ ← Π2AS .Adapt(x, σ̃)

else
return ⊥

Figure 12: OM-CCA-A2L game

A.3. OM-CCA-A2L Security

Definition 15 (OM-CCA-A2L) [23]. An encryption
scheme ΠE is OM-CCA-A2L secure if there exists a neg-
ligible function negl(n) such that for all n ∈ N, all poly-
nomials d, and all PPT adversaries A, the following holds:
Pr[OM − CCA − A2LA

ΠE ,d(n) = 1] ≤ negl(n), where
OM − CCA−A2LA

ΠE ,d is defined in Fig. 12.

Appendix B.
Properties of TBCS

Definition 2 (Correctness). A threshold blind
conditional signature ΠTBCS is correct if for all
n ∈ N, all (skL, pkL) ∈ ΠLOE .KeyGen(1n),
all ({sk0s, pk

0
h1, pk1}, {sk

0
h1, pk

0
s, pk1}) ∈

Π2AS .JointKeyGen⟨Ps( ), Ph( )⟩, all
({sk0r, pk

0
h2, pk2}, {sk

0
h2, pk

0
r, pk2}) ∈

Π2AS .JointKeyGen⟨Pr( ), Ph( )⟩, and all pairs
of messages (mHR,mSH), the following holds:
Pr[ΠS .V erify(pk2,mHR, Open(τ, sr)) = 1] = 1
and Pr[ΠS .V erify(pk1,mSH , σSH) = 1] = 1, where

(⊥, {τ})← Promise

〈
Ph(sk

L, pkL, sk0h2, pk2,mHR)

Pr(sk
0
r, pk

L, pk2,mHR)

〉
and ({(σSH , sr)}, {σSH}) ←

Solving

〈
Ps(sk

0
s, pk1, τr, pk

L,mSH)

Ph(sk
0
h1, sk

L, pk1,mSH)

〉
.

With respect to blindness, we can consider the
following case: a attacker A playing the role of
Ph attempts to distinguish between two sets of
message pairs, {(mHR,0,mSH,0), (mHR,1,mSH,1)}
and {(mHR,0,mSH,1), (mHR,1,mSH,0)}. Obviously, if
A can distinguish them with non-negligible probability,
it implies the sender and corresponding receiver can be
associated even when there are other senders and receivers



ExpBldAΠTBCS (n)
(pkL, (mHR,0,mSH,0), (mHR,1,mSH,1))← A(1n)
({sk0s,0, pk

0
h1,0, pk1,0}, {sk

0
h1,0, pk

0
s,0, pk1,0})←

Π2AS .JointKeyGen⟨Ps( ),A( )⟩
({sk0s,1, pk

0
h1,1, pk1,1}, {sk

0
h1,1, pk

0
s,1, pk1,1})←

Π2AS .JointKeyGen⟨Ps( ),A( )⟩
({sk0r,0, pk

0
h2,0, pk2,0}, {sk

0
h2,0, pk

0
r,0, pk2,0})←

Π2AS .JointKeyGen⟨Pr( ),A( )⟩
({sk0r,1, pk

0
h2,1, pk2,1}, {sk

0
h2,1, pk

0
r,1, pk2,1})←

Π2AS .JointKeyGen⟨Pr( ),A( )⟩

(·, {τ0})← Promise

〈
A

Pr(sk
0
r,0, pk

L, pk2,0,mHR,0)

〉
(·, {τ1})← Promise

〈
A

Pr(sk
0
r,1, pk

L, pk2,1,mHR,1)

〉
b←$ {0, 1}

(σ∗
0 , s

0
r)← Solving

〈
Ps(sk

0
s,0, pk1,0, [τ

0⊕b
r ]a, pkL,mSH,0)
A

〉
(σ∗

1 , s
1
r)← Solving

〈
Ps(sk

0
s,1, pk1,1, τ

1⊕b
r , pkL,mSH,1)
A

〉
if (σ∗

0 =⊥) ∨ (σ∗
1 =⊥) ∨ (τ0 =⊥) ∨ (τ1 =⊥)

σ0 := σ1 :=⊥
else

σ0⊕b := Open(τ0⊕b, s
0
r)

σ1⊕b := Open(τ1⊕b, s
1
r)

b′ ← A(σ0, σ1)
return (b = b′)

a τ br is extracted from τb where b ∈ {0, 1}.
Figure 13: Blindness experiment

performing ΠTBCS during the same phase. Thus, the
definition of blindness can be given as below.

Definition 3 (Blindness). ΠTBCS is blind if there
exists a negligible function negl(n) such that for all
n ∈ N and all PPT adversaries A, the following holds:
Pr[ExpBldAΠTBCS (n) = 1] ≤ 1

2 + negl(n), where ExpBld is
defined in Fig. 13.

With respect to unlockability, we impose more restric-
tions on the consequences of attacks launched by A playing
the role of Ph. That is, in addition to the restriction de-
scribed in the property of unlockability of a synchronization
puzzle protocol, A is unable to produce a valid signature
on any message except mSH if promise protocol is com-
pleted normally and a valid signature on any message if
promise protocol is not completed normally. The additional
restrictions prevent A from independently forging signatures
which should be generated through the cooperation of A and
Ps. Thus, the definition of unlockability can be presented as
below.

Definition 4 (Unlockability). ΠTBCS is unlockable if
there exists a negligible function negl(n) such that for all
n ∈ N and all PPT adversaries A, the following holds:
Pr[ExpUnlockAΠTBCS (n) = 1] ≤ negl(n), where ExpUnlock
is defined in Fig. 14.

With respect to unforgeability, there are two require-
ments on A acting as both Ps and Pr. The first requirement
is an extension of unforgeability of a synchronization puzzle
protocol. That is, A cannot get d signatures from the inter-
action with Ph in promise protocol and release only d − 1
signatures for Ph in solving phase. The second requirement
protects A from forging a joint signature on a message

ExpUnlockAΠTBCS (n)
(pkL,mHR,mSH)← A(1n)
({sk0s, pk

0
h1, pk1}, {sk

0
h1, pk

0
s, pk1})←

Π2AS .JointKeyGen⟨Ps( ),A( )⟩
({sk0r, pk

0
h2, pk2}, {sk

0
h2, pk

0
r, pk2})←

Π2AS .JointKeyGen⟨Pr( ),A( )⟩

(·, {τ})← Promise

〈
A

Pr(sk
0
r, pk

L, pk2,mHR)

〉
if τ =⊥

(m,σ)← A
b0 := (ΠS .V erify(pk1,m, σ) = 1)

else

(σ∗, sr)← Solving

〈
Ps(sk

0
s, pk1, τr, pk

L,mSH)
A

〉
(m,σ)← A
b1 := (ΠS .V erify(pk1,m, σ) = 1) ∧ (m ̸= mSH)
b2 := (ΠS .V erify(pk1,mSH , σ∗) = 1)
b3 := (ΠS .V erify(pk2,mHR, Open(τ, sr)) ̸= 1)

return b0 ∨ b1 ∨ (b2 ∧ b3)

Figure 14: Unlockability experiment

ExpUnforgAΠTBCS (n)
P := ∅, D := 0
(skL, pkL)← ΠLOE .KeyGen(1n)
(pk2,1,m1, σ1), ..., (pk2,d,md, σd)← AOp(·),Os(·)(pkL)
b0 := ∃i ∈ [d] s.t. (pk2,i, ·) ∈ P ∧ (pk2,i,mi) /∈ P

∧ ΠS .V erify(pk2,i,mi, σi) = 1
b1 := ∀i ∈ [d] s.t. (pk2,i,mi) ∈ P

∧ ΠS .V erify(pk2,i,mi, σi) = 1
b2 :=

∧
i,j∈[d],i̸=j

(pk2,i,mi, σi) ̸= (pk2,j ,mj , σj)

b3 := (D ≤ d− 1)
return b0 ∨ (b1 ∧ b2 ∧ b3)

Op(m)
({sk0r, pk

0
h2, pk2}, {sk

0
h2, pk

0
r, pk2})←

Π2AS .JointKeyGen⟨A( ), Ph( )⟩
P := P ∪ {(pk2,m)}

(·, {τ})← Promise

〈
Ph(sk

L, pkL, sk0h2, pk2,m)
A

〉
Os(m

′)
({sk0s, pk

0
h1, pk1}, {sk

0
h1, pk

0
s, pk1})←

Π2AS .JointKeyGen⟨A( ), Ph( )⟩

σ∗ ← Solving

〈
A

Ph(sk
0
h1, sk

L, pk1,m
′)

〉
if σ∗ ̸=⊥ then D := D + 1

Figure 15: Unforgeability experiment

which is not processed in promise protocol. To formalize
the requirements, we allow A to access an oracle Op which
invokes promise protocol between A and Ph and an oracle
Os which invokes solving protocol betweenA and Ph. Thus,
the definition of unforgeability can be proposed as below.

Definition 5 (Unforgeability). ΠTBCS is unforgeable if
there exists a negligible function negl(n) such that for all
n ∈ N and all PPT adversaries A, the following holds:
Pr[ExpUnforgAΠTBCS (n) = 1] ≤ negl(n), where ExpUnforg
is defined in Fig. 15.



TABLE 4: Performance Comparison between A2L+ and
TA2L for Exchanging Signatures m Times

RT CC SC
A2L+ [23] 0.542 +m · 2.978 m · 15.487 3.449
TA2L (ours) 0.546 +m · 5.858 m · 31.925 3.449

RT: running time (in seconds); CC: communication cost (in kilobytes);
SC: storage cost (in kilobytes).

Appendix C.
Performance Comparison between A2L+ and
TA2L

Using the same evaluation metrics and experimental set-
tings as those in Section 6, we obtain performance results for
A2L+ and TA2L when using them to exchange signatures m
times. The performance comparison is summarized in Table
4, leading to the following conclusions:

(1) RT and CC of TA2L are approximately double of
those of A2L+.

(2) SC of TA2L is identical to that of A2L+.

Appendix D.
Formal Proof of Theorem 1

Proof of Theorem 1. We establish proofs for blindness, un-
lockability, and unforgeability. For ease of notation, we
denote the ensemble of executions for a protocol Π from the
view of an adversary A as EXECΠ,A. We use EXECΠ1,A ≈
EXECΠ2,A (resp, EXECΠ1,A ≡ EXECΠ2,A) to signify that
EXECΠ1,A and EXECΠ2,A are computationally (resp, sta-
tistically) indistinguishable. The proofs follow the method-
ology of Theorem 4.9 in [23], with modifications in the
reduction from hybrid experiment H2 to H3 regarding the
setting of verification keys for the promise protocol oracle
in demonstrating unforgeability. Specifically, the reduction
simulates verification keys for the promise protocol oracle
by forwarding messages between A and the challenger
during some query of A to the solving protocol oracle in
this paper. However, the reduction uses the verification key
from the witness extractability game as the verification key
in some query of A to the solving protocol oracle in [23].

Lemma 1 (Blindness). Assuming ΠNIZK is sound,
TA2L is blind in the LOE model.

Proof. We establish, through a series of hybrid experiments,
that the cases where b = 0 and b = 1 are statistically
indistinguishable.
Hybrid H0: Run ExpBld with b = 0.
Hybrid H1: In both runs of the solving protocol, set Y ′′ :=
r · g, and c′′ ← ΠLOE .Enc(pkL, r), where r ←$ Zp.
Hybrid H2: Compute Y ′′ and c′′ using τ1r in the first run of
the solving protocol and τ0r in the second run.
Hybrid H3: Run ExpBld with b = 1.
Claim 1. For all PPT adversaries A, EXECH0,A ≡
EXECH1,A.

Proof. If the ciphertext provided by Ph is well-formed,
Y ′′ is g raised to a uniform element, and c′′ is an en-
cryption of the same uniform element in both experiments.
Any distinguishing advantage implies a violation of the
soundness of ΠNIZK , making the executions statistically
indistinguishable.

Claim 2. For all PPT adversaries A, EXECH1,A ≡
EXECH2,A.

Proof. This holds with the same logic as Claim 1.

Claim 3. For all PPT adversaries A, EXECH2,A ≡
EXECH3,A.

Proof. The change is only syntactical and the executions are
identical.

Hence, the cases of b = 0 and b = 1 are statistically
indistinguishable.

Lemma 2 (Unlockability). Assuming the two-party sig-
nature unforgeability, two-party pre-signature adaptability,
and two-party witness extractability of Π2AS , TA2L is un-
lockable.

Proof. We just need to examine two cases as follows.
b0 ∨ b1: In this scenario, A can produce a valid signature
on a message without having seen any pre-signature on it.
This occurrence is only possible with negligible probability,
relying on two-party signature unforgeability.
b2 ∧ b3: We first consider a situation in which A out-
puts a valid signature σ∗ on mSH while simultaneously
s′′ ← Π2AS .Ext(σ∗, σ̃trans

h1 , Y ′′) is not a valid witness
for Y ′′. Then we can give a reduction running A which
breaks two-party witness extractability with non-negligible
probability. The reduction begins by sampling a uniform
element r ←$ Zp. It sets Y ′′ := r · g and employs pkL

generated by A to compute c′′ ← ΠLOE .Enc(pkL, r).
During the solving phase, it sends Y ′′, c′′, and the two-
party witness extractability challenge σ̃ to A and responds
to the challenger with σ received from A. This simulation
is perfectly indistinguishable from an honest run of the
solving protocol. Consequently, Π2AS .Ext(σ, σ̃, Y ′′) is not
a valid witness for Y ′′, which contradicts two-party witness
extractability. Therefore, s′′ is a valid witness for Y ′′ with all
but negligible probability. Since Y ′′ = r′ ·r′′ ·Y = r′ ·r′′ ·s·g,
the only valid witness for Y ′′ is r′·r′′·s. Hence s′′ = r′·r′′·s,
which implies s = (r′ · r′′)−1 · s′′ is a valid witness for Y .
We conclude that σHR ← Π2AS .Adapt(s, σ̃HR) is a valid
signature on mHR with a probability of 1. Therefore, A
succeeds in this case with negligible probability.

Lemma 3 (Unforgeability). Assuming the hardness of
OMDL, the zero-knowledgeness of ΠNIZK , two-party sig-
nature unforgeability and two-party witness extractability of
Π2AS , TA2L is unforgeable.

Proof. We present a series of hybrid experiments to
demonstrate their indistinguishability. Finally, we establish,
through reduction to OM-CCA-A2L, the absence of any



adversary with a non-negligible advantage against the final
hybrid.
Hybrid H0: This is the normal game ExpUnforg shown as
Fig. 15.
Hybrid H1: Simulate all proofs of ΠNIZK .
HybridH2: If ∃i ∈ [d] such that (pk2,i, ·) ∈ P , (pk2,i,mi) /∈
P and ΠS .V erify(pk2,i,mi, σi) = 1, return 0.
Hybrid H3: If ∃i ∈ [d] such that
ΠS .V erify(pk2,i,mi, σi) = 1 and
Π2AS .Ext(σi, σ̃i, Yi) =⊥, return 0.
Claim 4. For all PPT adversaries A, EXECH0,A ≈
EXECH1,A.

Proof. This holds by the zero-knowledgeness of ΠNIZK .

Claim 5. For all PPT adversaries A, EXECH1,A ≈
EXECH2,A.

Proof. The hybrids differ only in the case where A return a
valid signature on a message that is not part of the transcript.
This happens only with negligible probability by two-party
signature unforgeability.

Claim 6. For all PPT adversaries A, EXECH2,A ≈
EXECH3,A.

Proof. Any distinguishing advantage equals the occur-
rence probability of the event that A outputs some tuple
(pk2,i,mi, σi) such that, for the corresponding pre-signature
σ̃i, Π2AS .Ext(σi, σ̃i, Yi) =⊥. We provide a reduction to the
two-party witness extractability of Π2AS . The reduction runs
the setup as in H3 and picks some guess i∗ ←$ [d − 1]
(where d − 1 is the number of non-⊥ queries of A to
the solving protocol oracle) for the distinguishing index.
It starts A on pkL and behaves the same way as H3 for
all oracle queries, except for the i∗-th queries, in which it
forwards messages betweenA and the challenger to simulate
verification keys of the promise protocol oracle. In the
execution of the promise protocol oracle, it sends mi∗ to
its game and sends σ̃ received from the game to A. Once A
terminates and outputs {(pk2,i,mi, σi)}i∈[d], the reduction
sends σi∗ to its game. If it guesses the distinguishing index
i∗ correctly, σi∗ is a winning signature. Suppose the dis-
tinguishing advantage is non-negligible. Since the guess is
correct with probability 1/(d−1), the reduction violates two-
party witness extractability also with non-negligible advan-
tage, which is a contradiction. Hence, the two experiments
must be computationally indistinguishable.

We proceed with a reduction from hybrid H3 to OM-
CCA-A2L. Assuming the existence of an adversary A with
non-negligible success probability in H3, we construct a
reduction that employs A to win the OM-CCA-A2L game.
The reduction is provided with {(ci, hi)}i∈[d+1] and gener-
ates (skL, pkL)← ΠLOE .KeyGen(1n) as in H3, initiating
A with the input pkL. For Op queries, the reduction follows
the same steps as H3 but uses a distinct statement hj each
time it generates a pre-signature σ̃j . Concerning Os queries,
the reduction takes the final signature σ∗ as the output of

the OA2L run on inputs (pk2,m′, Y ′′, c′′, σ̃) from A. As Os

and OA2L return ⊥ in the exact same cases, and since A
makes at most d non-⊥ queries to Os, the reduction also
makes at most d non-⊥ queries to OA2L.

Upon receiving d + 1 tuples (pk2,i,mi, σi) from A,
the reduction computes rj ← Π2AS .Ext(σi, σ̃j , Yi) where
i, j ∈ [d + 1]. According to the definition of H3, the
reduction can obtain d + 1 non-⊥ rj such that hj := grj

through at most (d+1)2 invocations of Π2AS .Ext with non-
negligible probability. This contradicts the OM-CCA-A2L
security of ΠLOE . Thus, no adversary exists that can win
the ExpUnforg game with non-negligible probability.

Theorem 1 follows directly from Lemmas 1 to 3.
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