
Dishonest Majority Constant-Round MPC with Linear
Communication from DDH

Vipul Goyal
NTT Research

and Carnegie Mellon University
vipul@cmu.edu

Junru Li
Tsinghua University

jr-li24@mails.tsinghua.edu.cn

Ankit Kumar Misra
University of California, Los Angeles

ankitkmisra@g.ucla.edu

Rafail Ostrovsky
University of California, Los Angeles

rafail@cs.ucla.edu

Yifan Song
Tsinghua University

and Shanghai Qi Zhi Institute
yfsong@mail.tsinghua.edu.cn

Chenkai Weng
Arizona State University

Chenkai.Weng@asu.edu

Abstract

In this work, we study constant round multiparty computation (MPC) for Boolean circuits against
a fully malicious adversary who may control up to n − 1 out of n parties. Without relying on fully
homomorphic encryption (FHE), the best-known results in this setting are achieved by Wang et al.
(CCS 2017) and Hazay et al. (ASIACRYPT 2017) based on garbled circuits, which require a quadratic
communication in the number of parties O(|C| ·n2). In contrast, for non-constant round MPC, the recent
result by Rachuri and Scholl (CRYPTO 2022) has achieved linear communication O(|C| · n).

In this work, we present the first concretely efficient constant round MPC protocol in this setting with
linear communication in the number of parties O(|C|·n). Our construction can be based on any public-key
encryption scheme that is linearly homomorphic for public keys. Our work gives a concrete instantiation
from a variant of the El-Gamal Encryption Scheme assuming the DDH assumption. The analysis shows
that when the computational security parameter λ = 128 and statistical security parameter κ = 80, our
protocol achieves a smaller communication than Wang et al. (CCS 2017) when there are 16 parties for
AES circuit and 8 parties for general Boolean circuits (where we assume that the numbers of AND gates
and XOR gates are the same). When comparing with the recent work by Beck et al. (CCS 2023) that
achieves constant communication complexity O(|C|) in the strong honest majority setting (t < (1/2−ϵ)n
where ϵ is a constant), our protocol is better as long as n < 3500 (when t = n/4 for their work).

1 Introduction
Secure multiparty computation (MPC) [Yao82, GMW87, CCD88, BGW88, RB89] allows a set of n parties to
jointly compute a public function on their private inputs. The efficiency of MPC protocols can be measured
from various aspects, and the most two common criteria are the communication complexity and the round
complexity.

Communication-Efficient but Non-Constant Round MPC. The well-known SPDZ protocol was first
introduced by Damgård et al. [DPSZ12], which achieves a very efficient online protocol whose communication
complexity grows linearly with the number of parties in the dishonest majority setting. Due to its potential

1

of being used in practice, a long line of works [DKL+13, LOS14, KOS16, KPR18, BCS19, BNO19, EGP+23]
focus on improving both the offline phase and the online phase of the SPDZ protocol. Thanks to the
recent progress of pseudo-random correlation generators (PCG) [BCG+19, BCG+20, WYKW21], Rachuri
and Scholl [RS22] have achieved a linear communication complexity O(|C|n) in both the offline phase and
the online phase.

However, all SPDZ-style protocols suffer a large round complexity that grows linearly with the depth of
the circuit. For circuits with large depths in the WAN setting, the network latency may become the main
bottleneck.

Constant Round but Communication-Heavy MPC. Due to the round complexity of SPDZ protocols,
another line of works target constant round MPC. Without relying on fully homomorphic encryption (which is
not considered to be efficient in practice), the most common way is to follow the BMR template [BMR90] that
generalizes the Yao’s garbled circuits [Yao86] from the two-party setting to the multiparty setting. Despite the
significant progress in [LPSY15, BLO16, BLO17, HSS17, WRK17, HOSS18a, HOSS18b, YWZ20, BCO+21],
the best-known result in the dishonest majority setting still requires a quadratic communication complexity
in the number of parties O(|C|n2), which is insufficient to support applications that involve hundreds or
thousands of parties.

The efficiency gap between these two types of MPC protocols leads to our following question:

“Can we construct a fully malicious MPC protocol in the dishonest majority setting that achieves the best
in both worlds, i.e., with constant rounds and linear communication complexity?”

1.1 Our Contributions
In this work, we answer the above question affirmatively by presenting the first concretely efficient constant-
round and fully malicious MPC protocol with linear communication in the dishonest majority setting (t < n).

Theorem 1. Assuming DDH, LPN, and random oracles, there is a computationally secure constant-round
MPC protocol against a fully malicious adversary controlling up to n − 1 parties with communication of
O(|C|nλ) bits, where λ is the computational security parameter.

Our construction has the following features.

• Communication Complexity. To compute a circuit C of size |C|, the total communication com-
plexity of our protocol is O(|C|nλ) bits, where λ is the computational security parameter.

• Assumptions. Our protocol makes a black-box use of building blocks in Le Mans [RS22], which can
be instantiated based on the LPN assumption. Beyond the building blocks in Le Mans [RS22], the
garbling phase of our construction only requires the DDH assumption and symmetric-key cryptographic
assumptions (random oracle or pseudo-random generator).

• Concrete Efficiency. Comparing with the previously best-known results [WRK17, YWZ20] with
quadratic communication, our protocol achieves a smaller communication as long as there are 16 parties
for the AES-128 circuit when the computational security parameter λ = 128 and statistical security
parameter κ = 80. We note that the work [BCO+21] can potentially achieve a linear communication
when its underlying SPDZ preprocessing is instantiated by Le Mans [RS22]. Even after optimization,
the communication cost of our protocol outperforms theirs by 11.7× on the AES-128 circuit and 11.3×
on the SHA-256 circuit.

Our construction is conceptually simple. We note that the main difficulty in all previous works following
the BMR template is to emulate the encryption algorithm of some symmetric-key encryption scheme where
both the key k and the message m are secretly shared.

Our first idea is to replace the symmetric-key encryption scheme used in the BMR template by a public-
key encryption scheme. In this way, while we still need to keep the private key secret, the public key can be

2

learnt by all parties. Now when emulating the encryption algorithm, only the message to be encrypted is
secretly shared.

To allow all parties efficiently generate public-private key pairs (pk, k) where pk is known to all parties
while k is (additively) shared among all parties, we make use of a public-key encryption scheme that is linearly
homomorphic for public keys: For two key pairs (pk1, k1), (pk2, k2), we require that there is a homomorphic
operation +̃ such that (pk1+̃pk2, k1 + k2) is also a valid key pair. We show how key pairs can be efficiently
generated relying on this property.

Although pk is known to all parties, emulating the encryption algorithm to encrypt a shared message
m may still be inefficient. Our second idea is to let each party Pi just encrypt his message share. To be
more concrete, suppose m is additively shared to all parties and mi is held by Pi. We simply let each Pi

encrypt mi by pk and denote the cipher-text by cti. Note that a party having the private key k and all
cipher-texts (ct1, . . . , ctn) can decrypt each mi and compute m. This allows us to make use of the public-key
encryption scheme in a black-box way. We show that this is sufficient for us to achieve a linear communication
complexity.

2 Technical Overview and Related Works
We give a high-level overview of the main techniques used in this paper. Our goal is to construct a constant-
round MPC protocol for a general Boolean circuit C consisting of AND and XOR gates. We focus on the
dishonest majority setting, where up to t = n− 1 parties can be corrupted.

2.1 Background: Yao’s Garbled Circuit and BMR Template
Most of the constant-round MPC protocols in the dishonest majority setting are based on multiparty garbling
techniques derived from the well-known BMR protocol given by Beaver, Micali, and Rogaway [BMR90]. At
a high level, the BMR technique is to let all parties jointly compute a Yao’s garbled circuit of C. We first
give a brief review of Yao’s garbled circuits.

Review of Yao’s Garbled Circuits. Yao’s garbled circuit [Yao82] was designed in the two-party setting,
where one party acts as the garbler to construct a garbled circuit, and the other party acts as the evaluator
to evaluate this garbled circuit such that the evaluator only learns the circuit output and nothing else.

To garble a Boolean circuit C, the garbler first prepares a random bit value λw and a pair of labels
(kw,0, kw,1) for each wire w in the circuit. During the evaluation phase, we want to maintain the invariant
that the evaluator learns only vw ⊕ λw and the corresponding label kw,vw⊕λw

, where vw is the actual wire
value, protected by the random bit λw. To this end, for a gate in C with input wires a, b and output wire c, we
want the evaluator to be able to learn (vc⊕λc, kc,vc⊕λc

) if he holds (va⊕λa, ka,va⊕λa
) and (vb⊕λb, kb,vb⊕λb

).
This can be done by preparing the following 4 ciphertexts. At a high level, we simply use the two labels,
one from each input wire, as secret keys to encrypt the proper label for the output wire:

1. Let f : {0, 1}2 → {0, 1} be the function computed by this gate, which is either the AND function or
the XOR function. Let g : {0, 1}2 → {0, 1} be defined by g(x, y) = f(x ⊕ λa, y ⊕ λb) ⊕ λc. Then we
have g(va ⊕ λa, vb ⊕ λb) = vc ⊕ λc. We set χi,j = g(i, j).

2. The ciphertexts are the following: {Encka,i,kb,j
(χi,j , kc,χi,j)}i,j∈{0,1}. Then, the evaluator can decrypt

the ciphertext with index (i, j) = (va ⊕ λa, vb ⊕ λv) and learn (vc ⊕ λc, kc,vc⊕λc).

Finally, to let the evaluator obtain the function output, the garbler simply sends λw associated with the
output wires to the evaluator.

The security follows from the fact that the evaluator only learns one of the two labels for each wire. This
only allows him to decrypt one of the 4 ciphertexts for each gate. It is important to note that in the 2-party
setting, either the garbler is corrupted or the evaluator is corrupted.

3

BMR Template. In the multiparty setting, we cannot let a single party act as the garbler and let all
other parties act as evaluators, since the garbler may collude with some evaluator, and then security would
no longer hold. The idea of the BMR construction is to let all parties jointly emulate the garbler. Note
that after preparing (λw, kw,0, kw,1) for each wire, all ciphertexts can be computed in parallel. Thus, the
computation task of the garbler can be represented by a constant-depth circuit, with size growing linearly in
|C|. We may use a generic dishonest majority MPC protocol to emulate the garbler within constant rounds.

After all parties securely generate Yao’s garbled circuit, each party can act as an evaluator to obtain its
function output locally.

When using the state-of-the-art SPDZ-style protocol (Le Mans [RS22]) to instantiate the generic dishonest
majority MPC protocol, it is possible to achieve O(|C|n) communication with constant rounds to emulate
the computation task of the garbler. However, an efficiency bottleneck of the BMR construction is that all
parties have to emulate the underlying encryption algorithm, which needs to use the underlying symmetric-
key encryption scheme in a non-black-box way. Following up works have tried to improve the concrete
efficiency of the BMR construction by either making the underlying cryptographic tools used in a black-
box way or using concrete instantiations for the symmetric-key encryption scheme. As we will discuss in
Section 2.5, these works either require a quadratic communication in the number of parties or introduce a
large multiplicative overhead.

2.2 Our Solution
Starting Point: Using Public-Key Encryption Schemes. Recall that for every wire w, we need to
prepare a pair of labels (kw,0, kw,1). These labels are used as secret keys to compute proper ciphertexts.
When computing the garbled circuit in a distributed way, all parties only hold shares of secret keys (wire
labels) and the messages they want to encrypt. Indeed, emulating the encryption algorithm from shares of
the secret key and the message is the main difficulty.

Our starting point is to replace the symmetric-key encryption scheme in the BMR template with a public-
key encryption scheme. Then, each wire label becomes a key pair (pk, k) where pk is the public key and k is
the private key. While all parties need to keep k private as before, pk can be made public. Looking ahead,
this will help us address the difficulty of computing ciphertexts in a distributed manner.

To be more concrete, it is sufficient to address the following issues.

• For each wire w, all parties need to jointly prepare two key pairs where the private keys are additively
shared among all parties.

• We need to design a protocol that allows all parties to efficiently compute a ciphertext when pk is
known to all parties but the message m is additively shared.

For simplicity, we start with the semi-honest security. We will discuss how to upgrade our protocol to achieve
malicious security in Section 2.4.

Addressing the First Difficulty. For the first difficulty, we note that it is sufficient to use a public-key
encryption scheme that is linearly homomorphic for public keys: For two key pairs (pk1, k1) and (pk2, k2),
(pk1+̃pk2, k1 + k2) is also a valid key pair. Here +̃ refers to the homomorphic operation defined by the
public-key encryption scheme.

Now to generate (pk, k) such that k is additively shared among all parties,

1. Each party Pi generates (pki, ki) and sends pki to the first party P1;

2. P1 locally computes pk = pk1+̃pk2+̃ . . . +̃pkn and sends pk to all parties.

3. Each party Pi views his private key ki as an additive share of k = k1 + . . .+ kn and outputs (pk, ki).

Note that when there are t = n− 1 corrupted parties, the adversary will learn pki generated by the honest
party Pi. However, this is fine since the adversary learning pk and public keys {pkj}j ̸=i generated by all
corrupted parties can anyway compute pki locally.

4

Addressing the Second Difficulty. For the second difficulty, although pk is public, the message m to
be encrypted is still secret shared among all parties. It is unclear how to emulate the encryption algorithm
in a black-box way.

Our main observation is that, to build a constant-round MPC protocol with linear communication, it is
not necessary to obtain a single and compact ciphertext for the message m. Recall that in the evaluation
phase, the evaluator will obtain the proper private key (wire label) for each wire and need to decrypt the
corresponding ciphertext. We note that it is sufficient to let each party provide a separate ciphertext for his
share of the message.

To be more concrete, suppose m is additively shared among all parties where each party Pi holds mi.
We let each party Pi encrypt his message share mi using the public key pk and send the ciphertext cti to
the evaluator. Now the evaluator with the private key k and (ct1, . . . , ctn) can already decrypt mi from each
cti and compute m = m1 + . . . +mn. In this way, we can maintain linear communication while using the
underlying public-key encryption scheme in a black-box way.

Summary of Our Solution. In summary, we will replace the symmetric-key encryption scheme in the
BMR template by a public-key encryption scheme that is linearly homomorphic for public keys. When
preparing the wire label, we let all parties prepare (pk, k) where pk is public and k is secretly shared among
all parties. Then we follow the BMR template and compute the message m (which is the proper wire label
(private key) for the next layer) to be encrypted, which is also secretly shared among all parties. We let each
party locally encrypt his message share using pk and send the ciphertext to P1. In the evaluation phase, P1

will serve as the evaluator to compute and distribute the final output.

2.3 Concrete Instantiation of PKE
In our work, we instantiate the public-key encryption scheme by a variant of the well-known El-Gamal
encryption scheme [Elg85] based on the Decisional Diffie-Hellman (DDH) assumption. For a DDH group G
with group generator g and order p, the key generation algorithm outputs a random value k ∈ {0, . . . , p− 1}
as the private key and pk = gk as the public key. To encrypt a group element m, the encryption algorithm
samples a random value r ∈ {0, . . . , p − 1} and outputs (gr, pkr ·m). The security follows from the DDH
assumption which states that when k and r are uniformly random, given pk = gk and gr, pkr = gk·r is
computationally indistinguishable from a random group element. Thus, pkr serves as a random mask for m.

Firstly, note that the El-Gamal encryption scheme is already linearly homomorphic for public keys: for
any two key pairs (pk1, k1) and (pk2, k2), (pk1 · pk2, k1 + k2) is also a valid key pair. However, the problem
with using the El-Gamal encryption scheme is that it can only be used to encrypt a group element. On the
other hand, for each gate in Yao’s garbled circuit, the message m that we want to encrypt is a wire label
of the output wire. Recall that the wire label corresponds to the private key of the public-key encryption
scheme, which is within {0, . . . , p − 1}. Taking a closer look at this issue, although pkr is indistinguishable
from a random group element, we cannot view pkr as a uniform string due to the algebraic structure of the
DDH group.

We resolve this issue by converting pkr to a random string relying on pseudorandom generator (PRG) so
that it can be used as a one-time pad key to encrypt the message m (which is also viewed as a bit-string).

• Let Ext be a strong-seeded randomness extractor Ext and Prg be a pseudorandom generator Prg. We
modify the encryption algorithm as follows: After computing pkr, we apply Ext on pkr to obtain a
(pseudo)random output. Then we apply Prg to stretch the length of the random output and use the
result to encrypt m. Thus, the ciphertext is defined by (gr, seed,m⊕Prg(Ext(pkr; seed))). In practice,
one can replace Prg(Ext(·)) by a random oracle for practical efficiency.

We note that, in the actual construction of Yao’s garbled circuit, for each gate, each message needs to be
encrypted under two public keys (one from each input wire). While a direct solution is to do the encryption
using the two public keys one by one, in Section 4, we provide an optimized version that directly works for
the two-public-key setting.

5

2.4 Towards Malicious Security
So far, we have mainly focused on semi-honest security. To achieve malicious security, we rely on the standard
technique of message authentication codes (MAC) [DPSZ12, DKL+13]. At the beginning of the protocol, all
parties together hold an additive sharing of a global MAC key ∆, denoted by [∆]. A SPDZ sharing of a secret
x is defined by a tuple of three additive sharings: [[x]] = ([x], [∆], [∆ ·x]). When the secret x is reconstructed,
all parties can use a MAC check protocol [DKL+13] to verify the correctness of the reconstruction. We rely
on the malicious variant of Le Mans [RS22] to support addition and multiplication operations over SPDZ
sharings with linear communication complexity.

However, we also need to protect against the following malicious behaviors:

• Recall that to prepare a key pair (pk, k), all parties first prepare a SPDZ sharing [[k]]. Then each party
sends gki to P1, which allows P1 to compute gk and send it to all parties.

However, parties may end up with an incorrect public key pk′ either due to a corrupted party Pi sending
an incorrect gki to P1 or because P1 is corrupted. In the worst case, the adversary may even learn the
private key (the discrete log) of pk′, and the security of the public-key encryption scheme is gone.

• When doing the encryption, a corrupted party may not encrypt his correct share of the message. Then
in the evaluation phase, the evaluator may decrypt an incorrect message and obtain incorrect function
outputs.

• When the evaluator is corrupted, he may not send the correct function outputs to all parties at the
end of the protocol.

Handling the First Attack. For the first attack, all parties will together verify the correctness of public
keys. Since (pk, [[k]]) is linearly homomorphic, we simply check a random linear combination of all key pairs.

More precisely, suppose all parties have prepared {(pk(i), [[k(i)]])}Ni=0. To verify the correctness of each
pk(i), all parties compute a random linear combination

(pk, [[k]]) = (pk(0), [[k(0)]]) +
N∑
i=1

ri · (pk(i), [[k(i)]]),

where r1, . . . , rN are (pseudo)random coefficients. Now it is sufficient to check whether pk is correct with
respect to k. Relying on the MAC, all parties can verifiably reconstruct the secret k and then check whether
pk = gk.

Handling the Last Two Attacks. We note that given a key pair (pk, k), one can verify whether it is
valid by checking pk = gk. Since the public keys are known to all parties, an honest party can use this
property to verify the correctness of a wire label (private key).

The second attack only occurs when the evaluator is honest. In the evaluation phase, whenever an honest
evaluator computes a wire label, he can use the above approach to check the validity of the wire label. In
case he does not obtain the correct wire label, the protocol will abort. In this way, the protocol will only
proceed if an honest evaluator obtains the correct wire label for each wire.

For the third attack, we require the evaluator to send the wire label for the output wires to all parties
so that an honest receiver can check the validity of the wire label locally. Note that a malicious evaluator
can only learn the wire label corresponding to the function output. In this way, an honest receiver will not
accept an incorrect function output.

Optimizations. We note that in the evaluation phase, for each wire, the evaluator will only learn one of
the two wire labels associated with this wire. Thus, we may set the difference between these two wire labels
to be the same for all wires. This trick has been used in many previous works for constructing efficient Yao’s
garbled circuits.

6

More concretely, for each wire w, recall that all parties need to prepare (pkw,0, [kw,0]) and (pkw,1, [kw,1]).
We require that kw,1− kw,0 = ∆, where ∆ is the MAC key of the underlying SPDZ protocol. This brings us
two benefits.

• First, when computing pkw,0 and pkw,1, it is sufficient to compute g∆ and pkw,0. Then all parties can
locally compute pkw,1 = g∆ · pkw,0. In this way, we only need to prepare one key pair for each wire.

• Second, in the Yao’s garbled circuit, recall that for each gate, we need to compute 4 ciphertexts. Let
a, b denote the input wires of this gate and c denote the output wire. For all i, j ∈ {0, 1}, we need
to first compute χi,j , which is the index of the private key we need to encrypt under the public keys
pka,i and pkb,j ; i.e., the ciphertext we need to compute is Encpka,i,pkb,j (χi,j , kc,χi,j)

1. Then we need to
compute an additive sharing of kc,χi,j . Usually, this is done by first computing a SPDZ sharing [[χi,j]]
and then using χi,j to choose one of the two private keys, which requires one additional multiplication
operation.
We observe that kc,χi,j

= kc,0 + χi,j ·∆. Note that all parties have already held [χi,j ·∆] from [[χi,j]].
Thus, all parties can locally compute [kc,χi,j] = [kc,0] + [χi,j ·∆].

Remark 1 (Free XOR and the Assumption of Random Oracle). In our construction, we have to use a large
prime field due to the DDH assumption. This unfortunately is not compatible with the free-XOR technique
introduced in [PS08], which requires working over an extension field of the binary field. We leave the question
of incorporating free-XOR into our technique to future work.

As in all previous works that use the same difference between the two labels for all wires, this optimization
only works under the assumption of a random oracle due to the issue of circular encryption. For concrete
efficiency, we will mainly focus on the construction with the above optimization assuming a random oracle
and refer the readers to Appendix G for the one that does not require a random oracle.

2.5 Related Works
As we have mentioned above, the main efficiency bottleneck of the BMR construction is that it requires all
parties to emulate the underlying encryption algorithm, which needs to use the underlying symmetric-key
encryption scheme in a non-black-box way. For typical instantiations, the symmetric-key encryption scheme
involves computation of a pseudo-random function (PRF). To be more concrete, to encrypt a message m
with secret key k for a gate with identifier g, the ciphertext is defined by

ct = PRFk(g)⊕m.

Starting from secret sharings of k and m, the joint computation of the PRF would incur a large overhead in
both communication and computation depending upon the circuit size of the PRF.

To overcome this issue, Damgård and Ishai [DI05] proposed a variant of the BMR construction that uses
PRG in a black-box way. At a high level, instead of viewing that all parties hold a secret sharing for each
wire label, we simply take the concatenation of all shares as the wire label k = k1∥k2∥ . . . ∥kn. Now the
ciphertext is defined by

ct = PRFk1
(g)⊕ PRFk2

(g)⊕ . . .⊕ PRFkn
(g)⊕m.

In this way, each party can locally apply PRF on his share and only secret share the result. However, since
the size of each wire label is increased by a factor of n because of concatenation, both the size of the garbled
circuit and the overall communication complexity are increased by a factor of n, i.e., O(|C|n) for the size of
the garbled circuit with O(|C|n2) communication!

A line of works focuses on partially resolving this issue by either considering a weaker security where there
are more than 1 honest parties [HOSS18a, HOSS18b, BGH+23] or only reducing the size of the garbled circuit
relying on advanced cryptographic tools and assumptions [BLO17, BCO+21]. We note that [BLO17] is also
based on the DDH assumption and [BCO+21] has the potential of achieving overall linear communication
complexity, which we will elaborate on below.

1In our actual construction, we only encrypt kc,χi,j but not χi,j since the evaluator can learn χi,j by comparing kc,χi,j with
the two public keys pkc,0, pkc,1.

7

Comparison with [BLO17]. The protocol in [BLO17] follows the BMR framework to encrypt secret-
shared messages with secret-shared keys. By using key-homomorphic PRF, the size of the garbled circuit is
independent of the number of parties. However when using DDH, the key-homomorphic PRF is multiplicative
homomorphic which requires them to multiply n values, one held by each party. This step incurs a quadratic
communication. Besides, [BLO17] only works against semi-honest adversaries.

Our work uses PKE and sacrifices the succinctness of the garbled circuit (i.e., the size is linear in the
number of parties) to achieve linear communication.

Achieving Linear Communication From [BCO+21]. To reduce the size of the garbled circuit, the
work [BCO+21] relies on a symmetric-key encryption scheme based on the LPN assumption. At a high level,
to encrypt a message m with secret key k, the encryption algorithm is defined by

ct = (A · k)⊕ e⊕ (M ·m),

where A and M are public matrices, k,m are viewed as vectors of bits, and e is a bit-string (or a vector of
bits) with each bit independently drawn from some Bernoulli distribution. Intuitively, the LPN assumption
states that for a random string k, given A, (A · k)⊕ e is computationally indistinguishable from a uniform
string, which is used as the one-time pad key to encrypt the message. To decrypt ct with k, one can compute
ct ⊕ (A · k) which is equal to e ⊕ (M · m). The matrix M is used to encode the message m so that the
message can be recovered even if some bits of the codeword are incorrect due to the error string e. Note
that the key size and the ciphertext size do not grow with the number of parties, thus achieving O(|C|) for
the size of the garbled circuit.

The main benefit of this encryption scheme is that, if parties have additive sharings of k and m, and
can generate additive sharings of e, then the encryption algorithm can be computed via local computation.
In [BCO+21], the generation of additive sharings of error strings and the computation of secret sharings
of k and m are done via the SPDZ protocol in a black-box way. When instantiating the underlying SPDZ
protocol by Le Mans [RS22], it is possible to achieve linear communication O(|C|n)2.

Despite the potential of achieving linear communication, the LPN assumption usually requires the use of
a very large parameter to achieve the desired level of security. For example, the analysis in [BCO+21] shows
that when the computational security parameter λ = 128 and the statistical security parameter κ = 80, the
ciphertext size needs to be ℓ = 8925 bits. Furthermore, all parties need to jointly prepare ℓ random bits that
follow the Bernoulli distribution to obtain e for each encryption. In [BCO+21], to prepare one random bit
sharing such that the secret is 1 with probability τ , all parties first generate log(1/τ) random bit sharings
where the secrets are uniformly distributed and then multiply them together. As a result, there is a large
constant overhead in [BCO+21].

Implicit Overhead of LPN-based Encryption. We note the symmetric-key encryption scheme used
in [BCO+21] satisfies an even stronger homomorphism: Each party can locally encrypt his message share
using his key share. Then the summation of all ciphertexts corresponds to a valid ciphertext of m under the
secret key k. This seems to give a way to avoid generating the error string e jointly. Instead, each party Pi

can generate his own error string ei (used to encrypt his message share) and the final error string becomes
e =

⊕n
i=1 ei.

However, even if all parties perform honestly, note that the error accumulates in the LPN-based encryption
scheme and this requires the ciphertext to be long enough so that one can still recover the message during
the decryption phase. This would implicitly require the ciphertext size to be linear in n. This is why in
both [BCO+21, BGH+23], the error string is generated jointly.

A similar issue would occur if one tries to instantiate the public-key encryption scheme used in our con-
struction from the LPN assumption: The error accumulated during the aggregation of all parties’ public keys

2We note that [BCO+21] actually needs to compute binary circuits using the SPDZ protocol. However, the malicious variant
of Le Mans [RS22] currently only works for a large finite field. In this work, we omit this distinction when comparing [BCO+21]
with our result.

8

may require the key size to be proportional to the number of parties, resulting in a quadratic communication
overhead.

Comparison with [GYKW24]. We note that a recent work [GYKW24] also achieves linear communi-
cation for computing the garbled circuit and the garbled circuit size is independent of the number of parties.
However, their construction only focuses on semi-honest security and requires a threshold homomorphic en-
cryption scheme, while our protocol achieves malicious security with lighter assumptions. In addition, their
construction requires O(log n) rounds to compute the garbled circuits.

3 Preliminaries
Notations. Let Fp be a prime field of order p. Let Um be the uniform distribution over {0, 1}m. We use κ
to denote the statistical security parameter, and we use λ to denote the computational security parameter.

3.1 Basic Definitions and Primitives
We first present some basic definitions.

Definition 1. (Min-entropy). Let X be a random variable. Then the min-entropy of X is defined as

H∞(X) = min
x

log
1

Pr[X = x]
.

Definition 2. (k-source). A random variable X is a k-source if H∞(X) ≥ k.

Definition 3. (Statistical Distance). For random variables X and Y taking values in X , their statistical
difference is defined as

∆(X,Y) = max
T⊂X

|Pr[X ∈ T]− Pr[Y ∈ T]|.

We say that X and Y are ϵ-close if ∆(X,Y) ≤ ϵ.

An extractor [NZ96] can be used to extract uniform randomness out of a weakly random value which is
only assumed to have sufficient min-entropy. A strong seeded extractor is defined as follows.

Definition 4. (Strong Seeded Extractors [NZ96]). An efficient function Ext : X × {0, 1}d → {0, 1}m
is a strong (k, ϵ)-extractor if for every k-source X on X , (Ud,Ext(X,Ud)) is ϵ-close to (Ud, Um).

A strong seeded extractor can be constructed with an efficient universal hash function [CW79, Sti91,
NP99, PS08], which follows from the Leftover Hash Lemma [HILL99]. We state this result below.

Theorem 2. There exists a strong (k, 2−κ)-seeded extractor Ext : X × {0, 1}k → {0, 1}k−2κ.

We also need a pseudorandom generator for our encryption scheme.

Definition 5. (Computational Distance). For random variables X and Y taking values in X , the
advantage of a circuit D in distinguishing X and Y is defined as

∆D(X,Y) = |Pr[D(X) = 1]− Pr[D(Y) = 1]|.

Let Dt be the set of all probabilistic circuits of size t. The computational difference of X and Y is defined as

CDt(X,Y) = max
D∈Dt

∆D(X,Y).

When X = Xλ and Y = Yλ are families of distributions indexed by a security parameter λ, we say that X
and Y are computationally indistinguishable, denoted X =c Y , if for every polynomial t(·), CDt(λ)(X,Y) =
negl(λ).

9

Definition 6. (Pseudorandom Generator). A length-increasing function Prg : {0, 1}λ → {0, 1}m is a
pseudorandom generator (PRG) if Prg(Uλ) =c Um.

Decisional Diffie-Hellman (DDH) Assumption. We assume that the DDH assumption holds, i.e., for
a group G of a 2λ-bit prime order p, let g be a generator of G, then:

{ga, gb, gab : a, b $←− Fp} =c {ga, gb, gc : a, b, c $←− Fp}.

Security Model. We define the security of multiparty computation in the real and ideal world paradigm [Can00].
Informally, we consider a protocol Π to be secure if any adversary’s view in its execution in the real world
can also be simulated in the ideal world. For more details, we refer the readers to Appendix A.

3.2 Secret Sharing
Let [x] denote an unauthenticated additive sharing of x with Pi’s share x(i). We use P = {P1, . . . , Pn} to
denote the set of all parties. For all PA,PB ⊂ P, we follow the definition in [RS22] to define an authenticated
sharing ⟨x⟩PA,PB as follows.

• All parties in PA together hold an additive sharing of x. Each party Pj ∈ PB holds a global key ∆(j).

• For every Pi ∈ PA, Pj ∈ PB , Pj holds a random local key K
(j)
i and Pi holds the MAC of x(i) defined

by
M

(i)
j = K

(j)
i +∆(j) · x(i).

An authenticated additive sharing

⟨x⟩PA,PB = ((x(i), (M
(i)
j)Pj∈PB

)Pi∈PA
, (∆(j), (K

(j)
i)Pi∈PA

)Pj∈PB
)

can be locally converted to a SPDZ sharing [[x]] = ([x], [∆], [∆ ·x]) when PB = P by letting each Pi computex(i),∆(i),∆(i) · x(i) +
∑
j ̸=i

(M
(i)
j −K

(i)
j)

 ,

where x(i) = M
(i)
j = K

(j)
i = 0 for all Pi ̸∈ PA and Pj ∈ P. When PA = PB = P, we simply use ⟨x⟩ to

denote ⟨x⟩P,P .

3.3 Functionalities for Sub-protocols
We borrow the following functionalities from [RS22].

Programmable OLE. We use a functionality for random, programmable oblivious linear evaluation (OLE),
Fprog

OLE (see Figure 1). This is a two-party functionality, which computes a batch of secret-shared products, i.e.
random tuples (ui, vi), (xi, wi), where wi = ui · xi + vi, over the field Fp. The programmability requirement
is that, for any given instance of the functionality, the party who obtains ui or xi can program these to be
derived from a chosen random seed. This allows the same ui, vi to be used in different instances of Fprog

OLE .
We model the programmability with an expansion function Expand, which is a PRG.

Let Expand : S → Fm
p be an expansion function with seed space S and output length m. On receiving sa ∈ S

from PA and sb ∈ S from PB :

1. The trusted party computes u = Expand(sa),x = Expand(sb) and samples v ∈ Fm
p .

2. The trusted party outputs w = u ∗ x+ v to PA and v to PB .

Functionality Fprog
OLE

10

Corrupted Parties: If PB is corrupt, v may be chosen by S. For a corrupt PA, S can choose w (and then v
is recomputed accordingly).

Figure 1: Functionality for programmable OLE.

Multiparty VOLE. Vector oblivious linear evaluation (VOLE) can be seen as a batch of OLEs with the
same xi value in each tuple, i.e., a vector w = u · x+ v, where x ∈ Fp is a scalar given to one party. In the
functionality of multiparty VOLE, FnVOLE (see Figure 2), every pair of parties (Pi, Pj) is given a random
VOLE instance w

(i)
j = u(i) ·x(j)+v

(j)
i . The functionality guarantees consistency, in the sense that the same

u(i) or x(j) values will be used in each instance involving Pi or Pj . While, unlike the OLE functionality, the
u(i), x(i) values in FnVOLE are not programmable, we do require that the functionality outputs to Pi a short
seed which can be expanded to u(i) so that Pi can later use this as an input to Fprog

OLE .

Let Expand : S → Fm
p be an expansion function with seed space S and output length m.

Init: On receiving Init from Pi for i ∈ [1, n], the trusted party samples ∆(i) ∈ Fp, sends it to Pi, and ignores
all subsequent Init commands from Pi.

Extend: On receiving Extend from every Pi ∈ P:

1. For each honest Pi, the trusted party randomly samples seed(i) ∈ S.

2. For each Pi, let u(i) = Expand(seed(i)). The trusted party samples (v
(j)
i)j ̸=i ∈ Fm

p , retrieves ∆(j) and
computes w

(i)
j = u(i) ·∆(j) + v

(j)
i .

3. If Pj is corrupt, S can send a set I to the trusted party. If seed(i) ∈ I, the trusted party sends success to Pj

and continues. Otherwise, the trusted party sends abort to both parties, outputs seed(i) to Pj and aborts.

4. The trusted party outputs ((seed(i), (w
(i)
j ,v

(i)
j)j ̸=i) to Pi.

Corrupted Parties: A corrupt Pi can choose ∆(i) and seed(i). It can also choose w
(i)
j (and then v

(j)
i is

recomputed accordingly) and v
(i)
j .

Global key query: If Pi is corrupted, the trusted party receives (guess,∆′) from S with ∆′ ∈ Fn
p . If ∆′ = ∆

where ∆′ = (∆(1), . . . ,∆(n)), the trusted party sends success to Pi and ignores any subsequent global key
query, otherwise, the trusted party sends (abort,∆) to Pi, abort to Pj and aborts.

Functionality FnVOLE

Figure 2: Functionality for n-party VOLE.

We also use the standard functionalities FCoin (Figure 3) and FCommit (Figure 4) for generating random
coins and commitments, respectively.

1. On receiving RandCoin from all the parties, the trusted party samples r ∈ Fp.

2. The trusted party sends r to S. If abort is received from S, the trusted party sends abort to all the parties
and aborts the functionality. Otherwise, the trusted party sends r to all the parties.

Functionality FCoin

Figure 3: Functionality for generating a common coin.

Commit: On input (commit, Pi, x, τx) from Pi, where τx is a previously unused identifier, the trusted party
stores (Pi, x, τx) and sends (Pi, τx) to all parties.

Open: On input (open, Pi, τx) from Pi, the trusted party retrieves x and sends (x, i, τx) to all the parties.

Functionality FCommit

Figure 4: Functionality for commitment.

11

3.4 MAC Check on Opened Values.
For a SPDZ sharing [[x]], when we say the parties open [[x]], we mean that the parties run the following ΠOpen

protocol on [[x]].

1. All the parties send their shares of [x] to P1.

2. P1 reconstructs x and sends it to all the parties.

Protocol ΠOpen([[x]])

Figure 5: Protocol to open a SPDZ sharing.

When the secrets of some SPDZ sharings are opened to all parties, they can check the correctness relying
on the MACs by a standard SPDZ MAC check protocol ΠSPDZ-MAC [DKL+13] in the {FCoin,FCommit}-hybrid
model (see Figure 6).

Let all parties agree on a PRG Prg : Fp → Fm
p . Parties want to check the MACs on opened values

(A1, . . . , Am) for sharings ([[A1]], . . . , [[Am]]).

1. The parties call FCoin to get a random seed in Fp and expand it with Prg to get random random values
χ1, . . . , χm ∈ Fp.

2. The parties compute A =
∑m

i=1 χi ·Ai and [γ] =
∑m

i=1 χi · [∆ ·Ai].

3. The parties compute [σ] = [γ]− [∆] ·A. Each Pi calls FCommit with input (commit, Pi, [σ], τ[σ]).

4. The parties open their commitments and check that
∑n

i=1[σ] = 0. If not, the parties output abort and
abort the protocol.

Protocol ΠSPDZ-MAC

Figure 6: Protocol for MAC checking.

4 Encryption Scheme Based on DDH
In this section, we construct a public-key encryption scheme based on the DDH assumption. We will first
give a construction based on strong seeded extractors, and then simplify it under the assumption of random
oracles.

4.1 Encryption Scheme Based on Strong Seeded Extractors
We now introduce our construction of an encryption scheme based on strong seeded extractors. Let p be a
prime number and Fp be the prime field of size p. Our goal is to encrypt a message in Fp.

Let ⊕ denote the bit-wise XOR of two binary strings of the same length. Let k = max{2λ, λ+ 2κ}. Our
encryption scheme PKE1 is a tuple of four PPT algorithms (Setup,Gen,Enc,Dec) defined as follows:

• Setup(λ, κ): The setup algorithm Setup samples the following:

1. A group G of order p with a generator g, where p is a k-bit prime. Let ℓ denote the length of
group elements in G.

2. A strong (k, 2−κ)-extractor Ext : {0, 1}ℓ × {0, 1}k → {0, 1}λ (Theorem 2).

3. A pseudorandom generator Prg : {0, 1}λ → {0, 1}k.

Setup outputs public parameters pp = (G, p, g,Ext,Prg, λ, κ).

• Gen(pp): The key-generation algorithm Gen samples sk1, sk2 ∈ Fp and computes pk1 = gsk1 , pk2 = gsk2 .
Gen outputs (sk1, sk2, pk1, pk2), where sk1, sk2 are the secret keys, and pk1, pk2 are the public keys.

12

• Enc(pp, pk1, pk2,m): The encryption algorithm Enc runs as follows:

1. Sample random k1, k2 ∈ Fp, and compute gk1 , gk2 , (pk1)
k1 · (pk2)k2 .

2. Sample random s ∈ {0, 1}k, compute m′ = Prg(Ext((pk1)
k1 · (pk2)k2 , s)).

3. Encode m to a vector in {0, 1}k. Output c = (m⊕m′, s, gk1 , gk2).

• Dec(pp, sk1, sk2, c): Suppose c = (m∗, s, g1, g2). Then, the decryption algorithm Dec outputs m =
m∗ ⊕ Prg(Ext(gsk11 · gsk22 , s)).

This public key encryption scheme guarantees that a party can decrypt a ciphertext with both secret
keys, but he does not learn any information about the message with only one key. We state this as the
following theorem.

Theorem 3. PKE1 = (Setup,Gen,Enc,Dec) satisfies the following conditions:

• Correctness. Let pp← Setup(λ, κ). For any message m ∈ Fp,

Pr

[
Dec(pp, sk1, sk2, c) = m :

(sk1, sk2, pk1, pk2)← Gen(pp),

c← Enc(pp, pk1, pk2,m)

]
= 1.

• Security. Let pp ← Setup(λ, κ). Assume the DDH assumption over G with group generator g. Then
for any pair of messages m0,m1 ∈ Fp,

{pk1, sk2,Enc(pp, pk1, pk2,m0) : (sk1, sk2, pk1, pk2)← Gen(pp)}
=c {pk1, sk2,Enc(pp, pk1, pk2,m1) : (sk1, sk2, pk1, pk2)← Gen(pp)}

and

{sk1, pk2,Enc(pp, pk1, pk2,m0) : (sk1, sk2, pk1, pk2)← Gen(pp)}
=c {sk1, pk2,Enc(pp, pk1, pk2,m1) : (sk1, sk2, pk1, pk2)← Gen(pp)}.

We give the proof of this theorem in Appendix B.1.

Instantiation of the Group. In practice, we can choose G to be an elliptic curve E(Fq) of size p. Each
point on this elliptic curve can be expressed as a point in F2

q. Thus, we can take ℓ = 2 log q, where it is
ensured by the Mordell-Weil Theorem (see [Mor22, Wei29]) that

∣∣|E(Fq)| − q − 1
∣∣ < 2

√
q, which means

q = O(p).

4.2 Encryption Scheme Based on Random Oracle
If we assume the existence of a random oracle, the encryption scheme can be much simpler. We provide an
encryption scheme PKE2 = (Setup,Gen,Enc,Dec):

• Setup(λ): The setup algorithm Setup samples a group G of order p with a generator g, where p is
a 2λ-bit prime. Then, Setup initializes a random oracle O with output length 2λ. Setup outputs
pp = (G, p, g,O, λ).

• Gen(pp): The key-generation algorithm Gen samples sk1, sk2 ∈ Fp and computes pk1 = gsk1 , pk2 = gsk2 .
Gen outputs (sk1, sk2, pk1, pk2), where sk1, sk2 are secret keys, and pk1, pk2 are public keys.

• Enc(pp, pk1, pk2,m): The encryption algorithm Enc runs as follows:

1. Sample random k1, k2 ∈ Fp, then compute gk1 , gk2 , and (pk1)
k1 · (pk2)k2 .

2. Query the random oracle O with input (pk1)
k1 · (pk2)k2 to obtain m′ = O((pk1)k1 · (pk2)k2).

3. Encode m to a vector in {0, 1}2λ. Output c = (m⊕m′, gk1 , gk2).

13

• Dec(pp, sk1, sk2, c): Suppose c = (m∗, g1, g2). Then, the decryption algorithm Dec outputs m = m∗ ⊕
O(gsk11 · gsk22).

Similarly to PKE1, PKE2 satisfies the correctness and security properties.

Theorem 4. PKE2 = (Setup,Gen,Enc,Dec) satisfies the following conditions:

• Correctness. Let pp← Setup(λ). For any message m ∈ Fp,

Pr

[
Dec(pp, sk1, sk2, c) = m :

(sk1, sk2, pk1, pk2)← Gen(pp),

c← Enc(pp, pk1, pk2,m)

]
= 1.

• Security. Let pp← Setup(λ). Assume the DDH assumption over G with group generator g. For any
pair of messages m0,m1 ∈ Fp,

{pk1, sk2,Enc(pp, pk1, pk2,m0) : (sk1, sk2, pk1, pk2)← Gen(pp)}
=c {pk1, sk2,Enc(pp, pk1, pk2,m1) : (sk1, sk2, pk1, pk2)← Gen(pp)}

and

{sk1, pk2,Enc(pp, pk1, pk2,m0) : (sk1, sk2, pk1, pk2)← Gen(pp)}
=c {sk1, pk2,Enc(pp, pk1, pk2,m1) : (sk1, sk2, pk1, pk2)← Gen(pp)}.

We give the proof of this theorem in Appendix B.2.

5 Preprocessing Phase

5.1 Preprocessing Functionality
In the preprocessing phase, all the parties need to prepare several sharings to be used in the main protocol.
The preprocessing functionality Fprep is defined in Figure 7. It allows the parties to prepare the following
sharings:

• Random Values: A SPDZ sharing [[r]] of a random element r ∈ Fp.

• Triples: SPDZ sharings [[a]], [[b]], [[c]] for c = a · b, where a, b are random elements in Fp.

• Random Bits: SPDZ sharings [[λ]], where λ ∈ {0, 1} ⊂ Fp is a random bit.

Init: On receiving (Init,mT ,mR,mB) from every Pi, the trusted party samples a random element in Fp as ∆
and sends g∆ to S. Then:

1. For each corrupted party Pi, the trusted party receives ∆(i) from S and sends it to Pi.

2. The trusted party samples a MAC key ∆(i) ← Fp for each honest party Pi such that
∑n

i=1 ∆
(i) = ∆. Then,

it sends ∆(i) to each honest party Pi.

Finally, the trusted party sends g∆ to all the parties and ignores subsequent Init commands from each Pi.

Random Values: Repeat the following mR times:

1. The trusted party randomly samples r ∈ Fp and computes ∆ · r.
2. The trusted party receives corrupted parties’ shares of [[r]] from S and randomly samples honest parties’

shares of [[r]] based on the secret and corrupted parties’ shares.

3. The trusted party outputs [[r]] to the parties.

Triples: Repeat the following mT times:

1. Run steps 1 and 2 from Random Values twice, to create sharings [[a]], [[b]].

Functionality Fprep

14

2. Let c = a · b. The trusted party computes ∆ · c.
3. The trusted party receives corrupted parties’ shares of [[c]] from S and randomly samples honest parties’

shares of [[c]] based on the secret and corrupted parties’ shares.

4. The trusted party outputs ([[a]], [[b]], [[c]]) to the parties.

Random Bits: Repeat the following mB times:

1. The trusted party randomly samples λ ∈ {0, 1}.
2. The trusted party receives corrupted parties’ shares of [[λ]] from S and randomly samples honest parties’

shares of [[λ]] based on the secret and corrupted parties’ shares.

3. The trusted party outputs [[λ]] to the parties.

Abort. Upon receiving abort from S, the trusted party sends ∆ to S, outputs abort to all the parties, and
aborts.

Figure 7: Functionality for preprocessing.

With the authenticated triples, the parties can do multiplication following the SPDZ protocol. We present
ΠMult in Figure 8.

To compute [[z]] = [[x]] · [[y]]:

1. Using a triple ([[a]], [[b]], [[c]]) generated using Triples from Fprep, the parties compute and open
[[e]] = [[x− a]], [[d]] = [[y − b]] by ΠOpen.

2. The parties compute the multiplication by [[z]] = e · d+ e · [[b]] + d · [[a]] + [[c]].

Protocol ΠMult([[x]], [[y]])

Figure 8: Protocol for SPDZ multiplication.

5.2 Preprocessing Protocol
For simplicity, we use x[k] to denote the k-th entry of x. In Figure 9, we provide our protocol Πprep realizing
the preprocessing functionality Fprep in the {Fprog

OLE ,FnVOLE,FCoin,FCommit}-hybrid model.

Let Expand : S → Fm
p be an expansion function with seed space S and output length

m = max{mT ,mR + 1,mB}. Each call of FnVOLE or Fprog
OLE is with respect to this Expand and m.

Let G be a multiplicative group of order p with generator g.

Init:

1. Each Pi ∈ P sends Init to FnVOLE and receives ∆(i).

2. Each Pi computes g∆
(i)

and sends it to all the parties.

3. Each party locally computes g∆ =
∏n

i=1 g
∆(i)

.

The following protocols are then executed in order: Πrand,Πtrip,Πbit,Πver.

Protocol Πprep

Figure 9: Protocol for preprocessing.

Each random SPDZ sharing is obtained by conversion from an authenticated additive sharing. The
authenticated additive sharings are generated by FnVOLE. More concretely, the parties need to invoke FnVOLE

in order to receive the seeds and pair-wise MACs from FnVOLE. Then, the parties expand their own seeds to
get their shares of random additive sharings. We will generate mR random sharings together with another
random sharing for verification of g∆. The protocol Πrand for generating random SPDZ sharings is given in
Figure 10.

15

Random Values:

– Setup: Each party Pi calls FnVOLE with input Extend. Pi receives (s
(i)
r , (M

(i)
j ,K

(i)
j)j ̸=i). Each Pi’s

Expand(s
(i)
r),∆(i), (M

(i)
j ,K

(i)
j)j ̸=i form his shares of a vector of m sharings ⟨r⟩.

– To get the k-th random sharing (1 ≤ k ≤ mR + 1), each party takes the k-th share from ⟨r⟩ and locally
convert it to [[r]].

Protocol Πrand

Figure 10: Protocol for preparing random sharings.

To prepare multiplication triples, the parties first prepare two seeds for random SPDZ sharings, and then
pair-wise invoke Fprog

OLE with their seeds, which enables each pair of parties to obtain a two-party additive
sharing of the product of their shares of [a], [b] expanded from their seeds. Adding all these shares together,
the parties get unauthenticated additive sharings of c = a ∗ b. To convert an unauthenticated additive
sharing [c] to the SPDZ sharing [[c]], the parties need another random sharing [[ℓ]], so that they can open
c+ ℓ and compute [[c]] = (c+ ℓ)− [[ℓ]]. Since the corrupted parties may not send the correct seeds to Fprog

OLE ,
we need to prepare extra triples for verification. We utilize the technique from MASCOT [KOS16] to use an
extra triple [[a′]], [[b]], [[c′]] to verify the correctness of c = a · b for each triple [[a]], [[b]], [[c]]. The protocol Πtrip

for triple generation is given in Figure 11.

Triples:

– Setup:

1. Each Pi calls FnVOLE 5 times, with input Extend, and receives the seeds s
(i)
a , s

(i)
b , s

(i)′
a , s

(i)
ℓ , s

(i)′

ℓ . The
outputs define vectors of shares ⟨a⟩, ⟨b⟩, ⟨a′⟩, ⟨ℓ⟩, ⟨ℓ′⟩ such that a(i) = Expand(s

(i)
a), b(i) = Expand(s

(i)
b),

a(i)′ = Expand(s
(i)′
a), ℓ(i) = Expand(s

(i)
ℓ) and ℓ(i)

′
= Expand(s

(i)′

ℓ).

2. Every pair of parties (Pi, Pj) calls Fprog
OLE with Pi sending s

(i)
a and Pj sending s

(i)
b , and it sends back ui,j

to Pi and vj,i to Pj , such that ui,j + vj,i = a(i) ∗ b(j).
3. Every pair of parties (Pi, Pj) calls Fprog

OLE with Pi sending s
(i)′
a and Pj sending s

(i)
b , and it sends back u′

i,j

to Pi and v′
j,i to Pj , such that u′

i,j + v′
j,i = a(i)′ ∗ b(j).

– To get the k-th triple (1 ≤ k ≤ mT):

1. Let ⟨ak⟩, ⟨bk⟩, ⟨ℓk⟩ be the k-th shares from ⟨a⟩, ⟨b⟩ and ⟨ℓ⟩. Each Pi computes
c
(i)
k = a

(i)
k · b

(i)
k +

∑
j ̸=i(ui,j [k] + vi,j [k]) as his share of [c]. Then the parties locally convert

⟨ak⟩, ⟨bk⟩, ⟨ℓk⟩ to [[ak]], [[bk]], [[ℓk]].
2. The parties compute their shares of [ℓk + ck] = [ℓk] + [ck] and send them to P1. P1 reconstructs ℓk + ck

and sends it to all the parties.
3. Each Pi locally computes [[ck]] = (ℓk + ck)− [[ℓk]]. Then the parties get the triple ([[ak]], [[bk]], [[ck]]).
4. The parties repeat steps 1-3 on ⟨a′⟩, ⟨b⟩, ⟨ℓ′⟩ in place of ⟨a⟩, ⟨b⟩, ⟨ℓ⟩ to obtain ([[a′

k]], [[bk]], [[c
′
k]]).

5. The parties output ([[ak]], [[bk]], [[ck]]).

Protocol Πtrip

Figure 11: Protocol for generating multiplication triples.

To prepare random bit sharings, we apply the techniques of [DFK+06]. In particular, the parties prepare
a pair of SPDZ sharings [[r]], [[r2]], where r is a random element in Fp. The parties open r2 and compute√
r2 ∈ [0, . . . , (p−1)/2]. If

√
r2 ̸= 0,

√
r2 is either r or −r, with equal probability. Then, 2−1((

√
r2)−1 ·r+1)

is uniformly random in {0, 1}. The SPDZ sharings [[r]], [[r2]] can be prepared using a similar technique as
used in preparing triples. The protocol Πbit for generating sharings of random bits is given in Figure 12.

16

Random Bits:

– Setup:

1. Each Pi calls FnVOLE 4 times, with input Extend, and receives the seeds s
(i)
r , s

(i)′
r , s

(i)
ℓ , s

(i)′

ℓ . The outputs
define vectors of shares ⟨r⟩, ⟨r′⟩, ⟨ℓ⟩, ⟨ℓ′⟩ such that r(i) = Expand(s

(i)
r), r(i)′ = Expand(s

(i)′
r),

ℓ(i) = Expand(s
(i)
ℓ) and ℓ(i)

′
= Expand(s

(i)′

ℓ).

2. Every unordered pair of parties (Pi, Pj) calls Fprog
OLE with Pi sending s

(i)
r and Pj sending s

(j)
r , and it sends

back ui,j to Pi and uj,i to Pj , such that ui,j + uj,i = r(i) ∗ r(j).

3. Every unordered pair of parties (Pi, Pj) calls Fprog
OLE with Pi sending s

(i)′
r and Pj sending s

(j)′
r , and it

sends back u′
i,j to Pi and u′

j,i to Pj , such that u′
i,j + u′

j,i = r(i)′ ∗ r(j)′ .

– To get the k-th sharing of a random bit (1 ≤ k ≤ mB):

1. Let ⟨rk⟩, ⟨ℓk⟩ be the k-th shares from ⟨r⟩, ⟨ℓ⟩. Each Pi computes R
(i)
k = (r

(i)
k)2 + 2

∑
j ̸=i ui,j [k] as his

share of [R]. Then the parties locally convert ⟨rk⟩, ⟨ℓk⟩ to [[r]], [[ℓ]].
2. The parties send their shares of [ℓk +Rk] to P1. P1 reconstructs and sends ℓk +Rk to all the parties.
3. Each Pi locally computes [[Rk]] = (ℓk +Rk)− [[ℓk]]. Then the parties get the pair ([[rk]], [[Rk]]).
4. The parties repeat steps 1-3 on ⟨r′⟩, ⟨ℓ′⟩ instead of ⟨r⟩ and ⟨ℓ⟩ to obtain ([[r′k]], [[R

′
k]]).

5. The parties run ΠOpen on [[Rk]]. If Rk = 0, the parties output abort and abort the protocol. Otherwise,
each party computes

√
Rk ∈ [1, (p− 1)/2].

6. Each party computes their shares of [[λk]] by [[λk]] = 2−1 · ((
√
Rk)

−1 · [[rk]] + 1).
7. The parties output [[λk]].

Protocol Πbit

Figure 12: Protocol for preparing random bit sharings.

We need to verify the correctness of g∆, c = a · b for each triple, and the correctness of [[r2]] for preparing
bit sharings. For g∆, we sacrifice a random SPDZ sharing [[r]] = ([r], [∆], [∆ · r]). Then, we can verify g∆ by
verifying that the product of all the parties’ shares of (g∆)[r] ·g−[∆·r] is equal to 1. To verify c = a · b for each
triple, the parties sacrifice another triple [[a′]], [[b′]], [[c′]] and use it to compute a SPDZ sharing [[α · ab− α · c]]
for a random field element α, and this value is supposed to be opened as 0. Then we only need to check
the opened values using ΠSPDZ-MAC. The correctness of [[r2]] can be verified in a similar way. The complete
verification protocol Πver is given in Figure 13.

Verification:

1. The parties sacrifice one SPDZ sharing [[r]] generated by Random Values. Let each Pi’s share of [r] be
r(i), Pi’s share of [∆ · r] be m(i).

2. Each party computes σ(i) = (g∆)r
(i)

· g−m(i)

and calls FCommit with input (commit, Pi, σ
(i), τσ(i)).

3. The parties open their commitments and check that
∏n

i=1 σ
(i) = 1. If not, the parties output abort and

abort the protocol.

4. The parties call FCoin to get a random value α ∈ Fp.

5. For each ([[ak]], [[bk]], [[ck]]) and ([[a′
k]], [[bk]], [[c

′
k]]) prepared in Triples:

(a) The parties compute and run ΠOpen on [[ek]] = [[α · ak − a′
k]].

(b) The parties compute [[τk]] = [[α · ck]]− ek · [[bk]]− [[c′k]]

6. For each ([[rk]], [[Rk]]) and ([[r′k]], [[R
′
k]]) prepared in Random Bits:

(a) The parties compute and run ΠOpen on [[dk]] = [[α · rk − r′k]].
(b) The parties compute [[τ ′

k]] = [[α2 ·Rk]]− d2k − 2dk · [[r′k]]− [[R′
k]].

7. The parties run ΠSPDZ-MAC to check the MACs on all the opened values, i.e., {ek}k∈[1,mT], {dk, Rk}k∈[1,mB].1

Protocol Πver

17

8. The parties run ΠSPDZ-MAC to check the MACs on {τk}k∈[1,mT], {τ ′
k}k∈[1,mB] assuming that each [[τk]] and

[[τ ′
k]] has been opened to 0.

1Here we do not check the MAC on ℓk + ck in the generation of triples and ℓk +Rk in the generation of random bits. The
additive errors on them will lead to additive errors on τk, τ

′
k, which will be detected in the next step.

Figure 13: The verification protocol.

Lemma 1. The protocol Πprep securely realizes Fprep in the {Fprog
OLE ,FnVOLE,FCoin, FCommit}-hybrid model

against a malicious adversary corrupting n− 1 parties.

We give the proof of this lemma in Appendix C.
The communication cost of Πprep is (12nmT + 16nmB)λ bits. We give a detailed analysis in Appendix

D.

6 Main Protocol
In this section, we provide our MPC protocol Πmain in the client-server model, where only clients have inputs
and outputs. We assume that the clients are C1, . . . , Cn and the servers are S1, . . . , Sn. Πmain consists of a
garbling phase and a circuit evaluation phase. The clients and servers run the garbling phase and the circuit
evaluation phase in order.

Public Parameters. Let W be the number of wires, WI be the number of input wires, and WO be the
number of output wires. Let GA be the number of AND gates and GX be the number of XOR gates. The
public key encryption scheme we use is PKE2 = (Setup,Gen,Enc,Dec) from Section 4.2.

Garbling Phase
Let λ be the computational security parameter and κ be the statistical security parameter. All the servers
agree on the public parameter pp← Setup(λ, κ) from the public-key encryption scheme (Setup,Gen,Enc,Dec)
constructed in Section 4.

1. Initialization. Set mT = 4GA + 2GX + 2WI + 2WO, mB = W , mR = W + 1. The servers send
(Init,mT ,mR,mB) to Fprep and receive the outputs from Fprep.

2. Preparing Mask Sharings. For each wire w, all the servers take one random sharing of a bit generated
by Random Bits of Fprep as [[λw]]. λw serves as the mask of the wire value of w.

3. Preparing Separate MAC Keys. For each input and output wire w:

(a) The servers take a triple generated by Fprep as [[∆w]], [[∆
′
w]], [[∆w ·∆′

w]].
(b) The servers take another triple [[aw]], [[bw]], [[cw]] and run ΠMult on [[∆w]] and [[λw]] to obtain [[∆w · λw]].
(c) The servers run ΠSPDZ-MAC to check the MACs on all the opened values, i.e. (WI +WO) pairs of d, e

opened in (WI +WO) executions of ΠMult.

4. Revealing Input Masks. For each input wire attached to each client Ci:

(a) Each server sends his shares of [λw], [∆w], [∆
′
w], [λw ·∆w], [∆w ·∆′

w] to Ci.
(b) Ci reconstructs λw,∆w,∆

′
w, λw ·∆w,∆w ·∆′

w. If λw ·∆w is not equal to the product of λw and ∆w, or
∆w ·∆′

w is not equal to the product of ∆w and ∆′
w, abort the protocol.

5. Sending Input Wire Values. For each client Ci and each input wire w attached to Ci, Ci sends vw ⊕ λw

to all the servers, where vw is the input wire value of w.

6. Preparing Shares of Wire Labels. For each wire w, the servers take a random sharing [[kw,0]] generated
by Random Values of Fprep. Let Si’s share of each [kw,0] be k

(i)
w,0.

7. Sending Public Keys.

Protocol ΠGarbling

18

(a) For each wire w, the servers compute their shares {gk
(i)
w,0}ni=1 of g[kw,0] and send them to S1. S1

computes and sends gkw,0 to all servers.
(b) The servers use a random sharing [[r]] generated by Random Values of Fprep. Then all servers compute

their shares of g[r] and send them to S1. S1 computes and sends gr to all the servers.
(c) The servers call FCoin to get a random seed in Fp and expand it to get random values θ1, . . . , θW ∈ Fp,

and locally compute [[τ]] =
∑W

i=1 θi · [[kwi,0]] + [[r]]. Then, the servers run ΠOpen to open τ .
(d) Each server checks whether gτ =

∏W
i=1(g

kwi,0)θi · gr. If not, abort the protocol.
(e) All servers locally compute gkw,1 = gkw,0 · g∆ for each wire w.

8. Garbling the Circuit. For each gate g with input wires a, b and output wire c, let fg : {0, 1}2 → {0, 1}
be the function computed by the gate.

(a) Computing Sharings of Output Labels. All the servers jointly compute SPDZ sharings of

χ1 = fg(0⊕ λa, 0⊕ λb)⊕ λc, χ2 = fg(0⊕ λa, 1⊕ λb)⊕ λc,

χ3 = fg(1⊕ λa, 0⊕ λb)⊕ λc, χ4 = fg(1⊕ λa, 1⊕ λb)⊕ λc.

Note that λ2
w = λw for each wire w.

– For AND gates, servers run ΠMult to compute [[λa · λb]], [[λc · λb]], [[λa · λc]], [[λa · λb · λc]]. Note that each
χj can be viewed as a linear combination of {1, λa, λb, λc, λa · λb, λa · λc, λb · λc, λa · λb · λc}.

– For XOR gates, note that χ1 = χ4 = λa ⊕ λb ⊕ λc and χ2 = χ3 = 1⊕ λa ⊕ λb ⊕ λc. All servers run
ΠMult to compute [[λa · λb]] and then locally compute [[λa ⊕ λb]] = [[λa]] + [[λb]]− 2 · [[λa · λb]]. Similarly,
they get [[λa ⊕ λb ⊕ λc]] using one call of ΠMult.

(b) Verification of MACs. The servers run ΠSPDZ-MAC to check the MACs on all the opened values, i.e. τ
and 4GA + 2GX pairs of d, e opened in 4GA + 2GX executions of ΠMult.

(c) Encrypting Output Labels.
i. All servers locally compute [[χj]] and [xc,j] = [kc,0] + [χj ·∆], j = 1, 2, 3, 4.

ii. Each server Si encrypts his share x
(i)
c,1 (of [xc,1]) by Enc(pp, gka,0 , gkb,0 , x

(i)
c,1), x

(i)
c,2 by

Enc(pp, gka,0 , gkb,1 , x
(i)
c,2), x

(i)
c,3 by Enc(pp, gka,1 , gkb,0 , x

(i)
c,3), and x

(i)
c,4 by Enc(pp, gka,1 , gkb,1 , x

(i)
c,4).

Then, Si sends the ciphertexts to S1.

Figure 14: Protocol for the garbling phase.

Circuit Evaluation Phase
1. Revealing Input Labels. For each input wire w, all the servers send their shares of [kw,vw⊕λw] to S1. S1

checks whether kw,vw⊕λw is consistent with the corresponding public key. If not, abort the protocol.

2. Computing the Circuit. S1 computes the circuit gate by gate. For each gate with input wires a, b and
output wire c, if S1 knows ka,va⊕λa , kb,vb⊕λb , he can use them to decrypt all the servers’ shares of kc,vc⊕λc .
Then S1 computes gkc,vc⊕λc and compares it with gkc,0 and gkc,1 to learn vc ⊕ λc. If gkc,vc⊕λc is not in
{gkc,0 , gkc,1}, abort the protocol.

3. Sending Outputs. For each client Ci and each output wire w attached to Ci:

(a) S1 sends vw ⊕ λw and kw,vw⊕λw to Ci. Then Ci checks whether they match the public key gkw,vw⊕λw .
If not, abort the protocol.

(b) Each server sends his shares of [λw], [∆w], [∆
′
w], [λw ·∆w], [∆w ·∆′

w] to Ci.
(c) Ci reconstructs λw,∆w,∆

′
w, λw ·∆w,∆w ·∆′

w. If λw ·∆w is not equal to the product of λw and ∆w, or
∆w ·∆′

w is not equal to the product of ∆w and ∆′
w, abort the protocol.

(d) Ci computes his output vw from vw ⊕ λw and λw.

Protocol ΠEval

Figure 15: Protocol for the circuit evaluation phase.

19

Theorem 5. The protocol Πmain securely realizes F in the {Fprep,FCoin, FCommit}-hybrid model against a
malicious adversary corrupting upto n clients and exactly n− 1 servers.

We give the proof of this theorem in Appendix E. By letting each party play as a client and a server,
the client-server model can be reduced to the standard MPC model. Thus, our protocol achieves malicious
security against up to n− 1 corruptions of all the n parties in the standard MPC model.

The communication cost of Πmain is (20WI + 18WO + 8W + 72GA + 56GX)nλ bits in the hybrid model.
If we use Πprep to realize Fprep, the execution of Πprep requires communication of (12nmT + 16nmB)λ =
(24WI + 24WO + 16W + 48GA + 24GX)nλ bits, resulting in a total communication of (44WI + 42WO +
24W + 120GA + 80GX)nλ bits. Since W = GA + GX + WI , the total communication for the complete
protocol is (68WI + 42WO + 144GA + 104GX)nλ bits. We give a detailed analysis in Appendix F.

7 Performance Evaluation
We now demonstrate the efficiency of our protocol. In Section 7.1, we provide a comparison of the concrete
communication cost of our protocol Πmain with other state-of-the-art protocols. We also implement and
benchmark the performance of our protocol, the results of which are given in Section 7.2.

7.1 Cost Analysis
Instatiation of [BCO+21] via Le Mans [RS22]. The LPN-based dishonest majority multiparty gar-
bling protocol of [BCO+21], as proposed in their work, incurred a communication cost of O(n · λ) bits per
gate per party. We observe that, by incorporating the preprocessing functionalities of Le Mans [RS22] as
we did, and by requiring only one party to evaluate the garbled circuit, the cost of their protocol can be
reduced to O(λ) bits per gate per party. In order to ensure a fair comparison (unbiased by the underlying
SPDZ functionalities used), we first calculate the communication cost per party of this upgraded version of
their protocol, as follows. Note that k, ℓ ∈ poly(λ).

• Garbling protocol ΠGarble:

– Steps 1-4 only require authenticated sharings of random values, which can be realized with cost
sublinear in n using PCGs.

– Step 5(a) requires GA multiplications of bits.

– Step 5(b) requires 4k ·GA multiplications of bits.

– Step 5(c) requires 8ℓ ·GA multiplications of bits.

– Step 5(d) requires WO openings of bits.

– Opening the garbled circuit requires 4ℓ ·GA openings of bits.

• Evaluation protocol ΠEvaluate:

– Step 2 requires (1 + k) ·WI openings of bits.

– All other steps require sublinear (in n) or zero communication.

Using the results of Le Mans [RS22], each multiplication (respectively, opening) can be achieved with a
communication cost of 12n (respectively, 2n) field elements. Thus, the upgraded protocol from [BCO+21]
requires a total communication cost of ((12 + 48k + 104ℓ) ·GA + (2 + 2k) ·WI + 2 ·WO)n bits.

Remark 2. The malicious variant of [RS22] is applicable only in large fields, and it cannot be applied
directly to the binary field used in [BCO+21]. For simplicity, we omit this distinction in the comparison
with [BCO+21].

20

Circuit Ben-Efraim et al. [BCO+21] This work

AES-128 768.11 65.33

SHA-256 2709.04 239.66

Table 1: Comparison of the communication cost per party (in MB) incurred in the secure computation of the
AES-128 and SHA-256 circuits. The computational security parameter is set to λ = 128 for both protocols.
The statistical security parameter for the protocol of [BCO+21] is set to κ = 80.

22 24 26 28 210

Number of parties n

2−4

20

24

28

212

C
om

m
un

ic
at

io
n

(G
B

)

Circuit size: 213 AND, 213 XOR

WRK17
YWZ20
BCO+21
Ours

22 24 26 28 210

Number of parties n

2−5

2−1

23

27

211

C
om

m
un

ic
at

io
n

(G
B

)

AES circuit: 6400 AND, 28176 XOR, 2087 INV

WRK17
YWZ20
BCO+21
Ours

Figure 16: The communication overhead of multiparty garbling protocols. The security parameters are set
to λ = 128, κ = 80 in all cases.

Comparison of Concrete Costs. We next calculate and compare the concrete cost of communication per
party between our protocol and [BCO+21], including both garbling and evaluation phases, on the AES-128
and SHA-256 circuits. The former has 6400 AND, 28176 XOR, and 2087 INV gates (where each INV(x)
can be computed as 1⊕ x), while the latter has 22573 AND, 110644 XOR, and 1856 INV gates. The cost of
communication per party can be found in Table 1. Considering statistical security parameter κ = 80 for the
protocol of [BCO+21] (where they use s to denote it), we observe that our protocol achieves approximately
11.7× and 11.3× improvements in communication cost on the AES-128 and SHA-256 circuits, respectively.

We also compare with [BGH+23] which achieves O(|C|) communication assuming a strong honest major-
ity. We note that our protocol outperforms that of [BGH+23] in terms of a total cost of communication for
up to n ≈ 3500 parties(we set corruption threshold t = ⌊n−1

4 ⌋ in their protocol for this comparison). This
evidence further reinforces the practicality of our protocol.

Finally, we compare with Wang et al. [WRK17] and Yang et al. [YWZ20], which require O(|C|n2) overall
communication. In Figure 16, we compare the end-to-end communication overhead of our protocol with the
works of Wang et al. [WRK17], Yang et al. [YWZ20], and Ben-Efraim et al. [BCO+21]. The sizes of the
circuits are shown above figures. In these two cases, our protocol always has less communication overhead
compared to [BCO+21], and outperforms [WRK17, YWZ20] when there are more than 23 to 24 parties.

7.2 Implementation and Experiments
We implement and benchmark the performance of our garbled circuits protocol, with a focus on the garbling
and evaluation phases, which are our main contributions. We assume a trusted dealer who realizes the
functionality Fprep and distributes the corresponding secret shares to parties in a preprocessing phase. All

21

experiments are done in an Amazon EC2 c5.24xlarge server with 96 vCPUs and 192 GB RAM. We emulate
different network conditions with respect to bandwidth and latency. We assume a latency of 2ms in the
LAN setting and 60ms in the WAN setting. For each of these settings, we emulate 10Gbps, 1Gbps, and
100Mbps networks. The implementation is written in C++ and is based on EMP-toolkit [WMK16]. The
elliptic curve operations are instantiated by NIST curve P-256 [PUB00] and we use the implementations
from the OpenSSL library. In our scheme, the garbling of XOR and AND gates consists of similar operations
and takes almost the same amount of running time. Hence, we only record the cost of AND gates in the
following experiments.

n
LAN WAN

10Gbps 1Gbps 100Mbps 10Gbps 1Gbps 100Mbps

2 549,1 552,5 597,51 573,15 589,18 619,60

4 588,2 595,15 729,155 645,56 643,54 784,180

8 615,6 639,37 988,362 783,106 776,125 1075,419

16 669,13 726,79 1470,799 1052,227 1016,271 1689,895

32 786,36 925,164 2597,1605 1612,470 1497,555 2964,1850

Table 2: Performance of the garbling protocol in different network conditions. The two numbers in each cell
(separated by a comma) represent the time per gate (in 10−6 seconds) used for garbling circuits and sending
the garbled tables to the evaluator. Each party runs on a single thread.

We first demonstrate the performance of our garbling protocol in different network settings and show
the results in Table 2, with the number of parties n ∈ {2, 4, 8, 16, 32}. We separately show the average time
usage per gate for the garbling phase and the transmission of the garbled circuits, of which time time usage
increases with a reduction of bandwidth or an increase in latency. Since our protocol has constant-round
communication, the impact of network latency is limited. The garbling time in WAN is only 1.1× to 2×
compared to the time in LAN. Our protocol is also communication-efficient. The garbling time in a 100Mbps
network compared to that in a 10Gbps network is less than 3.3× in LAN and less than 1.8× in WAN.

Threads
LAN WAN

10Gbps 1Gbps 100Mbps 10Gbps 1Gbps 100Mbps

1 635 667 1206 938 949 1408

2 382 414 934 681 711 1171

4 314 323 831 539 599 1023

8 242 271 776 561 570 976

Table 3: Performance of the garbling phase using different numbers of threads. The numbers are the average
time per gate (in 10−6 seconds). The number of parties is 12.

Because of the DDH-based encryption scheme, the computational cost of our scheme is higher than
schemes that are based purely on symmetric-key operations, though ours has much lower communication
complexity. Thus, we explore how multi-threading can improve the speed of garbling. The results are
shown in Table 3. In LAN and WAN settings with different bandwidths, we set up 12 parties and increase
the number of threads from 1 to 8. In all test cases, the running time of the circuit garbling significantly
decreases with the increase of threads, with improvement up to 2.6×. Note that the saving brought by the
multi-threading implementation is not strictly linear in the number of threads because the garbling phase
requires communication and interaction.

22

Operations
LAN WAN

10Gbps 1Gbps 100Mbps 10Gbps 1Gbps 100Mbps

Generate labels 45 52 196 153 132 257

Compute λs and products 57 73 282 119 125 307

Compute χs 17 17 17 16 17 17

Garble table entries 495 495 492 493 501 492

Table 4: Microbenchmark of the garbling phase. The numbers are the average time per gate (in 10−6

seconds). The number of parties is 8 and each party runs on a single thread.

We also show the microbenchmark of the circuit garbling phase in Table 4. The protocol is split into
four major components: the generation of labels (kw, g

kw), the computation of mask bits (λa, λb) and their
products (λaλb, λaλc, λbλc, λaλbλc), the computation of {χi}4i=1, and the encryption of table entries. As
demonstrated in the table, the main computational bottleneck is the garbling of table entries. Fortunately,
this cost can be greatly reduced by multi-threading as shown in the previous Table 3. Note that only the
first two operations in Table 4 involve total communication linear in the number of parties and the size of
the circuit; hence, their time usage is impacted by network conditions.

n 4 8 16 32

Single-Thread 377 735 1465 2886

Multi-Thread 172 221 249 390

Parallel 94 95 95 188

Table 5: The garbled circuits evaluation time (in 10−6 seconds) per gate. The evaluation involves only local
operations. In the third row, the number of threads for Evaluator is the same as the number of Garbler. The
last row shows the amortized time per gate per circuit when running n MPC instances in parallel and each
party acts as Evaluator (using a single thread) in one of the instances. The only exception is when n = 32,
we only run 16 instances because of the lack of CPU resources.

Finally, we study the performance of the circuit evaluation phase. As shown in the second row of Table 5,
the evaluation complexity is linear to the number of parties n. Compared to the garbling phase in Table 2,
it becomes a bottleneck when n is large. Hence, we apply multi-threading so that its running time does
not grow dramatically while increasing the number of parties (third row). Moreover, notice that the other
parties are idle when P1 is evaluating garbled circuits. We study the amortized cost when parties execute
several independent instances of our MPC protocol in parallel, and different parties act as evaluators in these
instances. The last row shows that the amortized running time is almost constant when there are n parallel
instances.

Acknowledgement. J. Li and Y. Song were supported in part by the National Basic Research Program
of China Grant 2011CBA00300, 2011CBA00301, the National Natural Science Foundation of China Grant
61033001, 61361136003.

R. Ostrovsky was supported in part by NSF grants CNS-2246355, CCF-2220450, US-Israel BSF grant
2022370, and by Sunday Group.

23

References
[BCG+19] Elette Boyle, Geoffroy Couteau, Niv Gilboa, Yuval Ishai, Lisa Kohl, and Peter Scholl. Efficient

pseudorandom correlation generators: Silent OT extension and more. In Alexandra Boldyreva
and Daniele Micciancio, editors, Advances in Cryptology - CRYPTO 2019 - 39th Annual Inter-
national Cryptology Conference, Santa Barbara, CA, USA, August 18-22, 2019, Proceedings,
Part III, volume 11694 of Lecture Notes in Computer Science, pages 489–518. Springer, 2019.

[BCG+20] Elette Boyle, Geoffroy Couteau, Niv Gilboa, Yuval Ishai, Lisa Kohl, and Peter Scholl. Efficient
pseudorandom correlation generators from ring-lpn. In Daniele Micciancio and Thomas Risten-
part, editors, Advances in Cryptology - CRYPTO 2020 - 40th Annual International Cryptology
Conference, CRYPTO 2020, Santa Barbara, CA, USA, August 17-21, 2020, Proceedings, Part
II, volume 12171 of Lecture Notes in Computer Science, pages 387–416. Springer, 2020.

[BCO+21] Aner Ben-Efraim, Kelong Cong, Eran Omri, Emmanuela Orsini, Nigel P. Smart, and Eduardo
Soria-Vazquez. Large scale, actively secure computation from LPN and free-xor garbled cir-
cuits. In Anne Canteaut and François-Xavier Standaert, editors, Advances in Cryptology -
EUROCRYPT 2021 - 40th Annual International Conference on the Theory and Applications of
Cryptographic Techniques, Zagreb, Croatia, October 17-21, 2021, Proceedings, Part III, volume
12698 of Lecture Notes in Computer Science, pages 33–63. Springer, 2021.

[BCS19] Carsten Baum, Daniele Cozzo, and Nigel P. Smart. Using topgear in overdrive: A more efficient
zkpok for SPDZ. In Kenneth G. Paterson and Douglas Stebila, editors, Selected Areas in
Cryptography - SAC 2019 - 26th International Conference, Waterloo, ON, Canada, August 12-
16, 2019, Revised Selected Papers, volume 11959 of Lecture Notes in Computer Science, pages
274–302. Springer, 2019.

[BGH+23] Gabrielle Beck, Aarushi Goel, Aditya Hegde, Abhishek Jain, Zhengzhong Jin, and Gabriel
Kaptchuk. Scalable multiparty garbling. In Weizhi Meng, Christian Damsgaard Jensen, Cas
Cremers, and Engin Kirda, editors, Proceedings of the 2023 ACM SIGSAC Conference on
Computer and Communications Security, CCS 2023, Copenhagen, Denmark, November 26-30,
2023, pages 2158–2172. ACM, 2023.

[BGW88] Michael Ben-Or, Shafi Goldwasser, and Avi Wigderson. Completeness theorems for non-
cryptographic fault-tolerant distributed computation (extended abstract). In Janos Simon,
editor, Proceedings of the 20th Annual ACM Symposium on Theory of Computing, May 2-4,
1988, Chicago, Illinois, USA, pages 1–10. ACM, 1988.

[BLO16] Aner Ben-Efraim, Yehuda Lindell, and Eran Omri. Optimizing semi-honest secure multiparty
computation for the internet. In Edgar R. Weippl, Stefan Katzenbeisser, Christopher Kruegel,
Andrew C. Myers, and Shai Halevi, editors, Proceedings of the 2016 ACM SIGSAC Conference
on Computer and Communications Security, Vienna, Austria, October 24-28, 2016, pages 578–
590. ACM, 2016.

[BLO17] Aner Ben-Efraim, Yehuda Lindell, and Eran Omri. Efficient scalable constant-round MPC via
garbled circuits. In Tsuyoshi Takagi and Thomas Peyrin, editors, Advances in Cryptology -
ASIACRYPT 2017 - 23rd International Conference on the Theory and Applications of Cryp-
tology and Information Security, Hong Kong, China, December 3-7, 2017, Proceedings, Part II,
volume 10625 of Lecture Notes in Computer Science, pages 471–498. Springer, 2017.

[BMR90] Donald Beaver, Silvio Micali, and Phillip Rogaway. The round complexity of secure protocols
(extended abstract). In Harriet Ortiz, editor, Proceedings of the 22nd Annual ACM Symposium
on Theory of Computing, May 13-17, 1990, Baltimore, Maryland, USA, pages 503–513. ACM,
1990.

24

[BNO19] Aner Ben-Efraim, Michael Nielsen, and Eran Omri. Turbospeedz: Double your online spdz!
improving SPDZ using function dependent preprocessing. In Robert H. Deng, Valérie Gauthier-
Umaña, Martín Ochoa, and Moti Yung, editors, Applied Cryptography and Network Security
- 17th International Conference, ACNS 2019, Bogota, Colombia, June 5-7, 2019, Proceedings,
volume 11464 of Lecture Notes in Computer Science, pages 530–549. Springer, 2019.

[Can00] Ran Canetti. Security and composition of multiparty cryptographic protocols. J. Cryptol.,
13(1):143–202, 2000.

[CCD88] David Chaum, Claude Crépeau, and Ivan Damgård. Multiparty unconditionally secure protocols
(extended abstract). In Janos Simon, editor, Proceedings of the 20th Annual ACM Symposium
on Theory of Computing, May 2-4, 1988, Chicago, Illinois, USA, pages 11–19. ACM, 1988.

[CW79] Larry Carter and Mark N. Wegman. Universal classes of hash functions. J. Comput. Syst. Sci.,
18(2):143–154, 1979.

[DFK+06] Ivan Damgård, Matthias Fitzi, Eike Kiltz, Jesper Buus Nielsen, and Tomas Toft. Uncon-
ditionally secure constant-rounds multi-party computation for equality, comparison, bits and
exponentiation. In Shai Halevi and Tal Rabin, editors, Theory of Cryptography, Third Theory
of Cryptography Conference, TCC 2006, New York, NY, USA, March 4-7, 2006, Proceedings,
volume 3876 of Lecture Notes in Computer Science, pages 285–304. Springer, 2006.

[DI05] Ivan Damgård and Yuval Ishai. Constant-round multiparty computation using a black-box
pseudorandom generator. In Victor Shoup, editor, Advances in Cryptology - CRYPTO 2005:
25th Annual International Cryptology Conference, Santa Barbara, California, USA, August
14-18, 2005, Proceedings, volume 3621 of Lecture Notes in Computer Science, pages 378–394.
Springer, 2005.

[DKL+13] Ivan Damgård, Marcel Keller, Enrique Larraia, Valerio Pastro, Peter Scholl, and Nigel P. Smart.
Practical covertly secure MPC for dishonest majority - or: Breaking the SPDZ limits. In Jason
Crampton, Sushil Jajodia, and Keith Mayes, editors, Computer Security - ESORICS 2013 -
18th European Symposium on Research in Computer Security, Egham, UK, September 9-13,
2013. Proceedings, volume 8134 of Lecture Notes in Computer Science, pages 1–18. Springer,
2013.

[DPSZ12] Ivan Damgård, Valerio Pastro, Nigel P. Smart, and Sarah Zakarias. Multiparty computation
from somewhat homomorphic encryption. In Reihaneh Safavi-Naini and Ran Canetti, editors,
Advances in Cryptology - CRYPTO 2012 - 32nd Annual Cryptology Conference, Santa Barbara,
CA, USA, August 19-23, 2012. Proceedings, volume 7417 of Lecture Notes in Computer Science,
pages 643–662. Springer, 2012.

[EGP+23] Daniel Escudero, Vipul Goyal, Antigoni Polychroniadou, Yifan Song, and Chenkai Weng. Super-
pack: Dishonest majority mpc with constant online communication. In Advances in Cryptology
– EUROCRYPT 2023: 42nd Annual International Conference on the Theory and Applica-
tions of Cryptographic Techniques, Lyon, France, April 23–27, 2023, Proceedings, Part II, page
220–250, Berlin, Heidelberg, 2023. Springer-Verlag.

[Elg85] T. Elgamal. A public key cryptosystem and a signature scheme based on discrete logarithms.
IEEE Transactions on Information Theory, 31(4):469–472, 1985.

[GMW87] Oded Goldreich, Silvio Micali, and Avi Wigderson. How to play any mental game or A com-
pleteness theorem for protocols with honest majority. In Alfred V. Aho, editor, Proceedings of
the 19th Annual ACM Symposium on Theory of Computing, 1987, New York, New York, USA,
pages 218–229. ACM, 1987.

25

[GYKW24] R. Garg, K. Yang, J. Katz, and X. Wang. Scalable mixed-mode mpc. In 2024 IEEE Sympo-
sium on Security and Privacy (SP), pages 109–109, Los Alamitos, CA, USA, may 2024. IEEE
Computer Society.

[HILL99] Johan Håstad, Russell Impagliazzo, Leonid A. Levin, and Michael Luby. A pseudorandom
generator from any one-way function. SIAM J. Comput., 28(4):1364–1396, 1999.

[HOSS18a] Carmit Hazay, Emmanuela Orsini, Peter Scholl, and Eduardo Soria-Vazquez. Concretely ef-
ficient large-scale MPC with active security (or, tinykeys for tinyot). In Thomas Peyrin and
Steven D. Galbraith, editors, Advances in Cryptology - ASIACRYPT 2018 - 24th International
Conference on the Theory and Application of Cryptology and Information Security, Brisbane,
QLD, Australia, December 2-6, 2018, Proceedings, Part III, volume 11274 of Lecture Notes in
Computer Science, pages 86–117. Springer, 2018.

[HOSS18b] Carmit Hazay, Emmanuela Orsini, Peter Scholl, and Eduardo Soria-Vazquez. Tinykeys: A new
approach to efficient multi-party computation. In Hovav Shacham and Alexandra Boldyreva,
editors, Advances in Cryptology - CRYPTO 2018 - 38th Annual International Cryptology Con-
ference, Santa Barbara, CA, USA, August 19-23, 2018, Proceedings, Part III, volume 10993 of
Lecture Notes in Computer Science, pages 3–33. Springer, 2018.

[HSS17] Carmit Hazay, Peter Scholl, and Eduardo Soria-Vazquez. Low cost constant round MPC com-
bining BMR and oblivious transfer. In Tsuyoshi Takagi and Thomas Peyrin, editors, Advances in
Cryptology - ASIACRYPT 2017 - 23rd International Conference on the Theory and Applications
of Cryptology and Information Security, Hong Kong, China, December 3-7, 2017, Proceedings,
Part I, volume 10624 of Lecture Notes in Computer Science, pages 598–628. Springer, 2017.

[KOS16] Marcel Keller, Emmanuela Orsini, and Peter Scholl. MASCOT: faster malicious arithmetic
secure computation with oblivious transfer. In Edgar R. Weippl, Stefan Katzenbeisser, Christo-
pher Kruegel, Andrew C. Myers, and Shai Halevi, editors, Proceedings of the 2016 ACM SIGSAC
Conference on Computer and Communications Security, Vienna, Austria, October 24-28, 2016,
pages 830–842. ACM, 2016.

[KPR18] Marcel Keller, Valerio Pastro, and Dragos Rotaru. Overdrive: Making SPDZ great again. In
Jesper Buus Nielsen and Vincent Rijmen, editors, Advances in Cryptology - EUROCRYPT
2018 - 37th Annual International Conference on the Theory and Applications of Cryptographic
Techniques, Tel Aviv, Israel, April 29 - May 3, 2018 Proceedings, Part III, volume 10822 of
Lecture Notes in Computer Science, pages 158–189. Springer, 2018.

[LOS14] Enrique Larraia, Emmanuela Orsini, and Nigel P. Smart. Dishonest majority multi-party com-
putation for binary circuits. In Juan A. Garay and Rosario Gennaro, editors, Advances in
Cryptology - CRYPTO 2014 - 34th Annual Cryptology Conference, Santa Barbara, CA, USA,
August 17-21, 2014, Proceedings, Part II, volume 8617 of Lecture Notes in Computer Science,
pages 495–512. Springer, 2014.

[LPSY15] Yehuda Lindell, Benny Pinkas, Nigel P. Smart, and Avishay Yanai. Efficient constant round
multi-party computation combining BMR and SPDZ. In Rosario Gennaro and Matthew Rob-
shaw, editors, Advances in Cryptology - CRYPTO 2015 - 35th Annual Cryptology Conference,
Santa Barbara, CA, USA, August 16-20, 2015, Proceedings, Part II, volume 9216 of Lecture
Notes in Computer Science, pages 319–338. Springer, 2015.

[Mor22] Louis Joel Mordell. On the rational resolutions of the indeterminate equations of the third and
fourth degree. In Proc. Cambridge Phil. Soc., volume 21, pages 179–192, 1922.

[NP99] Wim Nevelsteen and Bart Preneel. Software performance of universal hash functions. In Jacques
Stern, editor, Advances in Cryptology - EUROCRYPT ’99, International Conference on the

26

Theory and Application of Cryptographic Techniques, Prague, Czech Republic, May 2-6, 1999,
Proceeding, volume 1592 of Lecture Notes in Computer Science, pages 24–41. Springer, 1999.

[NZ96] Noam Nisan and David Zuckerman. Randomness is linear in space. J. Comput. Syst. Sci.,
52(1):43–52, 1996.

[PS08] Krzysztof Pietrzak and Johan Sjödin. Weak pseudorandom functions in minicrypt. In Luca
Aceto, Ivan Damgård, Leslie Ann Goldberg, Magnús M. Halldórsson, Anna Ingólfsdóttir, and
Igor Walukiewicz, editors, Automata, Languages and Programming, 35th International Collo-
quium, ICALP 2008, Reykjavik, Iceland, July 7-11, 2008, Proceedings, Part II - Track B: Logic,
Semantics, and Theory of Programming & Track C: Security and Cryptography Foundations,
volume 5126 of Lecture Notes in Computer Science, pages 423–436. Springer, 2008.

[PUB00] FIPS PUB. Digital signature standard (dss). Fips pub, pages 186–192, 2000.

[RB89] Tal Rabin and Michael Ben-Or. Verifiable secret sharing and multiparty protocols with honest
majority (extended abstract). In David S. Johnson, editor, Proceedings of the 21st Annual
ACM Symposium on Theory of Computing, May 14-17, 1989, Seattle, Washington, USA, pages
73–85. ACM, 1989.

[RS22] Rahul Rachuri and Peter Scholl. Le mans: Dynamic and fluid MPC for dishonest majority. In
Yevgeniy Dodis and Thomas Shrimpton, editors, Advances in Cryptology - CRYPTO 2022 -
42nd Annual International Cryptology Conference, CRYPTO 2022, Santa Barbara, CA, USA,
August 15-18, 2022, Proceedings, Part I, volume 13507 of Lecture Notes in Computer Science,
pages 719–749. Springer, 2022.

[Sti91] Douglas R. Stinson. Universal hashing and authentication codes. In Joan Feigenbaum, editor,
Advances in Cryptology - CRYPTO ’91, 11th Annual International Cryptology Conference,
Santa Barbara, California, USA, August 11-15, 1991, Proceedings, volume 576 of Lecture Notes
in Computer Science, pages 74–85. Springer, 1991.

[Wei29] André Weil. L’arithmétique sur les courbes algébriques. Acta mathematica, 52:281–315, 1929.

[WMK16] Xiao Wang, Alex J. Malozemoff, and Jonathan Katz. EMP-toolkit: Efficient MultiParty com-
putation toolkit. https://github.com/emp-toolkit, 2016.

[WRK17] Xiao Wang, Samuel Ranellucci, and Jonathan Katz. Global-scale secure multiparty computa-
tion. In Bhavani Thuraisingham, David Evans, Tal Malkin, and Dongyan Xu, editors, Proceed-
ings of the 2017 ACM SIGSAC Conference on Computer and Communications Security, CCS
2017, Dallas, TX, USA, October 30 - November 03, 2017, pages 39–56. ACM, 2017.

[WYKW21] Chenkai Weng, Kang Yang, Jonathan Katz, and Xiao Wang. Wolverine: Fast, scalable, and
communication-efficient zero-knowledge proofs for boolean and arithmetic circuits. In 42nd
IEEE Symposium on Security and Privacy, SP 2021, San Francisco, CA, USA, 24-27 May
2021, pages 1074–1091. IEEE, 2021.

[Yao82] Andrew Chi-Chih Yao. Theory and applications of trapdoor functions (extended abstract).
In 23rd Annual Symposium on Foundations of Computer Science, Chicago, Illinois, USA, 3-5
November 1982, pages 80–91. IEEE Computer Society, 1982.

[Yao86] Andrew Chi-Chih Yao. How to generate and exchange secrets (extended abstract). In 27th
Annual Symposium on Foundations of Computer Science, Toronto, Canada, 27-29 October
1986, pages 162–167. IEEE Computer Society, 1986.

27

https://github.com/emp-toolkit

[YWZ20] Kang Yang, Xiao Wang, and Jiang Zhang. More efficient MPC from improved triple generation
and authenticated garbling. In Jay Ligatti, Xinming Ou, Jonathan Katz, and Giovanni Vigna,
editors, CCS ’20: 2020 ACM SIGSAC Conference on Computer and Communications Security,
Virtual Event, USA, November 9-13, 2020, pages 1627–1646. ACM, 2020.

28

A The Security Model
Real-World Execution. In the real world, there are n parties P1, . . . , Pn and an adversary A. We assume
that every two parties are connected via a secure synchronous channel so that they can directly send messages
to each other. At the beginning of the protocol, A chooses a set of at most t parties to be corrupted. During
the execution of the protocol, the adversary A controlling corrupted parties interacts with honest parties.
At the end of the protocol, the output of the real-world execution includes the inputs and outputs of honest
parties and the view of the adversary.

Ideal-World Execution. In the ideal world, the parties interact with a trusted third party F that receives
inputs from the parties, does the computation locally, and sends the outputs to the parties. There is an
ideal-world adversary S who has one-time access to F . S can send inputs and receive outputs of corrupt
clients. S can also send abort to F to ask the trusted party to abort. S emulates the ideal functionality,
simulates the honest parties, and interacts with A. The output of the ideal-world execution includes the
inputs and outputs of honest clients and servers and the view of the adversary.

We say a protocol Π t-securely realizes F if there exists an ideal adversary S, such that for all adversary
A, the distribution of the output of the real-world execution is computationally indistinguishable from the
distribution of the output of the ideal-world execution.

Client-Server Model. In our security proof of the main protocol, we use the client-server model. In the
client-server model, clients provide inputs to the functionality and receive outputs, and servers can participate
in the computation but do not have inputs or outputs in the ideal world. In the real world, the clients only
receive input and output wire masks, send the input wire values, and receive the output wire values. Each
party may have different roles in the computation. Note that, if every party plays a single client and a single
server, this corresponds to a protocol in the standard MPC model. A benefit of the client-server model is
that we only need to consider the maximal corruption of servers. At a high level, for an adversary A which
controls t′ < t servers, we may construct another adversary A′ which controls additional t − t′ servers and
behaves as follows:

• For a server corrupted by A, A′ follows the instructions of A. This is achieved by passing messages
between this server and other n− t honest servers.

• For a server which is not corrupted by A, but controlled by A′, A′ honestly follows the protocol.

Note that, if a protocol is secure against A′, then this protocol is also secure against A since the additional
t− t′ parties controlled by A′ honestly follow the protocol in both cases. Thus, we only need to focus on A′

instead of A, so we can assume that the adversary corrupts exactly t = n − 1 servers in the security proof
of our main protocol.

B Security Proof for the Encryption Scheme

B.1 Proof of Theorem 3
Proof. We prove this theorem by hybrid arguments. We first prove that for any pair of messages m0,m1 ∈ Fp,

{pk1, sk2,Enc(pp, pk1, pk2,m0) : (sk1, sk2, pk1, pk2)← Gen(pp)}
=c {pk1, sk2,Enc(pp, pk1, pk2,m1) : (sk1, sk2, pk1, pk2)← Gen(pp)}

holds.
We define the following hybrid distributions:

H1 ={pk1, sk2,Enc(pp, pk1, pk2,m0) : (sk1, sk2, pk1, pk2)← Gen(pp)}

=

gsk1 , sk2,m0 ⊕ Prg(Ext(gsk1k1 · gsk2k2 , s)),

s, gk1 , gk2
:
sk1, sk2, k1, k2

$←− Fp,

s
$←− {0, 1}k


29

H2 =

gsk1 , sk2,m0 ⊕ Prg(Ext(gc · gsk2k2 , s)),

s, gk1 , gk2
:
sk1, sk2, k1, k2, c

$←− Fp,

s
$←− {0, 1}k


H3 =

gsk1 , sk2,m0 ⊕ Prg(Ext(r, s)),

s, gk1 , gk2
:
sk1, sk2, k1, k2

$←− Fp,

s
$←− {0, 1}k, r $←− G


H4 =

gsk1 , sk2,m
′,

s, gk1 , gk2
:
sk1, sk2, k1, k2, c

$←− Fp,

s
$←− {0, 1}k,m′ $←− {0, 1}k


H5 =

gsk1 , sk2,m1 ⊕ Prg(Ext(r, s)),

s, gk1 , gk2
:
sk1, sk2, k1, k2

$←− Fp,

s
$←− {0, 1}k, r $←− G


H6 =

gsk1 , sk2,m1 ⊕ Prg(Ext(gc · gsk2k2 , s)),

s, gk1 , gk2
:
sk1, sk2, k1, k2, c

$←− Fp,

s
$←− {0, 1}k


H7 =

gsk1 , sk2,m1 ⊕ Prg(Ext(gsk1k1 · gsk2k2 , s)),

s, gk1 , gk2
:
sk1, sk2, k1, k2

$←− Fp,

s
$←− {0, 1}k


={pk1, sk2,Enc(pp, pk1, pk2,m1) : (sk1, sk2, pk1, pk2)← Gen(pp)}

Based on the DDH assumption, we have H1 =c H2 and H6 =c H7.
Since in H2, c is uniformly random in Fp, gc is uniformly random in G and so is gc ·gsk2k2 , thus H2 =c H3.

For the same reason, H5 =c H6.
By the property of Ext,

{Ext(r, s), s : s $←− {0, 1}k, r $←− G} =c {s′, s : s′ $←− {0, 1}λ, s $←− {0, 1}k}.

Thus,

{Prg(Ext(r, s)), s : s $←− {0, 1}k, r $←− G}

=c{Prg(s′), s : s′ $←− {0, 1}λ, s $←− {0, 1}k}.

Since Prg(s′) is uniformly random in {0, 1}k when s′ is uniformly random in {0, 1}λ, m0 ⊕ Prg(Ext(r, s)) is
also uniformly random in {0, 1}k. Thus, we have H3 =c H4. For the same reason, we have H4 =c H5.

Then we can conclude that H1 =c H7, which shows that

{pk1, sk2,Enc(pp, pk1, pk2,m0) : (sk1, sk2, pk1, pk2)← Gen(pp)}
=c {pk1, sk2,Enc(pp, pk1, pk2,m1) : (sk1, sk2, pk1, pk2)← Gen(pp)}

For the same reason, we also have

{sk1, pk2,Enc(pp, pk1, pk2,m0) : (sk1, sk2, pk1, pk2)← Gen(pp)}
=c {sk1, pk2,Enc(pp, pk1, pk2,m1) : (sk1, sk2, pk1, pk2)← Gen(pp)},

which completes the proof.

30

B.2 Proof of Theorem 4
Proof. We prove this theorem by hybrid arguments. We first prove that for any pair of messages m0,m1 ∈ Fp,

{pk1, sk2,Enc(pp, pk1, pk2,m0) : (sk1, sk2, pk1, pk2)← Gen(pp)}
=c {pk1, sk2,Enc(pp, pk1, pk2,m1) : (sk1, sk2, pk1, pk2)← Gen(pp)}

holds.
We define the following hybrid distributions:

H1 = {pk1, sk2,Enc(pp, pk1, pk2,m0) : (sk1, sk2, pk1, pk2)← Gen(pp)}

= {gsk1 , sk2,m0 ⊕O(gsk1k1 · gsk2k2), gk1 , gk2 : sk1, sk2, k1, k2
$←− Fp}

H2 = {gsk1 , sk2,m0 ⊕O(gc · gsk2k2), gk1 , gk2 : sk1, sk2, k1, k2, c
$←− Fp}

H3 = {gsk1 , sk2,m0 ⊕O(r), gk1 , gk2 : sk1, sk2, k1, k2
$←− Fp, r

$←− G}

H4 = {gsk1 , sk2,m′, gk1 , gk2 : sk1, sk2, k1, k2, c
$←− Fp,m

′ $←− {0, 1}2λ}

H5 = {gsk1 , sk2,m1 ⊕O(r), gk1 , gk2 : sk1, sk2, k1, k2
$←− Fp, r

$←− G}

H6 = {gsk1 , sk2,m1 ⊕O(gc · gsk2k2), gk1 , gk2 : sk1, sk2, k1, k2, c
$←− Fp

H7 = {gsk1 , sk2,m1 ⊕O(gsk1k1 · gsk2k2), gk1 , gk2 : sk1, sk2, k1, k2
$←− Fp}

= {pk1, sk2,Enc(pp, pk1, pk2,m1) : (sk1, sk2, pk1, pk2)← Gen(pp)}

Based on the DDH assumption, we have H1 =c H2 and H6 =c H7.
Since in H2, c is uniformly random in Fp, gc is uniformly random in G and so is gc ·gsk2k2 , thus H2 =c H3.

For the same reason, H5 =c H6.
Since O(r) is uniformly random in {0, 1}2λ when r is uniformly random in G, m0⊕O(r) is also uniformly

random in {0, 1}2λ. Thus, we have H3 =c H4. For the same reason, we have H4 =c H5.
Then we can conclude that H1 =c H7, which shows that

{pk1, sk2,Enc(pp, pk1, pk2,m0) : (sk1, sk2, pk1, pk2)← Gen(pp)}
=c {pk1, sk2,Enc(pp, pk1, pk2,m1) : (sk1, sk2, pk1, pk2)← Gen(pp)}

For the same reason, we also have

{sk1, pk2,Enc(pp, pk1, pk2,m0) : (sk1, sk2, pk1, pk2)← Gen(pp)}
=c {sk1, pk2,Enc(pp, pk1, pk2,m1) : (sk1, sk2, pk1, pk2)← Gen(pp)},

which completes the proof.

C Security Proof for the Preprocessing Protocol
We prove Lemma 1 as follows:

Proof. We prove the security of Πprep by constructing an ideal adversary S. Then we will show that the
output in the ideal world is computationally indistinguishable from that in the real world using hybrid
arguments.

Without loss of generality, we assume that P1 is corrupted. We give the construction of the simulator
below.

31

S simulates Πprep as follows:

Init:

1. S sends (Init,mT ,mR,mB) to Fprep and receives g∆.

2. S emulates FnVOLE to receive Init from each corrupted party.

3. S sets DeltaCheck = MACCheck = 0.

4. For each corrupted party Pi, S receives Pi’s share ∆(i) ∈ Fp of [∆] from A and emulates FnVOLE to send it
to Pi.

5. S computes the honest party Pj ’s g∆
(j)

based on corrupted parties’ shares of [∆] and g∆.

6. For each corrupted party Pi, S receives g∆
(i)

from Pi, let the value S receives be gi. If the product of the
corrupted parties’ gi is not equal to the product of corrupted parties’ g∆

(i)

, S sets DeltaCheck = 1. Then S
computes g̃ =

∏
Pi∈C(gi/g

∆(i)

), where C is the set of corrupted parties.

7. S samples a random element in Fp as α.

Random Values:

1. S emulates FnVOLE to receive Extend and s
(i)
r from each corrupted party Pi.

2. For each pair of parties (Pi, Pj), if Pi and Pj are both honest, S does nothing. If Pi is honest but Pj is
corrupted, S receives v

(j)
i from A. If Pj is honest but Pi is corrupted, S receives w

(i)
j from A. Finally, if Pi

and Pj are both corrupted, S receives w
(i)
j from A and computes v

(j)
i honestly.

3. For each pair of parties (Pi, Pj) where Pi is honest but Pj is corrupted, if S receives a set I from A, S
samples a random element in S\I as s

(i)
r . Then S emulates FnVOLE to send abort and s

(i)
r to Pj , sends abort

to Fprep, and aborts the protocol on behalf the honest party. After the simulation completes, S outputs the
adversary’s view.

4. S emulates FnVOLE to send the output (s
(i)
r , (M

(i)
j ,K

(i)
j)j ̸=i) to each corrupted party Pi.

5. S computes the shares of each [[r]] of corrupted parties.

6. Whenever (guess,∆′) is received from A while S is emulating FnVOLE, S sends abort to Fprep, receives ∆
from Fprep, and computes the honest party’s share of [∆] based on ∆ and the corrupted parties’ shares. If
∆ = (∆(1), . . . ,∆(n)) = ∆′, S aborts the simulation. Otherwise, S emulates FnVOLE to send (abort,∆) to A
and follows the protocol to abort the protocol on behalf of the honest party. After the simulation
completes, S outputs the adversary’s view.

Triples:

– Setup:

1. S emulates FnVOLE 5 times in the same way as above to generate seeds s
(i)
a , s

(i)
b , s

(i)′
a , s

(i)
ℓ , s

(i)′

ℓ for each
corrupted party Pi.

2. For the honest party Pi and each corrupted party Pj , S receives s̃
(j)
a , s̃

(j)
b and uj,i,vj,i from Pj and

emulates Fprog
OLE to send uj,i,vj,i back to Pj .

3. For the honest party Pi and each corrupted party Pj , S receives s̃
(j)′
a , s̃

(j)′

b and u′
j,i,v

′
j,i from Pj and

emulates Fprog
OLE to send u′

j,i,v
′
j,i back to Pj .

4. S sets δak =
(∑

j ̸=i Expand(s̃
(j)
b)−

∑
j ̸=i Expand(s

(j)
b)

)
[k],

δbk =
(∑

j ̸=i Expand(s̃
(j)
a)−

∑
j ̸=i Expand(s

(j)
a)

)
[k],

δa′
k
=

(∑
j ̸=i Expand(s̃

(j)′

b)−
∑

j ̸=i Expand(s
(j)
b)

)
[k], and

δb′
k
=

(∑
j ̸=i Expand(s̃

(j)′
a)−

∑
j ̸=i Expand(s

(j)′
a)

)
[k].

– To get the k-th triple:

Simulator S

32

1. S computes the corrupted parties’ shares of [ℓk] using each corrupted party Pj ’s s
(j)
ℓ . Then S computes

the corrupted parties’ shares of [ck] by simulating Fprog
OLE for each pair of corrupted parties (Pi, Pj)

assuming that both Pi, Pj correctly send their seeds. Then S follows the protocol to compute all the
corrupted parties’ shares of [ℓk + ck].

2. For the honest party Pj , S samples a random element in Fp as Pj ’s shares of [ℓk + ck]. Then S sends it
to P1 on behalf of Pj .

3. S computes ℓk + ck based on all the parties’ shares of [ℓk + ck].Then S receives ℓk + ck from P1 and sets
δℓk = ℓk + ck − (ℓk + ck).

4. S follows the protocol to compute corrupted parties’ shares of [[ck]] = ℓk + ck − [[ℓk]].
5. Repeat step 1-3 on ℓ′k, c

′
k instead of ℓk, ck and compute the corresponding δℓ′

k
.

6. If it holds that δak = δbk = δℓk = δa′
k
= δb′

k
= δℓ′

k
= 0, then S sets τ̃k = 0. Otherwise, S samples

ak, bk, a
′
k ∈ Fp randomly. Let the sum of corrupted parties’ shares of [ak], [bk], [a

′
k] be αk, βk, α

′
k. S sets

δck = δℓk − δak · αk − δbk · βk and δc′
k
= δℓ′

k
− δa′

k
· α′

k − δb′
k
· βk. S then computes

τ̃k = α · (δak · ak + δbk · bk + δck)− (δa′
k
· a′

k + δb′
k
· bk + δc′

k
).

Then if τ̃k = 0, S aborts the simulation. Here τ̃k is the value such that [τ̃k ·∆] is shared among all the
parties, and the sharing will be used in the second execution of ΠSPDZ-MAC while doing verification.

Random Bits:

– Setup:

1. S emulates FnVOLE 4 times in the same way as above to generate seeds s
(i)
r , s

(i)′
r , s

(i)
ℓ , s

(i)′

ℓ for each party
Pi.

2. For the honest party Pi and each corrupted party Pj , S receives s̃
(j)
r and uj,i from Pj and emulates

emulates Fprog
OLE to send uj,i back to Pj .

3. For the honest party Pi and each corrupted party Pj , S receives s̃
(j)′
r and u′

j,i from Pj and emulates
emulates Fprog

OLE to send u′
j,i back to Pj .

4. S sets δrk = 2
(∑

j ̸=i Expand(s̃
(j)
r)−

∑
j ̸=i Expand(s

(j)
r)

)
[k] and

δr′
k
= 2

(∑
j ̸=i Expand(s̃

(j)′
r)−

∑
j ̸=i Expand(s

(j)′
r)

)
[k].

– To get the k-th sharing for a random bit:

1. S computes the corrupted parties’ shares of [ℓk] using each corrupted party Pj ’s s
(j)
ℓ . Then S computes

the corrupted parties’ shares of [Rk] by simulating Fprog
OLE for each pair of corrupted parties (Pi, Pj)

assuming that both Pi, Pj correctly send their seeds. Then S obtains all the corrupted parties’ shares of
[ℓk +Rk].

2. For the honest party Pj , S samples a random element in Fp as Pj ’s share of [ℓk +Rk]. Then S sends it
to P1 on behalf of Pj .

3. S computes ℓk +Rk based on all the parties’ shares of [ℓk +Rk]. Then S receives ℓk +Rk from P1 and
sets δℓk = ℓk +Rk − (ℓk +Rk).

4. Repeat step 1-3 on ℓ′k, R
′
k instead of ℓk, Rk and compute the corresponding δℓ′

k
.

5. ∗ If it holds that δrk = δℓk = δr′
k
= δℓ′

k
= 0, then:

(a) For the honest party Pj , S samples a random non-zero element in Fp as rk and computes Rk = r2k.
Then S computes Pj ’s share of [Rk] based on Rk and the corrupted parties’ shares of [Rk].

(b) S sends Pj ’s share of [Rk] to P1 on behalf of Pj .
(c) S receives R̃k from P1. If R̃k is not equal to Rk, S sets MACCheck = 1.
(d) S sets τ̃ ′

k = 0.
∗ Otherwise:
(a) For the honest party Pj , S samples a random non-zero element in Fp as rk and computes Rk = r2k.

33

(b) S samples a random element in Fp as r′k. Let the sum of corrupted parties’ shares of [rk], [r′k] be
ηk, η

′
k. S sets δRk = δℓk − δrk · ηk and δR′

k
= δℓ′

k
− δr′

k
· η′

k. S then computes

τ̃ ′
k = α2 · (δrk · rk + δRk)− (δr′

k
· r′k + δR′

k
).

Then if τ̃k = 0, S aborts the simulation. Here τ̃ ′
k is the value such that [τ̃ ′

k ·∆] is shared among
all the parties, and the sharing will be used in the second execution of ΠSPDZ-MAC while doing
verification.

(c) S follows the protocol to compute corrupted parties’ shares of [[Rk]] = Rk + ℓk − [[ℓk]] and obtains
each corrupted party Pi’s share R

(i)
k of [Rk] from the SPDZ sharing. Then S sets the honest

party Pj ’s share of [Rk] to be Rk + δrk · rk + δRk −
∑

Pi∈C R
(i)
k and sends it to P1 on behalf of Pj .

(d) S receives R̃k from P1. If R̃k is not equal to Rk + δrk · rk + δRk , S sets MACCheck = 1.

Verification:

1. For each corrupted party Pi, S follows the protocol to compute Pi’s σ(i). Then, S emulates FCommit to
receive (commit, Pi, σ

(i)′ , τ ′
σ(i)) from Pi. If the product of σ(i)′ for all corrupted parties Pi is not equal to

the product of σ(i) for all corrupted parties Pi, S sets DeltaCheck = 1.

2. If g̃ = 1, S computes the honest party Pj ’s σ(j) based on the corrupted parties’ σ(i) and
∏n

i=1 σ
(i) = 1.

Otherwise, S samples the honest party Pj ’s share r(j) of [r] randomly and computes σ(j) based on
corrupted parties’ σ(i) and

∏n
i=1 σ

(i) = g̃r
(j)

. If g̃ ̸= 1 but g̃r
(j)

= 1, S aborts the simulation.

3. For each corrupted party Pi, S emulates FCommit to send (Pi, τσ(i)′) to all the parties. For the honest party
Pj , S emulates FCommit to send (Pj , τσ(j)) to all the parties.

4. For each corrupted party Pi, S receives (open, Pi, τσ(i)′) from Pi and emulates FCommit to send
(σ(i)′ , i, τ

σ(i)′) to all the corrupted parties. For the honest party Pj , S emulates FCommit to send
(σ(j), j, τσ(j)) to all the parties.

5. For the honest party Pj , S follows the protocol to check whether σ(j) ·
∏

i̸=j σ
(i)′ = 1. If not, S follows the

protocol to abort the protocol on behalf of Pj and sends abort to Fprep. After completing the simulation, S
outputs the adversary’s view.

6. If DeltaCheck = 1, S aborts the simulation.

7. S receives RandCoin from corrupted parties and emulates FCoin to send α to them. If S receives abort from
A, he sends abort to Fprep and aborts the protocol on behalf of the honest party. After completing the
simulation, S outputs the adversary’s view.

8. For each k ∈ [1,mT]:

(a) S follows the protocol to compute each corrupted party’s share of [[ek]] and obtains his share of [ek] from
it.

(b) For the honest party Pj :
– If τ̃k = 0, S samples a random elements in Fp as Pj ’s share of [ek] and reconstruct ek based on all

the parties’ shares of [ek]. Then S sends Pj ’s share of [ek] to P1 on behalf of Pj .
– If τ̃k ̸= 0, S computes ek = α · ak − a′

k and computes Pj ’s share of [ek] based on the secret and
corrupted parties’ shares. Then S sends Pj ’s share of [ek] to P1 on behalf of Pj .

(c) S receives ek from P1 and checks whether it is correctly sent. If not, S sets MACCheck = 1.

9. For each k ∈ [1,mB]:

(a) S follows the protocol to compute each corrupted party’s share of [dk] and obtains his share of [dk] from
it.

(b) For the honest party Pj :
– If τ̃ ′

k = 0, S samples a random elements in Fp as Pj ’s share of [dk] and reconstruct dk based on all
the parties’ shares of [dk]. Then S sends Pj ’s share of [dk] to P1 on behalf of Pj .

– If τ̃ ′
k ̸= 0, S computes dk = α · rk − r′k and computes Pj ’s share of [dk] based on the secret and

corrupted parties’ shares. Then S sends Pj ’s share of [dk] to P1 on behalf of Pj .

34

(c) S receives dk from P1 and checks whether it is correctly sent. If not, S sets MACCheck = 1.

10. S receives RandCoin from corrupted parties and emulates FCoin to send a random seed in Fp to them. Let
the random elements expanded from the seed be χ1, . . . , χmT+2mB ∈ Fp. If S receives abort from A, he
sends abort to Fprep and follows the protocol to abort the protocol on behalf of the honest party. After
completing the simulation, S outputs the adversary’s view.

11. S simulates the first execution of ΠSPDZ-MAC as follows:

(a) S follows the protocol ΠSPDZ-MAC to compute corrupted parties’ shares of [σ].
(b) S emulates FCommit to receive (commit, Pi, σi, τ[σ]) from each corrupted party Pi. S checks whether the

sum of all the corrupted parties’ shares of [σ] is equal to the sum of σi he receives from the corrupted
parties. If not, S sets MACCheck = 1.

(c) – If MACCheck = 0, S computes the honest party’s share of [σ] based on the corrupted parties’ shares
and

∑n
i=1[σ] = 0.

– If MACCheck = 1, S sends abort to Fprep and receives ∆ from Fprep. For each value Ai opened in
ΠSPDZ-MAC protocol:
∗ S computes ∆ ·Ai and computes the honest party’s share of [∆ ·Ai] based on the corrupted

parties’ shares and ∆ ·Ai. Each Ai is reconstructed based on all the parties’ shares, where the
corrupted parties’ shares are computed by following the protocol.

∗ S follows the protocol to compute the honest party’s share of [σ].
(d) For each party corrupted Pi, S emulates FCommit to send (Pi, τ[σ]) to all the corrupted parties. For the

honest party Pj , S emulates FCommit to send (Pj , τ[σ]) to all the corrupted parties.
(e) For the honest party Pj , S emulates FCommit to send ([σ], j, τ[σ]) to all the corrupted parties. For each

corrupted party Pi, S receives (open, Pi, τ[σ]) from Pi and emulates FCommit to send (σi, i, τ[σ]) to all the
corrupted parties.

(f) S follows the protocol to check whether
∑n

i=1[σ] = 0 holds. If not, S aborts the protocol on behalf of
the honest party. After completing the simulation, S outputs the adversary’s view.

(g) If MACCheck = 1, S aborts the simulation.

12. If any of τ̃k or τ̃ ′
k is non-zero, S sets MACCheck = 1.

13. Repeat steps 11 to simulate the second execution of ΠSPDZ-MAC assuming that {τk}k∈[1,mT], {τ ′
k}k∈[1,mB] are

opened to be 0. While computing the honest party’s share of [∆ · τk] or [∆ · τ ′
k] when MACCheck = 1, S use

τ̃k, τ̃
′
k as τk, τ

′
k respectively.

14. S follows the protocol to compute all the corrupted parties’ shares of output sharings and sends them to
Fprep.

15. S outputs the adversary’s view.

Figure 17: The simulator for Πprep.

We construct the following hybrids:
Hyb0: In this hybrid, S runs the protocol honestly. This corresponds to the real-world scenario.
Hyb1: In this hybrid, S additionally sets DeltaCheck = MACCheck = 0 at the beginning. This doesn’t

affect the output distribution. Thus, Hyb1 and Hyb0 have the same output distribution.
Hyb2: In this hybrid, for the honest party Pj , S doesn’t follow the protocol to generate ∆(j) and

compute g∆
(j)

with ∆(j). Instead, while emulating FnVOLE at the beginning of the protocol, S samples a
random element in Fp as ∆ and receives the corrupted parties’ shares of [∆] from A. Then S computes
∆(j) based on ∆ and the corrupted parties’ share of [∆]. Besides, S computes g∆

(j)

with g∆ and corrupted
parties’ shares of g[∆]. Note that when ∆ is uniformly random in Fp, so is ∆(j). So we only change the order
of generating ∆(j) and ∆, and the way of generating g∆

(j)

in this hybrid without changing their distributions.
These changes make no difference to the output distribution. Thus, Hyb2 and Hyb1 have the same output
distribution.

Hyb3: In this hybrid, S additionally sets DeltaCheck = 1 if the product of corrupted parties’ g∆
(i)

is
not correctly sent. In addition, S computes g̃ =

∏
Pi∈C(gi/g

∆(i)

), where gi is the corrupted parties’ shares

35

of g[∆] received from them (g̃ is used for simulating the verification process to decide what the honest party
Pj ’s σ(j) is). This doesn’t affect the output distribution. Thus, Hyb3 and Hyb2 have the same output
distribution.

Hyb4: In this hybrid, for each seed s generated for the honest party by FnVOLE, S doesn’t generated it
while emulating FnVOLE. Instead, when S need to compute Expand(s) to expand it to m field elements on
behalf of the honest party or Fprog

OLE , S samples a uniformly random vector in Fm
p as the result Expand(s). Note

that each seed generated by FnVOLE isn’t used anywhere without expanding it, this hybrid is well-defined.
We argue that Hyb4 and Hyb3 are computationally indistinguishable.

For the sake of contradiction, assume that Hyb4 and Hyb3 are computationally distinguishable. By the
standard hybrid argument, there exists a PPT algorithm D that can distinguish the output distributions
before and after we change Expand(s) to a random vector for some seed s with a non-negligible probability.
Now we construct a PPT algorithm D′ that breaks the security of Expand(·), which is modeled as a PRG.
Concretely, D′ receives a string from the challenger which is either the output of Expand(s) or a random
vector. Then D′ runs S with the change that Expand(s) is replaced by the string received from the challenger.
Finally, D′ uses D to distinguish whether the string received from the challenger is generated from Expand(s)
or sampled randomly. Note that the advantage of D′ is the same as that of D, which breaks the security of
the underlying PRG Expand(·). This leads to a contradiction. Thus, the distributions of Hyb4 and Hyb3

are computationally indistinguishable.
Hyb5: In this hybrid, while S is emulating FnVOLE, if S receives a set I from A, S aborts the simulation

and sends a random seed in S\I to the adversary. This only changes the distribution when seed(i) happens
to be in I. During each simulation of the interaction between corrupted parties and FnVOLE, seed(i) isn’t
sampled before A sends I to S, the probability that seed(i) ∈ I is |I|/|S|. Since A is a PPT adversary,
|I| = poly(λ). However |S| is exponential in λ, so the probability is negligible. Thus, the distributions of
Hyb5 and Hyb4 are statistically indistinguishable.

Hyb6: In this hybrid, S samples α in the Init process instead of sampling it when S emulates FCoin while
doing verification. We just bring the generation of α earlier, and this doesn’t affect the output distribution.
Thus, Hyb6 and Hyb5 have the same output distribution.

Hyb7: In this hybrid, while generating the triples, S doesn’t generates a random vector as Expand(s
(i)
a)

for the honest party Pi while emulating Fprog
OLE . Instead, S generate it when it is needed, i.e. when Pi needs

to compute his share of each [ℓk + ck] and send it to P1. Similar for Expand(s
(i)
b) and Expand(s

(i)′

a). This
doesn’t affect the output distribution. Thus, Hyb7 and Hyb6 have the same output distribution.

Hyb8: In this hybrid, while generating the triples, we assume that the honest party is Pi. For each
k ∈ [1,mT], S additionally sets

δbk =

∑
j ̸=i

Expand(s̃(j)a)−
∑
j ̸=i

Expand(s(j)a)

 [k],

and then S computes

δak
=

∑
j ̸=i

Expand(s̃
(j)
b)−

∑
j ̸=i

Expand(s
(j)
b)

 [k],

δa′
k
=

∑
j ̸=i

Expand(s̃
(j)′

b)−
∑
j ̸=i

Expand(s
(j)
b)

 [k], and

δb′k =

∑
j ̸=i

Expand(s̃(j)
′

a)−
∑
j ̸=i

Expand(s(j)
′

a)

 [k]

in a similar way. Here s
(j)
a is the seed generated when S is emulating FnVOLE, and s̃

(j)
a is received from

Pj when emulating Fprog
OLE between the honest party Pi and Pj . This doesn’t affect the output distribution.

Thus, Hyb8 and Hyb7 have the same output distribution.

36

Hyb9: In this hybrid, while generating the triples, S doesn’t compute the honest party Pj ’s share of
each [ℓk + ck] by himself. Instead, S generates a random field element as Pj ’s share of [ℓk + ck] and then
computes Pj ’s share of [ℓk] by [ℓk + ck] − [ck]. Since Pj ’s share of [ℓk] is an entry from Expand(s

(j)
ℓ) which

we have replaced the result by a uniformly random vector in Hyb4, it’s a uniformly random element in Fp.
Therefore, Pj ’s share of [ℓk + ck] is also a uniformly random variable in Fp, so we only change the order of
generating Pj ’s shares of [ℓk+ck] and [ℓk] without changing their distributions. Thus, Hyb9 and Hyb8 have
the same output distribution.

Hyb10: In this hybrid, while generating the triples, let ℓk + ck be what S received from P1 for each
k ∈ [1,mT] after P1 receives the honest party’s share of [ℓk+ck], S additionally sets δℓk = ℓk + ck− (ℓk+ck).
Similarly, S also computes δℓ′k . This doesn’t affect the output distribution. Thus, Hyb10 and Hyb9 have
the same output distribution.

Hyb11: In this hybrid, while generating the triples, S delay the process of computing the honest party Pj ’s
share of each [ck] and the process of computing each [ℓk] by [ℓk + ck]− [ck]. S does the above computations
after receiving ℓk + ck from P1. Since these shares are not used before receiving ℓk + ck from P1, these
changes don’t affect the output distribution. Thus, Hyb11 and Hyb10 have the same output distribution.

Hyb12: In this hybrid, while generating the triples, if it holds that δak
= δbk = δℓk = δa′

k
= δb′k = δℓ′k = 0,

then S sets τ̃k = 0. This means that we can regard that the corrupted parties invoke Fprog
OLE honestly and the

values ℓk + ck, ℓ
′
k + c′k are opened correctly. This doesn’t affect the output distribution. Thus, Hyb12 and

Hyb11 have the same output distribution.
Hyb13: In this hybrid, while generating the triples, if some of δak

, δbk , δℓk , δa′
k
, δb′k , δℓ′k is non-zero, S

doesn’t obtain the honest party’s share of [ak], [bk], [a′k] from the result of expanding the seeds from FnVOLE.
Instead, S randomly samples ak, bk, a′k ∈ Fp and then computes the honest party’s share of [ak], [bk], [a′k] with
ak, bk, a

′
k and corrupted parties’ shares. Since the honest party’s shares of [ak], [bk], [a′k] are all entries from

vectors expanded by seeds generated by S while emulating FnVOLE which have been replaced by uniformly
random vectors in Hyb4, ak, bk, a′k are also uniformly random elements in Fp. We only change the order
of generating ak, bk, a

′
k and the honest party’s shares of [ak], [bk], [a′k] without changing their distributions.

Thus, Hyb13 and Hyb12 have the same output distribution.
Hyb14: In this hybrid, while generating the triples, if some of δak

, δbk , δℓk , δa′
k
, δb′k , δℓ′k is non-zero, let the

sum of corrupted parties’ shares of [ak], [bk], [a′k] be αk, βk, α
′
k. S additionally sets δck = δℓk−δak

·αk−δbk ·βk

and δc′k = δℓ′k − δa′
k
· α′

k − δb′k · βk. S additionally computes

τ̃k = α · (δak
· ak + δbk · bk + δck)− (δa′

k
· a′k + δb′k · bk + δc′k).

Now we explain why τ̃k is shared among all the parties. Note that the additive error of the honest party’s
share of [∆ · ck] is δℓk plus the error ck−ak · bk on ck and then multiplied with ∆, where the error ck−ak · bk
comes from the error of the honest party’s share of [ck] computed from the output of Fprog

OLE . If Pi is honest,
Pi’s share of [ak] is a

(i)
k = ak − αk, and his share of [bk] is b

(i)
k = bk − βk. Each invocation of Fprog

OLE between
(Pi, Pj) generates additive shares of a(i)k · b

(j)
k , where sending incorrect seeds by Pj causes an additive error(

Expand(s̃
(j)
b)− Expand(s

(j)
b)
)
[k] on b

(j)
k . So the total error is∑

j ̸=i

(
Expand(s̃

(j)
b)− Expand(s

(j)
b)
)
[k] · (ak − αk) = δak

· (ak − αk)

from the invocations of (Pi, Pj). For the same reason, the error generated from invocations of (Pj , Pi) is∑
j ̸=i

(
Expand(s̃(j)a)− Expand(s(j)a)

)
[k] · (bk − βk) = δbk · (bk − βk).

Thus, the additive error on the honest party’s [ck] is δak
·(ak−αk)+δbk ·(bk−βk). Let the corrupted parties’

share of [[ck]] computed by ck + ℓk − [[ℓk]], the additive errors on ck and ℓk lead to an error

∆ · (δak
· (ak − αk) + δbk · (bk − βk) + δℓk) = ∆ · (δak

· ak + δbk · bk − δck)

37

on (the secret of) [∆ · ck], where δck = δℓk − δak
· αk − δbk · βk. The error on [∆ · τk] is just the error on

α · [∆ · ck]− [∆ · c′k], which is equal to

∆ ·
(
α · (δak

· ak + δbk · bk + δck)− (δa′
k
· a′k + δb′k · bk + δc′k)

)
.

This matches ∆ · τ̃k.
The additional computation doesn’t affect the output distribution. Thus, Hyb14 and Hyb13 have the

same output distribution.
Hyb15: In this hybrid, while generating the triples, if some of δak

, δbk , δℓk , δa′
k
, δb′k , δℓ′k is non-zero but

τ̃k = 0, S aborts the simulation. Recall that τ̃k = α·(δak
·ak+δbk ·bk+δck)−(δa′

k
·a′k+δb′k ·bk+δc′k), where δck , δc′k

are computed by δak
, δa′

k
, δbk , δb′k , αk, βk, δℓk , δℓ′k , which are all chosen by corrupted parties. Thus, we can

regard that the adversary directly choose δak
, δa′

k
, δbk , δb′k , δck , δc′k . Since δck = δℓk−δak

·αk−δbk ·βk and δc′k =
δℓ′k−δa′

k
·α′

k−δb′k ·βk, the errors δak
, δa′

k
, δbk , δb′k , δck , δc′k can’t be all-zero when some of δak

, δbk , δℓk , δa′
k
, δb′k , δℓ′k

is non-zero.
τ̃k = 0 only happens when

δak
· ak + δbk · bk + δck = δa′

k
· a′k + δb′k · bk + δc′k = 0

or

α =
δa′

k
· a′k + δb′k · bk + δc′k

δak
· ak + δbk · bk + δck

.

For the first condition, if δak
, δbk , δck are not all 0, then we must have either δak

̸= 0 or δbk ̸= 0. Without
loss of generality, assume that δak

is non-zero. Then ak must be −(δbk · bk + δck)/δak
. Since ak, bk are

sampled randomly after the additive errors are fixed, the first condition holds with probability 1/p, which is
negligible. Similarly, if δa′

k
, δb′k , δc′k are not all 0, then the first condition holds with negligible probability.

In the case that the first condition does not hold, since α is randomly sampled, the second condition
holds with negligible probability as well. Thus, the distributions of Hyb15 and Hyb14 are statistically close.

Hyb16: In this hybrid, while generating sharings for random bits, S doesn’t generate a random vector
as Expand(s

(i)
r) for the honest party Pi while emulating Fprog

OLE . Instead, S generates it when it is needed,
i.e. when Pi needs to compute his share of each [ℓk +Rk] and send it to P1. Similar for Expand(s

(i)′

r). This
doesn’t affect the output distribution. Thus, Hyb16 and Hyb15 have the same output distribution.

Hyb17: In this hybrid, while generating sharings for random bits, we assume that the honest party is
Pi. For each k ∈ [1,mB], S additionally sets

δrk = 2

∑
j ̸=i

Expand(s̃(j)r)−
∑
j ̸=i

Expand(s(j)r)

 [k].

Here each corrupted party Pj ’s s
(j)
r is generated by S while emulating FnVOLE, and s̃

(j)
r is received from Pj

when emulating Fprog
OLE between the honest party Pi and Pj . Similar for s

(j)′

r and s̃
(j)′

r . This doesn’t affect
the output distribution. Thus, Hyb17 and Hyb16 have the same output distribution.

Hyb18: In this hybrid, while generating sharings for random bits, S doesn’t compute the honest party
Pj ’s share of each [ℓk+Rk] by himself. Instead, S generates a random field element as Pj ’s share of [ℓk+Rk]

and then computes Pj ’s share of [ℓk] by [ℓk+Rk]− [Rk]. Since Pj ’s share of [ℓk] is an entry from Expand(s
(j)
ℓ)

which we have replaced the result by a uniformly random vector in Hyb4, it’s a uniformly random element
in Fp. Therefore, Pj ’s share of [ℓk + Rk] is also a uniformly random variable in Fp, so we only change the
order of generating Pj ’s shares of [ℓk +Rk] and [ℓk] without changing their distributions. Thus, Hyb18 and
Hyb17 have the same output distribution.

Hyb19: In this hybrid, while generating sharings for random bits, let ℓk +Rk be what S received
from P1 for each k ∈ [1,mB] after P1 receives the honest party’s share of [ℓk + Rk], S additionally sets
δℓk = ℓk +Rk− (ℓk+Rk). Similarly, S also computes δℓ′k . This doesn’t affect the output distribution. Thus,
Hyb19 and Hyb18 have the same output distribution.

38

Hyb20: In this hybrid, while generating the triples, S delay the process of computing the honest party
Pj ’s share of each [Rk] and the process of computing each [ℓk] by [ℓk + Rk] − [Rk]. S does the above
computations after receiving ℓk +Rk from P1. Since these shares are not used before receiving ℓk + ck from
P1, these changes don’t affect the output distribution. Thus, Hyb20 and Hyb19 have the same output
distribution.

Hyb21: In this hybrid, while generating sharings for random bits, if it holds that δrk = δr′k = δℓk = δℓ′k =

0, then S sets τ̃ ′k = 0. This means that we can regard that the corrupted parties invoke Fprog
OLE honestly and

the values ℓk +Rk, ℓ
′
k +R′

k are opened correctly. This doesn’t affect the output distribution. Thus, Hyb21

and Hyb20 have the same output distribution.
Hyb22: In this hybrid, while generating sharings for random bits, if it holds that δrk = δr′k = δℓk = δℓ′k =

0, S doesn’t compute the honest party Pj ’s share of each [Rk] by himself. Instead, S randomly samples
rk ̸= 0, computes Rk = r2k and computes Pj ’s share of [Rk] based on Rk and corrupted parties’ shares
of [Rk]. Then S sends it to P1 on behalf of Pj . Correspondingly, the honest party’s share of [rk] is now
computed with rk and the corrupted parties’ shares. Since the honest party’s share of [rk] is an entry of a
vector expanded from a seed generated by S while emulating FnVOLE which has been replaced by a uniformly
random vector in Hyb4, the honest party’s share of [rk] is a uniformly random element in Fp. Thus, rk is
also a uniformly random element in Fp. If rk ̸= 0 in Hyb21, we only change the order of generating the
honest party’s share of [rk] and rk, and the way of generating Pj ’s share of [Rk]. When rk and corrupted
parties’ shares of [Rk] are fixed, Pj ’s share of [Rk] is determined, so the distribution of Pj ’s shares of [Rk]
doesn’t change, so output distribution changes if and only if rk happens to be 0 in Hyb21, but this is only
with a negligible probability 1/p. Thus, the distributions of Hyb22 and Hyb22 are statistically close.

Hyb23: In this hybrid, while generating sharings for random bits, if it holds that δrk = δr′k = δℓk = δℓ′k =

0, S additionally sets MACCheck = 1 if P1 doesn’t correctly send Rk, i.e. the R̃k received from P1 is not
equal to Rk. This doesn’t affect the output distribution. Thus, Hyb23 and Hyb22 have the same output
distribution.

Hyb24: In this hybrid, while generating sharings for random bits, if some of δrk , δr′k , δℓk , δℓ′k is non-zero,
S doesn’t obtain the honest party’s share of [rk], [r′k] from the result of expanding the seeds from FnVOLE.
Instead, S randomly samples rk, r

′
k ∈ Fp and then computes the honest party’s share of [rk], [r′k] with rk, r

′
k

and corrupted parties’ shares. Since the honest party’s shares of [rk], [r′k] are all entries from vectors expanded
by seeds generated by S while emulating FnVOLE which have been replaced by uniformly random vectors in
Hyb4, rk, r′k are also uniformly random elements in Fp. We only change the order of generating rk, r

′
k and

the honest party’s shares of [rk], [r′k] without changing their distributions. Thus, Hyb24 and Hyb23 have
the same output distribution.

Hyb25: In this hybrid, while generating sharings for random bits, if some of δrk , δr′k , δℓk , δℓ′k is non-zero,
let the sum of corrupted parties’ shares of [rk], [r′k] be ηk, η′k. S sets δRk

= δℓk−δrk ·ηk and δR′
k
= δℓ′k−δr′k ·η

′
k.

S additionally computes
τ̃ ′k = α2 · (δrk · rk + δRk

)− (δr′k · r
′
k + δR′

k
).

Now we explain why τ̃ ′k is shared among all the parties. Note that the additive error of the honest party’s
share of [∆ · Rk] is δℓk plus the error Rk − r2k on Rk and then multiplied with ∆, where the error Rk − r2k
comes from the error of the honest party’s share of [Rk] computed from the output of Fprog

OLE . If Pi is honest,
Pi’s share of [rk] is r

(i)
k = rk − ηk. Each invocation of Fprog

OLE between (Pi, Pj) generates additive shares of
2r

(i)
k · r

(j)
k , where sending incorrect seeds by Pj causes an additive error

(
Expand(s̃

(j)
r)− Expand(s

(j)
r)
)
[k] on

r
(j)
k . So the total error is

2
∑
j ̸=i

(
Expand(s̃(j)r)− Expand(s(j)r)

)
[k] · (rk − ηk) = δrk · (rk − ηk)

from the invocations of (Pi, Pj). Thus, the additive error on the honest party’s [Rk] is 2δrk · (rk − ηk). Let
the corrupted parties’ share of [[Rk]] computed by Rk + ℓk − [[ℓk]], the additive errors on Rk and ℓk lead to
an error

∆ · (δrk · (rk − ηk) + δℓk) = ∆ · (δrk · rk + δRk
)

39

on (the secret of) [∆·Rk], where δRk
= δℓk−δrk ·ηk. The error on [∆·τ ′k] is just the error on α2·[∆·Rk]−[∆·R′

k],
which is equal to

∆ ·
(
α · (δrk · rk + δRk

)− (δr′k · r
′
k + δR′

k
)
)
.

This matches ∆ · τ̃ ′k.
The additional computation doesn’t affect the output distribution. Thus, Hyb25 and Hyb24 have the

same output distribution.
Hyb26: In this hybrid, while generating sharings for random bits, if some of δrk , δr′k , δℓk , δℓ′k is non-zero

but τ̃ ′k = 0, S aborts the simulation. Recall that τ̃k = α · (δrk · rk + δRk
) − (δr′k · r

′
k + δR′

k
), where δRk

, δR′
k

are computed by δrk , δr′k , ηk, δℓk , δℓ′k , which are all chosen by corrupted parties. Thus, we can regard that
the adversary directly choose δrk , δr′k , δRk

, δR′
k
. Since δRk

= δℓk − δrk · ηk and δR′
k
= δℓ′k − δr′k · η

′
k, the errors

δrk , δr′k , δck , δc′k can’t be all-zero when some of δrk , δr′k , δℓk , δℓ′k is non-zero.
τ̃ ′k = 0 only happens when

δrk · rk + δRk
= δr′k · r

′
k + δR′

k
= 0

or

α =
δr′k · r

′
k + δR′

k

δrk · rk + δRk

.

For the first condition, if δrk , δRk
are not all 0, then we must have δrk ̸= 0. Then rk must be −δRk

/δrk .
Since rk is sampled randomly after the additive errors are fixed, the first condition holds with probability
1/p, which is negligible. Similarly, if δr′k , δR′

k
are not all 0, then the first condition holds with negligible

probability.
In the case that the first condition does not hold, since α is randomly sampled, the second condition

holds with negligible probability as well. Thus, the distributions of Hyb26 and Hyb25 are statistically close.
Hyb27: In this hybrid, while generating sharings for random bits, if some of δrk , δr′k , δℓk , δℓ′k is non-zero,

S doesn’t follow the computation of the honest party to compute his share of each Rk. Instead, he computes
it by Rk + δrk · rk + δRk

−∑Pi∈C R
(i)
k , where R

(i)
k is Pi’s share of [Rk] obtained from his share of [[Rk]]. We

have argued in Hyb25 that when all the parties compute [[Rk]] by Rk + ℓk − [[ℓk]], then they actually get
a sharing [[Rk + δrk · rk + δRk

]]. Thus, we only change the order of generating the honest party’s share of
[Rk + δrk · rk + δRk

] and the secret without changing their distributions. Thus, Hyb27 and Hyb16 have the
same output distribution.

Hyb28: In this hybrid, while generating sharings for random bits, S additionally sets MACCheck = 1 if
P1 doesn’t correctly open the secret of the sharing [[Rk]] (which is computed as [[Rk + δrk · rk + δRk

]] here).
This doesn’t affect the output distribution. Thus, Hyb28 and Hyb27 have the same output distribution.

Hyb29: In this hybrid, while doing verification, S additionally sets DeltaCheck = 1 if the product of the
value σ(i)′ committed by each corrupted party Pi is not correct, i.e.

∏
Pi∈C σ

(i) ̸=∏Pi∈C σ
(i)′ . This doesn’t

affect the output distribution. Thus, Hyb29 and Hyb28 have the same output distribution.
Hyb30: In this hybrid, while doing verification, if g̃ = 1, S doesn’t compute the honest party Pj ’s σ(j)

by himself. Instead, he computes σ(j) based on each corrupted party Pi’s σ(i) and
∏n

i=1 σ
(i) = 1. Since

n∏
i=1

σ(i) = (g∆)
∑n

i=1 r(i) · g
∑n

i=1 −m(i)

= g∆·r · g−∆·r = 1,

∏n
i=1 σ

(i) = 1 is guaranteed, and g̃ = 1 implies that g∆ is correctly computed, so we only change the
way of generating σ(j) without changing its distribution. Thus, Hyb30 and Hyb29 have the same output
distribution.

Hyb31: In this hybrid, while doing verification, if g̃ ̸= 1, S doesn’t get the honest party Pj ’s share r(j) of
[r] from the result of Expand(s(i)r) and compute Pj ’s σ(j) by himself. Instead, he samples the honest party Pj ’s
share r(j) of [r] randomly and computes σ(j) based on corrupted parties’ σ(i) and

∏n
i=1 σ

(i) = g̃r
(j)

. Since S
computes g∆ by computing the product of g∆

(j)

and gi for each corrupted party Pi on behalf of the honest
party Pj , the multiplicative error on σ(j) is (

∏
i ̸=j(gi/g

∆(i)

))r
(j)

= g̃r
(j)

. Thus, the equation
∏n

i=1 σ
(i) = g̃r

(j)

40

holds. Pj ’s share r(j) of [r] is an entry from the result of Expand with an input seed from FnVOLE, which has
been replaced by a uniformly random vector, so Pj ’s share r(j) of [r] is a uniformly random field element.
Thus, we only change how r(j) and σ(j) are generated without changing their distributions. Thus, Hyb31

and Hyb31 have the same output distribution.
Hyb32: In this hybrid, while doing verification, if g̃ ̸= 1 but g̃r

(j)

= 1, S aborts the simulation. Since r(j)

is sampled randomly after g̃ is determined, the probability of g̃r
(j)

= 1 is 1/p when g̃ ̸= 1, which is negligible.
Thus, the distributions of Hyb32 and Hyb31 are statistically close.

Hyb33: In this hybrid, while doing verification, after following the protocol to check whether g∆ is
correctly sent and decide whether S needs to aborts the protocol on behalf of the honest party, S aborts the
simulation if DeltaCheck = 1.

Assume that the honest party is Pj . The output only changes when DeltaCheck = 1 but σ(j) ·∏Pi∈C σ
(i)′ =

1. Note that DeltaCheck = 1 only happens when g̃ ̸= 1 or
∏

Pi∈C σ
(i) ̸= ∏

Pi∈C σ
(i)′ . If g̃ ̸= 1 and∏

Pi∈C σ
(i) =

∏
Pi∈C σ

(i)′ , it must hold that

σ(j) ·
∏
Pi∈C

σ(i)′ = σ(j) ·
∏
Pi∈C

σ(i) ̸= 1,

or S will abort the simulation as in Hyb32. If g̃ = 1 and
∏

Pi∈C σ
(i) ̸=∏Pi∈C σ

(i)′ , it must hold that

σ(j) ·
∏
Pi∈C

σ(i)′ = 1 ·
∏

Pi∈C σ
(i)′∏

Pi∈C σ
(i)
̸= 1.

The remaining possible reason why the output distribution changes is that when g̃ ̸= 1 and
∏

Pi∈C σ
(i) ̸=∏

Pi∈C σ
(i)′ , σ(j) ·∏Pi∈C σ

(i)′ = 1 may holds. However,

σ(j) ·
∏
Pi∈C

σ(i)′ = g̃r
(j) ·

∏
Pi∈C σ

(i)′∏
Pi∈C σ

(i)
.

Thus, there is only one r(j) ∈ Fp satisfying σ(j) ·∏Pi∈C σ
(i)′ = 1. Since r(j) is sampled randomly after g̃ is

determined, the probability that σ(j) ·∏Pi∈C σ
(i)′ = 1 is 1/p, which is negligible.

Thus, the distributions of Hyb33 and Hyb32 are statistically close.
Hyb34: In this hybrid, while doing verification, for each k ∈ [1,mT], if τ̃k = 0, S doesn’t follow the

protocol to compute the honest party Pj ’s share of [[ek]] and get his share of [ek]. Instead, S samples Pj ’s
share of [ek] randomly in Fp and computes his share of [a′k] by α · [ak] − [ek]. Since Pj ’s share of [a′k] is an
element from the expansion result of a seed generated by FnVOLE which has been replaced by a uniformly
random vector in Hyb4, the share is uniformly random in Fp. Therefore, Pj ’s share of [ek] = α · [ak]− [a′k] is
also uniformly random in Fp. Since Pj ’s share of [a′k] is not used in the previous steps of the simulation, we
just change the order of generating Pj ’s shares of [a′k] and [ek] without changing their distributions. Thus,
Hyb34 and Hyb33 have the same output distribution.

Hyb35: In this hybrid, while doing verification, for each k ∈ [1,mT], if τ̃k ̸= 0, S doesn’t follow the
protocol to compute the honest party Pj ’s share of [[ek]] and get his share of [ek]. Instead, S first computes
ek = α · ak − a′k and then computes Pj ’s share of [ek] based on the secret and the corrupted parties’ shares.
We only change the order of generating ek and Pj ’s share of [ek] without changing their distributions. Thus,
Hyb35 and Hyb34 have the same output distribution.

Hyb36: In this hybrid, while doing verification, for each k ∈ [1,mT], S additionally sets MACCheck = 1
if P1 doesn’t correctly send ek. This doesn’t affect the output distribution. Thus, Hyb36 and Hyb35 have
the same output distribution.

Hyb37: In this hybrid, while doing verification, for each k ∈ [1,mB], if τ̃ ′k = 0, S doesn’t follow the
protocol to compute the honest party Pj ’s share of [[dk]] and get his share of [dk]. Instead, S samples Pj ’s
share of [dk] randomly in Fp and computes his share of [r′k] by α · [rk] − [dk]. Since Pj ’s share of [r′k] is an

41

element from the expansion result of a seed generated by FnVOLE which has been replaced by a uniformly
random vector in Hyb4, the share is uniformly random in Fp. Therefore, Pj ’s share of [dk] = α · [rk]− [r′k] is
also uniformly random in Fp. Since Pj ’s share of [r′k] is not used in the previous steps of the simulation, we
just change the order of generating Pj ’s shares of [r′k] and [dk] without changing their distributions. Thus,
Hyb37 and Hyb36 have the same output distribution.

Hyb38: In this hybrid, while doing verification, for each k ∈ [1,mB], if τ̃k ̸= 0, S doesn’t follow the
protocol to compute the honest party Pj ’s share of [[dk]] and get his share of [dk]. Instead, S first computes
dk = α · rk − r′k and then computes Pj ’s share of [dk] based on the secret and the corrupted parties’ shares.
We only change the order of generating dk and Pj ’s share of [dk] without changing their distributions. Thus,
Hyb38 and Hyb37 have the same output distribution.

Hyb39: In this hybrid, while doing verification, for each k ∈ [1,mB], S additionally sets MACCheck = 1
if P1 doesn’t correctly send dk. This doesn’t affect the output distribution. Thus, Hyb39 and Hyb38 have
the same output distribution.

Hyb40: In this hybrid, while doing verification, while simulating each execution of ΠSPDZ-MAC, S addi-
tionally sets MACCheck = 1 if the sum of the values σi committed by each corrupted party Pi is not equal
to the sum of their real shares [σ]. This doesn’t affect the output distribution. Thus, Hyb40 and Hyb39

have the same output distribution.
Hyb41: In this hybrid, if MACCheck = 0, while doing verification, S doesn’t compute the honest party’s

share of [σ] by himself. Instead, S computes the honest party’s share of [σ] with the corrupted parties’ shares
and

∑n
i=1[σ] = 0. Since MACCheck = 0, the sum of the shares of each ek, dk, Rk is correctly sent for the

corresponding opened sharing (where there may be an additive error δ on Rk, but the corresponding SPDZ
sharing is [[Rk+δ]]), so

∑n
i=1[σ] = 0 is guaranteed, so we only change the way of generating the honest party’s

share of [σ] without changing its distribution. Thus, Hyb41 and Hyb40 have the same output distribution.
Hyb42: In this hybrid, while simulating the first execution of ΠSPDZ-MAC, if MACCheck = 1, S doesn’t

directly compute the honest party’s share of [∆ · Ai] for each opened value Ai. Instead, S first computes
each ∆ ·Ai, and then S computes the honest party’s share of [∆ ·Ai] based on the corrupted parties’ shares
and ∆ ·Ai. We just change the way the honest party’s share of each [∆ ·Ai] is generated without changing
its distribution. Thus, Hyb42 and Hyb41 have the same output distribution.

Hyb43: In this hybrid, while doing verification, before simulating the second execution of ΠSPDZ-MAC, if
any of τ̃k or τ̃ ′k is non-zero, S additionally sets MACCheck = 1. This doesn’t affect the output distribution.
Thus, Hyb43 and Hyb42 have the same output distribution.

Hyb44: In this hybrid, while simulating the second execution of ΠSPDZ-MAC, if MACCheck = 1, S doesn’t
directly compute the honest party’s share of [∆ · Ai] for each value Ai in {τk}k∈[1,mT], {τ ′k}k∈[1,mB] that
assumed to be opened to be 0. Instead, S first computes each ∆ ·Ai, and then S computes the honest party’s
share of [∆·Ai] based on the corrupted parties’ shares and ∆·Ai, where each S uses {τ̃k}k∈[1,mT], {τ̃ ′k}k∈[1,mB]

instead of {τk}k∈[1,mT], {τ ′k}k∈[1,mB]. As we have argued in Hyb14 and Hyb25, each [∆ · τ̃k] and [∆ · τ̃k] is
shared among the parties for the verification of MACs in this execution of ΠSPDZ-MAC. Therefore, we just
change the way the honest party’s share of each [∆ · Ai] is generated without changing its’ distribution.
Thus, Hyb44 and Hyb43 have the same output distribution.

Hyb45: In this hybrid, while S is emulating FnVOLE, if S receives a global key query (guess,∆′) from A,
when ∆′ = ∆, S aborts the simulation. Otherwise S sends ∆ to A and aborts the protocol honestly on
behalf of the honest party. This only changes the distribution when ∆′ = ∆, and this only happens when
A correctly guesses ∆. Note that the previous transcripts sent to A can be generated by S with g∆ without
knowing ∆. If A correctly guesses ∆, then there exists a PPT algorithm that generates the transcripts in
the previous steps and computes ∆ from g∆ with a non-negligible probability, which contradicts the DDH
assumption. Thus, the distributions of Hyb45 and Hyb44 are computationally indistinguishable.

Hyb46: In this hybrid, while simulating the first execution of ΠSPDZ-MAC, after following the protocol
to check whether

∑n
i=1[σ] = 0, S aborts the simulation if MACCheck = 1. The only difference between

Hyb45 and Hyb46 is that the corrupted parties may not open all the values of SPDZ sharing checked in
this execution of ΠSPDZ-MAC correctly, but the verification of MACs may pass.

We assume that the honest party is Pj . We suppose that A1, . . . , Am are opened with additive errors

42

δ1, . . . , δm, and the sum of all the committed shares [σ] of corrupted parties is with an additive error δσ.
Then

σ =
∑

i∈[1,n],i̸=j

(
m∑

k=1

χk · [∆ ·Ak]−∆(i) ·
m∑

k=1

χk ·Ak

)
+ δσ

+

(
m∑

k=1

χk · (∆ ·Ak)
(j) −∆(j) ·

m∑
k=1

χk · (Ak + δk)

)

=δσ +∆(j) ·
m∑

k=1

χk · δk.

If some δk ̸= 0, since the seed that is expanded to χ1, . . . , χm is sampled after the errors are fixed, and
there is only a negligible probability of 1/p that

∑m
k=1 χk · δk = 0 if each χk is truly random. Thus, if

there is a non-negligible probability that
∑m

k=1 χk · δk = 0, then the truly random field elements and the
pseudo-random values {χk}mk=1 can be distinguished by computing

∑m
k=1 χk · δk = 0 with a non-negligible

probability, which contradicts the definition of a PRG, so the probability that
∑m

k=1 χk · δk = 0 is negligible.
If
∑m

k=1 χk · δk ̸= 0, and the certification passes with a non-negligible probability, then the adversary can
compute ∆(j) with the errors and obtains ∆ with a non-negligible probability. Since ∆ isn’t used in the
simulation process to compute any transcript sent to any corrupted party before the corrupted parties commit
their shares of [σ] and all these transcripts can be generated by g∆, we can construct a PPT algorithm that
runs the previous steps of S to generates the transcripts sent to A before the corrupted parties commit their
shares of [σ] and then runs A to computes ∆ from g∆ with a non-negligible probability, which contradicts
the DDH assumption. Therefore, the distribution only changes with negligible probability.

Thus, the distributions of Hyb46 and Hyb45 are computationally indistinguishable.
Hyb47: In this hybrid, while simulating the second execution of ΠSPDZ-MAC, after following the protocol

to check whether
∑n

i=1[σ] = 0, S aborts the simulation if MACCheck = 1. The only difference between
Hyb47 and Hyb48 is that the corrupted parties may not open all the values of SPDZ sharing checked in
this execution of ΠSPDZ-MAC correctly, but the verification of MACs may pass.

As argued in Hyb14 and Hyb25, the SPDZ sharings used for this execution of ΠSPDZ-MAC are {[[τ̃k]]}k∈[1,mT]

and {[[τ̃ ′k]]}k∈[1,mB], where the secret are regarded to be opened as 0. Since MACCheck = 1 only happens
when some of τ̃k and τ̃ ′k are non-zero as in Hyb43, the case is the same as Hyb46 that some secret of a SPDZ
sharing is not correctly opened. For the same reason in Hyb46, the distributions of Hyb47 and Hyb46 are
computationally indistinguishable.

Hyb48: In this hybrid, when emulating FnVOLE and Fprog
OLE , S delays the generation of the honest party’s

shares when they are needed. This does not change the output distribution. Thus, the distributions of
Hyb48 and Hyb47 are identical.

Note that if the protocol does not abort at the end of the execution and S does not abort the simulation,
the honest party’s shares are not used during the interaction with corrupted parties. In this case, by
construction, corrupted parties honestly follow the protocol and S only need the honest party’s shares to
prepare the honest party’s output of ΠPrep.

Hyb49: In this hybrid, we change the preparation of the honest party’s output when the protocol does
not abort at the end of the execution and S does not abort the simulation. S no longer generates the honest
party’s shares when emulating FnVOLE and Fprog

OLE . Instead, For each [[r]], S samples a random value as r and
then computes the shares of honest parties using the secret r, the MAC key ∆, and the shares of corrupted
parties. For each triple [[a]], [[b]], [[c]], S samples two random values as a, b and computes c = a · b. Then S
computes the shares of honest parties using the secrets a, b, c, the MAC key ∆, and the shares of corrupted
parties. For each bit sharing [[λ]], S samples a random bit λ ∈ {0, 1} and then computes the shares of honest
parties using the secret λ, the MAC key ∆, and the shares of corrupted parties. By the correctness of the
construction, the distributions of Hyb49 and Hyb48 are identical.

Hyb50: In this hybrid, while emulating FnVOLE at the beginning, S doesn’t generate ∆ by himself and
use it to compute g∆. Instead, S directly gets g∆ from Fprep. During the simulation, whenever S needs to

43

use ∆, he sends abort to Fprep to obtain ∆. At the end of the simulation, S sends the corrupted parties’
shares of output sharings to Fprep and let Fprep compute the honest party’s output. Since the process of
generating g∆ and the honest party’s output by S himself and by Fprep is the same, this doesn’t change the
output distribution. Thus, Hyb50 and Hyb49 have the same output distribution.

Note that Hyb50 is the ideal-world scenario. Thus ΠPrep computes Fprep with computational security.

D Cost Analysis for the Preprocessing Phase
We analyze the communication cost of Πprep in the hybrid model. We note that the communication cost
of Fprog

OLE ,FnVOLE is sublinear in its output size when instantiating them from [RS22]. Besides, the number
of calls to FCoin,FCommit is independent of the number of random sharings/triples we need to prepare. We
will omit the cost of these functionality calls. We will implement the encryption scheme PKE2 in our MPC
construction, so here we assume that p is a 2λ-bit prime and each group element in G can be expressed by
a 4λ-bit string.

During the initialization, each party sends a group element g[∆] to all the parties, which requires com-
munication of 4nλ bits.

While preparing SPDZ sharings for random values, the parties compute their shares locally.
While preparing triples, each party sends his shares of {[ℓk + ck], [ℓ

′
k + c′k]}k∈[1,mT] to P1 and receives

{ℓk + ck, ℓ
′
k + c′k}k∈[1,mT] from P1, which requires communication of 8nmTλ bits.

While preparing random bit sharings, each party sends his shares of {[ℓk + Rk], [ℓ
′
k + R′

k], [Rk]}k∈[1,mB]

to P1 and receives {ℓk +Rk, ℓ
′
k +R′

k, Rk}k∈[1,mB] from P1, which requires communication of 12nmBλ bits.
During the verification, each party sends his shares of {[ek]}k∈[1,mT], {[dk]}k∈[1,mB] to P1 and receives

{ek}k∈[1,mT], {dk}k∈[1,mB] from P1, which requires communication of 4nmTλ+ 4nmBλ bits.
In total, the communication cost of Πprep is about (12nmT + 16nmB)λ bits.

E Security Proof for the Main Protocol
Proof. We prove the security of Πmain by constructing an ideal adversary S. Then we will show that the
output in the ideal world is computationally indistinguishable from that in the real world using hybrid
arguments. Our simulation is in the client-server model where the adversary corrupts any number of clients
and exactly n− 1 servers.

Without loss of generality, we assume that S1 is corrupted. We give the construction of the simulator
below.

Garbling Phase

Then, S simulates ΠGarbling as follows:

1. Initialization.

(a) S sets pkCheck = MACCheck = 0 and samples a random element in Fp as ∆. Then S computes g∆.
(b) S emulates Fprep to receive the shares of [∆] of corrupted servers from A and send g∆ to A.
(c) S emulates Fprep to receive (Init,mT ,mR,mB) from each corrupted server, where

mT = 4GA + 2GX +WI +WO, mB = W , mR = W +WI +WO + 1.
(d) S faithfully emulates Fprep to receive the shares of the corrupted servers from A and send the outputs to

corrupted servers.
(e) If abort is received from A, S emulates Fprep to send ∆ to A and aborts the protocol honestly on behalf

of the honest clients and server. After completing the simulation, S outputs the adversary’s view.

(f) For the honest server Pj , S computes g∆
(j)

based on g∆ and corrupted servers’ shares of [∆].

Simulator SGarbling

44

2. Preparing Mask Sharings.

(a) For each wire w, S knows the corrupted servers’ shares of [[λw]].
(b) For each input wire w attached to a corrupted client, S samples a random bit as λw.

3. Preparing Separate MAC Keys. For each input and output wire w:

(a) S knows the corrupted servers’ shares of [[∆w]], [[aw]], [[bw]] and follows the protocol to compute their
shares of [∆w − aw] and [λw − bw].

(b) S samples two random elements in Fp as the honest server Sj ’s shares of [∆w − aw] and [λw − bw]. Then
S sends them to server S1 on behalf of Sj .

(c) S reconstructs ∆w − aw, λw − bw with all the servers’ shares. S receives ∆w − aw, λw − bw from server
S1 and checks whether ∆w − aw and λw − bw are both correctly reconstructed. If not, S sets
MACCheck = 1.

(d) S simulates the execution of ΠSPDZ-MAC as follows:
i. S receives RandCoin from corrupted servers and emulates FCoin to send a random seed in Fp to them.

Let the random elements expanded from the seed be χ1, . . . , χ2(WI+WO) ∈ Fp. If S receives abort
from A, he aborts the protocol honestly on behalf of the honest clients and server. After completing
the simulation, S outputs the adversary’s view.

ii. S follows the protocol ΠSPDZ-MAC to compute corrupted servers’ shares of [σ].
iii. S emulates FCommit to receive (commit, Si, σi, τ[σ]) from each corrupted server Si. S checks whether

the sum of all the corrupted servers’ shares of [σ] is equal to the sum of σi he receives from the
corrupted servers. If not, S sets MACCheck = 1.

iv. – If MACCheck = 0, S computes the honest server’s share of [σ] based on the corrupted servers’
shares and

∑n
i=1[σ] = 0.

– If MACCheck = 1, for each value Ai opened in ΠSPDZ-MAC protocol:
A. S computes ∆ ·Ai and computes the honest server’s share of [∆ ·Ai] based on the corrupted

servers’ shares and ∆ ·Ai. Here each Ai is reconstructed based on all the servers’ shares,
where corrupted servers’ shares are computed by following the protocol.

B. S follows the protocol to compute the honest server’s share of [σ].
v. For each corrupted server Si, S emulates FCommit to send (Si, τ[σ]) to all the corrupted servers. For

the honest server Sj , S emulates FCommit to send (Sj , τ[σ]) to all the corrupted servers.
vi. For the honest server Sj , S emulates FCommit to send ([σ], j, τ[σ]) to all the corrupted servers. For

each corrupted server Si, S receives (open, Si, τ[σ]) from server Si and emulates FCommit to send
(σi, i, τ[σ]) to all the corrupted servers.

vii. S follows the protocol to check whether
∑n

i=1[σ] = 0 holds. If not, S aborts the protocol on behalf of
the honest server. After completing the simulation, S outputs the adversary’s view.

viii. If MACCheck = 1, S aborts the simulation.

4. Revealing Input Masks. For each input wire w attached to each client Ci:

(a) – If client Ci is honest, S computes the corrupted servers’ shares of [λw ·∆w]. S receives the corrupted
servers’ shares of [λw], [∆w], [∆

′
w], [λw ·∆w], [∆w ·∆′

w] and checks whether the sum of their shares of
[λw], [∆w], [∆

′
w], [λw ·∆w], [∆w ·∆′

w] are all correct. If not, S aborts the protocol on behalf of the Ci.
After completing the simulation, S outputs the adversary’s view.

– If client Ci is corrupted:
i. S computes the honest server Sj ’s share of [λw] based on λw and the corrupted servers’ shares.

Then S follows the protocol to compute corrupted servers’ shares of [λw ·∆w].
ii. S samples two random elements in Fp as the honest server Sj ’s shares of [∆w], [∆

′
w]. Then S

reconstructs ∆w,∆
′
w with all the serves’ shares, computes λw ·∆w,∆w ·∆′

w, and then computes
Sj ’s shares of [λw ·∆w], [∆w ·∆′

w] based on the secrets and the corrupted servers’ shares.
iii. S sends the honest server Sj ’s share of [λw], [∆w], [∆

′
w], [λw ·∆w], [∆w ·∆′

w] to client Ci.

5. Sending Input Wire Values.

(a) For each input wire w attached to an honest client, S samples a random bit as vw ⊕ λw, where vw is the
value of wire w.

45

(b) For each honest client Ci and each input wire w attached to client Ci, S sends vw ⊕ λw to all the
corrupted servers on behalf of client Ci. For each corrupted client Cj and each input wire w attached to
client Cj , S receives vw ⊕ λw from client Cj .

(c) For each corrupted client Ci and each input wire w attached to client Ci, S computes Ci’s input
vw = (vw ⊕ λw)⊕ λw of wire w.

6. Preparing Shares of Wire Labels. For each wire w, S knows the corrupted servers’ shares of [[kw,0]].

7. Sending Public Keys.

(a) S randomly samples a seed s in Fp and let the random elements expanded from the seed be θ1, . . . , θW .
Then S randomly samples an element in Fp as τ =

∑W
i=1 θi · kwi,0 + r.

(b) S follows the protocol to compute the corrupted servers’ shares of [τ] and use them to compute the
honest server Sj ’s share τ (j).

(c) For each wire w except input wires, S samples a random bit as vw ⊕λw, where vw is the value of wire w.

(d) For each wire w, S samples a random element in Fp as the honest server Sj ’s share k
(j)
w,vw⊕λw

of

[kw,vw⊕λw] and then computes g
k
(j)
w,vw⊕λw .

(e) For each wire w, S computes the honest server Sj ’s share gk
(j)
w,0 = g

k
(j)
w,vw⊕λw · (g∆

(j)

)−(vw⊕λw).

(f) For each wire w, S sends gk
(j)
w,0 to server S1 on behalf of the honest server Sj .

(g) For each wire w, S follows the protocol to compute each corrupted server Si’s shares of g[kw,0]. Then S
reconstructs gkw,0 based on all the servers’ shares. Then S receives gkw,0 from S1. If it is not correctly
sent, S sets pkCheck = 1.

(h) S computes the honest server Sj ’s share gr
(j)

of g[r] based on gτ
(j)

=
∏W

i=1(g
k
(j)
wi,0)θi · gr

(j)

. Then S
sends gr

(j)

to server S1 on behalf of server Sj .
(i) S follows the protocol to compute all the corrupted servers’ shares of g[r]. Then S computes gr based

on all the servers’ shares of g[r].
(j) S receives gr from server S1 and checks whether it is correctly sent. If not, S sets pkCheck = 1.
(k) S receives RandCoin from corrupted servers and emulates FCoin to send the random seed s ∈ Fp to them.

If S receives abort from A, he aborts the protocol honestly on behalf of the honest server. After
completing the simulation, S outputs the adversary’s view.

(l) S sends the honest server Sj ’s share of [τ] to server S1 on behalf of server Sj .
(m) S follows the protocol to compute each corrupted server’s share of [τ] and reconstructs τ based on all

the servers’ shares. Then S receives τ from server S1 and checks whether it is correctly sent. If not, S
sets MACCheck = 1.

(n) S follows the protocol to verify whether gτ =
∏W

i=1(g
kwi,0)θi · gr, where {gkwi,0}Wi=1 and gr are received

from server S1. If not, S aborts the protocol honestly on behalf of the honest server. After completing
the simulation, S outputs the adversary’s view.

(o) If pkCheck = 1 and MACCheck = 0, S aborts the simulation.
(p) S follows the protocol to compute gkw,1 for each wire w.

8. Garbling the Circuit. For each gate g with input wires a, b and output wire c, let fg : {0, 1}2 → {0, 1}
be the function computed by the gate.

(a) Computing Sharings of Output Labels. For each execution of ΠMult:
i. S samples random elements in Fp as the honest server Sj ’s shares of [e], [d] and sends them to server

S1 on behalf of server Sj .
ii. S follows the protocol to compute the corrupted servers’ shares of [e], [d] and reconstruct e, d.
iii. S receives e, d from server S1 and checks whether they are correctly sent. If not, S sets

MACCheck = 1.
(b) Verification of MACs. S simulates the execution of ΠSPDZ-MAC as follows:

46

i. S receives RandCoin from corrupted servers and emulates FCoin to send a random seed in Fp to them.
Let the random elements expanded from the seed be χ1, . . . , χ2WO+8GA+4GX+1 ∈ Fp. If S receives
abort from A, he aborts the protocol on behalf of the honest server. After completing the simulation,
S outputs the adversary’s view.

ii. S follows the protocol ΠSPDZ-MAC to compute corrupted servers’ shares of [σ].
iii. S emulates FCommit to receive (commit, Si, σi, τ[σ]) from each corrupted server Si. S checks whether

the sum of all the corrupted servers’ shares of [σ] is equal to the sum of σi he receives from the
corrupted servers. If not, S sets MACCheck = 1.

iv. – If MACCheck = 0, S computes the honest server’s share of [σ] based on the corrupted servers’
shares and

∑n
i=1[σ] = 0.

– If MACCheck = 1, for each value Ai opened in ΠSPDZ-MAC protocol:
A. S computes ∆ ·Ai and computes the honest server’s share of [∆ ·Ai] based on the corrupted

servers’ shares and ∆ ·Ai. Among the opened values, τ has been sampled by S, and each
other Ai is reconstructed based on all the servers’ shares, where the corrupted servers’ shares
are computed by following the protocol.

B. S follows the protocol to compute the honest server’s share of [σ].
v. For each corrupted server Si, S emulates FCommit to send (Si, τ[σ]) to all the corrupted servers. For

the honest server Sj , S emulates FCommit to send (Sj , τ[σ]) to all the corrupted servers.
vi. For the honest server Sj , S emulates FCommit to send ([σ], j, τ[σ]) to all the corrupted servers. For

each corrupted server Si, S receives (open, Si, τ[σ]) from server Si and emulates FCommit to send
(σi, i, τ[σ]) to all the corrupted servers.

vii. S follows the protocol to check whether
∑n

i=1[σ] = 0 holds. If not, S aborts the protocol on behalf of
the honest server. After completing the simulation, S outputs the adversary’s view.

viii. If MACCheck = 1, S aborts the simulation.
(c) Encrypting Output Labels.

i. S follows the protocol to compute corrupted servers’ shares of [xc,vc⊕λc]. Then, S sets
xc,vc⊕λc = kc,vc⊕λc and computes the honest server Sj ’s share x

(j)
c,vc⊕λc

of [xc,vc⊕λc] based on the
secret and corrupted servers’ shares.

ii. For the honest server Sj , S computes Enc(pp, gka,va⊕λa , gkb,vb⊕λb , x
(j)
c,vc⊕λc

). Then, S takes 3 random
elements in {0, 1}2λ ×G2 as the other 3 cipher-texts encrypted by Sj of this gate. S then sends the
four cipher-texts to server S1 on behalf of the honest server Sj .

Figure 18: The simulator for the garbling phase.

Circuit Evaluation Phase
1. For each input wire w, S sends the honest server Sj ’s share of [kw,vw⊕λw] to server S1 on behalf of server

Sj .

2. For each output wire w attached to an honest client Ci:

(a) S receives vw ⊕ λw and kw,vw⊕λw from server S1. S follows the protocol to check whether gkw,vw⊕λw

matches the public key. If not, S aborts the protocol honestly on behalf of the honest clients and server.
After completing the simulation, S outputs the adversary’s view.

(b) S sends the corrupted clients’ inputs to F and receives the output wire values vw for each output wire
w attached to a corrupted client. Then, S computes λw = (vw ⊕ λw)⊕ vw for these wires.

(c) – If client Ci is honest, S computes the corrupted servers’ shares of [λw ·∆w]. S receives the corrupted
servers’ shares of [λw], [∆w], [∆

′
w], [λw ·∆w], [∆w ·∆′

w] and checks whether the sum of their shares of
[λw], [∆w], [∆

′
w], [λw ·∆w], [∆w ·∆′

w] are all correct. If not, S aborts the protocol on behalf of the Ci.
After completing the simulation, S outputs the adversary’s view.

– If client Ci is corrupted:
i. S computes the honest server Sj ’s share of [λw] based on λw and the corrupted servers’ shares.

Then S follows the protocol to compute corrupted servers’ shares of [λw ·∆w].

Simulator SEval

47

ii. S samples two random elements in Fp as the honest server Sj ’s shares of [∆w], [∆
′
w]. Then S

computes λw ·∆w,∆w ·∆′
w and then computes Sj ’s shares of [λw ·∆w], [∆w ·∆′

w] based on the
secrets and the corrupted servers’ shares.

iii. S sends the honest server Sj ’s share of [λw], [∆w], [∆
′
w], [λw ·∆w], [∆w ·∆′

w] to client Ci.

3. S outputs the adversary’s view.

Figure 19: The simulator for the circuit evaluation phase.

We construct the following hybrids:
Hyb0: In this hybrid, S runs the protocol honestly. This corresponds to the real-world scenario.
Hyb1: In this hybrid, S additionally sets pkCheck = MACCheck = 0. In addition, when emulating Fprep,

S delays the generation of honest server’s shares until needed. This doesn’t affect the output distribution.
Thus, Hyb1 and Hyb0 have the same output distribution.

Hyb2: In this hybrid, for each honest client Ci and each input or output wire w attached to client Ci,
S doesn’t follow the protocol to compute the honest server Sj ’s shares of [∆w − aw] and [λw − bw]. Instead,
S samples two random elements in Fp as the honest server Sj ’s shares of [∆w − aw] and [λw − bw], and
then S computes Sj ’s shares of [aw] by [∆w] − [∆w − aw] and [bw] by [λw] − [λw − bw]. Then S computes
Sj ’s shares of [∆ · aw], [∆ · bw], [[cw]] by reconstructing the aw, bw, computing ∆ · aw,∆ · bw, cw,∆ · cw, and
then computing Sj ’s shares based on corrupted parties’ shares. Since server Sj ’s shares of [aw] and [bw] are
uniformly random, so are server Sj ’s shares of [∆w − aw] and [λw − bw]. Hence, we just change the order
of generating server Sj ’s shares of [∆w − aw], [λw − bw] and [aw], [bw] without changing their distributions.
Since the distributions of Sj ’s shares of [∆ ·aw], [∆ ·bw], [[cw]] is determined by the distributions of Sj ’s shares
of [aw], [bw]. Thus, Hyb2 and Hyb1 have the same output distribution.

Hyb3: In this hybrid, for each input or output wire w, if either of ∆w−aw, λw− bw is not sent correctly,
S additional sets MACCheck = 1. This doesn’t affect the output distribution. Thus, Hyb3 and Hyb2 have
the same output distribution.

Hyb4: In this hybrid, for the execution of ΠSPDZ-MAC while preparing separate MAC keys, if MACCheck =
0, S doesn’t compute the honest server’s share of [σ] by himself. Instead, S computes the honest server’s
share of [σ] with the corrupted servers’ shares and

∑n
i=1[σ] = 0. Since MACCheck = 0, each pair of

∆w−aw, λw−bw is opened correctly, which guarantees
∑n

i=1[σ] = 0, so we only change the way of generating
the honest server’s share of [σ] without changing its distribution. Thus, Hyb4 and Hyb3 have the same
output distribution.

Hyb5: In this hybrid, for the execution of ΠSPDZ-MAC while preparing separate MAC keys, if MACCheck =
1, S doesn’t directly compute the honest server’s share of [∆ · Ai] for each opened value Ai. Instead, he
computes ∆ · Ai and computes the honest server’s share of [∆ · Ai] based on the corrupted servers’ shares
and ∆ · Ai. We only change the way of generating each of the honest server’s shares of [∆ · Ai] without
changing its value, which doesn’t change the output distribution. Thus, Hyb5 and Hyb4 have the same
output distribution.

Note that the honest server’s shares of [∆ · ∆w], [∆ · ∆′
w], [∆ · ∆w · ∆′

w], [[aw]], [[bw]], [[cw]] for each input
wire w are not used in the later simulation. S does not compute them in future hybrids.

Hyb6: In this hybrid, for the execution of ΠSPDZ-MAC while preparing separate MAC keys, after following
the protocol to check whether

∑n
i=1[σ] = 0, S aborts the simulation if MACCheck = 1. The only difference

between Hyb6 and Hyb5 is that the corrupted servers may not open all the values of SPDZ sharing checked
in this execution of ΠSPDZ-MAC correctly, but the verification of MACs may pass.

We assume that the honest server is Sj . We suppose that A1, . . . , Am are opened with additive errors
δ1, . . . , δm, and the sum of all the committed shares [σ] of corrupted servers is with an additive error δσ.

48

Then

σ =
∑

i∈[1,n],i̸=j

(
m∑

k=1

χk · [∆ ·Ak]−∆(i) ·
m∑

k=1

χk ·Ak

)
+ δσ

+

(
m∑

k=1

χk · (∆ ·Ak)
(j) −∆(j) ·

m∑
k=1

χk · (Ak + δk)

)

=δσ +∆(j) ·
m∑

k=1

χk · δk.

If some δk ̸= 0, since the seed that is expanded to χ1, . . . , χm is sampled after the errors are fixed, and there
is only a negligible probability of 1/p that

∑m
k=1 χk · δk = 0 if each χk is truly random. Thus, if there is a

non-negligible probability that
∑m

k=1 χk ·δk = 0, then the truly random field elements and the pseudo-random
values {χk}mk=1 can be distinguished by computing

∑m
k=1 χk · δk = 0 with a non-negligible probability, which

contradicts the definition of a PRG, so there probability that
∑m

k=1 χk·δk = 0 is negligible. If
∑m

k=1 χk·δk ̸= 0,
and the certification passes with a non-negligible probability, then the adversary can compute ∆(j) with the
errors and obtains ∆ with a non-negligible probability. Since ∆ isn’t used in the simulation process to
compute any transcript sent to any corrupted server before the corrupted servers commit their shares of [σ]
and all these transcripts can be generated by g∆, we can construct a PPT algorithm that runs the previous
steps of S to generates the transcripts sent to A before the corrupted servers commit their shares of [σ]
and then runs A to computes ∆ from g∆ with a non-negligible probability, which contradicts the DDH
assumption. Therefore, the distribution only changes with negligible probability.

Thus, the distributions of Hyb6 and Hyb5 are computationally indistinguishable.
In addition, ∆w,∆

′
w for input wire w attached to an honest client are not used when simulating Steps 3

and 4.(a). S delays the sampling of ∆w,∆
′
w until Step 4.(b).

Hyb7: In this hybrid, for each honest client Ci and each input wire w attached to client Ci, S doesn’t
follow the protocol to check λw. Instead, S checks whether the sum of their shares of [λw], [∆w], [∆

′
w], [λw ·

∆w], [∆w · ∆′
w] are all correct. This only changes the distribution if the corrupted servers apply additive

errors δ1, δ2, δ3, δ4, δ5 (not all 0) on λw,∆w,∆
′
w, λw ·∆w,∆w ·∆′

w respectively such that (λw+δ1)·(∆w+δ2) =
λw ·∆w + δ4 and (∆w + δ2) · (∆′

w + δ3) = ∆w ·∆′
w + δ5. Then it holds that λw · δ2 + δ1 ·∆w + δ1 · δ2 = δ4

and ∆w · δ3 + δ2 ·∆′
w + δ2 · δ3 = δ5.

If δ4 ̸= 0, then one of δ1, δ2 should be non-zero. Similarly, δ5 ̸= 0, then one of δ2, δ3 should be non-zero.
Thus, we only need to consider the case if one of δ1, δ2, δ3 is non-zero. If δ1 ̸= 0, then the output distribution
only changes when

∆w =
δ4 − λw · δ2

δ1
− δ2.

Since ∆w is sampled after δ1, δ2, δ4 are determined. Thus, there is only 1 element in Fp can be the value of
∆w to make (λw + δ1) · (∆w + δ2) = λw ·∆w + δ4 hold, which is with a negligible probability 1/p. Similarly,
if δ2 ̸= 0, then the output distribution only changes when

∆′
w =

δ5 −∆w · δ3
δ2

− δ3,

and it is with a negligible probability. For the same reason, if δ3 ̸= 0, then the output distribution also
changes with a negligible probability.

Thus, the distributions of Hyb7 and Hyb6 are statistically close.
Hyb8: In this hybrid, for each input wire w attached to a corrupted client, S doesn’t directly sample

the honest server Sj ’s share of [λw]. Instead, S samples λw first and then computes the honest server Sj ’s
share of [λw] based on λw and the corrupted servers’ shares. Since both λw and the honest server Sj ’s share
of [λw] are also uniformly random, this doesn’t change the distribution. Thus, Hyb8 and Hyb7 have the
same output distribution.

49

Hyb9: In this hybrid, for each input wire w attached to a corrupted client, S doesn’t follow the protocol
to compute the honest server Pj ’s share of [λw ·∆w] and directly generate Pj ’s share of [∆w ·∆′

w]. Instead,
S reconstructs ∆w,∆

′
w with all the servers’ shares and computes λw ·∆w,∆w ·∆′

w. Then S computes Pj ’s
shares of [λw ·∆w] and [∆w ·∆′

w] based on the secrets and the corrupted servers’ shares. We only change order
of generating λw ·∆w,∆w ·∆′

w and Pj ’s shares of [λw ·∆w], [∆w ·∆′
w] without changing their distributions.

Thus, Hyb9 and Hyb8 have the same output distribution.
Hyb10: In this hybrid, while sending input wire values, for each wire w to an honest client, S doesn’t

follow the protocol to compute vw ⊕λw. Instead, S samples a random bit as vw ⊕λw. Then S computes λw

by (vw⊕λw)⊕ vw for these wires. Since λw is sampled randomly in {0, 1}, so is vw⊕λw. Therefore, we only
change the order of generating λw and vw ⊕ λw for these wires without changing their distributions. Thus,
Hyb10 and Hyb9 have the same output distribution.

Note that the honest server’s shares of [∆w], [∆
′
w], [∆w ·∆′

w] for each input wire w attached to an honest
client are not used in the later simulation. S does not compute them in future hybrids.

Hyb11: In this hybrid, for each input wire w attached to a corrupted client, after receiving vw⊕λw from
the corrupted client, S additionally computes the corrupted client’s input vw by vw⊕λw⊕λw. This doesn’t
affect the output distribution. Thus, Hyb11 and Hyb10 have the same output distribution.

Hyb12: In this hybrid, S uses the wire values of all the input wires to compute the wire value vw for each
wire w in the circuit. Besides, for each wire w except input wires, S samples a random bit as vw ⊕ λw and
computes λw by (vw ⊕ λw)⊕ vw for these wires. Since λw is sampled randomly in {0, 1}, so is vw ⊕ λw. The
additional computation doesn’t affect the output distribution, and we only change the order of generating
λw and vw ⊕ λw for these wires without changing their distributions. Thus, Hyb12 and Hyb11 have the
same output distribution.

Hyb13: In this hybrid, for each wire w, S doesn’t follow the protocol to compute the honest server Sj ’s
share of g[kw,0]. Instead, S samples a random element in Fp as the honest server Sj ’s share k

(j)
w,vw⊕λw

of

[kw,vw⊕λw
] and then computes gk

(j)
w,vw⊕λw . Then, S computes the honest server Sj ’s share gk

(j)
w,0 = gk

(j)
w,vw⊕λw ·

(g∆
(j)

)−(vw⊕λw) and k
(j)
w,0 = k

(j)
w,vw⊕λw

−∆(j) · (vw ⊕ λw). Finally, S computes the honest server Sj ’s share
of [∆ · kw,0]. If vw ⊕ λw = 0, this actually makes no difference. If vw ⊕ λw = 1, we just change the order of
generating k

(j)
w,0 and k

(j)
w,1 and use gk

(j)
w,0 = gk

(j)
w,1 ·g−∆(j)

to compute gk
(j)
w,0 . This doesn’t change the distribution

of gk
(j)
w,0 . Thus, Hyb13 and Hyb12 have the same output distribution.

Hyb14: In this hybrid, for each wire w, if gkw,0 is not correctly sent, S additionally sets pkCheck = 1.
This doesn’t affect the output distribution. Thus, Hyb14 and Hyb13 have the same output distribution.

Hyb15: In this hybrid, if gr is not correctly sent, S additionally sets pkCheck = 1. This doesn’t affect
the output distribution. Thus, Hyb15 and Hyb14 have the same output distribution.

Hyb16: In this hybrid, if τ is not correctly sent, S additionally sets MACCheck = 1. This doesn’t affect
the output distribution. Thus, Hyb16 and Hyb15 have the same output distribution.

Hyb17: In this hybrid, after following the protocol to check whether gτ =
∏W

i=1(g
kwi,0)θi ·gr, if pkCheck =

1 and MACCheck = 0, S aborts the simulation. This happens only when τ is opened correctly but gr or
gkw,0 for some wire w is not correctly opened. Note that the seed that expanded to θ1, . . . , θW isn’t sampled
before S1 sends gr and gkw,0 . Assume gr is opened to be cr · gr and each gkwk,0 is opened to be ck · gkwk,0

for each k ∈ [1,W], where one of cr and {ck}Wk=1 is not 1. Then the distribution changes if and only
if cr ·

∏W
i=1 c

θk
k = 1. Assume that θ1, . . . , θW are uniformly random field elements, then at least for one

k ∈ [1,W], ck ̸= 1, there is only one θk ∈ Fp that satisfies this equation when other elements are fixed. This
happens with a negligible probability 1/p. If for θ1, . . . , θW expanded by the seed cr ·

∏W
i=1 c

θk
k = 1 happens

with a non-negligible probability, then we can construct a PPT algorithm that runs the previous steps of S
to compute whether cr ·

∏W
i=1 c

θk
k = 1 to distinguish whether the equation is computed by pseudo-random

or truly random elements θ1, . . . , θW . This contradicts the definition of a PRG. Therefore, the distribution
only changes with a negligible probability. Thus, the distributions of Hyb17 and Hyb16 are computationally
indistinguishable.

Hyb18: In this hybrid, S doesn’t sample the seed that expanded to θ1, . . . , θW while emulating FCoin.

50

Instead, S samples it earlier at the beginning of Sending Public Keys. Since θ1, . . . , θW are not used
in computing any transcript that is sent to the corrupted servers, we don’t change the output distribution.
Thus, Hyb18 and Hyb17 have the same output distribution.

Hyb19: In this hybrid, S doesn’t follow the protocol to compute the honest server Sj ’s share of [[τ]].
Instead, S samples a random element in Fp at the beginning of Sending Public Keys as τ . S computes
the honest server Sj ’s share of [[τ]] based on the corrupted servers’ shares, τ , and ∆. Then, S computes gr

(j)

based on gτ
(j)

=
∏W

i=1(g
k
(j)
wi,0)θi · gr(j) and τ (j). S also computes Sj ’s shares of [[r]] by [[τ]]−∑W

i=1 θi · [[kwi,0]].
Since r is uniformly random, so is τ . Hence, we only change the order of generating the honest server Sj ’s
share of [[τ]] and [[r]] without changing their distributions. Thus, Hyb19 and Hyb18 have the same output
distribution.

Note that [[r]] is not used in the later simulation. S does not compute Sj ’s shares of [[r]] in future hybrids.
In addition, Sj ’s shares of {[[kw,0]]}Wi=1 are not used when simulating Step 7. S delays the computation of
Sj ’s shares of {[[kw,0]]}Wi=1 until Step 8.(c).

Hyb20: In this hybrid, while computing sharings of output labels, for each execution of ΠMult, S doesn’t
follow the protocol to compute the honest server Sj ’s shares of [e] and [d]. Instead, S samples two random
elements in Fp as the honest server Sj ’s shares of [e] and [d] and then computes the corresponding random
shares [a], [b] for the triple used in this multiplication. Then S reconstructs a, b and computes the honest
parties’ shares of [∆ · a], [∆ · b], [[c]] correspondingly with a, b and corrupted parties’ shares. For the same
reason in Hyb2, Hyb20 and Hyb19 have the same output distribution.

Hyb21: In this hybrid, while computing sharings of output labels, for each execution of ΠMult, if either
of e, d is not sent correctly, S additional sets MACCheck = 1. This doesn’t affect the output distribution.
Thus, Hyb21 and Hyb20 have the same output distribution.

Hyb22: In this hybrid, while simulating the second execution of ΠSPDZ-MAC, S additionally sets MACCheck =
1 if the sum of the shares of [σ] committed by corrupted servers is not correct. This doesn’t affect the output
distribution. Thus, Hyb22 and Hyb21 have the same output distribution.

Hyb23: In this hybrid, if MACCheck = 0, while simulating the second execution of ΠSPDZ-MAC, S doesn’t
compute the honest server’s share of [σ] by himself. Instead, S computes the honest server’s share of [σ] with
the corrupted servers’ shares and

∑n
i=1[σ] = 0. Since MACCheck = 0, each pair of e, d is opened correctly,

which guarantees
∑n

i=1[σ] = 0, so we only change the way of generating the honest server’s share of [σ]
without changing its distribution. Thus, Hyb23 and Hyb22 have the same output distribution.

Note that in this case the honest server Sj ’s share of [∆ · τ] is not used. S does not generate Sj ’s share
of [∆ · τ] in future hybrids.

Hyb24: In this hybrid, if MACCheck = 1, while simulating the second execution of ΠSPDZ-MAC, S doesn’t
directly compute the honest server’s share of [∆ ·Ai] for each opened value Ai. Instead, he computes ∆ ·Ai

and computes the honest server’s share of [∆ · Ai] based on the corrupted servers’ shares and ∆ · Ai. We
only change the way of generating each of the honest server’s shares of [∆ · Ai] without changing its value,
which doesn’t change the output distribution. Thus, Hyb24 and Hyb23 have the same output distribution.

Note that the honest server’s shares of each triple used in step 8.(a) are not used in the later simulation.
S does not compute them in future hybrids. Also the MAC sharing of each λw, [∆ · λw] is not used until
Step 8.(c), S delays the generation of the honest server’s share of [∆ · λw] for all λw.

Hyb25: In this hybrid, while simulating the second execution of ΠSPDZ-MAC, after following the protocol
to check whether

∑n
i=1[σ] = 0, S aborts the simulation if MACCheck = 1. For the same reason in Hyb6, the

distributions of Hyb25 and Hyb24 are computationally indistinguishable.
Hyb26: In this hybrid, for each gate g with input wires a, b and output wire c, S doesn’t follow the

protocol to compute the honest server Sj ’s shares of [[χ1]], [[χ2]], [[χ3]], [[χ4]]. Instead, S first computes χi using
λa, λb, λc and then generates Sj ’s shares of [[χi]] based on χi, ∆, and shares of corrupted parties for each
i = 1, 2, 3, 4. Given that the check in Step 8.(b) does not abort, corrupted parties follow the protocol when
computing [[χi]]. Thus, the distributions of Hyb26 and Hyb25 are identical.

Note that the honest server Sj ’s share of [∆ · λw] for each wire w is not used. S does not generate these
shares in future hybrids.

Hyb27: In this hybrid, for each gate g with input wires a, b and output wire c, let i⋆ = 2(va ⊕ λa) +

51

(vb ⊕ λb) + 1. S doesn’t follow the protocol to compute the honest server Sj ’s share of [xc,i⋆]. Instead, S
computes it based on the secret xc,i⋆ = kc,vc⊕λc

and corrupted servers’ shares of [xc,i⋆]. By construction,
we have vc = fg(va, vb). Thus, χi⋆ = fg(va, vb) ⊕ λc = vc ⊕ λc, and xc,i⋆ = kc,0 + χi⋆ ·∆ = kc,vc⊕λc

. This
does not change the distribution of Sj ’s share of [xc,i⋆]. Thus, the distributions of Hyb27 and Hyb26 are
identical.

Hyb28: In this hybrid, S maintains a set Q. For each gate g with input wires a, b and output wire
c, and for all i0, i1 ∈ {0, 1} such that (i0, i1) ̸= (va ⊕ λa, vb ⊕ λb), when the honest server Sj computes
Enc(pp, gka,i0 , gkb,i1 , x

(j)
c,2i0+i1+1), S checks whether the query to the random oracle has been queried before.

If true, S aborts the simulation. Otherwise, S adds the query to Q. Note that when ∆ ̸= 0, which happens
with overwhelming probability, each query made to the random oracle is uniformly random. Thus, the
probability that some query has been queried (either by the honest server or by the adversary) is negligible.
The distributions of Hyb28 and Hyb27 are computationally indistinguishable.

Hyb29: In this hybrid, while doing encryption for each cipher-text except Enc(pp, gka,va⊕λa , gkb,vb⊕λb , x
(j)
c,vc⊕λc

),
S doesn’t follow the encryption algorithm to query the random oracle and then use the result to encrypt the
message. Instead, for message m, S directly samples m∗, k1, k2 randomly (where m∗ = m⊕O((pk1)k1 ·(pk2)k2)
is one element of the cipher-text), and sets the output of the query (pk1)

k1 · (pk2)k2 to the random oracle to
be m∗ ⊕m. Note that the only difference between Hyb28 and Hyb29 is the way we decide the output for
queries in Q. Since m∗ is randomly sampled, m∗ ⊕m is also uniformly random. In particular, when S does
not abort the simulation, queries in Q have not been queried before. Thus, the distributions of Hyb29 and
Hyb28 are identical.

Hyb30: In this hybrid, while doing encryption for each cipher-text except Enc(pp, gka,va⊕λa , gkb,vb⊕λb , x
(j)
c,vc⊕λc

),
S does not compute the original message m and does not set the output of the query (pk1)

k1 · (pk2)k2 to the
random oracle to be m∗ ⊕m. Instead, S honestly emulates the random oracle. In particular, S no longer
checks whether the query to the random oracle when Sj computing the cipher-texts has been queried before.
We prove that the distributions of Hyb30 and Hyb29 are computationally indistinguishable.

For the sake of contradiction, assume that there exists an adversary A such that Hyb29 and Hyb30

are computationally distinguishable. We first construct another two hybrids Hyb′
29 and Hyb′

30, which
are the same as Hyb29 and Hyb30 except that when S marks MACCheck = 1, S aborts the simulation.
We argue that Hyb′

29 and Hyb′
30 are also computationally distinguishable. This is because S only marks

MACCheck = 1 before Step 8.(b) and once MACCheck = 1, either S will abort the simulation or S will
abort the computation on behalf of the honest server at the end of Step 8.(b). On the other hand, Hyb29

and Hyb30 are only different in Step 8.(c). Thus Hyb′
29 and Hyb′

30 can be distinguished with the same
advantage as Hyb29 and Hyb30.

Let Q be the set of queries to the random oracle when Sj computes his cipher-text in Hyb′
30 except

Enc(pp, gka,va⊕λa , gkb,vb⊕λb , x
(j)
c,vc⊕λc

). Now we argue that, with non-negligible probability, at least one query
in Q has been queried. Suppose this is not the case. By the same analysis, with overwhelming probability,
all queries in Q are distinct. Then by assumption, with overwhelming probability, no query in Q has been
queried and all queries in Q are distinct. In this case, the only difference between Hyb′

29 and Hyb′
30 is

that we do not explicitly compute the output to each query in Q by m∗ ⊕ m. Since no query in Q has
been queried, this makes no difference in the output distribution. Then it shows that Hyb′

29 and Hyb′
30 are

computationally indistinguishable, which leads to a contradiction.
Thus, with non-negligible probability, at least one query in Q has been queried in Hyb′

30. We will use
such an adversary A to break the DDH assumption. First note that Hyb′

30 can be generated by only using
g∆ but not ∆. Let T be the upper bound of the number of queries to the random oracle (which depends on
the running time of A and is upper bounded by a polynomial in the security parameter). Note that the size
of Q is 3GA + 3GX . We construct an attacker B as follows.

1. B receives (g∆, gr, h) from the challenger, where h is either a random group element or h = g∆·r.

2. B randomly samples i0 ∈ {1, . . . , T} and i1 ∈ {1, . . . , 3GA + 3GX}, representing that B guesses that
the i0-th query to the random oracle is the i1-th query in Q.

52

3. B invokes S and uses g∆ to execute with A in the same way as Hyb′
30 except of preparing the

cipher-text corresponding to the i1-th query in Q:

• If this query is in the form of (gka,va⊕λa)k1 · (gkb,1⊕vb⊕λb)k2 , B randomly samples k1, computes gk1 ,
and sets gk2 = gr. After learning the i0-th query q to the random oracle, B checks whether

q = (gka,va⊕λa)k1 · (gr)kb,vb⊕λb · h.

• If this query is in the form of (gka,1⊕va⊕λa)k1 · (gkb,vb⊕λb)k2 , B randomly samples k2, computes gk2 ,
and sets gk1 = gr. After learning the i0-th query q to the random oracle, B checks whether

q = (gr)ka,va⊕λa · (gk2)kb,vb⊕λb · h.

• If this query is in the form of (gka,1⊕va⊕λa)k1 · (gkb,1⊕vb⊕λb)k2 , B randomly samples k1, computes
gk1 , and sets gk2 = gr/gk1 . After learning the i0-th query q to the random oracle, B checks
whether

q = (gk1)ka,va⊕λa · (gk2)kb,vb⊕λb · h.
If true, B outputs 1. Otherwise, B outputs a random bit.

We show that B has a non-negligible advantage to distinguish g∆·r from a random group element. First
note that if h is a random group element, then with overwhelming probability, B outputs a random bit since
h is not used when interacting with A. When h = g∆·r, B will always output 1 when the i0-th query to
the random oracle is the i1-th query in Q, which happens with non-negligible probability. Thus, B has a
non-negligible advantage of distinguishing g∆·r from a random group element, which contradicts with the
DDH assumption.

In summary, Hyb29 and Hyb30 are computationally indistinguishable. Note that the honest server Sj ’s
shares [[χ1]], . . . , [[χ4]] for each gate are not used. S no longer generates those shares in future hybrids. Also,
for each input wire associated with an honest client and for each intermediate wire, S does not generate the
honest server Sj ’s share of [λw], which is not used anymore.

Hyb31: In this hybrid, S computes vw = (vw ⊕ λw)⊕ λw, sends the corrupted clients’ inputs to F , and
gets their outputs, and honest clients still compute their outputs by themselves. For each output wire w
associated with a corrupted client, when computing λw from vw ⊕ λw and vw, S uses the outputs received
from F . This doesn’t affect the output distribution. Thus, the distribution of Hyb31 and Hyb30 are the
same.

Hyb32: In this hybrid, for each honest client Ci and each output wire w attached to client Ci, S doesn’t
follow the protocol to check λw. Instead, S checks whether the sum of their shares of [λw], [∆w], [∆

′
w], [λw ·

∆w], [∆w · ∆′
w] are all correct. For the same reason in Hyb8, the distributions of Hyb32 and Hyb31 are

statistically close.
Hyb33: In this hybrid, for each output wire w attached to a corrupted client, S doesn’t follow the protocol

to compute the honest server Pj ’s share of [λw ·∆w] and directly generate Pj ’s share of [∆w ·∆′
w]. Instead,

S reconstructs ∆w,∆
′
w with all the servers’ shares and computes λw ·∆w,∆w ·∆′

w. Then S computes Pj ’s
shares of [λw ·∆w] and [∆w ·∆′

w] based on the secrets and the corrupted servers’ shares. We only change order
of generating λw ·∆w,∆w ·∆′

w and Pj ’s shares of [λw ·∆w], [∆w ·∆′
w] without changing their distributions.

Thus, Hyb33 and Hyb32 have the same output distribution.
Hyb34: In this hybrid, honest clients get their outputs from F instead of computing them by themselves.

S does not compute all wire values in the circuit and does not generate the honest server Sj ’s share of [λw]
for each wire w associated with an honest client. Since the computation processes of vw of each output wire
w by S and by F are the same, the distribution only changes when S1 correctly sends vw ⊕ λw ⊕ 1 and
kw,vw⊕λw⊕1 to an honest client with the output wire w attached to him. Since |kw,vw⊕λw⊕1−kw,vw⊕λw

| = |∆|
and kw,vw⊕λw

is explicitly generated by S, if Hyb34 and Hyb33 are computationally indistinguishable, then
we may construct a PPT algorithm to compute ∆ from g∆ with a non-negliglible probability, which breaks
the DDH assumption. Thus, the distributions of Hyb34 and Hyb33 are computationally indistinguishable.

Note that Hyb34 is the ideal-world scenario, Πmain computes F with computational security.

53

F Cost Analysis for the Main Protocol
We first analyze the communication complexity of Πmain in the hybrid model, without considering the cost
of communication with functionalities.

During the garbling phase, the communication in each step is as follows:

1. Initialization. No communication.

2. Preparing Mask Sharings. No communication.

3. Preparing Separate MAC Keys. For each input and output wire, the servers run ΠMult once, which
requires the servers to open 2(WI+WO) field elements. This requires communication of 8n(WI+WO)λ
bits.

4. Revealing Input Masks. Each server needs to send his shares of [λw], [∆w], [∆
′
w], [λw ·∆w], [∆w ·∆′

w]
to a single client for each input wire w, which requires 10nWIλ bits of communication.

5. Sending Input Wire Values. For each input wire w attached to a client Ci, Ci needs to send a bit
vw ⊕ λw to all the servers, which requires communication of 2nWI bits in total.

6. Preparing Shares of Wire Labels. No communication.

7. Sending Public Keys. For each wire, each server needs to send a group element to and receive
another group element from S1, which requires communication of 8nλ bits. The communication cost
of sending shares of gr and τ is independent of the number of wires, so we omit the cost of this part.
Thus, the total communication in this step is 8nWλ bits.

8. Garbling the Circuit. For each AND gate, the servers need to run ΠMult 4 times, which requires
the servers to open 8 field elements through S1. This requires communication of 32nGAλ bits in total.
Similarly, for each XOR gate, the servers only need to run ΠMult twice, which requires 8nGXλ bits of
communication in total. Using the public key encryption scheme PKE2, the size of each ciphertext is
about 5λ. Thus, sending the ciphertexts requires communication of 40n(GA+GX)λ bits in total. This
brings the total communication in this step to (72GA + 56GX)nλ bits.

9. Verification of MACs. During the execution of ΠSPDZ−MAC, the servers only do local computation
and communicate with ideal functionalities FCoin and FCommit, so there is no communication in this
step.

During the circuit evaluation phase, we analyze the communication of each step as follows:

1. Revealing Input Labels. For each input wire, all the servers send a field element to S1, which
requires 2nWIλ bits of communication in total.

2. Computing the Circuit. No communication.

3. Sending Outputs. For each output wire, S1 sends a bit and a field element to a single client
which requires 2WO(1 + λ)-bit communication. Moreover, each server needs to send his shares of
[λw], [∆w], [∆

′
w], [λw ·∆w], [∆w ·∆′

w] to a single client for each input wire w, which requires 6nWOλ-bit
communication. Thus, the total communication of this step is about 10nWOλ bits.

In total, the communication cost of Πmain is about (20WI + 18WO + 8W + 72GA + 56GX)nλ bits.
If we use Πprep to realize Fprep, the execution of Πprep requires communication of about (12nmT +

16nmB)λ = (24WI + 24WO + 16W + 48GA + 24GX)nλ bits, resulting in a total communication of about
(44WI + 42WO + 24W + 120GA + 80GX)nλ bits. Since W = GA +GX +WI , the total communication for
the complete protocol is about (58WI + 42WO + 144GA + 104GX)nλ bits.

54

G Protocol without Random Oracles
In this appendix, we show how to instantiate our protocol without assuming the existence of random oracles.
We still use the same preprocessing as our protocol based on random oracles. This time, the public key
encryption scheme we used can be PKE1 = (Setup,Gen,Enc,Dec) from Section 4.1. We still provide our
main protocol Πmain in the {Fprep,FCoin, FCommit}-hybrid model. The main protocol Πmain runs ΠGarbling and
ΠEval in order, where ΠGarbling and ΠEval are provided as follows.

Garbling Phase
Let λ be the computational security parameter and κ be the statistical security parameter. All the servers
agree on the public parameter pp← Setup(λ, κ) from the public-key encryption scheme (Setup,Gen,Enc,Dec)
constructed in Section 4.

1. Initialization. Set mT = 5GA + 3GX + 2WI + 2WO, mB = W , mR = 2W + 1. The servers send
(Init,mT ,mR,mB) to Fprep and receive the outputs from Fprep.

2. Preparing Mask Sharings. For each wire w, all the servers take one random sharing of a bit generated
by Random Bits of Fprep as [[λw]]. λw serves as the mask of the wire value of w.

3. Preparing Separate MAC Keys. For each input and output wire w:

(a) The servers take a triple generated by Fprep as [[∆w]], [[∆
′
w]], [[∆w ·∆′

w]].
(b) The servers take another triple [[aw]], [[bw]], [[cw]] and run ΠMult on [[∆w]] and [[λw]] to obtain [[∆w · λw]].
(c) The servers run ΠSPDZ-MAC to check the MACs on all the opened values, i.e. (WI +WO) pairs of d, e

opened in (WI +WO) executions of ΠMult.

4. Revealing Input Masks. For each input wire attached to each client Ci:

(a) Each server sends his shares of [λw], [∆w], [∆
′
w], [λw ·∆w], [∆w ·∆′

w] to Ci.
(b) Ci reconstructs λw,∆w,∆

′
w, λw ·∆w,∆w ·∆′

w. If λw ·∆w is not equal to the product of λw and ∆w, or
∆w ·∆′

w is not equal to the product of ∆w and ∆′
w, abort the protocol.

5. Sending Input Wire Values. For each client Ci and each input wire w attached to Ci, Ci sends vw ⊕ λw

to all the servers, where vw is the input wire value of w.

6. Preparing Shares of Wire Labels. For each wire w, the servers take two random sharings [[kw,0]], [[kw,1]]

generated by Random Values of Fprep. Let Si’s share of each [kw,b] be k
(i)
w,b for b ∈ {0, 1}.

7. Sending Public Keys.

(a) For each wire w, the servers compute their shares {gk
(i)
w,0 , gk

(i)
w,1}ni=1 of g[kw,0], g[kw,1] and send them to

S1. S1 computes and sends gkw,0 , gkw,1 to all servers.
(b) The servers use a random sharing [[r]] generated by Random Values of Fprep. Then all servers compute

their shares of g[r] and send them to S1. S1 computes and sends gr to all the servers.
(c) The servers call FCoin to get a random seed in Fp and expand it to get random values θ1, . . . , θ2W ∈ Fp,

and locally compute [[τ]] =
∑W

i=1 θi · [[kwi,0]] +
∑W

i=1 θW+i · [[kwi,1]] + [[r]]. Then, the servers run ΠOpen to
open τ .

(d) Each server checks whether gτ =
∏W

i=1(g
kwi,0)θi ·

∏W
i=1(g

kwi,1)θW+i · gr. If not, abort the protocol.

8. Garbling the Circuit. For each gate g with input wires a, b and output wire c, let fg : {0, 1}2 → {0, 1}
be the function computed by the gate.

(a) Computing Sharings of Output Labels.
i. All the servers jointly compute SPDZ sharings of

χ1 = fg(0⊕ λa, 0⊕ λb)⊕ λc, χ2 = fg(0⊕ λa, 1⊕ λb)⊕ λc,

χ3 = fg(1⊕ λa, 0⊕ λb)⊕ λc, χ4 = fg(1⊕ λa, 1⊕ λb)⊕ λc.

Note that λ2
w = λw for each wire w.

Protocol ΠGarbling

55

– For AND gates, servers run ΠMult to compute [[λa · λb]], [[λc · λb]], [[λa · λc]], [[λa · λb · λc]]. Note that
each χj can be viewed as a linear combination of {1, λa, λb, λc, λa · λb, λa · λc, λb · λc, λa · λb · λc}.

– For XOR gates, note that χ1 = χ4 = λa ⊕ λb ⊕ λc and χ2 = χ3 = 1⊕ λa ⊕ λb ⊕ λc. All servers
run ΠMult to compute [[λa · λb]] and then locally compute [[λa ⊕ λb]] = [[λa]] + [[λb]]− 2 · [[λa · λb]].
Similarly, they get [[λa ⊕ λb ⊕ λc]] using one call of ΠMult.

ii. All servers locally compute [[χj]] for each j = 1, 2, 3, 4 and then compute [[kc,1 − kc,0]].
iii. The the servers run ΠMult to compute [[(kc,1 − kc,0) · χj]] and then compute

[[xc,j]] = [[kc,0]] + [[(kc,1 − kc,0) · χj]] for each j = 1, 2, 3, 4.
(b) Verification of MACs. The servers run ΠSPDZ-MAC to check the MACs on all the opened values, i.e. τ

and 5GA + 3GX pairs of d, e opened in 5GA + 3GX executions of ΠMult.
(c) Encrypting Output Labels. Each server Si encrypts his share x

(i)
c,1 (of [xc,1]) by

Enc(pp, gka,0 , gkb,0 , x
(i)
c,1), x

(i)
c,2 by Enc(pp, gka,0 , gkb,1 , x

(i)
c,2), x

(i)
c,3 by Enc(pp, gka,1 , gkb,0 , x

(i)
c,3), and x

(i)
c,4 by

Enc(pp, gka,1 , gkb,1 , x
(i)
c,4). Then, Si sends the ciphertexts to S1.

Figure 20: Protocol for the garbling phase.

Circuit Evaluation Phase
1. Revealing Input Labels. For each input wire w, all the servers send their shares of [kw,vw⊕λw] to S1. S1

checks whether kw,vw⊕λw is consistent with the corresponding public key. If not, abort the protocol.

2. Computing the Circuit. S1 computes the circuit gate by gate. For each gate with input wires a, b and
output wire c, if S1 knows ka,va⊕λa , kb,vb⊕λb , he can use them to decrypt all the servers’ shares of kc,vc⊕λc .
Then S1 computes gkc,vc⊕λc and compares it with gkc,0 and gkc,1 to learn vc ⊕ λc. If gkc,vc⊕λc is not in
{gkc,0 , gkc,1}, abort the protocol.

3. Sending Outputs. For each client Ci and each output wire w attached to Ci:

(a) S1 sends vw ⊕ λw and kw,vw⊕λw to Ci. Then Ci checks whether they match the public key gkw,vw⊕λw .
If not, abort the protocol.

(b) Each server sends his shares of [λw], [∆w], [∆
′
w], [λw ·∆w], [∆w ·∆′

w] to Ci.
(c) Ci reconstructs λw,∆w,∆

′
w, λw ·∆w,∆w ·∆′

w. If λw ·∆w is not equal to the product of λw and ∆w, or
∆w ·∆′

w is not equal to the product of ∆w and ∆′
w, abort the protocol.

(d) Ci computes his output vw from vw ⊕ λw and λw.

Protocol ΠEval

Figure 21: Protocol for the circuit evaluation phase.

This protocol gives us the following theorem.

Theorem 6. Assuming DDH, LPN, and PRG, there is a computationally secure constant-round MPC
protocol against a fully malicious adversary controlling up to n− 1 parties with communication of O(|C|nλ)
bits, where λ is the computational security parameter.

56

	Introduction
	Our Contributions

	Technical Overview and Related Works
	Background: Yao's Garbled Circuit and BMR Template
	Our Solution
	Concrete Instantiation of PKE
	Towards Malicious Security
	Related Works

	Preliminaries
	Basic Definitions and Primitives
	Secret Sharing
	Functionalities for Sub-protocols
	MAC Check on Opened Values.

	Encryption Scheme Based on DDH
	Encryption Scheme Based on Strong Seeded Extractors
	Encryption Scheme Based on Random Oracle

	Preprocessing Phase
	Preprocessing Functionality
	Preprocessing Protocol

	Main Protocol
	Performance Evaluation
	Cost Analysis
	Implementation and Experiments

	The Security Model
	Security Proof for the Encryption Scheme
	Proof of Theorem 3
	Proof of Theorem 4

	Security Proof for the Preprocessing Protocol
	Cost Analysis for the Preprocessing Phase
	Security Proof for the Main Protocol
	Cost Analysis for the Main Protocol
	Protocol without Random Oracles

