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Abstract

We study error detection and error correction in a computationally bounded world, where errors are

introduced by an arbitrary polynomial time adversarial channel. We consider codes where the encoding

procedure uses random coins and define two distinct variants: (1) in randomized codes, fresh randomness

is chosen during each encoding operation and is unknown a priori, while (2) in self-seeded codes, the

randomness of the encoding procedure is fixed once upfront and is known to the adversary. In both

cases, the randomness need not be known to the decoding procedure, and there is no trusted common

setup between the encoder and decoder. The encoding and decoding algorithms are efficient and run in

some fixed polynomial time, independent of the run time of the adversary.

The parameters of standard codes for worst-case (inefficient) errors are limited by the Singleton

bound: for rate R it is not possible to detect more than a 1 − R fraction of errors, or uniquely correct

more than a (1 − R)/2 fraction of errors, and efficient codes matching this bound exist for sufficiently

large alphabets. In the computationally bounded setting, we show that going beyond the Singleton

bound implies one-way functions in the case of randomized codes and collision-resistant hash functions

in the case of self-seeded codes. We construct randomized and self-seeded codes under these respective

minimal assumptions with essentially optimal parameters over a constant-sized alphabet:

• Detection: the codes have a rate R ≈ 1 while detecting a ρ ≈ 1 fraction of errors.

• Correction: for any ρ < 1/2, the codes uniquely correct a ρ fraction of errors with rate R ≈ 1− ρ.

Codes for computationally bounded errors were studied in several prior works starting with Lipton

(STACS ’94), but all such works either: (a) need some trusted common setup (e.g., public-key infras-

tructure, common reference string) between the encoder and decoder, or (b) only handle channels whose

complexity is a prior bounded below that of the code.
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1 Introduction

The theory of error detection and error correction goes back to the seminal works of Shannon [Sha48] and

Hamming [Ham50]. A sender encodes a message and sends the resulting codeword over a noisy channel

that may introduce errors by modifying a subset of the codeword symbols. A receiver gets the modified

codeword and attempts to decode the original message. The goal of error-detection is to recover the original

message when there are no errors or detect the presence of errors. The goal of error-correction is to always

uniquely recover the original message. The main parameters of interest are the rate R, defined as the ratio

of message length to codeword length, and the relative error tolerance ρ, defined as the ratio between the

number of errors that can be detected/corrected and the codeword length.

Starting with the work of Hamming [Ham50], a large body of research studies codes for worst-case

computationally unbounded (adversarial) channels that can introduce arbitrary errors patterns. The error

tolerance in this setting is fully determined by the distance of the code, which is subject to several well-

established fundamental bounds. For example, the Singleton bound implies that for any rate R ≥ 0 the

relative error tolerance is ρ ≤ 1−R for error detection and ρ ≤ (1−R)/2 for error correction. Furthermore,

there are efficient codes matching the Singleton bound for sufficiently large alphabet sizes.

Computationally Bounded Channels. We consider a setting similar to that of Hamming [Ham50], where

errors are introduced by a fully adversarial channel, but with the additional natural restriction that the channel

is computationally bounded, and can run in arbitrary polynomial (or even sub-exponential) time. This

restriction is well motivated – if an error pattern takes longer than the lifetime of the universe to compute,

then we can safely assume it will not occur. Our goal is to construct efficient codes that can detect/correct

errors in this setting with rate vs error-tolerance trade-offs that go beyond the Singleton bound. Many prior

works starting with [Lip94] and including [OPS07, MPSW10, HOSW11, GS16, SS21a, BGGZ21, SS21b,

SS22, SS24, GHY20] have previously considered computationally bounded channels, either to get better

parameters, or to achieve other desirable properties such as improved local/list decoding. However, all such

prior works suffer from at least one of the following deficiencies:

(a) Trusted setup: Many works require a trusted coordinated setup between the encoding and decoding

algorithms. For example, [Lip94] assumes that they share a secret key, which is unknown to the

adversarial channel. Alternatively, [MPSW10] require a public-key infrastructure where the encoding

algorithm has its own secret key, while the decoding algorithm (as well as the adversarial channel)

gets the corresponding public-key. In both cases, the encoding algorithm is also stateful and updates

its state between operations. The use of secret keys and state are significant limitations that make

such codes inapplicable in many natural settings. The work of Grossman, Holmgren and Yogev

[GHY20] introduces the notion of seeded codes that only requires a light trusted setup consisting

of a common (uniformly) random seed shared by the encoder and decoder. They construct such

seeded codes correcting ρ ≈ 1 − R errors over a large alphabet based on strong and non-standard

cryptographic hardness assumptions – namely a certain form of two-input correlation-intractable hash

functions, which are currently only known to exist in the random-oracle model, but have no known

provably secure instantiations under standard cryptographic hardness assumptions.

(b) Codes have higher complexity than adversary: Many works [GS16, SS21a, SS21b, SS22, SS24] re-

strict the complexity (time/size or space) of the adversarial channel to be bounded by some arbitrary

polynomial chosen a priori, and the complexity of the encoding/decoding algorithms then scales ac-

cordingly to some sufficiently larger polynomial. In particular, the adversarial channel is not powerful

enough to evaluate the encoding/decoding algorithms in these schemes. This is a significant limitation,

1



since we cannot argue that such schemes protect against all errors that can arise in a computationally

bounded world – a world that can compute the encoding/decoding algorithms of the scheme can also

find error patterns to defeat them! In contrast, we would like to have efficient codes with some fixed

polynomial run-time that protect against arbitrary polynomial (or even sub-exponential time) adver-

sarial channels.

The different prior works and their properties are summarized in Table 1.

work Setup/Type Channel Decoding Assumption

[Lip94]
symmetric-key

stateful encoding
P/poly unique one-way functions

[MPSW10]
public key

stateful encoding
P/poly unique one-way functions

[GS16] seeded + randomized SIZE(nc) list none

[SS21a] randomized SIZE(nc) list derandomization assumption

[SS21b] randomized SPACE(nδ) unique none

[SS22] seeded + randomized SIZE(nc) unique none

[SS24] randomized SIZE(nc) unique derandomization assumption

[GHY20] seeded P/poly unique
correlation-intractable hash

(random oracle)

This work randomized P/poly unique one-way functions

This work self-seeded P/poly unique collision-resistant hash

Table 1: Summary of related work. Seeded codes are also known as Monte-Carlo codes in the literature

and require a common random seed shared by the encoder and decoder as a trusted setup. Randomized

codes require fresh on-the-fly randomness at each encoding operation. Seeded + randomized codes require

both simultaneously. Codes for channels in SIZE(nc) have correspondingly larger run-time poly(nc), while

codes for channels in P/poly have some a priori fixed polynomial run-time independent of the channel. Some

works focus on the binary alphabet while others focus on larger alphabets.

1.1 Our Results

In this work we construct error detection and error correction codes for computationally bounded channels,

while simultaneously achieving: (1) no trusted setup, (2) a fixed polynomial-time code that protects against

arbitrary polynomial (or even sub-exponential) time adversarial channels, (3) provable guarnatees under

basic/minimal computational hardness assumptions, (4) essentially optimal trade-offs between rate and error

tolerance beyond the Singleton bound for sufficiently large constant-sized alphabets.

Randomized/Self-Seeded Codes. Standard deterministic codes cannot achieve better parameters against

(non-uniform) computationally bounded channels beyond what they achieve for computationally unbounded

channels, and in particular, they cannot go beyond the Singleton bound. This is because a worst-case mes-

sage and error pattern for which detection/correction fails can simply be hard-coded as non-uniform advice

to an efficient adversary. To overcome this limitation, we therefore consider codes (Enc,Dec), where the

encoding procedure Enc takes additional randomness as input. We consider two variants. In the basic

variant of randomized codes, fresh randomness r for the encoding algorithm is chosen each time on the

fly and is unknown to the adversary ahead of time. The adversary chooses a worst-case message m, gets
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the resulting randomized codeword c ← Enc(m; r) for a fresh random r, and then chooses the error e as

an arbitrary efficiently computable function of the codeword. We also consider a stronger variant called

self-seeded codes, where the randomness r of the encoding algorithm is fixed once and for all and known

to the adversary a priori. That is, the adversary gets the randomness r and then uses it to adaptively choose

the message m (which fully defines the codeword c = Enc(m; r)) along with the error e. In both cases,

the fractional Hamming weight of e is bounded by the error tolerance ρ. Error detection ensures that with

overwhelming probability the resulting erroneous codeword c′ = c + e decodes to m when there are no

errors, and decodes to either m or⊥ when there are errors. Error correction ensures that with overwhelming

probability c′ decodes to m.

The main technical difference between randomized and self-seeded codes is adaptivity: in the former

the message m to be encoded is chosen by the adversary before the randomness r is chosen, while in the

latter the message m can adaptively depend on r.1 Self-seeded codes allow us to fix the randomness for the

code once and for all as a public seed, and afterwards the code is fully deterministic. Moreover, the seed

can be chosen by the encoder unilaterally without any coordination with the decoder. For example, different

software manufacturers can individually choose their own seeds to be used by the encoding algorithms in

their software, while allowing for interoperability with the decoders implemented by other manufacturers

without any coordination. Self-seeded codes should be contrasted to the notion of seeded codes in [GHY20],

which required a shared random seed as a common trusted setup between the encoder and decoder. Self-

seeded codes are the strongest notion and directly imply the seemingly incomparable notions of randomized

codes and seeded codes.

Minimal Assumptions. We show that any randomized code that goes beyond the Singleton bound with

error detection tolerance ρ > 1−R or error correction tolerance ρ > (1−R)/2 implies one-way functions,

while any such seeded (and therefore also self-seeded) code implies collision-resistant hash functions.

Main Theorem. We construct randomized and self-seeded codes going beyond the Singleton bound, with

essentially optimal parameters for both error detection and error correction, under the above respective

minimal assumptions.

Theorem 1.1 (Informal). Assuming one-way functions (resp. collision-resistant hash functions) there exist

efficiently computable randomized (resp. self-seeded) error-detection and error-correction codes for arbi-

trary polynomial-time adversarial errors with the following parameters:

• Error Detection: For any constant 0 < ε < 1, there is a code over a constant-sized alphabet with rate

R = 1− ε that detects a ρ = 1− ε fraction of errors.

• Error Correction: For any constants 0 < ε < 1 and 0 ≤ ρ < 1/2, there is a code over a constant-

sized alphabet with rate R = 1− ρ− ε that uniquely corrects from a ρ fraction of errors.

If we assume sub-exponentially secure one-way functions (resp. collision-resistant hash functions), then the

above properties hold even for sub-exponential time adversarial errors.

Recall that, in the case of error-detection, the Singleton bound says that the relative error tolerance

ρ ≤ 1 − R necessarily degrades as the rate improves when considering worst-case errors; in contrast, for

computationally bounded errors, our result simultaneously achieves the best possible error tolerance ρ ≈ 1
and rate R ≈ 1. In the case of error correction, the Singleton bound says the maximal error tolerance is

1Randomized codes may also be secret-coin, where the adversary never sees the full randomness r. However, our construction

will be public-coin and the randomness r can be easily recovered from the codeword c.
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ρ ≤ (1−R)/2 for worst-case errors, while for computationally bounded errors our result achieves twice as

large error tolerance ρ ≈ 1−R, subject to the upper limit ρ < 1/2.

Our achieved parameters are essentially optimal, up to the arbitrarily small constant ε. This is clear for

error detection, where we get the best possible rate R ≈ 1 and error tolerance ρ ≈ 1 simultaneously. For

error-correction, one cannot tolerate ρ ≥ 1/2 fraction of errors since an efficient adversarial channel can

modify 1/2 the codeword positions to a fresh encoding of a different message, causing decoding to fail with

probability at least 1/2.2 Moreover, one cannot have rate R > 1− ρ since zeroing out the first ρ fraction of

positions of the codeword would remove information about the message, causing decoding to fail.

We remark that, not only are one-way functions and collision-resistant hash functions the minimal as-

sumptions needed to achieve the above results, they are considered some of the most standard and well-

studied cryptographic assumptions/primitives. In particular, one-way functions are a minimal assumption

necessary for essentially any non-trivial task in cryptography and are implied by all concrete cryptographic

hardness assumptions. Collision-resistant hash functions are not know to be implied by one-way function,

but can be constructed from essentially every concrete cryptographic hardness assumption, such as hardness

of factoring, discrete logarithms, learning with errors, etc.

The closest related prior work of [GHY20] achieves essentially the same parameters as our work, but

only for the weaker notion of seeded codes, which require trusted setup, and only by assuming a strong form

of “two-input correlation-intractable hash functions”, which we do not know how to instantiate under any

standard cryptographic hardness assumption. Our result for self-seeded codes yields a stronger primitive

under significantly weaker minimal assumptions. Comparing the notions of randomized, seeded and self-

seeded codes, it is clear that self-seeded codes are the strongest notion easily implying the other two, while

randomized and seeded codes are seemingly incomparable. Interestingly, since we show that any non-trivial

seeded codes imply collision-resistant hashing, which in turn implies self-seeded codes, we show that seeded

and self-seeded codes are equivalent in terms of the needed assumptions.

Simultaneous Correction and Detection. While we stated separate results for error-detection and error-

correction above, we can also simultaneously achieve a non-trivial combination of correction and detection.

In particular, we can augment the previous theorem statement with the following:

For any constants 0 < ε < 1 and 0 ≤ ρc < 1/2, there is a code over a constant-sized alphabet

with rate R = 1− ρc− ε that simultaneously uniquely corrects from a ρc fraction of errors and

detects a ρd = 1− ρc − ε fraction of errors.

The above implies both of the previously stated results for error detection (by setting ρc = 0) and error

correction (by ignoring ρd). However simultaneous error correction and detection is an interesting property,

which is more than the sum of its parts. It gives a single decoding procedure that either outputs a message or

⊥ (error detection symbol) and is guaranteed to uniquely recover the correct message if the error rate is≤ ρc
and to never output the wrong message as long as the error rate is ≤ ρd. We can envision scenarios where

correcting a small fraction of errors (e.g., ρc = .1) may suffice. Our result show that for such instances, we

can have a code with a correspondingly large rate (e.g., R ≈ .9) while simultaneously being able to detect a

much larger fraction of errors (e.g., ρd ≈ .9) at no additional cost.

Alphabet Size. We note that our results hold for large constant-size alphabets, but do not extend to the case

of a binary alphabet. Giving optimal results for binary codes that detect/correct computationally bounded

errors under minimal assumptions remains an interesting open problem. The results of [GHY20] for seeded

2The works of [Lip94, MPSW10] overcome this limitation by having a stateful and secret keyed encoding procedure to ensure

that an adversarial channel cannot generate/reuse valid codewords.
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error correcting codes using a strong from of correlation intractable hash functions extend to the binary case

and show that one can uniquely decode computationally bounded errors with essentially the same parameters

as list-decoding for worst-case errors. It remains an open problem to achieve such results for randomized

or self-seeded codes under any assumptions, and/or to to get provably secure seeded codes under standard

cryptographic hardness assumptions.

1.2 Our Techniques

Our techniques are quite simple in retrospect. We start by showing how to construct self-seeded codes

assuming collision-resistant hashing, and then discuss how to modify these results to get analogous ones for

randomized codes from one-way functions. Throughout the introduction, we use “≈” to denote that two

values differ by an arbitrarily small constant.

Self-Seeded Error Detection with Sub-Exponential Alphabet. We start with a naive construction of

self-seeded error-detection codes that requires a sub-exponentially large alphabet size, and then show how

to reduce the alphabet size to some (large) constant. Let H = {hr : {0, 1}k → {0, 1}λ}r∈{0,1}λ be a

collision-resistant hash function family with output length λ (security parameter), which we can think of as

λ = kα for some small constant α > 0. Given a random public seed r ← {0, 1}λ, no polynomial-time

adversary can find two messages m 6= m′ such that hr(m) = hr(m
′).

The encoding algorithm Enc(m; r) takes a message m ∈ {0, 1}k and parses it as n = k/w symbols

m = (m1, . . . ,mn) over an alphabet Σdata = {0, 1}
w for some large w = O(λ). It then “folds in” the seed

r and hash of the message hr(m) into each message symbol to yield the codeword

c = ( [m1, r, hr(m)] , [m2, r, hr(m)] , . . . , [mn, r, hr(m)] ) ∈ Σn

interpreted as n symbols over the larger alphabet Σ = {0, 1}w+2·λ. The decoding algorithm Dec(c′) gets

c′ = ( [m′1, r
′
1, y
′
1] , [m

′
2, r
′
2, y
′
2] , . . . , [m′n, r

′
n, y
′
n] ) ∈ Σn,

which gives a candidate message m′ = (m′1, . . . ,m
′
n). It checks that the second part of each codeword

symbol has the same common seed value r′1 = · · · = r′n and that the third part of each symbol has the same

common hash value y′i = hr′
i
(m′); if so it outputs m′ else ⊥. The code achieves rate R = w/(w + 2λ) ≈ 1

by choosing a sufficiently large w = O(λ). Moreover, it achieves error-tolerance ρ = 1 − 1/n. Unless the

adversary changes every symbol of the codeword c, or finds a collision, decoding is guaranteed to output the

correct message m or ⊥. To see this, assume at least one symbol of the codeword remains unchanged and

decoding outputs m′ 6= m for some m′ 6= ⊥. Then it must be the case that r′i = r, y′i = hr(m
′) = hr(m)

for all i and therefore the this gives a collision m 6= m′ such that hr(m) = hr(m
′).

Self-Seeded Error Detection with Constant Alphabet. We reduce the alphabet size to a constant by ap-

plying a standard error-correcting code (Encctrl,Decctrl) over a constant sized alphabet to the small “con-

trol” value (r, hr(m)). In particular, for some constants w > v, we use a code with alphabet Σctrl = {0, 1}
v

such that Encctrl : {0, 1}2λ → Σn
ctrl maps a 2λ-bit message to a codeword of length n = k/w. The corre-

sponding rate of the code is very small Rctrl = O(λ/k) = o(1), but we will want large distance δctrl ≈ 1.

Such codes can be constructed by concatenating Reed-Solomon codes with a brute-force inner code over

the alphabet Σctrl (see Theorem 2.12). We do not need efficient error-decoding for now, but only require an

efficient way to recognize and valid codewords and invert them without errors. The encoding algorithm of

our self-seeded code Enc(m; r) first computes cctrl = (cctrl,1, . . . , cctrl,n) = Encctrl((r, hr(m))) ∈ Σn
ctrl.
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It interprets m ∈ {0, 1}k as m = (m1, . . . ,mn) ∈ Σn
data consisting of n = k/w symbols over the alphabet

Σdata = {0, 1}
w and then “folds” the two vectors together to yield the final codeword

c = ( [m1, cctrl,1] , . . . , [mn, cctrl,n] ) ∈ Σn,

interpreted as n symbols in over the alphabet Σ = Σdata × Σctrl = {0, 1}
v+w. The decoding algorithm

Dec(c′) gets

c′ = ( [m′1, c
′
ctrl,1] , . . . , [m′n, c

′
ctrl,n] ) ∈ Σn,

and recovers a candidate message m′ = (m′1, . . . ,m
′
n) as well as a candidate c′ctrl = (c′ctrl,1, . . . , c

′
ctrl,n). It

checks that c′ctrl is a valid codeword and if so recovers (r′, y′) such that c′ctrl = Encctrl(r
′, y′). If c′ctrl is not a

valid codeword or hr′(m
′) 6= y′, it outputs⊥ else it outputs m′. Note that this generalizes the previous naive

idea with a sub-exponentially large alphabet, which corresponds to using a repetition code for the control

code. The rate of the overall code is R = w/(w+ v) which can be made arbitrarily close to 1 by choosing a

sufficiently large constant w > v. The error-tolerance is ρ = δctrl ≈ 1. In particular, if c′ is within distance

ρ of c and c′ctrl is a valid codeword then it must be the case that c′ctrl = cctrl and hence r′ = r, y′ = hr(m).
In this case, the only way that that decoding can output some m′ 6= m is if the values form a hash collision

hr(m
′) = hr(m).

Self-Seeded Error Correction. To achieve error-correction, we use essentially the same construction

as before, but additionally encode the data m using an efficiently list-decodable error-correcting code

(Encdata,Decdata) over a constant size alphabet Σdata = {0, 1}w for some large constant w. For any

constant ρ < 1/2 we want this code to have rate Rdata ≈ 1 − ρ and to be list-decodable from a ρ
fraction of errors. This can be accomplished using the codes of [GR08]. Moreover, we will now want

the code (Encctrl,Decctrl) to efficiently uniquely decode from ρ errors, which can be achieved with the

same parameters as previously. Our self-seeded code Enc(m; r) computes cctrl = (cctrl,1, . . . , cctrl,n) =
Encctrl((r, hr(m))) ∈ Σn

ctrl as before, and also cdata = (cdata,1, . . . , cdata,n) = Encdata(m) ∈ Σn
data. It

then “folds” the two codewords together to yield the final codeword

c = ( [cdata,1, cctrl,1] , . . . , [cdata,n, cctrl,n] ) ∈ Σn

where Σ = Σdata × Σctrl = {0, 1}
v+w. The decoding algorithm Dec(c′) gets

c′ = ( [c′data,1, c
′
ctrl,1] , . . . , [c′data,n, c

′
ctrl,n] ) ∈ Σn.

It applies list-decoding on the data part c′data of the received value c to recover a polynomial list of candidate

messages {m(i)} = Decdata(c
′
data). It also uniquely decodes (r′, y′) = Decctrl(c

′
ctrl). Then it outputs the

first value m(i) such that hr′(m
(i)) = y′, or outputs⊥ if none is found or if either of the decoding procedures

fail. The rate of the overall code is R = Rdata · (w+ v)/w ≈ 1− ρ by choosing sufficiently large constants

w > v. To analyze the error-correction, first observe that if the received value c′ within relative distance ρ of

c = Enc(m; r) then, by the correctness of list-decoding of the “data code”, the correct message m will be in

the decoded list with m = m(i) for some i, and by the correctness of unique decoding of the “control code”

we have (r′, y′) = (r, hr(m)). So the only way that error correction can fail is if there is another m(j) 6= m
in the list such that hr(m

(j)) = hr(m), but this gives a collision on the hash function.

Randomized Codes from One-Way Functions. Our constructions of randomized codes with error-detection

and error-correction are identical to the above constructions of self-seeded codes, but instead of requiring the

hash family hr to be collision-resistant, we only need it to be a universal one-way hash function (UOWHF).
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A UOWHF ensures that a polynomial time adversary that selectively chooses a message m first and then

gets the seed r cannot find a collision m′ 6= m such that hr(m) = hr(m
′) except with negligible probability.

Such UOWHFs can be constructed from one-way functions [NY89, Rom90]. Recall that the only difference

between self-seeded and randomized codes is whether the encoded message m can be chosen adaptivley

depending on the randomness r or selectively before r is chosen, which exactly matches the difference

between collision-resistant hash functions and UOWHFs.

Necessity of Assumptions. We show that self-seeded codes beating the Singleton bound, with error-

detection tolerance ρ > 1 − R or error-correction tolerance ρ > (1 − R)/2, imply collision-resistant hash

functions (CRHFs). Start by considering a self-seeded error-detection code (Enc,Dec) with error-detection

tolerance ρ. We claim that for every fixed subset S of 1 − ρ fraction of codeword positions, the function

hr(m) = Enc(m; r)[S] that outputs the codeword symbols of Enc(m; r) in the positions indexed by S is

collision-resistant. In particular, if there is an efficient adversary that, given r, can find a collision m 6= m′

such that hr(m) = hr(m
′), it means that Enc(m; r) and Enc(m′; r) are at distance < ρ and therefore such

an adversary can break error detection by choosing the message m and modifying Enc(m; r) to Enc(m′; r).
Moreover, if the rate of the code exceeds the Singleton bound with R > 1 − ρ, then the functions hr are

compressing, making them CHRFs. To get the analogous result for error-correction, we simply note that

ρ-error-correction implies (2ρ)-error-detection. In particular, if an efficient adversary given r can find two

messages m0 6= m1 such that Enc(m0; r) and Enc(m1; r) are within relative distance 2ρ then it can find a

“midpoint” c′ which is at relative distance ρ from both Enc(m0; r) and Enc(m1; r). For one of b ∈ {0, 1},
modifying Enc(mb; r) to c′ necessarily causes decoding to output the incorrect message m1−b.

We also show that randomized error-detection and error-correction codes beating the Singleton bound

imply one-way functions. The argument is somewhat different from above since we don’t want to assume

that Enc(m; r) reveals r in the full. Instead, we rely on the fact that, if one-way functions don’t exist, then

we can efficiently sample “almost uniform” inverses of any efficient function [IL89]. Consider a random

codeword c = Enc(m; r) for a random message m and randomness r. For any subset S of 1 − ρ fraction

of codeword positions we can efficiently find an almost uniform inverse (m′, r′) of the function f(m, r) =
Enc(m; r)[S] that outputs the codeword symbols in positions S. This means that c = Enc(m; r) and

c′ = Enc(m′; r′) agree on the positions in S and therefore have relative distance ≤ ρ. If the rate of the code

exceeds the Singleton bound with R > 1−ρ, then there is a non-negligible probability that m 6= m′ since f
loses information about m. Therefore the channel that changes c to c′ is efficient and defeats error detection

by introducing ρ-fraction errors. Similarly the channel that changes a random subset of ρ/2 positions outside

of S from c to c′ defeats error correction since decoding is almost as likely to output m′ as m.

Organization of the Paper.

In Section 2 we give general notations and state the ingredients that we will use. In Section 3 we give

formal definitions for randomized codes and self-seeded codes. In Section 4 we state and prove our main

theorems. In Section 5 we show that randomized codes imply one-way functions and in Section 6 we prove

that self-seeded codes imply collision resistance hash functions.
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2 Preliminaries and Ingredients

2.1 Notations

All logarithms are taken in base 2. Let poly stand for the set of all polynomials. Let PPT stand for

non-uniform probabilistic polynomial-time. We note that while we rely on the non-uniform model of com-

putation by default, all our results also hold if we were to define PPT in the uniform model. We use

sans-serif (e.g., A) for PPT algorithms. A function ν : N 7→ [0, 1] is negligible, denoted ν(k) = neg(k), if

ν(k) < 1/p(k) for every p ∈ poly and large enough k. For a set S, let x ← S denote that x was drawn

uniformly from S. Given a distribution P , we use x← P to denote that x is chosen according to P .

Hamming distance. The Hamming distance between x, y ∈ [q]n is ∆(x, y) = | {i : xi 6= yi} |. The

relative Hamming distance between x, y ∈ [q]n is δ(x, y) = ∆(x,y)
n .

Distributions and random variables. The statistical distance (also known as, variation distance) of two

distributions P and Q over a discrete domain X is defined by SD(P,Q) = maxS⊆X |P (S)−Q(S)|.

Definition 2.1 (Min-entropy). A random variable X has min-entropy k, denoted H∞(X) ≥ k,

if maxxPr [X = x] ≤ 2−k.

We will also use the following lemma about average min-entropy:

Definition 2.2 (Average min-entropy). Let (X,Y ) be a pair of random variables. The average min-entropy

of X conditioned on Y is:

H̃∞(X|Y ) = − log

[
E

y←Y

[
2−H∞(X|Y=y)

] ]

Average min-entropy gives a bound on the probability that an adversary that gets the value of Y will

guess the value of X in a single attempt. We will use the following useful lemma that connects average

min-entropy and min-entropy.

Lemma 2.3 ([DORS08, Rey11]). H̃∞(X|Y ) ≥ H∞(X,Y ) − v, where 2v is the number of elements in

support of Y .

2.2 One-Way Functions

Definition 2.4 (One-way functions). A PPT algorithm F : {0, 1}∗ → {0, 1}∗ is a one-way function if for

every PPT A and every sufficiently large k ∈ N,

Pr
x←{0,1}k

[
A(1k,F(x)) ∈ F

−1(F(x))
]
≤ neg(k).

Distributional one-way functions. We will also use the classical result of Impagliazzo and Luby on

distributional one-way functions implying one-way functions.

Definition 2.5 (Distributional One-way functions). A PPT algorithm F : {0, 1}∗ → {0, 1}∗ is a distribu-

tional one-way function if there exists a constant c > 0 such that for every PPT A and every sufficiently

large k ∈ N,

SD

((
A(1k,F(X)),F(X)

)
,
(
X,F(X)

))
≥ 1/kc.

where X is sampled uniformly from {0, 1}k.
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Theorem 2.6 (Distributional one-way functions imply one-way functions, [IL89]). If there exists a distri-

butional one-way function then there exists a one-way function.

2.3 Universal One-Way Hash Functions

Definition 2.7 (Universal one-way hash functions). For a security parameter k ∈ N. A family of functions

H = {hs : {0, 1}
n(k) → {0, 1}ℓ(k)}s∈{0,1}ℓ(k) is a family of universal one-way hash functions (UOWHFs)

if it satisfies:

1. Efficiency: Given s ∈ {0, 1}ℓ(k) and x ∈ {0, 1}n(k), hs(x) can be evaluated in time poly(n(k), ℓ(k)).

2. Shrinking: ℓ(k) < n(k).

3. Target Collision Resistance: For every PPT A and sufficiently large k ∈ N, if we consider the

following randomized experiment:

• (x, state)← A(1k) ∈ {0, 1}n(k) × {0, 1}∗,

• Sampling s← {0, 1}ℓ(k),

• x′ ← A(state, s)

Then, Pr [x 6= x′ ∧ hs(x) = hs(x
′)] ≤ neg(k).

The notion of universal one-way hash functions (UOWHF) was first introduced by Naor and Yung

[NY89]. Rompel [Rom90] gave the first UOWHF construction from arbitrary one-way functions.

Theorem 2.8 (One-way functions imply universal one-way hash function, [NY89, Rom90]). There is a

black-box construction of universal one-way hash functions (UOWHFs) from one-way functions (OWFs). In

particular, assuming OWFs, for any arbitrarily large constant c and arbitrarily small constant δ > 0 there

is a UOWHF with input length n(k) = kc and output/seed length ℓ(k) = kδ.

2.4 Collision Resistance Hashing

Definition 2.9 (Collision resistance hash functions (CRHF)). For a security parameter k ∈ N. A family of

functions H = {hs : {0, 1}
n(k) → {0, 1}ℓ(k)}s∈{0,1}ℓ(k) is a family of collision resistance hash functions

(CRHFs) if it satisfies:

1. Efficiency: Given s ∈ {0, 1}ℓ(k) and x ∈ {0, 1}n(k), hs(x) can be evaluated in time poly(n(k), ℓ(k)).

2. Shrinking: ℓ(k) < n(k).

3. Collision Resistance: For every PPT A and sufficiently large k ∈ N,

Pr
s←{0,1}k,
x,x′←A(s)

[
x 6= x′ ∧ hs(x) = hs(x

′)
]
≤ neg(k).

We mention that the parameters of CRHFs above do not matter much: any “non-trivial” CRHF implies

an “arbitrarily good” CRHF. That is, start with any CRHF with arbitrarily large polynomial seed/output

length ℓ(k) that has even 1-bit compression n(k) = ℓ(k) + 1. Then, for any arbitrarily small constant δ > 0
and arbitrarily large constant c, we can also get a CRHF with small seed/output length ℓ(k) = kδ and large

input length n(k) = kc. Therefore, when we assume the existence of CRHFs we without loss of generality

assume the above “arbitrarily good” CRHF parameters.3

3We can decrease the seed/output length by changing the security parameter from k to kε for a sufficiently small ε and noting

that poly/negl in kε is the same as poly/negl in k. We can increase the input length arbitrarily using the Merkle-Damgard transform.
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2.5 Standard Correcting/Detecting Codes

We now define error-correcting codes for information-theoretic adversaries also called Hamming channels.

In this section, a code is a pair (Enc,Dec) of deterministic encoding and decoding algorithms, and different

notions are obtained by considering the requirements of the decoding algorithm.

Definition 2.10 (Standard codes for Hamming channels). Let k, n, q be parameters and let Enc : {0, 1}k →
[q]n be a function. We say that Enc is an encoding function for a code that:

• decodes d errors, if there exists a function Dec : [q]n → {0, 1}k such that for every m ∈ {0, 1}k and

every v ∈ [q]n with ∆(Enc(m), v) ≤ d, we have Dec(v) = m.

• L-list-decodes d errors, if the function Dec is allowed to output a list of size at most L, and for every

m ∈ {0, 1}k and every v ∈ [q]n with ∆(Enc(m), v) ≤ d, we have m ∈ Dec(v).

• detects d errors, if there exists a function Dec : [q]n → {0, 1}k∪{⊥} such that for every m ∈ {0, 1}k,

Dec(Enc(m)) = m and for every v ∈ [q]n such that v 6= Enc(m) and ∆(Enc(m), v) ≤ d, we have

Dec(v) = ⊥.

The rate of the code is the ratio of the message length and output length of Enc, where both lengths are

measured in bits. That is the rate R = k
n·log q .

A code (Enc, Dec), is explicit if Enc and Dec run in polynomial time. (Naturally, this makes sense only

for a family of encoding and decoding/detecting functions with varying message length k block length n(k),
and alphabet sizes q(k)).4

We will also use the following construction by Guruswami and Rudra [GR08] for optimal list-decodable

codes over a constant alphabet.

Theorem 2.11 ([GR08]). For every 0 < R < 1, every sufficiently small ε > 0, there is an explicit family of

codes over an alphabet of size 2O(ε−4 log( 1
ε
)) that have rate at least R and which can be list decoded up to a

fraction 1−R− ε of errors in polynomial time, with a list of size nO(ε−1 log( 1
ε
)).5

It is folklore that for every ε > 0 by using code concatenation it is possible to construct standard codes

with distance d ≥ 1 − ε and rate R = o(1) for any sufficiently large k with an alphabet size that depends

on ε. We make this formal in the following Theorem (see for example the book by Guruswami, Rudra, and

Sudan [GRS] for more details).

Theorem 2.12. For every sufficiently small 0 < ε, and every computable function n : N 7→ N such that for

every sufficiently large k, n(k) > kc, (for a universal constant c > 1) there exists an explicit standard code

(Enc,Dec), for Enc: {0, 1}k → [q]n(k) and Dec: [q]n(k) → {0, 1}k with alphabet q = 2(1/ε
3) such that

the code has distance d(k) > n(k)− ε · n(k) and (uniquely) decodes from d(k)/2− 1 errors.

4We point out that traditionally codes are indexed by the codeword length (that is, k and q are chosen as a function of the

codeword size n). However, for the sake of consistency with the rest of our definitions, we chose to define the codeword length n

and alphabet q as a function of the input size k.
5We remark that while Theorem 2.11 does not explicitly mention that the rate can be achieved for every sufficiently large

message size k, and instead just claims that it holds for infinitely often choices of k. A careful examination of the construction

and proof by [GR08] reveals that the argument and proof hold for every sufficiently large k, given a suitable expander graph. An

explicit construction for such graphs were given for every sufficiently large k in [KMRZS17] (see Lemma 2.7 for a formal proof).

Thus, we assume that Theorem 2.11 holds for every sufficiently large k.
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3 Definitions for Randomized Codes and Self-Seeded Codes

In this section, we formally define randomized codes and self-seeded codes, and their related notions of

error detection and correction.

3.1 Randomized Codes

We start by giving a formal definition of randomized encoding and decoding algorithms. This syntax will

be also shared with our notion of self-seeded codes defined in the next section.

Definition 3.1 (Randomized codes). Let n, q : N 7→ N be poly-time computable functions. An (n, q)-
randomized code is a pair (Enc,Dec) such that:

• Enc is a PPT algorithm that on input m ∈ {0, 1}k outputs a string in c ∈ [q(k)]n(k). We use

Encr(m) to denote the instantiation of Enc(m) when using the string r as random coins.

• Dec is a PPT algorithm that on input z ∈ [q(k)]n(k) outputs a string m̂ ∈ {0, 1}k ∪ {⊥}.

For a fixed k ∈ N, the rate of the code for k is defined to be Rk = k
log(q)·n(k) . When R = limk→∞Rk ∈ [0, 1]

is well defined we say that R is the rate of the code. We omit all or a subset of the functions n and q when

they are clear from the context.

We now define a notion of reliable codes for randomized codes, which essentially states that it is possible

to recover the message given a codeword (that was not damaged by error).

Definition 3.2 (Codes with reliable decoding). A randomized code (Enc,Dec) is said to be perfectly reli-

able if for every k ∈ N and m ∈ {0, 1}k, Pr [Dec(Enc(m)) = m] = 1.

Intuitively, in randomized codes, each time the sender wants to send a message, it samples fresh ran-

domness on the fly and uses it to encode the message. We make this formal in the definition below.

Definition 3.3 (Error detection/correction for randomized codes). Let n, ℓ, d : N 7→ N be poly-time com-

putable functions and let (Enc,Dec) be a randomized code. For a PPT algorithm A and k ∈ N, consider

the following randomized experiment:

1. (m, state)← A(1k) ∈ {0, 1}k × {0, 1}∗

2. Compute c← Enc(m) (by sampling r ← {0, 1}ℓ(k) and computing Encr(m)).

3. z ← A(m, state, c)

We say that the code:

• is reliable if for every PPT algorithm A and every sufficiently large k ∈ N:

Pr [Dec(c) 6= m] ≤ neg(k).6

• detects d-errors if it is a reliable code, and for every PPT algorithm A and every sufficiently large

k ∈ N: Pr [∆(c, z) ≤ d(k) ∧Dec(z) /∈ {⊥,m}] ≤ neg(k).

• corrects d-errors if for every PPT algorithm A and every sufficiently large k ∈ N:

Pr [∆(c, z) ≤ d(k) ∧Dec(z) 6= m] ≤ neg(k).

6This is a weaker variant of Definition 3.2. Our construction achieves the stronger variant of perfect reliability. However, our

lower bounds results are stronger since they apply to this weaker notion.
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For a constant ρ ∈ [0, 1], the code detects or corrects ρ-relative errors, if for every sufficiently large

k ∈ N, ρ ≤ d(k)/n(k).

Note that by definition if a code corrects d-errors for d > 0 then the code is reliable. In addition, our

definition of error detection permits also error correction (that is, when errors are induced, the decoding

algorithm can either return ⊥ or successfully decode and return the original message m). By doing so we

can achieve simultaneous error detection and correction (that is, the same decoding function can at the same

time satisfy the notion of detection and correction defined above).

3.2 Self-Seeded Codes

We now formally, define the notion of self-seeded codes. A self-seeded code is a randomized code that

shares the same syntax as defined in 3.1. However, a self-seeded code provides a strictly stronger notion of

security as compared to the notion of error correction and detection for randomized codes stated above in

Definition 3.3.

Definition 3.4 (Error detection/correction for self-seeded codes). Let n, ℓ, d : N 7→ N be poly-time com-

putable functions. A randomized code is said to be a self-seeded code if the following holds: For a PPT
algorithm A and k ∈ N, consider the following randomized experiment:

1. r ← {0, 1}ℓ(k)

2. (m, z)← A(r)

We say that the code:

• is reliable if for every PPT algorithm A and every sufficiently large k ∈ N:

Pr [Dec(Encr(m)) 6= m] ≤ neg(k).

• detects d-errors if it is a reliable code, and for every PPT algorithm A and every sufficiently large

k ∈ N: Pr [∆(Encr(m), z) ≤ d(k) ∧Dec(z) /∈ {⊥,m}] ≤ neg(k).

• corrects d-errors if for every PPT algorithm A and every sufficiently large k ∈ N:

Pr [∆(Encr(m), z) ≤ d(k) ∧Dec(z) 6= m] ≤ neg(k).

For a constant ρ ∈ [0, 1], the code detects or corrects ρ-relative errors, if for every sufficiently large k ∈ N,

ρ ≤ d(k)/n(k).

Self-seeded code enables the sender to sample its randomness once, fix it, and then use this same ran-

domness for encoding multiple messages (this contrasts with the standard notion of randomized codes,

which requires the sender to generate fresh randomness for each message in real time). We stress that after

being fixed, this randomness is known to any potential adversary but is not given to the decoding algo-

rithm.7 Still, we require that no efficient adversary can find a message and a close error vector that leads to

a decoding error.

Indeed, self-seeded codes offer a stronger adaptive notion of security, where the adversary can choose

the message m adaptively based on the randomness fixed by the sender. In contrast, standard randomized

codes require the sender to choose fresh randomness after the adversary has decided on the message.

7We note that our notion of self-seeded codes is strictly stronger than the notion of “seeded codes” defined in [GHY20]. Seeded

codes (unlike self-seeded codes), requires the encoding and decoding algorithms to share a random seed. Thus, unlike self-seeded

codes, seeded codes necessitate a trusted setup between the encoding and decoding.
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4 Optimal Randomized Codes and Self-Seeded Codes

We now state our main theorems for randomized codes and self-seeded codes. Our results show that it is

possible to construct codes that bypass the Singleton bound for computationally bounded channels under

minimal cryptographic assumptions. Specifically, for the randomized codes construction, we assume the

existence of one-way functions, and for the self-seeded codes construction, we assume the existence of a

collision resistance hash function.

Main theorem. We state our result for randomized codes and self-seeded codes together in the following

theorem.

Theorem 4.1 (Randomized codes [resp., self-seeded codes] with constant alphabet size). Assuming the

existence of one-way functions [resp., collision resistance hash functions], the following holds: For every

constant 0 ≤ p < 1/2 and every sufficiently small constant 0 < ε, there exists a (q, n)-randomized [resp.,

(q, n)-self-seeded code] code with rate R = 1 − p − ε that simultaneously (uniquely) corrects p relative

errors and detects from 1 − p − ε relative errors. Moreover, the alphabet size q is a constant that depends

on ε.

The proof of Theorem 4.1 appears in Section 4.2 and relies on our construction described in Section 4.1.

Remark 4.2. If the underlying cryptographic primitives assumed in our theorem statements (that is, one-

way functions for randomized codes and collision resistance hash functions for self-seeded codes) have

sub-exponential security, then our constructed codes in Theorem 4.1 will also have sub-exponential failure

probability for correction and detection against channels that are computable by sub-exponential size cir-

cuits. This follows since all our reductions run in polynomial time and have a polynomial loss in advantage.

However, for the sake of simplicity, we focus on the case of polynomial/negligible security in our formal

statements and proofs.

4.1 Construction

In this section, we describe the construction that we will use to prove Theorem 4.1.

We now describe the encoding and decoding algorithms. In Figure 1, we state the parameters and

ingredients that are needed to define our encoding and decoding algorithms (Enc,Dec) that are specified in

Figure 2. The encoding and decoding algorithms are essentially the same for randomized codes and for self-

seeded codes. In both cases the encoding algorithm Enc takes as input a message m and some value r. For

randomized codes, a fresh random r is chosen every time we send a new message, and for the self-seeded

codes r is sampled once (and is given to any possible adversary), and this single fixed r could be used in the

encoding of multiple messages.

In both cases, the decoding algorithm Dec only takes as input a possibly damaged codeword z. In

particular, the decoding algorithm is not provided with the seed r.
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Figure 1: Parameters and Ingredients for folding construction.

List of ingredients and parameters: Let q, qdata, qctrl, ddata, dctrl, ℓ, n : N 7→ N and Rdata : N 7→ R be poly-

time computable functions.

Data code: A family of standard codes (Encdata,Decdata) such that Encdata : {0, 1}
k → [qdata]

n list-

decodes from ddata errors with rate Rdata and polynomial list size.

A hash family: H = {hs : {0, 1}
k → {0, 1}ℓ}s∈{0,1}ℓ that is efficiently computable. Where we require

that 2ℓ := ℓ′ ≤ kcℓ (where cℓ < 1 is a fixed universal constant).

Control code: Code with large distance: A family of standard codes (Encctrl,Decctrl), such that

Encctrl : {0, 1}
ℓ′ → [qctrl]

n has distance larger than dctrl > 2 · ddata + 1 and efficiently uniquely

decodes from dctrl/2− 1 errors. (Note that we require the codeword size n to be the same in Encdata
and Encctrl).

Figure 2: Encoding and decoding algorithm

Encoding algorithm: We define an encoding function Enc : {0, 1}k × {0, 1}ℓ → [q]n:

Input: A message m ∈ {0, 1}k. And coins r ∈ {0, 1}ℓ.

Output: A codeword c ∈ [q]n for q := qctrl · qdata.

Operation :

Encode the data: Compute cdata = Encdata(m) ∈ [qdata]
n.

Hash the encoded data: Compute y = hr(m) and set w := (y, r).

Encode the control: Compute cctrl = Encctrl(w) ∈ [qctrl]
n

Fold the control and data codes: Compute c ∈ ([qdata] × [qctrl])
n, where for every i ∈ [n], ci =

((cdata)i, (cctrl)i). That is, ci contains the ith symbol of cdata and cctrl.

Output: c.

Decoding algorithm: We define a decoding function Dec : [q]n → {0, 1}k ∪ {⊥}:

Input: A received word z ∈ [q]n.

Output: A message m̂ ∈ {0, 1}k ∪ {⊥}.

Operation :

Unfold the control and data: For every i ∈ [n] we view zi = ((zdata)i, (zctrl)i) ∈ [qdata] × [qctrl] and

compute zdata = ((zdata)1, · · · , (zdata)n) and zctrl = ((zctrl)1, · · · , (zctrl)n).

Uniquely decode the control part: ŵ = (ŷ, r̂) = Decctrl(zctrl).

List decode the data part: Compute a list of message candidates List = Decdata(zdata), by applying the

list decoding for ddata errors.

Check control distance: If ∆(Encctrl(ŵ), zctrl) > ddata then output ⊥.

Check consistency: Output the first message m̂ ∈ List for which hr̂(m̂) = ŷ. If no such message exists

output ⊥.
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4.2 Proof of Theorem 4.1.

In this section, we prove Theorem 4.1. We make use of the following technical lemma. The proof for the

lemma is given below in Section 4.2.1.

Lemma 4.3. If there are ingredients and parameters that satisfy the conditions stated in Figure 1. Moreover,

if the hash family H specified in Figure 1 is a family of universal one-way hash functions [resp., collision

resistance hash functions]. Then, the code (Enc,Dec) as specified in Figure 2 is a (q, n)-randomized code

[resp., (q, n)-self-seeded code]. Moreover, the code is perfectly reliable, has alphabet size q = qctrl · qdata,

rate R = Rdata ·
log(qdata)

log(qdata)+log(qctrl)
, and the decoding algorithm simultaneously,

• detects from dctrl − ddata errors, and

• corrects from ddata errors.

Proof of Theorem 4.1.

Proof of Theorem 4.1. Note that one-way functions imply universal one-way hash functions that satisfy the

conditions stated for the hash familyH in Figure 1 (see, Theorem 2.8).

Given a sufficiently small 0 < ε, let ε̂ = ε/4 and apply Theorem 2.11 for ε̂ and Rdata = 1 − p − ε̂ to

get a standard code (Encdata,Decdata) with rate Rdata = 1 − p − ε̂, codeword length ndata alphabet size

qdata = 2O(ε̂−5) . Moreover, (Encdata,Decdata) list decodes from ddata = p · ndata errors (that is, from p
relative errors) with a list size that depends only on ε̂ and k. Note also that we can increase the alphabet size

by bundling symbols together without damaging the list decoding and the rate Rdata of the code, and so, we

can assume that log(qdata) is of size at least ε̂−5. To summarize (Encdata,Decdata) meets the conditions

stated in Figure 1 for “data code” for the parameters Rdata and ddata and log(qdata) > ε̂−5.

Apply theorem 2.12 for ε̂ to get a code (Encctrl,Decctrl) with codeword length ndata = nctrl, alphabet

size at most qctrl = 2ε̂
−3

that has distance dctrl > nctrl(1 − ε̂) and efficient decoding of up to dctrl/2 −
1 errors. Note that for a sufficiently small ε (and ε̂) it holds that dctrl > 2ddata + 1. This means that

(Encctrl,Decctrl) meets the conditions stated in Figure 1 for the “control code” with parameters dctrl and

log(qctrl) < ε̂−3.

Thus, we can apply Lemma 4.3 for (Encdata,Decdata), (Encctrl,Decctrl) andH to get a (q, n)-randomized

code when we take H to be a universal one-way hash family and (q, n)-self-seeded code if H is a collision

resistance hash family. In both cases, it follows that

• n = ndata

• q = qdata · qctrl = 2O(ε−5),

• for every sufficiently small ε (and ε̂), R = Rdata ·
log(qdata)

log(qdata)+log(qctrl)
> (1−p− ε̂) · 1

1+ε̂ > (1−p−ε).

• The code detects from dctrl − ddata = n(1− ε̂)− np > n(1− p− ε) errors. That is, it detects from

1− p− ε relative errors.

• The code corrects ddata = pn errors. That is, it corrects up to p relative errors.

This concludes the proof of Theorem 4.1.
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4.2.1 Proof of Lemma 4.3.

Let Encdata,Encctrl, hr, be as defined in Figure 1 and let (Enc,Dec) be as defined in Figure 2. By con-

struction, (Enc,Dec) is perfectly reliable. This holds since for every fixed randomness r if no errors are

applied, all ingredients in the construction are deterministic, and standard codes are by definition perfectly

reliable. Similarly, by construction q = qctrl · qdata and

R =
k

n · log(q)
=

Rdata · (n · log(qdata))

n · (log(qctrl) + log(qdata))
= Rdata ·

log(qdata)

log(qdata) + log(qctrl)
.

We now prove the rest of Lemma 4.3. For simplicity, we focus on the randomized codes case, the proof for

the self-seeded codes is essentially the same and follows along similar lines.8

Consider the following randomized experiment for a PPT algorithm A and k ∈ N:

1. (m, state)← A(1k) ∈ {0, 1}k × {0, 1}∗

2. Compute c← Encr(m) (by sampling r ← {0, 1}ℓ(k)).

3. z ← A(m, state, c)

We make use of the following notation: Let cdata = Encdata(m), w = (hr(m), r) and cctrl = Encctrl(w).
Recall that z ∈ ([qdata]×[qctrl])

n, and define zdata = ((zdata)1, · · · , (zdata)n) and zctrl = ((zctrl)1, · · · , (zctrl)n)
such that for every i ∈ [n], zi = ((zdata)i, (zctrl)i). Let ŵ = (ŷ, r̂) = Decctrl(zctrl) and List =
Decdata(zdata).

Error correction: To prove the error correction property, we need to show that

Pr [∆(c, z) ≤ ddata ∧Dec(z) 6= m] ≤ neg(k).

We make use of the following claims:

Claim 4.4. If ∆(c, z) ≤ ddata then m ∈ List and w = ŵ.

Proof of Claim 4.4. If ∆(c, z) ≤ ddata it follows that ∆(cctrl, zctrl) ≤ ddata and ∆(cdata, zdata) ≤ ddata.

Since (Encctrl,Decctrl) is a standard code that uniquely decodes from dctrl/2 − 1 ≥ ddata errors it holds

that w = w′. Similarly, since (Encdata,Decdata) is a standard code that list-decodes from ddata errors it

follows that m ∈ List.

Claim 4.5. ∀m̂ ∈ List, if m̂ 6= m then Pr [hr(m̂) = y] ≤ neg(k).

Proof of 4.5. Follows directly from the security of the universal one-way hash function, as otherwise, we

can use A to find collisions in h contradicting the collision resistance property.

By Claim 4.4, m ∈ List and w = ŵ. Thus, by Claim 4.5, with all but negligible probability, m is the

only message in List for which hr(m) = y (passing the “Check consistency” step in the decoding algorithm)

which implies Dec(z) = m.

8The main difference is that we consider an adaptive adversary (that is, first r ← {0, 1}ℓ(k) and then (m, z) ← A(r)) and we

reduce to the security of the CRH instead of the security of the UOWHF, otherwise, the proof is identical.
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Error detection: To prove the error correction property, we need to show that

Pr [∆(c, z) ≤ dctrl − ddata ∧Dec(z) /∈ {m,⊥}] ≤ neg(k).

We make use of the following Claim.

Claim 4.6. If ∆(c, z) ≤ dctrl − ddata and Dec(z) 6= ⊥ then w = ŵ.

Proof. Let ĉctrl = Encctrl(ŵ) and note that the by the “Check control distance” step in the decoding al-

gorithm (see Figure 2), if Dec(z) 6= ⊥ it follows that ∆(zctrl, ĉctrl) ≤ ddata. Moreover, by construc-

tion, if ∆(c, z) ≤ dctrl − ddata it follows that ∆(cctrl, zctrl) ≤ dctrl − ddata. Thus, if Dec(z) 6= ⊥ and

∆(c, z) ≤ dctrl − ddata by the triangle inequality

∆(cctrl, ĉctrl) ≤ dctrl.

Since cctrl and ĉctrl are both valid codewords of the standard code (Encctrl,Decctrl) that has distance dctrl,
it follows that w = ŵ.

By Claim 4.6 if Dec(z) 6= ⊥ then w = ŵ. This concludes the proof, since by Claim 4.5, if w = w′,
with all but negligible probability, m is the only valid message that can be outputted by Dec(z).

5 Randomized Codes Imply One Way Functions.

We now show that non-trivial randomized codes imply the existence of one-way functions. For large al-

phabets, this is indeed optimal since as we have seen in our construction it is possible to construct optimal

randomized codes assuming only universal one-way functions (which can be constructed from one-way

functions).

The following theorem states that if a randomized code has a rate that bypasses the singleton bound, it

implies one-way functions.

Theorem 5.1 (Randomized codes with rate beating the Singleton bound imply one way functions). Let

(Enc,Dec) be a randomized code with rate 0 ≤ R < 1. If one of the following holds:

• The code detects ρ0-relative errors and ρ0 > 1−R+ 1
n .

• The code corrects from ρ1-relative errors and 2ρ1 > 1−R+ 2
n .

Then there exists one-way functions.

The proof will make use of the following lemma.

Lemma 5.2 (Non-trivial error detection/correction for randomized codes implies one-way functions). Let

(Enc,Dec) be an (n, q)-randomized code that has at least one of the following properties:

• The code detects d-errors.

• The code corrects ⌈d/2⌉-errors.

Let s := n − d, if v := ⌈log(q) · s⌉ ≤ k − 1 then F : {0, 1}k+ℓ → {0, 1}v defined so that on input

(m, r) ∈ {0, 1}k+ℓ it computes Encr(m) and outputs a binary representation of the first s symbols is a

distributional one-way function.9 10

The proof for the lemma is given below, but first, we will use it to prove Theorem 5.1.

9Here, ℓ is just the implicitly assumed bound on the number of random bits used by Enc.
10The statement of Lemma 5.2 could be readily extended so that restricting the output of Encr(m) to any s symbols (that can be
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Proof of Theorem 5.1.

Proof of Theorem 5.1. Let d = Max(⌈ρ0 · n⌉, ⌈2ρ1 · n⌉) and note that by definition at least one of the

following holds: The code detects d-errors, or corrects ⌈d/2⌉-errors. Moreover, by our assumption on the

rate of the code, it holds that d > n− R · n+ 1. Let s = n− d and let v = ⌈log(q) · s⌉ since R ≥ k
log(q)·n

it holds that v ≤ k − 1. Thus, we meet the conditions of Lemma 5.2 which implies that there exists a

distributional one-way function (in fact outputting the binary representation of the first s symbols of Enc is

the distributional one-way function), and by Theorem 2.6 there exists a one-way function.

Proof of Lemma 5.2.

Proof of Lemma 5.2. For k ∈ N, let Mk and Rk denote the random variables sampled uniformly from

{0, 1}k and {0, 1}ℓ(k) respectively. Let Yk = F(Mk, Rk) and assume for contradiction that F is not a

distributional one-way function (see Definition 2.5). That is, for every constant c > 0 there exists a PPT
algorithm A such that for infinitely many k ∈ N,

SD

((
A(Yk), Yk

)
,
(
(Mk, Rk), Yk

))
≤ 1/kc. (1)

For a fixed k for which the above holds, we omit the subscript k from the random variables to avoid clutter.

Let (M ′, R′) = A(Y ) and note that by the definition of average min-entropy (see Definition 2.2)

Pr
[
M = M ′

]
≤ 2−H̃∞(M |Y ) ≤ 1/2 (2)

where the last inequality follows by Lemma 2.3 that states that H̃∞(M |Y ) ≥ H∞(M,Y )− v ≥ k− v ≥ 1.

Let C = EncR(M) and C ′ = EncR′(M ′) and recall that by definition, Y = F(M,R) is just the

binary representation of the first s symbols of C. Thus, if F(M ′, R′) = F(M,R) = Y it follows that,

∆(EncR(M),EncR′(M ′)) ≤ n− s = d, which by Equation 1 implies that:

Pr
[
∆(C,C ′) > d

]
≤ 1/kc. (3)

Note also that by Equation 1,

Pr
[
M ′ = ⊥

]
≤ 1/kc (4)

We first handle the case where the code detects d-error and then the case where the code corrects ⌈d/2⌉-
errors.

Detection: By Equation 1 and by the reliability of the code,

Pr
[
Dec(C ′) = M ′

]
≥ Pr [Dec(C) = M ]− 1/kc > 0.9 (5)

We now define a PPT algorithm A
′ (that makes use of A) that contradicts the detection property of the

code: On input 1k, A′ samples m ← {0, 1}k and on input c ∈ [q]n it runs (m′, r′) ← A(y) where y is just

the binary representation of the first s symbols of c (i.e., y = F(m, r)), and outputs c′ = Encr′(m
′). It holds

that:

efficiently identified) not just the first s symbols is itself a distributional one-way function. This would be similar to our statement

on self-seeded codes made at Lemma 6.2, where we show that restricting the output to any subset of size s is a collision resistance

hash family. However, for the sake of simplicity, we restrict our statement and analysis to the simple case where the distributional

one-way function is defined to be the first s symbols.
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• M = A
′(1k) (where by definition M is sampled uniformly by A

′).

• Compute C = EncR(M) (by sampling R← {0, 1}ℓ).

• C ′ = EncR′(M ′) = A
′(M,C).

Thus, A′ contradicts the d-detection property since

Pr
[
Dec(C ′) /∈ {M,⊥} ∧∆(C ′, C) ≤ d

]

≥ Pr
[
Dec(C ′) = M ′ ∧M ′ /∈ {M,⊥} ∧∆(C ′, C) ≤ d

]

≥ Pr
[
Dec(C ′) = M ′

]
−Pr

[
M ′ = M

]
−Pr

[
M ′ = ⊥

]
−Pr

[
∆(C ′, C) > d

]

≥ 0.9− 0.5− 2/kc ≥ 0.1

Where the penultimate inequality follows from Equations 5, 2, 4 and 3.

Correction: We now prove the correction property. Let G be a function defined as follows: On inputs

c, c′ ∈ [q]n, G samples a set I of random (n− s)/2 indices from the set [n] \ [s] (if n− s is an odd number

then with probability 1/2 it sample ⌈(n− s)/2⌉ indices and with probability 1/2 it samples ⌈(n− s)/2⌉−1
indices), and outputs c∗ ∈ [q]n where for every i ∈ I , c∗i = c′i and for every i ∈ [n] \ I , c∗i = ci. Intuitively,

if c and c′ agree on the first s indexes then G(c, c′) = c∗ is a random “mid point” between c and c′.
Recall that C = EncR(M), C ′ = EncR′(M ′) and let C∗ = G(C,C ′). By Equation 1 and symmetry,

SD((M,R,C,C∗), (M ′, R′, C ′, C∗)) ≤ 2/kc. (6)

Since by assumption n− s = d, by the definition of C∗ it follows that:

Pr [∆(C,C∗) > ⌈d/2⌉] ≤ 1/kc (7)

Recall that (M,R) are sampled uniformly at random, thus, by Equations 6 and 7 and the decoding properly

of the code

Pr
[
Dec(C∗) = M ′

]
≥ Pr [Dec(C∗) = M ]− 3/kc ≥ 0.9. (8)

We now define a PPT algorithm A
′ (that makes use of A) that contradicts the correction property of the

code: On input 1k, A′ samples m← {0, 1}k and on input c ∈ [q]n runs (m′, r′)← A(y) where y is just the

binary representation of the first s symbols of c (i.e., y = F(m, r)), computes c′ = Encr′(m
′) and outputs

c∗ = G(c, c′). It holds that,

• M = A
′(1k) (where by definition M is sampled uniformly by A

′).

• Compute C = EncR(M) (by sampling R← {0, 1}ℓ).

• C∗ = A
′(M,C) (recall that C∗ = G(C,C ′) for C ′ = EncR′(M ′) and (M ′, R′) = A(F(M,R))).

Thus, A′ contradicts the ⌈d/2⌉-correction property since,

Pr [Dec(C∗) 6= M ∧∆(C∗, C) ≤ ⌈d/2⌉]

≥ Pr
[
Dec(C∗) = M ′ ∧M 6= M ′ ∧∆(C∗, C) ≤ ⌈d/2⌉

]

≥ Pr
[
Dec(C∗) = M ′

]
−Pr

[
M = M ′

]
−Pr [∆(C∗, C) ≤ ⌈d/2⌉]

≥ 0.9− 0.5− 1/kc ≥ 0.1.

Where the penultimate inequality follows from Equations 2, 7 and 8. This concludes the proof for Lemma

5.2.
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6 Self-Seeded Codes Imply Collision Resistance Hash Functions.

We now show that non-trivial self-seeded codes imply the existence of a collision resistance hash family.

Loosely speaking, the following theorem states that if a self-seeded code has rate that bypasses the Singleton

bound, then it implies collision resistance hash functions (since there are codes with large alphabet that can

achieve the Singleton bound, this result means that for large alphabet, any non-trivial self-seeded code

implies collision resistance functions).

We note that while the result below is stated with respect to the notion of self-seeded codes, the same

exact proof also holds for the weaker notion seeded codes defined in [GHY20] in which the encoding and

decoding algorithms both share the random seed. Since our lower bound still holds even if the decoding

algorithm is given the random seed as input, the lower bound immediately extends to the weaker notion of

seeded codes. However, to avoid confusion and clutter, we present our result with respect to the notion of

self-seeded codes defined in this paper.

Theorem 6.1 (Self-Seeded codes with rate beating the Singleton bound imply collision resistance hash

functions). Let (Enc,Dec) be a self-seeded code with rate 0 ≤ R < 1. If one of the following holds:

• The code detects ρ0-relative errors and ρ0 > 1−R+ 1
n .

• The code corrects from ρ1-relative errors and 2ρ1 > 1−R+ 2
n .

Then there exists an explicit construction for a collision resistance hash family given black-box access to

the code.

We mention that while the above theorem states that we can construct collision resistance hash functions

from non-trivial self-seeded codes. In fact, given a non-trivial self-seeded code, restricting the output of the

encoding to any sufficiently large subset (that can be efficiently identified) of symbols in a way that is still

shrinking (that is, the output of the restricted part is less than the input) is itself a collision resistance hash

function. This is stated formally in the following lemma.

Lemma 6.2 (Non-trivial error detection/correction for self-seeded codes implies collision resistance func-

tions). Let (Enc,Dec) be an (n, q)-self-seeded code that has at least one of the following properties:

• The code detects d-errors.

• The code corrects ⌈d/2⌉-errors.

And let T be a PPT algorithm that on input 1k outputs a set t ⊆ [n] of size s such that n − d ≤ s and

v := ⌈log(q) · s⌉ ≤ k − 1. Then the family H = {Encr|T : {0, 1}
k → {0, 1}v}r∈{0,1}ℓ , is collision

resistance, where we define Encr|T such that for every m ∈ k, Encr|T(m) outputs the ordered sequence of

(Encr(m))i∈t as a binary string of size v.11

We prove Lemma 6.2 below, but first we will use it to prove Theorem 6.1.

Proof of Theorem 6.1.

Proof of Theorem 6.1. Let d = Max(⌈ρ0 · n⌉, ⌈2ρ1 · n⌉) and note that by definition at least one of the

following holds: The code detects d-errors, or corrects ⌈d/2⌉-errors. Moreover, by our assumption on the

rate of the code, it holds that d > n−R · n+1. Let s = n− d and let v = ⌈log(q) · s⌉ since R ≥ k
log(q)·n it

11Encr|T is just the restriction of Encr to the indexes specified by T, where we write the output as a binary string. Moreover, ℓ

is just the bound on the number of random uniform coins used by the self-seeded code.
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holds that v ≤ k − 1. Let T be a PPT algorithm that outputs the set [s] (that is, it outputs the first s indexes

in n). To conclude, note that T and (Enc,Dec) satisfy the conditions of Lemma 6.2, which implies that

there exists a collision resistance hash family (in fact, outputting the binary representation of the s symbols

in Enc that are specified by T is the hash function).

Proof of Lemma 6.2.

Proof of Lemma 6.2. By assumption v ≤ k − 1 which implies that family H is shrinking. Moreover, since

T and Enc are PPT algorithms it follows the for every r ∈ {0, 1}ℓ and every m ∈ {0, 1}k, Encr|T(m) can

be evaluated in poly(k). Thus, to conclude the proof it remains to prove the collision resistance property.

Assume towards contradiction that this does not hold. That is, there exists a PPT A and p ∈ poly such that

for infinitely many k ∈ N,

Pr
r←{0,1}ℓ(k),
m,m′←A(r)

[
m 6= m′ ∧ Encr|T(m) = Encr|T(m

′)
]
≥ p(k).

Fix a k ∈ N for which the above holds. We now show that A can be used to contradict the d-detection and

the ⌈d/2⌉-correction properties of the code.

Detection: Consider the PPT adversary A
′ that on input r ∈ {0, 1}ℓ, computes (m,m′) ← A(r) and

outputs (m, z := Encr(m
′)). Recall that by definition, for every m,m′ ∈ {0, 1}k and every r ∈ {0, 1}ℓ, if

Encr|T(m) = Encr|T(m
′) then it implies that, ∆(Encr(m),Encr(m

′)) ≤ n− s ≤ d (where the inequality

follows, by our assumption that n− d ≤ s). Thus, it follows that:

Pr
r←{0,1}ℓ,
m,z←A

′(r)

[∆(Encr(m), z) ≤ d ∧Dec(z) /∈ {⊥,m}]

≥ Pr
r←{0,1}ℓ,
m,z←A

′(r)

[
m 6= m′ ∧∆(Encr(m), z) ≤ d ∧Dec(z) = m′

]

≥ p(k)− neg(k).

Where the last inequality follows since the code is reliable (which implies that Pr [Dec(z) = m′] ≥ 1 −
neg(k)).

We now argue about the correction property of the code:

Correction: Consider the PPT adversary A
′ that on input r ∈ {0, 1}ℓ, computes (m,m′)← A(r) it com-

putes Encr(m) and Encr(m
′) and outputs (m, z) such that ∆(z,Encr(m)) ≤ ⌈d⌉ and ∆(z,Encr(m

′)) ≤
⌈d⌉ and note that this is possible when ∆(Encr(m),Encr(m

′)) ≤ d otherwise output an arbitrary string. Re-

call that similar to the detection analysis, for every m,m′ ∈ {0, 1}k and every r ∈ {0, 1}ℓ, if Encr|T(m) =
Encr|T(m

′) then it implies that, ∆(Encr(m),Encr(m
′)) ≤ n− s ≤ d.

Thus, it follows that:

Pr
r←{0,1}ℓ,
m,z←A

′(r)

[∆(Encr(m), z) ≤ ⌈d/2⌉ ∧Dec(z) 6= m]

≥ Pr
r←{0,1}ℓ,
m,z←A

′(r)

[
m 6= m′ ∧∆(Encr(m), z) ≤ ⌈d/2⌉ ∧∆(Encr(m

′), z) ≤ ⌈d/2⌉ ∧Dec(z) = m′
]

≥ p(k)− neg(k).
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Where the last inequality follows by the decoding property of the code, which implies that

Pr [∆(Encr(m
′), z) ≤ ⌈d/2⌉ ∧Dec(z) = m′] ≥ 1− neg(k). This concludes the proof of Lemma 6.2.
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